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The effects of ionizing radiation on the extremely halophilic Archaeon 

Halobacterium sp. str. NRC-1 can be divided into three central themes: protection 

from oxidative damages, response to ionizing radiation, and repair of DNA double 

strand breaks (DSBs). Intracellular salts used to maintain osmotic balance in the 

hypersaline conditions Halobacterium cells require are shown in this study to provide 

in vivo protection from oxidative damages through the scavenging of hydroxyl 

radicals produced from the radiolysis of water by gamma radiation. These results 

highlight both the importance of the intracellular environment in determining 

radiation resistance and the multiplicity of pathways resulting in radiation resistance 

that can be utilized by various microbes resulting from their adaptations to common 

environmental stresses such as desiccation. The global stress response to gamma 

  



radiation was measured using both genomic and proteomic methods. The resulting 

systems view reveals cooperation amongst several cellular processes including DNA 

repair, increased protein turnover, apparent shifts in metabolism to favor nucleotide 

biosynthesis and an overall effort to repair oxidative damage. Further, we 

demonstrate the importance of time dimension while correlating mRNA and protein 

levels and suggest that steady state comparisons may be misleading while assessing 

dynamics of genetic information processing across transcription and translation. The 

repair of DNA DSBs incurred after exposure to gamma radiation was examined in 

greater detail. The in vivo role of the Mre11/Rad50 complex was determined in an 

archaeal model system to determine if these proteins performed the same role in 

homologous recombination repair as their eukaryotic homologs. Deletion of mre11 

was found to reduce the rate of DSB repair, but not the overall survival of the cells. 

Taken together, the data presented here provide a halophilic model for radiation 

resistance that shares some common elements with other radiation resistant organisms 

such as Deinococcus radiodurans while presenting alternative mechanisms specific to 

extreme halophiles. 
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Chapter 1: Introduction 

 

Radiation resistant microorganisms have recently garnered a great deal of attention 

from scientists seeking to define the mechanisms underlying the survival abilities of 

these microbes. Adaptations enabling survival after exposure to levels of ionizing 

radiation not found in natural microbial habitats are thought to have arisen in 

response to repeated cycles of desiccation that produce the same damages to cellular 

macromolecules as ionizing radiation (Mattimore and Battista 1996). Ionizing 

radiation has therefore been proposed as a proxy source for oxidative damages 

induced by desiccation. Much of the focus has been on DNA repair mechanisms 

ranging from homologous recombination (HR) (Wyman et al. 2004; Dudas and 

Chovanec 2004; Kowalczykowski et al. 1994) to non-homologous end joining 

(NHEJ) (Dudasova et al. 2004) and synthesis-dependant strand annealing (Zahradka 

et al. 2006; Paques and Haber 1999; Paques and Haber 1997). Whole-genome studies 

of the transcriptional and translational responses of a variety of microorganisms from 

all three domains of life, including Saccharomyces cerevisiae (Birrell et al. 2002), 

Deinococcus radiodurans (Liu et al. 2003), and Halobacterium sp. str. NRC-1 

(Whitehead et al. 2006), to ionizing radiation have been used to search for proteins 

and pathways responsible for radiation resistance. These investigations, however, 

have not revealed a ‘silver bullet’ repair protein or pathway that can explain the 

survival abilities of extremophiles. In addition, recent evidence suggests that 

prevention of protein oxidation also contributes to radiation resistance in prokaryotes 

with a high Mn/Fe ratio (Daly et al. 2004). Combined, the data provides tantalizing 
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evidence that radiation resistance may be the result of a complex set of intracellular 

reactions and molecular pathways which vary from one group of organisms to 

another, rather than simply the result of potent DNA repair abilities common to all 

extremophiles.  

 

Archaea provide exceptional model systems for molecular-level investigations of 

microbial survival abilities. The Archaea domain is composed of prokaryotic 

microorganisms that are often – but not exclusively – extremophiles, including 

hyperthermophiles, methanogens and extreme halophiles (see Figure 1-1). Archaeal 

DNA metabolism proteins are more closely related to eukaryotic proteins than to the 

bacterial counterparts, with the notable difference that archaeal repair systems have 

fewer proteins involved than their eukaryotic counterparts, making them ideal for use 

in deciphering more complex eukaryotic pathways in a simplified setting. The 

extremely halophilic archaeon Halobacterium sp. str. NRC-1 has been shown to be 

highly resistant to both desiccation and gamma irradiation (Kottemann et al. 2005) 

(Whitehead et al. 2006).  Halobacterium cells also maintain an intracellular salt 

environment in equimolar amounts to the external hypersaline environment, 

providing a distinct context for studying the intracellular reactions responsible for 

radiation resistance.  

 

This review seeks to summarize the recent discoveries in the field of microbial 

radiation resistance from an archaeal perspective. 
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Figure 1-1. Universal tree of life showing the three domains (Bacteria, Eukarya, 

Archaea) taken from (M.T. 2000). The Archaea are divided into two major kingdoms 

(Crenarchaeota and Euryarchaeota) along with the Korarchaeota, composed of 

thermophilic archaea enriched from environmental samples, and the Nanoarchaeota 

(not shown here). The extreme halophiles, of which Halobacterium sp. str. NRC-1 is 

a member, are circled. 
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Ionizing Radiation and Oxidative Damage 

Ionizing radiation is a well-characterized exogenous source of free radicals produced 

via the radiolysis of water, which account for more than 80% of the DNA damage 

whereas less than 20% is the result of direct effects of photons (Riley 1994). Aerobic 

organisms also produce reactive oxygen species (ROS) endogenously through the 

autooxidation of dehydrogenases involved in the respiratory electron transport chain 

(reviewed in Imlay 2003). ROS are able to attack and modify DNA bases as well as 

sugar moieties, proteins, and lipids (Riley 1994).  

 

The macromolecular targets and activities vary between reactive oxygen species. 

H2O2 is not highly reactive, but unlike superoxide and hydroxyl radicals, it is 

membrane permeable. It can also be converted to more reactive species through both 

the Fenton and Haber-Weiss reaction pathways (see review in (Valko et al. 2005)).  

 

Fenton reaction: 

Fe2+ + H2O2  Fe3+ + .OH + OH- 

 

Haber-Weiss reaction: 

H2O2 + .OH  H2O + O2
- + H+  

H2O2 + O2
-  O2 + OH- + .OH 

 

Superoxide is able to oxidize iron-sulfur clusters of proteins, destabilizing the protein 

structure and causing the release of free Fe(II), which can then combine with H2O2 to 
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produce the biologically damaging hydroxyl radical (.OH) via the Fenton and Haber-

Weiss reactions. The reduction of free iron is a rate-limiting step for DNA oxidative 

damage (Park and Imlay 2003). The hydroxyl radical is highly reactive and can 

modify proteins, lipids, and nucleic acids. Oxidation of sugar and base components of 

DNA by hydroxyl radicals produces bulky lesions (Cadet et al. 1999; Hutchinson 

1985; Dizdaroglu et al. 2002) which can stall replication forks (Michel 2000).  The 

most common oxidization products are 7,8-dihydro-8-oxoguanine (8-oxoguanine) for 

purines and thymine glycol for pyrimidines (Slupphaug et al. 2003).  

 

Much attention has been focused on the cytotoxic effects of DNA oxidation by free 

radical species, emphasizing the critical nature of DNA repair systems for radiation 

resistance (Daly and Minton 1995; Billi et al. 2000; Bennett et al. 2001). Recent 

reports, however, have suggested that loss of protein function due to protein oxidation 

may be more significant in terms of cell survival (Daly et al. 2007). In light of the 

potentially lethal effects of exposure to ionizing radiation including arrested DNA 

replication, chromosomal fragmentation, and loss of protein function, mechanisms to 

protect against or repair the damages incurred upon exposure to ionizing radiation are 

vital to cell survival. 

 

Protective Strategies against Ionizing Radiation 

A number of protective mechanisms have been noted for shielding DNA from 

radiation damages. Sensory rhodopsin pigments in Halobacterium cells are 

responsible for initiating a phototaxis response away from high energy wavelengths 
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(DasSarma et al. 2001). C50 carotenoids found in the cell membranes of both 

Halobacterium (Kottemann et al. 2005) and D. radiodurans (Carbonneau et al. 1989) 

have been shown to offer DNA protection from oxidative damages, particularly at 

low doses of ionizing radiation, through the scavenging of hydroxyl radicals. 

Superoxide dismutases, along with catalase and peroxidase enzymes, scavenge 

superoxide and hydrogen peroxide radicals, respectively (Aguirre et al. 2005; Cannio 

et al. 2000; Keyer et al. 1995).  

 

Abiotic mechanisms have been noted for the protection of cellular macromolecules. 

Iron compounds have been shown to be effective in shielding DNA against UV 

radiation (Cockell and Knowland 1999). MgCl2 and KCl have been shown to protect 

DNA from thermodegradation in vitro (Marguet and Forterre 1998). Intracellular KCl 

has also been hypothesized to act as a protective agent against oxidative damage by 

scavenging of the hydroxyl radical by chloride ions (Kottemann et al. 2005; 

Shahmohammadi et al. 1998). Iron cofactors in many cellular proteins including some 

forms of superoxide dismutase have long been known to react with hydrogen 

peroxide increasing the production of the highly reactive hydroxyl radical through 

Fenton chemistry. Mn(II) can be used in place of Fe(II) as a cofactor for many 

enzymes including superoxide dismutase, and Mn (II) does not participate in Fenton 

chemistry. Recent data has shown that many radiation resistant bacteria have a higher 

intracellular Mn/Fe ratio than radiation sensitive organisms (Daly et al. 2004). This 

mechanism was hypothesized to reduce oxidative damage to intracellular proteins by 
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superoxide radicals, thus preserving the DNA repair functions of the cells during 

periods of oxidative stress (Daly et al. 2007). 

 

DNA Repair Strategies after Exposure to Ionizing Radiation 

Repair of oxidative damages to DNA can be achieved by multiple repair pathways, 

including base excision repair (BER), nucleotide excision repair, translesion 

synthesis, synthesis dependant strand annealing (SSA), non-homologous end joining 

(NHEJ), and homologous recombination (HR), working in concert on the various 

damage types (Swanson et al. 1999; Slupphaug et al. 2003). The most commonly 

employed mechanisms are BER for the removal of oxidized DNA bases, and SSA, 

NHEJ, and HR for the repair of DNA double strand breaks (DSBs). 

 

The BER pathway utilizes lesion-specific glycosylases (see review in (Dizdaroglu 

2003)), such as the Escherichia coli Fpg and endo III enzymes, to recognize and 

excise oxidized DNA bases, followed by cleavage of the phosphate backbone on 

either the 5’ side of the AP site by an AP endonuclease or on the 3’ side by an AP 

lyase. DNA synthesis is followed by ligation of the phosphate backbone by DNA 

ligase. Oxidative damage to DNA bases and sugar moieties, however, often occur in 

clusters within 2 helical turns of the DNA on opposite strands resulting in the 

formation of DSBs during attempted base excision repair (Blaisdell and Wallace 

2001b; Dianov et al. 2001; Blaisdell et al. 2001).  
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Repair of DNA DSBs is carried out by SSA, NHEJ, and HR pathways. Various forms 

of single strand annealing (SSA) have been proposed for the repair of DNA DSBs 

including inter-chromosomal SSA (Daly and Minton 1996) and intra-chromosomal 

SSA (Paques and Haber 1999), synthesis dependant strand annealing (Paques and 

Haber 1999), and extended synthesis dependant strand annealing which involves the 

formation of crossover structures by a RecA-dependant homologous recombination 

process (Zahradka et al. 2006). Inter-chromosomal SSA has been shown to be 

involved in DNA DSB repair in D. radiodurans only within the first few hours after 

exposure to ionizing radiation, after which the HR pathway is activated (Daly and 

Minton 1996).  

 

NHEJ tends to be favored in G0/G1 phases of the cell cycle in S. cerevisiae, and has 

been shown to precede HR (reviewed in Sonoda et al. 2006), although the HR 

pathway is most heavily utilized overall (Aylon and Kupiec 2004). NHEJ requires no 

region of homology between chromosomal fragments, resulting in an increased 

potential for mutagenesis. The NHEJ pathway involves the use of the Ku70 and Ku80 

proteins as a heterodimer together in a complex with a DNA-dependant protein kinase 

for DSB recognition, followed by recruitment of the Mre11/Rad50/Xrs2 complex 

prior to DNA end processing and ligation of the break by a DNA ligase. Much of this 

process is currently undefined, including the order of activity, and the role of the 

Mre11/Rad50/Xrs2 complex, which is required for this process in S. cerevisiae. The 

common feature among all organisms currently shown to be capable of NHEJ is the 

presence of Ku70 and Ku80 homologs (Aylon and Kupiec 2004). NHEJ has been 
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shown to function as a back-up system when the HR pathway is disrupted (reviewed 

in van Gent et al. 2001) 

 

The process of HR repair of DNA DSBs in both Bacteria and Eukarya has been 

extensively studied (see reviews in (Symington 2002; Krogh and Symington 2004; 

Wyman et al. 2004; Kowalczykowski et al. 1994; West 2003)). HR is used 

preferentially in S/G2 phases in yeast due to the presence of sister-chromatids for use 

as templates, which greatly reduces the potential for mutagenesis compared with 

NHEJ. The HR pathway is utilized by organisms in all three domains of life.  

 

The maintenance of genome integrity and fidelity is critical for cell survival after 

exposure to ionizing radiation, requiring the repair of chromosomal fragmentation 

resulting both from the action of ROS on DNA components as well as strand breaks 

produced during the repair of clustered DNA damages. Owing to the universality of 

the HR repair pathway, and the importance of DNA DSB repair to cellular survival 

after exposure to ionizing radiation, this pathway will be investigated here in greater 

detail. 

 

Homologous Recombination Repair of DNA DSBs in the Three Domains of 

Life 

There are five basic steps to homologous recombination (HR) repair of DNA DSBs: 

(1) DSB recognition and end processing to create 3’-OH overhangs which are 

required for recombinase recognition, (2) recombinase loading, (3) homologous 
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strand invasion by the recombinase forming a Holliday junction, (4) Holliday junction 

branch migration and DNA synthesis, and (5) Holliday junction resolution. The 

general HR pathway is outlined in Figure 1-2, and the functional homologs from 

model species in each of the three domains of life are given in Table 1-1. The 

structures of the proteins responsible for these activities are different in the Bacteria 

and the Eukarya, as well as some of the specific activities, but the general process is 

the same. 

 

Homologous recombination is currently best characterized in the Bacteria (reviewed 

in Kowalczykowski et al. 1994). E. coli utilizes the RecBCD, RecA, RuvAB, and 

RuvC proteins for DSB detection and end processing, homologous strand invasion, 

branch migration, and Holliday junction resolution, respectively. The RecBCD 

enzyme binds to DNA DSBs, and uses the enzyme’s helicase activity to unwind the 

DNA until a χ (chi) site is encountered while using the enzyme’s ATP-dependant 

nuclease activity to degrade the 3’ strand. Location of a χ site signals a stop to the 

strong 3’-5’ nuclease function with a nicking of the DNA 3’ to the χ site while the 

helicase activity continues. The nuclease activity switches to a weak ssDNA 5’-3’ 

nuclease degrading the 5’ strand producing a 3’ ssDNA overhang coated in single 

strand binding protein (SSB) with the χ site near its terminus. A nucleoprotein  
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Figure 1-2. General model of DNA DSB repair via the homologous recombination 

pathway showing the five major steps: (1) DSB recognition and end processing to 

create 3’-OH overhangs which are required for recombinase recognition, (2) 

recombinase loading, (3) homologous strand invasion by the recombinase forming a 

Holliday junction, (4) Holliday junction branch migration and DNA synthesis, and (5) 

Holliday junction resolution.  

 

 

 11 
 



 

Hjr?RuvCHolliday junction resolution 

HjmRad54 (?)RuvABHolliday junction branch migration

RadA, RPARad51,Rad52, 
Rad54/54/57, RPARecA, SSBSrand exchange

RadA (also called 
RadA1) Rad51RecAHomologous strand invasion 

(recombinase)

Mre11, Rad50 (?)Rad52, Rad54/54/57RecBCDRecombinase loading

Mre11, Rad50, ?Mre11/Rad50/Xrs2     RecBCDDNA DSB recognition and end 
processing to create 3'-OH overhang

Archaea
[Halobacterium] 

Eukarya
[S.cerevisiae]

Bacteria            
[E. coli]

Hjr?RuvCHolliday junction resolution 

HjmRad54 (?)RuvABHolliday junction branch migration

RadA, RPARad51,Rad52, 
Rad54/54/57, RPARecA, SSBSrand exchange

RadA (also called 
RadA1) Rad51RecAHomologous strand invasion 

(recombinase)

Mre11, Rad50 (?)Rad52, Rad54/54/57RecBCDRecombinase loading

Mre11, Rad50, ?Mre11/Rad50/Xrs2     RecBCDDNA DSB recognition and end 
processing to create 3'-OH overhang

Archaea
[Halobacterium] 

Eukarya
[S.cerevisiae]

Bacteria            
[E. coli]

 

 

Table 1-1. Homologous recombination repair functional homologs in the three 

domains of life. The proteins listed are members of the most commonly utilized 

pathway in cases where more than one pathway is available (eg. RecBCD and 

RecFOR pathways in E. coli). Archaeal proteins have been characterized in vitro, 

usually using proteins from Pyrococcus furiosus and Sulfolobus solfataricus. 

Homologs based on sequence similarity in Halobacterium are given. Archaeal 

homologs of Hjr include Hjc in P. furiosus and both Hjc and Hje in S. solfataricus. 
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filament composed of monomers of the RecA recombinase forms around the ssDNA 

while initiating strand exchange with a homologous region of DNA. A Holliday 

junction is formed providing templates for DNA synthesis in both strands. The 

RuvAB proteins increase the branch migration activity of the RecA filament until the 

Holliday junction is resolved using the RuvC endonuclease. An alternative pathway 

nominally used to repair single strand gaps in dsDNA involves the use of the RecFOR 

proteins in place of RecBCD for recruitment of RecA onto ssDNA coated in SSB. 

The use of the RecQ helicase and RecJ 5’-3’ exonuclease can convert this into a DSB 

repair pathway. 

 

The HR pathway in eukaryotes is more complex, involving an increased number of 

proteins. The proteins responsible for the main functions in the HR pathway have 

been reviewed (Aylon and Kupiec 2004; Symington 2002; Krogh and Symington 

2004; West 2003; Wyman et al. 2004; Paques and Haber 1999), and are shown in 

Table 1-1. The Mre11/Rad50/Xrs2 complex in S. cerevisiae functions in DSB 

identification and end processing. No χ – like site is required in the eukaryotic HR 

pathway. RPA is the functional homolog of bacterial SSB for ssDNA protection and 

recognition by Rad51, the eukaryotic homolog of RecA. Rad52 is responsible for 

recombinase loading, and together with Rad54, Rad55, and Rad57 is involved in 

promoting Rad51 strand exchange activities. Currently unknown in the eukaryotic 

pathway are the proteins involved in Holliday junction resolution for nuclear DNA 
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(Heyer et al. 2003), although recent evidence suggests that Rad54 may act in Holliday 

junction branch migration (Bugreev et al. 2006).  

 

Gaps in knowledge of the proteins responsible for branch migration and Holliday 

junction resolution in the eukaryotic HR pathway have proven difficult to fill (Heyer 

et al. 2003). Proteins responsible for these processes have been identified in archaeal 

model systems. Archaea, despite having circular chromosomes contained within 

prokaryotic cells, possess DNA processing proteins most closely related to eukaryotic 

proteins and can serve as simplified models of DNA repair and replication 

mechanisms found in these more derived systems. Archaea utilize eukaryotic-like 

Orc/Cdc6 and MCM replication initiation proteins, as well as PCNA sliding clamp 

for replication, TATA-boxes bound by multiple TATA-binding protein and TFB 

transcription factors. DNA repair proteins are generally more similar to their 

eukaryotic homologs than to bacterial proteins. 

 

Proteins for all the major processes in the HR pathway have been identified in the 

Archaea. Rad50 and Mre11 proteins from Pyrococcus furiosus have been 

characterized in vitro and their 3-dimensional structure determined (Hopfner et al. 

2001; Hopfner et al. 2002; Hopfner et al. 2000a; Hopfner et al. 2000b). The structure 

of the RadA archaeal recombinase has been resolved from both a thermophile, 

Sulfolobus solfataricus (Ariza et al. 2005), and a methanogen, Methanococcus voltae 

(Wu et al. 2004), as well as characterized biochemically in a number of thermophilic 

species including P. furiosus (Seitz and Kowalczykowski 2000), and characterized 
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genetically in the haloterant Haloferax volcanii (Woods and Dyall-Smith 1997). 

Proteins responsible for branch migration and Holliday junction resolution activities 

lacking in Eukaryotic systems have been identified in archaeal hyperthermophilic 

species. The Hjm branch migration protein has been characterized in vitro (Fujikane 

et al. 2006), as has the structure-specific Hef helicase/endonuclease (Komori et al. 

2002; Komori et al. 2004). Crystal structures have been derived for the Hef protein in 

both P. furiosus (Nishino et al. 2005; Komori et al. 2002) and S. solfataricus (Roberts 

and White 2005) revealing a DEAH-family helicase domain attached to a XPF-type 

nuclease domain functioning as part of a homodimer, whereas the Eukaryotic XPF 

and Mus81 proteins are found as separate heterodimer proteins. The structure of the 

Holliday junction resolvase in the Archaea has been determined from homologs in 

multiple organisms, including Hjc in P. furiosus (Nishino et al. 2001) and S. 

solfataricus (Middleton et al. 2003), the Hje paralog from S. solfataricus (Bond et al. 

2001), and Hjc from Archaeoglobus fulgidus (Biertumpfel et al. 2005). Biochemical 

analyses of archaeal resolvases have shown these proteins to be functional homologs 

of the bacterial RuvC nuclease (Komori et al. 2000b; Komori et al. 2000c; Komori et 

al. 1999; Daiyasu et al. 2000) . 

 

The in vitro biochemical analyses of archaeal HR proteins require further 

examination using genetic methods to determine their in vivo activities. There are, 

however, presently no practical genetic systems for hyperthermophiles such as P. 

furiosus that grows at 100oC, although a genetic system has recently been developed 

for Thermococcus kodakaraensis growing optimally at 85°C (Sato et al. 2005; Sato et 
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al. 2003). The genome of Halobacterium contains homologs of the major HR repair 

proteins identified in P. furiosus. In addition, the Halobacterium genome contains 

genes coding for proteins present in all major DNA repair pathways found in both the 

Bacteria and the Eukarya (Ng et al. 2000) with the exception of NHEJ, suggesting a 

major role for DNA repair in Halobacterium resistances to extreme conditions. 

Genomic systems readily available for Halobacterium allow for further examinations 

of the gene expression patterns for each of these genes as well as their regulation in 

response to stimuli such as ionizing radiation. 

 

Halobacterium sp. str. NRC-1 

Halobacterium is a member of the Euryarchaeota, one of the two kingdoms of the 

archaeal domain along with the Crenarchaeota, which includes methanogenic archaea 

as well as some hyperthermophilic species (see Figure 1-1). The Euryarchaeota are 

distinguished from the Crenarchaeota on the basis of their separate branching order in 

phylogenetic analyses of 16S rDNA sequences as well as differences in DNA 

replication machinery including the ssDNA binding and DNA polymerase proteins. 

Halobacterium is a useful model system under development for DNA repair studies 

due to the presence of genetic systems including shuttle vectors and targeted gene 

replacement/over-expression systems lacking in many other archaea including P. 

furiosus. The Halobacterium genome was sequenced in 2000 (Ng et al. 2000) and 

was found to consist of a GC-rich major chromosome (68% GC) and two mini-

replicons; pNRC100 (58% GC) and pNRC200 (59% GC). As with other desiccation 

resistant microrganisms, Halobacterium cells contain multiple copies of their genome 
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in each cell. Halobacterium salinarum cells were found to have an average of 25 

copies of the major chromosome in mid-log phase which was reduced to 15 copies in 

stationary phase (Breuert et al. 2006). This is considerably higher than the 8 genome 

copies found in mid-log phase of D. radiodurans cells (Hansen 1978). The presence 

of multiple genome copies is advantageous for homologous recombination repair of 

extensive DNA double strand breaks formed under desiccating conditions or ionizing 

radiation, providing a large number of DNA templates for recombination, although 

not a diagnostic of radiation resistant organisms as some prokaryotes with multiple 

genome copies are radiation-sensitive (see (Makarova et al. 2001) and references 

therein). Halobacterium genome was predicted to include 2,630 protein coding 

regions with 64% displaying sequence homology to genes in other organisms (Ng et 

al. 2000). A whole-genome oligonucleotide microarray for mRNA expression levels 

is available for Halobacterium, which is currently unavailable for other model 

systems such as Haloferax volcanii. 

 

Hypersaline environments are characterized by elevated temperatures, fluctuations in 

oxygen and nutrient concentrations, high levels of solar radiation, and periodic 

desiccation (DasSarma and Fleischmann 1995). Halobacterium has been shown to be 

highly resistant to UV-C irradiation (D10=340J/m2 (Baliga et al. 2004)) as well as to 

both desiccation and gamma irradiation (D10=5kGy) (Kottemann et al. 2005). Repair 

of extensive DNA DSBs produced both by desiccation and by gamma irradiation has 

been demonstrated within hours of damage formation in Halobacterium (Kottemann 

et al. 2005), as well as P. furiosus (DiRuggiero et al. 1997), and D. radiodurans 
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(Minton and Daly 1995). Gamma radiation resistance in Halobacterium is dependent 

on growth stage, with cultures in log phase exhibiting higher resistance than those in 

stationary phase (Kottemann et al. 2005). No inducible response similar to the SOS 

system in E. coli was observed (Kottemann et al. 2005). Halophilic microorganisms 

achieve osmotic balance in near-saturating salt environments through the 

accumulation of compatible organic solutes or by establishing an internal ionic 

environment equal in concentration, but not necessarily composition, to the 

extracellular environment (Da Costa et al. 1998). The cell interior of Halobacterium 

cells sequesters potassium and chloride ions while excluding sodium ions at molar 

concentrations equal to the cell exterior (Engel and Catchpole 2005). The high ionic 

strength of the Halobacterium intracellular environment compared to other radiation 

resistant organisms such as D. radiodurans provides an alternative framework from 

which to study abiotic mechanisms of radiation resistance. 

 

Relevance to Astrobiology 

Halobacterium inhabits an environment similar to that thought to have existed shortly 

after the Late Heavy Bombardment period approximately 3.5 billion years ago 

(McKay 1997). Evidence of halite within fluid inclusions in the Zag (Whitby et al. 

2000) and Monahans (Zolensky et al. 1999) meteorites as well as on the surface of 

Mars (Rieder et al. 2004) highlights the importance of brine environments in the solar 

system, particularly as a source of liquid water in low-temperature environments. 

Halophiles are capable of surviving extended periods of desiccation trapped inside 

brine inclusions within salt crystals, although the exact time scale is currently being 
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debated (Vreeland et al. 2000; Nickle et al. 2002; Gruber et al. 2004; McGenity et al. 

2000; Vreeland 2007). This has served to increase speculation on the existence of 

halobacteria on Mars (Landis 2001). Survival of halophiles on the Martian surface 

would require the ability to survive periodic desiccation as well as intense UV 

irradiation (Cockell et al. 2000) (Patel et al. 2004) and ionizing radiation. The use of 

model organisms such as Halobacterium for molecular-level studies into DNA repair 

and survival under extreme brine conditions is important to gaining insight into the 

potential for life on Mars. 

 

Summary and Unresolved Questions in Microbial Radiation Resistance  

There are many unresolved issues concerning the mechanisms underlying radiation 

resistance in microorganisms. The effect of the intracellular environment on 

production of free radical species and subsequent damage to macromolecules has not 

been fully explored. The relative toxicity of oxidative damage to DNA and proteins is 

currently being debated. Key proteins in the eukaryotic HR repair pathway, including 

proteins involved in branch migration and resolution of Holliday junctions, remain 

elusive, as does the precise role of the Mre11/Rad50 complex in DSB recognition and 

end processing. These are all areas that can be addressed using Halobacterium as a 

model archaeal system. 

 

 19 
 



 

Research Objectives  

The overall objective of this research is to use in vitro and in vivo approaches to 

elucidate the mechanisms used by Halobacterium cells to prevent, respond to, and 

repair oxidative damages to DNA after exposure to ionizing radiation. 

 

The specific aims of this research were as follows: 

1. Investigate the role of salts in prevention of DNA damage, DSBs and 

oxidized products, by ionizing radiation in Halobacterium. 

2. Identify the genes and proteins that participate in the oxidative damage 

response in Halobacterium after exposure to ionizing radiation using 

genomic and genetic methods. 

3. Characterize the cellular role of the Rad50 and Mre11 proteins in 

Halobacterium using genetic methods. The Rad50/Mre11 complex 

known to be involved in the homologous recombination DNA DSB 

repair pathway in the Eukaryotes. 

 

The first significant contribution of this research was to demonstrate the role of 

intracellular salt in protection against DNA oxidative damages following exposure to 

ionizing radiation. This is a unique feature of extreme halophiles that contributes to 

their survival after irradiation. Secondly, this work presents an extensive picture of 

the transcriptional and translational response to damages induced by gamma 

irradiation, thereby providing a solid foundation of information upon which to initiate 

further investigations into the pathways responsible for radiation resistance. Thirdly, 
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in vivo studies into the homologous recombination pathway for DNA DSB repair 

pathway in Halobacterium presented here complement in vitro assays previously 

conducted using other archaea to determine the identity and function of the key 

pathway constituents in the third domain of life, and highlight the role of DNA 

oxidative damage repair in radiation resistance.  
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Chapter 2: Alternative Mechanisms for Radiation Resistance in 

the Halophilic Archaeon, Halobacterium sp. str. NRC-1 

 

Introduction  

The underlying causes of the observed cytotoxicity of ionizing radiation in micro-

organisms have been a subject of increased investigation. Links have been made 

between survival mechanisms for desiccation and ionizing radiation based on the 

types of damage incurred by cellular macromolecules after exposure to both 

conditions (Mattimore and Battista 1996). DNA double strand breaks (DSBs) have 

been the focal point of many studies investigating the source of radiation resistance in 

microorganisms such as Deinococcus radiodurans (Daly and Minton 1995; Daly et 

al. 2004; Daly et al. 2007; Daly 2006; Battista et al. 1999;Zahradka et al. 2006). 

Genomic comparisons between radiation resistant prokaryotes have failed to reveal 

unique repair systems that would account for the survival of these microorganisms 

(Daly et al. 2007). Recent evidence has shown that prevention of protein oxidation 

also contributes to radiation resistance in prokaryotes with a high intracellular Mn/Fe 

ratio (Daly et al. 2004).  This suggest that while DNA strand breaks  have been 

propsed as the most obvious cause of the cytotoxic effect of ionizing radiation, 

oxidative damage to other cellular macromolecules such as proteins may play a larger 

role in cellular survival. It also suggests that the intracellular milieu has a great effect 

on the level and type of oxidative damage incurred by both DNA and proteins.  
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The main source of damage to DNA by ionizing radiation comes from the production 

of ROS through the radiolysis of water and it accounts for 70% of lesions (Blaisdell 

et al. 2001). Oxidation of DNA bases and sugar moieties, abasic sites, strand breaks, 

and cross-links to proteins are the major DNA damage from ionizing radiation, often 

producing complex clustered lesions, and resulting in DNA double strand breaks 

(DSBs) from attempted repair (Dianov et al. 2001; Regulus et al. 2007). Protein 

oxidation is also prevalent after exposure to ionizing radiation, resulting in the 

addition of carbonyl groups to protein residues (Imlay 2003). Oxidative damage to 

DNA disrupts DNA replication, particularly when combined with oxidation and 

inactivation of DNA replication and repair proteins, leading to cell death. Formation 

of DSBs in microorganisms has been observed under both desiccating conditions and 

gamma (γ) irradiation (DiRuggiero et al. 1999; Mattimore and Battista 1996), leading 

to the hypothesis that adaptations to desiccating conditions by microorganisms such 

as D. radiodurans and Halobacterium sp. str. NRC-1 enable their survival after 

exposure to ionizing radiation (Mattimore and Battista 1996). Ionizing radiation has 

therefore been used as a proxy source for oxidative damage induced by desiccation. 

 

Protective mechanisms against the effects of ionizing radiation have been 

demonstrated at the molecular level. Bacterioruberin, a C50 carotenoid pigment, has 

been shown to offer protection against γ-radiation both in vitro, reducing DNA strand 

breaks at low doses (30Gy) (Asgarani et al. 1999) and thymidine degradation at high 

doses (12kGy) (Saito et al. 1997), and in vivo, evidenced as decreased survival in 
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colorless mutants of both Halobacterium salinarium (Shahmohammadi et al. 1998) 

and Halobacterium sp. str. NRC-1 (Kottemann et al. 2005) irradiated with 600Gy and 

2.5kGy of γ-irradiation, respectively. Scavenging of hydroxyl radicals by chloride 

ions has been previously tested in vitro using low doses of both UV (30J/m2) 

(Asgarani et al. 1999) and γ−radiation (200Gy) (Shahmohammadi et al. 1998), 

showing the protective effect of 2M KCl for plasmid DNA. Intracellular salts such as 

KCl have been hypothesized to have a role in vivo for extreme halophiles that 

sequester intracellular salts to maintain osmotic balance (Kottemann et al. 2005). This 

suggests that the hypersaline environment in which Halobacterium flourishes may be 

a fundamental factor in its resistance to both desiccation and ionizing radiation.  

  

Halobacterium sp. str. NRC-1 (Halobacterium) is an extreme halophile, requiring 3.5 

to 5M NaCl (4.3M NaCl optimal) for growth. Halophiles can maintain osmotic 

balance by either using compatible solutes, thereby keeping the salts in the 

extracellular environment out while retaining water, or by establishing an intracellular 

salt concentration equal to that of the extracellular environment. Halobacterium cells 

follow the later strategy, sequestering potassium and chloride while eliminating 

sodium, resulting in an intracellular environment equal in concentration, but not 

composition, to the surrounding hypersaline pool (Engel and Catchpole 2005). The 

membrane protein responsible for pumping halides into Halobacterium cells is 

halorhodopsin, a light-activated proton pump (Kolbe et al. 2000) which has been 

shown to transport chloride and bromide ions with equal efficiency (Steiner et al. 

1984). We have shown that Halobacterium is highly resistant to UV and ionizing 
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radiation and to desiccation (Kottemann et al. 2005). The free-radical scavenging 

capability of membrane pigments, specifically bacterioruberin, provided 

Halobacterium with protection against cellular damages by ionizing radiation 

(Shahmohammadi et al. 1998; Kottemann et al. 2005). Intracellular high salt 

concentration was also found to provide a protective environment against DNA 

damage over a range of radiation doses by decreasing the number of DNA DSBs 

formed following γ-irradiation (Kottemann et al. 2005). Whole genome 

transcriptional analysis revealed that HR might be the major pathway for the repair of 

DSBs in Halobacterium and homologs of eukaryotic HR proteins have been 

identified in its genome (Whitehead et al. 2006; Ng et al. 2000). 

 

To date, the hypothesis that the scavenging of hydroxyl radicals by intracellular 

chloride ions in extreme halophiles such as Halobacterium is a significant factor in 

the radiation resistance of these species has not been tested in vivo. We show here 

evidence that hydroxyl radical scavenging by halides offers significant protection to 

DNA damage that include base oxidation and DSBs and to oxidation of protein 

residues, using Halobacterium sp. str. NRC-1 as a model system. This work is also 

the first to report the extent of oxidative base damage in a prokaryotic organism after 

γ−irradiation - quantified by detecting base oxidation using GC/MS – underscoring 

the relative importance of oxidative damage to DNA other than strand breakage. 
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Results 

We used the model halophile Halobacterium sp. str. NRC-1 to investigate the 

scavenging effect of hydroxyl radicals, produced by γ-irradiation, by intracellular 

halides in extreme halophiles. Halobacterium, and a majority of extreme halophiles, 

use KCl as the major compatible solute to counterbalance the high salinity of their 

natural environment. We determined the level of oxidative damage to DNA bases, 

DNA backbone and protein residues after exposure to ionizing radiation both in vitro 

and in vivo.  

 

In Vitro DNA Protection against Oxidative Damage by Halides 

Plasmid pUC19 DNA in a 1mM potassium phosphate buffer solution (pH 7.2), with 

and without addition of salts (2M and 4M KCl or KBr), was exposed to 0-300Gy of γ-

radiation. After dialysis against the buffer solution, the DNA was analyzed by agarose 

gel electrophoresis to separate the damaged open circular form plasmid DNA from 

the undamaged supercoiled form. Opposing DNA single strand breaks (SSBs) in 

close proximity are thought to be responsible for observed double strand breaks on 

genomic DNA using electrophoresis methods (Cox and Battista 2005). SSBs 

stabilized by proteins or conditions are converted into DSBs during gel 

electrophoresis thereby potentially mis-representing the in situ condition. The assay 

used here detects DNA SSBs incurred after exposure to γ-radiation as a reduction in 

plasmid supercoiling. Figure 2-1 shows that KCl at or below biologically relevant 
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intracellular concentrations in Halobacterium cells (4M) has a protective effect for 

DNA exposed to ionizing radiation. At a dose of 300Gy, we found close to 2-fold 

fewer DNA strand breaks when KCl was added to the buffer before irradiation. The 

protection against DNA strand breaks by KBr is even greater, with 2.6-fold fewer 

breaks when 2M or 4M KBr were added to the buffer. Interestingly, the salt 

protection effect did not increase when the salt concentration was increase from 2M 

to 4M in the buffer. 

 

Halobacterium Growth and Ionizing Radiation Resistance in Altered Salt 

Media  

The survival of Halobacterium to γ-irradiation was investigated with cells grown at 

three NaCl concentrations, low (3.4M), optimal (4.3M; standard GN101 medium) and 

high (5.1M). Higher or lower salt concentrations than those inhibited cell growth and 

therefore were not used in this experiment. Alteration of the salt concentration in the 

growth medium from 3.4 to 5.1 M NaCl did not result in significant change in the 

survival of Halobacterium to γ-irradiation (Figure 2-2A). We also tested the 

protective effect of bromide over chloride in vivo by irradiating Halobacterium cells 

grown in medium where NaCl was replaced with increasing concentrations of sodium 

bromide. Cultures failed to grow with total replacement of NaCl by NaBr but showed 

significant growth up to 2.6M NaCl replaced by NaBr (data not shown). Again, no 

significant change in radiation resistance was detected at any concentration of NaBr 

(Figure 2-2B).  
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Figure 2-1. Agarose gel electrophoresis of pUC19 plasmid DNA after exposure to up 

to 300Gy of γ−radiation (top panel) showing both undamaged supercoiled (SC) and 

damaged open circular (OC) forms of DNA. Percent ratio of supercoiled to open 

circular form (bottom panel) was quantified by measuring the fluorescent intensity of 

each band.  
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Figure 2-2. In vivo survival of Halobacterium cells after exposure to 5kGy γ-

irradiation. (A) Halobacterium cells cultured in standard GN101 growth medium 

(4.3M NaCl), low salt (3.4M NaCl) and high salt (5.1M NaCl) growth media. (B) 

Halobacterium cells cultured in standard GN101 growth medium (4.3M NaCl) and in 

GN101 growth media with molar replacement of NaCl with NaBr as indicated (eg. 

0.9M NaBr indicates that of the 4.3M salts in the GN101 growth medium, 0.9M NaCl 

was replaced with NaBr resulting in a medium composed of 3.4M NaCl and 0.9M 

NaBr). All data shown is the average of at least 2 replicates with standard errors 

shown. None of the differences in survival between cells grown in standard GN101 

medium and the altered salt conditions were not statistically significant (P>0.05). 
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Chromosomal Fragmentation after Exposure to Ionizing Radiation 

DNA double strand breaks (DBSs) have been shown to be a consequence of exposure 

to ionizing radiation (DiRuggiero et al. 1997; Daly et al. 1994). Here, we measured 

the effects of intracellular salts concentration on chromosome fragmentation by γ-

irradiation in cultures of Halobacterium grown in standard GN101 medium (4.3M 

NaCl) and in bromide medium (GN101 medium with 1.7M NaCl replaced with 1.7M 

NaBr). Cultures of Halobacterium and of the highly radiation-resistant D. 

radiodurans were irradiated at doses from 2.5 to 7.5kGy and DNA fragmentation was 

analyzed by pulsed field electrophoresis (PFGE). DNA DSBs were observed for all 

cultures at 2.5kGy and fragmentation increased with radiation doses as visualized by 

the disappearance of restriction digest DNA bands - seen in the un-irradiated lanes 

(0Gy) - and the smaller size-range of the DNA smear on the gels (Figure 2-3). D. 

radiodurans showed the highest level of fragmentation at all γ doses followed by 

Halobacterium grown in 3.4M NaCl. Halobacterium cells grown with bromide 

medium showed the fewest DSBs, demonstrated by the fact that restriction digested 

DNA bands were still visible at 7.5kGy (Figure 2-3B). These in vivo data confirmed 

the decrease of DNA strand breaks after γ-radiation in the presence of halides and the 

greater protective effect of bromide salts that we observed in our in vitro assays. 
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DNA Base Oxidation after Exposure to Ionizing Radiation 

Oxidized DNA bases Fapy-Ade, Fapy-Gua, and 8-oxo-Gua were quantified using 

GC/MS (see review in (Dizdaroglu et al. 2002)) in DNA from γ-irradiated 

Halobacterium cells cultured in either standard GN101 medium (4.3M NaCl) or 

bromide medium (GN101 medium with replacement of 1.7M NaCl with 1.7M NaBr); 

cells were irradiated at increasing doses of γ-radiation, from 2.5 to 7.5kGy. We 

observed a positive correlation between the number of DNA lesions and the dose 

rates for oxidized DNA bases (Figure 2-4), with a higher number of Fapy-Gua lesions 

(up to 6.6 Fapy-Gua/106 DNA bases) than Fapy-Ade (2.2 lesions/106 DNA bases) 

after exposure to 7.5kGy of  γ-radiation (Figure 2-4). Significantly fewer DNA base 

lesions (≤2.5-fold difference) were found in Halobacterium cells grown in bromide 

medium than in cells grown in standard GN101 medium (Figure 2-4). The total 

number of oxidized bases measured per kGy of γ-irradiation was calculated for 

Halobacterium cells grown in standard GN101 medium (4.3M NaCl) as well as D. 

radiodurans for all γ doses and showed an excess of Fapy-Gua lesions over 8-OH-

Gua and Fapy-Ade (Figure 2-4C). Recovery of the cells under optimal conditions 

following irradiation at 2.5kGy showed that Fapy-Gua and 8-oxo-Gua lesions were 

repaired within 2hrs whereas the Fapy-Ade lesions required nearly 12hrs for repair 

(Figure 2-5A-C). DNA samples were also analyzed with PFGE during the recovery 

period. Figure 2-5D shows the reappearance of some restriction digest DNA bands in 

the PFGE gel after 4 hours of recovery and the reappearance of all restriction digest 

DNA bands after 8 hours suggesting that DNA DSBs in Halobacterium were repaired 

within 8hrs after irradiation at 2.5kGy. 
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Figure 2-3. PFGE analysis of DNA DSBs in Halobacterium and D. radiodurans (A) 

Halobacterium cells cultured in standard GN101 medium containing 4.3M NaCl. (B) 

Halobacterium cells cultured in GN101 medium with 1.7M NaCl replaced with NaBr 

resulting in a medium composed of 2.6M NaCl and 1.7M NaBr. (C) D. radiodurans 

cells cultured in standard TGY medium (no salt). Cell cultures were exposed to 0, 2.5, 

5, and 7.5kGy of γ-radiation prior to embedding in InCert agarose plugs at a final 

density of 1x109cells/mL. The plugs were digested using XbaI (Halobacterium) or 

NotI (D. radiodurans). 
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Protein Oxidation after Exposure to Ionizing Radiation 

Protein oxidation was measured by immunodetection of carbonyl groups in 

Halobacterium protein extracts separated by acrylamide gel electrophoresis and using 

the OxyBlot Protein Oxidation Detection Kit (Chemicon/Millipore; Billerica, MA). 

We found that the relative amount of protein oxidation in Halobacterium increased 

with increasing doses of γ-irradiation of cells grown in standard GN101 medium 

(Figure 2-6A). Halobacterium cells cultured in bromide medium showed significantly 

fewer oxidized carbonyl groups than cells cultured in standard GN101 medium 

(Figure 2-6B). Analysis of protein cells extracts during recovery of cells grown in 

standard GN101 medium over a 12-hour period following γ irradiation at 2.5kGy 

showed a decrease in protein oxidation level over time, and a return to pre-irradiation 

levels by 8 hours. These results indicate that oxidized proteins in Halobacterium were 

repaired or removed by 8 hours after γ-irradiation (Figure 2-6C). 

 

Halobacterium Intracellular Mn/Fe Ratio 

Recent evidence has suggested that manganese may also play a role in prevention of 

oxidative damage, particularly to proteins (Daly et al. 2004; Daly et al. 2007). Unlike 

iron, manganese does not participate in Fenton chemistry that produces the highly 

reactive hydroxyl radical. A high Mn/Fe was proposed by Daly et al. (Daly et al. 

2004) as a common marker of radiation resistance in bacteria. The ratio of 

intracellular Mn/Fe in Halobacterium (D10=5kGy) was measured using ICP-MS, and 

determined to be 0.27, comparable with the reported ratio for D. radiodurans 
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(D10=16kGy) of 0.24, but higher than that of both the less-resistant Enterococcus 

faecium (D10=2kGy) at 0.17 and the radiation sensitive E. coli (D10=0.7kGy) with a 

ratio of 0.0072 (Daly et al. 2004). 

 

Discussion 

Exposure to ionizing radiation, like desiccation, results in the production of ROS 

including the highly reactive hydroxyl radical that can generate oxidative lesions in 

DNA and proteins. ROS can be scavenged by enzymes such as superoxide dismutase 

(reviewed in Cannio et al. 2000) or by carotenoid pigments (Saito et al. 1997). 

Abiotic methods of free radical scavenging such as the scavenging of hydroxyl 

radical by intracellular chloride have been proposed (Shahmohammadi et al. 1998; 

Kottemann et al. 2005), and recently data concerning the role of manganese in the 

scavenging of superoxide radicals has served to highlight the role of the intracellular 

milieu in radiation resistance (Daly et al. 2004; Daly et al. 2007). 

 

Chloride salts have been linked to DNA protection from heat using NaCl (Masters et 

al. 1998), KCl and MgCl2 (Marguet and Forterre 1994; Marguet and Forterre 1998). 

In vitro evidence has also linked chloride ions to DNA protection from the effects of 

ionizing radiation using circular plasmid DNA in 2M KCl exposed to 50Gy of γ-

irradiation (Asgarani et al. 1999), and using chromosomal DNA from Halobacterium 

salinarium in 2M KCl and exposed to 200Gy (Shahmohammadi et al. 1998). Here we 

confirm and extend these findings using 2M and 4M KCl buffered solutions with 

pUC19 plasmid DNA up to 300Gy of γ-irradiation. It is important to note that 4M  
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Figure 2-4. DNA base oxidation quantification for Halobacterium cells cultured in 

standard GN101 containing 4.3M NaCl (solid black squares) and Halobacterium cells 

cultured in GN101 with replacement of 1.7M NaCl with NaBr (open black squares). 

Oxidized base moieties quantified using GC/MS were (A) FapyAde and (B) 

FapyGua. Data shown is an average of at least 2 replicates with standard deviations. 

Yield of oxidized DNA lesions per 106 DNA bases per kGy of γ-radiation is shown in 

(C). Black bars represent Halobacterium cultured in standard GN101 medium (4.3M 

NaCl), and light grey bars represent D. radiodurans.  
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Figure 2-5. Repair of oxidized DNA lesions and DSBs over 12 hours of recovery in 

Halobacterium cells cultured in standard GN101 medium (4.3M NaCl) exposed to 

2.5kGy of γ-radiation. Repair of (A) Fapy-Ade, (B) Fapy-Gua, and (C) 8-oxo-Gua 

lesions shown as quantified by GC/MS. Data shown is an average of at least 4 

replicates with standard deviations. (D) PFGE analysis of DNA DSBs repair over 

time (P=pre-irradiation; 0, 2, 4, 8, and 12 hrs post-irradiation) with agarose plugs 

containing 1x109cells/mL and digested with XbaI.  
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Figure 2-6. Protein oxidation damage in Halobacterium after γ-irradiation. Top: 

Coomassie-stained polyacrylamide gel; Bottom: Western blot immumoassay of 

protein-bound carbonyl groups. 20 µg of protein were added per lane. Protein extracts 

were (+) or not (-) treated with DNPH. MW: molecular weight markers. (A) 

Halobacterium cells grown in standard GN101 growth medium (4.3M NaCl) were 

exposed to 0, 2.5, 5, and 7.5kGy of γ-radiation. (B) Halobacterium cells were grown 

in GN101 medium (4.3M NaCl) or in GN101 medium with 1.7M replacement of 

NaCl with NaBr and exposed to 0, 2.5, 5, and 7.5kGy of γ-radiation. (C) 

Halobacterium cells grown in GN101 (4.3M NaCl) were exposed to 2.5kGy γ-

radiation, followed by recovery at 42oC for up to 12 hours.  P, pre-irradiation; 0, 0 hr 

recovery; 2, 2hr recovery; 4, 4hr recovery; 8, 8hr recovery; 12, 12hr recovery.   
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KCl is physiologically relevant to Halobacterium cells that contain 4M potassium and 

4.6M chloride to maintain osmotic balance (Engel and Catchpole 2005). Bromide is 

present naturally in hypersaline pools, becoming concentrated together with chloride 
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compounds during periods of evaporation due to the high solubility of halite 

(Sonnenfeld 1984). For these reasons, 2M and 4M KBr were also tested in vitro, and 

showed a greater protective DNA effect than KCl. Halides (X) have been shown to 

react with the hydroxyl radical (.OH) in a 2-step reaction yielding a halide radical as 

shown here: 

 

.OH + X- → X. + OH- 

X. + X- → X2- 

 

Chloride radicals are less reactive with DNA bases than hydroxyl radicals (Ward and 

Kuo 1968) resulting in decrease oxidative damage to macromolecules as 

demonstrated by the protective effect of increase salt concentration in our in vitro 

experiments.  The increased DNA protective effect observed in the presence of 

bromide compared to chloride was likely due to the increased reactivity of bromide 

ions with hydroxyl radicals. Reported reaction constants (k) for Br- and Cl- at pH 9 

are 109 and 104 M-1s-1 respectively [values taken from Dorfman and Adams (1973); 

calculated values not available for pH 7]. 

 

We used the model halophile Halobacterium to test the protective effect of salts 

against the deleterious effect of γ-generated ROS. Increased survival to γ-irradiation 

in high salt or bromide medium was not observed using after growth on solid media 

likely because of the efficient repair capability of Halobacterium for DNA damage 

(Kish and DiRuggiero 2007) and the incubation time required for the cells to form 
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colonies (up to 10 days). At the molecular level, however, the amounts of DNA 

DSBs, oxidized bases and oxidized protein residues following γ irradiation were all 

decreased when 1.7M of NaCl were replaced by NaBr in the culture medium. This is 

direct evidence of the scavenging role of Br ions for ROS produced by γ-irradiation, 

resulting in decreased oxidative lesions to the cell’s macromolecules. The 

halorhodopsin protein present in Halobacterium cellular membrane was shown to 

transport both chloride and bromide equally as efficiently into the cell in a light-

driven reaction (Steiner et al. 1984) suggesting that the extracellular increase in Br 

was also reflected in the intracellular environment. The in vivo data presented here 

reflect the in vitro observations from our study, and that of others (Shahmohammadi 

et al. 1998; Asgarani et al. 1999; Saito et al. 1997), demonstrating the physiological 

relevance of intracellular ionic composition to ionizing radiation resistance. 

 

PFGE analysis of DNA strand breaks showed that DNA from D. radiodurans was 

more fragmented than DNA from Halobacterium at the same doses of γ-irradiation, 

despite the fact that D. radiodurans cells are more radiation resistant (D10=16kGy; γ 

dose at which we observe 10% survival) than that of Halobacterium (D10=5kGy). 

This either suggests an increased dependence on DNA repair mechanisms, such as the 

extended synthesis-dependent strand annealing pathway followed by recA-dependent 

homologous recombination proposed for the repair of DSBs in D. radiodurans 

(Zahradka et al. 2006), or a lesser role for DNA DSBs in radiation resistance as 

suggested by Cox and Battista (2005).  
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The majority of damage from ionizing radiation results from the formation of ROS in 

cells (Riley 1994). Therefore, the level of radiation-induced DNA oxidative damage 

other than strand breakage, and the ability of a cell to repair those damages, should be 

determined to better evaluate the biological effects of ionizing radiation. A large 

number of oxidized base- and sugar-derived lesions have been identified in DNA but 

very few can be accurately measured in cellular DNA (Cadet et al. 2002; Dizdaroglu 

et al. 2002). For those oxidized products, as little as one-lesion/106 DNA bases can be 

detected by using a combination of enzymatic treatments and LC or GC/MS (Cadet et 

al. 2002; Dizdaroglu et al. 2002). We quantified three different oxidation products, 

Fapy-Gua, Fapy-Ade and 8-oxy-Gua in Halobacterium DNA following increasing 

doses of γ-radiation. This is the first study to determine those parameters in a 

prokaryotic system and the analysis revealed a dose-dependent relationship between 

the number of DNA lesions and the doses of γ-radiation applied to the cells. Only a 

few studies on the nature and frequency of DNA base modifications in γ-irradiated 

cells have been reported and they were exclusively applied to mice, rat or human cell 

lines (Pouget et al. 2002; Regulus et al. 2007; Frelon et al. 2000). It is therefore 

difficult to compare the yield of oxidized bases in Halobacterium with previous 

works because of the high doses of ionizing radiation used in our study, 0 to 7500Gy, 

versus 0 to 450Gy with eukaryotic cells (Pouget et al. 2002; Regulus et al. 2007; 

Frelon et al. 2000). Nevertheless, Pouget et al. (Pouget et al. 2002) reported the yield 

of lesions/106 DNA bases/Gy for human cells irradiated at 450Gy and found values of 

0.005, 0.020 and 0.039 for Fapy-Ade, 8-oxodGuo and Fapy-Gua, respectively. These 

values are 20- to 50-fold higher, depending on the type of lesions, than what we 
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observed with Halobacterium cells irradiated at 2.5, 5.0 and 7.5kGy, indicating that 

the damage to DNA is more extensive in the larger eukaryotic cells, probably as a 

consequence of DNA packaging. It is critical to note that these lesions are indicators 

for the level of oxidative damage to DNA base and sugar moieties and only represent 

a small portion of the actual number of DNA decomposition products in the cell 

(Cadet et al. 2005). If we relate the yield of radiation-induced base damage to cell 

survival, at the D10 dose (5kGy) Halobacterium accumulated 5.4 Fapy-Gua and 1.7 

Fapy-Ade per 106 DNA bases whereas eukaryotic cells at the D10 dose (5Gy) (Tilly 

et al. 1999; Wang et al. 2007) accumulated 0.195 Fapy-Gua and 0.02 Fapy-Ade per 

per 106 DNA bases, 20 to 60 less nucleobase lesions. Those results seem to indicate 

that the repair of oxidative DNA lesions is more efficient in Halobacterium allowing 

these cells to withstand higher levels of damage to their macromolecules. It would be 

extremely interesting to obtain yields of DNA oxidative lesions, after γ-irradiation, 

from radiation sensitive strains to find out if this is a common feature among 

prokaryotes or the result of Halobacterium adaptation to desiccation and therefore 

increased oxidative stress. 

 

The distribution of oxidized DNA bases and nucleosides in eukaryotic systems is not 

uniform with twice more FapyGua than 8-oxodGuo lesions and 10 times more 

FapyGua than FapyAde lesions measured after exposure to γ-radiation (Pouget et al. 

2002). This is consistent with the idea that guanines are preferential targets for 

oxidative damage. Guanine residues were found to be sinks for positive charge 

“holes” (electron holes resulting from photo-ejection of electrons) that are transmitted 
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from pyrimidines after ionization of DNA by γ-irradiation (Steenken and Jovanovic 

1997). The GGG sequence in particular has the ability to draw this positive “hole” 

through electron hopping motivated by the low ionizing potential of guanine (Giese 

2002). This is in agreement with the DNA lesion distribution that we measured in 

Halobacterium and D. radiodurans, suggesting that the reactivity of DNA bases with 

hydroxyl radicals is not altered in presence of chloride, but rather that the conversion 

of hydroxyl radicals to chloride radicals results in decreased nucleobase damages. 

 

Why Are Halobacterium Cells Radiation Resistant? 

Models of microbial resistance to ionizing radiation have traditionally focused on 

DNA repair mechanisms, analyzing the complement and efficiency of repair proteins 

in radiation resistant species. In this study we present data showing that the 

intracellular salts found in Halobacterium, chloride and bromide species in particular, 

are responsible for reducing the number of DNA DSBs, oxidized DNA bases and 

protein residues. Oxidized DNA lesions were repaired in as little as 2hrs post-

irradiation while the repair of DNA DSBs occurred within 8 hours post-irradiation, 

showing that Halobacterium possesses effective DNA repair systems for damages 

that occur despite scavenging of hydroxyl radicals by intracellular halides. Repair of 

DNA DSBs is aided in both Halobacterium and D. radiodurans by multiple 

chromosome copies providing substrates for homologous recombination. 

Halobacterium cells, however, are less radiation resistant than D. radiodurans cells 

despite possessing both intracellular chloride for scavenging DNA-damaging 

hydroxyl radicals and a high Mn/Fe, which may both reduce hydroxyl radical 
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production via Fenton chemistry and scavenge protein-damaging superoxide radicals. 

These findings suggest that DNA DSBs are not the chief source of cyotoxicity after 

exposure to ionizing radiation. The question becomes which cellular damage from 

exposure to ionizing radiation is most toxic to cells: DNA oxidation lesions, DNA 

strand breaks, protein oxidation or possibly lipid peroxidation.  

 

We proposed that it is the combined oxidative damage to all cellular components, 

including both DNA and proteins, and possibly membrane lipids, which result in cell 

death after exposure to ionizing radiation. Radiation resistance, thus, is a product of 

mechanisms for (1) prevention and (2) for repair of oxidative damages to cellular 

macromolecules. While common elements, such as DNA repair pathways, are 

intrinsic to most extremophiles, there are likely to be multiple pathways for 

prevention mechanisms specific to a subset of radiation resistant microorganisms. We 

have shown here one such mechanism specific to extreme halophiles. The primary 

function of high concentration of intracellular salts in Halobacterium is to provide 

osmotic balance in hypersaline environments but it also produces increased resistance 

to ionizing radiation.  

 

Conclusion  

We have shown conclusive evidence that intracellular halides including chloride and 

bromide offer protection to DNA from oxidative damages after exposure to ionizing 

radiation not only in vitro, but also in vivo. These findings emphasize the significance 

of the cellular environment in determining radiation resistance in microorganisms, 
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showing that molecular adaptations to environmental stresses allow for survival under 

diverse conditions not necessarily found in natural environments. We also 

demonstrated that the determination of radiation-induced damage to all the cell’s 

macromolecules is essential for a better understanding of the biological effects of 

ionizing radiation. 

 

These finding are also relevant to the field of astrobiology with evidence of a former 

hypersaline pool at Meridiani Planum on Mars (Rieder et al. 2004). Lacking an 

atmosphere and magnetic shield to reduce the surface solar irradiance, 

microorganisms on the surface of Mars would be exposed to far greater levels of UV-

C (Cockell et al. 2000) and high-energy radiation than are microorganisms on Earth. 

Our findings show that the salt environment itself may be a protective factor for 

potential microbial life on the surface of Mars, indicating that high-salt environments 

showing water modification are excellent areas for surface investigations looking for 

evidence of life on Mars. 

 
Materials and Methods 

Cultures and Growth Conditions 

Halobacterium sp. strain NRC-1 cultures were grown in standard GN101 medium 

[250g/L NaCl, 20g/L MgSO4-7H20, 2g/L KCl, 3g/L Na citrate, 10g/L Oxoid peptone 

(pH 7.2) with the addition of 1mL/L Trace Elements Solution (31.5mg/L 

FeSO4.7H2O, 4.4mg/L ZnSO4.7H2O, 3.3mg/L MnSO4.H2O, 0.1mg/L CuSO4.5H2O)] 

(Hackett and DasSarma 1989). When specified, the NaCl concentration was changed 
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from 4.3M to 3.4M or 5.1M, or molar amounts of NaCl were replaced by 0.9, 1.7 or 

2.6M of NaBr. All Halobacterium cultures were grown at 42oC, 220rpm (Gyromax 

737, Amerex Instruments; Lafyatte, CA) to mid-log phase (OD600nm=0.6-0.8). D. 

radiodurans overnight cultures were grown in 25mL TGY medium (1% tryptone, 

0.1% glucose, 0.5% yeast extract) (Liu et al. 2003)at 32oC, 220rpm (Innova 4080, 

New Brunswick Scientific; Edison, NJ), diluted 1:10 the next day and grown to mid-

log phase (OD600nm=0.6-0.8). 

 

In vitro Plasmid γ-Irradiation 

pUC19 plasmid DNA (2μg) in 1mM potassium phosphate buffered solution (pH 7.2), 

supplemented by 2M or 4M KCl or KBr, was γ-irradiated to a final dose of 0, 100, 

200, and 300Gy using a 60Co gamma source (University of Maryland College Park 

Gamma Test Facility; dose rate: 3.6kGy/hour). Plamid DNA in 1mM potassium 

phosphate buffer only was use as control. Samples were then dialyzed against a 1mM 

potassium buffer (pH 7.2) solution. The extent of DNA single strand break induced 

by γ-irradiation of the samples was determined by comparing the amount of open 

circular form plasmid DNA to undamaged supercoiled form plasmid DNA using 

agarose gel electrophoresis (0.8% TAE, 85V, 75min). The BioRad Molecular Imager 

Gel Doc XR System (Hercules, CA) was used to quantify the relative intensities of 

each band and a ratio of open circular form:supercoiled form plasmid DNA was 

calculated for each salt condition at each dose of γ irradiation. 
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In vivo γ-Irradiation 

Cultures were irradiated to a final dose of 0, 2.5, 5, or 7.5kGy using a 60Co gamma 

source (University of Maryland College Park Gamma Test Facility, College Park, 

MD, dose rate = 3-13kGy/hr, and Uniformed Services University of the Health 

Sciences, Bethesda, MD, dose rate = 4.7kGy/hr). All samples regardless of the 

volume of the starting culture were irradiated in a volume of 1mL after concentration 

by centrifugation (8000 x g, 5min) and resuspension in 1mL of the appropriate 

growth medium in a1.5mL microcentrifuge tube.  

 

Survival assays were performed using 1mL of log phase culture (OD=0.8), which was 

diluted in BSS (basal salt solution; GN101 medium lacking Oxoid peptone) after 

irradiation prior to plating. 

 

Aliquots (25mL each) from one of four replicate starting cultures each for 

Halobacterium cells grown in standard GN101 medium, Halobacterium cells grown 

in bromide medium (1.7M replacement of NaCl with NaBr), and D. radiodurans cells 

cultured in TGY medium, were used for GC/MS, Oxyblot, and PFGE analyses. 

Aliquots were concentrated by centrifugation (8000 x g, 5min) to a final volume of 

1mL each in the appropriate medium and transferred to 1.5mL microcentrifuge tubes 

for irradiation. D. radiodurans samples were kept on ice during the irradiation. 

Following irradiation, the cells were collected by centrifugation (8000 x g, 5min), and 

the cell pellets flash frozen in a dry ice-ethanol bath for storage at -80oC prior to 
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sample processing with the exception of PFGE samples that were kept on wet ice 

after centrifugation and removal of the medium.  

 

Pulsed Field Gel Electrophoresis 

0.8% InCert agarose (Lonza; Rockland, ME) plugs were prepared for D. radiodurans 

and Halobacterium containing approximately 1x109 cells/mL. Halobacterium cell 

pellets were resuspended in room temperature BSS (250 g/L NaCl, 20 g/L MgSO4, 2 

g/L KCl, 3 g/L sodium citrate), mixed with InCert Agarose prepared in 3:1 

BSS:dIH2O rather than TE as was used for the bacterial samples and pipetted into the 

plug mold (BioRad). Plugs were lysed in proteinase K solution (0.25M EDTA; pH8) 

(Invitrogen; Carlsbad, CA), 1% N-lauryl sarkosine, and 0.5mg/mL proteinase K at 

54oC in air incubator for 1-2 days. Plug washes consisted of 2x1hr in 20mL 1x TE 

buffer at room temperature, 2x1hr in 20mL 0.5x TE buffer at room temperature, and 

4x24hr in 0.5x TE buffer at 4oC to desalt the plugs.   

 

D. radiodurans samples were processed according to the protocol by Harris et al 

(Harris et al. 2004) with the following changes: cells were collected by centrifugation 

at room temperature (8000 x g, 5min). ESP buffer contained 0.5M EDTA at pH8 

rather than pH 9-9.5. Plug washes consisted of 2x1hr in 20mL 1x TE buffer, 2x1hr in 

20mL 0.5x TE buffer.  

 

For all plugs, proteinase K was inactivated using 1.5-2.5mM Pefabloc (Roche; 

Indianapolis, IN) at 37oC for 2h followed by washing for 1h at 4oC in 20mL 2mM 
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Tris-HCl pH 8.0, 5mM EDTA pH 8.0 (x3). Plugs were stored in 5 mL of fresh 2mM 

Tris-HCl pH 8.0, 5mM EDTA pH 8.0, 4oC after wash steps. Plug were digested by 

incubating for 20min in 250μl 1x restriction enzyme buffer at 4oC followed by 16hr 

incubation at 37oC in 250μl fresh 1x restriction enzyme buffer with 50U restriction 

enzyme (XbaI for Halobacterium plugs, NotI for D. radiodurans plugs (both New 

England Biolabs; Ipswich, MA). Digested plugs were equilibrated in 1 mL of 2mM 

Tris-HCl pH 8.0, 5mM EDTA pH 8.0 for 20min prior to electrophoresis. Genomic 

DNA was analyzed using a CHEF DR-III electrophoresis system (BioRad; Hercules, 

CA) using 1% PFGE certified agarose (BioRad; Hercules, CA) gels. Halobacterium 

samples were run in 0.25x TBE buffer for 22hrs at 12oC, 6V/cm, 10-60s switching 

times, 120o included angle. D. radiodurans samples were run in 0.5x TBE buffer for 

22hrs at 12oC, 6V/cm, 10-60s switching times, 120o included angle. DNA was 

visualized using ethidium bromide stain. 

 

Genomic DNA Extractions and GC/MS Analysis  

Cell pellets from Halobacterium were resuspended in 1mL BSS at room temperature 

and transferred to 250mL centrifuge bottles. Proteinase K (0.13mg/mL) (Invitrogen; 

Carlsbad, CA) and 2mM desferal (Deferoxamine; Sigma; St. Louis, MO) were added 

to 75mL of dH20 (3x original culture volume) to lyse cells at 37oC for 90 minutes. 

Desferal was used to reduce DNA oxidation during extraction(Helbock et al. 1998). 

DNA was ethanol precipitated (Sambrook et al. 1989) and the resulting DNA pellets 

were stored under 70% ethanol at -20oC for later analysis. D. radiodurans cell pellets 

were first washed in 5mL 100% ethanol to strip the outer cell membrane. The cells 
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were then resuspended in lysis buffer [0.2mg/mL chicken egg white lysozyme 

(Sigma; St. Louis, MO) and 2mM desferal in 2.5mL TE (10mM Tris 0.1mM EDTA 

pH8.0)] and incubated in a 37oC water bath for 1hr, followed by addition of 

0.2mg/mL proteinase K (Invitrogen; Carlsbad, CA) and 2% SDS and another water 

bath incubation at 60oC for 4hrs. DNA was isolated by phenol-chloroform extraction 

(Sambrook et al. 1989) using Phase Lock Gel Light 15mL tubes (5-Prime; 

Gaithersburg, MD) to aid in phase separation according to the manufacturer’s 

protocol. DNA was precipitated using 2 volumes 100% ice cold ethanol and 1/10 

volume 3M sodium acetate (pH 5.2). DNA pellets were stored under 70% ethanol at -

20oC prior to analysis. 

 

Protein Oxidation Analysis 

25mL culture cell pellets were resuspended on ice in 1mL cold 1M salt buffer (50mM 

potassium phosphate pH 7.0, 1M NaCl, 1% 2-mercaptoethanol) and sonicated for 30s 

(Virsonic 100, Virtis, Gardiner, NY) followed by incubation on ice for 30s, repeating 

3 times. The cell lysate was then fractionated by centrifugation (8000 x g, 30min, 

4°C) retaining the supernatant containing soluble proteins on ice and storing at -20°C. 

Protein concentration was determined using BioRad Bradford Assay (Hercules, CA) 

using the manufacturer’s protocol. Protein oxidation was detected using the Oxyblot 

Protein Oxidation Detection Kit (Chemicon/Millipore; Billerica, MA) following the 

manufacturer’s protocol. Briefly, 20μg of protein sample was derivatized and then 

applied to a 5-20% acrylamide gradient gel (PAGEGel; San Diego, CA) for 

separation by electrophoresis at 150V, 50 mAmps, for 2.5 hours. The proteins were 
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then transferred to a PVDF membrane (Millipore; Billerica, MA) via Western transfer 

at 25V, 300mAmps, for 1.5hours. Immunodetection was performed using 1o and 2o 

antibodies provided by the manufacturer, followed by incubation in SuperSignal West 

Pico Chemiluminescent Substrate (Pierce; Rockford, IL) and imaged using Hyperfilm 

ECL (Amersham Biosciences; Piscataway, NJ) exposed for 0.5-4min. 

 

Cell Interior Elemental Analysis  

A 500mL culture of Halobacterium cells was grown in standard GN101 medium to 

mid log phase (OD600nm=0.6) and collected by centrifugation (8000 x g, 5 min, 40C). 

Cells were resuspended in 10mL 1xHigh Salt PBS (pH7.4) (8.24mM Na2HPO4, 

1.58mM NaH2PO4 , 4.4M NaCl), washed twice in 1xHigh Salt PBS and twice in 

1xHigh Salt PBS with 1mM EDTA (pH7.4) to a final volume of 30mL. Cells were 

collected by centrifugation (8000 x g, 5 min, 40C) and flash frozen in a dry ice-

ethanol bath prior to storage at –80oC until analysis. Samples were analyzed at the 

Pacific Northwest National Laboratory (PNNL) using ICP-MS as previously 

described (Daly et al. 2004; Posey and Gherardini 2000; Ma et al. 1999).  
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Chapter 3: Molecular-Level Response of Halobacterium sp. str. 

NRC-1 to Oxidative Damage after Exposure to Ionizing 

Radiation 

 

Introduction 

Organisms of the phylogenetic domain Archaea are environmentally ubiquitous and 

typically represent ~10% of the microbiota (Robertson et al. 2005). However, in 

environments characterized by extreme conditions, such as high temperature or 

salinity, archaea dominate the microbial population due to their unique physiology 

(Woese et al. 1990). Halophilic archaea, for example, possess a range of mechanisms 

(Baliga et al. 2004; Kottemann et al. 2005) to endure high levels of solar radiation, 

greater than 4.0 M salinity, and wide temperature fluctuations, all of which contribute 

to intermittent desiccation/rehydration cycles.  In a previous study we showed 

remarkably high resistance to one factor, ultraviolet (UV) radiation, and the 

coordinated genome-wide response involved in survival (Baliga et al. 2004). The 

physiological robustness of halophiles is further evident in the extraordinary 

resistance of the model halophile Halobacterium salinarum strain NRC-1 (heretofore 

Halobacterium NRC-1) to both desiccation and gamma (γ) radiation (Kottemann et al. 

2005). Both these challenges induce severe DNA damage including structural 

modification to nucleotide bases and DNA strand breaks (Hutchinson 1985; Dianov 

et al. 2001). In case of γ radiation most of the damage results from production of 

hydroxyl radicals via radiolysis of water (Riley 1994).  Therefore, mechanisms to 
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minimize and reverse oxidative stress are also crucial components of radiation 

resistance. 

 

Systems approaches enable the elucidation of global physiological responses to 

environmental perturbations along with underlying regulatory circuits that modulate 

and coordinate various cellular repair and recovery processes (Kaur et al. 2006). 

Ideally, a systems approach constitutes the simultaneous analyses of dynamic changes 

at all levels of biological information processing from DNA, RNA and protein 

through phenotypic responses. Due to technological and cost limitations, extensive 

time-series proteomic studies have thus far been limited and hence microarray studies 

are often conducted with the assumption that transcript level changes sufficiently 

approximate downstream physiological responses.  However, several studies have 

indicated an uncertain correlation between mRNA levels and downstream proteomic 

changes (Ideker et al. 2000; Baliga et al. 2002).   

 

We have attempted to address this issue through a systems level time-course study of 

Halobacterium NRC-1 response to γ radiation using whole-genome microarray 

analyses of mRNA transcript levels and quantitative mass spectrometry analyses of 

total proteins.  Through these analyses we gained an overview of the regulatory and 

functional aspects of cell recovery after γ irradiation.  Our finding of a high level of 

correlation (Pearson coefficients > 0.5) between mRNA and protein levels upon 

including an appropriate time lag demonstrates that transcriptional changes do indeed 

translate into protein level changes in a physiologically meaningful manner.   
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Results 

The physiological response of Halobacterium NRC-1 during recovery from 

irradiation with 2.5kGy of 60Co γ-radiation was examined temporally at mRNA and 

protein levels. Unintended perturbations were discounted with identically processed 

but unirradiated cells (see Figure 3-1 for experiment design).  While mRNA level 

changes were measured over the entire time course (240 min), protein abundance 

changes were measured at 30, 40 and 60 min in both irradiated and control cells.   

 

mRNA Level Changes 

(This analysis was done jointly by the author and Kenia Whitehead at the Institute for 

Systems Biology after sample irradiation and RNA extraction by the author) 

 

Significance of change in mRNA levels in microarray data was estimated with a 

likelihood ratio test (Ideker et al. 2000). Comparison of identically processed 

biological replicates yields maximum likelihood statistic lambda (λ) values 

consistently below 15 for over 99% of all genes. Therefore, changes discussed 

heretofore are associated with λ >15.0 and correlate to >99% confidence level.  Based 

on these statistical parameters, 216 genes (~9% of all predicted genes) were 

differentially expressed of which 143 were upregulated and 73 were downregulated 

(Figure 3-2). 
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Figure 3-1. Experimental design for the global analysis of gamma response in 

Halobacterium NRC-1. Cells were harvested and concentrated via centrifugation 

before gamma exposure. After γ irradiation at 2.5kGy, cells were diluted back to their 

original volume in CM. Time points were taken as the cultures recovered. Both the 

control and irradiated samples were treated in the same manner. RT: room 

temperature. 
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Figure 3-2. Systems level visualization during early response to γ radiation for all 

genes showing systematic and significant expression changes with the layout 

organized by general function. The RNA changes are visualized as a network of 

genes (nodes) and their interactions (edges). The color of the nodes indicates 

upregulation (red) or downregulation (green) of that gene, whereas the size of the 

node relates to the significance of the observed change (λ value; see legend). Edge 

types are color coded to delineate the association type (see legend). 
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Figure 3-3. Expression profiles (log10 ratios) for radA1, trxA2, mcm and cdc48C from 

one of the two replicate experiments of control and gamma irradiated (shaded area) 

cultures over time (min). The size of the symbol relates to the statistical significance 

of the change (λ). 

 57 
 



 

Protein Level Changes  

(This analysis was done by Kenia Whitehead at the Institute for Systems Biology) 

 

We measured proteomic changes using quantitative tandem mass spectrometry 

analyses of four-plexed combinations of trypsinized total proteins labeled with amine-

reactive isobaric iTRAQ reagents. The iTRAQ chemistry was expected to yield 

significantly better proteome coverage relative to the ICAT approach considering that 

primary amines are more abundant in proteins than the cysteines targeted by ICAT.   

Indeed, the 1033 proteins detected using iTRAQ represented over three-fold  better 

coverage relative to ~300 proteins identified in a comparable ICAT analysis of 

Halobacterium NRC-1 (Baliga et al. 2002). Protein products for 99 of the 143 γ 

irradiation-induced transcripts were detected, of which 68 had significant abundance 

changes relative to the control (Figure 3-3 and Supplementary Table 3-2 in 

(Whitehead et al. 2006)). Likewise, products for 44 proteins were detected for the 73 

downregulated transcripts, and the abundances of 27 were significantly perturbed 

relative to the control. The lists of mRNAs and proteins that changed significantly are 

provided in Supplementary Tables 3-1 and 3-2 in (Whitehead et al. 2006). 

 

In the sections below we provide (I) a synthesis of the cellular response based on 

simultaneous analysis of transcript and protein level changes along with 

evolutionarily conserved functional associations and protein-DNA interactions and 

(II) a discussion on comparison of changes at mRNA levels to corresponding changes 

in protein abundance. 
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Discussion 

A systems model for physiological response to γ−radiation 

High energy γ particles cause radiolysis of water, generating reactive oxygen species 

(ROS) (Hutchinson 1985) resulting in oxidative stress and damage. While the high 

intracellular concentration of KCl and bacterioruberins in haloarchaea have been 

hypothesized to provide protection by quenching ROS (Carbonneau et al. 1989), this 

alone is insufficient to alleviate stress induced from γ irradiation (Kottemann et al. 

2005) requiring extensive repair and recovery processes. We have assimilated all 

transcript (Figure 3-2) and protein level changes during recovery from γ irradiation 

into a physiological model of Halobacterium NRC-1 which involves restoration of 

genome integrity, modulation of dehydrogenases, redoxins and cytochromes to 

minimize ROS reactions, and inhibition of cell division (Figure 3-4).   

 

Physiological Changes  

DNA repair to restore genome integrity appears to be primarily mediated by 

homologous recombination and glycosylase activity.  Archaeal homologous 

recombination proteins are structurally and functionally similar to eukaryotic 

counterparts of this process (Allers and Ngo 2003).  Of the two RecA/Rad51 

homologs in archaea, RadA (also called RadA1) and RadB (also called RadA2), only 

RadA can catalyze strand exchange (Komori et al. 2000a). In Halobacterium NRC-1 

RadA1 mRNA and protein levels increased during early γ response which parallels 
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similar DNA damage-responsive regulation of this gene in other organisms (Liu et al. 

2003) (Figure 3-5, 3-6).   Likewise, the branched structure-specific endonucleases, hjr 

(Holliday junction resolvase), was also up regulated after γ-irradiation. 

 

Communication between DNA replication, repair and cell cycle progression is 

imperative to maintain genomic stability (Sancar et al. 2004).  An inverse relationship 

was observed between mRNA changes of Mcm (upregulated) and Cdc48c 

(downregulated), a CdcH ortholog putatively involved in cell division (Figure 3-3, 

bottom panel) implying a pause in the cell division cycle as has been observed in 

other organisms (Rieger and Chu 2004; Sancar et al. 2004) putatively to ensure 

completion of DNA repair prior to cell division.  In accordance with a pause in the 

cell cycle, a transient global downregulation was observed similar to that seen after 

UV irradiation (Baliga et al. 2004) (Figure 3-7).  However, unlike the UV response, 

key recovery related pathways such as nucleotide biogenesis (PyrG), protein 

degradation (VNG0557H, PsmA), ribosome biogenesis (43 genes) and DNA repair 

were upregulated (Figure 3-7).   

 

Upregulation of nucleotide biosynthesis genes including pyrG (CTP synthase) and 

cmk (cytidylate kinase) indicates increased de novo synthesis of nucleotides, which is 

consistent with damage responses observed in both higher eukaryotes (Rieger and 

Chu 2004) and D. radiodurans (Liu et al. 2003). Increased nucleotide production may 

be necessary to accommodate increases in transcription and for DNA replication and 

repair.  In line with this, deletion of pyrF, which encodes an enzyme central to 
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Figure 3-4. Graphical representation of the systems level response in Halobacterium 

NRC-1 to direct and indirect effects of γ-radiation showing both repair and oxidative 

strategies for cell recovery. Text or arrow color indicates whether the cellular process 

or pathway was upregulated (red) or downregulated (green). Green X’s indicate 

downregulated steps in the TCA cycle. Blue ellipses represent Htr8 and Htr12. 
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Figure 3-5. Time-lagged Pearson correlations between mRNA and protein abundance 

for genes with significant changes in both. The time lag is given on the side ranging 

from 30 min (Δ30m) to no shift (Δ0m). P-values indicate the statistical significance of 

the distribution of Pearson coefficients and are only stated when a significant skew is 

observed. P-values on the right of the dashed line indicate a skew towards positive 

correlations, whereas those on the left indicate a negative correlation. 
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Figure 3-6. Normalized log10 ratios of protein abundance of RadA1, TfbB and CbiC 

for both the control and γ-irradiated (shaded area) cultures over time (min). The size 

of the symbol relates to the statistical significance of the change. 
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Figure 3-7. Cytoscape view of the Halobacterium NRC-1 genome 40 min after γ-

irradiation showing global repression with the exception of ribosome biogenesis 

clusters and DNA repair associated functions (for description of symbols, see legend 

Figure 3-2). 
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 pyrimidine biosynthesis, significantly reduced resistance of Halobacterium NRC-1 to 

γ−irradiation (see Appendix 1). An increased nucleotide pool would also serve to 

support enhanced ribosome genesis (43 ribosomal genes were upregulated).  

 

Electron transport systems are especially sensitive to increased ROS production 

(Imlay 2003).  Therefore, the observed downregulation of 8 dehydrogenases (e.g. 

adh2, adh3, sdh and mdh) may reflect depletion of intracellular reducing equivalents 

during severe oxidative stress (Golden and Ramdath 1987) and an attempt to 

minimize ROS production by subsequent auto-oxidation reactions (Imlay 2003). 

Likewise, increased protein abundances for superoxide dismutase Sod2 and redox-

related functions such as thioredoxin (trxA2; Figure 3-3, top panel) might serve to 

scavenge free radicals (Cannio et al. 2000).  Modulation of general cell metabolism 

may indirectly stem from these attempts to minimize oxidative stress; for example, as 

in D. radiodurans, several TCA cycle related dehydrogenases in Halobacterium 

NRC-1were also downregulated (Liu et al. 2003; Ghosal et al. 2005). 

 

The simultaneous analysis of transcriptional and translational changes has provided 

functional relevance for our observations enabling the synthesis of a coherent 

overview of physiological adjustments necessary for withstanding extreme levels of 

γ−irradiation. In the next section, we will discuss aspects of transcriptional regulation 

for coordinating these various processes. 
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Transcriptional Control   

The construction of a regulatory map allows for initial hypothesis formation on the 

transcription factors and regulators directly mediating a stress response.  In 

Halobacterium NRC-1 transcription is mediated by a ~12 subunit eukaryotic-like 

RNA polymerase II enzyme (RNAP), 6 TATA-binding proteins (TBPs) and 7 

Transcription Factor IIB ortholog (TFBs) (Baliga et al. 2000)  {Geiduschek, 2005 507 

/id}.  Transcription is further modulated by approximately 130 additional proteins 

orthologous to bacterial regulators (Sivaraman et al., 2005).  During the γ response at 

least 9 regulators were upregulated along with one TBP (tbpE) and two TFBs (tfbB 

and tfbF).  Downregulation of 5 regulators was observed, two which were of 

unknown function and have been newly annotated (Supplemental Table 3-3 in 

(Whitehead et al. 2006)).  Besides the 5 regulators, one TFB, tfbG, was also repressed 

during early stages of the response.   

 

We integrated all significant mRNA changes with a physical map of genome-wide 

protein–DNA interactions for seven TFBs (Facciotti et al. 2007) to investigate 

whether some of them may have specialized roles in the γ stress response. Of the 216 

γ-responsive genes, transcription factor binding sites could be identified for 39% of 

them (84 genes) including 12 transcription regulators and kinases (Supplementary 

Table 4, gray boxes in (Whitehead et al. 2006)). An important point to note is that 

during the response to γ−radiation, tfbB, tfbF and tfbG were differentially regulated 

and binding sites for at least one of these are observed in all but 10 of the 84 genes, 

representing a statistically significant enrichment of these binding sites (P-value = 
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0.002). In fact, binding sites for TFBb and TFBf, the two TFBs upregulated by γ-

irradiation, were the most prevalent (> 1.3-fold enrichment, P-value < 0.009) 

upstream to genes that were also transcriptionally modulated during the γ response 

(Supplementary Table 5 in (Whitehead et al. 2006)). In other words, although the 

presence of other TFB binding sites and possible condition-specific promoter binding 

by these GTFs complicate inference of exclusive stress-specific control by these 

TFBs, our data suggest statistically significant association between distribution of 

TFBb, TFBf and TFBg binding sites and transcriptional modulation of downstream 

genes in response to γ irradiation. Further, the differential regulation of tfbB, tfbF and 

tfbG in response to several stressors (Baliga et al. 2004; Kaur et al. 2006) motivates 

the hypothesis that these three TFBs coordinate various aspects of physiology that 

together constitute complex cellular responses during adjustment to diverse stress 

agents (Facciotti et al. 2007). This hypothesis will be tested in future experiments for 

a mechanistic understanding of stress response and its regulation. 

 

Comparison of Changes in mRNA Levels and their Corresponding Protein 

Abundances  

The relationship between changes in an mRNA and a corresponding change in its 

protein abundance is a function of their synthesis and degradation rates as well as 

their stability.  Although there is no evidence for ubiquitin-ligase mediated targeted 

protein degradation in halophilic archaea, a recent study has demonstrated likely 

involvement of C-terminal degradation signals for proteasomes in protein stability 
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(Reuter and Maupin-Furlow 2004). Furthermore, transient up or downregulation of 

some genes (Kaur et al. 2006), differing rates of protein synthesis and post-

transcriptional protein modifications, all lend further complexity in correlating 

transcription and translation. 

 

We have addressed the sequential nature and therefore likely temporal separation of 

these processes by calculating Pearson correlations (PC) for each gene by temporally 

shifting the protein level changes with respect to mRNA level changes; for example, 

protein levels at 30, 40 and 60 min compared with mRNA levels at 10, 20 and 40 min 

represents a time lag of 20 min (Δ20m). This analysis was conducted for all 95 genes 

with significant changes in both mRNA and protein abundances.  The resulting 

correlations for each gene were binned (bin size = 0.05) and are presented as 

histograms with p-values indicating the significance of the distribution of correlation 

values (Figure 3-5).   

 

A high degree of correlation was observed for upregulated genes and their protein 

abundance at each time lag interval except at Δ10 min (Figure 3-5). Transcript and 

protein levels for DNA repair genes (e.g. RadA1 and UvrD) had highest correlations 

(PC>0.6) over virtually all time lags perhaps due to a continuous increase in both 

over the entire time series. Further, while ribosomal proteins encoded within the two 

major operons had highly correlated changes in transcript and protein, those encoded 

by genes elsewhere in the genome were less correlated. Likewise, while TfbB and 

TfbF mRNA and protein level changes were highly correlated to one another in 
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absence of any time lag, TbpE protein abundance change was manifested after a 30 

minute time lag (Figure 3-5). In fact, transcript and protein changes for most down 

regulated genes were significantly correlated only after a time lag of 30 min. Thus, 

our analysis confirms that transcript and protein levels changes vary gene-by-gene 

and on a temporal scale, and further that  simplistic global correlations of mRNA and 

protein level changes at steady state might sometimes be misleading. 

 

Conclusion 

In this study we have identified the cooperative physiological mechanisms that render 

Halobacterium NRC-1 resistant to γ radiation and have shown that these are reflected 

at both the transcript and protein level.  This study further supports the view that 

transcript level changes might indeed be truly reflective of a significant fraction of 

protein level changes and therefore the physiological manifestations of those changes.  

Further, as general discordance between steady state mRNA and protein levels are 

generally attributed to post-transcriptional regulation (Ideker et al. 2001; Gygi et al. 

1999), our observation of relatively high degree of correlation between temporally 

shifted mRNA and protein levels demonstrates the potential importance of the time 

dimension while interpreting mechanisms of genetic information processing.  
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Methods and Materials 

Strains and Culturing 

The wild type strain of Halobacterium salinarium strain NRC-1 was used for the 

gamma radiation experiments (Ng et al. 2000) and the Δura3 mutant strain was from 

Dr. M.P. Krebs (Illinois State University, Normal, Illinois). Culturing of all strains 

was done in a liquid Complete Medium (CM; (2); at 42ºC with shaking at 220 rpm 

(Innova 4080, NewBrunswick Scientific, Edison, NJ). 

 

Gamma Radiation and Response Time Course 

γ-irradiation experiments were conducted as follows: Cell pellets from two 180mL 

cultures (control and experimental) of Halobacterium NRC-1 (OD600nm= 0.4) were 

resuspended in 1/20 volume in a basal salt solution (CM without peptone) and 

exposed to 2.5kGy of γ-radiation at 22oC (measured with an Omega Engineering 

Model HH 611PL4F Type K logging thermometer during irradiation) using a 26,000-

curie (9.6E14 Bq) 60Co gamma source at Univ. of Maryland College Park Gamma 

Test Facility at a dose rate of 62.01 Gy/min. Irradiated and control cultures were 

resuspended in the original volume of CM, split into 20mL aliquots in baffled flasks 

and incubated at 42oC and 220rpm shaking. Time course samples were placed on ice, 

pelleted (5000 x g, 4oC, 5min) (Figure 3-1) and flash-frozen in a dry ice/ethanol bath 

after decanting the supernatant. RNA extractions were performed using the 

Stratagene Absolute RNA kit (La Jolla, CA) and RNA quality checked with the 

Agilent Bioanalyzer (Palo Alto, CA) and with PCR. 
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Microarrays 

Microarrays were fabricated at the Institute for Systems Biology Microarray Facility. 

The arrays contain 4 spots per unique 70-mer oligonucleotides for each of 2400 non-

redundant genes in Halobacterium NRC-1. Labeling, hybridization and washing have 

been previously described (Baliga et al. 2002). Bias in dye incorporation was 

accounted for by reversing the labeling dyes (dye-flip). Raw data was processed and 

converted into log10 ratios with lambda (λ) values determined by the maximum 

likelihood method (Ideker et al. 2000). 

 

Quantitative Proteomics: iTRAQ Reagent Labeling, μLC-MS/MS and Data 

Analysis 

Proteomic analysis was conducted at three time points (30, 40 and 60 min) for both 

control and γ irradiated cultures. Relative quantitation was achieved using shotgun 

isobaric tagging with iTRAQ reagents (Applied Biosystems, Foster City, CA) (Choe 

et al. 2005; Zhang et al. 2004). The primary amine-specific iTRAQ reagent tags 

virtually all proteins/peptides except those lacking both lysine and reactive N-

terminal amino acids. Quantitation is achieved upon tandem MS, which fragments the 

iTRAQ reagents unevenly to release daughter products of differing mass (m/z 114, 

115, 116 and 117). For direct comparison across multiple runs a common reference 

sample derivatized with the 114 mass tag was included in each fourplex experiment. 

Soluble proteins were recovered by centrifugation of cell lysate (prepared by 
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resuspending the cell pellet in 1mL of water + 1mM of PMSF (protease inhibitor)) 

and the insoluble proteins were dissolved in 3mL of 10% SDS and centrifuged again. 

The combined (soluble + insoluble) protein preparation was treated with Benzoase 

nuclease (25U/μl, 37°C, 45 min) to remove nucleic acids and acetone precipitated. 

iTRAQ labeling was conducted as per manufacturer’s instructions (Applied 

Biosystems). In brief, in each experiment 4 different protein samples (100 μg each) 

were separately denatured and reduced with tributylphosphine (TBP; 60oC, 1hr), 

blocked with Cysteine Blocking reagent, trypsinized (37oC, 1hr), labeled with one of 

four isobaric reagents (114,115, 116 and 117) (25oC, 10min) and mixed in equimolar 

ratios. The combined preparation was desalted by cation exchange, diluted with 

Buffer A (1:1) and acidified (4.5% of H2PO4 to pH = 2.9), fractionated by HPLC 

(Integral 100 Q, Applied Biosystems) and further desalted using UltraMicroSpin 

columns (Nest Group, Southborough, MA). The fractions were dried, dissolved in 

0.4% acetic acid and analyzed by μLC/MS/MS analysis on an Applied Biosystems 

API QSTAR Pulsar I mass spectrometer, equipped with an in-house nanospray device 

using standard procedures. 

 

Peptide and protein identification was achieved with COMET, SEQUEST, 

PeptideProphet and ProteinProphet and relative quantitation was conducted using the 

Libra algorithm (Keller et al. 2002; Nesvizhskii et al. 2003; Pedrioli et al. 2004). 

Libra integrates signal intensities of the reagent mass/charge (m/z), normalizes each 

peptide for a given protein by the sum of its channel intensities (114, 115, 116 and 

117 isobars), removes values more than 2 standard deviations (σ) from the mean, 
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recalculates the mean, and lastly calculates the 1- σ errors to improve the consistency 

of quantitation (Choe et al. 2005). The data for the two iTRAQ sets were then merged 

and loaded into the Gaggle suite (Shannon et al. 2006). 

 

Protein abundance changes were observed for key cellular processes including DNA 

repair and replication (RadA1, UvrD and GyrA), ribosome biogenesis (35 proteins 

detected), protease activity (PsmA1 and VNG0557H), transcriptional regulation 

(TfbB, TfbF, TfbG, Boa3, PrrC and Prrlv2), and several enzymatic steps from various 

biochemical pathways (e.g. ArcC, PyrG, YafB, CbiC) including 6 of the 8 

downregulated dehydrogenases. All proteomic changes are consistent with our 

interpretations of physiological responses to γ radiation solely on the basis of 

transcriptional analysis. Due to the limited number of samples analyzed (three time 

points) and paucity of data for some individual proteins we are unable to cluster the 

protein data in a statistically meaningful manner. We further detected gene products 

for 4 ORFs not included among the initial gene predictions during the Halobacterium 

NRC-1 genome annotation stressing the potential for proteomic analysis to add to the 

gene enumeration of classical methods for gene prediction. All four new ORFs have 

pI < 4.5 typical for halobacterial proteins (Goo et al. 2003) and putative functions for 

two are given in Supplemental Table 3-3 in (Whitehead et al. 2006). 

 

Data Integration and Visualization 

Data analysis was performed using the Gaggle (Shannon et al. 2006) and several of 

its inter-linking components including Cytoscape (Shannon et al. 2003), Data Matrix 
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Viewer (DMV), a 'kegg wbi' for metabolic pathways and Tile Viewer to examine 

ChIP/chip data (Facciotti et al. 2007). Statistical analysis was conducted with the 

TIGR MeV program (Saeed et al. 2003) and the R package (www.r-project.org). 

 

γ-radiation survival of Δura3 strain 

Observed gene expression changes could be associated with direct repair of cellular 

damage, with pathways that manufacture necessary metabolites for the repair and 

recovery process or with an attempt to energetically accommodate costly repair 

processes. We tested the hypothesis that increased synthesis of nucleotide 

biosynthesis genes post-γ irradiation was necessary to provide the nucleotide pool 

required for DNA repair and replication activity by assaying the phenotype of a 

Δura3 strain. This strain is deficient in orotidine 5’-phosphate decarboxylase and 

therefore defective in de novo uracil biosynthesis. Cell survival was evaluated in 

triplicate at 5000 Gy (N/No = 0.11 for wildtype cells) by counting survivor colonies 

on agar plates (Kottemann et al. 2005; Peck et al. 2000). Average N/No of the Δura3 

strain was 0.095 + 0.007 while wild type cells have an average N/No of 0.276 + 

0.024. Reduced survival of Δura3 strain (34.4% lower than wildtype) is consistent 

with the importance of de novo nucleotide biosynthesis during recovery from γ-

radiation damage. 
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Chapter 4: The Role of Mre11 and Rad50 in the Repair of DNA 

Double Strand Break Repair in the Halophilic Archaeon, 

Halobacterium sp. str. NRC-1 

 

Introduction  

Maintaining genome integrity through the repair of DNA double strand breaks 

(DSBs) is critical to cell survival. The repair of those highly cytotoxic lesions is 

particularly essential following exposure to ionizing radiation, which has been shown 

to produce extensive DNA fragmentation (DiRuggiero et al. 1997; Daly et al. 1994). 

Multiple pathways for repair of DNA DSBs have been identified, including synthesis 

dependant strand annealing (SSA) both with and without extended DNA synthesis 

(Paques and Haber 1999; Zahradka et al. 2006), non-homologous end joining 

(NHEJ), and homologous recombination (HR), working in a coordinated manner on 

the various damage types (Swanson et al. 1999; Slupphaug et al. 2003). Although the 

pathways utilized depend on the protein complement of the species, the cell cycle, 

and the number of genome copies present, some elements are shared between 

pathways. The involvement of a cross-over structure and a recombinase such as RecA 

(Bacteria), RadA (Archaea) or Rad51 (Eukarya) is common to both HR and extended 

synthesis dependant strand annealing (ESDSA), and the processing of dsDNA ends to 

produce a 3’ overhang is found in HR, SSA, and ESDSA (Zahradka et al. 2006).  
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The process of HR repair of DNA DSBs in both Bacteria and Eukarya has been 

extensively studied (see reviews in (Symington 2002; Krogh and Symington 2004; 

Wyman et al. 2004; Kowalczykowski et al. 1994; West 2003)). The first step in the 

HR repair pathway is recognition of the double strand break and resection of 5’ strand 

to produce a 3’-OH overhang that can be recognized by the recombinase. In Bacteria, 

this is primarily done by the RecBCD complex, although there are redundant 

pathways pathway for RecBCD activities including the use of the RecFOR complex 

for recombinase loading along with the RecQ helicase and RecJ nuclease for DNA 

end processing (Wyman et al. 2004). Bacterial SbcCD is the structural homolog of 

the Eukaryotic Mre11/Rad50 complex (Kowalczykowski et al. 1994). SbcCD has 

been shown to cleave hairpin DNA, which can block stalled replication forks, prior to 

homologous recombination rescue of the replication fork (Connelly et al. 1998). 

Deletions of sbcC together with sbcB encoding the ExoI 3’-5’ exonuclease, has been 

shown to complement ΔrecBC in Escherichia coli by shunting repair from the 

RecBCD pathway into the RecFOR pathway (Kowalczykowski et al. 1994). In 

Bacillus subtilis and Deinococcus radiodurans, deletion of sbcC results in increased 

sensitivity of the cells to ionizing radiation (Mascarebhas et al., 2006). Deletions of 

sbcC and/or sbcD in D. radiodurans also result in delayed repair kinetics of DNA 

DSBs following γ-irradiation (Bentchikou et al. 2007). 

 

The Mre11-Rad50 complex in the Eukarya performs DSB recognition (see reviews in 

(Dudas and Chovanec 2004; Symington 2002; Assenmacher and Hopfner 2004; van 

den et al. 2003)). Rad50 has ATP-dependant DNA binding activity provided by 
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Walker A and B motifs at the termini of the protein. Coiled-coil domains are 

separated by a zinc hook found to be required for the repair of DSBs by HR (Wiltzius 

et al. 2005) (see Figure 4-1). Mre11 is a nuclease with both dsDNA exonuclease and 

ssDNA endonuclease activities as well as a helicase. Notably, the polarity of the 

Mre11 exonuclease activity (3’-5’) is in opposition to the requirement for forming the 

3’ overhangs necessary for the initiation of homologous recombination. Homodimers 

of both Mre11 and Rad50 interact to form a complex referred to hereafter as the MR 

complex. The MR complex in eukaryotes also includes the Nbs1 (human)/Xrs2 

(Saccharomyces cerevisiae) protein. Xrs2 binds DNA and Mre11, and aids in the 

localization of the complex to the DSB as well as stimulation of the Mre11 

exonuclease (Symington 2002). Yeast MR complex mutants are sensitive to ionizing 

radiation and exposure to alkylating agents (Symington 2002), and have a slow-

growth phenotype (Shor et al. 2002). Mre11 has been shown to be required for 

complex formation with Rad50 and Xrs2 (Symington 2002). Deletion of mre11 or 

rad50 can be complemented by overexpression of the ExoI 5’-3’ exonuclease in yeast 

(Lewis et al. 2002). Conversely, deletion of both mre11 and exoI increases the 

radiation-sensitive phenotype when compared to the yeast mre11 single mutant 

(Moreau et al. 2001). The structure and activity of archaeal Rad50 and Mre11 were 

examined in Pyrococcus furiosus, a hyperthermophilic archaeon (Hopfner et al. 2001; 

Hopfner et al. 2000a). The data confirmed the structural conservation of MR complex 

homologs through all three domains of life. In thermophilic archaea, the genes 

encoding Rad50 and Mre11 are also found in an operon with genes coding for a 5’-3’  
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Figure 4-1. Proposed structure of the Mre11/Rad50 complex in Eukarya (human) 

taken from (van den Bosch et al. 2003). Mre11 is shown in a heterotetramer with 

Rad50 (Walker A and B motifs of Rad50 shown as ‘A’ and ‘B’). The Nbs1 protein is 

thought to act in a complex with Mre11 and Rad50 by enhancing Mre11 nuclease 

activities.  
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nuclease (nurA) (Constantinesco et al. 2002), and helicase (herA/mla)(Constantinesco 

et al. 2004; Manzan et al. 2004). Interestingly, only genes encoding Rad50 and Mre11  

are present in the genome of the mesophilic archaeon, Halobacterium sp. str. NRC-1 

(Halobacterium).  

 

Halobacterium is an extreme halophile growing optimally in 4M NaCl (DasSarma 

and Fleischmann 1995). Intracellular salt, 4M KCl (Engel and Catchpole 2005), is 

used by this organism in place of compatible solutes to counter-balance the high 

external salt concentration. The exceptional ability of Halobacterium to survive 

extremely high level of ionizing radiation has been attributed to adaptations to 

hypersaline environments characterized by high levels of solar radiation and periodic 

desiccation (Kottemann et al. 2005; Whitehead et al. 2006). Halobacterium has up to 

25 copies its genome during log-phase growth and 15 copies during stationary phase 

(Breuert et al. 2006) potentially providing homologous DNA for recombination-repair 

pathways. The free-radical scavenging capability of membrane pigments, specifically 

bacterioruberin, has been shown to provide Halobacterium with protection against 

cellular damages by ionizing radiation (Kottemann et al. 2005; Shahmohammadi et 

al. 1998). Whole genome transcriptional analysis has suggested that HR is the major 

pathway for the repair of DSBs in Halobacterium (Whitehead et al. 2006) and 

homologs of eukaryotic HR proteins have been identified in its genome (Ng et al. 

2000) (Table 4-1). The Halobacterium genome lacks homologs for genes encoding 

the Ku70 and Ku80 proteins involved in NHEJ pathway for repair of DNA DSBs, 

thereby reducing the potential pool of alternative repair systems for DSBs. 
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Endonuclease involved in BER 
long patch repair (DSB formation 

during post-irradiation repair)
nucleasemonomer, helical clamp and 

PCNA binding regionVNG1359GFlap (also called 
Rad2/XPG/ExoI)

Reverse branch migration for 
restoration of replication fork

Helicase/endonuclease
for forked structures

homodimer, DEAH box helicase
domain at N-terminus in 
Euryarchaeota (PCNA in 

Crenarchaeota), XPF 
endonuclease

VNG2356GHef (also called 
Rad1/XPF/Eif4a)

Holliday junction resolution nucleasehomodimerVNG2252GHjr (also called 
Hjc)

Holliday junction branch 
migration

monomeric ATP-
dependant  DEAD box 

helicase
DEAD box helicase domainVNG2368GHjm (also called 

Rad24b)

Possible regulatory functions as an 
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Table 4-1. Structure and function of known archaeal HR repair proteins. 
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Here Halobacterium is used as a model system for archaea and for a genetic approach 

to investigate the cellular roles of Rad50 and Mre11 in the repair of DNA DSBs and 

in the radiation resistance of this microorganism. Our phenotypic analysis of rad50, 

mre11 and mre11/rad50 knockout mutants did not show increase sensitivity to 

ionizing radiation, UV or the alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine 

(MNNG). This is in contrast to previous studies with yeast Rad50 mutants that are 

highly sensitive to irradiation, MNNG and UV, all conditions producing DSBs. We 

also show a delay in the repair of DSBs with mre11 and rad50/mre11 mutants.  

 

Results 

Targeted Gene Deletion of mre11 and rad50 

To determine whether the Rad50 and Mre11 proteins encoded in the genome of 

Halobacterium are involved in the repair of DNA DSBs we carried out targeted gene 

deletions of the rad50 and mre11 genes (single and double deletions) using a 

modified gene deletion system (see Materials and Methods). For this study, an 

auxotrophic strain of Halobacterium deficient in the biosynthesis of both tryptophan 

and uracil (ΔtrpAΔura3) was constructed for use as a background strain for the 

targeted gene deletions (Table 4-2). This double auxotroph allowed the use of high-

salt drop-out media developed in this study for selection thereby reducing the final 

pool of colonies obtained to those containing at least one copy of the mutant genome 

in each cell. The mre11 and rad50 genes are located together in an operon on the  
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This workΔmre11 Δrad50 ΔtrpA Δura3+ trpAΔmre11Δrad50

This workΔrad50 ΔtrpA Δura3+ trpAΔrad50

This workΔmre11 ΔtrpA Δura3+ trpAΔmre11

This workΔtrpA Δura3ΔtrpA

{Whitehead, 
2006 444 /id}Δura3Δura3

ReferencesGenotypeStrain

This workΔmre11 Δrad50 ΔtrpA Δura3+ trpAΔmre11Δrad50

This workΔrad50 ΔtrpA Δura3+ trpAΔrad50

This workΔmre11 ΔtrpA Δura3+ trpAΔmre11

This workΔtrpA Δura3ΔtrpA

{Whitehead, 
2006 444 /id}Δura3Δura3

ReferencesGenotypeStrain

 

 

Table 4-2. Halobacterium strains used in this study. 
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Halobacterium main chromosome with the mre11 coding region positioned upstream 

of the rad50 coding region. 

 

Copies of both wild type and deleted genes were identified by PCR after completing 

one round of targeted gene deletion for mre11, whereas a full deletion for rad50, was 

achieved after the first attempt. Multiple rounds of transformations of clones 

containing both wild type and Δmre11 chromosomes with the Δmre11 gene deletion 

construct finally allowed for complete deletion of mre11, found upstream of rad50 

together in an operon. The double mutant (Δmre11/Δrad50) was constructed using the 

Δrad50 mutant strain. The genotypes of the Δrad50, Δmre11, andΔmre11/Δrad50 

mutant strains were confirmed by Southern hybridization (Figure 4-2) after initial 

screening by PCR. Reverse transcription of mRNA transcripts followed by PCR 

amplification of both mre11 and rad50 genes (Figure 4-3) provided evidence that 

deletion of one gene in the mre11-rad50 operon did not affect transcription in the 

other.  

 

Growth and Survival of mre11 and rad50 Mutants  

Phenotypic characterization of the Δrad50, Δmre11, and Δmre11/Δrad50 mutant 

strains revealed no temperature dependant growth effects (data not shown), but did 

show a slower, but reproducible, growth rate under standard culturing conditions 

compared to the background strain (Figure 4-4). The 3 mutant strains showed the 

same level of resistance to the alkylating agent MNNG as the background strain 

(Figure 4-5A). In contrast, a decrease in survival was observed in both the Δmre11 
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Figure 4-2. Southern hybridizations showing gene deletions for Δmre11, Δrad50, and 

Δmre11Δrad50. Probes were designed to hybridize to regions 500bp upstream the 

mre11 coding region (A), 500bp downstream of the rad50 coding region (C) and (E), 

and within the coding regions of mre11 (B) and (G) and rad50 (D) and (F). 
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Figure 4-3. Reverse transcription PCR showing production of mRNA transcripts in 

the background strain (lane 1), Δrad50 (lane 2), and Δmre11 (lane 3) strains, with a 

wild-type Halobacterium DNA positive control (lane 4). Transcripts for mre11 were 

identified in the background strain as well as Δrad50, but lacking in Δmre11 as 

expected (A). Transcripts for rad50 were identified in the background strain as well 

as Δmre11, but lacking in Δrad50 as expected (B), showing that deletion of the first 

gene in the operon (mre11) does not result in failure to transcribe the entire operon. 
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 and Δmre11/Δrad50 after exposure to 200J/m2 of UV-C (254nm) radiation which 

was eliminated at the higher dose of 350J/m2 when compared to the level of survival 

of the background strain (Figure 4-5B). Holding the cells in liquid recovery for up to 

1 hour did not change the level of survival of the mutants versus background strains, 

eliminating the possibility of plating as a compounding stress for the mutants strains. 

Surprisingly, no differential survival in any of the mutants was observed after 

exposure to 2.5kGy of γ−radiation, even after a second 2.5kGy dose following a 4hr 

incubation at 42°C with shaking, to allow time for minimal repair of DSBs in the 

background strain (Figure 4-5C,D). Sensitivity to ionizing radiation is the hallmark of 

mutations to Mre11 and Rad50 in eukaryotic systems (Symington 2002). For all 

treatments, the levels of survival of the background strain were comparable to that of 

the wild-type ((Baliga et al. 2004; Kottemann et al. 2005)). 
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Figure 4-4. Growth curve showing differential growth rate between the background 

strain (squares), Δmre11 (triangles), Δrad50 (diamonds), and Δmre11Δrad50 (circles) 

strains. Data shown is the average of at least 2 replicates with standard errors shown. 
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Figure 4-5. Survival of the background strains and the mutants strains Δmre11, 

Δrad50, and Δmre11Δrad50 after exposure to 50ug/mL (black) and 100ug/mL (grey) 

MNNG (A), 200J/m2 (black) and 350J/m2 (grey) UV-C radiation with recovery in the 

dark to prevent photoreactivation repair (B), γ-radiation at doses of 2.5 (black), and 

5kGy (grey) (C), and γ-radiation at a dose of 2.5kGy followed by a 4hr incubation 

under standard culturing conditions followed by a second dose of 2.5kGy (D). 

Survival was calculated as the average ratio (N/No) of surviving colony forming units 

from treated (N) compared to untreated (No) cultures. Data shown is the average of at 

least 3 replicates with standard errors shown. The differences in survival between 

mutant strains and the background strain were not statistically significant (P>0.05) for 

all conditions with the exception of UV-C irradiation at a dose of 200J/m2, with 

Δmre11 and Δmre11Δrad50 showing significantly decreased survival (P values were 

0.0414 and 0.0002, respectively) compared to the background strain. This differential 

survival was not seen at a dose of 350J/m2. 
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DNA Double Strand Break Repair in mre11 and rad50 Mutants  

The ability to repair DNA DSBs was assayed in each of the mutant strains after 

exposure to 2.5kGy of γ−radiation, which represents nearly 80% survival in wild-type 

Halobacterium (Kottemann et al. 2005). Samples were taken both prior to irradiation 

and over a timecourse of recovery under standard culturing conditions. Agarose plugs 

(0.8%) were made containing 1x109cells/mL and analyzed by pulsed field gel 

electrophoresis (PFGE). In the background strain and Δrad50 mutant, repair of 

chromosomal fragmentation after exposure to ionizing radiation was initiated within 

4hrs and completed within 12hrs (Figure 4-6). In contrast, the recovery process for 

the Δmre11 and Δmre11/Δrad50 mutant strains took much longer and those mutants 

showed no evidence of repair until the 12hr time point. The  Δmre11 and 

Δmre11/Δrad50 mutant strains did not show increase sensitivity to γ-irradiation at 

2.5kGy, implying that the repair of DNA DSBs goes to completion in these strains 

but at a much reduced rate than that of the Δrad50 mutant strain or the background 

strain. This also suggests that the inhibitory effect on the kinetics of radiation 

induced-DSBs repair resulted from the absence of Mre11 proteins in the cells.  

 

Homologous Recombination in mre11 and rad50 Mutants 

To investigate the role of Rad50 and Mre11 in HR, independently of the repair of 

DNA DSBs and the processing of broken DNA-ends, we developed a plasmid-based 

recombination assay in Halobacterium. A construct was made using a suicide plasmid 

carrying a wild type copy of the ura3 gene, for selection, and 1kbp of non-coding  
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Figure 4-6. PFGE timecourse of recovery after exposure to 2.5kGy of γ-radiation. 

Samples were taken pre-irradiation (P) as well as immediately following irradiation 

(0), and every 4hrs during the recovery up to 12hrs (4, 8, 12), embedded in InCert 

agarose plugs at a final density of 1x109cells/mL. Plugs were digested with XbaI prior 

to gel electrohoresis. Images taken from 1 of 3 independent replicates of this 

experiment. 
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region plus 3 nucleotides of coding region for the mutS1 gene of Halobacterium. 

Following transformation into Δrad50, Δmre11, and Δmre11/Δrad50 Halobacterium 

strains along with the background strain, recombinants were selected by plating on 

uracil dropout media.  

 

The results of this assay, shown in Figure 4-7, include intrareplicate variations that 

decrease the reliability of the data and the ability to interprete small-scale variations 

in recombination efficiency between strains. This was due to unavoidable variations 

between replicates inherent in the current standard transformation protocol for 

Halobacterium (Cline et al. 1995) in steps involving the stripping of the S-layer to 

produce spheroplast cells, the concentration of plasmids and spheroplast cells using 

polyethelyne glycol, and the resuspension of delicate spheroplast cells after 

incubation with plasmid DNA. Attempts were made to account for these variations by 

enumerating total viable cells for each replicate in addition to transformants, and by 

using 3 pseudoreplicates per transformation (each culture was split into 3 

pseudoreplicates) for each of the 3-6 replicates performed for each strain. Negative 

controls used for each replicate validated the effectiveness of the selection using 

uracil drop-out medium. This experiment was also repeated in full with 2 additional 

plasmids bearing alternate target genes (bop, gvpA) producing the same range of 

variation, eliminating error based on the target gene. Despite these measures, the 

standard errors produced did not allow for meaningful inferences from the data. 

Additional refinements to the transformation protocol reducing variation between 

replicates will be required before this assay can produce useful data. Nevertheless, the 
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deletion of rad50 and/or mre11 did not produce large-scale decreases in the efficiency 

of homologous recombination.  

 

Discussion 

Exposure to reactive oxygen species (ROS), whether by desiccation, exposure to 

ionizing radiation, or the auto-oxidation of dehydrogenases involved in electron 

transport as part of aerobic respiration, can result in oxidation of DNA base and sugar 

moieties and DNA double strand breaks (DSBs) (reviewed in Imlay 2003; Imlay and 

Linn 1988). DSB production is not limited to the actions of free radical species, 

however. Base excision repair (BER) of oxidized DNA bases found in clusters 

(Dianov et al. 2001; Blaisdell and Wallace 2001a) can lead to the formation of 

cytotoxic DSBs. Homologous chromosomes serve as templates for recombination-

repair pathways leading to repair of DSBs, yielding advantages to microorganisms 

with a multiplicity of genomic material. Radiation-resistant organisms such as D. 

radiodurans have multiple genome copies at all phases of the cell cycle. 

Halobacterium salinarium has been shown to have 25 copies its genome present 

during log-phase growth and 15 copies during stationary phase (Breuert et al. 2006).  

 

In yeast, a major pathway for the repair of DSBs is homologous recombination (HR), 

which requires the Mre11/Rad50 (MR) complex (Symington 2002). Mre11 is a 3’-5’ 

dsDNA exonuclease that is regulated through association with Rad50, an ATPase 
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Figure 4-7. Homologous recombination assay data showing transformation efficiency 

of  Δmre11, Δrad50, and Δmre11Δrad50 mutant strains of Halobacterium compared 

to the background strain. The recombination efficiency was calculated as the ratio of 

transformants compared to total viable cells after transformation. Each replicate 

culture derived from a single colony was divided into 3 pseudoreplicates; each of 

which was transformed with the mutS1 pNBK07 plasmid. The intra-replicate 

variation between pseudoreplicates is shown in (A) with standard deviations, and the 

inter-replicate variation between full replicates is shown in (B) with standard errors. 

Results from two full replicates were used for statistical analysis. The large standard 
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deviation between pseudoreplicates was derived from variations inherent in the 

Halobacterium transformation protocol, decreasing the reliability of the data despite 

the reduction in the standard error brought about by increasing the number of 

replicates. 
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 with DNA binding activity (Assenmacher and Hopfner 2004). The resulting MR 

complex plays an enzymatic role in DNA-end processing and a structural role in 

DNA-end joining (Aylon and Kupiec 2004). Orthologs of those proteins, SbcC 

(Rad50) and SbcD (Mre11) are present in bacterial genomes and have also been 

implicated in the repair of DNA DSBs (Kowalczykowski et al. 1994; Bentchikou et 

al., 2007). In the Archaea, homologs of the rad50 and mre11 genes have been found 

in all the genomes sequenced so far, and the corresponding proteins have been 

biochemically characterized in the hyperthermophile P. furiosus (Hopfner et al. 

2000a; Hopfner et al. 2001). Here, we investigated the cellular role of Rad50 and 

Mre11 in a member of the Archaea, the radiation resistant halophile, Halobacterium, 

using a genetic approach. We constructed in-frame deletion mutants of 

Halobacterium for rad50, mre11 and mre11/rad50 and determined the phenotype of 

the deletion mutants for growth and for survival following DNA damaging 

treatments.  

 

We found a slight growth defect under standard culturing conditions (42oC with 

shaking) for Δmre11 and Δmre11/Δrad50 Halobacterium mutant strains. This is 

similar to studies in yeast that show a growth defect for both rad50 and mre11 

mutants that is stronger in mre11 strains (Shor et al. 2002). Surprisingly, there was no 

increased sensitivity to ionizing radiation or MNNG (alkylating agent) for any the 

Halobacterium mutant strains when compared to the background strain. Sensitivity to 

ionizing radiation is the defining characteristic of MR complex mutants in yeast, 

along with sensitivity to alkylating agents (reviewed in Symington 2002). Studies 
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with bacteria also showed increased sensitivity to ionizing radiation for sbcC and 

sbcD mutants in B. subtilis and in the radiation resistant bacterium D. radiodurans 

(Bentchikou et al. 2007; Mascarenhas et al. 2006). 

 

Using PFGE analysis, we found that Halobacterium Δmre11 and Δmre11/Δrad50  

mutant strains displayed extensive delay in the repair of DNA DSBs whereas the 

Δrad50 mutant strain showed similar kinetics of repair compared to the background 

strain.  After 4hrs of recovery after exposure to 2.5kGy of γ-radiation, the background 

and Δrad50 strains began to show some repair of chromosomal fragmentation, 

whereas strains lacking mre11 did not begin to display repair of DSBs until the 12hr 

timepoint. Exposure to a second 2.5kGy dose of γ−radiation 4hrs after an initial dose 

was expected to result in a significant reduction in survival of the Δmre11 and 

Δmre11/Δrad50  strains, which was not observed. This indicates that, despite a 

reduced rate of homologous recombination repair of DNA DSBs in mutant strains 

lacking mre11, a sufficient reduction in chromosomal fragmentation has occured after 

4hrs to allow survival of the strains. This recovery may be the product of multiple 

genome copies that increase the substrate for recombination repair of DSBs together 

with an extended recovery period (10 days) to allow for completion of repair in 

strains lacking mre11. Deletion of D. radiodurans sbcC and sbcD genes also showed 

a delay in the reconstitution of intact chromosomes as well as delayed growth 

following γ-irradiation (Bentchikou et al. 2007).  The lack of uniformity between 

rad50 and mre11 deletion phenotypes, however, suggests separate functions for 

Rad50 and Mre11 outside of their activity as a complex, which represents a departure 
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from both bacterial (SbcC and SbcD) and eukaryotic (Mre11 and Rad50)  homologs. 

In yeast, the MR complex is directly involved in DNA-end processing through the 

exonuclease activity of Mre11 (Symington 2002). The polarity of Mre11 exonuclease 

activity, however, is contrary to that required for the formation of 3’ overhangs used 

as substrates for HR, suggesting that another nuclease might be involved in DNA-end 

processing (Symington 2002). Expression of eukaryotic ExoI, a 5’-3’ exonuclease, 

has been shown to complement both rad50 and mre11 deletions in yeast (Lewis et al. 

2002).  

 

Conclusion 

The absence of a requirement for either Rad50 or Mre11 for DNA repair after 

exposure to a range of DNA damaging conditions, combined with the lack of 

dramatic decrease in recombination efficiency in mutant strains lacking rad50 and/or 

mre11, and the decreased rate of repair of DNA DSBs observed using PFGE analysis 

leads to either one of two alternative hypotheses: (1) There is no role for the 

Mre11/Rad50 complex in the homologous recombination pathway in Halobacterium 

but rather an alternative role for the Mre11 nuclease, or (2) There are redundant 

pathways with reduced efficiency that can operate in the absence of Mre11, 

specifically. It is not possible based on the data presented here to differentiate 

between these alternative hypotheses. However, the validity of each hypothesis can 

be corroborated.  
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The absence of a distict phenotype based on survival after exposuring to DNA 

damaging agents and homologous recombination efficiency may indicate a lack of 

functionality for the Mre11/Rad50 complex in the HR pathway. The presence of 

some recombination activity based on the recombination assay shown in this study 

indicates that the HR pathway is functional in the absence of both Mre11 and Rad50. 

This hypothesis establishes a variance between the archaeal and eukaryotic HR 

pathway, despite the structural and sequence conservation of Mre11 and Rad50 

proteins between the two domains of life. On the other hand, the presence of 

alternative redundant pathways for a specific type of repair can be substatiated using 

as an example the RecBDC and RecFOR pathways in E. coli for repair of DNA 

DSBs. In addition, the Halobacterium genome encodes homologs of both bacterial 

(UvrA, UvrB, UvrC, UvrD) and eukaryotic (XPF, XPG, XPD) nucleotide excision 

repair proteins thereby providing alternative sources of repair proteins for a given 

pathway. In the case of HR repair of DSBs, any such alternative repair pathway 

would operate at a reduce rate based on evidence gathered using PFGE analysis and 

γ-irradiation survival data. Additional analyses will be required to test both 

hypotheses.  

 

Methods and Materials 

Cultures and Growth Conditions 

Halobacterium sp. strain NRC-1 cultures were grown in standard GN101 medium 

[250g/L NaCl, 20g/L MgSO4-7H20, 2g/L KCl, 3g/L Na citrate, 10g/L Oxoid peptone 
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(pH 7.2) with the addition of 1mL/L Trace Elements Solution (31.5mg/L 

FeSO4.7H2O, 4.4mg/L ZnSO4.7H2O, 3.3mg/L MnSO4.H2O, 0.1mg/L CuSO4.5H2O)] 

(Hackett and DasSarma 1989) at 42°C with shaking at 220 rpm (Gyromax 737, 

Amerex Instruments; Lafyatte, CA). Tryptophan and uracil drop-out media were 

made using yeast synthetic drop out media supplements (without tryptophan and 

without uracil) (1.92g/L) from Sigma (St. Louis, MO) and yeast nitrogen base 

without amino acids (10g/L) (Sigma; St. Louis, MO) suspended in a basal salt 

solution [(250g/L NaCl, 20g/L MgSO4-7H20, 2g/L KCl, 3g/L Na citrate; pH 7) with 

the addition of 1mL/L Trace Elements Solution (31.5mg/L FeSO4.7H2O, 4.4mg/L 

ZnSO4.7H2O, 3.3mg/L MnSO4.H2O, 0.1mg/L CuSO4.5H2O)]  and 20g/L agar. When 

specified, uracil was added to a final concentration of 50ug/mL, tryptophan to a final 

concentration of 50ug/mL and 5- fluoroorotic acid (5-FOA) to a final concentration 

0.3mg/ml.  

 

Targeted Gene Deletion 

Targeted gene deletions were constructed using the protocol by Peck et al. (Peck et al. 

2000) using plasmid pNBK07 and the following changes: The gene knockout 

construct for each gene was composed of 500bp upstream and downstream of the 

target gene flanking the trpA gene for tryptophan biosynthesis under the control of the 

constitutively expressed ferrodoxin promoter, as described in (Allers et al. 2004). A 

background strain auxotrophic for both tryptophan and uracil biosynthesis 

(ΔtrpAΔura3) was used in place of the Δura3 strain to allow for the use of uracil 

dropout medium instead of mevinolin as the selective agent for selection for uracil 
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prototrophy following transformation with plasmid pNBK07 bearing knockout gene 

constructs and the ura3 marker for uracil biosynthesis. Tryptophan dropout medium 

supplemented with 5-FOA (Sigma; St. Louis, MO) was subsequently used to select 

intramolecular recombinants that had lost the plasmid and acquired tryptophan 

prototrophy. Deletions were confirmed by Southern hybridization using probes both 

within the deleted region and up- or down-stream of the deleted region. In addition, 

production of a transcript for the mre11 and rad50 genes was analyzed to confirm that 

disruption in one gene in the operon did not affect transcription of the second gene. 

Total RNA was extracted using the Stratagene Absolute RNA kit (La Jolla, CA), 

followed by treatment with RQ1 RNase-free DNase (Promega; Madison, WI), and 

production of cDNA using the TaqMan Reverse Transcription Kit (Applied 

Biosystems; Foster City, CA). FastTaq PCR reagents (Roche Applied Sciences; 

Indianapolis, IN) were used to eliminate multiple PCR products due to the high-GC 

content of the Halobacterium genome. PCR products were analyzed by agarose gel 

electrophoresis. 

 

UV-C and γ-Irradiation Survival  

UV-C (254nm) and γ-irradiation survival assays were conducted and quantified as 

described by Baliga et al. (Baliga et al. 2004) and Kottemann et al. (Kottemann et al. 

2005), respectively. Recovery after UV-C irradiation was conducted in the dark to 

limit photo-reactivation repair. Survival was measured by the ratio of the total 

number of viable cells after irradiation (N) divided by the total number of viable cells 

in the control sample (No). 
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MNNG Survival  

Cultures were grown to log phase (OD600nm = 0.8) in standard GN101 medium at 

42oC with shaking prior to being divided into 5 aliquots and diluted to OD600nm = 0.2 

in GN101 medium with addition of 50ug/mL and 100ug/mL N-methyl-N'-nitro-N-

nitrosoguanidine (MNNG) (2x50ug/mL, 2x100ug/mL, 1xGN101 without MNNG) to 

a final volume of 5mL. OD values were recorded after approximately 24hrs of 

incubation at 42oC, averaged, and compared to values obtained for cultures growing 

in the standard GN101 medium. At least 3 independent experiments were carried out 

for each strain. 

 

Growth Curves and Temperature-Dependant Growth Assays 

Cultures of each deletion mutant strain and the ΔtrpAΔura3 background strain were 

grown to log phase (OD600nm = 0.6) together with the background strain, diluted back 

to OD600nm = 0.05 in GN101 supplemented with tryptophan and uracil, and incubated 

at  42oC with shaking. OD600nm readings were taken at intervals and recorded. At least 

3 independent experiments were carried out for each strain. 

 

Recombination Assay 

5mL cultures of each strain (background strain, Δrad50, Δmre11, Δmre11Δrad50) 

were grown in GN101 supplemented with uracil (50ug/mL) and tryptophan 

(50ug/mL) to stationary phase (OD600nm = 1.0-1.5) (Cline et al. 1995). 150ng of 
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plasmid DNA was used in each transformation. The pNBK07 plasmid bearing 500bp 

upstream and downstream of the mutS1 coding region was used allowing for 

homologous recombination at the mutS1 gene. The ura3 gene on the plasmid was 

used as a selective marker for uracil biosynthesis in the formerly Δura3 recombinants 

as pNBK07 lacks a halophilic origin of replication allowing for replication inside 

Halobacterium cells without integration into the chromosome. Cultures were plated 

after 80-90% recovery of the rod structure from the spheroplast form. Cells were 

plated onto GN101 solid medium supplemented with uracil (50ug/mL) and 

tryptophan (50ug/mL) to determine the total viable cell count in addition to plating on 

uracil dropout medium to determine the number of recombinant colony forming units. 

The ratio of recombinants to total viable cells was determined and compared for the 

background strain and each mutant strain (Δrad50, Δmre11, Δmre11Δrad50). 

 

γ-Irradiation Time Course of Recovery PFGE Analysis 

Cultures of Halobacterium strains (background strain, Δrad50, Δmre11, 

Δmre11Δrad50) in GN101 with uracil + tryptophan were grown to OD600nm = 0.6 (log 

phase, 2x108cells/mL), concentrated by centrifugation and irradiated using a 60Co γ 

source (University of Maryland College Park γ Test Facility) to a final dose of 

2.5kGy (dose rate = 3-13kGy/hr). Cultures were brought back to full volume in 

GN101 with uracil + tryptophan and incubated at 42°C with shaking for 12 hours. 

Samples were taken at each of the following timepoint: pre-irradiation, 0hr, 2hr, 4hr, 

8hr, 12hr), cells were pelleted by centrifugation at 8000 x g for 5min and resuspended 
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in room temperature BSS (250 g/L NaCl, 20 g/L MgSO4, 2 g/L KCl, 3 g/L sodium 

citrate) prior to being embedded into InCert agarose plugs (0.8% final concentration 

prepared in 3:1 BSS:dIH2O; BioRad; Hercules, CA) at a final cell concentration of 

1x109 cells/mL. Plugs were lysed in proteinase K solution (0.25M EDTA (pH8), 1% 

N-lauryl sarkosine, and 0.5mg/mL proteinase K at 54oC for 1-2 days. Plug washes 

consisted of 2x1hr in 20mL 1x TE buffer at room temperature, 2x1hr in 20mL 0.5x 

TE buffer at room temperature, 4x24hr in 0.5x TE buffer at 4oC. Plugs were stored in 

5mL 0.5x TE buffer at 4oC after wash steps. Halobacterium genomic DNA plugs 

were analyzed using a CHEF DR-III electrophoresis system (BioRad; Hercules, CA) 

using 1% PFGE certified agarose (BioRad; Hercules, CA) gels, 0.25x TBE in both 

the running and gel buffers. Run conditions were 6V/cm, 10-60s switching times, 

120o included angle, for 24hrs at 14oC.  
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Chapter 5:  Conclusions 

 

Conclusions and Perspectives 

The effects of ionizing radiation on the extremely halophilic Archaeon 

Halobacterium sp. str. NRC-1 can be divided into three main categories: protection 

from oxidative damages, response to ionizing radiation, and repair of DNA double 

strand breaks (DSBs). 

 

Intracellular salts used to maintain osmotic balance in the hypersaline conditions 

Halobacterium cells require were shown in this study to provide protection from 

oxidative damages through the scavenging of hydroxyl radicals produced from the 

radiolysis of water by γ-radiation. This represents the first in vivo validation of the 

hypothesis that the presence of chloride compounds can reduce DNA damage from 

reactive oxygen species. This study also showed that bromide offers even greater 

protection than chloride to both DNA and proteins after exposure to ionizing 

radiation. These results highlight both the importance of the intracellular environment 

in determining radiation resistance and the multiplicity of pathways resulting in 

radiation resistance that can be utilized by various microbes as a consequence of 

adaptations to common environmental stresses such as desiccation. 

 

The global stress response to γ-radiation was measured using both full genome 

microarray analysis of the transcriptional response and iTRAQ analysis of the 
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proteomic translational response. A global down-regulation of metabolism and 

stalling of the cell cycle accompanied by an increase in protein turn-over was 

proposed to allow for repair of DNA fragmentation via the homologous 

recombination pathway. A 3-fold increase in mRNA abundance was observed for 

radA 30min after gamma irradiation, correlating with an increase in  

RadA protein abundance. By using both genomic and proteomic analyses, we were 

able to identify key genes involved in the repair of oxidative damage in 

Halobacterium for further analysis, as well as establish putative identifications of 

ORFs showing differential expression. Differential regulation of tfbB, tfbF and tfbG 

encoding transcription regulatory elements in response to several stressors, as has 

been observed under other stress conditions (Baliga et al. 2004; Kaur et al. 2006), 

drives the hypothesis that these three TFBs coordinate various aspects of a cellular 

stress response (Facciotti et al. 2007). This study adds to the growing library of 

genomic and proteomic data for Halobacterium sp. str. NRC-1 under a variety of 

environmental stresses generating an excellent model system for studying general 

stress response in the Archaea. 

 

The role of the Mre11-Rad50 complex was examined in an Archaeal model system to 

determine if these proteins performed the same role in homologous recombination 

repair of DSBs as their Eukaryotic homologs. In Eukaryotes, the Mre11 complex 

functions in DSB recognition and resection of the strand ends, as well as having a role 

in the creation of a 3’-OH overhang and recruitment of recombinase and other factors 

required for homologous strand invasion. Deletion of mre11 in Halobacterium was 
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found to reduce the rate of DSB repair, but not the overall survival of the cells. Two 

alternative hypotheses can be drawn from the data: (1) the Mre11/Rad50 is not an 

integral component of the homologous recombination pathway in Halobacterium 

with Mre11 having a yet-to-be-determined role affecting recombination efficiency 

and growth rate, or (2) there is a redundant pathway for repair of DNA DSBs in 

Halobacterium with reduced processivity. 

 

Taken together, the data presented here provide a halophilic model for radiation 

resistance that shares some common elements with other radiation resistant organisms 

such as D. radiodurans while presenting alternative mechanisms specific for extreme 

halophiles. Halobacterium also provides a platform for studying the in vivo function 

of DNA repair proteins using genetic techniques not practically applicable in other 

archaea. The data derived from these studies can be extended to related systems in the 

Eukarya for which key proteins have yet to be identified. 

 

Future Work 

Ionizing radiation results in similar oxidative damages to cellular macromolecules 

including DNA and proteins as desiccation. Desiccation is an environmental stress 

common to the hypersaline environments inhabited by Halobacterium sp. str. NRC-1. 

Therefore, comparing the formation and repair of oxidative lesions in DNA bases and 

proteins as well as DNA double strand breaks (DSBs) by desiccation to damages 

induced by ionizing radiation is a logical extension of the work presented here. 

Examination of oxidative damages to other cellular macromolecules such as lipids 
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would further clarify the source of the cytotoxic effect of ionizing radiation. Cross-

analysis of the global stress response to desiccation to the response to ionizing 

radiation presented here would add to understanding the relationship between 

adaptations to desiccation and radiation resistance. In vivo examinations of other 

proteins in the homologous recombination repair pathway, including the RadA 

recombinase and archaeal-specific Hjr and Hjm proteins, should also be done to 

further understand the HR repair pathway in the Archaea as well as provide a model 

for understanding the pathway in more complex eukaryotic systems. Finally, the role 

of the intracellular milieu in protecting cellular components from stress damages 

should be examined, particularly in the case of organisms such as Halobacterium that 

alter their internal chemical composition to mirror their external environment. 
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 Appendices 

 

Appendix 1. Chapter 3 Supplementary Information 
 

Multiple mechanisms are triggered to minimize and repair γ radiation damage in 

Halobacterium NRC-1 

Below we discuss in more detail the specific aspects of the γ radiation response 

involved in repair or avoidance of damage including (A) restoration of genome 

integrity, (B) modulation of dehydrogenases, redoxins and cytochromes to minimize 

ROS reactions, (C) inhibition of cell division, and (D) coordination of a response 

regulatory circuit. 

 

A. DNA Repair: Glycosylase Activity and Homologous Recombination 

Oxidative damage to nucleotides (Slupphaug et al. 2003) can result in deleterious 

mutations during subsequent DNA replication. Damaged nucleotides are recognized 

and removed by glycosylases as part of the base excision repair (BER) pathway. 

Transcriptional upregulation of the DNA glycosylase Ogg was observed during the 

Halobacterium NRC-1 response to γ radiation as well as an increase in Gap 

expression. While Ogg is an A/G specific DNA glycosylases function in BER based 

on primary sequence matches (COG0122; PF00730), Gap, on the other hand, is 

believed to participate in many cellular processes and has been shown to have uracil 
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DNA glycosylase activity in eukaryotes (Meyer-Siegler et al. 1991; Wang et al. 1999) 

and may have a similar multifunctional role in haloarchaea.  

 

Archaeal proteins of the Homologous Recombination repair (HR) pathway are 

structurally and functionally similar those eukaryotes (Allers and Ngo 2003). The 

steps in HR repair include detection of the strand break and end processing, strand 

invasion and formation of heteroduplex DNA, branch migration and resolution of the 

Holliday junction. Similar to previous observations in bacteria (recBCD) (Liu et al. 

2003) and eukaryotes (mre11/rad50) (Gasch et al. 2001), the two putative subunits of 

the complex for DSB detection and processing in Halobacterium NRC-1, 

VNG0512G (mre11) and VNG0514C (rad50), were not differentially regulated after 

γ irradiation. Of the two RecA/Rad51 homologs in archaea, RadA (also called 

RadA1) and RadB (also called RadA2), only RadA can catalyze strand exchange 

(Komori et al. 2000a). In Halobacterium NRC-1 only RadA1 mRNA and protein 

levels increased during early γ response which parallels similar DNA damage-

responsive regulation of this gene in other organisms (Liu et al. 2003). Likewise, of 

the two putative branched structure-specific endonucleases (hjr, Holliday junction 

resolvase and hef, nuclease/helicase) only hjr was up regulated during the γ radiation 

response. 

 

B. Mechanisms to Minimize Oxidative Damage 

Electron transport systems are especially sensitive to increased ROS production 

(Imlay 2003). Downregulation of 8 dehydrogenases (e.g. adh2, adh3, sdh and mdh), 
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as was observed during halobacterial γ response and may reflect the depletion of 

intracellular reducing equivalents during severe oxidative stress (Golden and 

Ramdath 1987) and an attempt to minimize ROS production by further oxidation 

reactions (Imlay 2003). Increased protein abundances for superoxide dismutase Sod2 

might serve to scavenge the free radicals. 

 

C. Coordinated Expression between Cell Division and DNA Replication and 

Repair Genes 

Communication between DNA replication, repair and cell cycle progression is 

imperative to maintain genomic stability (Sancar et al. 2004). Minichromosome 

maintenance proteins (Mcm) play essential roles in replication, and in humans, Mcm 

proteins appear to be recruited to HR sites by hRad51/52 interactions to initiate 

replication for repair (Shukla et al. 2005). The functional similarity between archaeal 

Mcm/RadA1 and human Mcm/Rad51 (McGeoch et al. 2005; Seitz et al. 2001), and 

the upregulation of both components in Halobacterium NRC-1 after γ irradiation are 

suggestive of a similar repair relationship in archaea (McGeoch et al. 2005). 

Furthermore, an inverse relationship was observed between mRNA changes of Mcm 

and Cdc48c, a CdcH ortholog putatively involved in cell division (Figure 3-3, bottom 

panel). This relationship is also observed under several other stress conditions (Kaur 

et al. 2006; Baliga et al. 2004). This observation implies a pause in the cell division 

cycle as has been observed in other organisms (Sancar et al. 2004; Rieger and Chu 

2004; Bridges 1995) and is believed to ensure completion of DNA repair prior to cell 

division. 
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D. The γ Response Regulatory Network 

Transcriptional regulation in haloarchaea is an amalgam of eukaryotic basal 

machinery and bacterial transcription regulators (Geiduschek and Ouhammouch 

2005). The archaeal preinitiation complex consists of a homolog to eukaryotic RNA 

polymerase II enzyme (RNAP), TATA-binding proteins (TBPs) and Transcription 

Factor IIB homologs (TFBs) (Geiduschek and Ouhammouch 2005). Transcription is 

further modulated by regulatory proteins orthologous to bacterial regulators 

(Sivaraman et al. 2005) of which there are approximately 130. During the γ response 

at least 9 regulators were upregulated along with one TBP (tbpE) and two TFBs (tfbB 

and tfbF). Downregulation of 5 regulators was observed, two which were of unknown 

function and have been newly annotated (Supplemental Table 3 in (Whitehead et al. 

2006)). Besides the 5 regulators, one TFB, tfbG, was also repressed during early 

gamma response. 

 

We have used a protein-DNA interaction map for Halobacterium (Facciotti et al. 

2007) to create a rudimentary regulatory network for the γ response to better 

understand the interaction between TFBs and protein regulators. Binding sites for 

TfbB, TfbF, TfbD or TfbG were identified upstream of 45% of the 216 γ responsive 

genes (Supplemental Table 5 in (Whitehead et al. 2006)). The transcription factors 

bind promoters of over half of the regulators and protein kinases that were also 

differentially regulated during the γ response, several of which are also differentially 
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regulated in response other stressor (Baliga et al. 2004; Kaur et al. 2006), indicating a 

central role in regulating stress responses. 
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Appendix 2. Chapter 4 Supplementary Information 

 

 Attempted Mutations 

Targeted gene deletions were attempted for each gene in the hypothetical HR repair 

pathway in Halobacterium outlined in Table 4-1 using the modified gene deletion 

system described in the Methods and Materials section. Halobacterium cells contain 

multiple copies of the genome in each cell (Breuert et al. 2006). Combined with a 

deficiency of selective markers available for Archaeal systems, targeted gene 

deletions are more complex than in Bacterial model organisms. Single gene deletions 

of radA, radB, hjr, hjm, hef and flap were abandoned after attempts at full gene 

deletions resulted in strains containing a mix of wild-type and mutant chromosomes 

as revealed by PCR and/or Southern hybridization assays.  

 

Overexpression of Flap was then attempted based on evidence from yeast showing 

deletion of the flap homolog (FEN-1) results in a fairly γ-resistant strain whereas 

overexpression results in increased DSB formation after exposure to ionizing 

radiation (reviewed in Liu et al. 2004). Analysis of this mutant was abandoned after 

failures to produce a phenotype using MNNG, UV-C radiation, and gamma radiation. 

Dominant negative overexpression of RadA was attempted in lieu of radA deletion 

after repeated failures to produce the deletion mutant. A conserved lysine in the 

Walker A motif of radA was replaced with an alanine, glycine, or leucine residue and 

inserted into the pNBPA overexpression plasmid (gift of Dr Nitin Baliga) containing 
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a halophilic origin of replication. Each of the 3 variants of the dominant negative 

(radAnegK256A, radAnegK256G, radAnegK256L) mutation along with a plasmid 

containing a wild-type sequence of radA to be used as control during phenotypic 

analyses were transformed into wild type Halobacterium cells using the hmgA gene 

for mevinolin resistance as a selective marker for plasmid uptake. None of the 

dominant negative strains (radAnegK256A, radAnegK256G, radAnegK256L) 

showed differential survival after exposure to either 50μM or 100μM of MNNG 

compared to the background strain. radAnegK256G and radAnegK256L both showed 

decreased survival after exposure to UV-C radiation (200J/m2, dark recovery) which 

was unexpected as UV-C radiation produces pyrimidine dimers which are not 

repaired using a recombinase such as RadA. The survival of radAnegK256A after 

exposure to 2.5kGy of gamma radiation was slightly increased compared to the wild-

type strain, although no significant differences (P>0.05) in survival were observed 

after exposure to 5kGy of γ-radiation. Analysis of these mutants was discontinued in 

favor of the Δmre11, Δrad50, and Δmre11Δrad50 mutants. 

 

 

 116 
 



 

References Cited 
 

Aguirre,J., Rios-Momberg,M., Hewitt,D., and Hansberg,W. 2005. Reactive oxygen 
species and development in microbial eukaryotes. Trends Microbiol. 13: 111-118. 

Allers,T. and Ngo,H.P. 2003. Genetic analysis of homologous recombination in 
Archaea: Haloferax volcanii as a model organism. Biochem. Soc. Trans. 31: 706-710. 

Allers,T., Ngo,H.P., Mevarech,M., and Lloyd,R.G. 2004. Development of additional 
selectable markers for the halophilic archaeon Haloferax volcanii based on the leuB 
and trpA genes. Appl. Environ. Microbiol. 70: 943-953. 

Ariza,A., Richard,D.J., White,M.F., and Bond,C.S. 2005. Conformational flexibility 
revealed by the crystal structure of a crenarchaeal RadA. Nucleic Acids Res. 33: 
1465-1473. 

Asgarani,E., Funamizu,H., Saito,T., Terato,H., Ohya,Y., Yamamoto,O., and Ide,H. 
1999. Mechanisms of DNA protection in Halobacterium salinarium, an extremely 
halophilic bacterium. Microbial Research 154: 185-190. 

Assenmacher,N. and Hopfner,K.P. 2004. MRE11/RAD50/NBS1: complex activities. 
Chromosoma 113: 157-166. 

Aylon,Y. and Kupiec,M. 2004. DSB repair: the yeast paradigm. DNA Repair (Amst) 
3: 797-815. 

Baliga,N.S., Bjork,S.J., Bonneau,R., Pan,M., Iloanusi,C., Kottemann,M.C., Hood,L., 
and DiRuggiero,J. 2004. Systems level insights into the stress response to UV 
radiation in the halophilic archaeon Halobacterium NRC-1. Genome Res. 14: 1025-
1035. 

Baliga,N.S., Goo,Y.A., Ng,W.V., Hood,L., Daniels,C.J., and DasSarma,S. 2000. Is 
gene expression in Halobacterium NRC-1 regulated by multiple TBP and TFB 
transcription factors? Mol. Microbiol. 36: 1184-1185. 

Baliga,N.S., Pan,M., Goo,Y.A., Yi,E.C., Goodlett,D.R., Dimitrov,K., Shannon,P., 
Aebersold,R., Ng,W.V., and Hood,L. 2002. Coordinate regulation of energy 
transduction modules in Halobacterium sp. analyzed by a global systems approach. 
Proc. Natl. Acad. Sci. U. S. A 99: 14913-14918. 

Battista,J.R., Earl,A.M., and Park,M.J. 1999. Why is Deinococcus radiodurans so 
resistant to ionizing radiation? Trends Microbiol. 7: 362-365. 

Bennett,C.B., Lewis,L.K., Karthikeyan,G., Lobachev,K.S., Jin,Y.H., Sterling,J.F., 
Snipe,J.R., and Resnick,M.A. 2001. Genes required for ionizing radiation resistance 
in yeast. Nat. Genet. 29: 426-434. 

 117 
 



 

Bentchikou,E., Servant,P., Coste,G., and Sommer,S. 2007. Additive effects of SbcCD 
and PolX deficiencies in the in vivo repair of DNA double-strand breaks in 
Deinococcus radiodurans. J. Bacteriol. 189: 4784-4790. 

Biertumpfel,C., Basquin,J., Birkenbihl,R.P., Suck,D., and Sauter,C. 2005. 
Characterization of crystals of the Hjc resolvase from Archaeoglobus fulgidus grown 
in gel by counter-diffusion. Acta Crystallogr. Sect. F. Struct. Biol. Cryst. Commun. 
61: 684-687. 

Billi,D., Friedmann,E.I., Hofer,K.G., Caiola,M.G., and Ocampo-Friedmann,R. 2000. 
Ionizing-radiation resistance in the desiccation-tolerant cyanobacterium 
Chroococcidiopsis. Appl. Environ. Microbiol. 66: 1489-1492. 

Birrell,G.W., Brown,J.A., Wu,H.I., Giaever,G., Chu,A.M., Davis,R.W., and 
Brown,J.M. 2002. Transcriptional response of Saccharomyces cerevisiae to DNA-
damaging agents does not identify the genes that protect against these agents. Proc. 
Natl. Acad. Sci. U. S A 99: 8778-8783. 

Blaisdell,J.O., Harrison,L., and Wallace,S.S. 2001. Base excision repair processing of 
radiation-induced clustered DNA lesions. Radiat. Prot. Dosimetry. 97: 25-31. 

Blaisdell,J.O. and Wallace,S.S. 2001a. Abortive base-excision repair of radiation-
induced clustered DNA lesions in Escherichia coli. Proc. Natl. Acad. Sci. U. S. A 98: 
7426-7430. 

Blaisdell,J.O. and Wallace,S.S. 2001b. Abortive base-excision repair of radiation-
induced clustered DNA lesions in Escherichia coli. Proc. Natl. Acad. Sci. U. S. A 98: 
7426-7430. 

Bond,C.S., Kvaratskhelia,M., Richard,D., White,M.F., and Hunter,W.N. 2001. 
Structure of Hjc, a Holliday junction resolvase, from Sulfolobus solfataricus. Proc. 
Natl. Acad. Sci. U. S A 98: 5509-5514. 

Breuert,S., Allers,T., Spohn,G., and Soppa,J. 2006. Regulated polyploidy in 
halophilic archaea. PLoS. ONE. 1: e92. 

Bridges,B.A. 1995. Are there DNA damage checkpoints in E. coli? Bioessays 17: 63-
70. 

Bugreev,D.V., Mazina,O.M., and Mazin,A.V. 2006. Rad54 protein promotes branch 
migration of Holliday junctions. Nature 442: 590-593. 

Cadet,J., Delatour,T., Douki,T., Gasparutto,D., Pouget,J.P., Ravanat,J.L., and 
Sauvaigo,S. 1999. Hydroxyl radicals and DNA base damage. Mutat. Res. 424: 9-21. 

Cadet,J., Douki,T., Frelon,S., Sauvaigo,S., Pouget,J.P., and Ravanat,J.L. 2002. 
Assessment of oxidative base damage to isolated and cellular DNA by HPLC-MS/MS 
measurement. Free Radic. Biol. Med. 33: 441-449. 

 118 
 



 

Cadet,J., Sage,E., and Douki,T. 2005. Ultraviolet radiation-mediated damage to 
cellular DNA. Mutat. Res. 571: 3-17. 

Cannio,R., Fiorentino,G., Morana,A., Rossi,M., and Bartolucci,S. 2000. Oxygen: 
friend or foe? Archaeal superoxide dismutases in the protection of intra- and 
extracellular oxidative stress. Front Biosci. 5: D768-D779. 

Carbonneau,M.A., Melin,A.M., Perromat,A., and Clerc,M. 1989. The action of free 
radicals on Deinococcus radiodurans carotenoids. Arch. Biochem. Biophys. 275: 244-
251. 

Choe,L.H., Aggarwal,K., Franck,Z., and Lee,K.H. 2005. A comparison of the 
consistency of proteome quantitation using two-dimensional electrophoresis and 
shotgun isobaric tagging in Escherichia coli cells. Electrophoresis 26: 2437-2449. 

Cline,S.W., Pfeifer,F., and Doolittle,W.F. 1995. Transformation of Halophilic 
Archaea. In Archaea: A Laboratory Manual. Edited by F.Robb, A.Place, K.Sowers, 
H.Schreier, S.DasSarma, and E.Fleischmann. Cold Spring Harbor Laboratory Press, 
Cold Spring Harbor, NY. pp. 197-204. 

Cockell,C.S., Catling,D.C., Davis,W.L., Snook,K., Kepner,R.L., Lee,P., and 
McKay,C.P. 2000. The ultraviolet environment of Mars: biological implications past, 
present, and future. Icarus 146: 343-359. 

Cockell,C.S. and Knowland,J. 1999. Ultraviolet radiation screening compounds. Biol. 
Rev. Camb. Philos. Soc. 74: 311-345. 

Connelly,J.C., Kirkham,L.A., and Leach,D.R. 1998. The SbcCD nuclease of 
Escherichia coli is a structural maintenance of chromosomes (SMC) family protein 
that cleaves hairpin DNA. Proc. Natl. Acad. Sci. U. S A 95: 7969-7974. 

Constantinesco,F., Forterre,P., and Elie,C. 2002. NurA, a novel 5'-3' nuclease gene 
linked to rad50 and mre11 homologs of thermophilic Archaea. EMBO Rep. 3: 537-
542. 

Constantinesco,F., Forterre,P., Koonin,E.V., Aravind,L., and Elie,C. 2004. A bipolar 
DNA helicase gene, herA, clusters with rad50, mre11 and nurA genes in thermophilic 
archaea. Nucleic Acids Res. 32: 1439-1447. 

Cox,M.M. and Battista,J.R. 2005. Deinococcus radiodurans - the consummate 
survivor. Nat. Rev. Microbiol. 3: 882-892. 

Da Costa,M.S., Santos,H., and Galinski,E.A. 1998. An overview of the role and 
diversity of compatible solutes in Bacteria and Archaea. Adv. Biochem. Eng 
Biotechnol. 61: 117-153. 

 119 
 



 

Daiyasu,H., Komori,K., Sakae,S., Ishino,Y., and Toh,H. 2000. Hjc resolvase is a 
distantly related member of the type II restriction endonuclease family. Nucleic Acids 
Res. 28: 4540-4543. 

Daly,M.J. 2006. Modulating radiation resistance: Insights based on defenses against 
reactive oxygen species in the radioresistant bacterium Deinococcus radiodurans. 
Clin. Lab Med. 26: 491-504, x. 

Daly,M.J., Gaidamakova,E.K., Matrosova,V.Y., Vasilenko,A., Zhai,M., 
Leapman,R.D., Lai,B., Ravel,B., Li,S.M., Kemner,K.M., and Fredrickson,J.K. 2007. 
Protein oxidation implicated as the primary determinant of bacterial radioresistance. 
PLoS. Biol. 5: e92. 

Daly,M.J., Gaidamakova,E.K., Matrosova,V.Y., Vasilenko,A., Zhai,M., 
Venkateswaran,A., Hess,M., Omelchenko,M.V., Kostandarithes,H.M., 
Makarova,K.S., Wackett,L.P., Fredrickson,J.K., and Ghosal,D. 2004. Accumulation 
of Mn(II) in Deinococcus radiodurans facilitates gamma-radiation resistance. Science 
306: 1025-1028. 

Daly,M.J. and Minton,K.W. 1995. Resistance to radiation. Science 270: 1318. 

Daly,M.J. and Minton,K.W. 1996. An alternative pathway of recombination of 
chromosomal fragments precedes recA-dependent recombination in the radioresistant 
bacterium Deinococcus radiodurans. J. Bacteriol. 178: 4461-4471. 

Daly,M.J., Ouyang,L., Fuchs,P., and Minton,K.W. 1994. In vivo damage and recA-
dependent repair of plasmid and chromosomal DNA in the radiation-resistant 
bacterium Deinococcus radiodurans. J. Bacteriol. 176: 3508-3517. 

DasSarma,S. and Fleischmann,E. 1995. Halophilic Archaea: An Overview. In 
Archaea: A Laboratory Manual. Edited by F.Robb, A.Place, K.Sowers, H.Schreier, 
S.DasSarma, and E.Fleischmann. Cold Spring Harbor Laboratory Press, Cold Spring 
Harbor, NY. pp. 3-11. 

DasSarma,S., Kennedy,S.P., Berquist,B., Victor,N.W., Baliga,N.S., Spudich,J.L., 
Krebs,M.P., Eisen,J.A., Johnson,C.H., and Hood,L. 2001. Genomic perspective on 
the photobiology of Halobacterium species NRC-1, a phototrophic, phototactic, and 
UV-tolerant haloarchaeon. Photosynth. Res. 70: 3-17. 

Dianov,G.L., O'Neill,P., and Goodhead,D.T. 2001. Securing genome stability by 
orchestrating DNA repair: removal of radiation-induced clustered lesions in DNA. 
Bioessays 23: 745-749. 

DiRuggiero,J., Brown,J.R., Bogert,A.P., and Robb,F.T. 1999. DNA repair systems in 
archaea: mementos from the last universal common ancestor? J. Mol. Evol. 49: 474-
484. 

 120 
 



 

DiRuggiero,J., Santangelo,N., Nackerdien,Z., Ravel,J., and Robb,F.T. 1997. Repair of 
extensive ionizing-radiation DNA damage at 95 degrees C in the hyperthermophilic 
archaeon Pyrococcus furiosus. J. Bacteriol. 179: 4643-4645. 

Dizdaroglu,M. 2003. Substrate specificities and excision kinetics of DNA 
glycosylases involved in base-excision repair of oxidative DNA damage. Mutat. Res. 
531: 109-126. 

Dizdaroglu,M., Jaruga,P., Birincioglu,M., and Rodriguez,H. 2002. Free radical-
induced damage to DNA: mechanisms and measurement. Free Radic. Biol. Med. 32: 
1102-1115. 

Dorfman, L. M and Adams, G. E. Reactivity of the Hydroxyl Radical in Aqueous 
Solutions. NSRDS-NBS 46. 1973.  National Standard Reference Data System.  
 

Dudas,A. and Chovanec,M. 2004. DNA double-strand break repair by homologous 
recombination. Mutat. Res. 566: 131-167. 

Dudasova,Z., Dudas,A., and Chovanec,M. 2004. Non-homologous end-joining 
factors of Saccharomyces cerevisiae. FEMS Microbiol. Rev. 28: 581-601. 

Engel,M.B. and Catchpole,H.R. 2005. A microprobe analysis of inorganic elements 
in Halobacterium salinarum. Cell Biol. Int. 29: 616-622. 

Facciotti,M.T., Reiss,D.J., Pan,M., Kaur,A., Vuthoori,M., Bonneau,R., Shannon,P., 
Srivastava,A., Donohoe,S.M., Hood,L.E., and Baliga,N.S. 2007. General transcription 
factor specified global gene regulation in archaea. Proc. Natl. Acad. Sci. U. S A 104: 
4630-4635. 

Frelon,S., Douki,T., Ravanat,J.L., Pouget,J.P., Tornabene,C., and Cadet,J. 2000. 
High-performance liquid chromatography--tandem mass spectrometry measurement 
of radiation-induced base damage to isolated and cellular DNA. Chem. Res. Toxicol. 
13: 1002-1010. 

Fujikane,R., Shinagawa,H., and Ishino,Y. 2006. The archaeal Hjm helicase has recQ-
like functions, and may be involved in repair of stalled replication fork. Genes Cells 
11: 99-110. 

Gasch,A.P., Huang,M., Metzner,S., Botstein,D., Elledge,S.J., and Brown,P.O. 2001. 
Genomic expression responses to DNA-damaging agents and the regulatory role of 
the yeast ATR homolog Mec1p. Mol. Biol. Cell 12: 2987-3003. 

Geiduschek,E.P. and Ouhammouch,M. 2005. Archaeal transcription and its 
regulators. Mol. Microbiol. 56: 1397-1407. 

Ghosal,D., Omelchenko,M.V., Gaidamakova,E.K., Matrosova,V.Y., Vasilenko,A., 
Venkateswaran,A., Zhai,M., Kostandarithes,H.M., Brim,H., Makarova,K.S., 

 121 
 



 

Wackett,L.P., Fredrickson,J.K., and Daly,M.J. 2005. How radiation kills cells: 
survival of Deinococcus radiodurans and Shewanella oneidensis under oxidative 
stress. FEMS Microbiol. Rev. 29: 361-375. 

Giese,B. 2002. Electron transfer in DNA. Current Opinion in Chemical Biology 6: 
612-618. 

Golden,M.H. and Ramdath,D. 1987. Free radicals in the pathogenesis of kwashiorkor. 
Proc. Nutr. Soc. 46: 53-68. 

Goo,Y.A., Yi,E.C., Baliga,N.S., Tao,W.A., Pan,M., Aebersold,R., Goodlett,D.R., 
Hood,L., and Ng,W.V. 2003. Proteomic Analysis of an Extreme Halophilic 
Archaeon, Halobacterium sp. NRC-1. Mol. Cell Proteomics. 2: 506-524. 

Gruber,C., Legat,A., Pfaffenhuemer,M., Radax,C., Weidler,G., Busse,H.J., and Stan-
Lotter,H. 2004. Halobacterium noricense sp. nov., an archaeal isolate from a bore 
core of an alpine Permian salt deposit, classification of Halobacterium sp. NRC-1 as a 
strain of H. salinarum and emended description of H. salinarum. Extremophiles. 8: 
431-439. 

Gygi,S.P., Rochon,Y., Franza,B.R., and Aebersold,R. 1999. Correlation between 
protein and mRNA abundance in yeast. Mol. Cell Biol. 19: 1720-1730. 

Hackett,N.R. and DasSarma,S. 1989. Characterization of the small endogenous 
plasmid of Halobacterium strain SB3 and its use in transformation of H. halobium. 
Can. J. Microbiol. 35: 86-91. 

Hansen,M.T. 1978. Multiplicity of genome equivalents in the radiation-resistant 
bacterium Micrococcus radiodurans. J. Bacteriol. 134: 71-75. 

Harris,D.R., Tanaka,M., Saveliev,S.V., Jolivet,E., Earl,A.M., Cox,M.M., and 
Battista,J.R. 2004. Preserving genome integrity: the DdrA protein of Deinococcus 
radiodurans R1. PLoS. Biol. 2: e304. 

Helbock,H.J., Beckman,K.B., Shigenaga,M.K., Walter,P.B., Woodall,A.A., 
Yeo,H.C., and Ames,B.N. 1998. DNA oxidation matters: the HPLC-electrochemical 
detection assay of 8-oxo-deoxyguanosine and 8-oxo-guanine. Proc. Natl. Acad. Sci. 
U. S A 95: 288-293. 

Heyer,W.D., Ehmsen,K.T., and Solinger,J.A. 2003. Holliday junctions in the 
eukaryotic nucleus: resolution in sight? Trends Biochem. Sci. 28: 548-557. 

Hopfner,K.P., Craig,L., Moncalian,G., Zinkel,R.A., Usui,T., Owen,B.A., Karcher,A., 
Henderson,B., Bodmer,J.L., McMurray,C.T., Carney,J.P., Petrini,J.H., and 
Tainer,J.A. 2002. The Rad50 zinc-hook is a structure joining Mre11 complexes in 
DNA recombination and repair. Nature 418: 562-566. 

 122 
 



 

Hopfner,K.P., Karcher,A., Craig,L., Woo,T.T., Carney,J.P., and Tainer,J.A. 2001. 
Structural biochemistry and interaction architecture of the DNA double-strand break 
repair Mre11 nuclease and Rad50-ATPase. Cell 105: 473-485. 

Hopfner,K.P., Karcher,A., Shin,D., Fairley,C., Tainer,J.A., and Carney,J.P. 2000a. 
Mre11 and Rad50 from Pyrococcus furiosus: cloning and biochemical 
characterization reveal an evolutionarily conserved multiprotein machine. J. 
Bacteriol. 182: 6036-6041. 

Hopfner,K.P., Karcher,A., Shin,D.S., Craig,L., Arthur,L.M., Carney,J.P., and 
Tainer,J.A. 2000b. Structural biology of Rad50 ATPase: ATP-driven conformational 
control in DNA double-strand break repair and the ABC-ATPase superfamily. Cell 
101: 789-800. 

Hutchinson,F. 1985. Chemical changes induced in DNA by ionizing radiation. Prog. 
Nucleic Acid Res. Mol. Biol. 32: 115-154. 

Ideker,T., Thorsson,V., Ranish,J.A., Christmas,R., Buhler,J., Eng,J.K., Bumgarner,R., 
Goodlett,D.R., Aebersold,R., and Hood,L. 2001. Integrated genomic and proteomic 
analyses of a systematically perturbed metabolic network. Science 292: 929-934. 

Ideker,T., Thorsson,V., Siegel,A.F., and Hood,L.E. 2000. Testing for differentially-
expressed genes by maximum-likelihood analysis of microarray data. J. Comput. 
Biol. 7: 805-817. 

Imlay,J.A. 2003. Pathways of oxidative damage. Annu. Rev. Microbiol. 57: 395-418. 

Imlay,J.A. and Linn,S. 1988. DNA damage and oxygen radical toxicity. Science 240: 
1302-1309. 

Kaur,A., Pan,M., Meislin,M., Facciotti,M.T., El Gewely,R., and Baliga,N.S. 2006. A 
systems view of haloarchaeal strategies to withstand stress from transition metals. 
Genome Res. 16: 841-854. 

Keller,A., Nesvizhskii,A.I., Kolker,E., and Aebersold,R. 2002. Empirical statistical 
model to estimate the accuracy of peptide identifications made by MS/MS and 
database search. Anal. Chem. 74: 5383-5392. 

Keyer,K., Gort,A.S., and Imlay,J.A. 1995. Superoxide and the production of 
oxidative DNA damage. J. Bacteriol. 177: 6782-6790. 

Kish,A. and DiRuggiero,J. 2007. The Role of Mre11 and Rad50 in the repair of DNA 
Double Strand Break Repair in the halophilic archaeon, Halobacterium sp. str. NRC-
1. in prep. 

Kolbe,M., Besir,H., Essen,L.O., and Oesterhelt,D. 2000. Structure of the light-driven 
chloride pump halorhodopsin at 1.8 A resolution. Science 288: 1390-1396. 

 123 
 



 

Komori,K., Fujikane,R., Shinagawa,H., and Ishino,Y. 2002. Novel endonuclease in 
Archaea cleaving DNA with various branched structure. Genes Genet. Syst. 77: 227-
241. 

Komori,K., Hidaka,M., Horiuchi,T., Fujikane,R., Shinagawa,H., and Ishino,Y. 2004. 
Cooperation of the N-terminal Helicase and C-terminal endonuclease activities of 
Archaeal Hef protein in processing stalled replication forks. J. Biol. Chem. 279: 
53175-53185. 

Komori,K., Miyata,T., DiRuggiero,J., Holley-Shanks,R., Hayashi,I., Cann,I.K., 
Mayanagi,K., Shinagawa,H., and Ishino,Y. 2000a. Both RadA and RadB are involved 
in homologous recombination in Pyrococcus furiosus. J. Biol. Chem. 275: 33782-
33790. 

Komori,K., Sakae,S., Daiyasu,H., Toh,H., Morikawa,K., Shinagawa,H., and Ishino,Y. 
2000b. Mutational analysis of the Pyrococcus furiosus holliday junction resolvase hjc 
revealed functionally important residues for dimer formation, junction DNA binding, 
and cleavage activities. J. Biol. Chem. 275: 40385-40391. 

Komori,K., Sakae,S., Fujikane,R., Morikawa,K., Shinagawa,H., and Ishino,Y. 2000c. 
Biochemical characterization of the hjc holliday junction resolvase of Pyrococcus 
furiosus. Nucleic Acids Res. 28: 4544-4551. 

Komori,K., Sakae,S., Shinagawa,H., Morikawa,K., and Ishino,Y. 1999. A Holliday 
junction resolvase from Pyrococcus furiosus: functional similarity to Escherichia coli 
RuvC provides evidence for conserved mechanism of homologous recombination in 
Bacteria, Eukarya, and Archaea. Proc. Natl. Acad. Sci. U. S. A 96: 8873-8878. 

Kottemann,M., Kish,A., Iloanusi,C., Bjork,S., and DiRuggiero,J. 2005. Physiological 
responses of the halophilic archaeon Halobacterium sp. strain NRC1 to desiccation 
and gamma irradiation. Extremophiles. 

Kowalczykowski,S.C., Dixon,D.A., Eggleston,A.K., Lauder,S.D., and 
Rehrauer,W.M. 1994. Biochemistry of homologous recombination in Escherichia 
coli. Microbiol. Rev. 58: 401-465. 

Krogh,B.O. and Symington,L.S. 2004. Recombination proteins in yeast. Annu. Rev. 
Genet. 38: 233-271. 

Landis,G.A. 2001. Martian water: are there extant halobacteria on Mars? 
Astrobiology. 1: 161-164. 

Lewis,L.K., Karthikeyan,G., Westmoreland,J.W., and Resnick,M.A. 2002. 
Differential suppression of DNA repair deficiencies of Yeast rad50, mre11 and xrs2 
mutants by EXO1 and TLC1 (the RNA component of telomerase). Genetics 160: 49-
62. 

 124 
 



 

Liu,Y., Kao,H.I., and Bambara,R.A. 2004. Flap endonuclease 1: a central component 
of DNA metabolism. Annu. Rev. Biochem. 73: 589-615. 

Liu,Y., Zhou,J., Omelchenko,M.V., Beliaev,A.S., Venkateswaran,A., Stair,J., Wu,L., 
Thompson,D.K., Xu,D., Rogozin,I.B., Gaidamakova,E.K., Zhai,M., Makarova,K.S., 
Koonin,E.V., and Daly,M.J. 2003. Transcriptome dynamics of Deinococcus 
radiodurans recovering from ionizing radiation. Proc. Natl. Acad. Sci. U. S A 100: 
4191-4196. 

M.T.,M.J.M.a.P.J. 2000. Brock Biology of Microorganisms. 

Ma,J.F., Ochsner,U.A., Klotz,M.G., Nanayakkara,V.K., Howell,M.L., Johnson,Z., 
Posey,J.E., Vasil,M.L., Monaco,J.J., and Hassett,D.J. 1999. Bacterioferritin A 
modulates catalase A (KatA) activity and resistance to hydrogen peroxide in 
Pseudomonas aeruginosa. J. Bacteriol. 181: 3730-3742. 

Makarova,K.S., Aravind,L., Wolf,Y.I., Tatusov,R.L., Minton,K.W., Koonin,E.V., and 
Daly,M.J. 2001. Genome of the extremely radiation-resistant bacterium Deinococcus 
radiodurans viewed from the perspective of comparative genomics. Microbiol. Mol. 
Biol. Rev. 65: 44-79. 

Manzan,A., Pfeiffer,G., Hefferin,M.L., Lang,C.E., Carney,J.P., and Hopfner,K.P. 
2004. MlaA, a hexameric ATPase linked to the Mre11 complex in archaeal genomes. 
EMBO Rep. 5: 54-59. 

Marguet,E. and Forterre,P. 1994. DNA stability at temperatures typical for 
hyperthermophiles. Nucleic Acids Res. 22: 1681-1686. 

Marguet,E. and Forterre,P. 1998. Protection of DNA by salts against 
thermodegradation at temperatures typical for hyperthermophiles. Extremophiles. 2: 
115-122. 

Mascarenhas,J., Sanchez,H., Tadesse,S., Kidane,D., Krisnamurthy,M., Alonso,J.C., 
and Graumann,P.L. 2006. Bacillus subtilis SbcC protein plays an important role in 
DNA inter-strand cross-link repair. BMC. Mol. Biol. 7: 20. 

Masters,C.I., Miles,C.A., and Mackey,B.M. 1998. Survival and biological activity of 
heat damaged DNA. Lett. Appl. Microbiol. 27: 279-282. 

Mattimore,V. and Battista,J.R. 1996. Radioresistance of Deinococcus radiodurans: 
functions necessary to survive ionizing radiation are also necessary to survive 
prolonged desiccation. J. Bacteriol. 178: 633-637. 

McGenity,T.J., Gemmell,R.T., Grant,W.D., and Stan-Lotter,H. 2000. Origins of 
halophilic microorganisms in ancient salt deposits. Environ. Microbiol. 2: 243-250. 

 125 
 



 

McGeoch,A.T., Trakselis,M.A., Laskey,R.A., and Bell,S.D. 2005. Organization of the 
archaeal MCM complex on DNA and implications for the helicase mechanism. Nat. 
Struct. Mol. Biol. 12: 756-762. 

McKay,C.P. 1997. The search for life on Mars. Orig. Life Evol. Biosph. 27: 263-289. 

Meyer-Siegler,K., Mauro,D.J., Seal,G., Wurzer,J., deRiel,J.K., and Sirover,M.A. 
1991. A human nuclear uracil DNA glycosylase is the 37-kDa subunit of 
glyceraldehyde-3-phosphate dehydrogenase. Proc. Natl. Acad. Sci. U. S A 88: 8460-
8464. 

Michel,B. 2000. Replication fork arrest and DNA recombination. Trends Biochem. 
Sci. 25: 173-178. 

Middleton,C.L., Parker,J.L., Richard,D.J., White,M.F., and Bond,C.S. 2003. 
Crystallization and preliminary X-ray diffraction studies of Hje, a HolliDay junction 
resolving enzyme from Sulfolobus solfataricus. Acta Crystallogr. D. Biol. 
Crystallogr. 59: 171-173. 

Minton,K.W. and Daly,M.J. 1995. A model for repair of radiation-induced DNA 
double-strand breaks in the extreme radiophile Deinococcus radiodurans. Bioessays 
17: 457-464. 

Moreau,S., Morgan,E.A., and Symington,L.S. 2001. Overlapping functions of the 
Saccharomyces cerevisiae Mre11, Exo1 and Rad27 nucleases in DNA metabolism. 
Genetics 159: 1423-1433. 

Nesvizhskii,A.I., Keller,A., Kolker,E., and Aebersold,R. 2003. A statistical model for 
identifying proteins by tandem mass spectrometry. Anal. Chem. 75: 4646-4658. 

Ng,W.V., Kennedy,S.P., Mahairas,G.G., Berquist,B., Pan,M., Shukla,H.D., 
Lasky,S.R., Baliga,N.S., Thorsson,V., Sbrogna,J., Swartzell,S., Weir,D., Hall,J., 
Dahl,T.A., Welti,R., Goo,Y.A., Leithauser,B., Keller,K., Cruz,R., Danson,M.J., 
Hough,D.W., Maddocks,D.G., Jablonski,P.E., Krebs,M.P., Angevine,C.M., Dale,H., 
Isenbarger,T.A., Peck,R.F., Pohlschroder,M., Spudich,J.L., Jung,K.W., Alam,M., 
Freitas,T., Hou,S., Daniels,C.J., Dennis,P.P., Omer,A.D., Ebhardt,H., Lowe,T.M., 
Liang,P., Riley,M., Hood,L., and DasSarma,S. 2000. Genome sequence of 
Halobacterium species NRC-1. Proc. Natl. Acad. Sci. U. S. A 97: 12176-12181. 

Nickle,D.C., Learn,G.H., Rain,M.W., Mullins,J.I., and Mittler,J.E. 2002. Curiously 
modern DNA for a "250 million-year-old" bacterium. J. Mol. Evol. 54: 134-137. 

Nishino,T., Komori,K., Tsuchiya,D., Ishino,Y., and Morikawa,K. 2001. Crystal 
structure of the archaeal holliday junction resolvase Hjc and implications for DNA 
recognition. Structure. (Camb. ) 9: 197-204. 

 126 
 



 

Nishino,T., Komori,K., Tsuchiya,D., Ishino,Y., and Morikawa,K. 2005. Crystal 
structure and functional implications of Pyrococcus furiosus hef helicase domain 
involved in branched DNA processing. Structure. (Camb. ) 13: 143-153. 

Paques,F. and Haber,J.E. 1997. Two pathways for removal of nonhomologous DNA 
ends during double-strand break repair in Saccharomyces cerevisiae. Mol. Cell Biol. 
17: 6765-6771. 

Paques,F. and Haber,J.E. 1999. Multiple pathways of recombination induced by 
double-strand breaks in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 63: 
349-404. 

Park,S. and Imlay,J.A. 2003. High levels of intracellular cysteine promote oxidative 
DNA damage by driving the fenton reaction. J. Bacteriol. 185: 1942-1950. 

Patel,M.R., Berces,A., Kerekgyarto,T., Ronto,G., Lammer,H., and Zarnecki,J.C. 
2004. Annual solar UV exposure and biological effective dose rates on the Martian 
surface. Adv. Space Res. 33: 1247-1252. 

Peck,R.F., DasSarma,S., and Krebs,M.P. 2000. Homologous gene knockout in the 
archaeon Halobacterium salinarum with ura3 as a counterselectable marker. Mol. 
Microbiol. 35: 667-676. 

Pedrioli,P.G., Eng,J.K., Hubley,R., Vogelzang,M., Deutsch,E.W., Raught,B., Pratt,B., 
Nilsson,E., Angeletti,R.H., Apweiler,R., Cheung,K., Costello,C.E., Hermjakob,H., 
Huang,S., Julian,R.K., Kapp,E., McComb,M.E., Oliver,S.G., Omenn,G., Paton,N.W., 
Simpson,R., Smith,R., Taylor,C.F., Zhu,W., and Aebersold,R. 2004. A common open 
representation of mass spectrometry data and its application to proteomics research. 
Nat. Biotechnol. 22: 1459-1466. 

Posey,J.E. and Gherardini,F.C. 2000. Lack of a role for iron in the Lyme disease 
pathogen. Science 288: 1651-1653. 

Pouget,J.P., Frelon,S., Ravanat,J.L., Testard,I., Odin,F., and Cadet,J. 2002. Formation 
of modified DNA bases in cells exposed either to gamma radiation or to high-LET 
particles. Radiat. Res. 157: 589-595. 

Regulus,P., Duroux,B., Bayle,P.A., Favier,A., Cadet,J., and Ravanat,J.L. 2007. 
Oxidation of the sugar moiety of DNA by ionizing radiation or bleomycin could 
induce the formation of a cluster DNA lesion. Proc. Natl. Acad. Sci. U. S A 104: 
14032-14037. 

Reuter,C.J. and Maupin-Furlow,J.A. 2004. Analysis of proteasome-dependent 
proteolysis in Haloferax volcanii cells, using short-lived green fluorescent proteins. 
Appl. Environ. Microbiol. 70: 7530-7538. 

Rieder,R., Gellert,R., Anderson,R.C., Bruckner,J., Clark,B.C., Dreibus,G., 
Economou,T., Klingelhofer,G., Lugmair,G.W., Ming,D.W., Squyres,S.W., 

 127 
 



 

d'Uston,C., Wanke,H., Yen,A., and Zipfel,J. 2004. Chemistry of rocks and soils at 
Meridiani Planum from the Alpha Particle X-ray Spectrometer. Science 306: 1746-
1749. 

Rieger,K.E. and Chu,G. 2004. Portrait of transcriptional responses to ultraviolet and 
ionizing radiation in human cells. Nucleic Acids Res. 32: 4786-4803. 

Riley,P.A. 1994. Free radicals in biology: oxidative stress and the effects of ionizing 
radiation. Int. J. Radiat. Biol. 65: 27-33. 

Roberts,J.A. and White,M.F. 2005. An archaeal endonuclease displays key properties 
of both eukaryal XPF-ERCC1 and Mus81. J. Biol. Chem. 280: 5924-5928. 

Robertson,C.E., Harris,J.K., Spear,J.R., and Pace,N.R. 2005. Phylogenetic diversity 
and ecology of environmental Archaea. Curr. Opin. Microbiol. 8: 638-642. 

Saeed,A.I., Sharov,V., White,J., Li,J., Liang,W., Bhagabati,N., Braisted,J., Klapa,M., 
Currier,T., Thiagarajan,M., Sturn,A., Snuffin,M., Rezantsev,A., Popov,D., 
Ryltsov,A., Kostukovich,E., Borisovsky,I., Liu,Z., Vinsavich,A., Trush,V., and 
Quackenbush,J. 2003. TM4: a free, open-source system for microarray data 
management and analysis. Biotechniques 34: 374-378. 

Saito,T., Miyabe,R., Ide,H., and Yamamoto,O. 1997. Hydroxyl radical scavenging 
ability of bacterioruberin. Radiation physics and chemistry 50: 267-269. 

Sambrook,J., Fritsch,E.F., and Maniatis,T. 1989. Molecular Cloning: A Laboratory 
Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. 

Sancar,A., Lindsey-Boltz,L.A., Unsal-Kacmaz,K., and Linn,S. 2004. Molecular 
mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu. 
Rev. Biochem. 73: 39-85. 

Sato,T., Fukui,T., Atomi,H., and Imanaka,T. 2003. Targeted gene disruption by 
homologous recombination in the hyperthermophilic archaeon Thermococcus 
kodakaraensis KOD1. J. Bacteriol. 185: 210-220. 

Sato,T., Fukui,T., Atomi,H., and Imanaka,T. 2005. Improved and versatile 
transformation system allowing multiple genetic manipulations of the 
hyperthermophilic archaeon Thermococcus kodakaraensis. Appl. Environ. Microbiol. 
71: 3889-3899. 

Seitz,E.M., Haseltine,C.A., and Kowalczykowski,S.C. 2001. DNA recombination and 
repair in the archaea. Adv. Appl. Microbiol. 50: 101-169. 

Seitz,E.M. and Kowalczykowski,S.C. 2000. The DNA binding and pairing 
preferences of the archaeal RadA protein demonstrate a universal characteristic of 
DNA strand exchange proteins. Mol. Microbiol. 37: 555-560. 

 128 
 



 

Shahmohammadi,H.R., Asgarani,E., Terato,H., Saito,T., Ohyama,Y., Gekko,K., 
Yamamoto,O., and Ide,H. 1998. Protective roles of bacterioruberin and intracellular 
KCl in the resistance of Halobacterium salinarium against DNA-damaging agents. J. 
Radiat. Res. (Tokyo) 39: 251-262. 

Shannon,P., Markiel,A., Ozier,O., Baliga,N.S., Wang,J.T., Ramage,D., Amin,N., 
Schwikowski,B., and Ideker,T. 2003. Cytoscape: a software environment for 
integrated models of biomolecular interaction networks. Genome Res. 13: 2498-2504. 

Shannon,P.T., Reiss,D.J., Bonneau,R., and Baliga,N.S. 2006. The Gaggle: an open-
source software system for integrating bioinformatics software and data sources. 
BMC. Bioinformatics. 7: 176. 

Shor,E., Gangloff,S., Wagner,M., Weinstein,J., Price,G., and Rothstein,R. 2002. 
Mutations in homologous recombination genes rescue top3 slow growth in 
Saccharomyces cerevisiae. Genetics 162: 647-662. 

Shukla,A., Navadgi,V.M., Mallikarjuna,K., and Rao,B.J. 2005. Interaction of hRad51 
and hRad52 with MCM complex: a cross-talk between recombination and replication 
proteins. Biochem. Biophys. Res. Commun. 329: 1240-1245. 

Sivaraman,K., Seshasayee,A.S., Swaminathan,K., Muthukumaran,G., and 
Pennathur,G. 2005. Promoter addresses: revelations from oligonucleotide profiling 
applied to the Escherichia coli genome. Theor. Biol. Med. Model. 2: 20. 

Slupphaug,G., Kavli,B., and Krokan,H.E. 2003. The interacting pathways for 
prevention and repair of oxidative DNA damage. Mutat. Res. 531: 231-251. 

Sonnenfeld,P. 1984. Brines and Evaporites. Academic Press, Inc., Orlando, FL. 

Sonoda,E., Hochegger,H., Saberi,A., Taniguchi,Y., and Takeda,S. 2006. Differential 
usage of non-homologous end-joining and homologous recombination in double 
strand break repair. DNA Repair (Amst) 5: 1021-1029. 

Steenken,S. and Jovanovic,S.V. 1997. How Easily Oxidizable Is DNA? One-Electron 
Reduction Potentials of Adenosine and Guanosine Radicals in Aqueous Solution. J. 
Am. Chem. Soc. 119: 617-618. 

Steiner,M., Oesterhelt,D., Ariki,M., and Lanyi,J.K. 1984. Halide binding by the 
purified halorhodopsin chromoprotein. I. Effects on the chromophore. J. Biol. Chem. 
259: 2179-2184. 

Swanson,R.L., Morey,N.J., Doetsch,P.W., and Jinks-Robertson,S. 1999. Overlapping 
specificities of base excision repair, nucleotide excision repair, recombination, and 
translesion synthesis pathways for DNA base damage in Saccharomyces cerevisiae. 
Mol. Cell Biol. 19: 2929-2935. 

 129 
 



 

Symington,L.S. 2002. Role of RAD52 epistasis group genes in homologous 
recombination and double-strand break repair. Microbiol. Mol. Biol. Rev. 66: 630-70, 
table. 

Tilly,N., Brahme,A., Carlsson,J., and Glimelius,B. 1999. Comparison of cell survival 
models for mixed LET radiation. Int. J. Radiat. Biol. 75: 233-243. 

Valko,M., Morris,H., and Cronin,M.T. 2005. Metals, toxicity and oxidative stress. 
Curr. Med. Chem. 12: 1161-1208. 

van den Bosch,M., Bree,R.T., and Lowndes,N.F. 2003. The MRN complex: 
coordinating and mediating the response to broken chromosomes. EMBO Rep. 4: 
844-849. 

van den,B.M., Bree,R.T., and Lowndes,N.F. 2003. The MRN complex: coordinating 
and mediating the response to broken chromosomes. EMBO Rep. 4: 844-849. 

van Gent,D.C., Hoeijmakers,J.H., and Kanaar,R. 2001. Chromosomal stability and 
the DNA double-stranded break connection. Nat. Rev. Genet. 2: 196-206. 

Vreeland,B. 2007. Bridging the gap between mental and physical health: a 
multidisciplinary approach. J. Clin. Psychiatry 68 Suppl 4: 26-33. 

Vreeland,R.H., Rosenzweig,W.D., and Powers,D.W. 2000. Isolation of a 250 million-
year-old halotolerant bacterium from a primary salt crystal. Nature 407: 897-900. 

Wang,C.K., Zhang,X., Gifford,I., Burgett,E., Adams,V., and Al Sheikhly,M. 2007. 
Experimental validation of the new nanodosimetry-based cell survival model for 
mixed neutron and gamma-ray irradiation. Phys. Med. Biol. 52: N367-N374. 

Wang,X., Sirover,M.A., and Anderson,L.E. 1999. Pea chloroplast glyceraldehyde-3-
phosphate dehydrogenase has uracil glycosylase activity. Arch. Biochem. Biophys. 
367: 348-353. 

Ward,J.F. and Kuo,I. 1968. Steady state and pulse radiolysis of aqueous chloride 
solution of nucleic acid components. In Radiation chemistry. Edited by E.J.Hart. 

West,S.C. 2003. Molecular views of recombination proteins and their control. Nat. 
Rev. Mol. Cell Biol. 4: 435-445. 

Whitby,J., Burgess,R., Turner,G., Gilmour,J., and Bridges,J. 2000. Extinct (129)I in 
halite from a primitive meteorite: evidence for evaporite formation in the early solar 
system. Science 288: 1819-1821. 

Whitehead,K., Kish,A., Pan,M., Kaur,A., Reiss,D.J., King,N., Hohmann,L., 
DiRuggiero,J., and Baliga,N.S. 2006. An integrated systems approach for 
understanding cellular responses to gamma radiation. Mol. Syst. Biol. 2: 47. 

 130 
 



 

Wiltzius,J.J., Hohl,M., Fleming,J.C., and Petrini,J.H. 2005. The Rad50 hook domain 
is a critical determinant of Mre11 complex functions. Nat. Struct. Mol. Biol. 12: 403-
407. 

Woese,C.R., Kandler,O., and Wheelis,M.L. 1990. Towards A Natural System of 
Organisms - Proposal for the Domains Archaea, Bacteria, and Eucarya. Proceedings 
of the National Academy of Sciences of the United States of America 87: 4576-4579. 

Woods,W.G. and Dyall-Smith,M.L. 1997. Construction and analysis of a 
recombination-deficient (radA) mutant of Haloferax volcanii. Mol. Microbiol. 23: 
791-797. 

Wu,Y., He,Y., Moya,I.A., Qian,X., and Luo,Y. 2004. Crystal structure of archaeal 
recombinase RADA: a snapshot of its extended conformation. Mol. Cell 15: 423-435. 

Wyman,C., Ristic,D., and Kanaar,R. 2004. Homologous recombination-mediated 
double-strand break repair. DNA Repair (Amst) 3: 827-833. 

Zahradka,K., Slade,D., Bailone,A., Sommer,S., Averbeck,D., Petranovic,M., 
Lindner,A.B., and Radman,M. 2006. Reassembly of shattered chromosomes in 
Deinococcus radiodurans. Nature 443: 569-573. 

Zhang,H., Yan,W., and Aebersold,R. 2004. Chemical probes and tandem mass 
spectrometry: a strategy for the quantitative analysis of proteomes and subproteomes. 
Curr. Opin. Chem. Biol. 8: 66-75. 

Zolensky,M.E., Bodnar,R.J., Gibson,E.K., Jr., Nyquist,L.E., Reese,Y., Shih,C.Y., and 
Wiesmann,H. 1999. Asteroidal water within fluid inclusion-bearing halite in an H5 
chondrite, Monahans (1998). Science 285: 1377-1379. 
 
 

 131 
 


	Adrienne Leah Kish, Doctor of Philosophy, 2007
	Dedication
	 Acknowledgements
	Table of Contents
	List of Tables
	 List of Figures
	Chapter 1: Introduction
	 Ionizing Radiation and Oxidative Damage
	Protective Strategies against Ionizing Radiation
	DNA Repair Strategies after Exposure to Ionizing Radiation
	Homologous Recombination Repair of DNA DSBs in the Three Domains of Life

	Halobacterium sp. str. NRC-1
	Relevance to Astrobiology
	Summary and Unresolved Questions in Microbial Radiation Resistance 
	Research Objectives 

	 Chapter 2: Alternative Mechanisms for Radiation Resistance in the Halophilic Archaeon, Halobacterium sp. str. NRC-1
	Introduction 
	Results
	In Vitro DNA Protection against Oxidative Damage by Halides
	Halobacterium Growth and Ionizing Radiation Resistance in Altered Salt Media 
	Chromosomal Fragmentation after Exposure to Ionizing Radiation
	DNA Base Oxidation after Exposure to Ionizing Radiation
	 Protein Oxidation after Exposure to Ionizing Radiation
	Halobacterium Intracellular Mn/Fe Ratio

	Discussion
	Why Are Halobacterium Cells Radiation Resistant?

	Conclusion 
	 Materials and Methods
	Cultures and Growth Conditions
	In vitro Plasmid -Irradiation
	In vivo -Irradiation
	Pulsed Field Gel Electrophoresis
	Genomic DNA Extractions and GC/MS Analysis 
	Protein Oxidation Analysis
	Cell Interior Elemental Analysis 


	 Chapter 3: Molecular-Level Response of Halobacterium sp. str. NRC-1 to Oxidative Damage after Exposure to Ionizing Radiation
	Introduction
	Results
	mRNA Level Changes
	 Protein Level Changes 

	Discussion
	A systems model for physiological response toradiation
	Physiological Changes 
	Transcriptional Control  
	Comparison of Changes in mRNA Levels and their Corresponding Protein Abundances 

	Conclusion
	Methods and Materials
	Strains and Culturing
	Gamma Radiation and Response Time Course
	Microarrays
	Quantitative Proteomics: iTRAQ Reagent Labeling, LC-MS/MS and Data Analysis
	Data Integration and Visualization
	γ-radiation survival of Δura3 strain


	 Chapter 4: The Role of Mre11 and Rad50 in the Repair of DNA Double Strand Break Repair in the Halophilic Archaeon, Halobacterium sp. str. NRC-1
	Introduction 
	Results
	Targeted Gene Deletion of mre11 and rad50
	Growth and Survival of mre11 and rad50 Mutants 
	 DNA Double Strand Break Repair in mre11 and rad50 Mutants 
	Homologous Recombination in mre11 and rad50 Mutants

	Discussion
	Conclusion
	Methods and Materials
	Cultures and Growth Conditions
	Targeted Gene Deletion
	UV-C and -Irradiation Survival 
	MNNG Survival 
	Growth Curves and Temperature-Dependant Growth Assays
	Recombination Assay
	-Irradiation Time Course of Recovery PFGE Analysis


	 Chapter 5:  Conclusions
	Conclusions and Perspectives
	Future Work
	 


	  Appendices
	Appendix 1. Chapter 3 Supplementary Information
	Multiple mechanisms are triggered to minimize and repair γ radiation damage in Halobacterium NRC-1
	A. DNA Repair: Glycosylase Activity and Homologous Recombination
	B. Mechanisms to Minimize Oxidative Damage
	C. Coordinated Expression between Cell Division and DNA Replication and Repair Genes
	D. The γ Response Regulatory Network


	 Appendix 2. Chapter 4 Supplementary Information
	 Attempted Mutations

	 References Cited

