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This paper presents a new conceptual framework and corresponding psychometric 

model designed for the pre-calibration of automatically generated items. This model 

utilizes a multi-level framework and a combination of crossed fixed and random 

effects to capture key components of the generative process, and is intended to be 

broadly applicable across research efforts and contexts. Unique among models 

proposed within the AIG literature, this model incorporates specific mean and 

variance parameters to support the direct assessment of the quality of the item 

generation process. The utility of this framework is demonstrated through an 

empirical analysis of response data collected from the online administration of 

automatically generated items intended to assess young students’ mathematics 

fluency. Limitations in the application of the proposed framework are explored 

through targeted simulation studies, and future directions for research are discussed.  
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Chapter 1: Introduction 

Technological innovation in education need not stay forever young. And one important change in 
the market for education technology is likely to accelerate its maturation markedly within the next 
several years. For the first time…states are working together… to create a new generation of 
assessments that will genuinely assess college and career-readiness. 

The development of common standards and shared assessments radically alters the market for 
innovation … the adoption of common standards and shared assessments means that education 
entrepreneurs will enjoy national markets where the best products can be taken to scale. 

In this new market, it will make sense for teachers in different regions to share curriculum 
materials and formative assessments. It will make sense for researchers to mine data to learn 
which materials and teaching strategies are effective for which students – and then feed that 
information back to students, teachers, and parents.  

– Joanne Weiss, 2011 

As framed by Joanne Weiss, then Chief of Staff to U.S. Secretary of Education Arne 

Duncan, the widespread adoption of the Common Core State Standards (CCSS) was a keystone 

development for the future of educational assessment. The adoption of common standards 

promised a host of opportunities for innovation in educational technology through its creation of 

a national marketplace for computer-based testing (Weiss, 2011). Although the Common Core 

has not been the sole driver, Weiss’s predictions were not incorrect. The implementation of 

CCSS and testing requirements mandated by No Child Left Behind, along with advances in 

computer technology and the advent of continuous testing through online test administration, 

have converged to produce a steady and rising demand for newly designed assessments aligned 

to the new standards (Hagopian, 2014). Driven by demand, these opportunities for innovation 

also present significant challenges for those responsible for developing increasingly varied and 

highly specialized assessments. Among the greatest challenges is how to effectively meet an 

ever-increasing demand for high-quality items in computer-based testing environments.  
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Several authors have called attention to the challenges of item development for 

continuous testing, particularly in high-stakes environments, where exponential increases in the 

number of items available are required for only linear increases in item security (see, e.g., 

Wainer, 2002). In computer-based testing, the cost of item writing using traditional methods is 

second only to expenses associated with test administration and comprises approximately 10-

15% of the total budget not accounting for costs associated with pre-testing (Irvine & Kyllonen, 

2002; Wainer, 2002). While the approximate cost per item necessarily depends on the item type 

and nature of the construct being tested, conservative estimates for development range between 

$1500 and $5000 per item (Irvine & Kyllonen, 2002; Rudner, 2010). Using traditional item-

development methods, the cost of item bank development for use in high-takes computer-based 

testing is becoming prohibitive (Rudner, 2010). 

With technology integration and an increased emphasis on data-driven decision-making 

and accountability in classrooms, there is a growing need for high-quality items for use in lower-

stakes environments as well. Several providers of annual summative assessments have begun 

efforts to develop modules appropriate for interim or formative assessment of student 

proficiency. Ease of administration via mobile devices, tablet apps, or web-based platforms is 

part of the appeal of these products. Unfortunately, ease of use translates to low item security and 

higher rates of item exposure, only increasing demands on item and test development teams 

responsible for refreshing those materials. The growing popularity of online courses presents a 

similar set of opportunities and corresponding challenges. Textbook publishers are developing 

systems to deliver comprehensive online course support in the form of electronic textbooks and 

all of the resources needed to develop tailored (book-specific) assessments that can be 

administered during the course. With hundreds of instructors administering thousands of tests, 
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quizzes, and homework assignments to tens of thousands of students covering the same material, 

the success of these systems may be a double-edged sword for assessment developers. 

Across contexts, platforms, and purposes, the current and anticipated future demand for 

high-quality items threatens to strain organizational capacity, timelines, and budgets. Model-

based automatic item generation has been proposed as a cost-effective method for successfully 

populating item banks that are sufficiently large and also suitably diverse to satisfy and 

unprecedented demand for high-quality items that can support the construction of adaptive, 

customizable test forms (Arendasy & Sommer, 2007; Arendasy, Sommer, Gittler, & Hergovich, 

2006; Embretson, 1999; Gierl & Haladyna, 2013; Irvine & Kyllonen, 2002).  

1.1 A Paradigm Shift  

As the name suggests, ‘automatic item generation’ (AIG) is an iterative approach to item 

development whereby items are constructed mechanically and, to the extent that it is 

technologically and practically possible, without human intervention (Bejar et al, 1993, 2002) 

using computer algorithms to integrate content into carefully engineered templates. Model-based 

item generation can be envisioned as a three-step process that begins with cognitive model 

development and template specification, followed by the identification of relevant content to be 

integrated into those templates and the definition of rules governing that integration, and finally 

the algorithmic integration of content into the item templates (Gierl & Lai, 2013). A visual 

representation of this process is shown in Figure 1, illustrating the production of multiple 

templates from cognitive task models that are associated with particular educational objectives; 

essential and variable content (and specified ranges/sets for the variable content) is specified for 

each template, and the algorithmic integration of content within the template, per 
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constraints/rules specified in the (various layers of the) item model yields (a very large number 

of) individual instances which are the actual tasks presented to students on an assessment. 

 

Figure 1. Three-step, multi-component AIG process 

Increased processor speed and greater programming flexibility make it possible to imagine 

and implement fully automated item generation systems, a level of generativity that even ten 

years ago was viewed as exceptional (Bejar, Morely, Lawless, Bennett, & Revuelta, 2002; 

Ferreyra, Fabiana & Backhoff-Escudero, 2016; Gierl & Lai, 2013). But while automation of the 

item writing process can reduce the cost of item bank development through increased efficiency, 

the real promise of AIG lies in successful engineering of templates and processes of item 

development, not simply improved automation. Ideally, AIG processes are engineered with a 

precise alignment between specific features of the cognitive task models, the structural and 

variable elements of item templates, and the structure of the corresponding psychometric models 

used in calibration.   
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As explained by Gierl and Haladyna (2013), when AIG processes are well-designed, 

“templates are aligned to the task models, [and] the items generated from the templates allow 

both cognitive inferences and predictable psychometric characteristics” of generated items 

(Gierl & Haladyna, 2013, p. 6, emphasis added). This alignment is critical to the success of AIG 

and to the argument for its adoption. With this alignment, AIG is expected to drastically reduce 

pre-testing costs as a result of being able to predict item properties a priori (Irvine & Kyllonen, 

2002). This is the promise of pre-calibration: that an automatic generation process is sufficiently 

well-designed and aligned to a corresponding psychometric model, that it is possible to estimate 

the parameters governing that generation process well enough to reliably predict the 

characteristics of items generated via that process, even if those items or templates would be the 

product of novel combinations of characteristics which may not yet have been directly observed.  

A promised reliance on model-predicted values rather than the empirical calibration of 

item properties represents a paradigm shift (Gierl & Haladyna, 2013; Kuhn, 1962) and 

significant departure from current item writing and test development practice (Embretson & 

Daniel, 2008; Irvine & Kyllonen, 2002); but assessment is also rapidly changing. As Weiss 

(2011) predicted, along with several other critical cultural and technological factors, the 

“development of common standards and shared assessments [has] radically [altered] the market 

for innovation in… assessments.” Advances in computer technology permit greater flexibility 

with, and capability for, on-demand item generation; and the economic and logistical realities of 

test development demand some level of automation in item writing. There is widespread interest 

in developing new items that can measure complex cognitive response processes, a desire for 

items that support more finely-grained inferences about examinees’ knowledge, skills, and 

abilities, and an interest in developing items for a wide range of context including within games-
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based assessments (DiCerbo, Mislevy, Behrens, O’Neil, Baker, & Perez, 2016; Hagopian, 2014; 

Irvine & Kyllonen, 2002). Together, these factors are powerful drivers behind continued 

investment and interest in the successful development and engineering of AIG systems (Gierl & 

Haladyna, 2012) and the specification of appropriate psychometric models for use in the pre-

calibration of generated items (e.g. Cho, DeBoeck, Embretson, Rabe-Hesketh, 2014). 

1.2 Current Successes and Shortcomings 

There is a growing body of empirical research highlighting the successful development of 

AIG systems and the use of automatically generated items. Among the earliest examples of 

template-based item generation was a model-based system for the generation of figural matrix 

items (Embretson, 1999) and this work was later parlayed into the development of models for 

generating quantitative reasoning items (Embretson & Daniels, 2008). Building on cognitive 

models for language comprehension, systems have also been developed for the automated 

construction of multiple choice cloze items (Liu, Wang, & Gao, 2005) and vocabulary items 

(Brown et al., 2005) for inclusion on language proficiency tests. AIG systems have been 

developed for the generation and selection of items for inclusion on a general competency exam 

(Ferraya et al, 2016). In-depth domain analysis has also supported the development of multiple-

choice items for use on medical licensure examinations (Gierl & Lai, 2014) and the development 

of items designed to assess young students’ fluency with a range of mathematical operations 

(Kellogg, Rauch, Leathers, Simpson, Lines, & Bickel, 2015).   

Unfortunately, despite these systems clearly demonstrating proof of concept, the adoption 

of AIG is remains limited because the precise alignment of cognitive and psychometric models 

which is critical to its success has continued to prove difficult to achieve in practice (Irvine & 

Kyllonen, 2002; Luecht, 2013). Even with well-defined cognitive task models and carefully 
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engineered item templates, additional review of and identification of constraints on combinations 

of content, beyond what is suggested by the cognitive task model, is often necessary. Gorin 

(2005) identified as the most significant challenge for implementing AIG “the development and 

verification of a viable cognitive model and an associated task feature model… [that] contains 

features that realistically can be manipulated to affect processing in such a way that item 

difficulty is reliably predicted” (p. 351). Full automation may be technologically feasible but the 

consistent generation of high-quality items still requires that human intervention be part of the 

generation process (Arendasy & Sommer, 2007; Embretson, 1999; Irvine & Kyllonen, 2002; Liu 

et al., 2005). Improvements in technology have not resolved the challenges inherent in defining 

the set and range of range of feature manipulations that will have well-understood impacts on 

item properties (Irvine & Kyllonen, 2002; Luecht, 2013). Perhaps most importantly, researchers 

have yet to identify a modeling framework suitable for pre-calibration such that “item generation 

and psychometric modeling are completely intertwined in such a way that it becomes possible to 

not only generate items but also ‘parse’ any item to characterize its psychometric properties” 

(Bejar et al, 2002, p. 202). 

1.3 A Need to Close the Gap 

Difficulties in consistently predicting properties of generated items highlight the need for 

research into both appropriate model specification and detection procedures for items that 

perform contrary to expectation. In applied settings, there are only a few cases in which item 

characteristics have been successfully predicted using item or template features; and even then, 

success has been only moderate and heavily dependent on domain (Arendasy & Sommer, 2007; 

Embretson & Daniel, 2008; Gorin, 2005; Irvine & Kyllonen, 2002; Liu et al., 2005). 
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AIG research efforts into model specification for use in pre-calibration feature 

psychometric models with increasingly complex item and family mean structures designed to 

capture as completely as possible the nuances of cognitive response processes and wider arrays 

of item features (e.g., Cho et al., 2013; Cho et al., 2014). But even as newly developed integrated 

modeling frameworks (Cho et al., 2013; Geerlings et al., 2011) are promising for use in AIG 

contexts, there is a continued need to examine the performance of these models under conditions 

that more closely resemble those encountered by applied researchers and test developers. 

But alongside the development of model specifications and algorithms capable of 

estimating these more complex models, there has not been an investigation of the impact or the 

detection of items that do not perform according to model expectations. Psychometric models 

intended for use as pre-calibration models in the context of AIG are first and foremost 

confirmatory models, and there is a lack of simulation research in the context of AIG that 

investigates issues related to model misspecification. There is a pressing need to understand the 

effects, on item parameter estimates and inferences about examinee proficiency, when generated 

items are not ‘well-behaved’ (Luecht, 2012).  In fact, among the authors who have worked to 

detail principles of AIG item development, there are several for whom issues of model selection 

for item pre-calibration are ‘out of scope’ when addressing questions of implementation (e.g., 

Alves, Gierl, & Lai, 2010; Huff, Alves, & Pellegrino, 2013).  

Especially the interest in innovative item types increases, the desire for items that are 

more specifically targeted and items which elicit evidence of complex skills becomes more 

widespread, and requirements for item generation processes necessarily become more complex, 

there is a growing need for research into the specification and performance of psychometric 

models for use in pre-calibration.  This paper seeks to fill this gap in AIG research, presenting a 
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new and broadly applicable conceptual framework and corresponding psychometric model 

designed for the pre-calibration of automatically generated items. Unique among models 

proposed within the AIG literature, this model incorporates specific mean and variance 

parameters to support the direct assessment of the quality of the item generation process. The 

utility of this framework is demonstrated through an empirical analysis of response data 

collected from the online administration of automatically generated items intended to assess 

young students’ mathematics fluency. Recognizing the importance of understanding the impacts 

on model parameter estimates of poor or incomplete model specification, and the need for more 

of this work within the AIG literature, targeted simulation studies explore possible limitations in 

the application of the proposed framework and the interpretation of parameter estimates.  

1.4 Overview 

Chapter 2 provides an overview of the statistical frameworks that have been proposed for 

use in the AIG context to pre-calibrate items generated through a mechanical template-based 

process. There is an array of models that have been proposed and a diversity of perspectives that 

inform this research, but there is also an unfortunate lack of coherence in the AIG literature. 

Chapter 3 seeks to inform the AIG literature by proposing a coherent conceptual framework that 

is sufficiently flexible to accommodate a range of approaches to automation and item calibration 

but clear in providing researchers with a common vocabulary for item generation and evaluation. 

Also in Chapter 3, a new mathematical modeling framework is proposed for use in the 

calibration pre-calibration of automatically generated items and its relationship to and extensions 

beyond previously proposed frameworks are highlighted. Chapter 4 provides a demonstration of 

the utility of the proposed framework through an analysis of item response data collected from 

the online administration of algorithmically generated items designed to assess elementary 
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school students’ computational fluency. Results from a targeted simulation study, with 

conditions designed to map onto a range of real as opposed to ideal implementation conditions, 

aid in the interpretation of parameter estimates. Chapter 5 presents additional simulation work 

which examines the impact of model misspecification on item parameter and ability estimates. 

Chapter 6 considers key take-aways from the work presented in the previous chapters and 

outlines future directions for research into the possibility of successful pre-calibration. 
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Chapter 2: Approaches to Pre-Calibration 

In 2002, ETS researchers were engaged in a multi-pronged research program to “generate 

many assessment tasks efficiently and effectively… to automatically generate [pre-]calibrated 

items so that costs can be reduced and validation is built into test development. Items are 

generated from templates that describe a content class. Each template contains both fixed and 

variable elements. The variable elements can be numeric or linguistic. Replacing the template’s 

variables with values results in a new item” (Gitomer & Bennett, 2002, p. 9).  

In the fifteen years following the publication of Gitomer and Bennett’s technical report 

outlining in the promise of a system for generating pre-calibrated items, advances in computing 

made these systems possible to implement in operational and not just research contexts (e.g. 

Gierl & Lai, 2014; Kellogg, Rauch, Leathers, Simpson, Lines, & Bickel, 2015). In fact, a number 

of AIG systems have been successfully designed to support the algorithmic production of items 

across a wide range of domains, including figural reasoning (Embretson, 1998, 1999), reading 

comprehension (Gorin, 2005), sentence completion (Sheehan & Mislevy, 2002), algebra and 

quantitative reasoning (Arendasy et al, 2006; Arendasy & Sommer, 2007; Embretson & Daniel, 

2008), and K-12 mathematics (Simpson, Elmore, Bickel, & Price, 2015). Algorithmic item 

generation procedures have also been used to create items for inclusion on exams for medical 

and dental licensure (Gierl & Lai, 2012, 2013a, 2014) and for testing second language 

proficiency (Liu, Wang, & Gao, 2005).  

Despite demonstrated success in architecting item generation systems, researchers have 

continued to struggle with the challenge of pre-calibrating items, and this remains a barrier to 

widespread adoption of AIG. Pre-calibration remains a barrier because even though it is a 

difficult problem to solve, within the AIG context finding a solution is necessary. Even with a 
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limited number of templates and relatively few manipulated features, item generators have 

readily produced thousands (Simpson et al., 2015) and even tens of thousands of items (Gierl & 

Lai, 2014). The algorithmic construction of items is absolutely possible, but calibrating all of 

those items directly is not.  Pre-calibration is necessary to take full advantage of all that AIG has 

to offer. 

2.1 The Challenge of Pre-Calibration 

Automatic item generation is a template-based process whereby a pre-defined range of 

content can be algorithmically integrated into a generic item form or shell in order to create a set 

of unique items aligned to a common educational objective (Gierl & Haladyna, 2013). Pre-

calibration is the process by which the parameters governing the generation process are 

estimated well enough to reliably predict the characteristics of items generated via that process, 

even if those items had not been seen by any examinees. Pre-calibration is really the calibration 

of higher-order design features within the generation process.  

Within the AIG literature, the challenge of pre-calibration is viewed first and foremost as 

a challenge of engineering: how to develop templates to effectively structure items, and how to 

isolate, specify, and combine variable features within those templates in such a way that the 

impact of those manipulations is well understood. Given a well-engineered item generation 

process, the challenge is then one of model specification and: how to parameterize a 

psychometric model to ensure sufficient alignment to the generation process to support the 

prediction of the properties of generated items. Interestingly, AIG researchers frequently assume 

that the generation process is well-engineered and focus their attention on model specification.  

This chapter provides an overview of the psychometric models that have been proposed 

for use by AIG researchers. Within the broader psychometric literature, it is well-understood that 
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generating items from common templates induces local dependencies that need to be accounted 

for in order to ensure accurate and precise parameter estimates (Chen & Wang, 2007; Cohen et 

al., 2008; Jiao et al., 2005; Jiao et al., 2008). All of the calibration models that have been 

proposed for use within the context of AIG are therefore aligned to some version of a template-

based generation process, and typically utilize multi-level structures (e.g. Cho et al., 2014; Gierl 

& Lai, 2012; Kellogg et al., 2015) or otherwise include parameters intended to account for 

variance across and dependencies among items generated from the same templates (e.g., 

Embretson & Daniel, 2008). The models reviewed in this chapter are organized according to 

their features, and specifically the use of either fixed or random effects or both to capture the 

relevant features of the generation process. Models are also presented roughly in chronological 

order.  

The first models discussed in this chapter exclusively feature fixed effects and were also 

the first to appear in the AIG literature: researchers sought to identify the set of design 

manipulations which would determine item properties and calibrate those features.  Random 

effects models appeared later in the AIG literature, and these models typically use multilevel 

structures to group similar items together as “item families” and support the calibration of 

prototypical instantiations. The third set of models discussed are those which have appeared most 

recently in the literature and blend the first two approaches, accounting for differences between 

items in terms of cognitively relevant design features while also accounting for dependence 

among items generated from common templates. A review of these models provides the 

necessary background for the presentation of a new conceptual and statistical framework for 

calibrating automatically generated items which will be presented in the third chapter.  
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2.2 Fixed Effects Models: Calibrating Feature Manipulations 

The first type of model accounts for inter-item dependencies resulting from the influence 

of design decisions on the generation of items that are assumed to be directly related to the 

cognitive skills being tested (Embretson, 1998; 1999; Embretson & Daniel, 2008; Geerlings, 

Glas, and van der Linden, 2011). Characterized as cognitive-psychometric models, these fixed-

effects models calibrate common design principles rather than modeling the psychometric 

properties of individual items, (Embretson, 1999). These models featured heavily in ETS 

research programs in the late 1990s through the middle of the following decade, where the goal 

was to develop principled item design approaches to automatic item generation and to determine 

the feasibility of estimating the impact(s) of design decisions in order to reliably predict the 

difficulty of items based on a subset of cognitively relevant item features , thereby reducing the 

need to collect calibration data in future test administrations (e.g. Gitomer & Bennett, 2002). The 

success of this approach to item generation and pre-calibration hinged on researchers; ability to 

identify cognitive response processes and link them to “observable features of [items] that can be 

systematically coded and entered into statistical analyses to test the impact of the [proposed 

response] process on item difficulty” (Gorin, 2006, p. 24). By explicitly linking item response 

probabilities to design principles or item features that were hypothesized to impact the 

processing requirements of items, these models also could provide item-level evidence of 

construct validity (Embretson & Daniel, 2008; Gorin, 2006). 

2.2.1 Fixed Effects Models Proposed for Pre-Calibration 

The linear logistic test model (LLTM; Fischer, 1973) was proposed for use in this 

context. The LLTM is an extension of the Rasch model (Rasch, 1960) which decomposes item 

difficulty into a weighted linear combination of j attributes. Where 𝑋௜௣ is a response 
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dichotomously scored as 0 or 1, the Rasch model represents the probability of an individual p 

with ability 𝜃௣ correctly answering item i using the following functional form: 

𝑃𝑟൫𝑋௜௣ = 1|𝜃௣, 𝛼, 𝛽௜൯ =
௘ഀ(ഇ೛షഁ೔)

ଵା௘ഀ(ഇ೛షഁ೔). (2.1)  

The item-specific difficulty is represented by 𝛽௜ and α is the common discrimination parameter 

for all of the items. The LLTM model builds on the Rasch model by parameterizing item 

difficulty as a linear combination of J item attributes 𝑞௜ଵ,  … ,  𝑞௜௝, where 𝜋௝ represents the effect 

of attribute j on the difficulty of item i: 

 𝛽௜ = 𝜋ଵ𝑞௜ଵ + 𝜋ଶ𝑞௜ଶ + ⋯ +  𝜂௃𝑞௜௃ = ∑ 𝜋௝𝑞௜௝
௃
௝ୀଵ  

The log odds of a correct response can therefore be written as:  

𝜂௜௣ = 𝜃௣ − ∑ 𝜋௝𝑞௜௝
௃
௝ୀଵ , where 𝜃௣~𝑁(0,1) to ensure identifiability. 

In the context of pre-calibrating automatically generated items, the goal is to collect an initial set 

of item responses to items featuring as many relevant combinations of j attributes as possible in 

order to estimate the effects, 𝜋௝ , of those attributes in order to be able to predict the difficulty of 

future items based on their design alone.  

Gorin (2005) effectively used an LLTM model to investigate the extent to which the 

difficulty reading comprehension items could be manipulated by varying items’ (1) propositional 

density and syntax, (2) the presence of negative or passive voice, (3) the order of information, or 

(4) response alternatives. There are, however, many cases in which a Rasch model is not 

sufficient to model item response functions. In her work on the generation and calibration of 

figural matrix items, Embretson (1999) found that item features were predictive of both item 

discrimination and difficulty. She proposed the constrained two-parameter logistic (C2PL) as an 

extension of the linear logistic test model, in which she related item design features to both item 
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discrimination and difficulty. The two-parameter logistic (2PL) model (Lord & Novick, 1968) 

has the following item response function: 

𝑃𝑟൫𝑋௜௣ = 1|𝜃௣, 𝛼௜ , 𝛽௜൯ =
௘ഀ೔(ഇ೛షഁ೔)

ଵା௘ഀ೔(ഇ೛షഁ೔) (2.2)  

where 𝑋௜௣ is again a response to item i by individual p that is dichotomously scored as 0 or 1, 𝛽௜ 

is the item-difficulty and 𝛼௜ is the item-specific discrimination or slope parameter of the item 

response function. In the C2PL model, both item discrimination and difficulty are specified as a 

to be a linear combination of J common design features, such that for item i, 

𝛼௜ = 𝛿ଵ𝑞௜ଵ + 𝛿ଶ𝑞௜ଶ + ⋯ +  𝛿௃𝑞௜௃ = ෍ 𝛿௝𝑞௜௝

௃

௝ୀଵ

 

𝛽௜ = 𝜋ଵ𝑞௜ଵ + 𝜋ଶ𝑞௜ଶ + ⋯ +  𝜋௃𝑞௜௃ = ෍ 𝜋௝𝑞௜௝

௃

௝ୀଵ

 

The log odds of a correct response can therefore be written as:  

𝜂௜௣ = ∑ 𝛿௝𝑞௜௝
௃
௝ୀଵ ∙ (𝜃௣ − ∑ 𝜋௝𝑞௜௝)

௃
௝ୀଵ , where 𝜃௣~𝑁(0,1).    (2.3) 

In her analysis of data from figural matrix items, Embretson coded as design features the number 

of rules incorporated in the design of each item, the abstract correspondence, and the overlay, 

fusion, and distortion of figures (Embretson, 1998; 1999). Embretson successfully applied the 

C2PL model to these data, and demonstrated that this model offered a better data-model fit than 

the LLTM. Results were consistent with theory that the number of rules governing the figural 

matrix patterns and the complexity of those rules would affect examinees’ ability to infer those 

rules and also apply them correctly.  
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2.2.2 Limitations of Fixed Effects Models 

Empirical results support rule-based item generation as a promising approach to item 

generation for use in operational contexts (e.g. Morley, Bridgeman, & Lawless, 2004; Embretson 

& Daniel, 2008; Geerlings, Glas, & van der Linden, 2011), but there is only limited support for 

utilizing fixed effects models for the pre-calibration of resulting items, even when using well- 

designed templates (De Boeck, 2008). As illustrated in Embretson’s work (e.g. Embretson & 

Daniel, 2008), which relied on in-depth feature coding by a panel of experts, the accurate 

calibration design features using fixed effects models may come at too high a cost both in terms 

of money and time. This cost is increasingly prohibitive given anticipated operational demands 

for wider arrays of items and items that are more specifically targeted to educational objectives 

(Gierl & Lai, 2013). Moreover, rule-based item generation is not necessarily feasible in all 

situations. Template-based item generation and the specification of cognitive models which 

support the specification of LLTM and C2PL models is limited to  

application in “narrow domains where cognitive analysis is feasible and where well-developed 

theory is more likely to exist” (Bejar et al, 2002, p. 5,). Unfortunately, well-defined domains may 

be more of the exception than the rule (Rupp, diCerbo, Levy, Benson, Sweet, Crawford, Fay, 

Kunze, Calico, & Behrens, 2012), and even in those well-defined domains “experts sometimes 

have blind spots regarding the cognitive processes used by the respondents to solve the given 

tasks” (Arendasy & Sommer, 2007, p. 380). 

2.3 Random Effects Models: Calibrating Prototypical Items 

As an alternative to the highly structured rule-based approach to item generation, Bejar 

and colleagues (2002) advocated for a template-based approach. Item developers would create 

prototypical instances (also known as parent items) and from these prototypical instances, derive 
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an array of items which look sufficiently different from the parent item and from one another to 

prevent transfer of solution strategies but whose essential characteristics and psychometric 

properties are unchanged. Items modeled after the same parent item are referred to as siblings, 

with each parent item and its siblings comprising an item family.  

Given the importance of aligning the item generation process and the psychometric 

model used for pre-calibration, a template-based approach to item generation necessarily 

warrants a different approach to item pre-calibration. This second category of psychometric 

models proposed for use in AIG contexts facilitate pre-calibration of items via the calibration of 

prototypical items. Unlike the fixed effects models discussed previously, the random effects 

model structure is not designed to estimate the impact(s) of specific design decisions. Items 

derived from the same prototypical instance are designed (and are subsequently assumed) to 

have similar psychometric properties. As such, family-level parameters can be estimated from 

responses to instances randomly sampled from within each family. Using a hierarchical model 

structure, these models estimate the characteristics of families of related items and incorporate 

random effects to account for the dependence within and (limited) variation among items within 

the same family (Bejar et al, 2002; Sinharay & Johnson, 2005; Sinharay, Johnson, and Williams, 

2003; Geerlings et al, 2011; Geerlings, 2012; Gierl & Haladyna, 2013).  

2.3.1 Random Effects Models Proposed for Pre-Calibration 

One approach to estimating the variance in item responses due to family membership is 

to utilize the linear logistic test model with error (LLTM-R; De Boeck, 2008; Janssen et al, 

2004). The LLTM-R is an extension of the LLTM that permits imperfect prediction of item 

difficulty by item features. For use in the context of calibrating item families, the LLTM-R can 

be formulated using dummy variables to represent family membership. Building on the LLTM 
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presented earlier, the log odds of an individual p responding correctly to item i is represented by 

the equation: 

𝜂௜௣ = 𝜃௣ − ∑ 𝜋௝𝑞௜௝ + 𝜀௜
௃
௝ୀଵ   

Within this framework, persons and items are modeled as crossed-random effects (De Boeck, 

2008), and latent abilities are again typically assumed to be distributed ~ (0,1)j N  to ensure the 

model is identified and the measurement error term specified as 𝜀௜~𝑁(0, 𝜎ఌ). Unfortunately, 

although this approach was suggested by Embretson & Daniel (2008), it doesn’t appear in any 

studies calibrating item families and as such it is unclear how well this approach might work for 

the pre-calibration of automatically generated items.  

Another approach to pre-calibrating items generated using a template-based process is to 

use a two-level random-effects model. Alternately referred to as the Related Siblings Model 

(RSM; e.g. Sinharay & Johnson, 2005) or the Item Cloning Model (ICM; Glas & van der Linden, 

2003), this approach uses random effects to model an association structure among the items 

within an item family. The first-level model of the RSM or the ICM is an IRT model, such as the 

Rasch model (Equation 2.1). At Level 1, the log odds of a correct answer to item i within family 

j is written as follows: 

𝜂௜௣ = 𝜃௣ − 𝛽௜௝ 

Within each item family the effects of changing the incidental or surface features of items are 

assumed to be minor and unsystematic. This is reflected in the Level 2 specification of the RSM, 

where the difficulty of generated items is specified as the family mean (the difficulty of the 

prototypical item and some random error:  

𝛽௜௝ = 𝜋଴௝ + 𝜀௜௝ 
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The odds of a correct response to item i within family j can therefore be written as:  

𝜂௜௣௝ = 𝜃௣ − (𝜋଴௝ + 𝜀௜௝), where 𝜃௣~𝑁(0,1) and 𝜃ఌ~𝑁(0, 𝜎ఌ)  (2.4) 

Again, both persons and items are treated as random. For the purposes of model identification, 

the population distribution for the latent abilities is typically assumed to be normally distributed 

such that 𝜃௣~𝑁(0,1).Using this framework, family-level parameters can be estimated from 

responses to instances randomly sampled from within each family, and the family-level 

parameters are used to predict the characteristics of generated items. 

2.3.2 Limitations of Random Effects Models 

The primary limitation of random effects models is that they lack explanatory power. 

Although pre-calibration of generated items is possible using hierarchical models, the models 

provide no insight into the quality of the item generation process. There are no parameters which 

reflect the relative success of design features or a need for their improvement.  

A second limitation these models is that they are relatively untested within the AIG 

context. Unlike the fixed effects models, which were proposed in the context of real data analysis 

and tested through empirical research, the work on random effects models draws primarily on 

simulation work. Unfortunately, in the simulation-based work that has informed the development 

of the more complex random-effects models (e.g., Cho et al., 2013), authors rarely explore issues 

of poor model-data fit. By and large, built into the design of model simulations is the assumption 

that items have been consistently successfully generated, meaning that the items behave as 

expected according to the theoretical model (Luecht, 2013).  

A few AIG simulation studies have investigated model performance when the generation 

process is “unsuccessful” (Leucht, 2013) and produce instances with high variability (e.g. Bejar 

et al., 2003; Sinharay & Johnson, 2005). Results from those studies suggested that non-
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isomorphicity within families has minimal impact on item parameter and ability estimates, 

provided variability is appropriately accounted for (Glas & van der Linden, 2003; Sinharay, 

Johnson, & Williamson, 2003; Sinharay & Johnson, 2005; Leucht, 2013), but thresholds for 

levels of within-family variation are not well-defined in the AIG literature and often hover near 

zero. There is a need to examine the performance of these models under more realistic 

conditions. 

2.4 Modeling Differences and Similarities with Integrated Frameworks 

Evolving technologies are increasingly capable of more diverse item generation (Gierl & 

Lai, 2013a, 2013b, 2014). Increasingly nuanced understandings of cognitive response processes 

and the growing desire for more finely-grained inferences about examinees’ knowledge, skills, 

and abilities, have yielded increasingly complex task models for item development. It is 

therefore unsurprising that the models being proposed for use in AIG contexts feature 

increasingly complex item and family means structures in an effort to align as completely as 

possible with emerging AIG processes (Cho et al., 2013; Geerlings et al., 2011; Liu, Wang, & 

Gao, 2005). These models feature combinations of fixed feature combinations of fixed and 

random effects in order to account both for specific design features and variability among items 

generated from the same templates. 

2.4.1 Linear Item Cloning Model 

Geerlings and colleagues (2011) developed the linear item cloning model (LICM) to be 

applied when item developers utilize “a combination of the two methods of automated item 

generation” (p. 337). This model aligns to a template-based approach to item generation where 

prototypical items are generated via the application and combination of a set of features that are 
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intended to impact item properties. For each combination of design rules there is a family of 

items which are generated from the prototypical or parent item through minor changes to non-

essential surface features. A graphical representation of this item generation process is shown 

below in Figure 2.  

 

 

Figure 2. Item generation process for LICM model 

The LICM is a two-level model which extends the work of Sinharay and Johnson (2008) 

and the development of the RSM (Equation 2.4) by placing structure on the mean difficulty of 

each item family at Level 2. Random effects at Level 1 account for dependencies in response 

probabilities among instances within item families generated using common sets of manipulated 

features.  

The LICM utilizes the to specify the probability of a correct response to item i. Although 

a 2PL or 3PL model could be used for the first-level model, Geerlings et al. (2011) presented the 

LICM using the three-parameter normal-ogive (3PNO) model at Level 1, requiring a number of 
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assumptions to be made about the independence of residuals, as discussed in the previous 

section. For simplicity of exposition here we assume a Rasch model as the item response model, 

and the odds of a correct response to item i within family j can therefore be written as:  

𝜂௜௣௝ = 𝜃௣ − (∑ 𝜋଴଴௞𝑞଴௝௞
௄
௞ୀଵ + 𝜀௜௝), where 𝜃௣~𝑁(0,1) and 𝜀௜௝~𝑁(0, 𝜎ఌೕ

)  (2.5) 

where 𝜋଴଴௞  denotes the effect of design feature k on the difficulty of item families, and 𝑞଴௝௞ is a 

design variable which captures the use of that feature in the generation of the parent item for 

family j. It is worth noting that in the specification of the LICM, Geerlings et al. (2011) departed 

from most other AIG researchers by exploring alternative methods for encoding design variables. 

Features are typically encoded as binary (present or not present), but Geerlings and colleagues 

demonstrated the possibility of including a range of values to communicate either the extent to 

which a feature was manipulated or the number of times a rule was applied in the generation 

process. The effects of these design features are consistent across families; within-family 

variation can be estimated as a common or as a family-specific variance parameter as shown in 

the notation for Equation 2.5.   

2.4.2 Additive Multilevel Item Structure Model 

Cho and colleagues (2014) proposed a multi-level mixed effects IRT model which aligns 

more closely to a rule-based approach to item generation than the one explored by Geerlings et 

al. (2011). A graphical depiction of the additive multilevel item structure (AMIS) model and the 

logic of the corresponding generation process is shown in Figure 3. Like the LICM, prototypical 

items are generated via the application and combination of a set of features that are intended to 

impact item properties. Unlike the LICM, within item categories that are determined by common 

design features, items are generated as variants of one another instead of being engineered as 

siblings. This difference also accounts for the differences in terminology used by the authors to 
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describe groupings of items at Level 2, categories (Cho et al, 2014) versus families (Geerlings et 

al, 2011).  

 

Figure 3. Item generation process for AMIS model 

The AMIS model decomposes the mean family-wise discrimination and difficulty 

parameters (in the second-level model) as a weighted combination of effects and also models 

systematic variation in within-family discrimination and difficulty parameters (in the first-level 

model). The discrimination and difficulty parameters have a common structure: each is 

decomposed into a linear combination of an overall mean, the weighted sum of d item-specific 

attributes and the weighted sum of t category-specific attributes, a category-specific residual and 

an item-specific residual.  

Cho et al. (2013) assume that a 2PL model (see Equation 2.2) is appropriate for modeling 

the item response function and present the full equation for the logit of person p to respond 

correctly to item i, which generated as a member of category c, as follows:  

𝜂௜௣௖ = ൫𝜇ఈ + ∑ 𝛾ఈௗ𝑄௜ௗௗ + 𝜀ఈ௜
(ଵ)

+ ∑ 𝛿ఈ௧𝑅௖௧௧ + 𝜀ఈ௖
(ଶ)

൯ ∙ ቀ𝜃௣ − ൫𝜇ఉ + ∑ 𝛾ఉௗ𝑄௜ௗௗ + 𝜀ఉ௜
(ଵ)

+ ∑ 𝛿ఉ௧𝑅௖௧௧ + 𝜀ఉ௖
(ଶ)

൯ቁ. 
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The population distribution for the latent abilities is assumed to be normally distributed such that 

𝜃௣~𝑁(0,1). Cho and colleagues (2013) also assume that within- and between-family variances 

are equal, and the assumption is also made that residuals are independent. Specifically,  

𝜀ఈ௜~𝑁(0, 𝜎ఈ) and 𝜀ఈ௖~𝑁(0, 𝜎ఈ) 

𝜀ఉ௜~𝑁(0, 𝜎ఉ) and 𝜀ఉ௖~𝑁(0, 𝜎ఉ) 

It is interesting to note that despite being far more complex in terms of its notation, the AMIS 

model has striking similarities to the C2PL model (Equation 2.3): the same set of attributes 

impacts both discrimination and difficulty, and the effects of those attributes are homogeneous 

across items and across families. While it is true that the integrated modeling frameworks show 

considerable promise, at least in their initial application of the AMIS model, Cho and colleagues 

(2013) do not attempt to exercise the flexibility afforded by the multilevel modeling structure. 

The ubiquity of simplifying assumptions in the AIG literature, despite models which have 

increasingly complex means structures hints at some of the possible limitations of these 

integrated frameworks. 

2.4.3 Limitations of Integrated Modeling Frameworks 

Estimation. Although the integrated modeling frameworks promise better alignment to 

the underlying item generation processes, increased model complexity does present additional 

challenges for estimation. Estimating fixed effects models for use in AIG contexts is relatively 

simple. For the initial calibration of the LLTM, design effects are typically estimated using 

marginal maximum likelihood estimates (Embretson & Daniel, 2008); and Embretson (1999) 

used a joint maximum likelihood approach was used to estimate design effects specified using 

the C2PL framework. Researchers who have proposed the use of random effects models have 

used both maximum likelihood and Bayesian approaches to the estimation of item parameters for 
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the initial calibration of item families. Glas & van der Linden (2003) used Markov Chain Monte 

Carlo (MCMC) methods and also marginal maximum likelihood techniques (Glas & van der 

Linden, 2003; Geerlings, Glas, & van der Linden, 2011) to estimate item family means. Sinharay 

and colleagues (2008; 2013) also used EAP estimates to describe the mean behavior of items 

within a family. In contrast, researchers who have proposed the more complex models have also 

noted challenges in estimation and mentioned some workarounds. In their discussion of the 

LICM, Geerlings et al. (2011) proposed the three-parameter normal-ogive (3PNO) model instead 

of using a 3PL model to facilitate sampling from the conditional posterior distributions of 

family-wise parameters when estimating abilities. Citing the computational burden of MCMC 

estimation approaches and the possibility of slow convergence as a result of possible correlations 

in joint posterior distributions of estimated parameters, Cho and colleagues describe an extended 

alternating imputation-posterior algorithm (AIP) with adaptive quadrature to estimate item and 

person parameters (Cho & Rabe-Hesketh, 2011; Cho et al., 2013). It is true that there is ongoing 

investment in MCMC estimation hierarchical IRT models (Stan Development Team, 2017), but 

as part of any research effort, attention needs to be paid to the conditions under which these more 

complex models can be estimated. 

Assumptions. The need for simplifying assumptions may be driven in part by concerns 

about the successful estimation of model parameters (e.g. Cho et al, 2013). However, as models 

proposed for item pre-calibration become more complex and more assumptions need to be made 

in order to meet the requirements of the model or to facilitate estimation, it is important to pay 

attention to the implication those assumptions have for the quality of the underlying generation 

process and how well that process needs to be understood in order to warrant those assumptions.  
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  Simulation studies designed to demonstrate the promise of hierarchical models for use 

within an AIG context, with few exceptions (notably Geerlings, 2012; Geerlings et al., 2011) 

routinely set residual covariances equal to zero, with minimal variances on the diagonals that 

govern the variability of instances within item families. This is consistent with assumptions 

routinely made about homoscedasticity and the independence of residuals in the presentation or 

application of models proposed for use in the pre-calibration of AIG items. Many authors 

examining the performance of hierarchical models for use in an AIG context note that while the 

proposed models can arguably accommodate non-zero covariances between parameters at level 

one (Embretson & Daniel, 2008) or at level two (Geerlings et al., 2011), they routinely make 

simplifying assumptions about covariances between item parameters within and across families. 

As noted in the previous section, Additionally, although the AMIS model can be extended to 

account for heteroscedastic residuals and a bivariate distribution for the residuals of item 

discrimination and difficulty, Cho and colleagues (2013) assume that within- and between-family 

variances are equal, and the assumption is also made that residuals are independent. But this 

independence also assumes that the generation process is well understood and all of the relevant 

features are identified, which flies in the face of the lessons learned through empirical research 

into the performance of fixed effects models for pre-calibration (e.g. Gorin, 2005).  

In a small simulation study Luecht (2013) clearly highlighted, within a limited range of 

conditions, the potential impact of unmodeled residual covariances between item parameters 

within families using a 2PL model. Luecht did not specify the origin of this covariance between 

parameters otherwise unaccounted for in the model, but in a limited simulation study in which he 

varied test length (10 versus 40 items), estimation error of item parameters resulting from 

family-level calibration (none using the generating parameters, low, moderate, and high), and 
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conditional covariance between discrimination and difficulty parameters (low, moderate, high), 

he demonstrated increased error and bias in ability estimates. Although increasing test length was 

shown to ameliorate the effects of the loss of efficiency resulting from family-level calibration in 

the absence of residual (level-1) covariance, simply increasing test length failed to address the 

bias that resulted from the presence of even low residual covariances when there was a high 

degree of within-family variability (Luecht, 2013).  

Little attention has been paid to the modeling or accurate estimation of covariances 

between item parameters, or to the possible impacts of misspecification. As researchers look to 

develop and test the feasibility of increasingly complex models for use in AIG contexts, this 

needs to be kept in mind. 

2.4.4 Looking Ahead 

On their face, these integrated modeling framework with sets of both fixed and random 

effects appear to better capture the complexity of item generation processes and as such offer the 

most promising approach to pre-calibration of automatically generated items (e.g. Cho et al., 

2013; 2014; Geerlings, Glas, & van der Linden, 2011). However, this integration of modeling 

frameworks needs to go beyond the inclusion of more complex means structures to include the 

establishment of a common conceptual frame that will support continued model development 

and evaluation, along with a re-examination of some the fundamental model assumptions that 

arguably limit the applicability and utility of these otherwise promising models. 
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Chapter 3: A New Framework for Pre-Calibration 

The AIG literature is punctuated with numerous efforts to specify psychometric models 

appropriate for the pre-calibration of generated items (see Gierl & Haladyna, 2013; Irvine & 

Kyllonen, 2002), but the literature provides little evidence of forward momentum despite 

continued and growing interest in solving the problem of successful pre-calibration. A thorough 

review of the AIG literature suggests that the absence of a common language and conceptual 

framework to support current (and future) modeling efforts is likely a contributing factor. 

Automatic item generation is fundamentally an engineering problem (Gierl & Lai, 2012), 

and pre-calibration is first and foremost one of design. How the various components of the item 

generation process are related to or integrated with one another to produce individual test items 

necessarily informs the pre-calibration model’s structure and the resulting parameter 

interpretations in the AIG context. For that reason, attention must be paid to how the item 

generation process is envisioned and the terminology used to describe it, because these are the 

building blocks of a conceptual framework and vocabulary for specifying an appropriate 

psychometric model and also for its evaluation. Unfortunately, although there is a common logic 

motivating the structure and specification of the models which appear in the AIG literature, there 

is not yet a coherent conceptual framework that spans research efforts. 

AIG researchers have converged on the problem of item generation from a range of 

different disciplines, and they often use subtly (and not-so-subtly) different words to describe the 

item generation process and to define corresponding statistical models, using terminology 

borrowed from cognitive psychology (e.g., Embretson & Daniel, 2008; Gorin, 2005), assessment 

engineering (e.g., Arendasy & Sommer, 2007), and elsewhere. Researchers’ vocabularies 

arguably reflects their background and training rather than being native to the AIG context. 
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Difficulties stemming from inconsistent language are compounded by vagueness in model 

definitions. Constructs that are central to model specification, namely radicals, incidentals, and 

any mention of parents, siblings, or item families are not consistently defined vis a vis the item 

generation process and definitions of these constructs are often incomplete (M. Gierl, personal 

communication, December, 2015; Gierl & Lai, 2013a; Sinharay & Johnson, 2013). For AIG 

researchers, effective synthesis of findings first requires translation. Competing models are 

consequently difficult to evaluate, compare, and apply to contexts other than those for which 

they were immediately developed, and even when estimation is possible, the resulting parameters 

are difficult to interpret (Alves, Gierl, & Lai, 2010; Cho et al., 2014; Gierl & Lai, 2013a, 2013b; 

Huff, Alves, & Pellegrino, 2013). It is difficult to say, across research efforts, exactly what is 

working and what might be emerging as best practices for pre-calibration. 

In an effort to address a persistent gap in the AIG literature, this chapter presents a 

conceptual framework and corresponding psychometric model that will support the pre-

calibration automatically generated items. The proposed framework looks to provide a clear 

vocabulary for describing the item generation process and also a roadmap for specifying an 

appropriate pre-calibration model.  

3.1 A New Conceptual Framework 

  The conceptual framework presented in the following sections embraces the complexity 

of the recently implemented integrated approaches to item generation and pre-calibration (i.e. 

Cho et al., 2014). The goal is that the framework is flexible enough to accommodate the 

complexities of layered and multistage item generation processes at level of generality that 

allows it to be broadly applicable to a range of topics within the AIG context (e.g., Gierl & Lai, 

2012; Gierl, Lai, & Turner, 2012). In an effort to promote clarity, particularly in the specification 
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of pre-calibration models, the proposed framework draws less from the realm of assessment 

engineering and more from language consistent with evidentiary argumentation and evidence-

based assessment (e.g. Mislevy & Riconscente, 2005).  

3.1.1 Components of the Item Generation Process 

Figure 4 visually summarizes the whole of the item generation process. This conceptual 

diagram highlights each of the components of this process, including a series of nested templates 

(item forms, item models, and parent items) and the variable content (form-level characteristics, 

primary and secondary content) to be integrated into those templates. Each of these components 

will be described in detail, beginning with the educational objectives which serve as the focus for 

sets of generated items, through to the algorithmic generation of specific instantiations that will 

appear as test items on a particular assessment. Each of these components and the relationships 

between them are described in detail in the sections that follow, beginning from the highest level 

and working down. 
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Figure 4. Item Generation Process for the Generative Process Model 
 

Educational Objectives and Cognitive Task Models. Whether automatically generated 

or developed manually, items are intended to elicit evidence about underlying competencies, 

skills, or abilities. At the core of the item generation process is therefore a set of educational 

objectives which motivate item development and inform the design of any automatic item 

generation process. Aligned to each objective is a cognitive task model which characterizes, at a 

fairly high level of abstraction, the assessment environment in which examinees will say, do, or 

create something.  

Effectively defining a cognitive task model requires both a comprehensive understanding 

of the construct being measured and a detailed understanding of the response processes 

governing examinees’ demonstration of proficiency (Gorin, 2005). Both are necessary for 

specifying a set of generative rules, or grammar (Bejar et al., 2003; Irvine, 2002), that serves to 
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structure the item development process from the top down. These models specify the 

characteristic features of each task that are essential to eliciting the desired evidence about what 

examinees know or are able to do (Mislevy & Riconscente, 2005; Mislevy, Steinberg, & 

Almond, 2003). Within the context of AIG, these task models identify those features of the 

assessment environment that will be systematically manipulated in order to produce items 

designed to target the same proficiency but with varying degrees of difficulty and evidentiary 

focus (Gierl & Lai, 2013; Mislevy & Riconscente, 2005).   

Item Forms. Cognitive models provide subject matter experts and test developers the 

framework necessary for developing wide array of assessment tasks targeting specific objectives. 

Item forms are each a unique realization of one possible structure for these tasks. Item forms are 

very abstract: each form is a template designed to accept a range of content that can be presented 

to the test taker in a variety of ways that nonetheless preserve essential task characteristics and 

maintain adequate alignment to the target objective(s).  

As an example of an item form, first imagine a set of items which could be designed to 

assess students’ understanding of probability. There are a number of ways that one might 

formulate a question about probability, including a question that is likely to be familiar to many, 

asking about drawing marbles from a jar. But a question about drawing marbles from a jar could 

also be formulated as a question about picking socks from a drawer or selecting balls from an 

urn. Each of these problems could be derived from a suitably generic and flexible template for a 

set of problems that involve the calculation of probability based on the selection of any object 

from a container among a group of similar objects with varying traits. This template is an 

example of an item form (Figure 5).   
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Figure 5. Example item form 

What here is referred to as an item form, a generic template which represents the first 

layer of an automated item generation process, appears elsewhere in the AIG literature as a 

template (Luecht, 2013) or an item shell (Deane, Graf, Higgins, Futagi, & Lawless, 2006). 

Unfortunately, neither of these terms are clearly defined in the literature relative to other 

components of the item generation process. In addition, “item shell” has a negative connotation, 

as it is most commonly used in the AIG literature to describe the shared characteristics of item 

clones (e.g., Gierl & Lai, 2012); and “template” is ambiguous given that algorithmic item 

generation is a template-based process.  

Form-level or Display Characteristics. Each item form specifies the structure for the 

assessment task, including the format and grammatical structure of the item stem, while making 

allowances for variation in presentation, including the response format and number of and 

dependencies among response options (Gierl & Lai, 2012) as well as the presence, content, and 

format of any auxiliary information such as tables, graphs, or images. Within the current 

framework, the variable features which determine the presentation of information are collectively 

referred to as form-level characteristics. Unique combinations of form-level characteristics 

should be designed to produce sets of items that address a common educational objective at 

levels of difficulty and complexity that are appropriate for learners of different abilities (e.g., 

Luecht, 2002, 2013). 

Item Models. The cross-classification of an item form with a particular combination of 

form-level characteristics produces an item model. Item models are still best understood as 
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templates, but they are more concrete than item forms, in that they fully describe the structure of 

the assessment task, its form and format, absent any of the content. In the context of automatic 

item generation, item models are of particular importance, because item models are the first 

generative product in any AIG process and represent a level at which pre-calibrated items could 

be banked. Item models are also an intermediate generative product, more well-specified than an 

“item shell” but also more abstract than a prototypical or parent item, for which there isn’t a 

good analog in the AIG literature. Figure 6 shows two example item model which could be 

generated from the item form shown previously. 

 

Figure 6. Example item models 

 Primary Content Integration. It is at this stage in the item generation process that 

content begins to be integrated into the item model. As discussed in the previous chapter, AIG 

researchers typically account for primary content integration through the inclusion of fixed 
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effects in a pre-calibration model (e.g., Cho et al., 2013; Embretson & Daniel, 2008; Sinaharay 

& Johnson, 2003). What is described here as primary content, is information that is directly 

relevant for the solution process and describes particular ranges or combinations of values that 

are expected to impact item difficulty. Importantly, these are not specific values but instead are 

specific categories or ranges of content. It is here, perhaps more than anywhere else, where the 

importance of a well-defined cognitive task model is evident. Primary content is referred to 

elsewhere in the AIG literature as design manipulations (Embretson, 1998; 1999), key content 

(Simpson et al., 2015), radicals (Gierl & Haladyna, 2013), or systemic manipulations (Gorin, 

2005).   

 

Figure 7. Example Parent Item 

Parent Items and Item Families. The algorithmic integration of primary content into 

item models produces parent items which share the same form but differ in their difficulty and 

complexity as a result of their specific content. This language of parent items aligned with item 

families, where instantiations generated within families are psychometrically equivalent or 

nearly equivalent, is intuitive and also prevalent throughout the AIG literature (e.g., Sinharay & 

Johnson, 2013) and is retained within this framework. 

 Secondary (Specific) Content Integration. The final step in the item generation process 

is the integration of specific and secondary content to generate specific instantiations of each 

parent item. Secondary content, also referred to as incidentals or as surface features within the 
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AIG literature (e.g. Sinharay & Johnson, 2003; 2013), describes the specific values that are 

integrated into a template but are not relevant to obtaining a correct solution to the item.  

 

Figure 8. Three example isomorphs with secondary content highlighted 

Secondary content, as illustrated in Figure 8 above, although not critical to the solution, is 

still necessary to produce a usable test item. Here, the secondary content includes the person who 

is acting as the agent in the problem (Bob), the particular objects and the container in which they 

are in (marbles in a jar), and the characteristics or traits (color) of those objects. Important within 

the AIG context, each of these contextual elements can be manipulated, either individually or in 

concert, in order to create items which are are designed to be equivalent to and will be pre-

calibrated with the assumption that they are exchangeable with all other items created from the 

same parent.  

It is important to note that the decision to avoid the language of “radicals” and 

“incidentals” when talking about content integration was deliberate. Both of those terms describe 

components of the item generation process, but within the literature both are defined vis-à-vis a 

pre-calibration model, e.g. a radical is a manipulation that has a systematic impact on item 

properties. A core tenet of this framework is to propose a vocabulary that will maintain a 
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distinction, both conceptually and linguistically, between the generation process and the 

psychometric model(s) that could be used to pre-calibrate the generated items.  

3.1.2 Summary 

Together, these different components and the relationships between them describe the 

key features and steps in item generation processes commonly described though perhaps not 

clearly or completely defined in the AIG literature. Each cognitive task model is aligned to a 

specific educational objective, and provides a framework guiding the item generation process.  

From each cognitive model, a set of unique item forms are developed using those specifications. 

From each form, multiple item models are generated by specifying different combinations of 

form-level characteristics, including the number of response options or the presence of graphic 

support. Item models describe completely the structure of the task absent any content. In the 

context of automatic item generation, item models and parent items are of primary importance 

because it is these intermediate generative products, rather than individual items, which are pre-

calibrated and banked. The algorithmic integration of key content into item models produces 

parent items which share a common form but differ in their difficulty and complexity as a result 

of their specific content. From each parent item a family of individual test items, or 

instantiations, are generated via the integration of secondary content which provides the context 

and color for the task. 



 

 

39 
 

 

Figure 9. Notional graphic illustrating the item generation process underlying the Generative Process Model 

3.2 The Generative Process Model 

The proposed conceptual framework can be readily translated into a pre-calibration 

model for automatically generated items.  Consistent with other models proposed for use in the 

AIG context, the proposed Generative Process Model (GPM) uses a multi-level framework to 

account for dependencies introduced by the item generation process and a combination of fixed 

and random effects to capture primary components of the generative process as described above. 

Unique among models proposed within the AIG literature, this model specifically incorporates 

parameters corresponding to intermediate generative products and the close alignment between 

model specification and the generative process is intended to support the direct assessment of the 

quality of the item generation process.  

The structure of the GPM is presented below using a Rasch model as the item response 

model at Level 1. A 2PL or 3PL model could also be estimated within this framework, though 

additional assumptions would need to be made in order to ensure identification and convergence 
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of estimates. A simple model was selected for this exposition in order to highlight the alignment 

between the conceptual framework and the parameterization of the mean structure of the GPM.  

3.2.1 Components of the Generative Process Model 

Level 1: The Item Response Model. The first-level model specfies the predicted log 

odds of success of person p on instantiation i, 𝜂௜௣(௝భ,௝మ)(௞భ,௞మ)௧, as a function of that person’s 

ability, and that particular item’s characteristics which are defined  by the various components of 

that item’s generative process. 

𝜂௜௣(௝భ,௝మ)(௞భ,௞మ)௧ = 𝜃௣ − 𝛽௜(௝భ,௝మ)(௞భ,௞మ)௧ 

It is important to note that not all examinees will interact with every item. However, 

missing responses to particular instantiations are considered to be missing at random and to 

improve readability without loss of generality, the pattern of missing data is not made explicit in 

the model notation (Geerlings, 2011). 

 Level 2: Item Family Mean and Within-Family Variation. Recall from the previous 

section that instantiations are differentiated from one another through the integration of 

secondary content. This integration of secondary content and the specification of different 

plausible values is expected to have some minor impacts on the properties of the resulting items, 

but not in a systematic way, and each instantiation generated from the same parent item is thus 

assumed to have the same average psychometric properties. Within each item family the effects 

of integrating secondary content are assumed to be random, and this is reflected in the Level 2 

specification of the GPM: 

𝛽௜(௝భ,௝మ)(௞భ,௞మ)௧ = 𝜇଴(௝భ,௝మ)(௞భ,௞మ)௧ + 𝑒௜(௝భ,௝మ)(௞భ,௞మ)௧, where 𝑒௜(௝భ,௝మ)(௞భ,௞మ)௧~𝑁൫0, 𝜎௘ ൯ 
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Persons as well as items are assumed to be random. The ability parameter, 𝜃௣is therefore also 

defined as a random effect, with a population mean of 𝜇ఏబ
 and a variance of 2

 . 

𝜃௣ = 𝜇ఏబ
+ 𝑢ఏ೛

, where 𝑢ఏ೛
~𝑁൫0, 𝜎ఏ ൯ 

Items and persons are cross-classified, and the person residuals and item residuals are assumed to 

be independent. For identifiability in estimation, the assumption is that abilities are normally 

distributed with a mean of zero and standard deviation of one, 𝜃௣~𝑁(0,1). 

 Level 3: Item Model Mean and Primary Content Integration. Secondary content is 

assumed to have only minor and unsystematic impacts on item properties. In contrast, assigning 

different values to primary content elements is expected to systematically impact the 

psychometric properties of generated items, yielding parent items which differ from one another 

depending on the item model used to generate the parents and the particular combination of 

content features. This is reflected at Level 3 of the GPM, where the difficulty of each parent item 

is decomposed into the difficulty of the corresponding item model and the combined effects of 

the content integration:  

𝜇଴(௝భ,௝మ)(௞భ,௞మ)௧ = 𝜋଴଴(௞భ,௞మ)௧ + 𝜋଴ଵ(௞భ,௞మ)௧𝑋ଵ + 𝜋଴ଶ(௞భ,௞మ)௧𝑋ଶ + 𝑢଴௝భ(௞భ,௞మ)௧ +  𝑢଴௝మ(௞భ,௞మ)௧, 

where 𝑢଴௝భ(௞భ,௞మ)௧~𝑁൫0, 𝜎௝భ
൯ and 𝑢଴௝మ(௞భ,௞మ)௧~𝑁൫0, 𝜎௝మ

൯ 

𝑋ଵand 𝑋ଶare design variables set equal to 1 when key content manipulations are present, and 0 

otherwise. Only two effects are shown here for simplicity of exposition. This could be the 

summation of many more effects (e.g. Cho et al, 2014). As noted before, these effects reflect 

specific hypotheses about how variation in primary content will impact response processes. The 

effects included in the model to capture the impact of content integration are selected from a 

universe of possible effects; and because they summarize across values the coded effects are 

unlikely to fully capture the impact of primary content integration. There is consequently likely 
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to be some variation above and beyond what can be predicted by the specified fixed effects, and 

residuals are also included in the pre-calibration model at this level. Although a number of the 

hierarchical models proposed for use in AIG frameworks include second-level residuals (e.g. 

Cho et al., 2013; Geerlings, 2011), the rationale is typically statistical rather than acknowledging 

explicitly the potential “gap” between the pre-calibration model and the item generation process 

and the underlying response process. 

Level 4: Item Form Mean and Form-Level Characteristics. The structure of Level 4 

of the GPM mirrors that of Level 3. The difficulty of each item model is decomposed into the 

difficulty of the corresponding item form and the combined effects of the particular combination 

of display characteristics. 

𝜋଴଴(௞భ,௞మ)௧ = 𝛾଴଴଴௧ + 𝛾଴଴ 𝑍ଵ + 𝛾଴଴଴ଶ 𝑍ଶ + 𝑣଴଴௞భ௧ + 𝑣଴଴௞మ௧, 

where 𝑣଴଴௞భ௧~𝑁൫0, 𝜎௞భ
൯ and 𝑣଴଴௞మ௧~𝑁൫0, 𝜎௞మ

൯ 

𝑍ଵand 𝑍ଶare design variables set equal to 1 when key form-level characteristics are present, and 

0 otherwise.  Again, only two effects are shown in this discussion, representing, for example, the 

inclusion of graphic support on the one hand or the utilization of four randomly generated 

response options instead of using, as shown in Figure 6, an open-format response.  

Level 5: Grand Mean and Variation Across Item Forms. The difficulty of each item 

form is parameterized at Level 5 as being drawn from a larger population all possible tasks that 

could be used to gather evidence about the targeted educational objective: 

𝛾଴଴଴ = 𝜔଴଴଴଴ + 𝑤଴଴଴ , where 𝑤଴଴଴௧~𝑁(0, 𝜎௪). 
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3.2.2 Summary 

 The Generative Process Model incorporates cross-classified fixed and random effects 

within a hierarchical structure that captures as completely as possible the item generation 

process. Using a Rasch model as the item response model at Level 1, the log odds of a correct 

response to an item generated via a multi-layered generation process can be written as follows:  

𝜂(௜,௝)௣(௠,௞)(௧,௖) = 𝜃௣ − (𝜔଴଴଴଴ + 𝛾଴଴଴ଵ௧𝑍ଵ + 𝛾଴଴଴ଶ௧𝑍ଶ + 𝜋଴ଵ(௞భ,௞మ)௧𝑋ଵ + 𝜋଴ଶ(௞భ,௞మ)௧𝑋ଶ

+ 𝑒௜(௝భ,௝మ)(௞భ,௞మ)௧ + 𝑢଴௝భ(௞భ,௞మ)௧ + 𝑢଴௝మ(௞భ,௞మ)௧ + 𝑣଴଴௞భ௧ + 𝑣଴଴௞మ௧ + 𝑤଴଴଴௧) 
(3.1) 

where 𝛽௜(௝భ,௝మ)(௞భ,௞మ)௧ is the difficulty of the ith generated item within an item family defined by 

the corresponding template t and unique combinations of key content and display characteristics. 

Item difficulties are randomly distributed around their family means, 𝜇଴(௝భ,௝మ)(௞భ,௞మ)௧. Each family 

mean is decomposed into the mean of the item model and the cross-classified primary content 

manipulations as well as the random effects 𝑢଴௝భ(௞భ,௞మ)௧ and 𝑢଴௝మ(௞భ,௞మ)௧. The mean of each item 

model, 𝜋଴଴(௞భ,௞మ)௧, is jointly defined by its template mean, 𝛾଴଴଴௧, and display characteristics as 

well as the random effects, 𝑢଴଴ భ௧ and 𝑢଴଴௞మ௧. The item forms used to seed the item generation 

process represent a sample of all possible tasks that could be used to gather evidence about the 

targeted educational objective.  

3.2.3 Additional Considerations 

An Extension. The framework presented in this chapter is designed to support a program 

of research whereby “validation is built into test development” (Gitomer & Bennett, 2002). The 

cognitive task model provides the guiding theoretical framework for distinguishing between 

primary and secondary content; and the corresponding fixed and random effects represent 

testable hypotheses derived from that framework. Within this framework, item generation is re-

imagined a template-based process where content is iteratively integrated, and the proposed pre-
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calibration model leverages a cross-classified structure in order to support the estimation of the 

properties of intermediate generative products, parent items, item forms, and item models. The 

granularity at which the generation process is defined and the corresponding statistical model is 

specified is unique within the AIG literature, as is the use of cross-classification to capture 

content integration. The proposed benefits of this framework are its flexibility, and its utility. 

Using this framework, estimated parameters of any of the generative products could be used for 

item banking.  Additionally, by virtue of the close alignment between the generative process and 

the parameterization of the Generative Process model, the variance components at each level also 

could also inform the evaluation and refinement of the item generation process.  

Future Application. The proposed definitions of the various process and model 

components presented in this chapter are intended to strike a critical and delicate balance: 

specific enough to support the interpretation of model parameters but at a level of abstraction 

that allows the framework to be broadly applicable to a range of topics within the AIG context. 

While this balance is achievable in theory, it is worth demonstrating how a conceptual 

framework that is sufficiently abstract to be generalizable can also be successfully applied. The 

goal of the next chapter is to explore the utility of the proposed framework through an analysis of 

item response data collected from the online administration of algorithmically generated items 

designed to assess elementary school students’ computational fluency with addition, subtraction, 

and multiplication during the Summer Math Challenge Program (Simpson, Elmore, Bickel, & 

Price, 2015). The analysis is informed by a series of targeted simulation studies which examine 

the performance of the proposed mathematical model under a limited set of conditions which 

more closely resemble studies in the applied AIG literature versus the idealized conditions 

typically featured in the simulation literature.  
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Chapter 4:  A Targeted Simulation and an Empirical Illustration 

  The AIG literature is, by definition, forward-thinking. Generation approaches and pre-

calibration models are both being designed with the future in mind. In this future, item 

generation systems are well-oiled machines, both literally and figuratively, producing tens of 

thousands or even hundreds of thousands of items. That imagined future, however, does not map 

well onto the current reality of applied AIG research, where the total number of items being 

generated is within the range of tens or hundreds, albeit with a few notable exceptions (e.g., Gierl 

& Lai, 2012; Gierl, Lai, & Turner, 2012). And even in those cases where large numbers of items 

are being generated, the number of templates used to produce those items is not large, and item 

generation processes typically feature relatively few manipulations.  In fact, particularly when a 

domain is well-understood by subject matter experts and the generation process is well-defined, 

AIG researchers may be forced to contend with small sample sizes. 

 Recent work by Simpson and colleagues (2015) is an illustrative case in point. In their 

initial evaluation of items generated for the Summer Math Challenge Program, Simpson and 

colleagues (2015) demonstrated that a large proportion of the variance in generated item 

difficulty could successfully be explained through a limited number of characteristics, coded at a 

relatively coarse grain-size. In fact, three features were identified as key drivers for the 

generation of thousands of like items. Drawing on that work, the item generation process was 

refined to systematically manipulate only a few key features that could be clearly defined and 

also resonated with content experts. These features were coded as binary design variables: sets of 

items were generated to have operands with a maximum of three digits or two, operands could be  

multiples of 10 or not, operands were paired so that students needed to employ regrouping as a 

solution strategy or not. The relative simplicity of this solution to the thorny problem of domain 
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modeling is compelling but it also highlights what could be a tension in AIG research: simple 

engineering solutions may present estimation challenges for those looking to pre-calibrate 

generated items, particularly given the ubiquity in AIG literature of increasingly complex 

hierarchical models.  

 The primary objective of this chapter is to demonstrate the applicability of the 

Generative Process Model through an analysis of item response data collected during the 

Summer Math Challenge Program (Simpson et al, 2015). The characteristics of these data 

additionally inform a series of targeted simulation studies which examine the performance of the 

proposed mathematical model within sample size constraints that AIG researchers may need to 

consider more deeply as they look to advance models for pre-calibration and understand the 

conditions under which model estimates can be meaningfully interpreted. More detail on the 

items generated for use during the Summer Math Challenge Program is provided in the next 

sections. 

4.2 The Summer Math Challenge Program and the Math Item Generator  

 During the summer of 2014, more than 1,500 students participated in the MetaMetrics 

Summer Math Challenge Program (MetaMetrics, Inc., 2015). This elective online program 

provided students with supplemental math instruction during the summer months. The program 

offered students helpful hints for problem-solving, the opportunity to play math-centric online 

games, and provided weekly fluency exercises targeting specific constellations of math skills. 

The Math Item Generator (MIG), a template-based algorithmic item generation system, was used 

to produce the items included on those weekly exercises (Kellogg et al, 2015; Simpson et al, 

2015) using a template-based approach that is illustrated in Figure 10 and described in detail in 

the following sections. 



 

 

47 
 

 
Figure 10. Illustration of generative process and products for example QSC, Item Form, and Item Model 

4.2.1 Components of the Item Generation Process 

QSCs and Educational Objectives. The core content and structure of the MIG is 

provided by the Quantile® Framework for Mathematics (MetaMetrics, Inc., 2011), which is 

comprised of approximately 550 K-12 mathematical skill and concept bundles that are aligned to 

Common Core Standards and also to grade-level knowledge and performance standards for 

selected states. Each of these Quantile Skills and Concept (QSC) bundles is a detailed and 

operationalizable description of mathematical skills and concepts that have been validated and 

empirically scaled (MetaMetrics, Inc., 2011). Each bundle describes a specific educational 

objective which the items generated by the MIG are designed to assess. The Summer Math 

Challenge Program fluency exercises feature 902 items aligned to one of eleven QSCs, as shown 

in Table 1 below.  

 



 

 

48 
 

Table 1. Distribution of Items and Observations by QSC 

QSC Description 

Items Observations 

N Pct N Pct 

1 Add 3 single-digit numbers in number and word problems. 34 4% 3,190 4% 

2 Use addition and subtraction facts to 20. 30 3% 2,116 3% 

3 Add 2- and 3-digit numbers with and without models for number 
and word problems that do not require regrouping. 

124 14% 9,245 11% 

4 Use multiplication facts through 144. 94 10% 8,851 11% 

5 Rewrite and compare decimals to fractions (tenths and 
hundredths) with and without models and pictures. 

66 7% 6,391 8% 

6 Find the fractional part of a whole number or fraction with and 
without models and pictures.  

125 14% 7,136 9% 

7 Know and use division facts related to multiplication facts 
through 144. 

143 16% 20,684 25% 

8 
Estimate and compute products of whole numbers with multi-
digit factors. 

95 11% 6,103 7% 

9 
Add and subtract fractions and mixed numbers with like 
denominators (without regrouping) in number and word 
problems.  

21 2% 1,681 2% 

10 Estimate and compute sums and differences with decimals.  54 6% 5,856 7% 

11 Subtract 2- and 3-digit numbers with and without models for 
number and word problems that do not require regrouping. 

116 13% 10,131 12% 

 
Item Forms. Aligned to the eleven QSCs, a total of fifteen item forms were identified, 

where each item form is defined – as illustrated in Figure 10 - by the unique combination of an 

educational objective and a particular mathematical operation. Error! Reference source not 

found. provides a brief description of each item form, along with the corresponding QSC and 

focal mathematical operation. Consistent with any template-based generation process, 

descriptions at this level are relatively generic, allowing for a range of different items to be 

generated from each form.   

Table 2. Distribution of Items and Observations by Item Form 

Item 
Form QSC Operation Description 

Items Observations 

N Pct N Pct 

1 1 Addition 
Add 3 single-digit numbers in number and 
word problems. 

34 4% 3,190 4% 

2 2 Addition Use addition facts to 20. 15 2% 1,089 1% 

3 2 Subtraction Use subtraction facts to 20. 15 2% 1,027 1% 

4 3 Addition 
Add 2- and 3-digit numbers with and 
without models for number and word 
problems that do not require regrouping. 

124 14% 9,245 11% 
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5 4 Multiplication Use multiplication facts through 144. 94 10% 8,851 11% 

6 5 Decimals 
Rewrite and compare decimals to fractions 
(tenths and hundredths) with and without 
models and pictures. 

28 3% 2,618 3% 

7 5 Fractions 
Rewrite and compare decimals to fractions 
(tenths and hundredths) with and without 
models and pictures. 

38 4% 3,773 5% 

8 6 Multiplication 
Find the fractional part of a whole number or 
fraction with and without models and 
pictures.  

125 14% 7,136 9% 

9 7 Division 
Know and use division facts related to 
multiplication facts through 144. 

143 16% 20,684 25% 

10 8 Multiplication 
Estimate and compute products of whole 
numbers with multi-digit factors. 

95 11% 6,103 7% 

11 9 Addition 
Add fractions and mixed numbers with like 
denominators (without regrouping) in 
number and word problems.  

6 1% 583 1% 

12 9 Subtraction 
Subtract fractions and mixed numbers with 
like denominators (without regrouping) in 
number and word problems.  

15 2% 1,098 1% 

13 10 Addition Estimate and compute sums with decimals.  28 3% 2,972 4% 

14 10 Subtraction 
Estimate and compute differences with 
decimals.  

26 3% 2,884 4% 

15 11 Subtraction 
Subtract 2- and 3-digit numbers with and 
without models for number and word 
problems that do not require regrouping. 

116 13% 10,131 12% 

 
Form-level Characteristics and Item Models. From each item form, the MIG produces 

sets of items that were either rendered as word problems or presented in numerical format, and 

displayed either horizontally or vertically (see Figure 11 below).  Given the expectation that 

display format will systematically impact item difficulty (e.g., Simpson et al., 2015), display 

format is understood as the next layer of the generation process that will be parameterized as a 

fixed effect within the pre-calibration model. Each unique combination of a QSC, a 

mathematical operation, and a particular display format is conceptualized an item model, 

yielding 27 unique item models. provides an illustration of how item models might align with an 

item form and an overarching educational objective.  
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Figure 11. Example QSC, Item Form, and Item Models 

 

Content Integration. As noted at the beginning of the chapter, the item generation 

process used by MetaMetrics was developed to systematically manipulate only a few key 

features, yielding sets of items with a maximum of two digits between the two operands, those 

with a maximum of three digits, items featuring numbers that are multiples of 10, and items 

requiring students to employ regrouping. These features, crossed with each of the 27 item models 

yields 45 parent items, each featuring key content displayed in a particular way and aligned to a 

specific QSC and mathematical operation. Error! Reference source not found. shows the 

combinations of each of the four characteristics, QSCs, and mathematical operations that 

characterize each item family identified in the response data from the Summer Math Fluency 

exercises. For readability, not shown in the table are the display formats of these items.  

 

Table 3. Distribution of Items across QSC, Operation, and Coded Content Features 

QSC Operation Multiple of 10 
Max Digits  

= 2 
Max Digits  

= 3 Regrouping Number of Items 

1 Addition 0 0 0 0 34 

2 Addition 0 1 0 1 15 

2 Subtraction 0 1 0 1 15 

3 Addition 0 1 0 0 25 

3 Addition 0 0 1 0 26 

3 Addition 1 1 0 0 23 

3 Addition 1 0 1 0 23 

4 Multiplication 0 0 0 1 94 

5 Decimals/Fractions 1 1 0 0 9 
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5 Decimals/Fractions 1 0 1 0 19 

5 Decimals/Fractions 1 1 0 0 9 

5 Decimals/Fractions 1 0 1 0 20 

6 Multiplication 0 0 0 1 125 

7 Division 0 0 0 1 143 

8 Multiplication 1 1 0 1 35 

8 Multiplication 0 1 0 1 31 

8 Multiplication 0 0 1 1 29 

9 Addition 0 0 0 0 6 

9 Subtraction 0 0 0 0 15 

10 Addition 0 0 0 1 15 

10 Addition 0 0 0 1 13 

10 Subtraction 0 0 0 1 12 

10 Subtraction 0 0 0 1 14 

11 Subtraction 0 0 1 0 4 

11 Subtraction 1 1 0 0 4 

11 Subtraction 1 0 1 0 4 

11 Subtraction 0 1 0 0 24 

11 Subtraction 0 0 1 0 20 

11 Subtraction 1 1 0 0 20 

11 Subtraction 1 0 1 0 18 

 
Item Families. The total number of items generated from each parent item (within each 

item family) ranges from 1 to 186. These families of items generated from each parent item are 

expected to have similar if not identical psychometric characteristics. Figure 10 illustrates how a 

variety of items might be generated from one item form aligned to a particular QSC through the 

variation of secondary content. 

4.2.2 A Challenge for Pre-Calibration 

Using the MIG, over 6,000 items were generated for use in the Summer Mathematics 

Program; and each generated item is the product of particular types of numbers, arranged and 

displayed in a particular format, combined using one or more mathematical operations, in order 

to assess students’ proficiency relative to a specific set of mathematical skills and concepts 

which align to targeted grade-level standards.  
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The item generation process was designed by curriculum experts and psychometricians 

who worked to identify the key semantic and syntactic components of tasks which would, 

according to current theory and research, be likely to impact task difficulty (Kellogg et al, 2015).  

Researchers identified the set of features which could be manipulated to either affect students’ 

problem representation or to increase the number of steps required to reach a desired solution, 

thereby increasing the difficulty of the task. Within constraints designed to ensure generated 

items’ alignment to stated educational objectives, the MIG system was designed to 

systematically manipulate these key features as well as additional secondary or surface-level 

item characteristics to produce a large number of high-quality items of varying degrees of 

difficulty which target the same set of skills.   

By all accounts, the MIG is a well-designed item generation system, generating 

thousands of items, but those items are the product of fewer item families, which are derived 

from fewer item models, which are aligned with only 15 item forms. The majority of the items 

available in the initial calibration sample align to only three of these forms, which target 

addition, multiplication, and subtraction (Figure 12).  

Throughout the AIG literature there seems to be an assumption that pre-calibration will 

be aided by better engineering, but given the complexity of the model proposed for pre-

calibration, the reality of the structure of these data raise some important questions. The next 

section describes a targeted parameter recovery study designed to examine how well generating 

values can recovered when sample sizes at the upper levels of the model are small, in line with 

both the motivating example of the Summer Math Challenge Program and the applied AIG 

literature more broadly.    
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Figure 12. Distribution of Items and Mean Empirical Log Odds by Item Family and Item Form 

4.3 Simulation Design 

4.3.1 Simulation Objectives 

Overall, the simulation study was designed to answer a simple question: given a limited 

number of item forms and a very efficient item generation process, how well does the Generative 

Process Model perform in an initial item calibration? Can the model successfully recover the 

generating parameters well enough that the estimates obtained during the initial calibration be 

sensibly used in pre-calibrating generated items? Finally, might the parameter estimates possibly 

provide some insight into the quality (consistency or inconsistency) of the underlying generation 

process?  

4.2.2 Simulation Conditions 

In thinking about the study design, it was necessary to balance a few different 

considerations. On the one hand, it was necessary to have some degree of alignment with the 

characteristics of the motivating data and context. But the study parameters cannot be so 
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narrowly defined that the study fails to be generalizable beyond that immediate context. In an 

effort to balance these concerns, the study was designed so that the number of components of the 

generation process and the complexity of that process were matched to the applied data. In order 

to promote generalizability, an effort was made to define study conditions that challenge what is 

often the central assumption underlying most AIG As outlined in Table 4: item difficulties and 

item response data were generated as if items were automatically generated through a well-

designed and well-understood process, through a process that is poorly designed and not well 

understood, and through a process that generates items of variable quality.  

 
Table 4. Generation Process Quality  

    Generation Process 

  Well-
Designed 

Poorly 
Designed 

Inconsistent Quality 

    
Item Form 

1 
Item Form 

2 
Item Form 

3 
Within-family 

variance 
0.1 0.4 0.1 0.1 0.4 

Variance 
Explained by 

Design 
Features 

Level 
2 

75% 40% 75% 75% 40% 

Level 
3 

75% 40% 75% 75% 40% 

 

This variations in the quality of the item generation process were achieved by applying different 

sets of parameters to the data generation process: different degrees of within-family variation and 

adjusting the percentage of total variation explained by the fixed effects at each level.  Given that 

a well-designed item generation process is typically assumed, the values were selected based on 

a review of applied AIG research. Across modeling approaches (including the LLTM and its 

multi-level variants), the percentage of variance in item difficulty successfully predicted by AIG 

researchers seeking to link response probabilities to item features typically ranges between 50% 

and 90% (e.g., Enright et al., 2002; Gorin, 2005), informing the percentage of variance explained 
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in this study. In studies on item cloning, within-family variation is commonly set between 0.1 

and 0.5 (Geerlings, Glas, & van der Linden, Glas & van der Linden, 2003; Sinharay, Johnson, 

Williamson, 2003). Variations in the quality of the item generation process were crossed with 

factors denoting the complexity of the item generation process to yield a set of 27 conditions for 

the parameter recovery study. 

Table 5. Summary of Simulation Conditions 

Factor Levels Number of Levels 

Quality of Generation Process  

Well-Designed, 
Poorly 

Designed, 
Inconsistent 

3 

Number of Design Features at Level 3 2, 3, 4 3 
Number of Design Features at Level 2 2, 3, 4 3 
Number of conditions 27 
Number of replications per condition 50 

4.2.1 Data Generation  

Statistical investigations of AIG are unique in that a population of items needs to be 

generated so that a sample of items can be drawn and administered, rather than thinking only 

about drawing a sample of examinees from a larger (theoretical) population. Because items are 

conceptualized as random and also parameterized as random in pre-calibration models, it is 

Important to the AIG context, items must be generated as a population. This was accomplished 

by first generating a matrix of item difficulties, then calculating a complete set of response data, 

and assembling data for each replication from that response matrix. This approach is similar to 

the methodology for generating response data detailed by Leucht (2012) and used elsewhere in 

the AIG literature (e.g. Geerlings, Glas, & van der Linden, 2011). 

As a first step, people and items are generated separately. First, an ability vector, 𝜃௣, was 

drawn for 250 simulees according to a normal unit distribution. This number of people was 

selected to be consistent with the number of students included in the data received from the 
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Summer Math Challenge Program. Second, a complete matrix of item difficulties was calculated 

consistent with the Generative Process Model (  

Important to the AIG context, items are generated as a population rather than as a limited 

sample of items so that they might be appropriately modeled as random. The total number of 

items generated for the simulation therefore far exceeds the number that is considered in any 

single replication or even in the study as a whole: a total of 160,000 unique items were 

generated. These items were derived from 1,000 simulated item forms, and between two and four 

display features were manipulated on each of those forms to yield between 8 and 16 item models 

per form (8,000 – 16,000 total item models), and between 8 and 16 prototypical items were 

generated from each form (64,000 – 225,000 total item families). From each prototypical item, 

10 instantiations were generated which differ from one another only in surface features to yield 

between 640,000 and 2,250,000 items per condition.  

The next step is to calculate a complete response probability matrix for every person-

item combination using Equation 3.1, with the appropriate number of fixed effects as described 

in Table 5. Each of the design features are all binary, with the value of each coefficient defined 

following Dardick & Harring (2008) so that the desired proportion of the variation between item 

families and between item models (40% or 75%) is explained by the linear combination of those 

features. As noted in the previous section, the within-family variation, is a simulation condition, 

and so 𝜎௘
ଶ is either equal to .1 or .4. Item forms were defined as which are normally distributed 

with a mean of 𝜔଴଴଴଴ = 0 and a variance 𝜎௪
ଶ =1. The total variances at Levels 2, 3 were set at 0.6, 

0.8, which is consistent with values found elsewhere in literature on the calibration of item 

families (DeBoeck, 2008; Sinharay & Johnson, 2005). 
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Following the calculation of the log odds of a correct response for each person-item 

combination, the inverse logistic function is used to transform that probability matrix into a 

matrix of dichotomous response data, where each row represents a complete response vector for 

each person. Response data are generated in this way once per condition to ensure consistency of 

response data within each condition (so that if a person “encounters” the same item more than 

once, the response vector is not inconsistent by chance), and random seeds were specified within 

the generation code to facilitate comparisons across conditions by minimizing sources of 

sampling variability.  

 Response data for each replication within each condition was assembled by drawing two 

samples: the first from among the available item pool, and the second from available simulees. 

For each replication, three item forms were selected at random and without replacement from the 

1,000 available. For every item derived from each of those templates, the responses from 75 

simulees were selected at random from the response matrix. Each person could only encounter 

each item once, though no restrictions were placed on how many or which items each person 

might see that were derived from the same item form and/or shared common design features. 

These values were again chosen to align with the empirical data, where only three item forms are 

available for investigation, and there are few restrictions on how students choose to interact with 

practice items.  

 Within each condition, the response data used for each replication was therefore 

comprised of (3 item forms) x (8-16 item models) x (8 x 16 prototypical items) x (10 

instantiations per family) x (75 observations per item) = 11,390 – 45,560 rows, with each row 

containing a unique identifier denoting the person, an identifier for the item, and a dichotomous 

score variable. Each response was also indexed by relevant features of the generation process: an 
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identifier for item form and either a “1” or a “0” denoting the presence or absence of each of the 

design features denoting the integration of particular display characteristics or content. As noted 

above, a total of fifty replications were completed for each condition. 

 
4.2.3 Analytic Model 

 For data generated under the well-designed and poorly designed conditions, the 

analytic model was specified to include template estimates as fixed effects, where the log odds of 

a correct response, 𝜂(௜,௝)௣(௠,௞)(௧,௖), can be written as,  

𝜂(௜,௝)௣(௠,௞)(௧,௖) = 𝜃௣ − (𝛾଴଴଴ଵ + 𝛾଴଴଴ଶ + 𝛾଴଴଴ଷ + 𝛾଴଴଴ଵ଴𝑍ଵ + 𝛾଴଴଴ଶ଴𝑍ଶ + 𝜋଴ଵ଴଴଴𝑋ଵ + 𝜋଴ଶ଴଴଴𝑋ଶ

+ 𝑒௜(௝భ,௝మ)(௞భ,௞మ)௧ + 𝑢(௝భ,௝మ)(௞భ,௞మ)௧ + 𝑣଴(௞మ,௞భ)௧) 

For data generated under the Heterogeneous condition, a vector of values is estimated for 

each of the coefficients and each of the variance components to allow for variation across items 

generated from each template. In this condition, the log odds of a correct response is written as, 

𝜂(௜,௝)௣(௠,௞)(௧,௖) = 𝜃௣ − (𝛾଴଴଴ଵ + 𝛾଴଴଴ଶ + 𝛾଴଴଴ଷ + 𝛾଴଴଴ଵ 𝑍ଵ + 𝛾଴଴଴ଶ௧𝑍ଶ + 𝜋଴ଵ(௞భ,௞మ)௧𝑋ଵ

+ 𝜋଴ଶ(௞భ,௞మ)௧𝑋ଶ + 𝑒௜(௝భ,௝మ)(௞భ,௞మ)௧ + 𝑢(௝భ,௝మ)(௞భ,௞మ)௧ + 𝑣଴(௞మ,௞భ)௧) 

 
4.2.4 Verification of Generation Process and Analytic Model 

Additional analyses were conducted prior to conducting the simulation in order to confirm that 

the data were being generated correctly. Using the full set of generated items, item difficulties 

were examined using a hierarchical model coded using the lme4 package to confirm that the 

random effects could be successfully recovered. As a second step, item parameters were 

estimated from a complete set of 12,000,000 generated responses (1,000 templates, two 

covariates each at levels 2 and 3, with 10 items per family and 75 observations per item). 

Parameter recovery was attempted under this “large sample” condition given the expectation that 
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small sample sizes are unlikely to support accurate parameter recovery, even if the data 

generation model and analytic model were correctly coded and applied. The generating model 

was used as the analytic model, and estimated under the same conditions as are outlined above. 

Generating parameters were satisfactorily recovered, as shown in Table 6 below. 

 
Table 6. Generating Values and Parameter Estimates from “Large Sample” Condition 

 True Value Est. Mean 95% HDI Eff N R-hat 

𝜎௘ 0.316 0.307 (0.3, 0.314) 2951 1.001 
𝜎௨ 0.387 0.386 (0.369, 0.404) 1991 1.003 
𝜎௩ 0.447 0.434 (0.39, 0.477) 1008 1.005 
𝜎௪ 1 1.078 (0.938, 1.248) 768 1.003 

𝜋଴ଵ଴଴ 0.949 0.915 (0.874, 0.957) 1502 1.007 
𝜋଴ଶ଴଴ 0.949 0.883 (0.845, 0.923) 1781 1.003 
𝛾଴଴ଵ଴ -1.095 -1.004 (-1.097, -0.908) 2098 1 
𝛾଴଴ଶ଴ -1.095 -1.099 (-1.194, -1.006) 2020 1 
𝜔଴଴଴଴ 0 0.051 (-0.22, 0.305) 279 1.03 

 

4.2.5 Estimation  

Estimation was performed using RStan to facilitate the estimation of cross-classified 

fixed and random effects (Stan Development Team, 2015). Each model was estimated using six 

chains with 5,000 burn-in iterations and 1,000 samples after warm-up. Each chain was initialized 

with random starting values. A non-centered parameterization was used when estimating the 

variances for each model. Half-normal priors were specified for each variance parameter that 

was estimated, with the upper bound of those priors estimated using half-normal N(0,.5) 

hyperpriors. In all cases, the ability parameter, 𝜃௠ is specified a normal variate, with a mean of 0 

and standard deviation equal to 1. Following estimation, trace plots and sampling parameters for 

each chain were examined for convergence, in addition to monitoring divergences and Rhat 

values for each parameter.  
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4.3 Simulation Results 

4.3.1 Study 1: Varying the Number of Item Models and Families 

The results from the first simulation study are shown in Error! Reference source not found. 

and Table 8, which contain the relative bias of the parameter estimates and the empirical 

variation of those estimates, calculated across replications. Consistent with the literature 

examining the impact of small samples in hierarchical modeling and latent modeling 

frameworks, generating parameters are not well-recovered, particularly at the upper levels of the 

model.  

As shown in Error! Reference source not found., fixed effects are consistently 

underestimated. The bias is most severe for the estimates of template means, which were treated 

as incidental clusters; estimates of fixed effects at level two are the least biased, particularly 

when there are more covariates included at level 3 in the model. Similar to the estimates of fixed 

effects, variance estimates at level 3 are the most biased and the estimates of within family 

variance most closely match the generating parameters. In addition, the estimated variances more 

closely match the generating parameters when more covariates are included at level 3. Unlike the 

fixed effect estimates, variances are not consistently underestimated. Specifically, the variance 

between families within item models (calculated at level 2) is consistently overestimated.  

4.3.2 Study 2: Varying the Quality of the AIG Process 

Consistent with expectation, when items are poorly designed, meaning there is greater variability 

among items within item families and the manipulated design features explain less of the total 

variance at the upper levels of the model, there is a negative impact on the quality of the 

resulting estimates. What was unexpected was that only the recovery of fixed effect parameters 

appears to be impacted Table 9 and Table 10). Assuming the number of covariates in the model 
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are the same, the bias in the estimates of fixed effects under the poorly designed condition is 

approximately twice what it would be if the items were well designed and the calibration model 

was well-aligned to that process. The relative bias and variability of both the estimates of within-

family variation and residual variances at the upper level of the model are similar in both the 

well-designed and poorly designed conditions. Similar to the pattern of results in the first study, 

what does seem to affect parameter recovery is the number of covariates in the model. In both 

the poorly designed and well-designed condition, when there are three covariates at levels two 

and three, meaning there are eight item models within each template and eight families within 

each item model, the residual variance at level 3 is no longer under-estimated, and the variances 

at levels 1 and 2 are consistently well-recovered.  
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Table 7. Relative Bias for Template Means, Fixed and Random Effects Across Conditions, Study 1 

Number of Covariates Template Means Fixed Effects Random Effects 

Level 3 Level 2 t1 t2 t3 c13 c23 c33 c43 c12 c22 c32 c42 u v w 

2 2 -139.6 -197.6 -146.0 -36.4 -3.8     -18.3 16.1     0.7 24 -51.7 

 3 -4.2 5.3 -448.7 5.6 -16.7     -9.9 -6.4 2   -2.4 1.8 -86.5 

 4 -90.5 -827.6 -56.7 29.8 -46.6     -2.6 -9.6 -12.5 24.4 -1.3 11.8 14.8 

3 2 -57.0 -1713.5 -110.3 -13.4 -4.3 -9.4   -1.5 7.9     -4.6 9.7 -27.9 

 3 -147.0 -158.0 -235.1 3.6 -4.5 -25.3   2.2 -6 8.3   1.5 1.6 35.2 

 4                             

4 2 -75.2 -752.4 -17.1 -55 -3.6 -29 -10.3 -1.8 -13.1     0.1 11.9 21 

 3                             

  4                             
 
 
Table 8. Variability of Estimates for Template Means, Fixed and Random Effects Across Conditions, Study 1 

Number of Covariates Template Means Fixed Effects Random Effects 

Level 3 Level 2 t1 t2 t3 c13 c23 c33 c43 c12 c22 c32 c42 u v w 

2 2 0.031 0.034 0.029 0.024 0.019     0.023 0.022     0.014 0.013 0.023 

 3 0.027 0.028 0.026 0.018 0.021     0.016 0.019 0.018   0.012 0.012 0.006 

 4 0.018 0.022 0.019 0.015 0.014     0.014 0.012 0.012 0.013 0.007 0.007 0.009 

3 2 0.019 0.022 0.020 0.016 0.014 0.014   0.015 0.013     0.010 0.012 0.015 

 3 0.017 0.019 0.019 0.014 0.015 0.015   0.010 0.012 0.013   0.007 0.008 0.007 

 4                             

4 2 0.018 0.019 0.017 0.012 0.014 0.014 0.012 0.013 0.010     0.008 0.007 0.009 

 3                             

  4                             
Note: Not all combinations of factors were fully explored. The shaded areas of the table indicate where no data is available. 
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Table 9. Relative Bias for Template Means, Fixed and Random Effects Across Conditions, Study 2 

  Number of Covariates Template Means Fixed Effects Random Effects 

 Level 3 Level 2 t1 t2 t3 c13 c23 c33 c43 c12 c22 c32 c42 u v w 

Well-
Designed 

2 2 -139.6 -197.6 -146.0 -36.4 -3.8     -18.3 16.1     0.7 24 -51.7 

 3 -4.2 5.3 -448.7 5.6 -16.7     -9.9 -6.4 2   -2.4 1.8 -86.5 

3 2 -57.0 -1713.5 -110.3 -13.4 -4.3 -9.4   -1.5 7.9     -4.6 9.7 -27.9 

 3 -147.0 -158.0 -235.1 3.6 -4.5 -25.3   2.2 -6 8.3   1.5 1.6 35.2 

Poorly 
Designed 

2 2 -145.4 -176 -156.4 -77.3 -9.6     -42.7 36.7     -1.6 21.4 -62.9 

 3 100.7 3 -480.1 6.1 -39.8     -22.3 -12.1 2.9   -4.4 3.7 -88 

3 2 -45.7 -1679.7 -105.5 -26.5 -11.8 -18.3   -2.9 19.1     -3.6 12 -30.2 

  3 -150.7 -162.4 -216.2 11.3 -5.8 -55.4   6.9 -12.8 17.2   1.5 2 32.2 
 
 
Table 10. Variability of Estimates for Template Means, Fixed and Random Effects Across Conditions, Study 2 

  Number of Covariates Template Means Fixed Effects Random Effects 

 Level 3 Level 2 t1 t2 t3 c13 c23 c33 c43 c12 c22 c32 c42 u v w 

Well-
Designed 

2 2 0.031 0.034 0.029 0.024 0.019     0.023 0.022     0.014 0.013 0.023 

 3 0.027 0.028 0.026 0.018 0.021     0.016 0.019 0.018   0.012 0.012 0.006 

3 2 0.019 0.022 0.020 0.016 0.014 0.014   0.015 0.013     0.010 0.012 0.015 

 3 0.017 0.019 0.019 0.014 0.015 0.015   0.010 0.012 0.013   0.007 0.008 0.007 

Poorly 
Designed 

2 2 0.031 0.034 0.029 0.024 0.019     0.023 0.022     0.014 0.013 0.023 

 3 0.027 0.028 0.026 0.018 0.021     0.016 0.019 0.018   0.012 0.012 0.006 

3 2 0.019 0.022 0.020 0.016 0.014 0.014   0.015 0.013     0.010 0.012 0.015 

  3 0.024 0.021 0.023 0.017 0.017 0.014   0.012 0.013 0.015   0.006 0.009 0.007 
Note: Not all combinations of factors were fully explored. The shaded areas of the table indicate where no data is available. 
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Table 11. Relative Bias for Template Means, Fixed and Random Effects Across Conditions, Study 2 
Number of 
Covariates   Template Means Fixed Effects Random Effects 

Level 3 Level 2   t1 t2 t3 c13 c23 c33 
c4
3 c12 c22 c32 

c4
2 u v w 

2 2 

Well- Designed 
-

139.6 -197.6 
-

146.0 -36.4 -3.8     -18.3 16.1     0.7 24 
-

51.7 
Poorly 

Designed 
-

145.4 -176 
-

156.4 -77.3 -9.6     -42.7 36.7     -1.6 21.4 
-

62.9 

Heterogeneous 

-
194.6 -250.8   0.45 -41.6     

-
20.85 41.3     10.75 1.5 -1.5 

    
-

274.5 -42.5 40.3     -64.4 -25.1     
-

43.05 
-

29.95 
-

36.6 

2 3 

Well- Designed 
-4.2 5.3 

-
448.7 5.6 -16.7     -9.9 -6.4 2   -2.4 1.8 

-
86.5 

Poorly 
Designed 100.7 3 

-
480.1 6.1 -39.8     -22.3 -12.1 2.9   -4.4 3.7 -88 

Heterogeneous 
-10.7 2.2   

20.0
5 -8.6     -20.1 -27.3 13.5   -19.6 18.25 

-
3.65 

    
-

281.7 -21.8 
-

171.4     54.8 
-

14.55 
37.1

5   
-

53.35 
-

13.05 
-

37.3 

3 2 

Well- Designed 
-57.0 

-
1713.5 

-
110.3 -13.4 -4.3 -9.4   -1.5 7.9     -4.6 9.7 

-
27.9 

Poorly 
Designed -45.7 

-
1679.7 

-
105.5 -26.5 -11.8 

-
18.3   -2.9 19.1     -3.6 12 

-
30.2 

Heterogeneous 
-44.6 

-
1957.5   -3.65 3.5 15.6   1.5 12.55     -2.55 8.85 22.1 

    -98.9 -87.4 67.4 
-

42.6   44.3 -9.05     
-

51.95 
-

28.05 
-

23.7 
Note: Not all combinations of factors were fully explored. The shaded areas of the table indicate where no data is available. 
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Table 12. Variability of Estimates for Template Means, Fixed and Random Effects Across Conditions, Study 3 

Number of Covariates   Template Means Fixed Effects Random Effects 

Level 3 Level 2   t1 t2 t3 c13 c23 c33 c43 c12 c22 c32 c42 u v w 

2 2 

Well-Designed 0.031 0.034 0.029 0.024 0.019     0.023 0.022     0.014 0.013 0.023 

Poorly Designed 0.031 0.034 0.029 0.024 0.019     0.023 0.022     0.014 0.013 0.023 

Heterogeneous 
0.058 0.052   0.063 0.074     0.076 0.074     0.027 0.007 0.025 

    0.053 0.061 0.062     0.068 0.067     0.023 0.009 0.011 

2 3 

Well-Designed 0.027 0.028 0.026 0.018 0.021     0.016 0.019 0.018   0.012 0.012 0.006 

Poorly Designed 0.027 0.028 0.026 0.018 0.021     0.016 0.019 0.018   0.012 0.012 0.006 

Heterogeneous 
0.075 0.066   0.07 0.07     0.073 0.082 0.073   0.03 0.009 0.024 

    0.088 0.093 0.099     0.086 0.1 0.092   0.04 0.017 0.007 

3 2 

Well-Designed 0.019 0.022 0.020 0.016 0.014 0.014   0.015 0.013     0.010 0.012 0.015 

Poorly Designed 0.019 0.022 0.020 0.016 0.014 0.014   0.015 0.013     0.010 0.012 0.015 

Heterogeneous 
0.096 0.109   0.069 0.07 0.068   0.077 0.076     0.03 0.018 0.045 

    0.054 0.063 0.067 0.08   0.067 0.073     0.03 0.018 0.008 
Note: Not all combinations of factors were fully explored. The shaded areas of the table indicate where no data is available. 
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4.3.3 Study 3: Introducing Inconsistency in Item Generation 

Results from the third simulation study are shown in Table 11 and   
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Table 12. In each of these tables, relative bias and variability of estimates for 

the heterogenous condition are reported in two rows: the first row corresponds to 

parameter estimates for the templates that were well-designed, and the second row 

reflects parameter estimates for the third of the items generated from the poorly 

designed template.  

These results suggest that under conditions when the sample size is small, 

with few templates and few specified design manipulations there is unlikely to be 

enough information to be able to accurately estimate the desired effects. Under the 

conditions studied here, when the impact of distinct manipulations are estimated for 

each item family and item model within each template, the magnitude of the bias in 

estimates of both fixed and random effects sharply increases. In particular, estimates 

of within-family variance are consistently under-estimated for those items which were 

poorly generated; and given the direction of the observed bias (underestimating 

variances and overestimating select fixed effects), reflects estimates for parameters 

that are more similar than they should be given the generating parameters. This result 

is not unexpected given the small sample sizes and is consistent with the findings 

elsewhere in that literature.  

4.3.4 Discussion 

 The results of this study clearly underscore the challenges associated with 

estimating models under conditions of small sample sizes, where those sample sizes 

are determined not simply by the number of items, examinees, or observations but 

instead by the number of groups at each level of the model. Important within the AIG 

context, these results temper expectations around the extent to which parameter 
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estimates might be diagnostic of the quality of the item generation process when 

sample sizes are small, as was suggested in Chapter 3.  

Looking ahead to the empirical analysis, a key take-away from the simulation 

study is to simplify the analytic model. Having a well-researched generation process 

and well-specified calibration model aligned to that process does not inoculate against 

the estimation challenges which arise from having a small number of templates is 

small and a relatively simple generation process. There may be reason to believe that 

there are different degrees of variation within and across item families, and 

understanding the magnitude of that variation may be important. However, variances 

are not well estimated and increasing model complexity may negatively impact the 

estimation of fixed effects, with little improvement in the estimation of random 

effects. A second insight gained from this simulation is to be cautious when 

interpreting item parameter estimates: the relative impact of generation features may 

be interpretable, but a strict interpretation of the value of fixed effects may lead to 

incorrect inferences about the nature of items or the generation process given the 

consistent underestimation of coefficients.  

4.4 Analysis of Items Generated for the Summer Math Challenge Program  

4.4.1 Analytic Data File 

MetaMetrics provided response data comprised of more than 80,000 

observations, which are the responses from more than 1500 rising third through sixth 

graders who participated in the Summer Math Challenge program. These response 

data, along with a file containing item characteristics and the original calibration 
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values, provide a richly contextualized opportunity to examine the properties of 

algorithmically generated items.   

The mechanics of the item generation process implemented through the MIG 

and the theory guiding its development provide the basis for specifying a pre-

calibration model using the conceptual and mathematical framework provided in the 

previous chapter. Codes were developed based on the characteristics and components 

of the item generation process discussed above and then applied to response data 

received from MetaMetrics. Each item was indexed by its generating item form, the 

corresponding item model, parent item, display format and coded content 

characteristics representing characteristics of the item operands. Together, the applied 

codes identify items which target the same educational objectives and also share an 

evidentiary focus and key content characteristics. The codes should, in theory, 

identify those items which have similar, if not identical, psychometric properties.  

Once all of the items were indexed, the following criteria were applied to the 

response data for inclusion in the analysis: item families were required to have at least 

two items present in the data, item models were required to have at least two parent 

items, and at least two item models needed to align with each item form. In addition, 

in those cases where students encountered the same item more than once (e.g. on both 

a homework assignment and practice exercise for a particular week), only the first 

student-item interaction was retained.  

Of the approximately 902 items included in the response data received from 

MetaMetrics, a subset of 335 items was identified for inclusion in the analysis. The 

resulting analytic data file contained a total of 25,479 observations corresponding to 
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responses from 767 students. The items selected for analysis represent a concentrated 

subset of the original items from three distinct templates, designed to assess students’ 

proficiency with addition, subtraction and multiplication as described by the 

corresponding QSCs (Table 13). 

Table 13. Distribution of Items and Observations by QSC 

QSC Operation Description 

Items Observations 

N Pct N Pct 

3 Addition 
Add 2- and 3-digit numbers with and without 
models for number and word problems that do 
not require regrouping. 

124 37% 9,245 36% 

8 Multiplication 
Estimate and compute products of whole 
numbers with multi-digit factors. 

95 28% 6,103 24% 

11 Subtraction 
Subtract 2- and 3-digit numbers with and 
without models for number and word 
problems that do not require regrouping. 

116 35% 10,131 40% 

 

4.4.2 Analytic Models 

Six models are applied to these data. Each the calibration model specifies the 

predicted log odds of success of person j on test item i, as a function of that person’s 

ability, and some combination of that particular item’s characteristics, as defined by 

the components of that item’s generative process. Each model may provide a different 

model-data fit to the initial calibration sample being considered, and each model also 

offers a different approach to item pre-calibration. 

Random Person Random Item Model (RPRI). This model treats both persons and 

items as random, acknowledging that both are selected from larger populations. This 

model does not include parameters which connect item properties to the generative 

process, and as such the parameters estimated with this model do not provide any 

guidance to practitioners who are using these items and hoping to further refine or 
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modify the item generation process used to create these items. The log odds for the 

analytic model can be written as, 

𝜂(௜,௣) = 𝜃௣ − (𝜋ఉబ
+ 𝑢ఉ೔

) 

Although this model may offer decent model-data fit, the concern is that it does’t 

successfully differentiate among subgroups of items. Using this model, all items 

would be banked on the global mean for all items.  

Linear Logistic Test Model with Error (LLTM + e). This model decomposes the 

mean difficulty of the items into a sum of the parent item characteristics; a residual 

term is included in the model to capture variance in item difficulties that is 

unexplained by parent item attributes. This model ignores the multi-level structure 

that produced the items, and as such it does not provide any information about 

template or item model characteristics. The model could provide some guidance to 

item developers by estimating the impacts of form-level characteristics and primary 

content integration. As estimated, the log odds for the analytic model can be written 

as, 

𝜂(௜,௣)(௧,௞) = 𝜃௣ − (𝜋ఉబ೟బ
+ 𝜋ఉబబభ

+ 𝜋ఉబబమ
+ 𝜋ఉబబయ

+ 𝜋ఉబబర
+ 𝜋ఉబబఱ

+ 𝑢ఉ೔(೟,ೖ)
) 

Using this model, items would be banked based on the template mean and also the 

particular combination of design features activated for that item.  

Generative Process Model. This model incorporates cross-classified fixed and 

random effects within a hierarchical structure that captures as completely as possible 

the item generation process. This model has three levels, incorporating fixed effects 

to capture form-level characteristics at level 3 as well as fixed effects to capture 

primary content integration at level 2. The model also includes random item residuals 
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to capture unexplained variation in item models which share the same template and 

form-level characteristics, as well as residuals to capture unexplained variation in 

item family properties, after taking into account both item structure and primary 

content features. 

For this analysis, four versions of the model were estimated: (1) a model in 

which the regression parameters were constrained to be equal across templates and 

item models, with templates treated as fixed effects; (2) a model in which regression 

parameters were constrained to be equal across groups, but templates were treated as 

random; (3) a model in which regression parameters were permitted to vary across 

templates and item models, with templates treated as fixed; and (4) a model in which 

regression parameters were permitted to vary across templates and item modes, with 

templates treated as random at level four. In all cases, only a single variance 

component was estimated at each level.  

For the constrained model with templates estimated as fixed effects, the log 

odds of a correct response, 𝜂(௜,௝)௣(௠,௞)(௧,௖), can be written as,  

𝜂(௜,௝)௣(௠,௞)(௧,௖) = 𝜃௣ − (𝛾଴଴଴ଵ + 𝛾଴଴଴ଶ + 𝛾଴଴଴ଷ + 𝛾଴଴଴ଵ଴𝑍ଵ + 𝛾଴଴଴ଶ଴𝑍ଶ + 𝜋଴ଵ଴଴଴𝑋ଵ

+ 𝜋଴ଶ଴଴଴𝑋ଶ + 𝑒௜(௝భ,௝మ)(௞భ,௞మ)௧ + 𝑢(௝భ,௝మ)(௞భ,௞మ)௧ + 𝑣଴(௞మ,௞భ)௧) 

In contrast, for the unconstrained model, a vector of values is estimated for each of 

the coefficients, and the log odds of a correct response is written as, 

𝜂(௜,௝)௣(௠,௞)(௧,௖) = 𝜃௣ − (𝛾଴଴଴ଵ + 𝛾଴଴଴ଶ + 𝛾଴଴଴ଷ + 𝛾଴଴଴ 𝑍ଵ + 𝛾଴଴଴ଶ 𝑍ଶ + 𝜋଴ଵ(௞భ,௞మ)௧𝑋ଵ

+ 𝜋଴ଶ(௞భ,௞మ)௧𝑋ଶ + 𝑒௜(௝భ,௝మ)(௞భ,௞మ)௧ + 𝑢(௝భ,௝మ)(௞భ,௞మ)௧ + 𝑣଴(௞మ,௞భ)௧) 

When items are calibrated using the constrained model with templates treated as 

random, the log odds of a correct response is as follows, 
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𝜂(௜,௝)௣(௠,௞)(௧,௖) = 𝜃௣ − (𝜔଴଴଴଴଴ + 𝛾଴଴଴ଵ଴𝑍ଵ + 𝛾଴଴଴ଶ଴𝑍ଶ + 𝜋଴ଵ଴଴଴𝑋ଵ + 𝜋଴ଶ଴଴଴𝑋ଶ

+ 𝑒௜(௝భ ,௝మ)(௞భ,௞మ)௧ + 𝑢(௝భ,௝మ)(௞భ,௞మ)௧ + 𝑣଴(௞మ,௞భ)௧ + 𝑤଴଴଴௧ 

The unconstrained model with random effects at Level 4 estimates the log odds of a 

correct response as,  

𝜂(௜,௝)௣(௠,௞)(௧,௖) = 𝜃௣ − (𝜔଴଴଴଴ + 𝛾଴଴଴ଵ 𝑍ଵ + 𝛾଴଴଴ଶ 𝑍ଶ + 𝜋଴ଵ(௞భ,௞మ)௧𝑋ଵ + 𝜋଴ଶ(௞భ,௞మ)௧𝑋ଶ

+ 𝑒௜(௝భ,௝మ)(௞భ,௞మ)௧ + 𝑢(௝భ,௝మ)(௞భ,௞మ)௧ + 𝑣଴(௞మ,௞భ)௧ + 𝑤଴଴଴௧ 

Using the GPM offers the most flexibility with respect to item banking and pre-

calibration, as items could be banked based on estimates for prototypical items, item 

models, or item forms. It is worth noting that the models which parameterize template 

means as fixed effects may provide additional information that can be used for pre-

calibration, though the simulation results suggestion caution in over-interpreting these 

estimates. 

4.4.5 Estimation  

Estimation was performed using RStan to facilitate the estimation of cross-

classified fixed and random effects (Stan Development Team, 2015). Each model was 

estimated using six chains with 10,000 burn-in iterations and 1,000 samples after 

warm-up. Each chain was initialized with random starting values. A non-centered 

parameterization was used when estimating the variances for each model. Half-

normal priors were specified for each variance parameter that was estimated, with the 

upper bound of those priors estimated using half-normal N(0,1) hyperpriors. In all 

cases, the ability parameter, 𝜃௠ is specified a normal variate, with a mean of 0 and 

standard deviation equal to 1. Following estimation, trace plots and sampling 
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parameters for each chain were examined for convergence, along with divergence 

information and Rhat values for each parameter.  

4.4.6 Results 

 An examination of the distribution of item difficulties across each of the 

proposed models, as well as the correlation of item difficulties across conditions 

suggests that in many ways the resulting estimates from each of the models are 

similar to one another. However, the unconstrained Generative Process Model, with 

the inclusion of template means as fixed effects appears to offer the best model-data 

fit , in addition to the resulting parameter estimates providing some insight into the 

nature of the data generation process.  

Table 14. Deviance Information Criteria for Six Analytic Models 

    Parameters Log Likelihood DIC 

Random Person Random Item 4 -6204.618 13500.35 

Linear Logistic Test Model 17 -6215.123 13515.97 

Generative Process Model 

Const., Fixed 17 -6218.293 13582.7 

Const., Random 18 -6217.664 13566.82 

Unconst., Fixed 37 -6213.604 13480.4 

Unconst., Random 38 -6213.839 13539.56 
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 Item parameter estimates for the GPM are shown in Table 16, organized to 

clearly illustrate the varying impacts of feature manipulations depending on the 

template from which items are generated. Displaying the data in this way underscore 

the potential utility of ensuring a close alignment between the generation process and 

the calibration model. Across templates, word problems are consistently more 

difficult, and this particularly true among multiplication problems. The allowance of 

three-digit versus two-digit operands in multiplication tables that are formulated as 

word problems generates more difficult items.  The inclusion of operands that are 

multiples of 10 produces items which are consistently easier.  
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 Table 15. Correlation Between Item Difficulty Estimates Using Different Calibration Models, by Template 

            Generative Process Model 

      
Original 

Calibration RPRI LLTM 
Const., 
Fixed 

Const., 
Random 

Unconst., 
Fixed 

A
dd

it
io

n
 

Random Person Random Item 0.806      
Linear Logistic Test Model 0.826 0.908     

Generative Process 
Model 

Constrained, Fixed 0.799 0.910 0.966    
Constrained, Random 0.800 0.913 0.966 1.000   
Unconstrained, Fixed 0.775 0.871 0.916 0.984 0.983  
Unconstrained, Random 0.767 0.868 0.913 0.983 0.982 1.000 

                  

M
ul

ti
p

lic
at

io
n 

Random Person Random Item 0.937      
Linear Logistic Test Model 0.916 0.978     

Generative Process 
Model 

Constrained, Fixed 0.887 0.936 0.983    
Constrained, Random 0.888 0.936 0.982 1.000   
Unconstrained, Fixed 0.889 0.914 0.948 0.978 0.979  
Unconstrained, Random 0.887 0.914 0.947 0.978 0.979 1.000 

                  

Su
bt

ra
ct

io
n 

Random Person Random Item 0.622      

Linear Logistic Test Model 0.759 0.890     

Generative Process 
Model 

Constrained, Fixed 0.634 0.951 0.942    

Constrained, Random 0.628 0.953 0.939 1.000   

Unconstrained, Fixed 0.607 0.933 0.883 0.983 0.983  

Unconstrained, Random 0.597 0.934 0.878 0.982 0.982 1.000 
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Table 16. Parameter Estimates for Item Generation Process Components Using the 
Unconstrained Generative Process Model for Item Calibration 

    HDI   

  Mean Est. 2.50% 97.50% N Eff. 

Addition -2.967 -3.758 -2.088 1015 

Formulated as a Word Problem 0.286 -1.247 1.539 463 

Horizontal Orientation 0.146 -1.215 1.304 865 

Numeric, Horizontal Orientation         

Includes Multiples of 10 -0.552 -1.297 0.131 2159 

Includes 3-Digit Integers 0.027 -0.740 0.823 2590 

Word Problems         

Includes Multiples of 10 -0.199 -0.847 0.411 2110 

Includes 3-Digit Integers -0.481 -1.107 0.136 1576 

Numeric, Vertical Orientation         

Includes Multiples of 10 -0.158 -1.133 0.850 1995 

Includes 3-Digit Integers -0.555 -1.426 0.367 2128 

Multiplication -2.422 -3.358 -1.554 329 

Formulated as a Word Problem 1.206 -0.082 2.533 886 

Horizontal Orientation -1.000 -2.475 0.475 568 

Numeric, Horizontal Orientation         

Includes Multiples of 10 -0.396 -1.131 0.310 2133 

Includes 3-Digit Integers 0.136 -0.585 0.868 656 

Word Problems         

Includes Multiples of 10 -0.031 -0.887 0.810 1872 

Includes 3-Digit Integers 0.866 -0.132 1.902 2057 

Numeric, Vertical Orientation         

Includes Multiples of 10 -0.436 -1.229 0.398 1559 

Includes 3-Digit Integers -0.103 -0.902 0.752 1341 

Subtraction -2.805 -3.674 -1.833 135 

Formulated as a Word Problem 0.627 -0.523 1.864 208 

Horizontal Orientation -0.070 -1.264 1.302 350 

Numeric, Horizontal Orientation         

Includes Multiples of 10 -0.001 -0.500 0.490 2417 

Includes 3-Digit Integers 0.235 -0.315 0.792 1744 

Word Problems         

Includes Multiples of 10 0.005 -1.110 1.182 2493 

Includes 3-Digit Integers 0.038 -0.926 0.980 1923 

Numeric, Vertical Orientation         

Includes Multiples of 10 -0.183 -1.027 0.675 2416 

Includes 3-Digit Integers -0.570 -1.386 0.248 2288 

Var. within Families 0.390 0.316 0.389 1459 

Resid. Var. within Models 0.149 0.002 0.097 311 

Resid. Var. within Templates 0.259 0.002 0.160 56 
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4.4.7 Discussion 

 
Model Utility and Interpretability. Perhaps the most compelling argument 

for the utilization of the proposed calibration framework is that the parameters are 

readily interpretable. In addition, there is something reassuring about the distribution 

of item difficulties achieved using the Generative Process Model (Figure 13), which 

suggests a greater separation between items generated from different templates: we 

might expect that addition, multiplication, and subtraction items are not only 

qualitatively different from one another but they differ systematically in their average 

level of difficulty. This separation stands in contrast to the distribution of item 

difficulties estimated vis a vis the RPRI (Figure 14), and also offers a better match to 

the distribution of original item calibrations.  

In light of the simulation work, however, while the relative location of the 

template means seems reasonable it is necessary to question how the location of those 

template means should be interpreted. The estimated means are extremely low, 

suggesting that, on average, all of the items are very easy. On the one hand, this may 

not be unreasonable. A finding noted in the original validation study conducted by 

Simpson and colleagues. As shown in Table 17 below, there very little variation in 

response patterns for many of the items, which were intended as practice and were 

frequently too easy given respondents’ knowledge and abilities (Simpson, Kosh, 

Bickel, Elmore, Sanford-Moore, Koons, & Enoch-Marx, 2015). On the other hand, 

these estimates are consistent with what we observed in the simulation study: 

consistent under-estimation of fixed effect parameters, including template means 

when those are estimated directly. 
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Figure 13. Count Distribution of Estimated Item Difficulties for Addition, Multiplication, and 
Subtraction Items Using the Unconstrained Generative Process Model with Fixed Template 
Estimates 

 

Table 17. Response Details by Item Form 

           Percentage Correct 
Item 
Form 

 
QSC Operation Obs Items Min Mean Max 

1  76 Addition 2844 29 0.88 0.94 1.00 
2  78 Addition 775 12 0.91 0.96 1.00 
3  78 Subtraction 973 13 0.73 0.90 0.96 
4  79 Addition 6604 93 0.81 0.94 1.00 
5  121 Multiplication 7516 81 0.68 0.89 1.00 
8  160 Multiplication 6892 120 0.35 0.70 0.86 

10  170 Multiplication 5601 87 0.58 0.84 1.00 
11  199 Addition 184 2 0.85 0.90 0.97 
12  199 Subtraction 364 6 0.88 0.95 1.00 
13  201 Addition 2493 21 0.74 0.89 0.98 
14  201 Subtraction 1647 15 0.82 0.90 0.98 
15  599 Subtraction 9667 110 0.79 0.90 1.00 
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Figure 14. Count Distribution of Estimated Item Difficulties for Addition, Multiplication, and 
Subtraction Items Using the Random Person Random Item Model 
 
 
 

Ability Estimates. While item parameter estimates illustrated the potential 

utility of the generative process framework, these results did not provide much insight 

into how the application of different calibration models could impact estimates of 

student abilities. Across the six models, resulting estimates of student abilities were 

consistently highly correlated. Figure 15 shows the comparability across models of 

the distribution of student ability estimates: the distributions overlap with one another 

almost perfectly.    
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Figure 15. Count Distribution of Estimated Abilities Across Analytic Models 
 

Unfortunately, the extent to which model specification did not impact student 

ability estimates is likely an artifact of the data used for this analysis. The distribution 

of estimated abilities is skewed, a pattern that could be explained by the absence of 

very difficult or even moderately challenging items. A reasonable interpretation of 

this result is that practice items were able to successfully differentiate between 

students for whom the items were better matched, but the generated items were not 

effective in differentiating between students with greater mathematics proficiency. 
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The impact of model specification on ability estimates is an area which warrants 

further research. 
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Chapter 5:  A Targeted Exploration of Misspecification  
 
There are no studies within the AIG literature which specifically investigate 

the impact of model misspecification on resulting parameter estimates, despite the 

fact that model misspecification is not uncommon in practice. As Gorin (2005) notes, 

the “applications of the linear logistic test model [LLTM] for specification of 

cognitive processes are somewhat rare due to the accuracy and completeness required 

by the list of cognitive processes to achieve model fit” (p. 369). She also identifies as 

the most significant challenge for implementing AIG “the development and 

verification of a viable cognitive model and an associated task feature model... [that] 

contains features that realistically can be manipulated to affect processing in such a 

way that item difficulty is reliably predicted” (p. 351). Articulating similar challenges 

in the context of their own research, Sheehan and Mislevy (2001) described their 

efforts to predict the characteristics of sentence completion items, finding that 

contrary to expectation, the relation between calibrated item difficulty and the 

cognitive difficulty of key or stem vocabulary as rated by experts was imprecise.  The 

authors reported that a considerable proportion of item difficulty was left unexplained 

even after taking into account those features of the items that were expected to have 

an impact on the response process. Arendasy and Sommer (2007) acknowledged the 

challenge of specifying a pre-calibration model in their effort to generate and 

accurately predict the properties of quantitative reasoning items. They noted that, 

even when cognitive processes are well-researched and items can be successfully 

generated according to principles derived from cognitive models, predicting the 

psychometric properties of items based on the application of design decisions can be 
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problematic. The analytic results in the previous chapter also raised some questions: 

could some of the bias in parameter estimates be attributed to model 

misspecification? One possible explanation for the observed bias in estimates is that 

the generated items were too easy for the students who were answering them, 

resulting in response vectors with little to no variation, and these data quality issues 

were compounded by the relatively small number of item forms. It is worth asking, 

however, if there might be another explanation and to understand the conditions 

under which and in what ways errors in model specification might propagate, offering 

AIG researchers a way to diagnose problems with the generation process or with the 

structure of the model proposed for pre-calibration. 

5.1 Simulation Objectives 

This chapter describes a targeted simulation study designed to examine the 

impact of model misspecification on the calibration of design features specified via 

the Generative Process Model that was introduced and applied in previous chapters. 

Specifically, the simulation examines how researchers’ failure to identify a complete 

set of design features and the omission of those features from the specification of the 

GPM impact estimates of higher order features that would later be used for pre-

calibration of generated items?   

5.2 Simulation Design 

5.2.1 Data Generation Approach 

Data Generation Model. Given the challenges associated with estimating the 

parameters of the full Generative Process Model in the first set of simulation studies, 
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and particularly parameters in the upper levels of the model, the decision was made to 

use a simpler model in this simulation study.  

The data generation model used for this study uses a Rasch model at Level 1, 

and the difficulty for item i can be written as  

𝛽௜(௝భ,௝మ,௝య,௝ర)௧ =  𝛾଴଴଴ + 𝜋଴ଵ௧𝑋ଵ + 𝜋଴ଶ௧𝑋ଶ + 𝜋଴ଷ௧𝑋ଷ + 𝜋଴ସ௧𝑋ସ + +𝑒௜(௝భ,௝మ,௝య,௝ర)௧ +  𝑢଴௝భ௧ +

 𝑢଴௝మ௧ +  𝑢଴௝య௧ + 𝑢଴௝ర௧ + 𝛾଴଴଴ + 𝑣଴଴௧. 

Just as with the full GPM model, generated item difficulties are pre-calibrated based 

on the initial calibration and estimated mean difficulty of the item family. Each 

family mean is determined by the item form t from which it is generated and the 

particular combination of four design effects, 𝑋ଵ, 𝑋ଶ, 𝑋ଷ and 𝑋ସ. Item forms are 

treated as random instantiations of tasks that target the same sets of skills. This 

simplified version of the GPM is very similar to the LICM discussed in Chapter 2, 

except that Geerlings et al (2011) included a regression at Level 2 and in the GPM 

design features are included as cross-classified effects. template-level characteristics, 

the data generation model was simplified to a three-level hierarchical model with 

cross-classification at Level 2. 

 Simulation Conditions. In this simulation, three conditions were 

systematically varied: the number of features included in Level 2 of the analytic 

model, the within-family variance at Level 1, and the number of people simulated to 

encounter the items.  

Either the analytic model matched the generation model, or one or two 

covariates were omitted from the analytic model, meaning that the analytic model 

would either correctly identify and estimate parameters for sixteen item families as 
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defined by the four features in the generation model, or it would be estimating 

parameters as if there were eight families defined by three features or four families as 

defined by only two features. This misspecification was accomplished through the re-

indexing of the response data prior to estimation, a process which was confirmed by 

fitting an unconstrained version of the model to the data and ensuring the number of 

estimated parameters was appropriate for the proposed (though misspecified) 

structure. The analytic models considered in this study are shown in Table 18 below.  

Table 18. Analytic Models Applied in Simulation Study  

Design 
Features 

Item 
Families 
Per Item 

Form Item Difficulty 
4 16 𝛾଴଴଴ + 𝜋଴ଵ଴𝑋ଵ + 𝜋଴ଶ଴𝑋ଶ + 𝜋଴ଷ଴𝑋ଷ + 𝜋଴ସ଴𝑋ସ +  𝑒௜(௝భ,௝మ,௝య,௝ర)௧ +  𝑢଴௝௧ +  𝑣଴଴௧ 

3 8 𝛾଴଴଴ + 𝜋଴ଵ଴𝑋ଵ + 𝜋଴ଶ଴𝑋ଶ + 𝜋଴ଷ଴𝑋ଷ +  𝑒௜(௝భ,௝మ,௝య)௧ +  𝑢଴௝௧ +  𝑣଴଴௧ 

2 4 𝛾଴଴଴ + 𝜋଴ଵ଴𝑋ଵ + 𝜋଴ଶ଴𝑋ଶ +  𝑒௜(௝భ,௝మ)௧ +  𝑢଴௝௧ +  𝑣଴଴௧ 

Echoing the previous study, the within-family variance was manipulated to be 

equal to either 0.1 or 0.4 in an effort to replicate a well-designed item generation 

process which produces items with very similar item properties, or a poorly designed 

process where items within the same family are not isomorphic. This range of values 

maps reasonably well onto values within the literature, and although thresholds have 

not been established for items that are treated as isomorphic versus those that are not, 

these levels induced sufficient variation in the previous study to impact the quality of 

parameter estimates and so the same levels were included here.  

Finally, in an effort to begin to account for the process of pre-calibration, to 

include data collection as well as model selection and specification, the number of 
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simulees was included as a factor and set to either 45, 90, or 180, with responses from 

these simulees were randomly assigned to items. Using this sampling strategy, which 

is described in more detail below, the number of observations per person was 

approximately 45 observations with 45 simulees, 25 observations with 90 simulees, 

and 15 observations per with 180 simulees. The number of people was included as a 

factor instead of varying the number of observations per person directly so as not to 

increase or decrease the amount of observations per item across conditions, which is 

known to impact the quality of parameter estimates (Leucht, 2013; Sinharay & 

Johnson, 2008).   

Together, these conditions were combined to yield 18 total cells, and 50 

replications were completed per cell. These conditions are summarized in Table 19 

below.  

Table 19. Summary of Simulation Conditions  
Factor Levels Number of Levels 

Number of Specified Design Factors  2, 3, 4 3 
Variance Across Items Within Family 0.1, 0.4 2 

Number of Simulees 45, 90, 180 3 
Number of conditions 18 
Number of replications per condition 50 

Response Data Generation. Response data were generated for each condition 

following a similar process to what was described in Chapter 4. People and items are 

generated separately. First, an ability vector, 𝜃௣, was drawn according to a normal 

unit distribution for the designated number of simulees (45, 90, or 180). Second, a 

complete matrix of item difficulties was calculated consistent with the simplified 

Generative Process Model outlined above (Equation 5.1). Important to the AIG 

context, items are generated as a population rather than as a limited sample of items 
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so that they might be appropriately modeled as random. The total number of items 

generated for the simulation therefore far exceeds the number that is considered in 

any single replication or even in the study as a whole: a total of 160,000 unique items 

were generated. These items were derived from 5,000 simulated item forms, and four 

design features were manipulated on each of those forms to yield 16 prototypical 

items (80,000 total families). From each prototypical item, 20 instantiations were 

generated which differ from one another only in surface features.  

The next step is to calculate a complete response probability matrix for every 

person-item combination, where the log odds of a correct response by person p to 

item i can be written as 

𝜂௜௣(௝భ,௝మ,௝య,௝ర)௧ = 𝜃௣ − (𝛾଴଴଴ + 𝜋଴ଵ଴𝑋ଵ + 𝜋଴ଶ଴𝑋ଶ + 𝜋଴ଷ଴𝑋ଷ + 𝜋଴ସ଴𝑋ସ + 𝑒௜(௝భ,௝మ,௝య,௝ర)௧ +

 𝑢଴௝భ଴ +  𝑢଴௝మ଴ + 𝑢଴௝య଴ +  𝑢଴௝ర଴ +  𝑣଴଴଴). 

For the purposes of this study, 𝜃௣~ 𝑁(0,1). Item forms have difficulties which are 

normally distributed with a mean of 𝛾଴଴଴ = −1 and a variance 𝜎௩
ଶ=1. Each of the 

design features are all binary, with the value of each coefficient defined following 

Dardick & Harring (2008) so that 80% of the variation at Level 2 is explained by the 

linear combination of those features,  

𝜋଴ଵ଴ =  𝜋଴ଶ଴ = 𝜋଴ଷ଴ = 𝜋଴ସ଴ = 0.8. 

As noted in the previous section, the within-family variation, is a simulation 

condition, and so 𝜎௘
ଶ is either equal to .1 or .4.  

Following the calculation of the log odds of a correct response for each 

person-item combination, the inverse logistic function is used to transform that 

probability matrix into a matrix of dichotomous response data, which each row 
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represents a complete response vector for each person. Response data are generated in 

this way once per condition to ensure consistency of response data within each 

condition (so that if a person “encounters” the same item more than once, the 

response vector is not inconsistent by chance), and random seeds were specified 

within the generation code to facilitate comparisons across conditions by minimizing 

sources of sampling variability.  

 Response data for each replication within each condition was assembled by 

drawing two samples: the first from among the available item pool, and the second 

from available simulees. For each replication, 30 templates were selected at random 

and without replacement from the 5,000 available. For every item derived from each 

of those templates, the responses from two simulees were selected at random from the 

response matrix. Each person could only encounter each item once, though no 

restrictions were placed on how many or which items each person might see that were 

derived from the same item form and/or shared common design features.  

 The response data used for each replication was therefore comprised of 1200 

rows, with each row containing a unique identifier denoting the person, an identifier 

for the item, and a dichotomous score variable. Each response was also indexed by 

relevant features of the generation process: an identifier for item form and either a “1” 

or a “0” denoting the presence or absence of each of four design features. As noted 

above, a total of fifty replications were completed for each condition. 

5.2.2 Estimation 

Estimation was performed using RStan to facilitate the estimation of cross-

classified fixed and random effects (Stan Development Team, 2015). Each model was 
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estimated using six chains with 5,000 burn-in iterations and 1,000 samples after 

warm-up. Each chain was initialized with random starting values. A non-centered 

parameterization was used when estimating the variances for each model. Half-

normal priors were specified for each variance parameter that was estimated, with the 

upper bound of those priors estimated using half-normal N(0,.5) hyperpriors. In all 

cases, the ability parameter, 𝜃௣ is specified a normal variate, with a mean of 0 and 

standard deviation equal to 1. Following estimation, trace plots and sampling 

parameters for each chain were examined for convergence, in addition to monitoring 

both effective sample sizes and Rhat values for each parameter.      

5.3 Results 

5.3.1 Sampling Parameters 

Conventional wisdom would suggest that models will have difficulty 

converging when the model is misspecified, but in this simulation study the model 

seemed to have the most difficulty under what were arguably the “best” conditions 

for item generation and pre-calibration, namely that the within-family variation 

between items was lowest. It was rare that chains reached a maximum treedepth 

during sampling, though this occurred in between two and four percent of transitions 

when the within-family variance was equal to 0.4 and there were 180 simulees 

interacting with only 15 items on average. There was no difference in the total time 

needed for estimation across the various conditions in this simulation study.  
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Table 20. Summary Sample Statistics by Condition 

    

Replications with 
Divergent 

Transitions 

Max 
Treedepth 
Reached 

(%) 
Total Run 
Time (s) Condition No. Covariates 𝜎௘ Students % Max 

1 4 0.1 45 74 267 0 1387 
2 4 0.1 90 88 555 0 1450 
3 4 0.1 180 88 443 0 1384 
4 4 0.4 45 0 0 0 1347 
5 4 0.4 90 0 0 0 1577 
6 4 0.4 180 0 0 4 1859 
7 3 0.1 45 78 158 0 1309 
8 3 0.1 90 86 482 0 1388 
9 3 0.1 180 82 218 0 1455 

10 3 0.4 45 0 0 0 1373 
11 3 0.4 90 0 0 0 1342 
12 3 0.4 180 0 0 2 1600 
13 2 0.1 45 74 160 0 1357 
14 2 0.1 90 90 270 0 1418 
15 2 0.1 180 88 346 0 1422 
16 2 0.4 45 0 0 0 1219 
17 2 0.4 90 0 0 0 1397 
18 2 0.4 180 0 0 2 1384 

 
The pattern of results in Table 21 tells a similar story: given the estimation parameters 

of this simulation study, the only parameter which had difficulty converging was the 

within-family variance. Interestingly, evidence of non-convergence is not diagnostic, 

in this case, of model misspecification. Instead, results suggest that this parameter 

was most difficult to estimate when the data generation process was well-designed, 

and when there were fewer simulees in the calibration sample, meaning that they 

were more likely to encounter items generated from the same templates or 

incorporating the same design features as compared to the other conditions. 

Difficulties estimating within-family variance when the templates were well-designed 

(and the integration of secondary content was simulated to induce minimal variation) 
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are also visible in the magnitude of the bias in the variance parameter estimates 

(Table 23). 

 
5.3.2 Item Parameter Estimates 

 Table 23 and Table 24 show a pattern in estimate quality similar to that seen 

in the previous simulation work, parameter estimates are biased and show minimal 

variability across replications. As expected, the omission of design effects negatively 

impacts parameter estimates by inducing significant negative bias in the upper level 

mean estimates (𝛾଴଴଴ෞ ). The omission of design features at Level 2 does not propagate 

upward or downward to negatively impact within-family variance estimates. The 

impact of fixed effect misspecification appears to be in the significant inflation of 

variance estimates also at Level 2.  

An unexpected result is that the results suggest an interaction between the 

number of items each person responds to and the quality of pre-calibration estimates. 

Specficially, when the number of simulated examinees is lower, meaning those same 

people are interacting with more items which are derived from a shared template and 

share common design features, the negative bias in the parameter estimates is less 

pronounced. This may have implications for designing pre-calibration samples.   
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Table 21. Parameter Non-Convergence as a Percentage of Replications Per Condition 
        Fixed Effects Random Effects 

Condition 
No. 

Covariates 𝜎௘ Students 𝛾଴଴଴ෞ  𝜋଴ଵෞ  𝜋଴ଶෞ  𝜋଴ଷෞ  𝜋଴ସෞ  𝜎௘ෞ 𝜎௨ෞ 𝜎௩ෞ 

1 4 0.1 45 0 0 0 0 0 12 0 0 
2 4 0.1 90 0 0 0 0 0 2 0 0 
3 4 0.1 180 0 0 0 0 0 0 0 0 
4 4 0.4 45 0 0 0 0 0 0 0 0 
5 4 0.4 90 0 0 0 0 0 0 0 0 
6 4 0.4 180 0 0 0 0 0 0 0 0 
7 3 0.1 45 0 0 0 0   10 0 0 
8 3 0.1 90 0 0 0 0   6 0 0 
9 3 0.1 180 0 0 0 0   0 0 0 
10 3 0.4 45 0 0 0 0   0 0 0 
11 3 0.4 90 0 0 0 0   0 0 0 
12 3 0.4 180 0 0 0 0   0 0 0 
13 2 0.1 45 0 0 0     0 0 0 
14 2 0.1 90 0 0 0     2 0 0 
15 2 0.1 180 0 0 0     2 0 0 
16 2 0.4 45 0 0 0     0 0 0 
17 2 0.4 90 0 0 0     0 0 0 
18 2 0.4 180 0 0 0     0 0 0 

Note: The shaded areas of the table indicate where no data is available. 
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Table 22. EAP Parameter Estimates by Condition, Median Values Across Replications 
        Fixed Effects Random Effects 

Condition 
No. 

Covariates 𝜎௘ Students 𝛾଴଴଴ෞ  𝜋଴ଵෞ  𝜋଴ଶෞ  𝜋଴ଷෞ  𝜋଴ସෞ  𝜎௘ෞ 𝜎௨ෞ 𝜎௩ෞ 

1 4 0.1 45 -1.384 0.847 0.864 0.786 0.864 0.224 0.413 0.851 
2 4 0.1 90 -1.195 0.82 0.847 0.783 0.852 0.192 0.403 0.833 
3 4 0.1 180 -1.105 0.834 0.854 0.767 0.85 0.186 0.408 0.831 
4 4 0.4 45 -1.382 0.839 0.893 0.802 0.859 0.632 0.414 0.848 
5 4 0.4 90 -1.198 0.808 0.876 0.792 0.846 0.588 0.41 0.836 
6 4 0.4 180 -1.115 0.831 0.871 0.78 0.854 0.618 0.41 0.833 
7 3 0.1 45 -0.951 0.847 0.864 0.79   0.224 0.613 0.838 
8 3 0.1 90 -0.772 0.818 0.845 0.785   0.181 0.606 0.823 
9 3 0.1 180 -0.68 0.831 0.852 0.768   0.18 0.606 0.82 
10 3 0.4 45 -0.957 0.839 0.891 0.803   0.63 0.607 0.834 
11 3 0.4 90 -0.782 0.807 0.871 0.791   0.588 0.6 0.823 
12 3 0.4 180 -0.69 0.828 0.871 0.783   0.614 0.601 0.822 
13 2 0.1 45 -0.554 0.846 0.863     0.228 0.735 0.83 
14 2 0.1 90 -0.382 0.817 0.846     0.173 0.722 0.816 
15 2 0.1 180 -0.297 0.829 0.851     0.184 0.727 0.813 
16 2 0.4 45 -0.557 0.838 0.888     0.627 0.736 0.825 
17 2 0.4 90 -0.398 0.808 0.872     0.585 0.727 0.816 
18 2 0.4 180 -0.301 0.828 0.87     0.61 0.726 0.817 

Note: The shaded areas of the table indicate where no data is available. 
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Table 23. Median Relative Bias Across Replications by Simulation Condition 
        Fixed Effects Random Effects 

Condition 
No. 

Covariates 𝜎௘ Students 𝛾଴଴଴ෞ  𝜋଴ଵෞ  𝜋଴ଶෞ  𝜋଴ଷෞ  𝜋଴ସෞ  𝜎௘ෞ 𝜎௨ෞ 𝜎௩ෞ 

1 4 0.1 45 38.1 -8.1 -6.9 -14.8 -6.3 -22.1 78.8 -15.1 
2 4 0.1 90 20.4 -11.1 -8.3 -15.6 -8 -32.7 75.5 -16.5 
3 4 0.1 180 11 -10.5 -7.5 -16.3 -8 -33.4 77 -16.9 
4 4 0.4 45 39.1 -9.1 -4.1 -13.4 -6.7 -0.3 78.7 -15.5 
5 4 0.4 90 20.8 -12.4 -5.9 -15.1 -8.7 -5.9 77.8 -16.7 
6 4 0.4 180 12.1 -11.1 -5.4 -15.5 -8 -3 77.6 -16.8 
7 3 0.1 45 -4.8 -8.2 -7 -14.6   -22.1 165.4 -16.1 
8 3 0.1 90 -22.5 -11.2 -8.4 -15.5   -34.2 160.5 -17.6 
9 3 0.1 180 -31.6 -10.6 -7.7 -16.3   -34.2 161.3 -17.8 
10 3 0.4 45 -4 -9.2 -4.3 -13.4   -0.6 164.3 -16.4 
11 3 0.4 90 -21.4 -12.4 -6.1 -15.1   -6 160.9 -17.7 
12 3 0.4 180 -30.5 -11.2 -5.6 -15.4   -3.3 161.9 -17.8 
13 2 0.1 45 -44.6 -8.2 -7.1     -24.1 218.9 -16.9 
14 2 0.1 90 -61.4 -11.3 -8.5     -35.1 214 -18.4 
15 2 0.1 180 -70.4 -10.6 -7.7     -34.7 213.8 -18.6 
16 2 0.4 45 -44.1 -9.2 -4.4     -0.9 219.7 -17.3 
17 2 0.4 90 -60.7 -12.5 -6.2     -6.3 214.9 -18.6 
18 2 0.4 180 -69.6 -11.3 -5.7     -3.6 215.2 -18.6 

Note: The shaded areas of the table indicate where no data is available. 
Note: Relative bias was calculated for all parameters for each replication using the generating parameters and EAP estimates of those parameters. The median values within each 
condition are shown in this table.   
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Table 24. Empirical Variability Across Replications, by Simulation Condition 
       Fixed Effects Random Effects 

Condition 
No. 

Covariates 𝜎௘ Students 𝛾଴଴଴ෞ  𝜋଴ଵෞ  𝜋଴ଶෞ  𝜋଴ଷෞ  𝜋଴ସෞ  𝜎௘ෞ 𝜎௨ෞ 𝜎௩ෞ 

1 4 0.1 45 0.046 0.038 0.037 0.04 0.034 0.099 0.022 0.02 
2 4 0.1 90 0.042 0.035 0.038 0.037 0.043 0.095 0.024 0.023 
3 4 0.1 180 0.049 0.042 0.037 0.037 0.039 0.094 0.026 0.022 
4 4 0.4 45 0.053 0.035 0.042 0.034 0.039 0.068 0.026 0.025 
5 4 0.4 90 0.06 0.037 0.045 0.047 0.047 0.086 0.027 0.031 
6 4 0.4 180 0.047 0.044 0.034 0.038 0.034 0.078 0.026 0.023 
7 3 0.1 45 0.043 0.038 0.037 0.039   0.098 0.02 0.019 
8 3 0.1 90 0.033 0.035 0.039 0.038   0.094 0.026 0.023 
9 3 0.1 180 0.042 0.042 0.037 0.038   0.096 0.025 0.022 
10 3 0.4 45 0.039 0.036 0.043 0.034   0.069 0.024 0.026 
11 3 0.4 90 0.043 0.037 0.045 0.047   0.085 0.03 0.029 
12 3 0.4 180 0.044 0.044 0.035 0.038   0.079 0.024 0.024 
13 2 0.1 45 0.037 0.039 0.038     0.098 0.022 0.02 
14 2 0.1 90 0.031 0.036 0.039     0.092 0.024 0.024 
15 2 0.1 180 0.034 0.042 0.038     0.09 0.025 0.022 
16 2 0.4 45 0.033 0.036 0.043     0.067 0.024 0.025 
17 2 0.4 90 0.036 0.037 0.045     0.087 0.031 0.03 
18 2 0.4 180 0.038 0.045 0.035     0.079 0.024 0.024 

Note: The shaded areas of the table indicate where no data is available. 
Note: The empirical variability of the EAP estimates was calculated within each condition across r=50 replications. 
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Chapter 6: Discussion 

6.1 Brief Summary 

Increased processor speed and greater programming flexibility have made it 

possible to not only imagine but implement automated item generation systems.  

Realizing the promise of automatic item generation lies in successful engineering and 

careful design, not merely improved automation. Ideally, automatic item generation 

(AIG) processes engineer a precise alignment between elements represented in 

features of the cognitive task models, the structural and variable elements of item 

templates, and the structure of the corresponding psychometric models used in 

calibration. That alignment is critical to the a priori prediction of item properties.  

Unfortunately, while full automation may be technologically feasible, the 

necessary alignment of cognitive, generative, and psychometric models continues to 

prove difficult to achieve in practice (e.g., Luecht, 2013). Careful engineering has not 

eliminated challenges faced by item writers in traditional development contexts, and 

improvements in technology have not resolved the challenges inherent in defining the 

set and range of template elements so that they have well-understood impacts on item 

properties (e.g., Irvine & Kyllonen, 2002; Luecht, 2013).  The persistent difficulty in 

consistently predicting properties of generated items highlights the need for research 

into both appropriate model specification and the development of procedures for 

evaluating item quality.  

This paper presents a new conceptual framework to facilitate the alignment of 

generative and psychometric models for the pre-calibration of automatically 

generated items. Using this multi-level framework with its combination of crossed 
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fixed and random effects to capture key components of the generative process, an 

analysis of response data collected from the online administration of automatically 

generated items yielded readily interpretable parameter estimates. Simulation results 

suggest, however, that while this model has the potential to support the direct 

assessment of the quality of the item generation process, more work has to be done in 

order to understand the conditions under which these models will yield parameter 

estimates that are sufficiently accurate to be diagnostic of the quality of the 

generation process.  

 Realizing the promise of pre-calibration is not something that will be achieved 

through more rapid computation or improved engineering. Perhaps the most 

important lesson learned through this work is that if we are serious about moving 

forward within the AIG arena, we’re going to need to be proactive in our efforts to 

close conceptual gaps and synthesize existing research. We are going to need to 

investigate strategies to improve model estimation, particularly given the inherent and 

likely unavoidable tension between the desire for more flexible models and more 

elegantly engineered processes. We are going to need to interrogate our assumptions, 

and recognize that although some assumptions improve model estimability it may 

limit our ability to assess model suitability for use in applied contexts. And finally, 

we make fewer assumptions about what we believe success should look like. It is this 

result, out of everything presented here, that stands out to me most clearly: 

throughout the AIG literature there are a number of assertions as to what a well-

designed item generation process looks like, it was within the well-designed 
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conditions that parameter estimates were the most bias and model performance was 

weakest.  

6.2 Out of Scope but on the Horizon 

Perhaps it is true of every ambitious project that it only begins to scratch the 

surface of what is possible. During the course of this research, I uncovered several 

open questions that could be pursued within the context of AIG and pre-calibration 

that were beyond the scope of this effort.  

6.3.1 Extending the Generative Process Model 

One extension of this work would be to investigate the model performance 

using a two-parameter logistic model as opposed to a Rasch model for calibration. 

When fixed effects models are being used for item calibration, the literature suggests 

that incomplete model specification, the presence of multiple populations, or 

examinees’ utilization of alternative response strategies may result in poor model-data 

fit and failure to find significant effects of particular design manipulations. But where 

misspecifications might lead to systematic variation among instances generated from 

the same templates, this presents a very different problem than that of covariation 

among those instances. The simulation work presented in this paper suggests that 

variation may present only minimal problems for item calibration and ability 

estimation, consistent with previous simulation studies (e.g. Sinharay, Johnson, & 

Williamson, 2005). In contrast, covariation among item parameters that would result 

from misspecification in a 2PL context would present a fundamentally different 

problem for calibration that should not be ignored (Leucht, 2013).  
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In a small simulation study Luecht (2013) clearly highlighted, within a limited 

range of conditions, the potential impact of unmodeled residual covariances between 

item parameters within families using a 2PL model. Luecht did not specify the origin 

of this covariance between parameters otherwise unaccounted for in the model, but in 

a limited simulation study in which he varied test length (10 versus 40 items), 

estimation error of item parameters resulting from family-level calibration (none 

using the generating parameters, low, moderate, and high), and conditional 

covariance between discrimination and difficulty parameters (low, moderate, high), 

he demonstrated increased error and bias in ability estimates. Although increasing test 

length was shown to ameliorate the effects of the loss of efficiency resulting from 

family-level calibration in the absence of residual (level-1) covariance, simply 

increasing test length failed to address the bias that resulted from the presence of even 

low residual covariances when there was a high degree of within-family variability 

(Luecht, 2013).  

With the exception of Luecht’s (2013) limited investigation, simulation 

studies designed to demonstrate the promise of hierarchical models for use within an 

AIG context, with few exceptions (notably Geerlings, 2012; Geerlings et al., 2011) 

routinely set residual covariances equal to zero, with minimal variances on the 

diagonals that govern the variability of instances within item families. This is 

consistent with assumptions routinely made about homoscedasticity and the 

independence of residuals in the presentation or application of models proposed for 

use in the pre-calibration of AIG items. Many authors examining the performance of 

hierarchical models for use in an AIG context note that while the proposed models 
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can arguably accommodate non-zero covariances between parameters at level one 

(Embretson & Daniel, 2008) or at level two (Geerlings et al., 2011), they routinely 

make simplifying assumptions about covariances between item parameters within and 

across families. The challenge of estimability of some of these models, and the 

limitations of computation are real. That said, little attention has been paid to the 

modeling or accurate estimation of covariances between item parameters, which 

presents an exciting opportunity for continued research.  

6.3.2 Examining Strategy Usage and Its Implications 

One of the reasons that pre-calibration is so elusive might be because items 

don’t function the same way for everyone in the population. Persistent (and 

frustrating) lack of model-data fit might be due to multiple strategy usage or the 

presence of differential item functioning among items within a family. Unfortunately, 

within the AIG literature, the cognitive models that are at the core of AIG system 

design, describe single-strategy solution processes; requiring system constraints to be 

implemented to ensure that respondents use the dominant strategy (Arendasy, 2006; 

2007; Embretson, 1999).  

Gorin’s work on reading comprehension items illustrates the possible pitfalls 

of multiple strategy usage within an AIG context. In discussing the results of her 

analysis of response data from reading comprehension items Gorin (2005) noted that 

several factors that were theoretically relevant were found not to be significant. 

Experimental manipulations of reading comprehension items did not result in changes 

in psychometric properties of items as predicted. Non-results were attributed to the 

possible under-representation of study constructs, where the experimental 
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manipulations were not sufficient to produce the desired changes in response 

processes. She also noted, however, that the results might reflect “subgroup 

processing differences,” in line with research suggesting that processing models for 

reading comprehension developed for specific populations may not generalize to 

individuals from other populations (Gorin, 2005, p. 368). She explained that “items 

generated with predictable properties based on psychological principals may not be 

equally valid for all examinees. In such cases, multiple algorithms for item generation 

might be necessary to fit the various individual processing models” (emphasis added, 

p. 368). 

As is typical within the AIG literature, some researchers advocate for 

engineering a solution to any problem. When confronted with the possibility of 

multiple strategy usage, Arendasy and his colleagues (2006, 2007) underscored the 

importance of implementing functional constraints as part of any AIG framework. 

These constraints, or rules governing the selection of radicals and incidentals and 

permissible combinations of these are above and beyond the radicals and incidentals 

that are part of the cognitive model. Specifically, constraints need to be developed in 

order to ensure that “alternate solution strategies leading to differential item 

functioning are not supported by test material” (Arendasy et al., 2006, p. 3). But like 

most challenges in the realm of AIG, it is probably reasonable to be skeptical of any 

solution that simply consists of designing our way out of a problem.  

Unfortunately, it might not be possible to eliminate the possibility of multiple-

strategy items, even through careful engineering. Mislevy and Sheehan (2001) argued 

this point, saying that "GRE sentence-completion pools contain a fair number of 
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items that are solvable through two or more alternative solution strategies... both the 

current analyses and psycholinguistic literature support the notion that multiple-

strategy items are likely to appear in verbal-reasoning item pools" (Mislevy & 

Sheehan, 2001, p. 29). They go on to say that developing items that permit the usage 

of multiple strategies is not inappropriate, but that "what is inappropriate is expecting 

the intended strategy for a given item to function as the only solution strategy, and 

creating models of student proficiency that completely ignore the phenomenon of 

multiple-strategy items" (Mislevy & Sheehan, 2001, p. 30). This assertion then begs 

the question: how to we create new and different models that do a better job of 

parameterizing the behaviors we care about? This is the question that sparked my 

interest in the very beginning.  
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Appendix A: Generation Code 
 
############################################################# 
##### Generation Code for Item Difficulties,  
##### Cross-classification at Levels 2 and 3, Random Effects Only 
##### Grand Mean of 0 
##### Edited: 09/16/18 
############################################################# 
 
#install.packages("data.table") 
#install.packages("reshape") 
#install.packages("MASS") 
#install.packages("plyr") 
#install.packages("psych") 
#install.packages("rje") 
#install.packages("reshape2") 
 
############################################################# 
### LIBRARIES 
############################################################# 
 
library(data.table) 
library(reshape) 
library(MASS) 
library(plyr) 
library(psych) 
library(rje) 
library(reshape2) 
 
 
set.seed(12345) 
 
############################################################# 
### INITIALIZATION 
############################################################# 
 
### Calculation of Coefficient Values  
### Dardick & Harring 2012 
 
coef_calc = function(ncov,r_sq,totvar,covvar){ 
  coef_val = sqrt((r_sq*totvar)/(covvar*ncov)) 
  return(coef_val) 
} 
 
### Definition of Simulation Parameters 
### Number of Replications, Number of Simulees, Number of Templates, 
Features, and Items 
 
NR = 100  ### Number of Replications 
NP = 250  ### Number of Simulees 
NO = 75  ### Number of Observations per 
Item (Equal to Average Per Item in Empirical Data) 
 
NTP = 1000   ### Number of Templates in the 
population, Used to Generate Item Difficulties 
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NT = 3         ### Number of Groups at Level 4, Selected Randomly 
Each Replication 
 
NC = c(2,2)  ### Number of Binary Covariates 
at (Level 2, Level 3) Describing Feature Manipulations 
NK = 2**NC[2]   ### Number of Item Models per Template at Level 3, 
NK*NT = Total Number of Item Models at Level 3 
NJ = 2**NC[1]### Number of Families per Item Model, NJ*NK*NT = Total 
Number of Families at Level 2 
NI = 10  ### Number of Items per Family, 
NI*NJ*NK*NT = Total Number of Items 
 
### Definition of Random Effects 
### Variance Explained and Unexplained, and Coefficients 
 
vec = c(1,0) 
 
 
 
 
 
 
  ### Levels of Feature 
Manipulation per Feature/Covariate 
lst_2 = lapply(numeric(NC[1]),function(x) vec) ### Function to 
Describe Feature Combinations at Level 2 
lst_3 = lapply(numeric(NC[2]),function(x) vec)  ### Function to 
Describe Feature Combinations at Level 3 
 
CV = .25  ### Variance of each Binary 
Covariate (Specified as Independent, no Covariance) 
R2 = c(.75,.75) ### Variance Explained at (Level 2, Level 3) by 
Manipulated Features 
 
var_total = c(.1,.6,.8,1) 
 
 
 
 
 
  ### Total Variance TO BE 
EXPLAINED at each level of the model 
e_sigma = sqrt(var_total[1]) 
 
 
 
 
  ### Within-family variation, 
Sigma defined for rnorm() function 
u_sigma = sqrt((var_total[2]-R2*var_total[2])/NC[1]) ### Unexplained 
Variance at Level 2, Distributed Equally Across Features, Sigma 
Defined for rnorm() function 
v_sigma = sqrt((var_total[3]-R2*var_total[3])/NC[2]) ### Unexplained 
Variance at Level 3, Distributed Equally Across Features, Sigma 
Defined for rnorm() function 
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w_sigma = sqrt(var_total[4]) 
 
 
 
 
  ### Random Effects at Level 4 
 
c_2 = as.matrix(expand.grid(lst_2)) 
 
 
 
  ### Matrix of Feature 
Combinations for Level 2 
c_3 = as.matrix(expand.grid(lst_3)) 
 
 
 
  ### Matrix of Feature 
Combinations for Level 3 
 
b_2 = coef_calc(NC[1],R2[1],var_total[2],CV)                     ### 
Coefficients at Level 2 
 
b_3 = coef_calc(NC[2],R2[2],var_total[3],CV)                     ### 
Coefficients at Level 3 
b_3 = -1*b_3 
 
 
 
 
 
 
  ### Coefficients at Level 3 are 
negative, positive at level 2 
 
############################################################# 
### ITEM GENERATION FUNCTION 
### Random Effects Only, Grand Mean = 0 
############################################################# 
 
### In the 'itemgen' function, difficulties are being generated 
### for the full population 
### Items observed from specific templates will be selected at a 
later stage 
 
itemgen = 
function(sige,sigu,sigv,sigw,nc,nt,nk,nj,ni,cc2,cc3,b2,b3){ 
   
  ### Storage Vectors 
   
  g0 = rep(0,nt) 
  ww = rep(0,nt) 
  p0 = rep(0,nk) 
  f3 = matrix(0,nrow=nk,ncol=nc[2])### fixed effects at level 3 
  vv = matrix(0,nrow=nk,ncol=nc[2])### random effects at level 3 
  m0 = rep(0,nj) 
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  f2 = matrix(0,nrow=nj,ncol=nc[1])### fixed effects at level 2 
  uu = matrix(0,nrow=nj,ncol=nc[1])### random effects at level 2 
  ee = rep(0,ni) 
  betai = rep(0,ni) 
   
  tempdiff = matrix(0,nrow=ni*nj*nk*nt,ncol=1)    ### Storage for 
Template Difficulties   
  gendiff = matrix(0,nrow=ni*nj*nk*nt,ncol=1) ### Storage for Item 
Difficulties 
  cxmat2 = matrix(0,nrow=ni*nj*nk*nt,ncol=nc[1]) ### Storage for 
Level 2 Features 
  cxmat3 = matrix(0,nrow=ni*nj*nk*nt,ncol=nc[2])   ### Storage for 
Level 3 Features 
   
  ### Grand Mean 
   
  g00 = 0 
   
  ### Templates 
  for (t in 1:nt){ 
    ww[t] = rnorm(1,0,sigw) 
    g0[t] = g00 + ww[t] 
     
    ### Item Models 
    for (k in 1:nk){ 
       
      ### Across Features Defining Item Models within Templates 
      ### Matrix of random effects 
      ### Matrix of fixed effects, product of covariate and 0/1 
indicator 
      for (n in 1:nc[2]){ 
        vv[k,n] = rnorm(1,0,sigv) 
        f3[k,n] = b3*cc3[k,n] 
      } 
       
      p0[k] = g0[t] + sum(f3[k,]) + sum(vv[k,]) 
       
      ### Families 
      for (j in 1:nj){ 
         
        ### Across Features Defining Families within Item Models 
        ### Matrix of random effects 
        ### Matrix of fixed effects, product of covariate and 0/1 
indicator 
        for (m in 1:nc[1]){ 
          uu[j,m] = rnorm(1,0,sigu) 
          f2[j,m] = b2*cc2[j,m] 
        } 
         
        m0[j] = p0[k] + sum(f2[j,]) + sum(uu[j,]) 
         
        ### Items 
        for (i in 1:ni){ 
          ee[i] = rnorm(1,0,sige) 
          betai[i] = m0[j] + ee[i] 
        } 
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        ### Saving features and generated difficulties for each 
family of items 
         
        is = (t-1)*nk*nj*ni + (k-1)*nj*ni + (j-1)*ni + 1 
        ie = (t-1)*nk*nj*ni + (k-1)*nj*ni + j*ni 
         
        gendiff[is:ie,1] = betai 
        tempdiff[is:ie,1] = ww[t] 
         
        for (xx in is:ie){ 
          cxmat2[xx,] = cc2[j,] 
          cxmat3[xx,] = cc3[k,] 
        } 
      } 
    } 
  } 
   
  ### Indices for each level of the model 
   
  uid = seq(1:(ni*nj*nk*nt)) 
 
 
  ### Unique Identifier for Items 
  tid = sort(rep(seq(1:nt),ni*nj*nk))
 
  ### Identifier for Templates     
(Level 4) 
  mid = rep(sort(rep(seq(1:nk),ni*nj)),nt) ### Identifier for Item 
Models w/in Template  (Level 3) 
  fid = rep(sort(rep(seq(1:nj),ni)),nk*nt) ### Identifier for Item 
Families w/in Item Model(Level 2) 
  iid = rep(seq(1:ni),nj*nk*nt) 
 
  ### Identifier for Items w/in 
Families        (Level 1) 
   
  mydat=cbind(uid,tid,tempdiff,mid,cxmat3,fid,cxmat2,iid,gendiff) 
  return(mydat) 
} 
 
############################################################# 
### ITEM PARAMETER ESTIMATION (FUNCTION CALL) 
############################################################# 
 
set.seed(0911) 
 
### Function Call 
 
itemdiff = 
itemgen(e_sigma,u_sigma,v_sigma,w_sigma,NC,NTP,NK,NJ,NI,c_2,c_3,b_2,
b_3) 
itemdiff = as.data.frame(itemdiff) 
 
### Generating Names for Data Frame, Given Number of Covariates at 
Levels 2 and 3 
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jnum = seq(1:NC[1]) 
jname = rep(0,NC[1]) 
for (m in 1:NC[1]){ 
  jname[m] = paste('c',jnum[m],'2',sep="") 
} 
 
knum = seq(1:NC[2]) 
kname = rep(0,NC[2]) 
for (n in 1:NC[2]){ 
  kname[n] = paste('c',knum[n],'3',sep="") 
} 
 
names(itemdiff) = 
c("uid","tid","t_mu","mid",kname,"fid",jname,"iid","diff") 
 
############################################################# 
### ITEM GENERATION CHECK 
############################################################# 
 
### The grand mean is set to 0. 
### At level 3, each fixed effect is equal to 0.8660254 
### At level 2, each fixed effect is equal to 0.8660254 
 
### At level 4, the variance is equal to .4 
### At level 3 (with four covariates, as written), there are four 
variance components, each is equal to 1/16 = .0625. 
### At level 2 (with four covariates, as written), there are four 
variance components, each is equal to 1/16 = .0625. 
### At level 1, the variance is equal to .1. 
 
#summary(lmer(diff ~ 1 + c12 + c22 + c32 + c42 + c13 + c23 + c33 + 
c43 + (1|tid) + (1|mid:tid) +(1|fid:(mid:tid)), data=itemdiff)) 
 
############################################################# 
### PERSON DATA 
############################################################# 
 
### Generate a vector of person abilities indexed by a person id 
 
set.seed(0912) 
 
peeps = seq(1:NP) 
thetaj = rnorm(NP,0,1) 
 
############################################################# 
### SCORE DATA 
############################################################# 
 
### Generate a complete matrix of response probabilities for all 
person-item combinations 
### Generate a complete matrix of scores for all person-item 
combinations 
 
probmat = matrix(0,nrow=(NT*NK*NJ*NI),ncol=NP) 
scoremat = matrix(0,nrow=(NT*NK*NJ*NI),ncol=NP) 
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### loop over items 
 
for (i in 1:(NT*NK*NJ*NI)){ 
   
  ### loop over people 
   
  for (j in 1:NP){ 
     
    probmat[i,j] = expit(thetaj[j] - itemdiff$diff[i]) 
    scoremat[i,j] = as.numeric(rbinom(1,1,probmat[i,j])) 
     
  } 
} 
 
### Transform the matrix of scores into a 3-column data set 
### With scores indexed by the item number (unique id across all 
items, uid) 
### and the person (peeps) 
 
scoredat = reshape2::melt(scoremat) 
names(scoredat) = c('newuid','peeps','score') 
 
###################################################### 
#### SCORE DATA FOR ANALYSIS 
###################################################### 
 
#datafolder = 
"C:\\Users\\SW\\Dropbox\\EmpiricalDiss\\Ch4_Sim\\Condition1\\Respons
eData\\" 
#datafolder = 
"C:\\Users\\SW\\Dropbox\\EmpiricalDiss\\Ch4_Sim\\LargeSample\\" 
#datafolder  = "~/ResponseData/" 
 
datafolder = 
"G:\\Dropbox\\EmpiricalDiss\\Results\\ResponseData_Mod1_Cond1\\" 
 
set.seed(0916) 
 
### Loop over Replications 
 
for (r in 1:NR){ 
   
  ### Sample Simulees Responding to Each Item 
  ### Generate Observation Index for Items 
  ### Sample Drawn Across All Items, No Constraints by 
Template/Model/Family 
   
  for (i in 1:(NI*NJ*NK*NT)){ 
    curr_item = i 
    item_sample = sample(peeps,NO) 
     
    if (curr_item==1){ 
      sample_vector = item_sample 
      obs_index = rep(curr_item,NO) 
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    } 
     
    else { 
      sample_vector<- 
append(sample_vector,item_sample,after=(NO*(curr_item-1))) 
      obs_index<- append(obs_index,rep(curr_item,times = 
NO),after=(NO*(curr_item-1))) 
    } 
     
    sample_vector 
    obs_index 
  } 
   
   
  ### Create Sample Matrix as a Data Frame 
  ### Simulees for Each Item Indexed by the Item Number 
   
  sample_data = as.data.frame(cbind(obs_index,sample_vector)) 
  names(sample_data) = c('newuid','peeps') 
   
  ### Select NT Templates per Replication 
   
  temp_sample = sample(seq(1:NTP),NT)  
  sample_itemdiff = itemdiff[itemdiff$tid %in% temp_sample,] 
  sample_itemdiff = sample_itemdiff[order(sample_itemdiff$tid),] 
  sample_itemdiff$newuid = seq(1:(NI*NJ*NK*NT)) 
   
  ### Merge Sample Matrix with Sampled Item Parameter Matrix 
   
  mydat<-merge(sample_itemdiff,sample_data,by="newuid",all=TRUE) 
   
  ### Remove Additional Objects in Large Sample Cases 
  ###rm(itemgen) 
  ###rm(probmat) 
  ###rm(scoremat) 
  ###rm(sample_data) 
  ###rm(sample_itemdiff) 
  ###rm(sample_vector) 
   
  mydat = mydat[with(mydat,order(mydat$peeps)),] 
   
  ### For Large Sample Demonstrations, Need to Reduce Size of Files 
for Merge 
   
  #datafolder = 
"G:\\Dropbox\\EmpiricalDiss\\Ch4_Sim\\LargeSample\\ScoreFiles_1\\" 
   
  #for(tt in 1:NT){ 
   
  # newdat = mydat[mydat$tid == tt,] 
   
  # min_uid = min(newdat$newuid) 
  # max_uid = max(newdat$newuid) 
   
  # uid_vec = c(min_uid:max_uid) 
  # newscore = scoredat[scoredat$newuid %in% uid_vec,] 
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  # alldat <- 
merge(newdat,newscore,by=c("newuid","peeps"),all.x=TRUE) 
   
  # myfile = paste0(datafolder,"cond1_tempnum_",tt,"_respfile.csv") 
  # 
 write.csv(alldat,myfile,row.names=FALSE) 
   
  # rm(newdat) 
  # rm(newscore) 
  # rm(alldat) 
   
  #} 
   
  #file.list = list.files("~/ResponseData/") 
   
  #fulldata = do.call("rbind",lapply(file.list,FUN = function(file){ 
  # read.table(file,header=TRUE,sep=",") 
  # })) 
   
  #saveRDS(fulldata,"LargeSampleFile_WellGen.rds") 
   
  ### Merge Sample Matrix with Score Matrix 
   
  mydat = mydat[with(mydat,order(mydat$peeps)),]
  ### First sorted by Peeps, then 
by NEWUID 
   
  mydat <- merge(mydat,scoredat,by=c("newuid","peeps"),all.x=TRUE) 
   
  ### Save Files 
   
  myfile = paste0(datafolder,"sim_cond1_",r,"_respfile.csv") 
  write.csv(mydat,myfile,row.names=FALSE) 
   
} 
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Appendix B: Stan Code for Model Estimation 
 
################################################### 
## Parameter Recovery study -  
## Heterogeneous Means 
## Heterogeneous Variances 
## Code to loop through subset of replicates, save to RDS 
################################################### 
 
######################################### 
### LOAD LIBRARY, SET OPTIONS 
######################################### 
 
library('rstan') 
 
rstan_options(auto_write = TRUE) 
options(mc.cores = parallel::detectCores()) 
 
set.seed(12345) 
 
######################################### 
### STAN MODEL INITIATION 
######################################### 
 
mymodel<- " 
 
data {  
int<lower=1> N;            // number of observations  
 
int<lower=1> J;            // number of students  
int<lower=1> K;            // number of items  
int<lower=1> P;            // number of families 
int<lower=1> M;            // number of item models 
int<lower=1> Q;           // number of templates 
 
int<lower=1> X;            // length of multten array 
int<lower=1> Y;            // length of threedig array 
 
int<lower=1> A;            // length of vv array 
int<lower=1> B;            // length of hh array 
 
int peeps[N];                  // student giving response n  
int<lower=1,upper=K> item[N];  // item for response n  
int<lower=0,upper=1> score[N];   // correctness for response n  
 
int<lower=0,upper=J> pid[J];   // Person ID number 
int<lower=0,upper=K> iid[K];   // Item ID number  
int<lower=0,upper=P> fid[P];   // family ID number    
int<lower=0,upper=M> mid[M];   // item model ID number 
int<lower=0,upper=Q> tid[Q];   // template ID number 
 
int<lower=1,upper=P> parent[K];   //indexes items to families 
int<lower=1,upper=M> mm[P];       //indexes families to item 
models 
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int<lower=1,upper=Q> tt[M];        //indexes item models to 
templates 
 
int multten[X];                 // Array of indices for families - 
numbers are some multiple of ten 
int threedig[Y];                // Array of indices for families - 
numbers are maximum of three digits 
 
int vv[A];//Array of indices for imodels - display format is verbal 
int hh[B]; //Array of indices for imodels - display format is 
horizontal 
 
} 
 
parameters { 
 
vector[J] uj;                 
 
vector <lower=0> [P] sigma_item; 
vector <lower=0> [M] fam_resid; 
vector <lower=0> [Q] mod_resid; 
 
vector [K] betai_offset; 
vector [P] fammu_offset; 
vector [M] modmu_offset; 
 
vector[Q] template_mu; 
vector[Q] disp_horiz; 
vector[Q] disp_verb; 
vector[M] char_m10;                    //fixed effects of content 
characteristics  
vector[M] char_d3;                     //fixed effects of content 
characteristics 
 
} 
 
transformed parameters{ 
vector[N] eta; 
vector[K] betai; 
vector[P] family_mu; 
vector[M] model_mu; 
 
// varying item family difficulty across item families within models 
// decomposition of family means into a model mean and fixed effects 
 
model_mu = template_mu[tt] + modmu_offset[tt] .* mod_resid[tt];  
model_mu[vv] = model_mu[vv] + disp_verb[tt[hh]]; 
model_mu[hh] = model_mu[hh] + disp_horiz[tt[vv]]; 
 
// varying item family diffculty across item families within models 
// decomposition of family means into a model mean and fixed effects 
 
family_mu = model_mu[mm] + fammu_offset[mm] .* fam_resid[mm]; 
family_mu[multten] = family_mu[multten] + char_m10[mm[multten]]; 
family_mu[threedig] = family_mu[threedig] + char_d3[mm[threedig]]; 
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// item difficulties parameterized as random, with parent-specific 
means 
betai = family_mu[parent] + betai_offset[parent] .* 
sigma_item[parent];  
 
//log odds of a correct probability 
eta = uj[peeps]-betai[item]; 
 
} 
 
model {  
 
//hyperprior 
betai_offset ~ normal(0,1); 
fammu_offset ~ normal(0,1); 
modmu_offset ~ normal(0,1); 
 
//prior on random variable theta to scale the item difficulty 
parameters 
uj ~ normal(0,1); 
 
//weakly informative prior on item variance 
sigma_item ~ normal(0,1); 
fam_resid ~ normal(0,1); 
mod_resid ~ normal(0,1); 
 
//likelihood function                                          
score ~ bernoulli_logit(eta); 
 
} 
" 
 
my_stan_code <- stanc(model_code=mymodel) 
my_compiled_model <- stan_model(stanc_ret = 
my_stan_code,verbose=FALSE) 
 
######################################### 
### LOOP THROUGH FILES, ESTIMATE, SAVE RDS 
######################################### 
 
ResultsFolder <- "~/Results/" 
DataFolder <- "~/ResponseData/" 
 
mystan <- sapply(1:1, FUN = function(r) { 
 
  DataFile<-paste0(DataFolder,"pr_homfe_hetre_",r,"_respfile.csv") 
  #DataFile<-
"C:\\Users\\SW\\Dropbox\\EmpiricalDiss\\Ch4_PR\\HomFE_HetRE\\Respons
eData\\pr_hetfe_hetre_1_respfile.csv" 
  dd<-read.csv(DataFile,header=TRUE) 
   
############################ 
### Transform Data into a List 
############################ 
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  #names(dd) <- 
c("obs","peeps","item","family","imodel","template","verbal","horiz"
,"m10","d3","score") 
 
N <- length(unique(dd$obs)) 
K <- length(unique(dd$item)) 
J <- length(unique(dd$peeps)) 
P <- length(unique(dd$family)) 
M <- length(unique(dd$imodel)) 
Q <- length(unique(dd$template)) 
 
peeps <- dd$peeps 
item <- dd$item 
score <- dd$score 
 
### People ID - Length J 
pid <- sort(unique(dd[c("peeps")])[,"peeps"]) 
### Item ID - Length K  
iid <- sort(unique(dd[c("item")])[,"item"]) 
### Family ID - Length P 
fid <- sort(unique(dd[c("family")])[,"family"]) 
### Item Model ID - Length M 
mid <- sort(unique(dd[c("imodel")])[,"imodel"]) 
### Template ID - Length T 
tid <- sort(unique(dd[c("template")])[,"template"]) 
 
### Item - Family Index - Length K, P Unique Values 
### For each row in parent[], it returns the family ID number 
dd<-dd[with(dd,order(item)),] 
parent <- unique(dd[,c("item","family")])[,"family"] 
### Family - Item Model Index - Length P, M Unique Values 
### For each row in mm[], it returns the model ID number 
dd<-dd[with(dd,order(family)),] 
mm <- unique(dd[c("family","imodel")])[,"imodel"] 
### Item Model - Template Index - Length M, T Unique Values 
dd<-dd[with(dd,order(imodel)),] 
tt <- unique(dd[c("imodel","template")])[,"template"] 
 
### Content Characteristics 
### For each row denoting a family, are the numbers multiples of 10 
or are they three digits 
### Array of indices 
 
dd<-dd[with(dd,order(family)),] 
 
multten<-unique(dd[dd$m10==1,c("family")]) 
threedig<-unique(dd[dd$d3==1,c("family")]) 
 
X<-length(multten) 
Y<-length(threedig) 
 
### Form Characteristics  
### For each row denoting a template, is the form a verbal 
representation or is it arranged horizontally 
### Base category is comprised of items displayed in numeric format, 
numbers arranged  
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### array of indices 
 
dd<-dd[with(dd,order(imodel)),] 
 
vv<-unique(dd[dd$verbal==1,c("imodel")]) 
hh<-unique(dd[dd$horiz==1,c("imodel")]) 
 
A<-length(vv) 
B<-length(hh) 
 
######################### 
### Free Space 
######################### 
 
rm(dd) 
 
######################### 
### Estimate Model 
######################### 
 
myfit <-sampling(my_compiled_model, 
              data = c("N","J","K","P","M","Q", 
                       "A","B","X","Y", 
                       "peeps","item","pid", 
                       "iid","fid","mid","tid", 
                       "parent","score","mm","tt", 
                       "multten","threedig", 
                       "vv","hh"),  
              pars = 
c("uj","sigma_item","fam_resid","mod_resid","template_mu","char_m10"
,"char_d3","disp_verb","disp_horiz"), 
              control = list(stepsize=0.1, adapt_delta=0.9, 
max_treedepth=15), 
              iter = 5000, warmup=2500, chains = 4, thin=1, 
save_warmup=TRUE, 
              verbose = T)  
 
 
myresultsfile = 
paste0(ResultsFolder,"HomFE_HetRE_woffset_nprior_pt9_indexed_Rep",r,
".rds") 
saveRDS(myfit, myresultsfile) 
 
######################### 
### Free Space 
######################### 
 
rm("N","J","K","P","M","Q", 
     "A","B","X","Y", 
     "peeps","item","pid", 
     "iid","fid","mid","tid", 
     "parent","score","mm","tt", 
     "multten","threedig", 
     "vv","hh") 
 
rm(myfit) 
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######################### 
### Bookkeeping 
######################### 
 
mytime <- Sys.time() 
logentry <- (paste("Replication",r,"completed at",mytime)) 
 
print(logentry) 
 
gc() 
gc() 
 
}) 
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