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Abstract

We propose a control law which allows a satellite formation to
achieve orbit transfer. During the transfer, the formation can be either
maintained or modified to a desired one. Based on the orbit transfer
control law proposed by Chang, Chichka and Marsden for single satel-
lite, we add coupling terms to the summation of Lyapunov functions
for single satellites. These terms are functions of the difference between
the mean anomalies (or perigee passing times) of formation members.
The asymptotic stability of the desired formation in desired orbits is
proved.

1 Introduction

This paper is concerned with the problem of achieving a satellite formation
near a designated elliptic orbit. For orbits near the earth, one can use a
space shuttle to place satellites into specified relative positions. What we
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Coordinated orbit transfer for satellite clusters 2

want to consider here is the case when members of the formation have been
placed relatively far apart. They have to use their on-board thrusters to get
to the desired orbits to form the desired formation. A similar case is when
the whole formation has to be restructured for mission-related reasons. We
want the formation to be maintained to some extent during the transfer and
be re-established after the transfer.

Our approach is to use Lyapunov functions to design the control laws
for orbit transfer. The Lyapunov function will achieve a local minimum
when correct orbit and formation are reached. In [4], a Lyapunov function
is expressed as a quadratic function of the differences of orbital elements
between current orbit and the destination orbit. However, the convergence
of the associated control law is not proved.

In this paper, we develop a new control algorithm and give a proof of
convergence. This algorithm is based on a Lyapunov function on the shape
space of elliptic orbits in our previous work [5], the work of Chang, Chichka
and Marsden [1] and a result of Cushman and Bates [2]. However, the most
significant extension is the addition of a coupling term which is a function
of the difference between the osculating perigee passing times.

In section 2, we develop formulas used in the proofs of our theorems. In
section 3, a brief summary of results in [1] and [5] are given.We introduce the
definition of periodic satellite formations in section 4. Our main results and
proofs about orbit transfer of periodic formations are presented in section
5. Simulation results are shown in section 6.

2 Preparations

If the mass of a satellite is small compared to the mass of the earth, the
Kepler two body problem can be approximated by a one center problem as:

mq̈ = −∇VG + u (1)

where q ∈ R3 is the position vector of the satellite relative to the center of
the earth, m is the mass of the satellite, VG is the gravitational potential of
the earth, u is the control force plus other disturbances. Without considering
higher order terms, VG takes the form

VG = −m µ

‖ q ‖ (2)

Let p = mq̇ be the momentum vector of the satellite. For simplicity we
assume that all the satellites considered in this paper have unit



Coordinated orbit transfer for satellite clusters 3

mass.

Let us make the following definitions:

l(t) = q(t) × p(t)

A(t) = p(t) × l(t) − µ
q(t)

‖ q(t) ‖
e(t) =

‖A(t) ‖
µ

a(t) =
h(t)2

µ(1 − e(t)2)

cos(E(t)) =
1
e(t)

(1 − r(t)
a(t)

)

M(t) = E(t) − e(t)sin(E(t)) (3)

where h(t) = ‖ l(t) ‖ and r(t) = ‖ q(t) ‖. These formulas can be found in
textbooks on celestial mechanics [3]. l is the angular momentum vector. A
is called the Laplace vector. They are conserved if u(t) = 0. a is the length
of the semi-major axis and e is the eccentricity. E is the eccentric anomaly
and M is the mean anomaly. The last equation is Kepler’s equation. When
e(t) = 0, the eccentric anomaly E(t) is defined to be M(t). For now, we will
assume that e(t) �= 0.

When u(t) �= 0, the quantities defined above are called osculating ele-
ments. Notice that these formulas are valid for all t and all the elements are
differentiable on R3 ×R3 − {0}. So we can take derivative on both sides of
equations (3). Take l(t) for example, we have

l̇(t) =
∂l

∂q
q̇ +

∂l

∂p
ṗ

=
∂l

∂q
q̇ +

∂l

∂p
(−∇VG + u)

= l̇|u=0 +
∂l

∂p
u(t)

=
∂l

∂p
u(t) (4)

Notice that we used the property that l is conserved when u(t) = 0. Simi-
larly, we have

Ȧ(t) =
∂A

∂p
u(t) (5)
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Next,

ė(t) =
A · Ȧ
µ ‖A ‖ =

A

µ ‖A ‖ · ∂A
∂p

u(t)

=
1
µ

(
∂A

∂p
)T Â · u(t) (6)

where Â is the unit vector along the direction of A. We also have

ḣ(t) =
l · l̇
‖ l ‖ =

1
h

(
∂l

∂p
)T l · u(t) (7)

ȧ(t) =
1

µ(1 − e2)
(2hḣ + 2µaeė)

=
2

µ(1 − e2)
(
∂l

∂p
)T l · u(t)

+
2ae

µ(1 − e2)
(
∂A

∂p
)T Â · u(t) (8)

Since r2 = q · q, we have rṙ = q · p. Hence

h2 = l · l = (q × p) · (q × p)
= (q · q)(p · p) − (q · p)(q · p)
= r2µ(

2
r
− 1
a
) − r2ṙ2 (9)

On the other hand
h2 = µa(1 − e2) (10)

Thus

ṙ2 = −µa(1 − e2)
r

+ µ(
2
r
− 1
a
) (11)

Apply r = a(1 − e cos(E)), after simplification we have

ṙ =
√
µa
e sin(E)

r
(12)

Taking derivative on both sides of r = a(1 − e cos(E)), we have

ṙ = ȧ(1 − e cos(E)) + a(ė cos(E) − e sin(E)Ė) (13)

Thus

Ė =
ṙ

ae sin(E)
− r

a2e sin(E)
ȧ+

a cos(E)
ae sin(E)

ė
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=
√
µ

a

1
r

+
cos(E)
e sin(E)

ė− r

a2e sin(E)
ȧ (14)

On the other hand, taking derivative on both sides of M = E − e sin(E),
we get

Ṁ = Ė − ė sin(E) − e cos(E)Ė
= (1 − e cos(E))Ė − ė sin(E) (15)

Combining this equation with equation (14),(8)and (6), we have

Ṁ = (1 − e cos(E))
√
µ

a

1
r

+ (
cos(E)(1 − e cos(E))

e sin(E)

−sin(E))ė− r(1 − e cos(E))
a2e sin(E)

ȧ

=
√
µ

a3
+
cos(E) − e

e sin(E)
ė− (1 − e cos(E))2

ae sin(E)
ȧ

= n+ η(
∂A

∂p
)T Â · u(t) + ξ(

∂l

∂p
)T l · u(t) (16)

where n = 2π/T and

ξ(l, A,E) = − 2(1 − e cos(E))2

µae(1 − e2)sin(E)

η(l, A,E) =
cos(E) − e

µe sin(E)
− 2(1 − e cos(E))2

µ(1 − e2)sin(E)
(17)

Notice that ξ and η will be ∞ if sin(E) = 0. Physically it means that when
the satellite is passing perigee or apogee, the control can cause a sudden
jump of the mean and eccentric anomalies. In order to prevent this from
happening in our control laws, we will turn off the control when sin(E) = 0.

3 Shape space and orbit transfer of single satellite

For a single satellite on an elliptic orbit, the set D of ordered pairs (l, A) is
a subset of R3 ×R3 with Euclidean norm,

D = {(l, A) ∈ R3 ×R3 |A · l = 0, l �= 0, ‖A ‖ < m2µ} (18)

Let W = 1
2m ‖ q̇ ‖2 + VG be the total energy of the satellite. Let P be the

set of all pairs (q, p) with Euclidean norm. Then we can define a set Σe as

Σe = {(q, p) ∈ P |W (q, p) < 0, l �= 0} (19)

By the definition of l and A, we have a mapping π : Σe → D, (q, p) 	→ (l, A).
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Theorem 3.1 (Chang-Chichka-Marsden) [1]The following hold:
1. Σe is the union of all elliptic Keplerian orbits.
2. π(Σe) = D and Σe = π−1(D).
3. The fiber π−1((l, A)) is a unique (oriented) elliptic Keplerian orbit for
each (l, A) ∈ D. (see also, [2], page 58)

The mapping π is a continuous mapping because (l, A) are continuous with
respect to (q, p).

Corollary 3.2 π−1(K) is compact for any compact set K ⊂ D (c.f. [5])

To control the orbit transfer of a single satellite, one considers a Lyapunov
function from [1]

V (q, p) =
1
2
(‖ l − ld ‖2 + ‖A−Ad ‖2) (20)

where (ld, Ad) is the pair of the angular momentum vector and Laplace
vector of the target elliptic(circular) orbit. The derivative of V along the
integral curve of the system is

V̇ = (l − ld) · l̇ + (A−Ad) · Ȧ
= (l − ld) · ∂l

∂p
u+ (A−Ad) · ∂A

∂p
u

= [(l − ld)×q+
l×(A−Ad) + ((A−Ad)×p)×q] · u (21)

If we let the control to be

u = −[(l − ld)×q + l×(A−Ad) + ((A−Ad)×p)×q] (22)

then V̇ ≤ 0 along the trajectory of the closed loop system. The following
lemma is proved in [5].

Lemma 3.3 Suppose a single satellite has external control u(t) ≡ 0. Let x,
y be time invariant unknown vectors. Suppose (q(t), p(t)) ∈ Σe, the solution
of equation

x×q + l×y + (y×p)×q ≡ 0 (23)

is
x = αA y = αl (24)

For some α ∈ R
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We will give a proof of the following theorem by Chang, Chichka and
Marsden [1]:

Theorem 3.4 (Chang-Chichka-Marsden)There exists c > 0 such that if
V (q0, p0) ≤ c, by applying the control law as in equation (22), the trajectory
of the closed loop system starting at (q0, p0) will asymptotically converge to
the target orbit π−1((ld, Ad))

Proof Let
Q = {(l, A) ∈ R3 ×R3|l ·A = 0} (25)

Recall that the set of (l, A) pairs for elliptic orbits is

D = {(l, A) ∈ R3 ×R3|l · A = 0, l �= 0, ‖A ‖ < m2µ} (26)

It is easy to see that Q is a closed subset of R3 ×R3 and D is a subset of
Q with nonempty interior. The set

B = {(l, A) ∈ R3 ×R3|V ≤ c} (27)

is a closed ball in R3 × R3.This tells us that the set B ∩ Q is a compact
subset of R3 ×R3. If c small enough, we have B ∩Q ⊂ D,then by corollary
3.2, the set π−1(B ∩Q) will be a compact subset of Σe.

The condition V (q0, p0) ≤ c tells us that (q0, p0) ∈ π−1(B ∩ Q). By
applying LaSalle’s invariance principle,we conclude that the trajectory of
the closed loop system will converge to the maximal invariant set within the
subset of B ∩Q where V̇ = 0. In [5], we showed that the maximal invariant
set is the set where u(t) = 0 for all t.

According to lemma 3.3, the solution to

(l − ld)×q + l×(A−Ad) + ((A−Ad)×p×q) = 0 (28)

is

l − ld = αA
A−Ad = αl (29)

Since ld · Ad = 0 and l · A = 0, we have

α(‖ l ‖2 + ‖A ‖2) = 0 (30)

If we further assumed that

c <
1
2
(‖ ld ‖2 + ‖Ad ‖2) (31)



Coordinated orbit transfer for satellite clusters 8

The closed loop system will not reach the set where l = 0 and A = 0. Thus
the only possibility for equation (30) to be true is to have α = 0. So the
solution is

l = ld
A = Ad (32)

The authors of [1] do not give an explicit upper bound for the value of c.
This upper bound can be calculated by solving a constrained maximization
problem as below:

sup{1
2
(‖ l − ld ‖2 + ‖A−Ad ‖2)} (33)

under constraints

(l, A) ∈ Q, l �= 0 and ‖A ‖ < m2µ (34)

First, we need to calculate the supremum of the unconstrained maxi-
mization problem. It is easy to see that this value is ∞. Then, we need
to calculate the minimum value subject to l = 0. The result is 0.5 ‖ ld ‖2

achieved when A = Ad. We should also calculate the minimum value subject
to ‖A ‖ = m2µ, by applying the Lagrange multiplier method we found this
value to be 0.5(m2µ−‖Ad ‖)2. Hence, for theorem 3.4 to be valid, we must
have

c < min{1
2
‖ ld ‖2 ,

1
2
(m2µ− ‖Ad ‖)2} (35)

which guarantees (31).

4 Periodic formation

Suppose we have a formation consisting m satellites. Let Oj denote the orbit
of the jth satellite. The orbit Oj and the position of the satellite on Oj can
be described either by the six orbital elements (aj , ej , Ij ,Ωj , ωj, τj) or by
(lj , Aj , τj) where a denotes the length of semi-major axis, e is the eccentricity,
I is the inclination, Ω is the longitude of the ascending node, ω is the
argument of the perigee and τ is the perigee passing time. If Oj is elliptic or
circular, except for some singular cases when some of the orbital elements are
not well defined, theorem 3.1 tells us that the two expressions are equivalent.
Among all the possible formations, we are interested in formations with
periodic shape changes. Hence we have the following definition.
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Definition 4.1 A formation is periodic when the orbits Oj satisfies aj =
a > 0 for all j = 1, 2, ...m

This definition is valid since all the satellites in a periodic formation will
have the same orbital period

T =
2π

√
a3

√
µ

(36)

Thus although the shape of the formation is varying, it is varying periodi-
cally.

On the other hand, given a set of orbits with the identical length of
semi-major axis, there are infinitely many possible periodic formations. We
need to specify their relative positions on the orbits to determine a specific
formation. The difficulty is that the relative positions are complicated func-
tions of time. However, the differences (τi − τj) are constants. If we define
the mean anomaly as

Mi = ni(t− τi) (37)

where ni = 2π/T , (Mi −Mj) are constants. By specifying the values of
(τi − τj) or (Mi −Mj) for all i and j, a periodic formation can be uniquely
determined.

5 Control laws for orbit transfer of satellite for-

mations

To set up a periodic formation of two satellites, one can control each satellite
separately to transfer to its target orbit. However, this will not assure
the correct values of (τi − τj) or (Mi − Mj). In order to do that, extra
terms involving (τi − τj) or (Mi −Mj) should be added in the summation
of the Lyapunov functions for single satellites. This extension will result in
a cooperative orbit transfer of multiple satellites.

We introduce a variable Υi which is defined as

Υi =

√
a3

i

a3
d

Mi, if Ei ∈ (−ε, π + ε)

Υi =

√
a3

i

a3
d

(2π −Mi), if Ei ∈ (π − ε, 2π + ε) (38)

for i = 1, 2, where ad is the common length of the semi-major axes for the
destination orbits.
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Here, the trouble of using different expressions for the cases Ei ∈ (−ε, π+
ε) and Ei ∈ (π − ε, 2π + ε) is caused by the fact that Ei ∈ S1 a circle. Two
coordinate charts are required on S1. Here we pick the charts to be

ψ1 : (−ε, π + ε) → (−ε, π + ε) s.t. Ei 	→ Ei

ψ2 : (π − ε, 2π + ε) → (−ε, π + ε) s.t.Ei 	→ (2π − Ei) (39)

Here, the value of ε is chosen so that the two satellites will always be in
the same chart. Because in a satellite formation the angular separations
between satellites are usually small, the value of ε is small.

For Ei ∈ (−ε, π + ε), we have

Υ̇i =

√
a3

i

a3
d

Ṁi +
3
2

√
ai

a3
d

ȧiMi

=
√
µ

a3
d

+ ρ(li, Ai, Ei)(
∂Ai

∂pi
)T Âi · ui(t)

+ζ(li, Ai, Ei)(
∂li
∂pi

)T li · ui(t) (40)

where

ζ =

√
a3

i

a3
d

ξ(li, Ai, Ei) +
3
2

√
ai

a3
d

2
µ(1 − e2i )

Mi

ρ =

√
a3

i

a3
d

η(li, Ai, Ei) +
3
2

√
ai

a3
d

2aiei
µ(1 − e2i )

Mi (41)

For Ei ∈ (π − ε, 2π + ε),

Υ̇i = −
√
a3

i

a3
d

Ṁi +
3
2

√
ai

a3
d

ȧi(2π −Mi)

= −
√
µ

a3
d

+ ρ(li, Ai, Ei)(
∂Ai

∂pi
)T Âi · ui(t)

+ζ(li, Ai, Ei)(
∂li
∂pi

)T li · ui(t)

(42)

where

ζ = −
√
a3

i

a3
d

ξ(li, Ai, Ei) +
3
2

√
ai

a3
d

2
µ(1 − e2i )

(2π −Mi)



Coordinated orbit transfer for satellite clusters 11

ρ = −
√
a3

i

a3
d

η(li, Ai, Ei) +
3
2

√
ai

a3
d

2aiei
µ(1 − e2i )

(2π −Mi) (43)

Notice that we have terms that explicitly contain Mi. If not handled
well,these terms will cause discontinuity in our control algorithm when the
satellites enter a new chart. The reason for us to pick the particular charts
(ψ1, ψ2) is to reduce the discontinuities in the derivatives of Υi caused by
changing charts.

We will design a Lyapunov function on the phase space of the two satel-
lites. This one function will have different expressions in different charts.
The Lyapunov function is

V = V1 + V2 + 4sin(
Υ1 − Υ2 − φ

4
)2

if Ei ∈ (−ε, π + ε)

V = V1 + V2 + 4sin(
Υ1 − Υ2 + φ

4
)2

if Ei ∈ (π − ε, 2π + ε) (44)

where

V1 =
1
2
(‖ l1 − ld1 ‖2 + ‖A1 −Ad1 ‖2)

V2 =
1
2
(‖ l2 − ld2 ‖2 + ‖A2 −Ad2 ‖2) (45)

Here, (ld1, Ad1) and (ld2, Ad2) specify the orbits in a two-satellite periodic
formation and φ specifies the desired (M1 −M2) on these orbits.

We can calculate the derivative of V as

V̇ = V̇1 + V̇2 + sin(
Υ1 − Υ2 ∓ φ

2
)(Υ̇1 − Υ̇2) (46)

The choice of − or + depends on the value of Ei as in the definition of V .
By the calculations performed in the single satellite case,

V̇i = [(li − ldi)×qi + li×(Ai −Adi)
+((Ai −Adi)×pi)×qi] · ui (47)

for i = 1, 2. Thus

V̇ = [(l1 − ld1 + ζ1sin(Υ1−Υ2∓φ
2 )l1)×q1+

l1×(A1 −Ad1 + ρ1sin(Υ1−Υ2∓φ
2 )Â1)+
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((A1 −Ad1 + ρ1sin(Υ1−Υ2∓φ
2 )Â1)×p1)×q1] · u1

+[(l2 − ld2 − ζ2sin(Υ1−Υ2∓φ
2 )l2)×q2+

l2×(A2 −Ad2 − ρ2sin(Υ1−Υ2∓φ
2 )Â2)+

((A2 −Ad2 − ρ2sin(Υ1−Υ2∓φ
2 )Â2)×p2)×q2] · u2 (48)

In order to get V̇ ≤ 0, we let

u1 = −sin2(E1)[(l1 − ld1 + ζ1sin(Υ1−Υ2∓φ
2 )l1)×q1+

l1×(A1 −Ad1 + ρ1sin(Υ1−Υ2∓φ
2 )Â1)+

((A1 −Ad1 + ρ1sin(Υ1−Υ2∓φ
2 )Â1)×p1)×q1]

u2 = −sin2(E2)[(l2 − ld2 − ζ2sin(Υ1−Υ2∓φ
2 )l2)×q2+

l2×(A2 −Ad2 − ρ2sin(Υ1−Υ2∓φ
2 )Â2)+

((A2 −Ad2 − ρ2sin(Υ1−Υ2∓φ
2 )Â2)×p2)×q2] (49)

Notice that the factors sin2(Ei) cancel the term sin(Ei) in the denom-
inators of ζi and ρi. This will result in a continuous control law which will
be 0 when Ei = 0, π.

Let z = (q1, p1, q2, p2). We now proceed to find the initial condition
z0 = (q1(0), p1(0), q2(2), p2(0)) for z s.t. the set

SM = {z|V (z) ≤ V (z0)} (50)

is a compact subset of Σe1×Σe2−{z|A1 = 0 or A2 = 0}. This is a necessary
step because we want to apply LaSalle’s invariance principle to prove our
main result.

Lemma 5.1 Let
c < min{c1, c2} (51)

where
ci = min{1

2
‖Adi

‖2 ,
1
2
‖ ldi ‖2 ,

1
2
(µ− ‖Adi ‖)2} (52)

for i = 1, 2. Then the set

SM = {z|V (z) ≤ c} (53)

is a compact subset of Σe1 × Σe2 − {z|A1 = 0 or A2 = 0}. Proof The first
observation is that the set

S1 = {(q1, p1)|V (q1, p1) ≤ c∗, c∗ < c1} (54)
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is a subset of Σe1 i.e. S1 ∩ Σe1 = S1.

In fact, c1 is the supremum of V1(q1, p1) on the set Σe1−{(q1, p1)|A1 = 0}.
To see this, we solve a constrained maximization problem as below:

sup{1
2
(‖ l1 − ld1 ‖2 + ‖A1 −Ad1 ‖2)} (55)

under the constraints

A1 · l1 = 0 l1 �= 0 A1 �= 0 and ‖A1 ‖ < µ (56)

First, we need to calculate the supremum of the unconstrained maximiza-
tion problem. It is easy to see that this value is ∞. Then, we need to cal-
culate the minimum value subject to l1 = 0. The result is 1

2 ‖ ld ‖2 achieved
when A = Ad. Similarly, the minimum value subject to A1 = 0 is 1

2 ‖Ad ‖2.
We should also calculate the minimum value subject to ‖A ‖ = µ. By apply-
ing the Lagrange multiplier method we found this value to be 1

2 (µ−‖Ad ‖)2.
Thus

c1 = min{1
2
‖Ad1 ‖2 ,

1
2
‖ ld1 ‖2 ,

1
2
(µ− ‖Ad1 ‖)2} (57)

is the supremum of V1 on the set Σe1 − {(q1, p1)|A1 = 0}. We proved that
S1 ⊂ Σe1 − {(q1, p1)|A1 = 0}.

Another observation is that π(S1) is a compact subset of D1. Thus by
corollary 3.2, S1 is a compact subset of Σe1.

We can make the same arguments for the case when i = 2 to prove that
S2 is a compact subset of Σe2 − {(q2, p2)|A2 = 0}.

Hence by letting c < min{c1, c2}, it is true that

SM ⊂ S1 × S2 ⊂ Σe1 × Σe2 − {z|A1 = 0 or A2 = 0} (58)

Thus, SM is a compact subset of Σe1 × Σe2 − {z|A1 = 0 or A2 = 0}
We can now apply LaSalle’s invariance principle to show that the trajec-

tory of the closed loop system, starting within SM , converges to the maximal
invariant subset of SM where u(t) = 0 is satisfied for all t.

Proposition 5.2 With V ,c and ui given as in (44) ,(51) and (49), the
trajectory starting from point (q10, p10, q20, p20) which satisfies

V (q10, p10, q20, p20) ≤ c (59)
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will converge to the set where

li = ldi

Ai = Adi

(M1 −M2) = φ (60)

are satisfied for i = 1, 2. Proof In order to calculate the invariant set,let
u1 = 0. When sin(E1) �= 0, we get

(l1 − ld1 + ζ1sin(
Υ1 − Υ2 ∓ φ

2
)l1)×q1

+l1×(A1 −Ad1 + ρ1sin(
Υ1 − Υ2 ∓ φ

2
)Â1)

+((A1 −Ad1 + ρ1sin(
Υ1 − Υ2 ∓ φ

2
)Â1)×p1)×q1

= 0 (61)

Take inner products on both sides with q1(t) to get

(l1 × (A1 −Ad1 + ζ1sin(
Υ1 − Υ2 ∓ φ

2
)Â1)) · q1 = 0 (62)

This is equivalent to

(l1 × q1(t)) · (A1 −Ad1 + ζ1sin(
Υ1 − Υ2 ∓ φ

2
)Â1) = 0 (63)

Let
B = A1 −Ad1 + ζ1sin(

Υ1 − Υ2 ∓ φ

2
)Â1 (64)

Equation (63) means B is perpendicular to the vector l1 × q1(t). We can
see that vector B should stay in the plane spanned by l1 and q1(t).

However, from the assumption that u1(t) = 0, we know that A1 and l1
are constant vectors. The time varying vector B will sweep a line segment
passing the fixed point (A1 − Ad1). The direction of this line segment is
aligned with Â1. So vector B will be the intersection of the (l1, q1) plane
and this line segment. Because q1(t) is sweeping the orbital plane, the (l1, q1)
plane is identical at t and t+ kT1 where k is an integer and T1 is the period
of the first satellite. Since the line segment is not changed, the intersection
points in these cases must be identical. Thus we must have

B(t) = B(t+ kT1) (65)
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Figure 1: The relationship between l1,q1, A1 −Ad and B

Without lost of generality, suppose at time t, E1(t), E2(t) ∈ (−ε, π + ε).
Then equation (65) requires that

ζ1(E1(t))sin(Υ1(t)−Υ2(t)−φ
2 )

= ζ1(E1(t+ kT1))sin(Υ1(t+kT1)−Υ2(t+kT1)−φ
2 ) (66)

Let k = 1 in equation (66), because ζ1(E1(t)) = ζ1(E1(t+ T1)), the first
observation we make is that the two satellites must have the same period. In
fact, suppose at time t0 equation (66) is satisfied. Then at time t0+T1, since
E1(t0) = E1(t0 +T1),Υ1(t0) = Υ1(t0 +T1) and all the angles(anomalies) are
in the range of [0, 2π), we must have Υ2(t0) = Υ2(t0 + T1). But

Υ2(t0) − Υ2(t0 + T1) = −
√
a3

2

a3
d

(M2(t0 + T1) −M2(t0)) (67)

Then Υ2(t0) = Υ2(t0 + T1) will be satisfied only if M2(t0 + T1) = M2(t0).
Thus we shall have T1 = k1T2 where k1 is a positive integer. Remember we
can apply the same argument to the second satellite to get T2 = k1T1. Thus
we must have T1 = T2. Hence on the invariant set, we proved that a1 = a2.

On the other hand, for a specific time t, we know that there exists
t∗ ∈ [0, T1) such that

π + f1(t) = f1(t+ t∗) (68)
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where f1 is the true anomaly of the first satellite. The value of t∗ depends
on t. The plane spanned by (l1, q1) at time t will also be identical to the
plane spanned by (l1, q1) at time t+ t∗. Thus we must have

B(t) = B(t+ t∗) (69)

which requires that

ζ1(E1(t))sin(Υ1(t)−Υ2(t)−φ
2 )

= ζ1(E1(t+ t∗))sin(Υ1(t+t∗)−Υ2(t+t∗)+φ
2 ) (70)

Further, a1 = a2 implies that M1(t) −M2(t) = M1(t+ t∗) −M2(t+ t∗),
one can verify that

sin(Υ1(t)−Υ2(t)−φ
2 ) =

−sin(Υ1(t+t∗)−Υ2(t+t∗)+φ
2 ) (71)

For (70) to be satisfied, one possibility is that

sin(
Υ1(t) − Υ2(t) − φ

2
) = 0 (72)

Another possibility is that

ζ1(E1(t)) = −ζ1(E1(t+ t∗)) (73)

By the definition of ζ1, one can verify that (73) can only be satisfied when
t takes value from a set of measure 0. Thus, for (70) to be satisfied, (72)
must be true.

Because of (72), the time varying parts in equation (61) vanish. We can
make the same argument as in the proof of the single satellite case [1] to
show that

l1 = ld1

A1 = Ad1 (74)

We can apply similar arguments for the second satellite.

Thus we have

li = ldi

Ai = Adi

(Υ1 − Υ2) = ±φ (75)
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for i = 1, 2. By the definition of Υ1 and Υ2 in equation(38), we have√
a3

1

a3
d

M1 −
√
a3

2

a3
d

M2 = φ (76)

But we already know a1 = a2 = ad, so we conclude that

(M1 −M2) = φ (77)

6 Simulation results

To verify our algorithm, a series of simulations have been carried out. Here
we will show a controlled transfer of two satellites from orbit [a, e, i, ω,Ω] =
[20, 0.1, π/4, π/2, 0] with initial separation of mean anomaly being π/90 to
the orbit [a, e, i, ω,Ω] = [25, 0.05, π/3, π/2, 0] with final separation of mean
anomaly being π/18. Only relative motion between the satellites are plot-
ted. Figure 2 displays the desired relative motion between the satellites.
Figure 3 displays the relative motion between the satellites using the con-
trol algorithm proposed. As we can see, the desired orbit and separation are
achieved.

7 Future work

We have shown that the shape space formed from the angular momentum
vectors and Laplace vectors is appropriate to describe satellite formations.
The control laws we propose are based on a Lyapunov function on this
shape space. It has several limitations. First, we have not consider the
case when the formations are on circular orbits. This is because in this case
the Laplace vectors vanishes. Second, in our simulation we found that we
can drop the sin2(E) terms in the control law and use switching laws to
improve performance. But a proof of the convergence requires a LaSalle’s
invariance principle for switching laws which we do not pursue here. Third,
perturbations such as J2 should be put into the picture. These will be
investigated in future work.
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Figure 2: The desired final relative motion of two satellites(length unit=
one tenth of the radius of the earth)
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Figure 3: The relative motion achieved by our algorithm
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