THESIS REPORT
Ph.D.

Supported by the
National Science Foundation
Engineering Research Center

Program (NSFD CD 8803012),
Industry and the University

Ph.D. 90-8

An Algebraic Approach to Feature
Interactions

by R.R. Karinthi
Advisor: D. Nau

CS-TR- December, 1990
SRC-TR-

An Algebraic Approach to Feature
Interactions”

Raghu R. Karinthi
Computer Science Department
University of Maryland
College Park, MD 20742

Abstract

Planning the manufacture of machined parts requires a great deal of geometric reasoning. One
of the key steps in this task is the derivation of machinable features from a solid model of the
part. Regardless of the approach used for obtaining the features, geometric interactions among
the features can create situations where there are several possible feature representations for the
same part. This presents a problem in planning the manufacture of the part, since some of these
representations may be manufacturable and some may not.

This dissertation presents an automatic way of computing alternate feature interpretations using
an algebra of feature interactions. The algebra is intended to enable automated process planning
systems to decide whether various interpretations of a part as a collection of machinable features
are feasible for manufacturing, and among the feasible ones, which is the most appropriate one for
manufacturing. Alternate feature interpretations are computed by performing operations in the
algebra. Furthermore, various provable properties of the feature algebra aid in resolving several of
the feature interactions without even applying the operations in the algebra.

The operations in the algebra are defined on the set of all compact, regular, semi-analytic solids.
A restricted subset of the algebra has been implemented in a geometric reasoning system, for use
with the Protosolid solid modeler and the EFHA process planning system (which were developed
earlier at the University of Marvland). We have shown through experiments that computing the
operations of the feature algebra as developed in this dissertation is much more efficient than
computing them by converting them to queries to a solid modeler.

This work was supported in part by an NSF Presidential Young Investigator award for Dr.
Nau with matching funds from Texas Instruments and General Motors Research Laboratories,
NSF Grant NSFD CDR-88003012 to the University of Maryland Systems Research Center, NSF
Equipment grant CDA-8811952 and NSF grant IRI-8907890, and a Semester Research Award from
the University of Maryland General Research Board.

Abstract

Title of Dissertation: An Algebraic Approach to Feature Interactions
Raghu Ram Karinthi, Doctor of Philosophy, 1990
Dissertation directed by: Dana Nau, Associate Professor, Computer Science

Planning the manufacture of machined parts requires a great deal of geometric reasoning. One
of the key steps in this task is the derivation of machinable features from a solid model of the
part. Regardless of the approach used for obtaining the features, geometric interactions among
the features can create situations where there are several possible feature representations for the
same part. This presents a problem in planning the manufacture of the part, since some of these
representations may be manufacturable and some may not.

This dissertation presents an automatic way of computing alternate feature interpretations using
an algebra of feature interactions. The algebra is intended to enable automated process planning
systems to decide whether various interpretations of a part as a collection of machinable features
are feasible for manufacturing, and among the feasible ones. which is the most appropriate one for
manufacturing. Alternate feature interpretations are computed by performing operations in the
algebra. Furthermore, various provable properties of the feature algebra aid in resolving several of
the feature interactions without even applying the operations in the algebra.

The operations in the algebra are defined on the set of all compact, regular, semi-analytic solids.
A restricted subset of the algebra has been implemented in a geometric reasoning system, for use
with the Protosolid solid modeler and the EFHA process planning system (which were developed
earlier at the University of Maryland). We have shown through experiments that computing the
operations of the feature algebra as developed in this dissertation is much more efficient than
computing them by converting them to queries to a solid modeler.

Contents

1 Introduction
1.1 Geometric Interactions Among Features L.
1.2 Motivation o L e e e e
1.3 Overview of the Algebraic Approach
1.4 Main Contributions of the Thesis
1.5 Organization of the Thesis
2 Background
2.1 Automatic Feature Extraction.
2.1.1 Direct NC Code Generation
2.1.2 Methodologies in Feature Extraction
2.1.3 The Convex-Difference Method
2.2 Design-by-Features e
2.3 Human-Supervised Feature Extraction
2.4 Work Addressing Feature Interactions
2.5 Guidelines for Feature Extraction systems
3 The Feature Algebra
3.1 Mathematical Preliminaries e
3.1.1 Metric Spaces and Topological Spaces
3.1.2 Closed Sets e
3.1.3 Interior and Boundary
314 Compactless e e e e e
3.1.5 Regular Sets
3.1.6 Semi-Analvtic Sets
3.1.7 Convexity and Concavity i
3.2 Feature Definition
3.2.1 Neighborhood
3.2.2 Orthogonal Projection L L
3.3 Operations on Features L
3.3.1 Patch Classification Scheme
3.3.2 Truncation L e
3.3.3 Infinite Extension
3.3.4 Maximal Extension
3.3.5 Second Infinite Extension L oL
3.3.6 Combination L
3.4 Properties of the Algebra of Features L0

29

3.5 Feature Redundancy and Subsumption 49

3.6 Applications of the Operations 50
3.7 Applications of the Algebraic Properties 50
Restricted Feature Algebras 53
4.1 Computing the Operations 53
4.1.1 Countersink Holes 54
4.1.2 Truncalion e 54
4.1.3 Infinite Extension 55
4.1.4 Maximal Extension 59
4.2 Properties of the Algebra. L 61
The Feature Interface 64
5.1 Protosolid 64
5.2 A Solid and a Feature 65
5.3 Creatinga Part 65
5.4 Validity Checks o o 66
5.4.1 Rectangular Solids L 68
5.4.2 Cylinders e 68
5.4.3 Countersinks 68
5.5 Representing Patches 68
Implementation 73
6.1 Overview of the System 73
6.2 Geometric Primitives 74
6.3 Operations o e e e e e ™
6.3.1 Finite Precision Arithmetic L.)
6.4 Subsumption 76
6.5 Algebraic Properties L 76
6.6 EFHA e 76
6.7 The Generate-Features Algorithm T
6.7.1 State-Space Formulation 78
6.7.2 Complexity T8
6.8 Patchesand Patch Labels 83
6.8.1 Truncation L e 83
6.8.2 Maximal Extension L R4
Illustrative Examples 86
7.1 DExample 1. . 0 e 86
T.11 Patches oo L e 89
7.1.2 Generate-Features Algorithm 89
7.1.3 The State-Space 92
7.14 Monitoring 92
7.1.5 Algebraic Properties L e 94
7.1.6 Effidency 94
T.1.7 Process Planning e 95
7.2 Example2 . .. e 95
T3 Dxample3 . oo 96

i

8 Conclusion 101

8.1
8.2
8.3
8.4

SUMMATY . . o o o e e e e e e e e e e e e e e e e e e e 101
Impact . . . o . e e e 102
Machinability Analysis« . Lo .. 106
Future Work o o e e e e e .. 106
8.4.1 Patches e .. 106
8.4.2 The Feature Algebrao o oo . 107

il

List of Tables

6.

<

~1

=1 =1 =~

~1

kb

S I N SO U U

~F

1

© o0

The fields in the data structure for a feature. 66
The parameters of the stock and the features. 67
The fields of a face-patch. 69
The fields of a loop-patch. e e e e e e e e e 69
The fields of a circular patch. 69
The fields of a cylindrical patch. L 70
The parameters for a flat surface., i
The process plans for the feature fy. 0L 7T
The parameters of the stock for Example 1. 86
The parameters of the hole hy in Example 1. 87
The process planning parameters of the hole hy in Example 1. 87
The parameters of the slot s; in Example 1. 87
The process planning parameters of the slot s; in Example 1. 88
The parameters of the slot s; in Example 1. 88
The process planning parameters of the slot sy in Example 1. 88
The statistics for Example 1. 94
The process plans produced by EFHA for the features in Example 1. 95

iv

List of Figures

1.1
1.2

1.3

oo

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11

3.1
3.2
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17

4.1

A part withtwoslotsandahole. 3
A bracket {or use with a bearing. This image was produced using the feature algebra

interface and the Protosolid solid modeler. oo 4
A portion of the bracket shown in Figure 1.2. Wy, Wy, and Ws are the widths of sy,

89, and s3, respectively, and (' is the concentricity tolerance for the holes hy and hs. 5
Different interpretationsof the hole hy. 5
A part withan angleandahole. L 6
The grammar for recognizing depressions. L. 10
A part with a slot and a parse of the slot faces. 11
Pattern primitives for the grammar G. 0oL 12
Cross section of a flat-bottomed hole. L 12
A part with a protrusion. L L 13
The edge-face graph of thepart 14
An example of a hole intersecting aslot. 16
Features represented by the AAG. 17
A step splitinto two by aslot. L 18
The convex hull approach dueto Woo. 19
A part with three holes, a shoulder and an angle. 21
Ordinary and Regularized set operations. 26
Valid and Invalid Features. 28
Cross sectional views of three concave features. 28
Some examples of patches (shaded). Lo oL 30
Blocked and Unblocked patches of features. 31
The classification of patches of solids z. y, z, v and v with respect to the solid w . . 32
Examples of the truncation operation. L L. 34
Example illustrating Infinite Extension. o L L. 36
Example illustrating Infinite Extension. 37
Example illustrating Infinite Extension. 38
Examples of maximal extension operation. oL 40
Example illustrating the second infinite extension and the second maximal extension. 42
An example ilustrating the combination operation. 43
Example illustrating Proposition 11. Lo oL 17
A part withan angleandahole. L 50
An example showing the interaction of a hole with aslot. 51
The features for the part shown in Figure 1.1. o ... H2
Alternative ways of a machining a countersink 54

4.2

4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11

5.1
5.2
5.3
5.4
5.5
2.6

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10

~1 =1

-1 -
I N

-1

~1

-1 =1 =1 =1
— O 0

Cases where ps(z) —*ps(y)isnot afeature.,
Case where ps(2) —* ps(y) is two rectangular solids.
Case where ps(z) —* ps(y) is one rectangular solid.
Case where ps(z) — %(y) istwoceylinders.o L.,
Case where ps(r - ps(y) is a single cvlinder

Sha‘pes not of interest for mﬁmte extension 1ecta,nguldr sohds and cylmdels
Computing maximal extension.
Example illustrating the Proposition 15.
Example illustrating Proposition 16.

The parameters of a countersink hole.
The parameters of a cylindrical patch. Lo L.
A part withaslotandahole.
The representation of the patches for the face fy.
The representation of the patches for theface fo.
An example where the patches of the cylinder A cannot be represented using the

current scheme. L

The block diagram of the system for design and process planning.
The Generate-Features Algorithm.
Procedure manipulate-feature.o
Procedure process-countersinks. oL e
Procedure compute-infinite-extension.o oo
Procedure has-countersinks-p. L
Procedure new-ps-feature. oL
Procedure ps-equal. e e e
The state-space formulation of the features algorithm.
Propagation of the patches in truncation.

A part with twoslotsand a hole.
The fields of the loop-patches Iy, ly, I3, lyand I5.
The state-space for Example 1. 0o o o L
The state-space for Example 1.o oo oo
The wire frame model of a bracket for use with a bearing. This image was produced

using the feature algebra interface and the Protosolid solid modeler.
A portion of the bracket shown in Figure 7.5. Wy, Ws, and 173 are the widths of sy,

s9, and sz, respectively, and C is the concentricity tolerance for the holes hy and 7.
The state-space for Example 1. o o
A part with four contiguousslots.o oL oL
The additional {eatures produced by generate-features.
The state-space for Example 1. o o oL

Feature is not functional.
Nou-generic shape from two generic shapes.
Feature parameters made obsolete. oL o oL
Non-standard topology from interaction. o
Feature deleted by a larger feature. L
Open feature becomes closed. e

vi

79
80
80
80
81
81
81

8T
89
92
93

104
104

105

8.7 Feature deleted by filling with larger feature. oL 105

8.8 TFeature makes object disjoint. oL oL 106
8.9 Inadvertent interactions from modification. Lo 106
8.10 An example where the patches of the cylinder hy cannot be represented using the
current scheme. oL L L e 107
8.11 The hole-closure operation 108

vii

Chapter 1

Introduction

The world of physics, that is the whole of the philosophy
of nature is nothing but geometry.
—Réné Descartes (1596-1650)

The ability to reason with the geometry of a solid object plays a significant role in a variety of
domains. Geometric reasoning occurs in everyday events such as driving and walking, as well as in
specialized areas such as various branches of engineering and medicine. However, automating this
capability appears to be a difficult problem and has offered tough challenges even in the specific
domains in which it has been attempted. One such domain is that of the manufacture of metal
parts.

Machining a metal part consists of taking a piece of stock and performing various processes or
operations on it to transform it into a desired form. Each machining process acts on a picce of
stock and changes its structure in a unique way. Given a description of the object that is produced
by computer aided design (CAD), one would like to derive how it can be machined. This means
arriving at a sequence of processes, which when applied to the stock., would result in the final
machinable part, along with other information pertaining to fixturing the workpiece, feed rates,
cutting speeds. etc. Notice that such a sequence is not unique. Traditionally the designer comes up
with the CAD description of the object to be machined. and the process engineer and the Numerical
Control (NC) programmer produce the precise process plan.

The fields of computer aided design and computer aided manufacturing (CAM) have made
considerable progress in the last 15 years; the former concentrating on solid modclers, part specifi-
cation protocaols and drafting aids, and the latter concentrating on the development of generative
and variant process planning systems.

Many of the problems faced by modern industry are related 1o a lack of coordination be-
tween design and manufacturing. Typical problems include inconsistencies among process plans
for similar designs, large discrepancies from optimal shop utilization, poor product quality, and
non-competitive costs. One of the wavs to remedy these problems is to take the manufacturing
issues such as the availability of tools. jigs and fixtures into account during the design process
rather than afterwards. This integrated approach to design and manufacturing is known as con-

current engineering. This requires that CAM, modules such as process planning systems. interact

closely with CAD systems. It will be necessary for process planning systems [Cha90] to reason
about geometric relationships among the various parts of an object while the design is underway.
But the achievement of such interaction presents several unresolved problems. One of the primary
problems is that generative process planning systems consider a machinable part to be a collection
of machinable features, and it is necessary to obtain descriptions of such features from the CAD
representation. Several approaches have been proposed for doing this, as discussed below.

1. Automatic fealure extraction focuses on extracting manufacturing features from existing CAD
databases such as IGES files, BReps, etc. Several researchers have addressed this problem
using syntactic pattern recognition, rule-based systems, graph-based approaches or combina-
tions of the above. Prominent among these are the ones by Henderson [Hen84], Kyprianou
[Kvp80], De Floriani [DF89], Kumar[Kum88], Joshi[Jos87] and Srinivasan [SL&7].

Some of the more significant problems with feature exiraction are as follows:

(a) Certain attributes of a machinable part cannot be made without reference to a partic-
ular feature (for example, the surface finish, corner radius, and machining tolerances
of a pocket). When an object is designed without making reference to these features
explicitly, it is unclear how to associate the machining specifications with the proper
features.

(b) It is difficult to extract a feature which intersects or otherwise interacts with other fea-
tures, without disturbing those other features. For example, in Henderson’s feature
extraction system [Hen84], once a feature volume has been recognized it is subtracted
from the overall cavity volume—making it impossible to obtain multiple {feature inter-
pretations for the same cavity volume.

2. In design-by-features, the user builds a solid model of an object by specifving directly various
form features which translate directly into the relevant manufacturing features. Systems
for this purpose have been built for designing injection-molded parts [VDZS85], aluiminuin
castings, [LDS8&6], and machined parts [KJ&7, Ide®7, BH87, CT87, SR&S].

In the case of machined parts, one problem with design by features is that it requires a
significant change in the way a feature is designed. Traditionally, a designer designs a part
for functionality, and a process engineer determines what the manufacturable features are.
However, design by features places the designer under the constraints of not merely having
to design for functionality, but simultaneously specifving all of the manufacturable features
as part of the geometrv—a task which the designer is not normally qualified to do. Another
problem—that of alternate feature interpretations—is described in Section 1.1.

3. Human-supervised featurc cziraction overcomes one of the problems of design by features,
by allowing the designer to design the part in whatever way is most convenient. and then
requiring the process engineer to identify the machinable features of the part. A system for
this purpose was built at General Motors Research Laboratories, and another is being built at
the National Institute of Standards and Technology [BR87] using Unicad/Romulus [ROMS5].

Human-supervised feature extraction provides a way for a qualified manufacturing engineer
to identify the machinable features—but it still does not handle the problem of alternate
feature interpretations. Sometimes a machinable part can be specified as a set of machinable
features in more than one way—and unless one is very careful to identify all such possible
interpretations, this can lead to significant problems in process planning.

| maialin oo
| | I I
| | | |
s h h
1 ' 11 I (3
I 1 I |
i I | |
— T ¢ { [e | ' f r—-—=-n
|]) | y t \ \) t
! | i | ! [| | | v
"4
\ I) [! ! i) | |
t 1 ! ! ! ! | 1 H 1
! 1 ! ! ! ! | SR | SR —
\ | ! |
| | | i
! { | !
G |] | |
=2 | | | ‘]1‘2
I ; | I
I | I]
i I I)
| SR | L d

Figure 1.1: A part with two slots and a hole.

1.1 Geometric Interactions Among Features

Consideration of the above approaches makes it evident that regardiess of the approach used for de-
signing a part. a major problem to be solved is handling feature interactions. Geometric interactions
among the features can create situations where there are several possible feature representations

{or

the same part. To produce a good process plan—or, in some cases, even 1o produce a process

plan at all—it may be necessary to use a different interpretation of the part than the one obtained
from the CAD model. The problem is how to find these alternate interpretations. The importance
of handling feature interactions has been stressed in the recent reports such as [SRSMS89. Rog89].
Chapter 2 discusses related work addressing feature interactions at a greater detail.

Let us consider a few examples to show the role of geometric feature interactions.

1. Consider the part shown in Figure 1.1. In this example, the part has heen described as

the part resulting from subtracting a hole hy. a slot s and a slot sy, in that order out
of a rectangular stock. But because of the interaction of h; with sy and <5, we get Iy =
hi =" 81, hg = hy =% s9, and hy = hy —* s, = hy —~*s;. The final set of {eatures used for
machining would be s, s9 and oune of the holes /iy, lig, kg and ly. Which hole to use depends
on issues such as cost criteria {whether it is cheaper to make a deep hole or a small hole).
feasibility (availability of proper tools to make a deep lole), fixturing criteria (whether it is
possible to fixture the part to prevent excessive vibration while making hy after s; and s, have
been made), and machinability criteria (whether vibration during tlie machining of /iy will
allow acceptable machining tolerances to be achieved. or whether /iy can be machined with
an acceptable straightness tolerance). Thus. one can see that there can be several possible
interpretations such as {hy,s1, 2}, {fa, 81,82}, {N3, 1. 52} or {f4. 81,89} for the same part,
and having only one of them can be a serious limitation in process planning.

. As an example, consider the object shown in Figure 1.2. A detail of a portion of this object is
shown in Figure 1.3. Due to geometric interactions among the features iy, iy $9. $5. s3, and
&4. there are several interpretations as to their identities. For example. as shown in Iigure 1.4,
there are eight different interpretations of /iy, Each interpretation corresponds to a diflerent
order in which hq, s, s2. and s3 are made. For example, in interpretation (a). /iy is made

Fie 11y
m

ﬂj \

(P RSB

Prasmber JBYPE

Figure 1.2: A bracket for use with a bearing. This image was produced using the feature algebra
interface and the Protosolid solid modeler.

after s, s9, and s3, but in interpretation (b). it is made before s;.

Depending on the widths Wy, W, and W3 and the concentricity tolerance C'. one or another
of the interpretations may be best one in terms of maunufacturability. For example, if (', T4y,
Wy, and W3 are all small, then interpretation (h) is best. But if (', W7, W5, and W5 are all
large, then interpretation (a) is best. For other values of €. Wy, W, and Ws, several of the
other interpretations may be best.

3. Consider the part described in Figure 1.5. The part has two features: an angle ¢; and a hole
hy as described by the designer. However, one cannot drill on a slanted surface. due to the
drill bit slippage problem. Several things can be done to prevent the problem. If the slant
surface is also machined, one can drill the hole before milling the slant surface. However,
this would mean drilling a deeper hole hy. Thle other approach is to make the slant surface
first and then machine the hole /i;. Thus, we have two feature interpretations {fi;,ay} and
{la.ay}. If there is a tight parallelism tolerance between the axis of the hole and the bottom
surface of the part, one has to choose the interpretation {hz.a;}. However, if the parallelisin
constraint is not strict and if the angle 6 is small one chooses the interpretation {fy,ay}.
Thus, given either feature interpretation of the part, one needs the capability to generate the
other.

11 W, W

S So S3

Figure 1.3: A portion of the bracket shown in Figure 1.2. W7, Wy, and W3 are the widths of sq,
s, and s3, respectively, and C is the concentricity tolerance for the holes /iy and h,.

Figure 1.4: Different interpretations of the hole hy.

5

I I

| }12 |

L e o m e - o - - e - - - o o

r-==-==-==-=-- =~

! ~N

| h»] \\

U S
*x--==-=--= A

7

Figure 1.5: A part with an angle and a hole.

1.2 Motivation

Given the importance of feature interactions. a major goal was to develop an approach towards
handling them. The following issues were considered in developing an approach:
o

1. The approach should be powerful enough to handle a wide variety of features and geometric
interactions among features.

2. The approach should be expressible clearly and precisely. Developing a mathematical ap-
proach is one way to achieve this.

3. The approach should be simple and elegant; it should capture the interactions in a unified
way rather than as a number of special cases.

4. The approach should be implementable efficiently using existing hardware and existing soft-
ware tools such as programming languages, and solid modelers.

1.3 Overview of the Algebraic Approach

This thesis discusses an approach based on an algebra of features for handling feature interactions.
The feature algebra is an algebraic structure which consists of a domain of subtractive features
and a collection of operations that are defined on pairs of features. In addition, certain algebraic
properties of the operations in the feature algebra have been proved. By performing operations
in the algebra one can find alternative feature interpretations of a part. We have developed an
algorithm that generates all the feature interpretations of a part, given one feature interpretation.
This algorithm uses the operations and the algebraic properties.

6

Using this framework, a subset of this feature algebra dealing with rectangular solids, cylinders
and countersinks has been implemented. The feature algebra serves as the basis of a geometric
reasoning system for use in communicating between the Protosolid solid modeler [Van89b] and the
EFHA process planning system [Tho89)]. Protosolid is a boundary representation based solid mod-
eler developed at the University of Maryland, College Park. EFHA (Invironment For Hierarchical
Abstraction) is a process planning system also developed at the University of Maryland, College
Park. Both Protosolid, EFHA and the feature algebra run on a Texas Instruments Explorer 1I' and
are written in Common Lisp [Ste84], except for the routines for interactive and graphical display
which use object-oriented programming techniques such as flavors, the IExplorer window system,
and other features specific to the Explorer series of machines.

The brief workings of the feature algebra as implemented on the Explorer are as follows:

The designer describes the part by starting with a piece of stock and then successively sub-
tracting features out of the stock. After all the features have been specified. the designer invokes
the algorithm which generates alternative feature interpretations of the part. The algorithm also
produces the input suitable to do process planning and communicates them to EFHA process plan-
ning system. EFHA comes up with the least cost process plan for a feature (if it exists). Thus. the
final output of the system is all feature interpretations of a part and optionally, the process plans
for all the features in all the feature interpretations.

1.4 Main Contributions of the Thesis

The contributions of this thesis are discussed in detail in Section &8.1. In this section, we summarize
the main contributions of this thesis. In this thesis, an algebra of features has been developed for
producing multiple feature interpretations of a machinable part. The representation of features
includes not onlyv the shape of the features, but also information about their boundary useful for
process planning. Operations on features and algebraic properties of the operations have been
developed. A subset of the algebra has been implemented and has been shown to be efficient for
producing multiple feature interpretations of a part. The sub-algebra that has been implemnented
has been integrated with a solid modeler and a process planner.

1.5 Organization of the Thesis

This thesis is organized as follows: Chapter 2 describes some of related research in the area of
feature extraction and in handling feature interactions. Chapter 3 describes the algebra of feature
interactions that has been developed in this thesis. In Chapter 4. we describe an algebra for a
restricted class of features that has been implemented. Chapter 5 describes an interface for feature
based design that that serves as a front-end to the restricted feature algebra. Chapter 6 describes
some of the details of the feature algebra implementation. In Chapter 7. we illustrate the workings
of the feature algebra through some examples. Chapler 8 summarizes the algebraic approach
proposed in this thesis for handling feature interactions. Some ideas for further research along the
lines of the proposed approach are also suggested.

'The keywords Explorer and Explorer 11 used in this thesis are trademarks of Texas Instruments Incorporated.

-1

Chapter 2

Background

When a figure or “positive space” (e.g., a human form, or a letter or a still life) is drawn inside a
frame. an unavoidable consequence is that its complementary shape — also called the “ground”.
or “background”. or “negative space” - has also been drawn. In most drawings, however. this
figure-ground relationship plays little role. The artist is much less interested in the ground than in
the figure. But sometimes, an artist will take interest in the ground as well.

—Douglas R. Hofstadter, Gédel. Escher, Bach: an Eternal Golden Braid

Beginning with the use of numerically controlled machines over three decades ago, there has
been considerable interest in automating the task of planning for machinable parts. Omne of the key
steps in this process is the integration of the representation schemas suitable for computer aided
design and computer aided manufacturing. As mentioned in Chapter 1, there are three popular
approaches towards the integration of CAD and CAM. In this chapter, we will examine these
approaches at a greater detail.

2.1 Automatic Feature Extraction

The essential task in automatic feature extraction is to derive machinable features from an existing
C'AD description of the part such as the Constructive Solid Geometry (CSG) tree, boundary repre-
sentation (BRep) and Initial Graphics Exchange Specification [SW86] (1GES) files. However, some
researchers have attempted to directly generate the numeric control (NC) tool paths without actu-
ally generating the features. Prominent among thesc is the work of Grayver[Gra76] and Armstrong
ctal [AGPR&4].

Most researchers have focused on extracting features from the BRep of a part. Notable excep-
tions are the work by Woo [Wo0082] which refers to features as volume elements (without referring
to a specific representation scheme) and that of Kumar [Kum88] that extracts machinable features
from an IGES representation of the part. Although extracting features from wire frame represen-
tations and engineering drawings [HQ82] is interesting because of its immediate applicability to
industry, most of the researchers have preferred to work with the boundary representation. since it
offers an unambiguous and complete representation of the part geometry.

o]

Before discussing the work related to automatic generation of machinable features we will de-
scribe the work that directly generates the NC tool paths from the CAD description of a part.

2.1.1 Direct NC Code Generation

Grayer[Gra76] used the BRep of a part obtained from the BUILD[Bra79, Str80] solid modeler. The
program he has developed compares the final representation of the part with the initial stock and
divides the material to be removed into a set of horizontal laminae of constant, cross section. The
NC tool paths are generated using a postprocessor. A limitation of Grayer's work is that it can
handle only pockets and holes with vertical walls.

Armstrong et al.JAGP84] have developed a way of directly generating the NC code from the
BRep of the final part obtained from the PADL-1[HMS85] solid modeler. The idea is to decompose
the part into 3D volumne elements which are used to guide the NC code generation. The program
can generate the NC code for the roughing cut and the finishing cut in a vertical milling machine.
This program does not generate machining features explicitly.

Machining features serve as an abstract level between the CAD description of the part and the
NC code so that a shape element could be machined by one or more of a variety of processes such
as end milling, center drilling or twist drilling. An attempt to directly generate the NC code for a
specific machine loses this flexibility. However, this approach will be useful in cases where there is
only one kind of machine available.

2.1.2 Methodologies in Feature Extraction

There appear to be three dominant approaches in extracting machinable features from CAD models:

1. Algorithmic approaches such as syntactic pattern recognition and graph based approaches;
2. Rule-based systems;

3. Combination of the above.

Syntactic Pattern Recognition

Kyprianou [Kvp80] used syntactic patiern recognition techniques to extract features from the
boundary representation of a part. The goal of his research was to generate Group Technology
(GT) codes for parts, based on their features. His program has the following phases:

1. marking the edges. vertices and faces of the part based on convexity / concavity information;
2. partitioning the faces into groups known as facesets;

3. recognition of features in a faceset;

4. recognition of thic overall shape of the part;

5. GT code generation from the overall shape.

Kyprianou’s program has the capability to identifv depressions, protrusions and bridges. In his
scheme, a depression is a connected set of faces such that each face is adjacent 1o at least one other
face via a concave edge and all the edges bounding the depression are convex. Svntactic pattern
recognition techniques are used to identify the features. Figure 2.1 below illustrates the grammar
for identifying depressions. The depression grammar is of the form G =< N, T, 1", 5 >. where N

N

It
~
)

AN

OO

]
%
P = <L —_—> v)
!
*
O— |
o

Figure 2.1: The grammar for recognizing depressions.

is the set of non-terminal primitives, T' is the set of terminal primitives. P is the set of production
rules and .S is the starting primitive. The * indicator in the depression grammar designates that a
face has been included iu the set of faces forming a depression and the symbol » denotes a concave
edge. Figure 2.2 shows a part with a simple slot and how it is parsed by the depression grammar.

The grammar developed by Kyprianon does not have the capability to address feature interac-
tions. TFurthermore, Kyprianou’s features are not volumetric. Therefore, from a process planning
perspective. the volume to be machined is not defined.

Dong and Wozny [DW88] and Falcidieno and Giannini [F'G89] have extended the work of Kyvpri-
atou resulting in algorithms that can recoguize a wider class of features.

Jakubowski [Jak82] has developed a grammar for recognizing the external contour of a machined
part. Jakubowski uses a extended context {ree grammar. which is similar to a context {ree gramuiar
except that the right hand sides of the production rules can be regular expressions over the terminal
and non-terminal svmbols.

The following simplified example illustrates the kind of grammars used by Jakubowski [Jak82]
and Staley et al. [SHA83] for recognizing the external contour of a part. The exact grammar would
be too complicated for the purpose of illustration. Let us define four pattern primitives which
are positive and negative unit vectors along the co-ordinate axes in two dimensions as shown in

10

Figure 2.2: A part with a slot and a parse of the slot faces.
Figure 2.3. Let us define the following grammar using the pattern primitives. G =< N,T. P, 5 >.
where S is the start symbol. T is a set of terminal symbols. N is a set of non-terminal symbols and
P is the set of production rules.

T = {a.b,c}

N = {5 A4.B)

P = {S—cda
A — BleAa
B — bjoB)

Tlie language generated by the grammar is L = {¢"0™¢"m.n > 1}. The contour of the cross
section of a flat-bottomed hole, as traversed from left to right can be parsed by the gramiar(see
Figure 2.4).

A limitation of the grammars by Jakubowski and Staley is that they are two-dimensional in
nature.

Graph-Based Approaches

Given the boundary representation of a part, a variety of graph structures can be constructed
based on the adjacency relationships among the vertices, edges and faces. This approach to feature
extraction looks for patterns in such graphs that correspond to features.

Leila De Floriani [DI'89] has developed a technique for the extraction of protrusions, depressions,
through holes and handles from the boundary representation of a solid. This technigue is based on

11

A
A\ 4

Figure 2.3: Pattern primitives for the grammar G.

Figure 2.4: Cross section of a flat-bottomed hole.

recognizing the features froin the edge-face graph of the solid. The edge-face graph is partitioned
into its bi-connected and tri-connected components [Har69]. At each step, subgraphs of the edge-
face graph G, describing the features are detected by considering mutual relations among the
bi-connected and tri-connected components of G.

We will illustrate De Iloriani’s approach through an example. Figure 2.5 shows a part with a
protrusion. The face F of the part contains two edge loops, an outer loop L; and an inner loop
Ly. The edge-face graph of the part is shown in Figure 2.6. In this graph, loops are denoted by
square-shaped nodes and faces by circular nodes. Every loop has an arc conuecting it to the face
containing the loop. Two loops have an arc between them if they share an edge. Without getting
into the complexities of I'loriani’s algorithm, one can see that identifyving the two bi-connected
components of the graph break the part into a main block and a protrusion.

One of the limitations of this approach is that it considers only topological information. Topo-
logical information alone is not sufficient in extracting machinable features in certain cases. A
combination of both geometry and topology is required.

Pinilla etal. [PSP89] have addressed this issue, and the graph-grammar they are developing
has both geometric and topological information. Also. their scheme can model feature interactions.
However, it appears to us that the number of rewrite rules required to model the diversity of
interactions that occur in the machining domain will be very large.

Rule-Based Approaches

Rule-based approaches to feature recognition use IF-THEN rules to detect features of iuterest.
Prominent among these is the work of Ienderson[Hen84] and that of Kung[Kun&4]. One of the
drawbacks of rule-based systems, as opposed to more formal approaches such as grammars and

12

M

1

L, H

: — 5L
| c /
I Fe-|-- ~ L,
L C
. F
; B
}.. ________________

E /
/

Figure 2.5: A part with a protrusion.

13

-®

i
®

\ |

HsH

L@ @“

N

.
I

5

Figure 2.6: The edge-face graph of the part

grapl-based algorithms, is that it is hard to characterize the domain of the features and interactions
recognized by rule-based systems.

Henderson’s [Hen84] system extracts features from the boundary representation of a solid ob-
tained from the Romulus|[ROMS85] solid inodeler. Henderson's rules for feature extraction are
written in Prolog. Briefly, Henderson’s feature extraction algorithm works as follows:

In the first step, his program identifies the cavity volumes (a cavity volume is a maximally
connected volume that needs to be machined) in the part. The feature extraction procedure is
carried out independently for each cavity volume. There could be several features in a cavity
volume. Features are recognized using IF-THEN rules such as the one shown below:

IF" a hole entrance exists, and
a cylindrical face is adjacent to the entrance and,
there is a bottom face to the cylinder,
THEN the entrance face, the cylindrical face and the bottom face comprise a cylindrical
hole.

Once a feature has been recognized, the feature volume is subtracted from the cavity volume
and features are extracted from the remaining cavity volume. This is always possible in Henderson’s
system because the features in his system are well-defined volume elements. This process is repeated
until the cavity volume becomes empty.

Henderson’s system can handle only Z%D features. In Henderson’s system, once a feature volume
has been recognized it is subtracted from the overall cavity volume. Therefore, it is not possible
to obtain multiple feature interpretations for the same cavity volume. The need for doing this has
been pointed out by Henderson in the Future Work section of his thesis:

Figure 46b [Figure 2.7 in this chapter] contains either a slot between two separate
holes or a long hole intersecting a slot. In both of these cases, conflict resolution is
necessary together with optimization of features based on techniques available.

Combinational Approaches

Prominent among the systems that combine algorithiic techniques and rule-based systems are
those of Srinivasan and Liu [SL87) and Joshi and Chang[JC8S].

Srinivasan and Liu [SL8T] have developed a tree grammar (very similar to an AND/OR graph),
for representing the knowledge of process capabilities. The grammar captures the shapes that can
be machined using a particular process such as milling. There are two steps in his algorithmn.
The first step, feature recognition, involves parsing the boundary representation of a part using
the grammar for a specific process. The second step. known as feature reconstruction. considers
certain kinds of feature interactions (within a process model). A rule based approach is used in
the feature reconstruction step. This method is more useful for capturing the geometric meaning
of process capabilities rather than as a general feature extraction paradigm.

Joshi and Chang [JC88] have developed a system in which the patterns in the graph structure of
a part are used to identify the features. Using the boundary representation of a part, an undirected
graph. known as the attributed adjacency graph, is constructed. The vertices in this graph are the
faces; and if any two faces share an edge, then there is an arc between the corresponding vertices.
In addition, the arcs are marked as 0 (concave) or 1 (convex) based on whether the corresponding
edge is concave or convex. Using this scheme, one can identify the patterns thal characterize
some common features such as the step, the slot, the corner step, the notch and the pocket (see
Figure 2.8).

Figure 2.7: An example of a hole intersecting a slot.

Comparing this scheme to that of De Floriani the following observations may be made:

1. De Floriani’s scheme relies purely on topological information. Therefore. in order to recognize
depressions or protrusions on three or more faces, the boundary description of each feature
must be suitably completed with dummy faces, edges and vertices to form a feature volume.
The technique by Joshi and Chang is able to recognize such features by using a little geometric
information. viz., convexity and concavity.

2. The geometric information captured by Joshi’s attributed adjacency graph is not adequate to
uniquely characterize the machining features. For example, the attributed adjacency graph
does not have the information required to distinguish a dovetail slot from a right-angled slot.
It also does not provide the information required to handle feature interactions. Joshi and
Chang developed II'-THEN rules to handle such situations. Figure 2.9 shows an example
where a step has been split into two by a slot. Here. rules are used to recoguize that the
corresponding faces of the two steps are coplanar and hence can be combined into a single
step.

2.1.3 The Convex-Difference Method

Woo[Wo0082] proposed an algorithm that uses the convex hull of a part in feature extraction. The
convex hull of a solid is the minimal convex set enclosing the solid. To begin with, the convex hull
of a part is computed, and this is assumed to be the raw stock. The idea is to rewrite a given
solid as a finite alternating (regularized union and difference) series of convex solids. Denoting
the convex hull operator by C, the procedure is illustrated in Figure 2.10. The main drawback
with this approach however. is that the shapes produced for features do not necessarily correspond

16

Step @—O——@

Blind Slot 0

0
(&) (& "
0

Pocket

(i:’lj\ 0 I);] ,/
0 \0 Fy — [
AN
I s
0

Figure 2.8: Features represented by the AAG.

— I

_F5

Figure 2.9: A step split into two by a slot.

to manufacturing features. A second drawback is that there can be pathological cases where the
algorithm does not terminate.
In Figure 2.10, we can write the final part Dg as

Do = Ho— Hi+ Hy — H

where — denotes regularized subtraction and + denotes regularized union. If the only features we
have are depressions, then we can rewrite the above equation as a sequence of solids subiracted
from the convex hull of the part (Hg), and each of these solids corresponds to a feature in the part.
Therefore.

Doy=Hy-(Hy - Hy)— Hs

and Hy — Hy and Hs are the two features in the example part.

2.2 Design-by-Features

In the recent vears, design-by-features svstems have been developed for a variety of domains. This
section discusses design-by-features systems pertaining to the domain of machinable parts ounly.

Kramer aud Jun [KJR7] at the National Bureau of Standards (NBS. now known as the Na-
tional Institute for Standards and Technologyv, NIST). Automated Manufacturing Research Facility
(AMRT) have developed a design specification protocol called VWS2 to specify both geometric
and non-geometric information of machine parts. VWS2 can handle parts which are one-sided, two
and a half dimensional and can be made by subtracting features from a rectangular block of stock.
The part editor provides a convenient way of specifying feature parameters. The VWS2 displays
the part design on the screen. It can be used to generate process plans and to produce NC code
which can be downloaded onto a machine tool to produce a part.

XCUT is an expert system developed at Bendix Kansas City Division for producing antomated
process plans. Hummel and Brooks [HB&6] discuss the symbolic representation of manufacturing

18

Figure 2.10: The convex hull approach due to Woo.

19

features in XCUT. which is organized into a taxonomic hierarchy. Inheritance of properties through
the hierarchy enables elegant specification of the features. The features thus specified are used for
automated process plan generation. All the geometric and topological information for a feature is
extracted from the solid model of the part using the Romulus solid modeling system [ROMS5] and
an interactive interface. This interface allows the user to manually identify the features using a
graphical pointing device. Tolerances of size and location are entered inanually once the geometry
and topology of the feature have been defined.

The two systems discussed above are fairly complete in the sense that they translate from
part specifications 1o low-level process plans. But they require the designer to specify the precise
manufacturing features to be planned for. The design by features approach is also used by an
integrated process planning system called FIRSTCUT [TCR89] being developed at the Stanford
university.

2.3 Human-Supervised Feature Extraction

In trying to develop an integrated approach to design and process planning, researchers have realized
that a completely automated system may not be feasible in the near future, and may not even be
desirable since formal description languages for various phases of automated manufacturing have
not yet been defined. Therefore, there is some interest in developing tools that automate only some
of the steps in design and mauufacture, and require human intervention for the remaining steps.

The work in the Automated Manufacturing Research Facility (AMRF) at the National Institute
for Standards Technology [BR87, BR88] is an example of such research. Given a description of the
part, a process engineer identifies the features using a computer interface. In addition, the process
engineer can also specify the precedence relations among the features in the form of a graph. This
information is used later by the modules for process selection, fixture planning, etc.

2.4 Work Addressing Feature Interactions

This section summarizes some of the work directed at handling interactions among the features.
Hayes [Hay87] has built a program called machinist, which captures the knowledge a machinist
uses in process planning. This program has the capability to identify feature interactions. The
knowledge for detecting the interactions is built into rules written in OPS5. Using its rules the
machinist program derives precedence relations among the features.
For example, consider the part shown in Figure 2.11. It has five features viz., a shoulder, an angle
and three holes named holel. hole2 and hole3. The program identifies the following interactions:

1. The first interaction is between the angle and hole3. If the angle is made first, it will interact
with the hole, by causing the drill bit to slip on the slanted surface. This will make the hole
placement inaccurate. The restriction that this interaction imposes is that hole3 must be
marle before the angle.

2. The second interaction is between hole3 and the shoulder. If the shoulder is made first, the
part will be too thin and floppy when it is clamped to cut the hole. Therefore, the hole3 must
be made before the shoulder.

3. Tor similar reasons, the angle must be made before the shoulder.
kl

From the above precedence relations a partial order is established among the features. This is
subsequently used in process planning.

20

shoulder hole? \\/” angle

Figure 2.11: A part with three holes, a shoulder and an angle.

The machining expertise captured by the Machinist system is very useful. However, its repre-
sentation of a solid is not adequate for process planning purposes. For example, in the AMachinist
representation, hole3 (I'igure 2.11) and hole3 extended into the angle are considered to be the same
hole. Thus, the depth of a hole is not considered by this system, and yet such information will
be required during process planning. The machinist system will be of greater utility when it is
integrated with a solid modeler.

Micahel Pratt [Pra87] hias developed the notions of canonical feature volume, attached feature
volume, effective volume of intersection and actual volume of intersection to capture the interactions
among features. Pratt’s work addresses the interactions among positive and negative features. The
canonical feature volume (CFV) is the region of space occupied by a volumetric feature as evaluated
from a generic description in terms of specified dimensional parameters, as correctly positioned and
oriented with respect to the part model. The attached feature volume (AT'V) is the region of space
common to a positioned and oriented canonical feature volume and the body of the part to which
the feature is attached. The effective volume of intersection {EVI) of two interacting features is
the boolean intersection of the AFV of the first feature defined with the CFV of the intersecting
feature. Pratt has developed a graph structure where the relationships among the features are
shown. However, it is not clear how this methodology will be used in conjunction with a process
planning system.

Vandenbrande [Van90] has developed a svstem that combines the principles of artificial intel-
ligence and solid modeling. The program uses hints or clues to identify potential features in the
boundary representation of a part (obtained from the PADIL-2 solid modeler). The clues are gener-
ated by production rules and posted on a blackboard. The clues are assessed and the promising ones
are pursued to recognize and extract the features. This svstem is capable of identifving interacting
features (e.g. two crossing slots). This program also produces alternative feature interpretations
in certain cases. Since there is no formalization available regarding the kinds of interactions it
handles, it is hard to determine what all the interpretations it produces are.

2.5 Guidelines for Feature Extraction systems

Based on the merits and demerits on the existing feature extraction methodologies, the following
can be stated as the desirable qualities of a feature extraction system for the machining domain:
(These are based on the beliefs of the author, derived mostly from the existing literature.)

1. Features must be considered as volume clements, and al the same time a boundary repre-
sentation of the features must be maintained (see Pratt [Praf8]). If features are modeled as

collections of surfaces, one runs into severe problems in dealing with feature interactions (see
[Pra88, Min85] for a discussion on face growing and other problems).

2. Both topological and geometric information present in the BRep of a part should be used.
A scheme based on topological information is not adequate. For example, consider the part
shown in Figure 2.9. Based on topologically information alone, it is not possible to detect
that the two steps are in the same plane, and hence can be considered as a single step.
However, the topological information, being of a symbolic nature, should be preferred over
the geometry information. The geometric information, being numeric in nature, is more
prone to the problems of finite precision arithmetic. (See the book by Hoffmanu [Hof89] for
a discussion of the problems due to finite precision arithmetic in solid modeling and some
solutions to this problem. See Weiler [Wei86]. for a discussion on the merits of the topological
information.)

3. Feature interactions must be addressed and alternative feature interpretations of a part must
be provided. Since this has been discussed earlier in this thesis, we will not elaborate further
at this time.

4. The feature model must be integrated with the solid model and feature interactions must he
inferred using the solid modeler. This is necessary to ensure that we have an unambiguous
and unique representation of a part at all times. This requires that the solid modeler be able
to handle arbitrary unions of solids, and hence the modeler must be of a non-manifold nature.
This issue is described in greater detail by Pratt [Pra88].

Ut

. The nominal geometry is only one of the many aspects in the description of a part. Various
other aspects such as the tolerances, surface finish, material and the fixtures available, affect
the choice of the features to represent a part, and hence advice from all these sources should
be integrated in doing feature extraction. Smithers [Smi&9] has stressed the importance of
integrating multiple knowledge sources in CAD. Vandenbrande [Van90] discusses the role of
integrating multiple knowledge sources in feature extraction.

The algebra of features that is described in subsequent chapters addresses all the issues men-
tioned above except the last.

22

Chapter 3

The Feature Algebra

Algebra is a cobra that makes my gunde gaabhara.
(Algebra is a cobra that makes my heart pound.)
—Telugu high school saying.

This chapter gives the mathematical treatment of the algebra of features that has been developed
for this dissertation.

An algebraic structure [Pin82] in its simplest form is a set, with a rule (or rules) for combining
its elements. Let A be any set. An operation x on A is a rule which assigns to each ordered pair
(2.y) of elements of A exactly one element z * y in A. There are three aspects of the definition
that need to be stressed :

1. 2 x y is defined for every ordered pair, (x,y) of elements of A4;
2. 2 * y must be uniquely defined;
3. A is closed under the operation .

In particular, a feature algebra is characterized by a set of features (denoted by D), and binary
operations on the features. Since these operations give meaningful values only for certain pairs of
{features. we include an element called INVALID in the set of features, to be used in cases where
the operations do not produce meaningful values. By definition, for any operation *,

Va, 2« INVALID = INVALID * 2 = INVALID

3.1 Mathematical Preliminaries

This section summarizes some of the mathematical concepts required for the definition of a feature
in the next section. For a more detailed treatment of this material the reader is referred to Requicha
and Tilove [RT78. Req77] and to Kuratowski [IXM76], Mendelson [Men75], Simmons [Sim63] and
Agoston [Ago76].

23

In the summary that follows, the symbols W and § are used to denote the universal set and
the empty sel respectively. The symbols U, N, — and ¢ are used to denote the set operations
union, intersection, difference and complement and the svmbols C, D, C and O are used to denote
relations subset. superset. proper subset and proper superset among sets.

3.1.1 Metric Spaces and Topological Spaces

H W is a non-empty set, a collection T of subsets of W is called a topology on W if it meets the
following requirements:

. WeTand Bel.
2. The intersection of a finite number of sets of T belongs to T
3. The union of a countable number of sets of T belongs to T'.

An ordered pair (W.T) in which the first component W, is a non-empty set and the second
component 7" is a topology on W is called a topological space. A subset of W is said to be open if
and only if it belongs to T'.

A metric space is an ordered pair (W, f). where W is a set, R is the set of all reals. and
[W x W — R is a function called the distance or metric, such that for all a, b, and ¢ in W

1. fla,b)> 0

2. fla,b) = 0if and only if a = b;

3. fla,b) = f(b,a);

4. f(a,e) < fla,b) + f(b,c) (The Triangle Inequality).

As a simple example, the ordered pair (E3,d) where d is the function giving the Euclidean
distance between two points, is a metric space.

Let (W, f) be a metric space, and z a point of W. The open ball of radius & > 0 about x,
denoted by Ball(z, R), is the set of all points y in ¥ which satisfv f(z,y) < R.

Given a metric space (W, f), a set X C W is open if it contains an open ball about each of its
points. For example, given the metric space M = (R, abs), where abs(2,y) =| 2 —y |. the set (0.10)
of all reals greater than 0 and less than 10, is an open set.

Given a metric space (W, [), a set X C W is bounded if it i a subset of a ball of finite radius.

Given a metric space (17, [). the set T of all (metric) open subsets of W form a topology on .
Thus. if (W, f) is a metric space, (1, T) is a topological space. Thus. the open sets of the wetric
space (W, f) and the topological space (1, T} are identical.

3.1.2 Closed Sets

A neighborhood of a point 2 in a topological space (W.T) is any subset of 117 which contains an
open set which contains z.

Given a topological space (W, T) and a set X C W, a point is a limit poini of the set X" if each
neighborhood of 2 contains at least one point of X different from 2. Notice that the limit points
of a set need not belong to the set. Given the metric space M = (R, abs) seen carlicr, there is a
corresponding topological space N = (R,T) where T is the set of all (metric) open subsets of It
Now. consider the open interval (0.10). 0 and 10 are the limit points of the set (0, 10) and neither
of them belongs to the set.

24

The closure of a subset X, denoted by kX, is the union of X with the set of all its limit points.

A set X is closed if and only if X = kX. For example. the interval [0, 10] of all reals greater
than or equal to 0 and less than or equal to 10, is a closed set. Notice that some sets (the set
(0, 10], for example) are neither open nor closed.

3.1.3 Interior and Boundary

Given a topological space (W,T'), a point z of W is an interior point of a set X C W il X is a
neighborhood of 2, i.e., if X' contains an open set which contains a.

Given a topological space (W, T'), the interior of a set X C W. denoted by 71X, is the set of all
interior points of X.

X = ¢X if and only if X is open.

Given a topological space (W, T), a point x of W is a boundary point of a set X' C W if cach
neighborhood of z intersects both X" and ¢X.

The boundary of X, denoted by b(X'), is the set of all boundary points of X.

The reader may observe that the definitions of interior and boundary correspond to the intuitive
notions of interior and boundary for solid ohjects.

3.1.4 Compactness

It can easily be seen that the ordered pair (E™, f), where E™ is the Euclidean n-space and [is the
Euclidean distance, is a metric space; and that there is a corresponding topological space (£". 1)
where T is the set of all open sets of E™. Hence forth, we talk of the properties of a subset of E",
where the corresponding metric and topological spaces are the ones just mentioned. A subset of
Euclidean n-space is compact if and only if it is closed and bounded [MenT75).

3.1.5 Regular Sets

The regularization of a subset X of ', denoted r.X, is the set »X = kiX. A set X is closcd regular
if X =rX,i1e.,if X = kiX. Note that »»X = rX. From now on. we simply refer to a closed
regular set as a regular set. In intuitive terms, a regular set in I cannot have any dangling faces,
dangling edges or isolated points.

It is well known that when set-theoretic operations such as union. intersection, and difference
are applied to two valid n-dimensional objects, the result is not necessarily a valid n-dimensional
object. In particular, the intersection or difference of two regular n-dimensional objects need not be
a regular n-dimensional ohject. For example, if two squares touch on one side. their intersection is a
single Jine segment. which is not a valid two dimensional object. Requicha and Voelcker[RV85] have
shown that this difficulty can be overcome by using regularized set operations instead of ordinary
set operations. The symbols U*. N*, —

*

and ¢* are used to denote regularized union, intersection,
subtraction and complementation respectively. Theyv are delined below:

XU Y =r(XUY)

AN Y=r(X0Y)

A—"Y=r(X-Y)
XN = reX

Figure 3.1 shows the difference between ordinarv and regularized set operations.

Ny

1 /7/ POy =0

Ny

Ty

Figure 3.1: Ordinary and Regularized set operations.

206

3.1.6 Semi-Analytic Sets

A function f: E® — R is said to be analytic [Ful69] throughout its domain if it can be expanded
in a power series in z, y and 2 about every point in its domain. A necessary condition for a (real)
function to be analytic is that it be infinitely differentiable. A subset of E3 is said to be semi-
analytic if it is a finite combination, via the set operations union, intersection and complement. of
sets X; of the form

X;={peE*: fi(p) > 0},

where f; is any analytic function on 3.

It can be shown that the interior, boundary, and closure of a semi-analytic set is also semi-
analytic, and that class of compact, regular, semi-analytic sets is closed under regularized set
operations (regularized union, intersection and difference.)

3.1.7 Convexity and Concavity

Given two distinct points p; and p, in Euclidean n-space, the convex combination of py and p; is
the set

{pip=apr+(1-ajpr.aeN,0<a <1}

The convex combination normally describes the straight line segment p1p; (unordered pair). A
subset 2 of E2 is said to be convez if and only if for any two points p; and po belonging to 2, the
segment P1p; is entirely contained in z. In this thesis, a subset of £® that is not convex is said to
be concave.

It can be shown that the intersection of two convex sets is a convex set [PS85]. It can casily be
seen that the union and difference of two convex sets is not necessarily a convex set.

3.2 Feature Definition

Thus far, we have seen the definitions of compact, regular and semi-analytic sets which are well-
known mathematical and topological concepts. In the remainder of the chapter, we will discuss the
feature algebra, which is the primary contribution of this thesis. The concepts discussed earlier will
be useful in the definition of features.

A feature (other than INVALID) is given by a pair @ = (ps, patches) where the two entries in
the pair satlisfy the following conditions:

1. The first entry (ps(z)) is the set of all points in a feature and is a subset of £? that is compact.
regular and semi-analytic.

2. The second entry (patches(a)) is a partition of the boundary of ps(2) into labeled patches (as
defined below).

Henceforth. the boundary of ps(x) and the patches in patches{z) will be referred to as the boundary
and patches of 2.

It is worthwhile now to examine the scope and significance o! the above definition. Regularity
restricts a feature to be homogeneously three dimensional. In other words, a feature may not have
dangling faces, edges and vertices. Iligure 3.2 shows examples of valid and invalid features. Lven
parts with sheet mietal components have a finite thickness, so this appears to be a very reasonable
restriction. Farlier we noted that a subsct of E™ is compact if and only if it is closed and hounded.
Tle set of points of a frature constitute a regular set. Hence, they are closed [RT78]. Compactness,

27

Valid Features

Invalid Features

VI (¢

Figure 3.2: Valid and Invalid Features.

therefore restricts a feature to be bounded which is met by all features of finite dimensions. The
domain of semi-analytic sets covers practically all the shapes of interest to manufacturing. The
reader may note that all planar polyvhedra. cylinders, cones. spheres, tori and a variety of sculptured
surfaces are encompassed by this set. It also includes concave features such as T-slots, counter hores
and countersinks (see Figure 3.3).

A patch is a regular, semi-analvtic subset of the boundary of a feature. Figure 3.4 illustrates
some examples of patches. A labeled patch is a patch p with a label label(p) whose value is
either BLOCKED or UNBLOCKED. The patches and their labels are intended to describe what
the houndaries of the feature mean in the real world. In particular, suppose z is a feature of some
manufacturable object X'. If some patch p of @ separates metal from air (i.e., p lies on the boundary
of X'). then pis BLOCKED: and if p separates air {rom air (i.c.. p does not lie on the boundary of

T-Slot Counter bore Countersink

Figure 3.3: Cross sectional views of three concave features.

28

AX'), then pis UNBLOCKED. If a patch cannot we labeled as BLOCKED or UNBLOCKED . then
we partition the patch into smaller patches, each of which can be labeled consistently. Figure 3.5
shows the BLOCKED and UNBLOCKED patches for the example discussed in Figure 1.1. The
information regarding BLOCKED and UNBLOCKED patches is useful in process planning. In
particular, if a patch is labeled UNBLOCKED, it is optional to machine the patch and if patch
is labeled BLOCKLD, it is necessary to machine the patch. Given a feature @ and a patch p of
z, the regularized complement of p is defined as ¢*(p.z) = b(ps(z)) —* p. From the definition, it
follows that the boundary of a feature is a patch. From the properties of the compact, regular and
semi-analytic sets stated earlier, one can see that the regularized complement of a patch is also a

patch.

Proposition 1 The set of all paiches of a feature is closed under regularized union, intcrsection,
complement and difference.

The above proposition is a direct consequence of the closure properties of compact, regular,
semi-analytic sets stated earlier.

3.2.1 Neighborhood

The notion of a neighborhood of a point on the boundary of a feature will be useful later on. If
6 > 0 the é-neighborhood N(p,8) of a point p on the boundary of a feature . is the set of all points
on the boundary of x that are at a distance < § from p.

3.2.2 Orthogonal Projection

In this section a function known as orthogonal projection will be defined. It will be used later in
describing the operations in the algebra.

Given a planar patch s, and a point p not in the plane of s, the orthogonal projection of p in s.
denoted O(p, s) is the point p’ (if it exists) on s such that the line through p and p’ is perpendicular
to the plane of s.

Given two planar patches s; and sy, the orthogonal projection of s; in sy (if it exists), denoted
O(s1,52) = {O(p,s2) | p € 51}, il O(p, s9) is defined for all p € 5.

3.3 Operations on Features

This section describes the operations on features. In order to describe them, one needs to first
understand the methodology for classifying the patches of the boundary of one solid with respect
to another solid. This methodology has been developed by Vanécek[Van89b] who used it in the
context of performing set operations on planar polyhedra.

3.3.1 Patch Classification Scheme

A patch 2; of the boundary of a solid 2 is homogencous with respect to solid y if one or more of
the classification relationships holds:

L. x; IN y; l.e.. the interior of z; lies in the interior of y.

2. #; OUT y; i.e., the interior of z; is outside of y.

X

// .

Yigure 3.4: Some

7

examples of patches (shaded).

30

=
—

S

]14

- - - - 4
r- - - -9
| |

U DU U |

[l T

U UL

0

]13

A

7
I// 8

/| 7BLOCKED
7

[JUNBLOCKED

\XN

SN\
0
o

Q

AN\

o
[)

Q
Q

Figure 3.5: Blocked and Unblocked patches of features.

3. ; WITH y; i.e., z; lies on the boundary of y, and both & and y are on the same side of the
boundary.

4. z; ANTI y: i.e., 2; lies on the boundary of y, and z and y are on the opposite sides of the
boundary.

Figure 3.6 illustrates the patch classification scheme described above. For example, the patch
(also face) v of the solid v is not homogeneous with respect to w. However, it can be partitioned
into two patches each of which is homogeneous with respect to w.

Given the above patch classification scheme, the boundary of a solid & can be partitioned into
a set of patches (P), such that each patch in P is homogeneous with respect to y. Thus. one
can obtain collections of patches xINy. xOUTy. 2WITHy and 2 ANTIy given by the following
definitions:

*INy = {pe P|pINy}
2OUTy = {pe€ P|pOUTy}
aWITHy = {p€ P|pWITHy}

tANTly = {p¢€ P|pANTIy}.

The operations in the feature algebra are defined in terms of set operations on solids. Using
the above classification scts, the boundaries of x U™y, a N~ y, r — y and y —~ & can he computed
as given below. For anv patch p, p~! is the same as p with the sign of the normal to the patch at
every point reversed.

31

/—-?/1 7y IN

Y y; OUT w

/ 23 WITH w

u; ANTT w

s

Iligure 3.6: The classification of patches of solids «, y. z, v and »r with respect to the solid w

b(zU"y) = 2z0UTyuUyOUTzUzWITHy

bz y) = zINyUyINzUyWITHz
ble —=*y) = zOUTyU (yINz)™' UzANTIy
Wy-"z) = yOUTzU (zINy)™' UyANTIz.
3.3.2 Truncation
Given two features x and y, the truncation operation (7) is defined as follows: =z = 27Ty = (u.v),

where u = ps(2) —* ps(y) and v is a collection of patches satisfying the following properties:
1. the union of all the patches in v is b(u).

2. every patch in v that belongs to ps(z)OUTps(y) or ps(z)ANTIps(y) is a subset of some
patch of z.

Note that,
b(ps(x) =" ps(y)) = ps(x)OUTps(y) U (ps(y)INps(z))™" U ps(z) ANTIps(y)

The labels of the patches of v are determined as follows:
For every patch p of v, if p € (ps(2)OUTps(y)) or p € (ps(z)ANTIps(y)), let p; be the patch
of r such that p C'py.

label(py) if p € ps(z)OUTps(y) or p € ps(z)ANTIps(y)

label(p) :{ UNBLOCKED otherwise (3.1)

The rationale for the above labeling is as follows: If a patch p of 27 y belongs to ps(2)OUTps(y)
U ps(z)ANTIps(y), then p C b(ps(x)) and hence, the patch p must have the same label as a patch
p1 of z that contains p. If there is no single patch p; that contains p then we can either split p or
combine some patches of 2 to satisfy this property. 1f a patch p of 27y belongs to (ps(y)INps(a))~ 1.
then this patch is IN with respect to ps(z), and hence the interior of the patch p cannot belong to
the boundary of the final part. Therefore, p should be labeled UNBLOCKED. Figure 3.7 illustrates

the truncation operation through some examples.

3.3.3 Infinite Extension

In this section the infinilc catension of a feature with respect to a patch will be defined. This is
used subsequently in defining an operation called mazimal extension.

Let us consider a patch p on a feature z.

At any point p; = (2;,v:. z;) on the boundary of p (b(p)). consider the neighborhood N(p:, é;)
for some arbitrarily small §; > 0. Suppose there exists an analytic function [such that for every
point p' € N(p.. &) — p, f(p') = 0 and the following limits exist:

51}210 f:r(]’l) = fir
Jim, S0’ = fiy
lim f:(])/) = fiz

5, —0

33

Figure 3.7: Lxamples of the truncation operation.

34

where f.(p'). fy(p') and f.(p') are the partial derivatives of f with respect to X,Y and Z.
Now, we define what is called the partial-tangent-plane T,(p;,z) = 0 as follows:

7’-(]}) = Jir(X = zi) + fiy(y —yi)+ fi(Z ~ 31') if fir, fiy and [, exist
PR INVALID otherwise
7;)(]);., 2) = 0 divides E? into two planar Lalf-spaces and the one containing the inward-pointing
normal to the feature z at p; is denoted by G,(p;,).
Now, we define the function Cp, as follows:

Cplz) = ﬂg,,(pi,;v) Vp; € b(p) wherever G,(p;.) is defined
Pa

At any point p; on p let us denote the tangent plane by T,(pi.2) = 0. T (p;,a) = 0 divides £?
into two planar half-spaces and the one containing the inward-pointing normal to the feature 2 at
p; is denoted by Hp(p;, a).

Now. we define the function A, as follows:

Ay () = ﬂHP(])i,m) Vp; € p wherever H,(p;,) is defined

P

Let us denote ¢*A,(z) by B,(z)
Now, Z,(z) is defined as:

Ip(x) = (By(z)NCph(z))Ups(a)

Now, we will illustrate the notion of infinite extension through some examples. Consider the
feature f showed in Figure 3.8. Figure 3.8 (a) shows the patch p that has been identified on the
feature. To compute Cp(f), we first construct tangent planes on the boundary of the patch and
consider the intersection of the half-spaces. The C,(f) thus obtained in shown in Figure 3.8 (b).
To compute A,(f), we construct the tangent planes at ecach point on the patch p. The resulting
Ap(f) is shown in Figure 3.8 (c). B,(f), which is the regularized complement of A,(f) is shown in
Figure 3.8 (d). Finally, Z,(f) is shown in Figure 3.8 (e).

Figures 3.9 (a) through (e) and Figures 3.10 (a) through (e) illustrate the same ideas for a
second and a third example.

3.3.4 Maximal Extension

Given two features @ and y, and a patch p on 2. the maximal extension of @ in y with respect 1o a
patch p (denoted by aM,y) is defined as follows:

My = (u.v)

where u = Zp(x) N* (ps(2) U* ps(y)) and v is a collection of patches satislying the following
properties:

1. the union of all patches in v is b(u).

2. every patch in v that belongs to (ps(x) U™ ps(y))INZ,(z) or (ps(2)U* ps(y))WITHI,(x) is a
subset of some patch of ps(a) U™ ps(y). ’

To Infinity To Infinity

> | —] <>

p is a patch

(e)
iu the plane z = . S
. To Infinity B,([f) is the half-space given by = > 0
(a) (b)
To Infinity T
A

{1 s o 1Y
77, +)

| /A
11

A1) To Infinity
i

I
| |
| 1
| I
| !
1 t
| !
' i
| 4
| !
! !

1

ralf-space given by = <0 (d)

Figure 3.8: Example illustrating Infinite IExtension.

36

v v
To Infinity ! \
W
(a) TN Cp(f)

(b)

Ap(f)

To Infinity

(c)

Figure 3.9: Example illustrating Infinite Extension.

37

To Infinity
/ . 3
Co(1)
(a)

1

— >

To Infinity

(b)

A |
A) RN

N

vTH*Hj |

To Infinity

Figure 3.10: Example illustrating Infinite Extension.

38

To Infinity To Infinity
Yo i 4
* % * \

By(f)

T y
Z(f) \
{d) - ()

Figure 3.10 Example illustrating Infinite Extension.

Note that,

Wu) = Zp(z)IN(ps(z) U" ps(y)) U (ps(x) U™ ps(y) INZy(z) U
(ps(2) U™ ps(y))WITHIZ,(x)

The labels of the patches of v are determined as follows: For every patch p of v, if p € (ps(a)U*

ps(y NV INZ,(x) or p € (ps(2) U* ps(y))WITHIZ,(z) let p; be the patch of ps(z) U* ps(y) such that
pEp

label(p,) if p € (ps(a) U™ ps(y))INZ,{z) or
label(p) = p € (ps(a) U™ ps(y))WITHI, ()
UNBLOCKED otherwise

The rationale for the above schieme of labeling the patches is as follows: If a patch p of a M,y
belongs to (ps(a) U™ ps(y))INZ,(a) U (ps(a) U™ ps(y))WITHIZ (). then p C b(ps(x) U™ ps(y)) and
hence, the patch p must have the same label as a patch p; of ps(a) U™ ps(y) that contains p. If
there is no single patch p; that contains p then we can either split p or combine some patches of
b(ps(x) U™ ps(y)) to satisfy this property. If a patch p of 2 My belongs to Zp,(« JIN(ps(a) U™ ps(y)).
then this patch is IIN with respect to ps(a) U™ ps(y), and hence the interior of the patch p cannot
belong to the boundary of the final part. Therefore, p should be Jabeled UNBLOCKED.

For the definition to be complete, the labels of the patches of ps(x) U™ ps(y) must be defined,
given the labels of the patclies of @ and y. As stated earlier,

b(ps(z)U” ps(y)) = ps(x)OUTps(y) U ps(y)OUTps(z) U ps(a)WITHps(y)

Let us denote a arbitrary patch of b(ps(z) U™ ps(y)) by p. If p is a pateh of ps(2)OUTps(y) or
ps(z)YWITHps(y), let p1 be a patch of & such that p C py. If pis a patch of ps(y)OUTps(x) or
ps(z)WITHps(y). let py be the patch of y such that p C ps.

39

To Infinity

T,(x) M,y

Figure 3.11: Examples of maximal extension operation.

The labels of the patches of b(ps(2) U™ ps(y)) are defined below:

label(p;) if p € ps(2)OUTps(y)
label(p) = ¢ label(p,) il p € ps(y)OUTps({z)
label(py) il p € ps(2YWITHps(y)

The rationale for the above labeling scheme is as follows: If a patch p of ps(x) U* ps(y) belongs
to ps(2)OUTps(y). then p C b(ps()) and hence. the patch p must have the same label as a patch
p1 of 2 that contains p. If a patch p of ps(2) U™ ps(y) belongs to ps(y)OUTps(a), then p C b(ps(y))
and hence, the patch p must have thi same label as a patch p, of y that contains p. If a patch
p of ps(a) U ps(y) belongs to ps(x)WITHps(y). then p C b(ps(2)) and p C b(ps(y)) and hence.
the patch p must have the same label as a patch p; of « that contains p or the patch py of y that
contains p. (Both p; and p, will have the same label). In the above cases, if there is no single
patch p; that contains p then we can either split p or combine some patches of b(ps()) or b(ps(y))
to satisfy the above properties. Figure 3.11 (a) and Figure 3.11 (b) illustrate some examples of
maximal extension.

10

3.3.5 Second Infinite Extension

In this section, we define a second kind of infinite extension known as the second infinite caten-
sion. The second infinite extension of a feature ¢ with respect to a patch p is denoted by I,I'f(:r).
Using the second infinite extension, the second maximal extension Mg operation can be defined by
substituting IS(.T‘) for Z,(«) in the definition of mazrimal cztension.

Let @ be any feature and p; be any point on z for which there exists a plane tangent to x at p,.
Then H(p;,z) is the closed half-space tangent to 2 at p; that contains 2.

The second infinite extension of z with respect to the patch p is

Tp(x) = (\{H (pi,2)lp: € " (p,2).}

Figure 3.12 shows a countersink feature z, two patches @ and b of x, and the corresponding
IX(x), T} (x), aM22 and aMiz. In this figure, a is the union of the cylindrical portion of the
countersink and the bottom face; and b is the union of the conical portion of the countersink and
the top face. One may note that a Ub = b(ps(z)).

The following observations may be made regarding second infinite extension and second maximal
extension:

1. In some cases, Z,(x) may be equal to Ig(x). In particular, for rectangular solids and cylinders,
if we choose the planar faces of the feature to be a patch we find that Z,(z) = Iz(a'). We will
find this observation useful in Chapter 4. It may be noted that Z,(z) = Z2(«) for the two
examples given in Figures 3.8, 3.9 and 3.10.

2. I, satisfies a useful property viz., ps(z) C Z,(z) (see Proposition 6). As one can easily verify.
this is not true of IZ (see Figure 3.12). This makes IT_Q, less useful, and we will discuss why, in
Section 3.4.

3. If ps(a) is a convex set, then for all patches p of z. ps{2) C Ip(x).

There are two reasons to study second infinite extension. First, since I;f(n*) = Zy(z) in a lot
of cases, it is simpler to use the definition of Ig('a?). Second, for concave features such as the
countersink, we need to use the definition of Z2(z). Whether or not Z,, = Z7 for all convex features
is yet to be proved.

3.3.6 Combination

Given two features 2 and y. the combination operation (C) is defined as follows: = = 2Cy = (u. v).
where u = ps{2) U* ps(y) and © is a collection of patches satisfving the following properties:

1. the union of all the patches in v is b(u).

2. every patch in v that belongs to ps(2)OUTps(y) or ps(a)WITHps(y) is a subset of some
patch of 2.

3. every patch in v that belongs to ps(y)OUTps(z) or ps(z)WITHps(y) is a subset of some
patch of y.

Note that,

bips(z) U™ ps(y)) = ps(x)OUTps(y) U ps(y)OUTps(x) U ps(a)WITHDps(y)

41

Figure 3.12: Example illustrating the second infinite extension and the second maximal extension.

The patch label propagation for this case has already been discussed in Section 3.3.4. An
example of a case where the C operation is useful is a situation where two (or more) pockets
can be combined into a single pocket with a complex contour. Figure 3.13 shows a part with
two rectangular pockets r and y. They are combined into a single contoured pocket using the C
operation. If we have only rectangular pockets in our domain. we can obtain the result of the C
operation with the M, operation with an appropriately chosen patch.

3.4 Properties of the Algebra of Features

In this section. certain properties of the algebra of features are discussed. The goal is to generate
new features from the features one already has, using the operations discussed carlier. During this
process, one would not like to generate a feature anew if it can be shown that a feature with the
same set of points has already been generated. To compute new features from existing ones. one
must perform set operations on solids. In most instances arising in practice. the existing algorithms
for performing set operations have an average case complexity of O(nlogn). where n is the nuinber
of topological entities in a solid (such as vertices. edges and faces). Thus, set operations on solids
are expensive computations and should be minimized or substituted by cheaper operations. Later
on, when we discuss the implementation of a restricted feature algebra, we will describe the role of
the algebraic properties at a greater detail.

Let us now try to prove some properties of the features and their interactions. We begin by
stating a few results for regular sets. (which in our case apply to features) from Kuratowski{KM76].
Requicha and Tilove[RT7§]

42

\‘
\

Figure 3.13: An example ilustrating the combination operation.

43

Theorem 1 (Requicha and Tilove). The reqular scis are a hoolean algebra with operations U*,
N™. and c*; 1.e., they satisfy the properties stated below. Let X, Y and Z be arbitrary regular sets,
W the universal set and § the emply set.

1. Union and intersection arc commulative:
XuU'Y=YUX,

XnyYy=yn X.

1SS

Each of the operations union and intersection are distributive over the other.
XU (ynzZ)y=(XxXuy)n(xu-zy
Xn"Yu Z)y=(Xn"Y)yu (An*2).
3. The emply set § and the universal sct W are identity elements for the union and inlcrsection
operalions:
XU 0 =X;
Xn"W=X.
4. The complement satisfies the following properties:
XU X =W,
XX =0.
Proposition 2 (Requicha and Tilove). If X and Y are regular sels, then
FUY=XuY.
Proposition 3 (Requicha and Tilove). If X and Y are regular,
X="Y=Xn"¢Y =X Y.
The next two results are {rom Kuratowski [KM76] (with slight modification).
Proposition 4 (Nuratowski). The regularized union operation on reqular scls is associalive.
Proposition 5 (Nuratowski). The rcgularized intersection operation on regular scls is associalive.

Tle following proposition is useful in showing the volume-preserving property of maximal exten-
sion (see Proposition 13). Additional motivation for this proposition is given later in this section.

Proposition 6 Given a feature @ and a patch p of x,
ps(x) C Ly{x).
Proof:
Ipy(a) = (By(a) N Cphlx)) Ups(a)

Therefore,
pq(q) - Ip(’m)

14

The following proposition shows the associativity property of the truncation operation. There-
fore, if a feature were to be computed as (27 y)7 z. then we need not recompute it as (27)7 y.

Proposition 7 For any three featurcs z, y and z. the following result holds:
(ps(z) =" ps(y)) =7 ps(z) = (ps(z) =7 ps(=2)) =" ps(y).

Proof:

(ps(z) =" ps(y)) =" ps(2)
= (ps(z)N* *ps(y)) N" "ps(z) (from Proposition 3)
= ps{z)N" ps(y) N* ¢"ps(z) (from Proposition 5)

Similarly,
(ps(x) =7 ps(z)) =" ps(y) = ps(a) N c"ps(y) N "ps(z).
a

Proposition 8 Given a feature 2 and a patch p of x. if I,(x) = ps(z). then ps(aMpy) = ps(a).
Jor any feature y.

Proof: Since Z,(x) = ps(z) x) # INVALID. Therefore,
aMpy = (ps(aMyy). v),
where ps(zM,y) = Zp(a) N* (ps(2) U* ps(y)).

ps(xMypy) = Z,(x)N" (ps(x) U ps(y))
= ps(z)N™ (ps(2) U ps(y))
= ps(a)N” (ps(z)Ups(y)) (from Proposition 2)
M(PS(l)ﬂ(pS(JUps(y)))

O

Since the infinite extension, for most features and patches is an infinite solid, one might doubt
the applicability of the above proposition. However. one might note that, in any implementation
we delimit the infinite extension at the boundaries of the stock: and therefore infinite extension
will be a finite solid. Thus, there will be a lot of cases where Z,(2) = ps(2). In all such cases. we
never need to compute r M,y for any feature y or any patch p. hecause ps(xM,y) = ps(a). This
proposition is illustrated through an example in Section 3.7.

The following proposition is used in proving Proposition 10. Proposition 10 provides an easy
way to detect the cases where ps(27y) = ps(x) in the domain of convex features. In such cases, we
need not compute »7y. since it will not result in a new feature. The proposition states that il we
can find a patch p of @ that is ANTI with respect to y, then we can infer ps(z) — ps(y) = ps(z)
and ps(y) = ps(2) = ps(y).

Proposition 9 Given two features x and y, if ps(x) and ps(y) are conver sets, and if a patch p of
r is ANTI ps(y), then

ps(z) N ps(y) =0

43

Proof: At every point p; on the patch p consider the tangent planes to ps(z) and ps(y), and the
half-spaces G; and H; that contain ps(a) and ps(y) respectively. Since the patch p is ANTI
ps(y), at any point p; € p G; N* H; = . Therefore,

ﬂGi ﬂ*ﬂ[[i =0
P

P

for all p; € p. Since each G; D ps(a) and H; D ps(y), ps(z) N ps{y) = 0.
O

Proposition 10 Given two features x and y, if ps(x) and ps(y) are convez scts, and if a pateh p

of v is ANTI ps(y), then

ps(z) =" ps(y) = ps(x) and ps(y) = ps(z) = ps(y)

Proof: The result follows directly from Proposition 9.
a

Proposition 11 (Given featurcs x. y zZ, wand v and paich« s a, b and ¢ such that =M,y = u, and

yMb.’L‘ =17, l'fZa(Z) = IC(U) and (Z ﬂ Ib(y))m*])Q()) t/zen, the f()llowmg result holds:
])S(.ZM(, U) =])S(’IL/MC.’L‘).

Proof:

ps(zMgn

~—

N™ (ps(=) U™ ps(v))

) N* (ps(:) (Ib() N (ps(y) U™ ps(2))))

2) O (ps(z) U ((Zu(y) " ps(y)) U™ (Taly) 0 ps()))
(from Theorem 1)

= To(2) N7 (ps(=z) U™ (Tp{y) 0" ps(y)) U™ (Zy(y) N7 ps(a)))
{from Proposition 4)

= T,(2) 0" (ps(z) U” ps(y) U™ (Ty(y) N7 ps(x)))
{from Proposition 6)

= (Zo(2) 07 ps(2)) U™ (Zo(2) 07 ps(y)) U (Za(2) N Lp(y) N™ ps(a))
(from Theorem 1)

= ps(z) U™ (Za(2) N ps(y)) U™ (Zo(2) N7 ps())
(from Proposition 6)

t?

&2
183

Za(2)
e
Za(

Therefore,
ps(z M) = ps(2) U™ (Zo(2) NT ps(y)) U™ (Zo(2) N7 ps(z)) (3.2)

ps(uM)
= I (u)N™ (ps(u) U™ ps{a))

46

u
> = My <>
v=yMa
w = Myv = uM.x

Figure 3.14: Example illustrating Proposition 11.

= Z(u) 0" ((Za(2) 0" (ps(z) U™ ps(y))) U™ ps(z))

= Ze(u) N ((Za(z) 07 ps(2)) U™ (Za(2) N7 ps(y)) U™ ps(a))
(from Theorem 1)

= Za(2) N7 (ps(z) U™ (Za(2) 0" ps(y)) U ps())
(from Proposition 6)

= (Za(z) N7 ps(2)) U™ (Za(2) N7 (Za(2) N7 ps(y))) U (Za(z) 0" ps(z))
({from Theorem 1)

= ps(z)U" (Za(2) N" ps(y)) U (Zu(2) 0" ps(x))

(from Proposition 6)

ps(uMca) = ps(z) U™ (Za(2) N ps(y)) U™ (Zu(z) 0™ ps(z)) (3.3)

The result follows from equations 3.2 and 3.3.

O

We will illustrate the above proposition through an example. Consider the features a:, y and
z as shown in Figure 3.14, where = is a rectangular pocket and y and z are holes. The above
proposition shows that ps(zM,v) = ps(uM.,a). Therefore, if one of them has been computed, we
need not compute the other. This can also be thought of as showing the associativity property of
maximal extension in certain cases.

Let us consider a picce of stock. Sy and let S, be the final part obtained by successively
subtracting n features. fy. fo, ..., [, from S,. Thus.

S = So =" | ps(fi)

=1

Using the feature algebra we can obtain new features by applving the operations pairs of features.
Let us consider a pair of features (', y) and an operation . Typically, the way we use the algebra
is to replace a feature z in a feature set (a set of features describing a part, also called a feature
interpretation) by rny provided 27y is not INVALID. This replacement must preserve the shape of
the part i.e. the space occupied by all the features combined should remain unchanged. One way,
we can guarantee this is if we show that ps(z) U ps(y) = ps(any) U ps(y) for all the operations 7
that we have defined. We will call this property as the volume preserving property of an operation.
The following propositions show that this is the case for the 7. M, and C. However, this property

47

does not hold for .Mf], (using the example given in Figure 3.12 one can easily construct an example
to show this) and hence this operation must be used with circumspection.

Proposition 12 Given two features x and y, if Ty # INVALID. then, the following resull holds:
ps(x) U ps(y) = ps(aTy) U ps(y)

Proof:

ps(zTy) U ps(y)
= (ps(z) =" ps(y)) U ps(y)
= (ps{z)N" ¢"ps(y)) Ups(y) (from Proposition 3)
= (ps(z) U" ps(y)) O (ps(y) U” ps(y)
(from Theorem 1 and Proposition 2)
= ps(z) U ps(y) (from Theorem 1)
= ps(z)Ups(y) (from Proposition 2)

0

Proposition 13 Given {wo features x and y. if aMpy # INVALID, then, the following resull
holds:

ps(x) U ps(y) = ps(aMpy) U ps(y)

Proof:

ps(aMpy) U ps(y)

= (Zp(z)N™ (ps(z) U™ ps(y))) U ps(y)
(Zp(a) " ps(x)) U™ (Zp(2) "™ ps(y))) U ps(y) (from Theorem 1)
(Zp(z) V" ps(l)) U™ (Z,(z)N" ps(y))) U™ ps(y) (from Proposition 2)
= (ps{a) U™ (Z,(a)N" ps(y))) U ps(y) (from Proposition G)
= ps(z)y” ps(YU™ (Zp{2) 0 ps(y)) ({from Proposition 4)
= ps(2)Ups(y)U(I,(2)N" ps(y)) ({from Proposition 2)
2 ps(x)Ups(y)
Therefore,
ps(aMpy) Ups(y) 2 ps(2) U ps(y) (3.4)

ps(xMypy) U ps(y)

(Zp(a)N™ (ps(a) U ps(y))) Ups(y)

(Zp(2) ™ (ps(a) U™ ps(9))) U™ ps(y) (from Proposition 2)
(
Z

It

I

(ps(x) U™ ps(y)) U™ ps(y)
ps(

NN

)U ps(y) (from Proposition 2)

48

ps(eMpy) U ps(y) C ps(z) Ups(y) (3.5)

The result follows from equations 3.4 and 3.5.
0

Proposition 14 Given two features x and y, if tCy # INVALID, then, the following result holds:

ps(z) U ps(y) = ps(2Cy) U ps(y)

Proof:
ps(2Cy) U ps(y)
= (ps(2)U" ps(y)) U ps(y)
= (ps(z)Ups(y))Ups(y) (from Proposition 2)
= ps(z) Ups(y)
]

3.5 Feature Redundancy and Subsumption

Let us consider a set of features, f; 1 < ¢ < n describing a part. As we have already seen, the final
part S, is given by

7
Snp =807 U Ps(fz)
i=1
where Sy is the stock.

From the above equation, we can see that if ps(f;) C ps(fm) for some 1 <I,m < n and | # m,
then we can well describe the part equally well by the features {f;} 1 < i< mnand i # [. Thus. the
feature f; is redundant and can be eliminated from the feature interpretation. This kind of feature
redundancy is given in formal terms by a relation called subsumption, denoted by S.

Given two features = and y. then Sy is true iflf ps(z) O ps(y) and false otherwise. If 28y is
true, then we say that @ subsumes y. It may be noted that subsumption is a transitive relation.

If a feature 2 subsumes a feature y in a feature interpretation F1, then F'I - {y}, is another valid
representation of the final part. Since FI - {y} has fewer features than FI, it can be thought of as
a simpler representation of the part.

In the existing implementation of the feature algebra, we chieck for subsumption between pairs
of features in a feature interpretation. Features that are subsumed by at least one other feature
are deleted from the feature interpretation of the part.

Let us make a few observations regarding other kinds of feature redundancy:

1. Suppose, we have a feature z in a feature interpretation FI such that there is no other feature
in I'I that subsumes x. However, if we have a pair of features u, v such that v # 2 and v # ¢
and (ps(u) U ps(v)) 2 ps(a), then we can eliminate 2 from FI and still have a valid feature
interpretation of the part. In more general terms, we can think of a collection of features
making a different collection of features redundant. When we have such kinds of feature
redundancy, (with features belonging to several collections of features) it is hard to determine
what features need to be eliminated. Furthermore, such extensive testing for redundancy is
computationally very expensive. Such kinds of feature redundancy are not handled by the
current implementation of the feature algebra.

49

) () B = I Mya

O To Infinity

Ip(hl)
() Z@]l]

\01

]2‘]

=

Figure 3.15: A part with an angle and a hole.

2. One can think of feature redundancy in a different way. Suppose all the patches of a feature
are labeled UNBLOCKED: then the boundary of the feature separates air and air. Hence, the
feature is contained in other features and is redundant in any feature interpretation of the part.
This kind of feature redundancy can be described as a special case of the feature redundancy
discussed in the previous paragraph. However, we are discussing this separately because this
kind of {feature redundancy is computationally easy to test. The current implementation of
the feature algebra does not handle this kind of feature redundancy either.

3.6 Applications of the Operations

As we have seen from Propositions 12, 13 and 14 if we replace a pair of valid features (x,y), by a
pair of valid features (2ny.y) (where 7 is one of the operations discussed earlier,) the shape of the
part is not changed. Let us see how this can be used in addressing feature interactions.

Consider the part shown in Figure 1.5, which is reproduced in Tigure 3.15 with additional
details. The figure shows a part with two features; a hole h; and an angle a;. The patch pon hy.
the infinite extension of iy with respect to the patch p, Z,(hiy). and the maximal extension into the
feature a;. hy = hyMpay are also shown. From this, we see that the maximal extension operation
enables us to compute the feature interpretation {h,,a;y}, given the interpretation {fiy.a;}.

Consider the part shown in Figure 3.16. It is described as a part obtained by subtracting a hole
hy and a slot s1. in that order from the initial stock. The feature s; divides /; into two holes lis
and h3. These two hLoles can be computed using the truncation operation.

3.7 Applications of the Algebraic Properties
Now. we illustrate the use of the algebraic properties through some examples. Ior the sake of

brevity. we will illustrate only the Propositions 7 and 8. Similar examples can be constructed to
illustrate the role of the other algebraic properties.

>

/11/
>
/O S j
13

< <

Figure 3.16: An example showing the interaction of a hole with a slot.

Consider the part shown in Figure 1.1. The features in this part are reproduced in Figure 3.17.
We compute hy = h17s; and hg = hy7 sy using the operations in the algebra. Hence, ps(hy) =
ps(hy) —* ps(sy) and ps(hs) = ps(h1) —=* ps(s2). Let us now assume that we computed hy = ho7 59
using the operations in the algebra. Now, from Proposition 7 we can infer ps(h37 s1) = ps(hy).
Since, we already computed the feature iy, we need not compute h37 s;.

Now, let us consider the infinite extension of the feature hy with respect to the patch a shown
in Figure 3.17. Z,(h1) is an infinite cylinder. However, since all the features are bounded by the
boundaries of the initial stock, we can consider only the portion of infinite extension contained
within the initial stock. Under this modified definition, Z,(hy) = ps(fiy). Hence, ps(hy Myy) =
ps(hy). for all features y. Therefore, we never need to compute hy M,y for any feature y.

2 >

]?2 114

52

Iigure 3.17: The features for the part shown in Figure 1.1 .

Chapter 4

Restricted Feature Algebras

Some restrictions apply.
—Advertisements in the US.

The previous section described an algebra of features; viz., the domain, the operations and the
properties. The algebra was defined in a very general way, in an effort to include every feature
which could ever be of interest to manufacturing. Currently, we do not have a solid modeler that
can handle the entire domain of features that we have defined. Therefore, it is not possible to
implement the feature algebra as defined in Chapter 3.

In order to develop algorithms implementing the algebraic operations. we will need to restrict
ourselves to some subset of the algebra, by placing restrictions on the features and operators.
Ideally, the subset would include all features and interactions of interest in manufacturing—>but
this seems infeasible since there is no general agreement on what features and interactions these
might be. What is considered to be a machinable feature may vary from one manufacturing domain
to another, and from one shop floor to another.

Rather than tryving to enumerate all features of interest in manufacturing, we instead present a
simple example of liow a subset of the algebra can be formulated and implemented computationally.
For this subset. the domain consists of rectangular solids, cvlinders and countersinks that have their
planar faces parallel to the faces of the stock. Rectangular solids occur as manufacturing features
known by a variety of names, such as a slot {(which in turn could be single-ended or through). a
shoulder. a pocket. a cul-out and a notch.! The common manufacturing feature that is cyvlindrical
in shape is a lolc.

4.1 Computing the Operations

In this section, we will characterize the result of the operations in the algebra. In Chapter 6 the
implementation details such as the data structures and the algorithms will be described. In this
section, we will deseribe the result of the operations at a higher level.

111] the illl)lementatiom we have made thic sim 7lif\’iﬂg assumption of)Oilll(“d corners.]I()\VGVCI', extending L]l(‘
I A I i o
algebra to iuclude rounded corners iS not diﬂ]’Clllt.

Iigure 4.1: Alternative ways of a machining a countersink

4.1.1 Countersink Holes

Figure 4.1(a) shows an example of a countersink hole. A countersink hole can be machined as a
single volume as in Figure 4.1(a) or as a hole followed by a taper as in Figure 4.1(b). Figure 3.12
shiowed how this interaction is captured by the second maximal extension operation. Since the tools
required in each case are different we should be able to generate the two volumes in Figure 4.1(b)
given the designer specification of a countersink hole. The feature algebra provides both the alter-
natives, for further evaluation during process planning. However, it is assumed that a countersink
feature does not interact with other features in the part.

4.1.2 Truncation

In this section, we will see how the truncation operation can be computed. For the set of features
in our domain, ps(2) —* ps(y) could be the point set of a single feature or a pair of features, or it
may be a meaningless object as far as this domain is concerned. Figure 4.2 shows examples of the
cases that are not of interest; because, ps(z) —* ps(y) is neither a rectangular solid nor a cvlinder.

Propagation of labels is straightforward once ps(z) —* ps(y) is computed. This is described in
Section 6.8. One way to compute 27y would be to compute ps(2) —* ps(y) using a solid modeler
and then test if it can be considered as the point set of a feature or a pair of features. (We
have thus extended a7y to return either one feature or a pair of features). However. this would
be quite inefficient (actual performance statistics are discussed in Section 7.1.6) and would not
take advantage of the restricted set of features and interactions that we have here. More efficient
wethods are described in this section.

If x is a rectangular solid. let {z;]i = 1,...,6} be the faces of 2 and if 2 is a cylinder. lot

{o;]i = 1.....3} be the faces of 2 (where two of them are planar faces and one is cylindrical face).

We will also number the faces such that wqfjv,. I 2, is a face, then let 2! denote the maximal
sub-patch of x; for which #2OUTy is true.

For the cases we have below. the equation for the labels (Equation 3.1) of the patches of
2Ty = {u.r) can be simplified as follows:

For every patch pin u, i p € ps(2)OUTps(y). let py be the patch that contains p

) label(p) if p € ps{(z)OUTps(y)
Jabel(p) ‘{ UNBLOCKED otherwise (4.3)

Now, we describe the procedures for computing 27 y.
Case 1: 2 is a rectangular solid.
Case a. ps(aTy) is two reclangular solids: (sec Figure 4.3) If 2;0UTy and 2,0UTy and Vi €

3,....6}2% consists of two disjoint rectangles, then ps{a7y) is two rectangular solids.
; ; J g 1 Y g

54

Case Db.

ps(r) =" ps(y)

/ /V
/ ps(x) =" ps(y)

1 1= Y <7 [

< < b

Figure 4.2: Cases where ps(z) —* ps(y) is not a feature.

Let the two rectangles of z/ be z} and z? where =} is adjacent to 27 and z? is adjacent
1o @9. The faces z1, zi, 2}, 2} and 2} determine one rectangular solid. The faces -,
23, 22, 22 and 22 determine another rectangular solid. Thus, the two rectangular solids
in ps(z7y) are determined.

ps(aTy) is one rectangular solid: (see Figure 4.4) If 2] = @ and #;0UTy and Vi €
{3...6}2! consists of a single rectangle. then ps(z7y) is one rectangular solid. The
rectangular solid is determined by the faces vy, 2%, 2%, 2% and zg.

Case 2: z iIs a cvlinder.

~ase a.

Case b.

ps(zTy) is two disjoint cylinders: (see Figure 4.5) If 2;0UTy and 29,0UTy and 27
consists of two disjoint cylindrical patches, then ps(27y) is two cylinders. Let the two
patches of a4 be 2l and % where o} is adjacent to vy and 23 is adjacent to @y. The faces
21 and &} determine one cvlinder. The faces 25 and 22 determine the another cylinder.
Thus, the two cvlinders in ps(a7y) are determined.

ps(27y) 1s one cylinder: {sec Figure 4.6) If 2§ = § and 2,0UTy and 24 consists of a
single cvlindrical patch, then ps{a7y) is one cylinder. The cylinder is determined by the
faces zy and 4.

Case 3: If the conditions for the previous cases are not met, then @7y =INVALID.

4.1.3 Infinite Extension

In computing infinite extension, it should be stated that in any implementation the original def-
inition can be modified to delimit infinite extension to the boundaries of the stock. Since all the

55

ps(x) " ps(y)

ik
/

/] i

f)

it

/ 7

/

g

Figure 4.3: Case where ps(z) — ps(y) is two rectangular solids.

Uy / /
iy
/
/, /
/ /
an s
S S o
T —] i !
6 — £

psl) =" psly)

Figure 4.4: Case where ps(a) —~ ps(y) is one rectangular solid.

56

T3

Figure 4.5: Case where ps(2) —* ps(y) is two cylinders.

y I ps{z) =" ps{y)
e
5
X L3
Ty >

Figure 4.6: ('ase where ps(a) =" ps(y) is a single cylinder.

-t
=1

To infinity

I, (2)
T
To infinity
S L7
T 7, (T)
<

Figure 4.7: Interesting shapes for infinite extension for rectangular solids and cylinders.

features are cut out starting with the stock this does not compromise the gencrality or the scope
of the definition in any way. Given the domain of {features we have identified, an important task is
to identify the patches of interest for computing infinite extension. We must have as many patches
as to include all the interesting shapes, but not too many as to result in repeated computation of
the same shape. We should also avoid patches that results in a shape for infinite extension outside
our domain. For the restricted domain of rectangular solids and cylindrical holes this task is easy.
Tvpical examples of shapes of interest for infinite extension are shown in Figure 4.7, These shapes
can be generated by considering the planar faces of rectangular solids or cylinders as patches. Sev-
eral other possibilities for patches can be considered but they do not result in shapes of interest.
The reader is encouraged to try out various possibilities and be convinced that the above claim is
true. In the case of rectangular solids, a proof can be constructed hy enumerating all the possible
categories of patches. In Figure 4.8 we illustrate two examples of patches that result in infinite
extension that is not of interest. In Iigure 4.8 (a) the infinite extension is identical to the feature
itself and in Figure 4.8 (b) it 1s too complex to be encompassed by our domain.

Let us call this restricted form of infinite extension as face infinite catension (Z;) and the
corresponding maximal extension as face maximal extension (My). Since there are six planar
faces in a rectangular solid and two in a cylinder, there are six possible face infinite extensions
for a rectangular solid and two for a cylinder. Let us denote the set of all possible face infinite
extensions by ¥; and the set of all possible face maximal extensions by Yas. Letl us denoted the
set of applicable operations by Y. Therefore, ¥ = {7} U ¥j;. In the following discussion, given a
feature x and a face z; of 2, we will denote the half-space determined by the equation of z; and
containing @ as X,.

Property 1 If a is a rectangular solid then the faces of Ty can be written as {xs;|i = 1.....6}

58

RN
BN

Figure 4.8: Shapes not of interest for infinite extension rectangular solids and cylinders.

where Vi # 1 x; is in the same plane as xs;. Therefore, T, (¢Ty) = X2 N X300 XgN X500 Xg
Ly (x). If 2 is a cylinder, then the faces of Ty can be written as {xs;|i = 1,....3} where vg is
in the same plane as x5y and 23 is in the same cylindrical surface as xs3. Therefore, I, (2T y)
)(2 N ‘Yg = le(’L‘)

il

l

4.1.4 Maximal Extension

Property 2 If the feature x is a rectangular solid, and if x My is a valid feature (where f = 1),
its faces are f', vy, 2%, ¥4, @5 and v where f'||lvq and xt, {i = 3...6} is in the same plane as ;.
If the feature x is a cylinder, and if .My is a valid feature. its faces are f', xy, 24, where f'||x,
and 2%, is in the same cylindrical surface as x3. Therefore, Tp{aMyy) = Iy(x).

One way to compute a2 My given two features 2 and y is given below:
1. Compute Zy(a).

2. Using the solid modeler, compute w = ps(a)U* ps(y).

3. Using the solid modeler. compute z = Zy(z) N™ w.

4. Test if = can be considered as the point set of a feature.

However, this method is very inefficient, and the performance statistics are discussed in Scc-
tion 7.1.6. A more efficient method is described in the next paragraph.

Let 2 be afeature whose maximal extension with respect to a planar face f = 27 into a feature
y is to be computed. Let f be IN or ANTI with respect to ps(y). Otherwise, 2.M ;y is INVALID.
Let 25 be the face of parallel to f. Let y; and ys be the faces of y parallel to f. Let 3 be closer to
a9 than ya. Let [/ = O(f,y2). The faces f" and z9 define a solid (a rectangular solid or a cyvlinder)
which determines ps{zMy). This procedure is illustrated in Figure 4.9. Determining the patches
and patch labels after computing ps(2.M;y) is described in Section 6.8.

99

— Y2

o)

Figure 4.9: Computing maximal extension.
o

60

o q @& >
o]

1 1 T8

T
Y b = @Ty)Masy = Moy

|
| > @
l

Figure 4.10: Example illustrating the Proposition 15.

4.2 Properties of the Algebra

This section presents some additional properties that hold for the restricted feature algebra that we
are dealing with. These properties are restricted to the interactions among cylinders and rectangular
solids whose faces are parallel to the faces of the stock. When different kinds of restricted feature
algebras are considered different sets of properties hold, and these properties can be used in reducing
the computations to be performed in computing new features from the old ones.

Proposition 15 Given fealures z, y and 27Ty, if the face xsy of Ty is not in the same plane as
any face of ¢, then

ps{aTy)Mqs,y) = ps(a M, y)

Proof:
ps((27y)Mzs,y)

= Zos (2Ty) 07 (ps(2Ty) U ps(y))
Tr ()0 ((ps(z) =" ps(y)) U" ps(y)) (from Property 1)
T (2) 0" ((ps(a) N ps(y)) U™ ps(y)) (from Proposition 3)
o () 0" ((ps(a) U™ ps(y)) 0™ (ps(y) U™ ¢™ps(y))) (from Thm. 1)
Iy ()0 (ps(a) U™ ps{y)) (from Thm. 1)

= ps(ar,’\/ll.ly)

O
Figure 4.10 shows an application of the above proposition.

Proposition 16 Given features z, y. 2Ty and w, if the face x5y of *Ty is not in the samc planc
as any face of x if I (2) = ps(2) and ps(w) N* ps(y) = 0, then

ps((zTy) My, w) = ps(aTy)

61

Proof:

Therefore,

ps(w)
= ps(w)N” (ps(y) V" "ps(y)) (from Thin. 1)
= (ps(w) N ps(y)) U™ (ps(w) N *ps(y)) (from Thm. 1)
0 U™ (ps(w) N* c"ps(y))
= ps(w)N” ¢"ps(y)

ps(w) = ps(w)N™ ¢"ps(y)

This result will be used later on in the proof.

ps{(a7y)Mys, w)

i

Figure 4.11 shows

Tesy (+Ty) 0" (ps(aTy) U ps{0)

Ts (z) 0 (ps(zTy) U™ ps(w)) (from Property 1)

ps(2) N ((ps(z)N” *ps(y)) U™ ps(w)) ({rom Prop. 3)

ps(z) N* (ps(a) U™ ps(w)) N™ (ps(w) U™ ¢"ps(y)) (from Thm. 1)
ps(2) N™ (ps{z) Ups(w)) N™ (ps(w) U™ e"ps(y)) (from Prop. 2)
E(i(ps(z) 0 (ps(z) Ups(w))))N™ (ps(w) U™ ¢™ps(y))

Eips{z)yn® (ps(w) U™ ¢"ps(y))

ps(a) N ((ps(w) N ¢"ps(y)) U™ e"ps(y)) (from Eqn. 4.2)
ps(2) N ((ps(w) U™ ¢"ps(y)) N™ ¢"ps(y)) (from Thin. 1)

ps(z) N* c¢"ps(y)

ps(z) =" ps(y) (from Prop. 3)

ps(x2Ty)

X

an application of the above proposition.

(4.2)

Figure 4.11: Example illustrating Proposition 16.

63

Chapter 5

The Feature Interface

The practical upshot of all this is that if you stick a Babel fish in your ear you can instantly
understand anything said to you in any form or language.
—Douglas Adams, The Hitchhiker's Guide to the Galaxy.

In this chapter, I will describe a user-interface for feature-based design that I built using the
Protosolid solid modeler. This interface enables a user to describe a part that needs to be machined.
However, it should be noted that the design of the user-interface was not the main focus in imple-
menting the algebra. Even though the current interface is adequate for conveniently specifving the
part, a better user-interface will have to be built for use with a more sophisticated feature algebra.

5.1 Protosolid

Protosolid [Van89b. Van89a] is a boundary representation based solid modeler developed at the
University of Maryland, College Park. Protosolid is written in Lisp and runs on a Texas Instruments
Explorer II, a Lisp machine. Protosolid has a graphical interface for manipulating solids and for
visual display. Except the graphical interface, the remainder of Protosolid is written in Common
Lisp [Ste84]. Protosolid is a faceted modeler. The faces are embedded in planes and the edges lie on
straight lines. Curved analytic surfaces such as cvlinders and cones are approximated by a certain
number of planar faces. However, in the feature algebra I have implemented all the computations
use an exact representation for the cylinders. Thus, the faceted approximation of Protosolid aflects
only the visual display. Protosolid models planar polvhedra of varying genera. components and
connectivity as well as non-manifold solids [RV77, Van89b]. Protosolid also provides a wealth of
facilities for querying information about the entities in a solid, iterating over faces, edges, vertices
of a solid, etc. These functions were used in developing the feature algebra. Further information
about Protosolid and the algorithins used can be found in [Van89b, Van89a).

64

5.2 A Solid and a Feature

Protosolid uses a variation of the boundary representation data structure (called the fedge-based
data structure) to represent a solid. I have extended this data structure to deal with features as
well. The top-leve] representation of a feature is as a record structure; more precisely a structure
in Common Lisp. Table 5.1 shows the fields (also known as slots) in the structure for a feature.
Some of the less important fields are omitted in this table. The fields shown in Table 5.1 include
all the ones used to describe a solid in Protosolid plus the last five fields. that are relevant only for
features.

The first five fields are self-explanatory, except for the phrase unordered relationship, which
we will discuss briefly. Adjacency relationships between the topological entities in a boundary
representation of a solid can either be ordered or unordered. Ordering refers to some kind of
(natural) spatial ordering among the related elements. For example, in a non-manifold solid consider
the faces incident at an edge. In an unordered relationship we group all these faces as a set. However,
in an ordered relationship we order them radially around the edge. The adjacency relationships
were originally developed for manifold topologies by Baer, Eastman and Henrion [BEH79]. Various
kinds of ordered and unordered relationships are explained in Weiler [WeiR6].

The field ‘so-name’ (the prefix ‘so’ is an abbreviation for solid) gives the creation history of
a feature. For the features given by the user this will simply be a string. However, for features
derived using the operations in the algebra the ‘so-name’ is a prefix expression (in a list format),
giving its complete creation history. For example, let A and B be two operations and f; and fo be
two features. Then, (so-name f;) will be fi, and (so-name f;) will be f,. However, (so-name f3),
where f3is fiAfs will be (A fi f2) and (so-name f;), where fy is f3Bf1 will be (B (A4 fi f2) f1).

The field ‘so-extent’ gives the smallest (bounding) box enclosing the feature. The patches (and
the patch labels) of a feature are given by the field ‘so-patches’. This is explained in detail in
Section 5.5. The field ‘so-params’ gives the parameters of a feature. Since Protosolid does not have
an exact representation of curved surfaces, this field enables the feature algebra to handle cylinders
and countersink {eatures correctly.

All solids in Protosolid are stored on a stack. This means that both features as well solids
that are not features (such as intermediate part shapes) are stored on the stack. To facilitate easy
access of the features, the feature algebra maintains a hash table of all the features. The field
‘so-feat-symbol’ is an index into this hash table.

The feature algebra categorizes features into a few types such as rectangular solid, cylinder.
frustum of a cone and countersink. The feature type is stored in the field ‘so-type’. The ‘so-
pp-info’ field contains the information about a feature that is relevant for process planning. The
feature algebra manipulates this field only in a very limited way. The feature algebra uses a
process planning system called EFHA [Tho89] to produce the process plan for a feature. Using the
information stored in this field the feature algebra produces the input suitable to invoke EFHA to
plan for a feature. This process is explained in Section 6.6.

5.3 Creating a Part

In order to create a part using the feature interface, one must first create a stock, denoted by Sy. A
stock must be a rectangular solid and its parameters are shown in Table 5.2. The stock is specified
by a corner and the dimeusions in increasing X, Y and Z coordinate directions. The dimensions
are given as a list of three elements. After a stock has been created, the user must specify a set of
features, one after the other. If the part after specifying the features {f;, 1 <7 < i} is S;. the part
after specifying the feature f,4q is

Field Comment

so-faces The faces bordering the feature. Unordered relatiouship.
so-nfaces The number of faces bordering the feature.

so-edges The edges bordering the feature. Unordered relationship.
so-nedges The number of edges bordering a feature.

so-vertices Ordered list of vertices bordering the feature.

so-name The history of the feature as a list.

so-extent The smallest box containing the feature

so-patches The patch label information.

SO-params The parameters of a feature.

so-feat-symbol | The index into the hash table of features.

so-type Tle category of a feature

so-pp-info The process planning information for later use.

fable 5.1: The fields in the data structure for a feature.

Sit1 =8 =" ps(fix1)

The stock as well as the features can be created interactively. However, once a part has becen
created, one would like store the part creation sequence in a file, so that, in future, the part creation
can be replayed from the file. Facilities for doing this are provided by Protosolid. Notice that. one
may include not only the functions for stock and feature creation but also the functions for rendering
a solid, zooming on a solid, etc. in a part creation file.

The features that are currently handled by the feature interface are rectangular solids. cylin-
ders and countersinks. The features are created by primitive instancing [Man88]. The required
parameters of the features are shown in Table 5.2. In addition to these parameters, all the {features
have two other optional parameters that give the information relevant for process planning and
information about the patches.

A rectangular solid is specified by a counterclockwise loop of points (as viewed from the outside)
and a sweep vector which gives the magnitude and direction in which the loop is to be swept.
However, for a rectangular solid, this specification is more cuinbersome than some simpler schemes
such as specifving two diagonally opposite points. However, this scheme was adopted because it
can easily be extended to specify more complex features such as contoured pockets as well.

The radius, height and major axis of a cylinder are given by the ‘radius’, ‘height” and ‘major-
axis’ fields respectively. The ‘major-axis’ field can be one of the three unit vectors 7, jor . The
‘center’ field of a cylinder gives a reference point on its major axis. The parameters are interpreted
as follows: A cvlinder with the parameters ‘height’ h. ‘radius’ r, ‘center’ ¢ and ‘major-axis’ m is
obtained by considering the circle with center ¢ and radius r and sweeping it along the vector lr+m.

The parameters of a countersink feature are illustrated through Figure 5.1.

5.4 Validity Checks

The feature interface performs certain checks, to make sure that the parameters specified by the
user create a valid feature, and that it is validly positioned on the current part. The current part

66

Entity Parameter | Comment
Stock Corner A corner of the stock

Dimensions | Dimensions in increasing X, Y and Z
Rectangular Solid | Loop A counterclockwise loop of points

Sweep Sweep vector towards the solid
Cylinder Height Height of the cylinder
Radius Radius of the cylinder
Major-axis | Major axis of the cylinder
Center The base point on the major axis
Countersink Height Total height of the countersink
Radius The maximum radius of the countersink
F-Center The center point of cone base
C-Height Height of the cylindrical portion
C-Radius Radius of the cylindrical portion
C-Axis Major axis of the cylinder
C-Center Base point on the major axis
Table 5.2: The parameters of the stock and the features.
L——— R —f Legend
Z ‘]‘ H Height
R Radius
| fc fc F-Center
H % ! N1y
X b ch (‘J—Helght
ca cr C-Radius
l ' ccC ca C-Axis
__): ot cc C-Center

Figure 5.1: The parameters of a countersink hole.

67

refers to the shape of the part at the time a feature is being created. Some of the validity checks
are discussed in this section.

5.4.1 Rectangular Solids

In the case of rectangular solids, the following validity checks are performed:
1. Exactly {four points must be specified in the counterclockwise direction in the ‘loop’ field.
2. The four points must be coplanar and must constitute a valid rectangle.

3. If 1 = (p1,p2, p3, pa) is the loop specified by the user (where py, p2, p3 and p4 are the points in
the loop) and d is the sweep vector, then either the loop [or I’ = (p1+d,py +d.ps+d, ps+d)
must be ou a face of the current part.

4. The feature must be of a non-zero volume.

5. The feature must subtract some volume out of the current part.

5.4.2 Cylinders

The following validity checks are performed for cylinders:
1. The center of one of the planar faces of the cylinder must lie on a face of the current part.
2. The parameters must specify a cylinder of non-zero volume.

3. The feature must subtract some volume out of the current part.

5.4.3 Countersinks

The following validity checks are performed for countersinks:

1. The center of the base of the conical portion (see I'-Center in Figure 5.1) must lie on a face
of the current part.

2. The radius of the conical portion of the countersink must be larger than that of the cylindrical
portion.

3. Both the conical and evlindrical portions of the countersink must be of nou-zero volume.

4. The {feature must subtract some volume out of the current part.

5.5 Representing Patches

The so-patches” field of a feature has the information about the geometry and the label of the
patches. At the top level, it is organized as list of face-patches. Every face of the feature has a
face-patch. Therefore, there are six face-patches for a rectangular solid, and three for a cylinder.
The data structures for representing the patches of countersink holes are not available in the current
version of the feature algebra. A face-patch is a record structure with the ficlds shown in Table 5.3.
The -label” {ield of a face-patch indicates whether a face is planar or cylindrical. This should not
be confused with the BLOCKED and UNBLOCKED 1labeling described in Chapter These labels

68

Field | Comment
Label | The type of the face-patch

Loops | The loop-patches of the face-patch

Table 5.3: The fields of a face-patch.

Field Comment

Loop-type | The type of the loop-patch

Points The geometry of the loop-patch

Label The label (BLOCKED or UNBLOCKED) of the loop-patch

Table 5.4: The fields of a loop-patch.

are given for each loop in a face and are described in the next paragraph. The ‘loops’ field of a
face-patch gives a list of loop-patches that belong to the face-patch.

A Joop-patch gives the geometry and labeling information for a loop within a face. A loop-patch
is a record structure with the fields shown in Table 5.4. The first field ‘loop-type’ indicates what
kind of a loop it is. Currently, it can only be a rectangular loop. a circular loop, or a cylindrical loop.
However, as will be discussed later, one will have to have other kinds of loops to represent more
complex patches. The field ‘label’ of a loop-patch indicates whether a loop-patch is BLOCKED or
UNBLOCKED. The field ‘points’ describes the geometry of the loop-patch. If the loop-patch is
a rectangular loop, then the ‘points’ field gives the counterclockwise loop of four points bounding
the patch. If the loop-patch is a circular loop. then the “points’ field is a record structure with
the fields shown in Table 5.5. These fields give the center and the radius of the patch. If the
loop-patch is a cylindrical loop. then the ‘points’ field is a record structure with the fields shown in
Table 5.6. The major-axis, radius and height of a cylindrical patch are given by the ‘major-axis’,
‘radius’ and ‘height’ fields respectively. The ‘firstc” and the ‘secondc’ fields give the centers of the
two closure faces [DI'89] of the cylindrical patch. The fields of a cylindrical patch are illustrated
through Figure 5.2.

Let us illustrate the representation of the patches through an example. Consider the part shown
in Figure 5.3 that has two features, viz., a slot s and a hole h at the bottom of s. For the sake
of brevity. we will show the patches only for the top and the bottom faces of the slot s. which are
marked f; and fy in Figure 5.3. The face f; has only one loop; a rectangular loop and the face [,
has two loops; a rectangular loop and a circular loop with center py and radius r. The face-patches
of f; and f; are shown in a Lisp like syntax, in Figure 5.4 and Tigure 5.5 respectively. In the face
f2. the circular loop labeled UNBLOCKED is contained in the rectangular loop BLOCKED. This

Field | Comment
Center | The center of the circular patch

Radius | The radius of the circular patch

Table 5.5: The fields of a circular patch.

69

Field Comment

Firste An end point on the patch major axis
Secondc An end point on the patch major axis
Radius The radius of the cylindrical patch
Height The height of the cylindrical patch
Major-axis | The major axis of the cylindrical patch

Table 5.6: The fields of a cylindrical patch.

Z N
iﬂ ~— Secondc
: l
-~ v Height
!$—~-— Major-axis
-~ Firstc

-3 id— Radius

Figure 5.2: The parameters of a cylindrical patch.

type of a situation, wherein one or more UNBLOCKED loops are contained in a BLOCKED loop
is very common. However, since we are dealing only with subtractive features, we cannot have a
situation where one or more BLOCKED loops is contained in a UNBLOCKED Joop.

Even though the above scheme for representing patches can handle nested features, it has
some limitations in dealing with all the kinds of patches that occur evern in our restricted domain.
Consider the part shown Figure 5.6. It has a hole h and a slot s. If we look at the cylindrical face of
the hole, part of it is BLOCKED and part of it is UNBLOCKED and our current data structures for
a cylindrical loop-patch require a complete cylindrical surface and not a sector. Thus, the patches
information for the part in Figure 5.6 cannot be represented.

In Section 8.4.1, we will provide an example of a case where the patches can be specified for a set
of features that describe the part. but the patches in all the possible feature interpretations of the
part cannot be expressed using the representation we have chosen. Handling patch representation
and propagation adequately for a reasonably complex feature algebra is a topic that needs further
research.

. Ds Ps

@
P2 P3

Q10O

Figure 5.3: A part with a slot and a hole.

(make-face-patch dabel 'PLANAR
:loops (LIST
(make-loop-patch :loop-type 'RECT-LOOP

:points (LIST py p2 p3 pg)
Jabel "UNBLOCKED)
))
Figure 5.4: The representation of the patches for the face f;.
(make-face-patch dabel PLANAR

doops (LIST
(make-loop-patch :loop-type 'RECT-LOOP

points (LIST ps ps pr ps)
dabel ‘BLOCKED)
(make-loop-patch :loop-type 'RECT-LOOP
:points (make-circular-patch :center pg
radius 7)
:dabel 'UNBLOCKED)

Figure 5.5: The representation of the patches for the face f;.

Figure 5.6: An example where the patches of the cylinder h cannot be represented using the current
scheme.

Chapter 6

Implementation

Computer implementations quantify task requirements.
—Patrick Henry Winston, Artificial Intelligence.

In this chapter, I will describe the implementation of the feature algebra and its communication
with the EFHA [Tho89] process planning system and the Protosolid [Van89b] solid modeler. This
implementation has been built as a proof of concept to demonstrate the viability and efficiency of a
feature algebra. Implementing a more sophisticated feature algebra that encompasses most of the
features relevant to manufacturing is planned for the future.

6.1 Overview of the System

The overview of the system for design and process planning is shown in Figure 6.1. In this figure,
all the components except the Protosolid and EFHA were designed and developed by the author.
All the components in this block diagram except for the block labeled ‘algebraic properties’ are
written in Lisp [Tex87a, Ste84]. All the code is written in Common Lisp [Ste84]. except for the
code relating to the user interfaces which is specific to the Explorer series of machines. All the
components run on the same machine, viz., a Texas Instruments Explorer I

The design-by-features interface and the Protosolid solid modeler have already been discussed
in Chapter 5. The block labeled ‘Teature Algebra’ contains all the procedures for performing
operations on the features as well as an algorithm to generate alternative feature interpretations of
a parl described in Section 6.7.

As described in Section 3.4, we have identified certain provable properties of the operations and
the features. Using these properties, we can determine the result of an operation on two features
without using the procedures to compute the operations. Access to the algebraic properties is
optional, i.e., one can use the feature algebra and obtain alternative feature interpretations of a
part without accessing the algebraic properties. The algebraic properties are implemented as rules
in a dialect of Prolog [CM84, Tex87h] (called the TI Prolog) available on the Texas Instruments
Explorer. The module implementing the algebraic properties is discussed in Section 6.5.

Designer

Feature Feature Alternative
Interface Algebra ” Feature
Interpretations
Protosolid Algebraic EFHA : Process
R) Ly Process Planning [, TTOCess
Solid Modeler Properties System Plans

Figure 6.1: The block diagram of the system for design and process planning.

The feature algebra can also optionally invoke the EFHA [Tho89] process planning system in
order to produce process plans for the features of the part. The interface to EFITA is described in
Section 6.6.

The information flow through the system can be described as follows:

1. The designer describes a part using the design-by-features interface.

2. After all the features have been specified, the designer invokes the algorithin which generates
alternative feature interpretations of the part. The procedures for the operations in the
algebra are used in this step. The designer has the option to specify whether or not the
algebraic properties should be used in this step.

3. Optionally, the algorithm also produces the task specifications suitable for process planning
and communicates them to the EFHA process planning system. EFHA comes up with the
least cost process plan for a feature (if it exists).

Thus. the final output of the system is all the feature interpretations of a part. and optionally.
the process plans for all the features in all the feature interpretations.
6.2 Geometric Primitives
In implementing the restricted feature algebra. two kinds of extensions were made to Protosolid:

1. Extending the data structures used in Protosolid to represent solids. This was discussed in
Section 5.2.

2. Adding additional geometric primitives that answer queries relating to solids.

Most of the primitives were added to Protosolid in order to efficiently compute the operations
in the algebra. Some of these have been incorporated as general purpose queries accessible to the
user. Below. are a few examples of the geometric primitives that were added:

4

1. Determine if a point is inside, outside or on the boundary of a feature;

2. Determine if a point is inside, outside or on the boundary of a face;

3. Determine the orthogonal projection (see Section 3.2.2) of a point on a face (if it exists);
4. Determine the distance of a point from a line;

. Determine the point of intersection of two line segments (if it exists).

[\

6.3 Operations

The procedures for computing the operations take advantage of the nature of the features and the
interactions in producing the result of an operation. Furthermore, one must realize that only in
a small fraction of the cases the application of an operation results in a valid feature(s). Hence,
it is important to detect the cases that result in invalid features efliciently. Towards this end. the
procedures test for a number of preconditions (or applicability tests) to be satisfied before producing
the feature that results from an operation. This contributes to the computational efficiency of the
procedures of the algebra. This is discussed with some illustrative examples in Section 7.1.6.
Section 6.8 explains how the patches are computed.

Below, we give some examples of preconditions used. Consider the truncation of a hole hy by
another hole hy. The following are some of the preconditions that must be satisfied, for ~; 7hs to
be a valid feature and to be distinct from h;:

1. The major axes of h; and hy must be the same.
2. The radius of h; must be greater than or equal to the radius of ;.
3. If z is a planar face of Ay then zINhy or @WITH/A; or xtOUTh, must hold.

4. The orthogonal projection of the ‘center’ parameter of hy onto a planar face of hy must exist.
Let this point be py and the center of the planar face {containing py) be py.

5. The sum of the distance between p; and py and the radius of fi; must be less than or equal
to the radius of hs.

6.3.1 Finite Precision Arithmetic

While computing the operations, and in numerous instances throughout the restricted feature
algebra one is comparing floating point numbers. Since exact arithmeticis not being performed. one
must be careful in determining whether or not two floating point numbers are equal. Throughout the
implementation of the restricted feature algebra two floating point numbers z and y are considered
equal. if | ¢ — y |< ¢. The ¢ used in Protosolid and the feature algebra is 10712, Double precision
arithmetic {64 bit representation)is used by both Protosolid and the feature algebra in dealing with
floating point numbers. Robust ways of computing set operations on solids is a topic of current
research [Mil88, War88]. This issue has not been addressed by the feature algebra.

=1

<t

6.4 Subsumption

Subsumption can be computed casily using the extents of the features. The subsumption relation
between two cylinders can be computed more efficiently by comparing the parameters rather than
the extents. Further, for any ordered pair of features (z,y), the first time zSy is computed, it is
stored in a boolean array for future reference. This way, we avoid recomputing the subsumption
relation more than once for the same pair of features. However, the current implementation of the
restricted feature algebra does not take advantage of the transitivity property of subsumption.

6.5 Algebraic Properties

In order to store the relationships between the entities of an algebra. and to infer relationships using
the algebraic properties one needs a theorem-prover [Nil80]. This capability was readily available
through Prolog on the Explorer machine.

The algebraic properties were implemented as rules in Prolog [CM84, Tex87b]. An exaniple of
a rule is shown helow:

trunc(V, Y. W) = atrunc(X,Y, U)X £Y, X £ U Y # U,
atrunc(X, Z, VY, X # Z, X £V, Z £V,
atrunc(U, Z,W),U #+ Z,U #W.Z # W.

The above rule corresponds to Proposition 7.

For the purposes of understanding, the predicates ‘trunc’ and ‘atrunc’ can be taken to be the
same. Using two different predicates is one way to avoid the problems with left recursion [SS86] in
Prolog. If the predicate trunc(X,Y, Z) is true, it means that Z = X7Y .

Initially, as soon as one begins designing a part, all the rules are loaded. Later, during the
design of the part, or while computing alternative feature interpretations, one must communicate
with the Prolog database, either to assert new facts into the database or to find answers to queries.
The interface between Prolog and Lisp on the Explorer provides facilities do all of the above.

6.6 EFHA

The Environment For Hierarchical Abstraction (EFHA) is a frame-based system that can plan for
tasks. It can be used in a variety of domains, and one of the domains it is used for is process
planning. Using the knowledge about machining processes. EFHA produces plans for individual
features. A plan in EFHA is a sequence of steps, where each step is a machining process. EIFIIA
uses the branch and bound search strategy and based on the costs assigned for machining processes
it produces the least cost plan to produce a feature. Sometimes, there may not be any feasible
plan for making a feature and sometimes there can be several feasible plans. In addition to the
cheapest plan, the user can obtain the other plans for making a feature. EFHA is the successor
to an earlier system called SIPS (Semi Intelligent Process Selector). Both were developed at the
University of Maryland, College Park and the reader is referred to Nau [Nau87] and Thompson
[Tho89} for additional details about SIPS and EFHA.

EFHA uses the information about a feature such as its dimensions. tolerances and surface
finish in selecting a sequence of processes suitable for machining the feature. Table 6.1 shows an
example of the feature parameters needed by EFFHA. Table 6.2 shows an example of the process

76

Feature | Type Parameter Value
1 Flat Surface | Flatness 0.001
Positive-Tolerance | 0.001
Negative-Tolerance | 0.001
Surface Finish 50

Wall Thickness 0.5

Table 6.1: The parameters for a flat surface.

Feature | Process Plan Cost

N Rough-Face-Mill 1.0
Rough-Peripheral-Mill 1.5
Rough-Face-Mill — Finish-Face-Mill | 3.0

Table 6.2: The process plans for the feature f;.

plans produced by EFHA for the feature given in Table 6.1. Notice that. several alternative plans
are available to machine this feature.

6.7 The Generate-Features Algorithm

Given a set of features that describe a part, one would like to generate alternate sets of features
that describe the part. The terms feature interpretation and feature set are used svnonvmously
in this thesis. This section describes an algorithm called generate-features for generating alternate
feature sets given one feature set. The algorithm generate-features and the procedures it calls are
shown in Figures 6.2 to 6.8. For the sake of simplicity, these procedures assume access 10 the
algebraic properties as well as EFHA. In the actual implementation. both of these are optional.
In this algorithm. F* is the set of feature interpretations generated at any stage, and T is the
union of all the features in F. Initially, T is the starting set of features and I = {I'}. There are
two additional variables called OI (old interpretations) and NI (new interpretations) used in this
algorithm. In this algorithm,. an iteration refers to one execution of the body of the outermost
while loop. In the beginning of each iteration, the Ol is assigned the value of F' at that instant.
During an iteration. more feature interpretations may be found and I is updated accordingly. At
the end of the iteration. NI is assigned the value of the additional interpretations found in that
iteration (which is also the value of F'— OI). The symbols ¥ and ¥ refer to the set of operations.
and the set of infinite extension operations. ¥ and Y for the restricted feature algebra are given
in Section 4.1.3.

Whenever we compute any. we store the result in an table for quick reference. Therefore. the
first step in computing 2ny is to look in the table, to see if it has a value stored. If there is no value
stored, then the algebraic operations and the properties need to be used. The algebraic properties
are tried first. If it is possible to determine xny using the properties of the feature algebra, then one
need not do any further computations. Otherwise, one has to compute zny using the procedures
for the operations.

Once @y is known, it is easy to determine if it is a valid feature or a pair of valid features (see

-1
-3

‘valid-feature’ and ‘valid-feature-pair’ in Figure 6.2). The function ‘new-ps-feature ()’ returns true
if ps-equal (z,y) is false Vy € F and false otherwise.

6.7.1 State-Space Formulation

The task of generating all the feature interpretations, given one feature interpretation can be given
a state-space [Nil80] formulation . In this formulation, a state is a feature interpretation of the
part. A state is a vertex in what is known as the state-space graph. Given two elements z and
y in a state s and an operator n, if a9y is a valid feature or a pair of valid features, then we can
obtain a new feature interpretation s as follows: if 27y is one feature, then &' = (s — {z})U {any}
and if xny is a pair of features, then ' = (s — {¢}) U (2ny). After deriving ' from s, we can draw
a directed edge labeled zny from s to s’. By repeated application of the above step we can derive
all the possible feature interpretations of the part, linked to each other by directed edges. Such a
graph is known as the state-space graph.

It is easy to see that the generate-features algorithm produces the state-space graph. In order
to improve the understanding, in Figure 6.9 we show a simplified version of the generate-features
algorithm with a graph-search [Nil80] formulation, emphasizing only the derivation of feature in-
terpretations.

6.7.2 Complexity

At first glance. the worst-case complexity of the algorithm might appear to be exponential, because
of the possibility of combinatorial explosion if there are several mutually-interacting features. How-
ever, geometric locality dictates that each feature will interact with only a few of its neighbors, so it
is unlikely that exponential blowup would occur in real-world parts. Further, since the interactions
occur only among a spatially connected set of features, one can reduce the number of interactions
that need to be considered by partitioning the delta volume (the union of all the features) into as
many disjoint volumes as possible.

Now, we consider an example where a combinatorial explosion of the number of feature inter-
actions occurs. Consider a part that is obtained by removing a slab of material from a piece of
stock. A slab is a laver of material of uniform thickness removed {from an entire face. Suppose
this material has been described by the designer as composed of n slots of uniform thickness. The
total number of feature interpretations for this case will be 2771, An example of this is shown in
Section 7.3 for n = 4.

Lemma 1 The worst-casc number of fecaiure interpretations for a part with n features is (2771,

Proof: For the example being considered. let fy, fo, ... f, be the n contiguous slots given by the
designer. All the possible feature interpretations can be obtained as follows:

One can think of the material of the slab as being separated into n the slots by drawing n — |
hypothetical planes on the slab. One can derive a feature interpretation by choosing k. 0 < k < n
of these n — 1 planes. Therefore, the total number of feature interpretations is:

kg AP |
(i)

k=0

procedure generate-features ();
F — Starting set of features;
F — {F}
if has-countersinks-p (F) then
process-countersinks ();
end if ;
for each 2 in F do
compute-infinite-extension (z);
end for ;
NI — F
while NI # 0 do
0l — I
for each FS in NI do
for each (z.y) such that « € FSand y € FS and 2 # y do
for each n € ¥ do
z e any;
if valid-feature (=) then
manipulate-feature (z);
F— FU{(FS - {z})U {z})
end if ;
if valid-feature-pair (=) then
{z1, 29} — =
for each u in {z, 2} do
manipulate-feature (u);
end for :
F—TFUu{(FS—{a})U{z,22});
end if ;
Store the value of 29y in lookup table;
Store the value of #ny in Prolog database;
end for ;
end for ;
end for :
NI — F = Ol;
end while ;
Output F, I', and EFHA process plans for features in F;
end genecrate-features;

I'igure 6.2: The Generate-Features Algorithm.

procedure manipulate-feature (z);
if new-ps-feature (z) then
compute-infinite-extension (z);
Pre=Fu{z};
Generate the EFHA task frame for z;
end if ;
end manipulate-feature;

Figure 6.3: Procedure manipulate-feature.

procedure process-countersinks ();
local FI;
FI — first (J): /* The first element of the list */
for each 2 in F do
if countersinkp (a) then
Breakup countersink into a cone ¢ and a cylinder j;

F—Fu{ij}
FI —(FT—-2)u{i,j};
end if ;
end for ;
F— FUFL

end process-countersinks;

Figure 6.4: Procedure process-countersinks.

procedure compute-infinite-extension (x);
for each 7; in ¥; do
compute Zy(x);:
if Z;(2) = ps(a) then
Assert this fact into Prolog database;
end if :
end for ;
end compute-infinite-extension;

Figure 6.5: Procedure compuic-infinite-exicnsion.

80

procedure has-countersinks-p (2);
for each y in 2 do
if zis a COUNTERSINK feature then
return ({rue);
end if ;
end for ;
return (false);
end has-countersinks-p;

Figure 6.6: Procedure has-countersinks-p.

procedure new-ps-feature (2);
for each y in F do
if ps-equal (z, y) then return false;
end if ;
end for ;
return lrue;
end new-ps-feature;

Figure 6.7: Procedure new-ps-feature.

procedure ps-equal (2. y);

if 2 and y are of different types then
return false;

end if :

if the parameters of © and y are equal
then return true;
else return false;

end if ;

end ps-equal;

I'igure 6.8: Procedure ps-equal.

31

procedure ss-generate-features ();
F — Starting set of features:
OPEN— {F};
CLOSED« {;
while OPEN # 0 do
NEWOPEN— §;
for each IS in OPEN do
CLOSED~— CLOSED U {FS};
for each (z,y) such that € FSand y € FS and z # y do
for each n € ¥ do
2 = any;
if valid-feature (z) then
NEWOPEN—NEWOPEN U ((FS — {z}) U {z});
end if ;
if valid-feature-pair (z) then
{z1,22} — %
NEWOPEN— NEWOPEN U ((FS — {z})U {z1.22});
end if ;
end for ;
end for ;
end for ;
OPEN— NEWOPEN;
end while :
Output CLOSED;
/*CLOSED gives the same value as ' in generate-features */
end ss-generate-features:

Figure 6.9: The state-space formulation of the features algorithmn.

82

6.8 Patches and Patch Labels

In this section, we describe the patches and patch label propagation after computing the shape of
the solid for the operations truncation and maximal extension. Throughout this section, and y
denote two arbitrary features.

6.8.1 Truncation

Consider the equation for patch labels given in Section 4.1.2, whicl is reproduced below for conve-
nience.

2Ty = (u,v), then for every patch p in v, if p € ps(2)OUTps(y). let p; be the patch of
that contains p.

| label(ps) if p € ps(2)OUTps(y)
fabel(p) "{ UNBLOCKED otherwise

Using the above equation, we can develop an algorithm for deriving the patches and patch labels
of ®7Ty as given below. First, we will see the intuition as to how the above equation can help us,
and then the algorithm. Suppose we determine the boundary of 27 y. The boundary of 27y can be
split into two kinds of patches. The patches that belong to boundary of ps(z) (in which case they
belong to ps(z)OUTps(y)), and the rest. For a patch that belong to ps(z) label is same as that
of the patch containing it. For any of the rest, the label is UNBLOCKED. Below is an algorithm
based on this idea.

Step 1 After ps(27 y) has been computed, the faces of 27y are known. Repeat the Steps 2 to 5
for each face of x7Ty.

Step 2 Let [be the face under consideration. For each face we have a face-patch. The ‘Jabel’
field of the face-patch can easily by determined depending on whether the face is planar or
cvlindrical. Each face-patch comprises of several loop-patches given by the *loops’ field.

Step 3 If there does not exist a face of z that is on the same plane or the same infinite cvlinder as
f. then consider the entire face-patch as a single loop which is either a rectangular loop, or a
circular loop, or a cylindrical loop. Mark its ‘loop-type’ field accordingly. Mark the ‘label” of
the loop-patch as UNBLOCKED. Skip the remaining steps for f.

Step 4 Let f’ be the face of @ chosen in Step 3. Repeat Step 5 for each loop-patch of f’.

Step 5 Let I’ be the loop-patch under consideration. If the interior of I’ is totally contained in [,
add " 1o the "loops” field of the face-patch of f. If the interior of I’ is partially contained in [,
then split the loop-patch I into two sub-patches such that one of them is totally contained in
f and the other is outside f. However, both the sub-patches have the same ‘loop-type’ and
‘label” fields as I’. Add the sub-patch that is totally contained in j to the ‘loops’ field of the
face-patch of f. (If the interior of I’ is outside the face f do nothing.)

Now, we will illustrate the above algorithin through an example. Consider the part shown in
Figure 1.1. The features /; and hg of this figure are shown in Figure 6.10. In this example, we
will see how the patches of iy = 777 s can be derived from the patches of hy. Ky has three faces;
two planar faces f; and f; and a cylindrical face f3. The face f; has a single loop-patch) labeled
UNBLOCKED. The face f also has a single loop-patch I, labeled UNBLOCKED. The face f5
has three loop-patches I3, Iy and [5. Of these, Iy is labeled BLOCKED. and I5 and {5 are labeled
UNBLOCKED. A step by step trace of the algorithm is given below.

83

Step 1 The faces of hg, viz., f4, f5 and fg are identified.
Step 2 Face fy is selected. We determine fy to be a planar face.

Step 3 There is no face of hy that is on the same plane as f4. Therefore, we create a single
loop-patch lg and assign it to the ‘loops’ field if f4. The label of [is UNBLOCKED.

Step 2 Face f5 is selected. We determine f5 to be a planar face.

Step 3 The test fails.

Step 4 The face f5 of hy is on the same plane as the face f, of hy. Therefore, [, is selected. f,
has only one loop-patch, Is.

Step 5 5 is totally contained in f5. Thus, the ‘loops’ field of f5 has exactly one loop-patch, viz.,
ly.

Step 2 The face fg is selected. We determine fg to be a cylindrical face.

Step 3 The test fails.

Step 4 The face fg of hy is on the same infinite cylinder as the face f3 of hy. Therefore, f3 is
selected. f3 has three loop-patches, [3. I and Is.

Step 5 I3 is determined to be outside fg.

Step 5 [4 is determined to be totally contained in fs. Therefore. l4 is added to the loop-patches
of fg.

Step 5 [5 is determined to be totally contained in fg. Therefore, l5 is added to the loop-patches
of fs. Thus, fg has two loop-patches, {4 and /5.

6.8.2 Maximal Extension

Determining the patches of .My is similar to determining the patches of 27 y. We first compute
the faces of 2M;y. In computing the patches and patch labels of 27y, we compared the patches
of x with the faces of 27y. In the case of 2. My, we compare the faces of @M sy with the patches
of and y. The following is an algorithm for determining the patches of M sy.

Step 1 After ps(eMyy) has been computed. the faces of @My are known. Repeat the Steps 2
to 8 for each face of 2 M y.

Step 2 Let f be the face under consideration. For each face we have a face-patch. Let the face-
patch of f be f,. The ‘label field of the face-patch can easily by determined depending on
whether the face is planar or cyvlindrical. Each face-patch comprises of several loop-patches
given by the ‘loops’ field.

Step 3 If there does not exist a face of » that is on the same plane or the same infinite cylinder
as f. then go to Step 6.

Step 4 Let [’ be the face of 2 chiosen in Step 3. Repeat Step 5 for each loop-patch of f'.

84

Iy UNBLOCKED

f3 é_ Ly

@, BLOCKED

@\" fa Is

Vi

Figure 6.10: Propagation of the patches in truncation.

Step 5 Let I’ be the loop-patch under consideration. If the interior of I’ is totally contained in
fo. add I’ to the ‘loops’ field of f,. If the interior of I is partially contained in f, then split
the loop-patch I’ into two sub-patches such that one of them is totally contained in f, and
the other is outside f,. However, both the sub-patches have the same ‘loop-type’ and ‘label’
fields as I’. Let the sub-patch that is totally contained in f, be I’'. Add I/, to the ‘loops’
field of the face-patch of f. Set f, to f, —3I’, where —} denotes the regularized subtraction
in two dimensions. (If the interior of I’ is outside the face f do nothing.)

Step 6 If there does not exist a face of ps(y) that is on the same plane or the same infinite cylinder
as f then consider the entire face-patch as a single loop; a rectangular loop, or a circular loop
or a cylindrical loop. Mark its ‘loop-type’ field accordingly. Mark the ‘label’ of the loop-patch
as as UNBLOCKED. Go to Step 8.

Step 7 Repeat Steps 4 and 5 with all the occurrences of the feature .+ replaced by the fealure y.

Step 8 Consider the portion of f that is not covered by the existing loop-patches for f. Label it
as UNBLOCKED. Add this to the ‘loops’ field of the face-patch of f.

Chapter 7

Illustrative Examples

vatha, saumya, ekena nakha-nikrntanena sarvam karspavasam vijiatam syat, vacarambhanam
vikaro nama-dhevam krsnayasam ity eva satyam, evam, saumya. sa ade$o bhavtiti.

(Just as, my dear, by one pair nail scissors all that is made of iron becomes known, the modification
being only a name arising from speech while the truth is that it is just iron: thus. my dear, is that
teaching.)

—Chandogya Upanisad.

In this chapter, the feature algebra and the generate-features algorithm will be illustrated
through some examples.

7.1 Example 1

The first example is the same as the one discussed in Figure 1.1. The part is reproduced in
Figure 7.1. In this example, the part has been described as the part resulting from subtracting a
hole hy, a slot sy and a slot sy, in that order out of a rectangular stock. Because this is a simple
example, we will be able to study various aspects of the feature algebra in detail. The parameters
of the stock and the features hy. s1 and s9 are shown in Tables 7.1, 7.2. 7.4 and 7.6 respectively.
The parameters used in process planning for the features hy. s; and s9 are shown in Tables 7.3, 7.5
and 7.7 respectively. All the dimensions of length are in inches.

Field Value
Corner (0.0.0.0,0.0)
Dimensions | (2.0 2.0 3.0) |

Table 7.1: The parameters of the stock for Example 1.

86

~a c
S

. R,

> K>

Figure 7.1: A part with two slots and a hole.

Field Value

Height 3.0

Radius 0.225
Major-axis | :Z

Center (1.0,1.65.0.0)

Table 7.2: The parameters of the hole h; in Example 1.

Field Value
Type Hole
Bottom Open
Hole-Quantity 50
Depth 3.0
Diameter 0.45
True-Position 0.02

Negative-Tolerance | (.0002
Positive-Tolerance | 0.00025

Special-Teature None
Roundness 0.1
Surface-Finish 125

Table 7.3: The process planning parameters of the hole hy in Example 1.

Field | Value

Loop | ({0.0.1.3,3.0). (2.0, 1.3, 3.0), { 2.0, 2.0, 3.0Y, { 0.0, 2.0. 3.0))

Sweep | -0.74k

Table 7.4: The parameters of the slot s; in Example 1.

&7

Field Value
Flatness 0.1
Negative-Tolerance | 0.01
Positive-Tolerance | 0.01
Surface-Finish 100

Table 7.5: The process planning parameters of the slot sy in Example 1.

Field | Value

Loop | ({ 0.0. 1.3, 0.74), { 2.0, 1.3, 0.74), { 2.0, 2.0, 0.74), { 0.0, 2.0, 0.74))

Sweep | -0.74k

Table 7.6: The parameters of the slot s9 in Example 1.

Field Value
Flatness 0.1
Negative-Tolerance | 0.01
Positive-Tolerance | 0.01
Surface-Finish 100

Table 7.7: The process planning parameters of the slot sg in Example 1.

Loop-Type CIRC-LOOP
Points Center (1.0,1.65,3.0)
Labe] UNBLK Radius 0.225
(a)
Loop-Type CIRC-LOOP
Points Center (1.0,1.65.3.0)
Label UNBLK Radius 0.225
(b)
Loop-Type | cyL-LOOP
Points Firste (1.0.1.65,2.26)
Label UNBLK Secondc (1.0.1.65,3.0)
Radius 0.225
Height 0.74
Major-axis Z

(¢)

Figure 7.2: The fields of the loop-patches I}, lo. I3, I and 5.

7.1.1 Patches

Even for this simple example, the patches and patch label propagation cannot be described in
detail. Therefore. we will describe the patches of the feature h; only. The ‘so-patches’ field of
the feature iy has three face-patches. Let us call them f;. f; and f3 (see Tigure 6.10). f; and
f2 correspond to the planar faces of hy and f3 corresponds to the cvlindrical face of hy. There
fore, the ‘label” fields of fi, f» and f3 are PLANAR, PLANAR and CYLINDRICAL respectively.
The ‘loops’ field of f; consists of a single loop-patch I;. The ‘loops” field of f5 consists of a single
loop-patch 1. The ‘loops’ field of f; consists of three loop-patches I5, Iy and I5. The fields of the

loop-patches [y through [5 are shown in Figures 7.2 (a) through (e) respectively.

7.1.2 Generate-Features Algorithm

Let us now illustrate how the workings of the generates-features algorithm for this example. Initially,
there is only one feature interpretation of the part, viz., {h, sy, s2}. Thus, before the beginning of

89

Loop-Type | cyL-LOOP

Points Firstc (1.0,1.65,0.74)

Label BLK Secondc (1.0,1.65.2.26)
Radius 0.225
Height 1.52
Major-axis W/
(d)

Loop-Type | CYL-LOOP

Points Firste (1.0,1.65,0.0)

Label UNBLK Secondc (1.0, 1.65,0.74)
Radius 0.225
Height 0.74
Major-axis :Z

(e)

90

Figure 7.2 The fields of the loop-patches [y, l5. I3, 4 and 5 (Continued).

the first iteration, we have

NI = {{f1,s1.82}}

and B
F = {{}1,1,51,82}}.

In the first iteration of the generate-features algorithm, we consider the interactions among the
features in the feature interpretation {hy, sy, s2}. Given two features 2 and y, (see the explanation
given in Section 4.1.3), we have seven possibilities for the operation 7 in zny if z is a rectangular
solid and three possibilities for 7 if @ is a cylinder. In our experiments, we measured the number
of times we test the applicability of an operation on a pair of features, and the number of times
the result of an operation is a valid feature. We will refer to the former as applicability tests and
the latter as fealure interactions. Therefore, given the ordered pairs of features (hy,s1), (hy,$2),
(s1,h1), (s1,82), (82, h1) and (s2,51), we have a total of 343+ 7+ 74747 = 34 applicability tests.
As a result of the feature interactions, we generate two new features hy = hy7 sy and hg = Iy 7T sg,
and two new feature interpretations {hg,s1.s2} and {hs,s1,s2}. Thus, the number of feature
interactions in this iteration is 2.

Thus. before the beginning of the second iteration, we have

NI = {{})2, 31,52}, {h3’31752}}

and)
F= {{hlw S1, 52}7 {h% 81, 82}-, {7137 51,52}}-

In the second iteration of the generate-features algorithm, we consider the interactions among
the features in the feature interpretations {hq. s1, 59} and {hs, s1.s2}. The total number of appli-
cability tests in this iteration is 2% 34 = 68. As a result of the feature interactions one new feature
hy = hoT sy = h3T sy is generated. One new feature interpretation, {h4.s1,s2} is also produced.
There are two other interactions that result in already existing features. Thev are: hy M, s = Iy
and figMysy = hy. Thus, the feature interactions in this iteration are ho7 s5, ha7 81, hy M, sy and
hyMypse. Therefore, the total number of interactions in this iteration is 4.

Thus. before the beginning of the third iteration, we have

NI = {{h4,s1,52}}

and
F={{hy.s1.50). {housi, 59} {ha, s1. 80} {haos1, 823)

In the third iteration, we consider the interactions among the features in the feature interpreta-
tion {hy4, $1,2}. The number of applicability tests considered in this iteration is 34. However, 1o
new features or feature interpretations are produced in this iteration. As in the previous iteration,
two interactions result in already existing features. They are: liyM. sy = I3 and hyMgss = Dy,
Therefore. the number of interactions in this iteration is 2.

Thus, before the beginning of the fourth iteration, we have

NI =10

and
F= {{]21. 81 82}‘ {/?2781, 82}. {123. 31,.5’2}. {114. 81,811}}.

Since NI = {, the algorithm terminates after three iterations.

91

{}1'1731752}

{ha, 51,52} |(79)

Figure 7.3: The state-space for Example 1.

7.1.3 The State-Space

In Section 6.7.1, we showed how the generate-features algorithin produces the state-space of all the
feature interpretations. In Figure 7.3 we show the state-space for Example 1. The state-space is
also shown pictorially in Figure 7.4. The generate-features algorithm produces only the states and
the relationships between the states. The explicit state-space is not produced by generate-features.
Notice that, generate-features produces the state-space in a breadth-first [Win84] manner.

The state-space graph has four nodes, one for each feature interpretation. The nodes are marked
ng, Ny, Ny and nz. Notice the labeled directed edges between states that show how one state is
related to another.

7.1.4 Monitoring

The generate-features algorithm produces information regarding its functioning at various levels of
detail, as specified by the user. On most occasions, we want to know the CPU time, the number of
interactions. etc. The output produced by generate-features for Example 1 is shown in Table 7.8.

From Table 7.8, we see that the total number of applicability tests is 136. This can easily be
verified analvtically. We had 34, 68 and 34 applicability tests for the three iterations. Therefore.
the total number of applicability tests is 34 + 68 4+ 34 = 136. We had 2. 4 and 2 feature interactions
for the three iterations. Therefore, the total number of feature interactions is 2+ 4 +2 = 8.

We notice that, in a number of instances the same applicability test can be repeated. For
example, the applicability test for s;7 sy occurs in the states ng. ny. ny and ng. Since we are
using a lookup table to store the results of the applicability tests, one does not have to repeat any
operation with the same operands more than once. From Table 7.8. we find that the number of
repetitions of the applicability tests is 42. This can be verified analytically. The only applicability
tests that repeat in Example 1 are of the form sy7sy or sp7s1, where 1 is one of the seven possible
operations. Since these applicability tests occur for the first time in ng, their occurrences in ny, n9
and ns are repetitions. Thus, there are totally 2 * 7+ 3 = 42 repetitions. From this, it follows that
the number of distinct applicability tests is 136 — 42 = 94.

92

1

Lﬂ

ST /

SN

1.

ple

7.4: The state-space for Exam

Figure

93

Statistic Value

Total applicability tests 136
Repetitions 42
Total Interactions 8

Time (without algebraic properties) | 2.68s
Time (using algebraic properties) 6.35s

Table 7.8: The statistics for Example 1.

7.1.5 Algebraic Properties

The algebraic properties can be used in some cases, to determine the result of an operation, without
having to compute it using the procedures. In this example, 29 applicability tests were resolved using
the algebraic properties. By this we mean that the procedures for the operations were not invoked
for 29 applicability tests. In other words, the resolution-based theorem-prover of Prolog succeeded
in determining the result of 29 applicability tests. The total CPU time without access to the
algebraic properties is 2.68 seconds; where as, with access to the algebraic properties the CPU time
increased 1o 6.35 seconds. However, the original intent in providing access to the algebraic properties
was that it would decrease the CPU time. We observed similar increases in the timing when the
algebraic properties were used, in all the examples we have tried. Experimentally monitoring the
timings, we found that most of the delay was caused in accessing the Prolog system for queries or
for assertions. One reason for this result could be that the Lisp code is compiled and the Prolog
code is interpreted. Another reason could be that since the features and interactions considered
right now are rather simple, the procedures for the operations take less time than the procedures
necessary to compute the algebraic properties. With more complex features and interactions, access
to the algebraic properties may turn out to be more useful.

7.1.6 Efficiency

The procedures for computing the operations take advantage of the nature of the features and
interactions. Declaratively, the operations for this sub-algebra can be expressed in terms of set
operations on solids. Therefore, another way to compute the operations would be to convert them
into set operations on solids {computed by the solid modeler) and then test if the result of the
operation is a new feature. (This method has been discussed in Sections 4.1.2 and 4.1.4.) Using
this method, the time taken for Example 1 is 140.9 seconds.

Using this method, we have not been able to run any examples involving more than 150 applica-
bility tests (approximately). The TI-Explorer IT, on which we ran the program. ran out of memory
for larger examples after executing for 4 to 5 minutes. On smaller examples, we have found that
the time taken by this method is about 50 times more than using the algebra (without access to the
algebraic properties). This shows that using the algebra is much more efficient than translating the
operations into equivalent set operations. The reasoun is that, if the result of an operation is not a
valid feature. there is no reason to compute the shape of the solid and then realize it is not a valid
feature. The algorithms in the algebra recognize the cases that result in invalid {eatures efficiently.
Since only a small fraction of the total number of applicability tests result in valid features these
algorithis have improved the performance of the algebra significantly.

94

Feature | Process Plan Cost
hy Gun-Drill— Rough-Ream— Finish-Ream | 25.0
$1 Rough-Peripheral-Mill 1.5

S Rough-Peripleral-Mill 1.5
ho Twist-Drill— Rough-Ream— Finish-Ream | 11.0
hs Twist-Drill— Rough-Ream— Finish-Ream | 11.0
hy Twist-Drill— Rough-Bore— Finish-Bore 9.0

Table 7.9: The process plans produced by EFHA for the features in Example 1.

e

5,
i

i

Figure 7.5: The wire frame model of a bracket for use with a bearing. This image was produced
using the feature algebra interface and the Protosolid solid modeler.

7.1.7 Process Planning

After the generate-features algorithm has terminated. we also have the information about the
features in a formnat suitable for EFHA to do process planning. Table 7.9 shows the cheapest
process plans produced by EFHA for the features in Example 1.

7.2 Example 2

This example is same as the one shown in Figure 1.2. A wire frame model of the same is shown in
Figure 7.5. A detail of a portion of this object is shown in Figure 7.6. As described by the designer,
the part has slots s;. s, s3 and s4 and holes hi; and he. As discussed in Section 1.1, there are
several possible feature interpretations for this part.

The feature algebra produces several feature interpretations of this part including all the ones
mentioned in Figure 1.4. For the example shown in Figure 1.2, the total CPU time for computing
the alternative feature interpretations without access to the algebraic properties was 46.2 seconds.
In this example. the total number of distinct applicability tests was 834. The total number of

@ L | DC

)
/ 2 7

Figure 7.6: A portion of the bracket shown in Figure 7.5. W7, Wy, and W3 are the widths of sy,
s2, and s3, respectively, and C is the concentricity tolerance for the holes hy and .

feature interactions was 272. The number of additional features generated in this process is only
11. The total number of feature interpretations generated is 40. The 40 feature interpretations can
be partitioned into two groups of 20 interpretations each. These two groups are identical. except
that, 20 of them have the feature s4 and 20 of them have the extension of s4 into s,. For the sake of
simplicity, we show only one of the groups in the state-space shown in Figure 7.7. This figure does
not show either s; or the extension of s4 into s5. The arcs between feature interpretations indicate
that one feature interpretation can be derived from the other. Most of the arcs are bidirectional.
The arc labels have been omitted for the sake of simplicity. With access to the algebraic properties.
the CPU time to compute the alternative feature interpretations increased to 86.2 seconds. The
algebraic properties were useful in resolving 212 applicability tests.

7.3 Example 3

In Section 6.7.2 we discussed an example having a slab composed of n contiguous slots subtracted
from a piece of stock. In this section, we illustrate this example for n = 4.

In this example, a part has been created by the designer by successively subtracting four slots,
81, $2. 83 and &4 from a piece of stock. This process is illustrated in Figures 7.8 (a) through (e).
Even though it is very unlikely that someone would design a part in this manner: this example is
interesting because it has an exponential number of feature interpretations. (See Section 6.7.2.)

The faces of the slots s1. $9, s3 and s4 that are parallel to the X7 plane are named « through A
as shown in Figure 7.8 (f). The generate-features algorithm produced eight feature interpretations
of the part. This fits well quite well with analytic calculations, since the number of feature inter-
pretations is supposed to be 247! = 8. Generate-features also produced six additional features.
These are shown in Figure 7.9. For this example, the number of distinct applicability tests was
210. The number of feature interactions was 24. The reader is encouraged to verify analytically
that these are correct. The CPU time to compute all the feature interpretations without access to
the algebraic properties was 1.92 seconds and with access to the algebraic properties it was 16.65
seconds. The number of applicability tests resolved using the algebraic properties was 68.

96

7.7: The state-space for Example 2.

Figure

S

52

(a) (b) (c)
o en
(d) (e)
7
v
a c /é ¢/ / 9/ /
PN
/Y
S1 So 33 S4

Figure 7.8: A part with four contiguous slots.

98

J ! / "
87 = s Myso s5 = s3Msg 8¢ = s3M sy
/O P q r
S9 = STMJS?’ Sg = SGM(THSQ
S t

Figure 7.9: The additional features produced by generate-fealures.

99

{517'52753754} @

{51,32,36} @ {57,33,54} @ {51,35734} @

{s1,58} {s7,56} D {s0, 54}

{s10} (™)

Figure 7.10: The state-space for Example 3.

The state-space for this example is shown in Figure 7.10. The state-space graph has a total of
eight nodes marked ng, ny, ... n7. In this state-space, we have more than one labeled edge hetween
two nodes. For example, we can have an edge labeled s;M;s2 and an edge labeled s, M,s; from
ng 10 na. For the sake of simplicity, we have omitted all the edge labels in Figure 7.10. Further, in
Figure 7.10, multiple directed edges from a node n; to a node n; are replaced by a single directed
edge.

In this example, the process engineer would have combined all the contiguous slots into one.
Whereas, the feature algebra produces eight different feature interpretations even though most
of them are not useful from a manufacturing perspective. A good way to handle these kind of
situations is to couple the feature algebra with some rules or heuristics the prevent redundant
feature interpretations from being generated.

100

Chapter 8

Conclusion

I can live with doubt and uncertainty. I think it’s much more interesting to live not knowing than
to have answers which might be wrong.
—Richard Fevnmann, 1981

This chapter summarizes the algebraic approach for handling feature interactions that has been
proposed in this thesis. Extensions to the feature algebra and possibilities for further research are
also discussed.

8.1 Summary

This thesis began by identifying the role of geometric feature interactions in process planning.
Feature interactions result in multiple feature interpretations of a machinable part. The feature
algebra has been proposed as a mechanism for producing multiple feature interpretations. The
algebra covers practically all features of interest to manufacturing. The mathematical framework
of the feature algebra which includes the domain of features, the operations and the properties
of the operations has been described. In addition, a methodologyv for characterizing additional
information about the boundary of a feature in the form of patches and patch labels has been
described. A sub-algebra of the generalized feature algebra has been discussed at a greater Jength.
The data structures for representing the features in this sub-algebra, and the procedures for the
operations on features have been provided. Details of the implementation of the sub-algebra and
its integration with the Protosolid [Van89b] solid modeler and the EFHA [Tho89] process planner
have also been discussed. The performance and the computational complexity issues of the sub-
algebra have been discussed. It has been shown through experiments that computing the operations
using the procedures developed for the sub-algebra is much more efficient than computing them by
converting them to queries to a solid modeler.
The main contributions of this research are the following:

1. A methodology by which a machinable part can be considered as several alternative sets of
features has been developed. Popular approaches towards the integration of computer aided

101

design and computer aided manufacturing have not addressed the problem of multiple feature
1

interpretations’.
2. The methodology that has been developed, viz., the algebra of features is general enough to
include practically all shapes of interest to manufacturing.

3. A mathematical characterization of features and feature interactions has been developed.

Currently, most of the approaches towards addressing feature interactions are based on expert
rules.

4. A feature, in our representation not only includes its nominal geometry, but also additional
information that identifies the portions boundary of the feature that belong to the boundary of
the final part and the portions that do not. This information will be useful in process planning
to identify the portions of the boundary and the volume of a feature that are required and
the portions that are optional.

<t

. A prototype of the feature algebra has been implemented for a restricted subset of features
and has been integrated with a solid modeler and a process planning system. The integration
with the solid modeler has some advantages. First, one is guaranteed to have a complete
and unambiguous representation [Mor85] of a solid at all times. Second, a geometric modeler
maintains the topological and geometric relationships within a solid and provides the user
restricted access to the relationships. Without integration with a solid modcler, analyzing
feature interactions becomes cumbersome. Further, there is always the potential for creating
pathological objects that are not solids.

6. For the prototype that has been implemented. the procedures for computing the operations
take advantage of the nature of the features and interactions. Declaratively, the operations in
this prototype can be expressed in terms of set operations on solids. Therefore, another way
to compute the operations would be to convert them into set operations on solids {computed
by the solid modeler) and then test if the result of the operation is a feature. By comparing
with this method, we have shown that the procedures for computing the operations are about
50 times faster than the ones that use set operations on solids.

8.2 Impact

In Section 1.1 and later in Chapter 2 we discussed the role of feature interactions, some of it as
viewed by other researchers. Below, we present the feature interactions given in Section 2.3.9 (titled
‘Interactions between features’) of a report by CAM-12 [SRSMS9] and discuss them in the context of
the feature algebra. This will enable us understand the scope, the relevance and the shortcomings
of the feature algebra in the backdrop of CIM research in the industry. In the following paragraphs,
the statements taken from the CAM-I report are shown in emphasized mode. The figures and figure
captions used here have been copied from the CAM-I report.

1. In Figure 8.1 is a hole too close to the outside surface and so it breaks through. The question
is as to how we detect this interaction. The goal is not to disallow such an interaction, but to
detect it and inform the designer of the interaction. One way the feature algebra can detect

'The program developed by Jan Vandenbrande[Van90] produces multiple feature interpretations in certain cases.
?Compnuter Aided Manufacturing-International Inc. (CAM-1), is a consortium of organizations pionecring in CIM
research. '

102

Figure 8.1: Feature is not functional.

hol?l l|101e2

\

N

(i) non-generic final shape T-slot (ii) Generic final shape

and pocket form pocket and undercut Blind holes form a thru hole

Figure 8.2: Non-generic shape from two generic shapes.

this interaction is by using the patch labels. However. in the restricted feature algebra that has
been implemented. the patches can only be cylindrical bands but not sectors of a cyvlindrical
surface (see the discussion at the end of Section 5.5). If we extend the representation to have
such patches, then we will be able detect the interaction shown in Figure 8.1 easily.

2. In INigurc 8.2, two leqitimate generic fealures intersect and produce a non-generic shape in

part (i) and a generic shape in part (it). In part (i) T-slot and pocket form pocket and
undercut. In part (1) (two) blind loles form a thru hole. One can easily see that the maximal
extension operation handles both of these interactions and provides the alternative feature
interpretations with appropriate patch labels (to identify undercuts and through holes).

. In Figure 8.3, the creation of the pocket has eliminated the entry face of the holc; the depth of
the hole has changed even though the user did not modify the hole parameters, This interaction
can be handled by the truncation operation.

. In Figure 8.4 two slois intersect, thus creating new topological entities. Due to this interaction,
additional topological entities which are not present in either of the slots are present in the
final part shape. This kind of situation will be a problem if features are required to satisfy
some topological constraints with respect to the final part. In other words, if the features are

103

Figure 8.3: Feature parameters made obsolete.

I

Figure 8.4: Non-standard topology from interaction.

required to satisfv a fixed topology in the final part, then this interaction will create problems.

At this time, there is no consensus among researchers as to whether features should have a
fixed topology. Restricting features to a fixed topologyv precludes many interesting interac-
tions. However. some topological restrictions should be met by the features. For example, at
least some portion of the boundary of a feature must belong to the final part: otherwise, such
a feature will be redundant.

For this interaction, using the feature algebra, we can obtain additional interpretations of the
part and some of them will not create additional topological entities.

. In Figure 8.5, a new fealure has completely deleted an old feature from the gcometric model.
This interaction is handled by the subsumption relation discussed in this thesis.

. In Figure 8.6, a new feature has closed off a feature that was originally open. In Figure 8.7.
the addition of a volume deletes a cavity. These two interactions are interesting because they
occur between additive and subtractive features. Currently, the feature algebra is not capable
of handling interactions between additive and subtractive features. At this time, it is not clear
how the current feature algebra can be extended to handle such interactions. However, since

104

-1

on

Figure 8.5: Feature deleted by a larger feature.

Figure 8.6: Open feature becomes closed.

all operations in machining involve metal removal, a good approach may be to let the designer
use both additive and subtractive features during the design phase, and then translate them
to a set of manufacturing features using a feature extraction system. After this step, the
feature algebra can be used to analyze the interactions among the manufacturing features.

. In Figure 8.8, a groove placed on a tube is deep enough to make the part disjoint. This

interaction can be handled by the truncation operation if we use the current part (the hollow
tube in this case) as one of the operands.

. In Figure 8.9, the variation of the length of the two rods independently can result in various

interference conditions. The top rod may interfere with the left block and be shortened by it or
il may become tangent without an adjacency relationship being recorded. This kind of {eature
interaction seems more like a functional constraint. (that the two rods be of equal length)
to be imposed during design. While handling such functional constraints is important, it is
outside the scope of the feature algebra.

Figure 8.7: Feature deleted by filling with larger feature.

105

hollow tube groove

v
L

Figure 8.8: Feature makes object disjoint.

Figure 8.9: Inadvertent interactions from modification.

8.3 Machinability Analysis

Recently, some researchers [ZH90b, ZH90a] have developed techniques for doing machinability
analysis while planning for a feature. The system that has been developed takes the parameters of
a feature (such as its dimensions and material) and the machining parameters (such as the process,
the feed rate and the cutting speed) as input and produces the best achievable tolerances and the
best achievable surface quality as output. This system can be used in conjunction with the feature
algebra to improve the quality and the productivity in the manufacture of metal parts. Briefly,
the goal of such an integrated system is as follows: Given a feature-based description of a part,
intelligently choose a combination of the machining parameters and a feature interpretation of the
part such that the costs are optimized and the tolerance and surface quality specifications are
satisfied. Currently. eflorts are being made at the University of Maryland, College Park towards
developing such a system.

8.4 Future Work

In this section. we will discuss some of the limitations of the feature algebra, and possible extensions
to the theory of the algebra as well as the implementation.

8.4.1 Patches

In Section 5.5, we discussed an example for which the existing representation for patches is not
adequate. In this section. we will show another example that requires extensions to the patch
representation scheme. The interesting aspect of this example is that the designer will be able to
specify all the features and their patches, but problems arise in the propagation of patches 1o other
feature interpretations.

106

hy hy
: : h-g hQ = h]MbSl
) St b —
S
i UNBLOCKED
BLOCKED

Figure 8.10: An example where the patches of the cylinder hy cannot be represented using the
current scheme.

In the example shown in Figure 8.10, the patches can be represented in the feature interpretation
{h1,s1,82}. However, in the feature interpretation {hy, s1, s2}, where hy = hy Mys;, we will not be
able to represent the patches for the bottom face of hs.

Thus, one possible point for future work is extending the patch representation scheme. This
should be done for an extended feature algebra than what has been implemented so far.

8.4.2 The Feature Algebra

Several extensions need to made to the theory of the feature algebra. Some of them are given
below:

1. Adding new operations to include some additional kinds of feature interactions. Below, we
give a few examples of some new operations that will be useful additions.

In the part shown in Figure 8.11 the feature h7 s is not a useful feature for manufacturing
purposes. It would be more useful to have an operation which would produce the hole
h' = hole-closure(h —* s) or some extension of A’. We intend to extend the feature algebra to
include such operations.

Often times, it is not just the exact volume of a feature that is relevant but the volume swept
by the tool to create the feature. Thus, we need operations that can produce tool-swept
volumes.

DN

Currently. the feature algebra produces all the feature interpretations. A much better ap-
proach is to integrate the feature algebra with experts on tolerancing. process planning. ctc.
so that the generation of alternative fealure interpretations is guided by their advice. This
will require that systems with tolerancing and process planning knowledge be capable of ge-
ometric reasoning. Process planning and tolerance analysis [RC86, Req83, Tur88, Fle88] are
topics of current research.

3. The current implementation of the feature algebra is restricted to rectangular solids. cyvlinders
and countersinks with their planar faces parallel to the faces of the stock. We need to extend
this algebra to include the following:

{a) Pockets, slots. cutouts. notclies, etc. with rounded corners;
(b) T-Slots;

107

Cross-Section
hTs k' = hole-closure(h —* s)

b

h' = hole-closure(h — s)

O
/

Figure 8.11: The hole-closure operation

108

(¢) Holes with conical tapers;

(d) Threaded holes and other complex features;

(e) Features oriented at angles other than 90 degrees.
The theory of the feature algebra currently handles the above, but developing efficient algo-
rithms for a feature algebra with the above extensions is not an easy task. Developing this

algebra should probably be done using a solid modeler that models curved surfaces accurately,
unlike Protosolid [Van89b] which uses the faceted approximation.

. Developing techniques for representation and propagation of tolerances through the feature
algebra is another research issue. This will make the feature algebra more useful when inte-
grated with machinability analysis.

109

Bibliography

[AgoT6]

[AGP84]

[BEHT9]

[BHS7]

[BR87]

[BRSE]

[Bra79]

[Cha90]

[CM&4)

[CT87)

[DF8Y]

[DWS&S]

M. K. Agoston. Algebraic Topology: A First Course. New York: Marcel Dekker. Inc..
1976.

G. T. Armstrong, C. Carey Graham, and Alan De Pennington. Numerical code generation
from a geometric modeling system. In Mary S. Pickett and John W. Boyse, editors, Solid
Modeling by Computers: From Theory to Applications. Plenum Press, 1984.

A. Baer, C. Eastman, and M. Henrion. Geometric modelling: A survey. Compuler-Aided
Design Journal, 11(5):253-272, Sep 1979.

S. L. Brooks and K. E. Hummel. Xcut: A rule-based expert system for the automated
process planning of machined parts. Technical Report BDX-613-3768, Bendix Kansas
City Division, 1987.

P. Brown and S. Ray. Research issues in process planning at the national bureau of
standards. In Proceedings of the 19th CIRP International Seminar on Manufacturing
Systems, pages 111-119, June 1987.

Peter Brown and Steven Ray. Nbs amrf process planning system-system architecture.
Technical Report NISTIR 88-3828, National Institute of Standards and Technology, 1988.

I. C. Braid. Geometric modeling — ten vears on. Technical Report CAD Group Document
103, Computer Laboratory, University of Cambridge, England, 1979.

Tien-Chien Chang. Ezpert Process Planning for Manufacturing. Addison-Wesley Pub-
lishing Company, 1990.

W. F. Clocksin and C. S. Mellish. Programming in Prolog. Springer-Verlag. 1984.

Mark R. Cutkosky and Jay M. Tenenbaum. ('ad/cam integration through concurrent
process and product design. In Winter Annual Meeting of the ASME: An Integrated
Approach 1o Manufacturing Analysis and Sysnthesis. Dec. 1987.

L. De Floriani. Feature extraction from boundary models of three-dimensional objects.
IEEE Transactions on Pattern Analysis and Machine Intelligence. 11(8):785-798, Aug
1989.

Xin Dong and Michael Wozny. Feature extraction for computer aided process planning.

In Proceedings of the Third International Conference on Computer-Aided Production In-
gimecring, Ann Arvbor. Michigan, June 1988.

110

[FGRY)

[Fle88]

[Ful69)

[GraT76]

[Har69]

[Hay87]

[HB&G]

[Hen&4)

[HM85]

[Hof89)

[HQ82]

[Ide8T7]

[JakR2]

[1C88]

[Jos87]

[Kar§8]

(KJ87)

Bianca Falcidieno and Franca Giannini. Automatic recognition and representation of
shape-based features in a geometric modeling system. Computer Vision, Graphics and
Image Processing, pages 93-123, 1989.

Alan Fleming. Geometric relationships between toleranced features. Artificial Intelli-
gence, 37:403-412, 1988.

Walton Fulks. Advanced Calculus, An Introduction to Analysis. John Wiley and Sons,
Inc., New York, 1969.

A. R. Grayer. The automatic production of machined components starting from a stored
geometric design. In Programming Languages for Machine Tools (PROLAMAT). North
Holland Publishing Company, 1976.

F. Harary. Graph theory. Addison Wesley, Mass., 1969.

C. Hayes. Using goal interactions to guide planning. In Proceedings of the AAAI-87; the
Sizth National Conference on Artificial Intelligence, pages 224-228, 1987.

K. E. Hummel and S. L. Brooks. Symbolic representation of manufacturing features for
an automated process planning system. Technical Report BDX-613-3580. Bendix Kansas
City Division, 1986.

M. Henderson. FEztraction of Feature Information from Three Dimensional CAD Data.

PLD thesis, Purdue University, 1984.

E. E. Hartquist and A. Marisa. PADL-2 Users Manual. Production Automation Project,
University of Rochester, Rochester, New York, 1985.

Christoph M. Hoffmann. Geometric and Solid Modeling, An Introduction. Morgan Kauf-
mann Publishers, Inc., 1989,

Robert M. Haralick and David Queeny. Understanding engineering drawings. Computer
Graphics and Image Processing, 20:244-258, 1982.

N. C. Ide. Integration of process planning and solid modeling through design by features.
Master’s thesis, University of Maryland, College Park, Department of Computer Science.
1987.

Ryszard Jakubowski. Svntactic characterization of machine parts shapes. Cybernetics
and Systems: An International Journal. 13(1):1-24. 1982.

S. Joshi and T. C. Chang. Graph-based heuristics for recognition of machined features
from a 3d solid model. Computer-Aided Design, 20(2):58-66, Mar 1988.

5. Joshi. CAD Interface for Automated Process Planning. PhD thesis, Purdue University.
1987.

Michael arasick. On the Representation and Manipulation of Rigid Solids. PhD thesis.
Department of Computer Science, McGill University, Aug 1988.

T. Kramer and J. Jun. The design protocol. part editor, and geometry library on the
vertical workstation of the automated manufacturing research facility at the national
bureau of standards, 1987. Internal Report.

111

[KM76]
[Kum8s]

[Kun84]
[Kyp80]

[LDS86]

[Man8&8]
[Men75]
[Milss]

[Min85]

[Mor85]
[Nau87]
[Nil80]

[Ping2]
[Pra87]

[Pra88]
[PS85)

[PSP3Y)]

[RCBB]

K. Kuratowski and A. Mostowski. Set Theory. North Holland Publishing Company, 1976.

B. Kumar. Fealure Eztraction and Validation within a Flexzible Manufacturing Protocol.
PhD thesis, University of Maryland, College Park, 1988.

H. Kung. An investigation into the development of process plans from solid geometric
modeling representation. PhD thesis, Oklahoma State University, 1984.

L. K. Kyprianou. Shape Classification in Computer-Aided Design. PhD thesis, Christ’s
College, University of Cambridge, 1980.

S. C. Luby, J. R. Dixon, and M. K. Simmons. Design with features: Creating and
using a feature data base for evaluation of manufacturability of castings. Computers in
Mechanical Engineering, 5(3):25-33, 1986.

M. Mantyla. An Introduction to Solid Modeling. Computer Science Press, College Park,
MD, 1988.

B. Mendelson. Introduction to Topology. Allyn and Bacon, Inc., 1975.

Victor Joseph Milenkovic. Verifiable Implementations of Geometric Algorithms Using
Finite Precision Arithmetic. PhD thesis, Department of Computer Science, Carnegie
Mellon University, July 1988.

R.H. Miner. A method for the representation and manipulation of geometric features
in a solid model. Master’s thesis, Massachusetts Institute of Technology, Department of
Mechanical Engineering. May 1985.

M. Mortenson. Geometric Modeling, chapter 9-13. John Wiley & Sons. 1985.

D.S. Nau. Automated process planning using hierarchical abstraction. Texas Instruments
Technical Journal, pages 39-46, Winter 1987. Award Winner, Texas Instruments 1987
Call for papers on Industrial Automation.

Nils J. Nilsson. Principles of Artificial Intelligence. Tioga Publishing Company, Palo
Alto, California, 1980.

C. Pinter. A Book of Abstract Algebra. McGraw-Hill Book Company, 1982.

M. J. Pratt. Torm features and their applications in solid modelling. In Tutorial paper
on Advanced Topics in Solid Modelling at SIGGRAPH 1987, July 1987.

M. J. Pratt. Synthesis of an optimal approach to form feature modelling. In Proceedings
of the ASME Computers in Engineering Conference, Aug 1988.

Franco P. Preparata and Ian Shamos, Michael. Computational Geometry, An Introduc-
tion. Springer-Verlag, New York, 1985.

J. M. Pinilla, Finger S., and F. B. Prinz. Shape feature description and recognition using
an augmented topology graph grammar. In Proceedings of the NSI' Enginecring Design
Research Conference, June 1989.

A. A. Requicha and S. C. Chan. Representation of geometric features. tolerances, and
attributes insolid modelers based on constructive geometry. [EEE Journal of Robotics
and Automation, 2(3):156-166, September 1986.

112

[Req77]
[Req83]
[Rogh9]
[ROMS5)

[RT78]

[RV77]
[RV85]

[SHAS3]

[Sim63]

[SL87)

[Smig9)

[SRSS)

A. G. Requicha. Mathematical models of rigid solid objects. Technical Report TM-28,
Production Automation Project, University of Rochester, Nov 1977,

A. A. Requicha. Toward a theory of geometric tolerancing. International Journal of
Robotics Research, 2(4):45-60, 1983.

Mary Rogers. Comparison of taskl functional requirements to task0 features technology
state of the art. Technical Report R—89-GM-02, CAM-I Inc., 1989.

Shape Data Ltd. The Romulus Solid Modeling System, V6.0 User’s Rcference Manual
Version 1, 1985.

A. G. Requicha and R. Tilove. Mathematical foundations of constructive solid geom-
etry : General topology of closed regular sets. Technical Report TM-27a, Production
Automation Project, University of Rochester, June 1978.

A. G. Requicha and H. B. Voelcker. Constructive solid geometry. Technical Report
TM-25, Production Automation Project, University of Rochester, Nov 1977.

A. G. Requicha and H. B. Voelcker. Boolean operations in solid modeling boundary
evaluation and merging algorithms. Proceedings of the IEEL, 73(1):30-44. 1985.

S. M. Staley, M. R. Henderson, and D. C. Anderson. Using syntactic pattern recognition
to extract feature information from a solid modelling database. Computers in Mechanical
Engineering, 2(2):61-65, 1983.

G. Simmons. Introduction to Topology and Modern Analysis. McGraw-IHill Book Com-
pany, 1963.

R. Srinivasan and C. R. Liu. On some important geometric issues in generative pro-
cess planning. In Proceedings of the Winter Annual Mecting of the American Society of
Mechanical Engineers, Boston, MA, December 1987, pages 229-244, 1987.

T. Smithers. Ai-based design versus geometryv-based design or why design cannot be
supported by geometry alone. Computer-Aided Design Journal, 21(8):141-149, April
1989.

J. J. Shah and M.T. Rogers. Functional requirements and conceptual design of the
feature-based modeling system. Compuler-Aided Engineering Journal. 7(2):9-15, Feb
1988.

[SRSM&9] Jami Shah, Mary Rogers, Palat Sreevalsan, and Abraham Mathew. Functional require-

[S586]
[Stesd]

[StrR0]

[SW86]

ments for feature based modeling systems. Technical Report R-89-GM-01, CAM-I Inc.,
1989.

Leon Sterling and Ehud Shapiro. The Art of Prolog. The MIT Press, 1956.
G. L. Steele Jr. Common Lisp: The Language. Digital Press, Burlington, MA. 1984.

I. A. Stroud. The build picture book. Technical Report CAD Group Document 104,
Computer Laboratory, University of Cambridge, England. 1930.

B. Smith and J. Wellington. Initial graphics exchange specifications (iges) version 3.0.
Technical Report NBSIR 86-3359, National Bureau of Standards. Gaithersburg MD. 1986.

113

[TC89]

[Tex87a)
[Tex&7b]

[Thog9]

[Tur88]

[Van89a)

[Vans9b]

[Van90]

Jay M. Tenenbaum and Mark R. Cotkosky. First-cut: A computational framework for
rapid prototyping and team design. In Proceedings of the AAAI Spring Symposium on
Al in Manufacturing, March 1989.

Texas Instruments Incorporated. Fzplorer Lisp Reference Manual, June 1987.
Texas Instruments Incorporated. Fxplorer TI Prolog User’s Guide, QOct. 1987.

Scott Thompson. Environment for hierarchical abstraction: A user guide, May 1989.
Master’s Scholarly paper, University of Maryland, Department of Computer Scicnce.

Joshua U. Turner. Automated tolerance using solid modeling technology. In Procecdings

of AUTOFACT’SS, Chicago, 1988.

G. Vanecek Jr. Protosolid: An inside look. Technical Report CSD-TR-921, Purdue
University, Computer Sciences Department, October 1989.

G. Vanecek Jr. Set Operations on Volumes Using Decomposition Methods. PhD thesis,
University of Maryland, College Park, 1989.

Jan Vandenbrande. Automatic Recognition of Machinable Features in Solid Models. PhD
thesis, University of Rochester, Electrical Engineering Department, 1990.

[VDZS85] M. Vaghul, J. R. Dixon, G. E. Zinmeister, and M. K. Simmons. Expert systems in a cad

[Wei86]

[Wing4]

[Wo082]

[ZH90a]

[ZH90b)

environment : Injection molding part design as an example. In Proceedings of the 1985
ASME Conference on Computers in Engineering, 1985.

Kevin Weiler. Toplogical Structures for Geometric Modeling. PhD thesis, Rensselaer
Polytechnic Institute, Troy, New York, 1986.

Patrick Henry Winston. Artificial Intelligence. Addison-Wesley Publishing Company.
1984.

T C. Woo. Feature extraction by volume decomposition. In Proceedings of the Conference
on CAD/CAM technology in Mechanical Engineering, 1982.

G. M. Zhang and T. W. Hwang. Analysis and control of geometric tolerancing through
surface topography generation. In Symposium on Automation of Manufacturing Pro-
cesses. 1990 ASME Annual Meeting. Dallas, Tezas, 1990.

G. M. Zhang and T. W. Hwang. Analysis of the cutting dvnamics in microscale. In
Symposium on Fundamental Issues in Machining. 1990 ASME Winter Annual Meeting,
Dallas, Tczras, 1990.

114

