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State estimation techniques using Kalman filter and Particle filters are used

in a number of applications like tracking, econometrics, weather data assimila-

tion, etc. These techniques aim at estimating the state of the system using the

system characteristics. System characteristics include the definition of system’s

dynamical model and the observation model. While the Kalman filter uses these

models explicitly, particle filter based estimation techniques use these models as

part of sampling and assigning weights to the particles. If the state transition and

observation models are not available, an approximate model is used based on the

knowledge of the system. However, if the system is a total black box, it is possible

that the approximate models are not the correct representation of the system and

hence will lead to poor estimation.



This thesis proposes a method to deal with such situations by estimating the

models and the states simultaneously. The thesis concentrates on estimating the

system’s dynamical model and the states, given the observation model and the

noisy observations. A Gaussian process regression based method is developed for

estimating the model. The regression method is sped up from O(N2) to O(N) using

an data-dependent online approach for fast Gaussian summations. A relevance

vector machine based data selection scheme is used to propagate the model over

iterations. The proposed method is tested on a Local Ensemble Kalman Filter

based estimation for the highly non-linear Lorenz-96 model.
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Chapter 1

Introduction

1.1 Motivation

A system with latent states observed though noisy observations have been studied

for several decades. State estimation techniques like Kalman filter and particle

filters are used to estimate the latent states using the noisy observations. Kalman

filters and particle filters have several state tracking applications like visual tracking

[1], acoustic tracking [3], impedance tracking [44], deformation tracking [36] and

trajectory tracking [52]. However, both particle filter and Kalman filter are limited

by the requirement that the system model needs to be specified apriori.

In order to solve state estimation for imprecisely known systems, simultaneous

state and model estimation have been studied using different approaches. Kalman

filter [17] was developed in the early 1960s for solving state estimation [15] prob-
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lems. Ever since then, the possibility of using the Kalman filter for simultaneously

estimating the states and model parameters have been discussed. The earliest

work [39] on simultaneous model-state estimation estimated the parameters of a

linear regression model along with the states of the system, and the regression

model parameters were used for subsequent predictions. The Kalman filter used in

this scenario was the linear Kalman filter. However because of the limitations of

the linear Kalman filter, simultaneous model-state estimation were modified using

the Extended Kalman Filter for non-linear problems [4, 6, 8, 32]. It was observed

that the simultaneous estimations with Extended Kalman Filter did not have good

convergence properties for all scenarios. Ljung [25,26] discusses about this conver-

gence issue and provides conditions in which good convergence will be obtained in

Extended Kalman Filter.

With the improvement in modern learning methods and development of Kalman

filter for more complex scenarios, the simultaneous model-state estimation prob-

lems were solved using newer approaches in the late 1990s. With the emergence

of Unscented Kalman Filter [16], the ability of Kalman filter to solve highly non-

linear systems for state estimation has increased. Furthermore, with new learning

methods, the non-linear system learning have also become more and more sophis-

ticated. Wan and Merwe [46] use the Unscented Kalman filter with an Artificial

Neural Network to model a non-linear system. Ghahramani [9] learned a non-

linear dynamical system using Artificial Network in an Expectation Maximization
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framework.

These simultaneous estimation methods have had several application, like for

example, one of the earliest work in [18] applied the ideas to Image Restoration

where an Extended Kalman filter is used to estimate the blurring matrix along

with the states in 2D images. With a dual-estimation approach, although the

overall complexity of the system increases, it makes state estimation applicable

to imprecisely specified systems. Hafez et al. [12], Rhijn et al. [43] and Wong et

al. [51] apply a simultaneous model estimation approach to visual tracking and ser-

voing. The dual estimation ideas have also been extended to acoustic tracking [7],

hydrological modeling [29] and biochemical tracking [41]. The different approaches

for dual estimation is discussed in the next sub-section.

1.1.1 Approaches to Dual estimation

Based on the formulation of the simultaneous estimation problem and the solution,

the simultaneous estimation methods can be classified into three types:

Dual Estimation: [45,48] used an artificial neural network in conjunction with

an Extended Kalman filter to estimate the model and states. Here the pa-

rameters of the neural model were estimated using an additional Kalman

filter. Because these approaches use two Kalman filters, one for model pa-

rameter estimation and another for state estimation, they are referred as

Dual KF methods. [46, 47] indicate the shortcomings of the usual extended
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Kalman filter and propose an unscented transformation based Kalman filter

and use it for dual estimation in a similar framework. [30] extended the Dual

KF idea to hydrological models using an Ensemble Kalman Filter.

Joint Estimation: Instead of using two Kalman filters to estimate the model

parameters and states respectively, an alternate approach would be to replace

the two Kalman filters in the dual Kalman with a single Kalman filter ( [5]

have some earliest work) that estimates jointly the states and the model

parameters (the state vector now comprises both the states and the model

parameters) in the same step. A major shortcoming in the dual KF and

the joint KF approaches is that it is not easy to solve for highly complex

system. When the complexity and hence the size of the parameters of the

model increase, it becomes increasingly infeasible to define the dynamics for

the parameters to be utilized in the Kalman filter framework.

Expectation Maximization based approach: Expectation Maximization (EM)

based dual estimation methods are very robust and can be used to estimate

complex models. [9] propose an EM-based dual estimation method, where

an Artificial Neural network is trained at each time instant to update a

model in the M -step of the EM algorithm. Unlike the dual Kalman filter,

this method does not use a Kalman filter to estimate the parameters of the

neural network, it instead tries to find a maximum-likelihood estimation of

the parameters of the model. Of the previously proposed methods for dual
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estimation, this appears to be the best performing.

Although neural networks are very powerful, one problem with them is that

they are a parametric formulation, which might be a limiting factor in model-

ing highly complex systems. Motivated by this problem, a non-parametric Gaus-

sian process regression based model estimation is proposed in this thesis in an

Expectation-Maximization framework. The advantage of Gaussian process regres-

sion is that it can be used to model highly non-linear complex systems without

assuming any parametric form. A detailed explanation of Gaussian Process Re-

gression is given in Chapter 2. The proposed method is tested with the Lorenz-96

data model [27] in a Local Ensemble Kalman Filter [13,33].

In order to establish the various notations that will be used in this thesis, the

rest of this chapter discusses about the state space representation of a system and

state estimation using standard filtering.

1.2 State Space Representation

State space representation [15] is used to perform inference and learning in dy-

namical systems. In the standard model, the hidden state x(t) evolves in time

according to a dynamical model driven by past states with additive noise,

xt+1 = f(xt) + δ, (1.1)
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Figure 1.1: State Space Formulation

while it is observed via the “outputs” y(t), related to the state x(t) as

yt = g(xt) + ε. (1.2)

Here, “f” is the dynamical model for the state transition and can be linear or

non-linear; δ describes the system noise; “g” is called the observation model, and

may also be linear or non-linear; and ε is the observation noise. The “filtering”

problem for dynamical systems is to solve for the states xt, given system dynamics

f , observation model g and noisy observations yt. The subscripts here denote the

time instants under consideration. Such a system is shown in Figure 1.1.
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1.3 State Estimation

For a system as defined in the previous section, state estimation problem is to

solve for the states xt, given system dynamics f , observation model g and noisy

observations yt. There are different ways of state estimation depending upon the

nature of f and g and a particular choice of estimation technique depends on the

size and nature of the problem. Kalman filter and particle filter are popular state

estimation techniques used in various applications. In a Kalman filter, the posterior

density of the state at every step is assumed to be Gaussian and is parameterized

by its mean and covariance. This requires the system and observation noise to be

Gaussian as well (δ ∼ N(0, Q), ε ∼ N(0, R)). Particle filters do not need the

assumption of Gaussianity. They are Monte Carlo methods where estimation is

started with a set of particles, each assigned a weight. The weights of each particle

and the particles themselves are propagated over time to perform state estimation.

Each of these methods have their own advantages and disadvantages.

The absence of Gaussianity assumption makes the particle filter very generic

and usable in multi-modal applications like in visual tracking [2,14]. However, one

drawback of particle filter is that the number of particles and hence the computa-

tional complexity of the filter increases with dimensions of the problem. Kalman

filter and its variants have the same complexity with increased dimensions of the

observation and state space. This makes it more suited for high-dimensional prob-

lems like weather data assimilation [13,33].
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1.3.1 Models f and g

The main assumption in both these methods is that the state transition model f

and the observation model g are available. The Kalman filter uses these models

explicitly to reduce the cost between the estimated state and the state that would

have resulted in the observation. However in the particle filter, the transition

model f is a part of the importance density function (used to sample the particles)

and the observation model g is used for assigning weights to each particle.

The state transition dynamics (f) and observation model (g) can be defined in

different ways. It may be specified as a differential equation (e.g., [33]) or as an

approximate model that defines the dynamics (e.g., [11]). If the state-transition

model is inexact, the resulting state estimation problem is solved poorly. Also

in some cases, the system under consideration will be a complete black box with

little knowledge about its model. In these cases, it would be necessary to estimate

the model and state simultaneously. This is called dual estimation. In this thesis,

one such approach to simultaneous model and state estimation is proposed and

discussed.

1.4 Organization

The thesis is organized as follows. Chapter 2 introduces Gaussian process re-

gression in a Bayesian framework. It also shows the computations complexity in

8



Gaussian process regression and a fast method for solving it. Further the idea

is extended with an online data-dependent method selection, which selects the

fastest method (from a group of methods) for the data. Chapter 3 introduces the

Local Ensemble Kalman filter (LEKF) along with the Lorenz-96 data model. It

also shows the performance of the LEKF with and without the knowledge of the

model. In Chapter 4, the proposed algorithm is introduced with a model propaga-

tion strategy. Finally the results are presented and discussed in Chapter 5 before

providing concluding discussions in Chapter 6

1.5 Novel Contributions

The main contributions in this thesis are as follows:

1. A non-parametric approach is proposed to estimate the model on-the-fly in

the state estimation problem in an Expectation Maximization framework.

Existing methods use a parametric formulation which can be limiting in

complex scenarios.

2. Fast summation, iterative methods and a Relevant Vector Machine ( [42]) like

compression are used to propagate the model using a concise and relatively

efficient data representation.

3. The proposed method to the Lorenz-96 data model to test its performance

with a highly non-linear system
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Chapter 2

Gaussian Processes in Regression

2.1 Introduction

Traditional regression uses a given set of data to fit an assumed function. y =

f(x) + ε, ε ∼ N(0, σ2) Looking at this from a Bayesian perspective [50], suppose

there are various possible models {f1, f2, f3, ..} that can be possibly the desired

solution, a prior probability can be placed on this and let that be called P (f).

Now, when the data is available, the posterior probability of each model can be

modified based on the observation. Suppose we have data D : {xi, yi}N
i=1. Now the

likelihood of target corresponding to each of the data points can be evaluated as

P (ti|xi, f) assuming that the data points are independent of each other. Combining

the prior and likelihood, the posterior can be obtained as

P (f |D) ∝ P (f)×
N∏

i=1

P (ti|xi, f) (2.1)
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The prior placed here is on the model. Different prior leads to different model

realization. The problem in this framework is that the prior model should be

relevant to the model under consideration, if not can lead to poor representation of

the underlying model. It is not practically possible to choose a model framework

for each problem. So it would be better to have a non-parametric framework

for regression problems. Gaussian process regression [35] aims at providing the

solution in a non-linear non-parametric framework by placing the prior on function

values than the model.

Gaussian Process regression defines the distribution over functions and infer-

ence takes place directly in the function-space. It can be seen as a collection of

random variables which are jointly Gaussian. A Gaussian process is completely

specified by its mean function m(x) and covariance function k(x, x′) given by

m(x) = E[f(x)] (2.2)

k(x, x′) = E[(f(x)−m(x))(f(x′)−m(x′))] (2.3)

This is generally written as f(x) ∼ GP (m(x), k(x, x′)). Given the data D, the

joint distribution of the function outputs ”f” is assumed to be a Gaussian (f ∼

N(0, K)). Once this is assumed, if a new data x∗ arrives, the corresponding output

f∗ is jointly Gaussian with f (by the Gaussian process assumption), and is given

by, 


f

f∗


 ∼ N


0,




K(X, X) K(X,X∗)

K(X∗, X) K(X∗, X∗)





 (2.4)
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If there are n training points and n∗ testing points, K(X, X∗) denotes the (n×n∗)

matrix of covariances evaluated at all pairs of training and testing points. To

get the posterior distribution over the functions, this joint distribution must be

restricted to those functions which agree with the observations. In other words,

we have to remove the functions which are inconsistent with the observations.

In probabilistic terms, we have to evaluate P (f∗|X∗, X, f), which because of the

Gaussianities turns out to be another Gaussian [35] given by,

P (f∗|X∗, X, f) ∼ N (K(X∗, X)K(X, X)−1f,K(X∗, X∗)−

K(X∗, X)K(X,X)−1K(X,X∗))

(2.5)

Details of this posterior’s Gaussianity is given in Appendix A. However, the f ’s

here are all noiseless observations which are rare in practical scenarios. So extend-

ing the joint distribution for a noisy observation with noise variance σ2I,



y

f∗


 ∼ N


0,




K(X,X) + σ2I K(X,X∗)

K(X∗, X) K(X∗, X∗)





 (2.6)

and the posterior modifies as

P (f∗|X∗, X, f) ∼ N (K(X∗, X)K̃(X, X)−1f,K(X∗, X∗)−

K(X∗, X)K̃(X,X)−1K(X,X∗))

(2.7)

where K̃ = (K + σ2I)−1. Equation 2.7 is the posterior in the Gaussian Process

Regression. To summarize, given data D : {xi, yi}N
i=1, and a new test point x∗,

the posterior of the function output, f∗ is p(f∗|x∗, D) ∼ N(m,V ) where, m =

k(x∗)T (K + σ2I)−1y, and V = K(x∗, x∗) − k(x∗)T (K + σ2I)−1k(x∗)). ”m” gives

the predicted value of f∗ at x∗ and V is the variance of the prediction.
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2.1.1 Covariance function

The covariance function K can be chosen to reflect the prior information about

the problem. For large scale problems, in the absence of the prior knowledge,

the negative squared exponential (Gaussian) is the most widely used covariance

function. This function is the one that we use in this paper.

K(x, x′) = σ2
f exp

(
−

d∑

k=1

(xk − x′k)
2

h2
k

)

The d + 2 parameters ([h1, h2, ..., hd, σf , σ]) are the hyper-parameters of the Gaus-

sian process. Intuitively, the hyperparameters ‘h’of the Covariance function can

be thought of as a weighting factor for each of the input dimension. A very high

h along one dimension would result in the corresponding exponential term zeroing

out along that dimension. In other words the radius of influence (for the covari-

ance function) is lesser along that dimension. For a 1-dimensional case, very high

h would result in a covariance function almost equal to identity, and a small h

would result in a dense Covariance function.

The gaussian process can model highly non-linear problems and the non-parametric

nature of the formulation makes it even more flexible and viable option. Because

of its non-parametric nature and versatile capabilities, it has been used in several

applications [19, 21, 49]. However, one disadvantage is that the evaluation of the

mean and variance involves the inversion of a N-by-N matrix and a matrix-vector

multiplication making it O(N3). In the next section, we discuss this in detail and

provide a solution in literature for speeding up Gaussian processes.
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2.2 Complexity Issues in GP

The main contributor to the complexity is the calculation of mean m and variance

V . Consider the evaluation of the mean; denoting (K + σ2I)−1y as η, the mean

can be written as m = k(x∗)T η. η involves the inversion of the covariance function

and hence has O(N3) complexity. Once η is available, m can be evaluated in

O(N). [37] provides an O(N) algorithm for solving for m. [37] proposes the use

of conjugate gradient method to solve the linear system (K + σ2I) × η = y to

find η. This reduces the complexity to O(kN2) where k is a constant. Also, it

proposes the use of an Improved Fast Gauss Transform (IFGT) [38] to improve

this to O(N). It is also shown in [37] that using an inexact krylov subspace [40] the

conjugate gradient iteration can be performed in an increasingly inexact manner

as the iteration proceeds. Thus by using a combination of Conjugate Gradient and

Improved Fast Gauss Transform, [37] achieves O(N) complexity for the evaluation

of m. On a similar note, the variance is shown to be evaluated in O(N2).

2.3 Fast Method Selection

With the use of Conjugate Gradient based method to solve the linear system, the

core problem is reduced to a summation of gaussian kernel and there are also other

methods (other than IFGT) available in literature to speed-up such a summation.

Dual-tree methods [10, 24] approach the problem by building trees for the data
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points. It is also possible to use the IFGT approach with the dual trees to achieve

speed up. Also, for some data, the scaling in these fast methods are so high that

a direct method is better than these approaches. To deal with this problem of

plenty, we have proposed an automatic method selection strategy [31] for choosing

the fastest method between direct summation, dual trees, IFGT and IFGT + trees.

This method performs as well as the fastest approach and in some cases switches

dynamically between methods to outperform all the methods.

This method1. was used for the Gaussian process regression in this thesis. To

evaluate the d + 2 hyper-parameters, the maximum likelihood method (explained

in Appendix A)presented in [35] was used 2.

1From http://www.umiacs.umd.edu/~morariu/figtree/

2From http://www.gaussianprocess.org/gpml/code
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Chapter 3

Local Ensemble Kalman Filter

3.1 Kalman Filter

For a system with Gaussian noise given by,

xt+1 = f(xt) + δ, δ ∼ N(0, Q)

yt = g(xt) + εε ∼ N(0, R)

Kalman filter aims to estimate the state xt by minimizing the cost function J ,

J =
n∑

j=1

[
yt − g(x−t )

]T
R−1

t

[
yt − g(x−t )

]
(3.1)

where, x−t = f(xt−1). Assuming that the posterior density is Gaussian, the Kalman

filter based state estimation defines a factor K called “Kalman Gain” using the ob-

servation model g, observation noise variance R and the covariance of the predicted
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states x−t . The final state estimate is then defined by,

xt = x−t + K(yt − g(x−t )) (3.2)

Such a formulation divides Kalman filter into two steps;

1. Prediction step: Predict x−t using xt−1: x−t = f(xt−1)

2. Update step: Alter xt using yt;xt = x−t + K(yt − g(x−t ))

The classical Kalman filter was developed for linear models (observation and

system dynamics) only. However, it was extended for non-linear cases by lineariz-

ing the non-linear models at the points of interest and using the Jacobian based

evaluations. The Kalman filter for non-linear models is called “Extended Kalman

Filter”.

Extended Kalman filter is not usable in large problems because of the cost

of evaluation of covariance of the states at each instant. So instead of evolving a

single state over time, an ensemble of states are evolved over time and this ensemble

carries information about the covariance. This is the “Ensemble Kalman Filter”.

3.2 Local Ensemble Kalman filter (LEKF)

The ensemble Kalman filter is not efficient for large scale problems like in weather

data assimilation. In order to modify the ensemble Kalman filter for such large

problems, [13, 33] introduced a spatial localization strategy coupled with a PCA-
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based subspace analysis for the ensemble Kalman filter. This is the Local Ensemble

Kalman Filter. The basic steps in Local Ensemble Kalman Filter are,

Step 1: Initialize an ensemble of states for the initial time

Step 2: Predict the states to the next time instant using the state transition

model

Step 3: Associate a local region spatially to each state and consider only the

state vectors in this region

Step 4: Use a PCA transformation to move the states from the current space to

a low dimensional subspace

Step 5: Perform the Kalman filter based update to the predicted states (in the

low dimensional subspace)

Step 6: Move back to the local space and use the locally calculated vectors as

the actual state of the system

Step 7: Go to step 2

A detailed explanation of the localization and the transformation in LEKF is

given in Appendix B
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3.2.1 Lorenz-96 Model

Ott et. al who propose LEKF [33] used a Lorenz-96 [27,28] 40-variable toy-model to

test their performance. We also use the same model with LEKF. According to this

model, the states in a spatially distributed system was defined by the differential

equation,

ẋ(j, t) = [x(j + 1, t)− x(j − 2, t)]x(j − 1, t)− x(j, t) + F (3.3)

Here, j=1,2,..,J are the spatial locations at which the states are measured. The F

here is called ”forcings” and together with J determines the chaotic nature of the

system.

0 20 40 60 80 100
−10

−5

0

5

10

15
Lorenz model at 40 locations

Time

Figure 3.1: Chaotic nature of the Lorenz-96 model is shown. Small changes in

initial conditions lead to large variation in predicted states

In a weather assimilation scenario, these spatial locations can be thought of as
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points along a latitude circle at which the states need to be evaluated (or at which

the observations are available). Also, x(−1) = x(J − 1) , J = 40 and F = 8 like

in [33]. This can be thought to something like in Figure 3.2.

Figure 3.2: State locations on a latitude circle in Lorenz model

This model is widely used in many data assimilation literature, because of its

chaotic and non-linear nature. It has also been shown in [27] that the evolution

of states in this model are similar to the evolution of a meteorological quantity.

Figure 3.1 shows how the states evolve from close initial state, this also reveals

the non-linear and chaotic nature of the data. For all the analysis in this thesis,

it was assumed that there are no observations missing spatially and the data are

sampled at regular intervals without any missing observations at any instant.
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3.3 Performance of LEKF

The LEKF was used with the Lorenz-96 data model and the estimation was per-

formed with the knowledge of the data model (equation 3.3). The results of the

estimation at the 40 sites of the Lorenz model is shown in figures 3.3 and 3.4. It

can be seen that the iteration converges very fast with the knowledge of the system

dynamical model.

3.4 Estimation with an incorrect model

In order to motivate the problem of model estimation, the LEKF was used with

the Lorenz-data model, however an incorrect model was used in place of the actual

model (a linear model was used in the prediction step instead of solving equation

3.3). This is to motivate the scenario where the state estimation needs to be

performed without the knowledge of the system dynamical model. As expected,

such a model diverges from the true state value and this is shown in figures 3.5

and 3.6.

3.5 Lyapunov Exponents

The F in the equation 3.3 is called “forcing” and together with J , it determines

the Lyapunov exponent of the system. Lyapunov exponent denotes the long-term

average growth rate of a very small error. In other words, it denotes the rate at
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Figure 3.3: Estimated states at 40 locations of the Lorenz model with the knowl-

edge of the Lorenz model at 5th and 10th time instants
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Figure 3.4: Estimated states at 40 locations of the Lorenz model with the knowl-

edge of the Lorenz model at 20th and 40th time instants
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Figure 3.5: Estimated states at 40 locations of the Lorenz model estimated with a

wrong linear model as system model at 5th and 10th time instants
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Figure 3.6: Estimated states at 40 locations of the Lorenz model estimated with a

wrong linear model as system model at 20th and 40th time instants
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which small errors will amplify. A low Lyapunov exponent means that the system

can be predicted even if the error is allowed to propagate over some iterations.

However, for a moderate or high Lyapunov exponent, error propagation would

mean that the error in the system is to grow at a faster rate. For a forcing F = 8

and J = 40, the system above has a high Lyapunov exponent.

When performing state estimation for a system with high Lyapunov exponents,

it is necessary that the state estimation does not propagate the error, or the error

reduce as iterations proceed. In a wrong linear model, since the error in the initial

iterations is not corrected and the same faulty model is used for further estimation,

the error diverges to a large extent as the iterations proceed. This can be seen

from 3.7.

The proposed approach (which will be introduced in the next chapter) aids

in such a situation where the model is not only unknown, but also requires more

complex modeling technique.
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Chapter 4

Proposed Algorithm

4.1 Generic Framework

Step 1 Start with an approximate model, f0 and initial state x0

Step 2 At time t, using model ft−1, propagate [prediction step] state xt−1|t−1 to

xt|t−1

Step 3 Using the observation yt, update the state to xt|t [update step]

Step 4 Using states xt−1|t−1 and xt|t, update/evaluate model ft using Gaussian

Process Regression.

Step 5 Update t = t + 1, Go to step 2

In this generic framework, the initial model f0 can be an approximation of the
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actual model (if available), or if x−1 and x0 are available, the model f0 can be

obtained by using step 4. A good initial guess of states would help in a faster

convergence. The prediction and update steps (step 2 and step 3) are similar to

those in a Kalman filter or a particle filter. The choice of a particular method

depends on the nature of the problem and the algorithm assumes that the state

estimation has a good performance for the given scenario. The step 4 of model

estimation, uses the Gaussian process regression specified in section 2 and 3 to

model ft trained with inputs as xt−1 and output as xt.

4.2 Model propagation

Gaussian Process Regression is a non-parametric kernel regression technique, and

like all kernel methods, the training data is required for predictions as well. In the

current problem, the training data are the estimated states and the prediction is

done for future states. As the model propagates, it is necessary to have all the

training data accumulated over past iterations for future predictions. This might

result in two problems. First, the initial iterations can be noisy, and retaining this

data in latter iterations can cause poor predictions. Second, the data size might

increase exponentially as the iterations proceed. A solution to both problems is to

retain some relevant data and throw other data after each iteration. One way to

do this would be to use just data from t − 1 and t to predict the value at t + 1.

Alternatively, a moving window can be used to throw the oldest data as new data
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are accumulated. These methods, however, may result in any previously learnt

characteristic of the system being lost.

The problem of selecting the most relevant data from a large set of data has

been discussed previously in the literature and a number of sparse machine learning

methods proposed. The relevant vector machine (RVM; [42]) deals with selecting

the most relevant from a given set of training data using an incremental additions

from the training set to the relevant set (also called active set). A similar approach

in the Gaussian Process framework is available as the Informative Vector Machine

(IVM) [22,23] where at each iteration the most informative (relevant) of the current

data is retained based on an entropy criteria.

4.2.1 Informative Vector Machine

IVM is used in sparse Gaussian process methods [20] to get a sparse representation

of data to speed up Gaussian process regression. The core idea here is to add data

points one by one, but determining the point that best approximates the posterior

distribution. Consider the posterior distribution P (f |D), and taking its log, we

obtain

P (f |D) ∝ P (f)×
N∏

i=1

P (ti|xi, f), (4.1)

log P (f |D) ∝ log P (f) +
N∑

i=1

log P (ti|xi, f). (4.2)
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IVM utilizes this structure and adds the data points from the training set to a

reduced active set using an entropy based measure. Suppose Σi−1 is the posterior

covariance with i− 1 datapoints. The entropy change when a point n is added as

the ith inclusion is given by [23],

∆H = −1

2
log |Σi,n|+ 1

2
log |Σi−1| (4.3)

A rigorous analysis of the entropy and data selection can be seen in [22,23]. Some

important relations and derivations are shown in Appendix C. The data thus

selected is then used for future predictions.

4.3 Complete Algorithm

We use IVM to provide a concise representation of the data from past iteration

and current iterations. Suppose the IVM algorithm selects an active set of size

‘M ’ from data of size ‘N ’, it takes O(N) time to select each of the M points [22].

So it has an overall complexity of O(MN). Thus, the overall model estimation

algorithm involves using IVM to select an active set of data, and use this data to

train a Gaussian process model and use this model to predict the state at the next

iteration. The overall complexity of the O(MN) for IVM, O(M) for training the

Gaussian process and O(N) for prediction. The complete algorithm is:

Step 1 Start with an approximate model M0 and initial state x0
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Step 2 At time t, using model ft−1, propagate [prediction step] state xt−1|t−1 to

xt|t−1

Step 3 Using the observation yt, update the state to xt|t [update step]

Step 4 Append states xt−1|t−1 and xt|t to the data from past iterations and use

IVM to extract the active set, I. Using the states in the active set I, up-

date/evaluate model ft using Gaussian Process Regression

Step 5 Update t = t + 1, Go to step 2
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Chapter 5

Performance of the algorithm

In this chapter, the performance of the proposed Gaussian Process Regression

based model estimation will be discussed.

5.1 IVM Data Size selection

In order to select the size of the active set in the Informative Vector Machine, the

dual estimation was performed for different sizes of the active set. The relative

error between the true and the estimated state after 50 iterations is shown in Figure

5.1. It can be seen that as we increase the size of the active set, the relative error

drops. The reason for the increasingly better performance with the increase in the

size of the active set could be because if the size of the active set is small IVM

might result in the selection of the noisy data because of the poor representation

of the posterior. However, it should also be noted that increasing the size of the
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Figure 5.1: Relative Error vs Size of active set in IVM; The active set is selected

based on the entropy measure in Equation 4.3 and this data is used for model

prediction in each step of model estimation
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active set also increases the complexity of the active set selection step. This is

shown in figure 5.2 where the CPU time taken for data selection using Informative

Vector Machine is shown for different active set size. In all our experiments, an

active set of size 1000 was used.

5.2 State and Model Estimation

In order to illustrate the performance of the proposed method, the method was

tested on the LEKF with data generated from the Lorenz model. Figures 5.3 and

5.4 show the state tracking at 4 (out of 40) locations of the Lorenz model. It can
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Table 5.1: Mean relative error over 10s of iterations

Models 1-10 11-20 21-30 31-40 41-50

Exact model 0.2213 0.1084 0.0851 0.0674 0.0681

Incorrect model 0.7773 0.6282 0.8020 0.9164 0.7974

GP based model 0.6456 0.4205 0.4545 0.4159 0.3111

be seen that with the proposed algorithm, although, the model is noisy, the states

are tracked correctly.

The relative errors over iteration for the estimation with the correct model,

with the wrong model and with the proposed Gaussian Process based model are

shown in Figure 5.2. It can be seen that the error decreases rapidly for the LEKF

with the known model. The proposed algorithm, although it has a high error

initially, reduces gradually. With a wrong model, the error diverges. The mean

relative error over successive ten iterations is shown in Table 5.1. It can be seen

that although the wrong model and the Gaussian Process (GP) based model have

high errors initially, the wrong model diverges and the proposed model reduces in

error.

37



5.3 Performance over iterations

In order to illustrate how the model is initially error prone and how it learns as the

iteration proceeds, estimated and actual states as the iterations proceed is shown

for all 40 locations of the Lorenz model at various iterations in figures 5.5, 5.6 and

5.7. Each figure shows the true states at that time instant and the estimated states

at that time instant.
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Figure 5.3: State tracking with the proposed method: True and estimated at 2

(out of 40) locations of the Lorenz model
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Figure 5.4: State tracking with the proposed method: True and estimated at 2

(out of 40) locations of the Lorenz model
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Figure 5.5: Estimated states at 40 locations of the Lorenz model estimated with

the proposed algorithm at 5th and 10th time instants of estimation
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Figure 5.6: Estimated states at 40 locations of the Lorenz model estimated with

the proposed algorithm at 20th and 30th time instants of estimation
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Figure 5.7: Estimated states at 40 locations of the Lorenz model estimated with

the proposed algorithm at 40th and 50th time instants of estimation

44



Chapter 6

Conclusions and Discussions

6.1 Main contributions

The main contributions in this thesis are as follows:

1. A non-parametric approach is used to estimate the model on-the-fly in the

state estimation problem.

2. Fast summation, iterative methods and IVM based compression are used to

propagate the model using a concise and relatively efficient data representa-

tion.

3. The proposed method was used with the Lorenz-96 toy model to test its

performance
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6.2 Summary

In an estimation problem, there can be three possible scenarios - (1) the state

dynamical model can be known exactly, (2) the state dynamical model has an

approximation available and (3) the model is not available at all.

If the model is known exactly and not difficult to compute, it is preferrable

to use the model directly. However, if the model evaluations are computationally

infeasible, it is better to use an approximation (if available) of the model which is

easier to compute. If the approximation is inaccurate or unavailable, dual estima-

tion approaches should be followed. The estimation errors when different models

are used is tabulated in Table 6.1.

Exact model: With a good initialization, the estimation errors

reduce as the iterations proceed.

Approximate model: If the approximation of the actual model is not

erroneous this method will yield good results

Estimated model: If the model estimation is robust and learns the un-

derlying model, the errors in dual estimation meth-

ods will reduce as iterations proceed, although ini-

tially the errors will be high.

Table 6.1: Estimation errors using different models
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The usage of the different methods is shown in Table 6.2

Table 6.2: Usage for the different methods

Exact model: If model is known and is not expensive to evaluate.

Approximate model: If model is unknown or if the model is difficult to

compute.

Estimated model: If an approximation of the model is not available,

or if the model is complex and the approximation

available is not close to the actual model.

6.3 Further Possible Work

6.3.1 Irregular spatial and temporal data sampling

In the proposed approach, the sampling of the data is assumed to be complete.

That is, there are no missing observations spatially and the observations are sam-

pled at all possible intervals. This is too ideal an assumption to hold true practi-

cally. The observations might not be available at all spatial locations at all time

instants. In other words there can be missing observations. With the proposed

method, if the observations are available at every second time instant (ie. yt, yt+2,

yt+4, ..), the model estimated will predict the current state using state two instants

back (ie. xt = f(xt−2)). Missing spatial observations will simply be ignored for
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model estimation.

However, it would be interesting to look at different approaches to solving this

problem without ignoring the missing observations and model the state predictions

using a first-order Auto-Regressive model by accounting for the missing observa-

tions. One approach to explore would be method similar to [34], to move into a

subspace to estimate the missing observations and use it for estimation.

6.3.2 IVM Complexity

The IVM used in the proposed algorithm is the bottle-neck in the overall complex-

ity. It would be interesting to see if this step can be accelerated or replaced with

a faster compression scheme.

The complexity introducing step in IVM is the entropy based data selection.

IVM adds a data point, and checks the next suitable point that can be added from

all points. While this works very well, it would be interesting to see if a simul-

taneous similarity measurement scheme can be devised which enables a selection

of a representative subset of the data simultaneously instead of an incremental

addition.

6.3.3 “Non-parametric”model for the parameters

While the approach proposed is very robust, there might cases where there is a

model available but the parameters of the model are unknown. For example, in
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the weather data assimilation, the system dynamics are generally defined by a

set of differential equations with poorly known coefficients. In case of a particle

filter based tracking, there are some standard motion models like Brownian motion

to define the transition dynamics. In these case, more than developing a generic

model for the dynamics itself, we might need a model to estimate the parameters

of the system dynamics. In these scenarios, it is possible to use a dual Kalman

filter or joint Kalman filter approaches. It would be interesting to explore a non-

parametric approach to predict the system parameter in a framework similar to

the one proposed in this thesis
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Appendix A

More about GPR

In this appendix, the posterior and maximum likelihood estimation of the Gaussian

process regression [35] is explained.

A.1 Posterior density

Consider a zero mean Gaussian process with associated training data D = {X, f}

and test data D∗ = {X∗, f∗}. By the assumptions of a Gaussian Process, {f∗, f}

are jointly Gaussian, i.e, 


f∗

f


 ∼ N

(
0, K̂

)
(A.1)

K̂ =




K∗ K̃

K̃T K


 (A.2)

where, K = K(X,X), K̃ = K(X,X∗) and K∗ = K(X∗, X∗).
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Defining, Λ =




Λ11 Λ12

Λ21 Λ22


 = K̂−1, and writing the joint distribution of f

and f∗,

P







f∗

f





 =

1

(2π)N/2‖K̂‖1/2
exp

(
−1

2
F T K̂−1F

)
(A.3)

where N is the size of data X and F =




f

f∗


. Considering the exponential part

only in the above equation,

exp part = −1

2
F T K̂−1F (A.4)

= −1

2
F T ΛF (A.5)

= −1

2

[
fT
∗ Λ11f∗ + 2fT

∗ Λ12f + fT Λ22f
]

(A.6)

If two variables are jointly Gaussian, the conditional probability of one give

the other is also Gaussian, i.e., P (f∗|f) ∼ N(µ, Σ). For such a Gaussian, the

exponential part will be,

exp part = −1

2

(
(f∗ − µ)T Σ−1 (f∗ − µ)

)
(A.7)

= −1

2

(
fT
∗ Σ−1f∗ − 2y∗Σ−1µ + constant

)
(A.8)

Comparing equations A.6 and A.8 and equating the linear and quadratic terms,

Σ = Λ−1
11 (A.9)

µ = Λ−1
11 Λ12y (A.10)
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In order to get Λ11 and Λ12, recall,




K(X∗, X∗) K(X∗, X)

K(X,X∗) K(X,X)




−1

=




Λ11 Λ12

Λ21 Λ22


 (A.11)

Using an identity in Matrix inversion,




A B

BT D




−1

=




M −MBD−1

−D−1BT M D−1 + D−1BT MBD−1


 (A.12)

where M = (A−BD−1BT )−1.

Using equations A.12 and A.11 in A.10 and A.9,

Σ = K(X∗, X∗)−K(X∗, X)K(X,X)−1K(X,X∗) (A.13)

µ = K(X∗, X)K(X, X)−1f (A.14)

For noisy observations, y with variance σ2I, replace K with Ky, where Ky =

K + σ2I,

Σ = K(X∗, X∗)−K(X∗, X)(K(X, X) + σ2I)−1K(X, X∗) (A.15)

µ = K(X∗, X)(K(X, X) + σ2I)−1y (A.16)

This is what is given in the expression 2.7.
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A.2 Maximum Likelihood

To evaluate the maximum likelihood estimate of the parameters of the likelihood

given by

P (y|X, Θ) =
1

(2π)N/2|Ky|1/2
exp

(
−1

2
yK−1

y y

)
(A.17)

Taking log on both sides, the log-likelihood is,

log(y|X, Θ) = −1

2
yT K−1

y y +
1

2
log |Ky| − N

2
log(2π) (A.18)

Differentiating with respect to theta,

∂

∂Θ
(logP (y|X, Θ)) = −1

2
yT K−1T

y (
∂Ky

∂Θ
)K−1

y y +
1

2
tr

(
K−1

y

∂Ky

∂Θ

)
(A.19)

= −1

2
trace

(
(ααT −K−1

y )
∂Ky

∂Θ

)
(A.20)

where, α = K−1
y y. Using equation A.18 and A.20 with minimization approaches

like Conjugate Gradient, it is possible to evaluate the hyperparameters Θ of the

covariance function K.
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Appendix B

Various steps in LEKF

Let the states be denoted by x(r̂, t), r̂ indicating the location (latitude and longi-

tude) of the states in space and t indicating the time instant under consideration.

The first step in LEKF is prediction of the current state from past state using

equation 3.1.

xb(r̂, t) = f (xa(r̂, t− 1)) (B.1)

where f is the state transition dynamics of the system (similar to equation 1.1,

superscript b indicated the background (predicted) state and superscript a indicates

the analysis (updated) states. Before the normal update step of the Kalman filter

there are two important steps in LEKF - Localization and Transformation.
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Figure B.1: States at grid locations in 2-Dimensions

B.1 Localization

Given Xb(r̂, t), a local window of size l×l is defined centered at the current location.

The local state vector (denoted as Xb
mn(r̂, t)) encompasses the state information

in this local region only. For example, consider the grid in figure B.1. For the

overall states appear as here, the local 3× 3 window is defined around the state of

consideration (denoted by the squared-asterisk). The localization step in LEKF is

also similar to this.
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B.2 Transformation

Once localized, it is possible to define the local mean and covariances from the

localized ensembles,

x̄b
mn((̂r), t) =

1

k

k∑
i=1

xb(i)
mn((̂r), t) (B.2)

P b
mn = Xb

mnX
bT
mn (B.3)

Xb
mn = (k)(1/2)

[
xb(1)

mn − x̄b
mn|xb(2)

mn − x̄b
mn|...|xb(k)

mn − x̄b
mn

]
(B.4)

where k is the size of the ensemble. If λ
(i)
mn and u

(i)
mn denote the ith eigen-value and

eigen-vector of the covariance matrix, P
(
mnb), then

P b
mn =

k∑
i=1

λ(i)
mnu(i)

mnu
(i)T
mn (B.5)

≈
k′∑

i=1

λ(i)
mnu(i)

mnu
(i)T
mn (B.6)

where k′ < k indicates the size of a subspace in which the localized states can be

represented. The eigen values and eigen vectors are assumed to be sorted from

the largest value to the smallest. Using the reduced eigen space for defining a

transformation matrix,

Qmn =
[
u(1)

mn|u(2)
mn|..|u(k′)

mn

]
(B.7)

Now the transformation a vector w from the localized space to the lower subspace

is given by

ŵ = QT
mnw (B.8)
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and the transformation of a matrix from the localized space to the lower subspace

is given by

M̂ = QT
mnMQmn (B.9)

Once transformed using Q, equation 3.2 can be used to update the background

(predicted) x̂b
mn states to the analysis states, x̂a

mn. Once the analysis states at the

subspace is available, it can be transformed to the local space by using QT instead

of Q above.

The localization is performed for each state location and the final localized

analysis state is taken as the global state. More detailed analysis of this can be

found in [33] and [13].
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Appendix C

Informative Vector Machine

C.1 Assumed Density Filtering (ADF)

Consider a regression model, y = f(X) + ε, ε N(0, σ2I). By the Gaussian process

assumption, P (f‖X, Θ) ∼ N(0, K), where Θ are the set of hyperparameters.

P (y, f |X, Θ) = P (f |X, Θ)
N∏

n=1

P (yn|fn) (C.1)

From the earlier relations, P (yn|fn) ∼ N(fn, σ2).

Assumed density filtering (ADF) [22,23] is an online learning approach in which

data points are absorbed one at a time. Here, equation C.1 is written as,

P (y, f) =
N∏

n=0

tn(f) (C.2)

where t0 = P (f |X, Θ) and ti = P (yi|fi). ADF takes advantage of this factorization

to build an approximation q(f) to the true posterior P (f |y).
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C.1.1 Active Set selection

Initially the active set (I) is empty. Using the factorization as in equation C.2, by

adding a point n1 to the active set, the new posterior is given by,

p̂1(f) ∝ q0(f)tn1(f) (C.3)

where q0(f) = t0(f). The new approximation is given by,

KL(p̂1‖q1) = −
∫

p̂1(f) log
q1(f)

p̂1(f)
df (C.4)

More generally, for the inclusion of ith point,

p̂i(f) =
qi−1(f)tni

(f)

Zi

; (C.5)

Zi =

∫
qi−1(f)tni

(f)df (C.6)

ADF minimizes KL(p̂i‖‖qi) to select the next point to be added to the active set

I by using moment matching.

qi(f) ∼ N(µi, Σi) (C.7)

C.2 Data Point Selection

In IVM, with the knowledge of qi−1(f), the next point ni to be added is determined

by the change in the entropy of the posterior process. The change in the entropy

can be seen as a measure of reduction in the level of uncertainty. In other words,

IVM selects a point that would add the most information to the posterior in the
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ADF sense. The change in entropy is given by,

∆H = −1

2
(log |Σi,n| − log |Σi−1|) (C.8)

Equation C.8 is the same as 4.3.
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