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A novel method, called “out-of-sample fusion”, is proposed in this dissertation.

This method utilizes artificial samples along with a real data sample of interest to

draw statistical inference assuming a semiparametric density ratio model. These ar-

tificial samples do not relate directly to the sample of interest, which differentiates

the method from the traditional bootstrap approach which is a “within-sample”

method. Out-of-sample fusion has been elaborated on through the estimation of

threshold probabilities and their confidence intervals. A comparison has been made

with the Agresti-Coull and the standard Wald methods in terms of confidence inter-

val estimation. The out-of-sample fusion generates sharper and shorter confidence

intervals while the nominal coverage is maintained. The out-of-sample method has

been applied to cancer and microarray data. An R package has been developed to

facilitate the implementation of the out-of-sample fusion method.
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Chapter 1

Motivation and Overview

1.1 Motivation

This study was motivated by two different problems. First the problem of de-

signing metrics for food safety where the probability of contamination is very small

and needs precise interval estimation. Second is the need to estimate small prob-

abilities for bio-surveillance and public health policy with precision. For example,

estimating the probabilty that a certain cold medication sales exceed a high thresh-

old. In this scenario there is a great difference between probabilities 0.01 and 0.001

for large populations.

Another impetus for the present work is the desire to ”spring out of the sample”

as it were for the purpose of estimating small probabilitie. We note that bootstrap

methods ”cannot go to the tail” as they are confined by the available data. However,

out-of-sample fusion (OSF) gives information about the tails since all distributions

are estimated from all available data supported over a wider range than that of the

reference sample.
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Lastly, as shall demonstrate, misspecified fusion may still lead to good es-

timates. That is, often despite of fusion with samples which do not conform to

density ratio models (DRM) the end product is strikingly similar to that obtained

from samples which do satisfy DRM requirements.
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1.2 Overview

In this dissertation, a new statistical method, an out-of-sample density ratio

model (OSF DR model), is proposed to obtain shorter yet reliable confidence inter-

vals (CIOSF ) for threshold probabilities by fusing artificial data with a reference

real data sample. The resulting CIOSF is compared extensively with the alternative

CI’s maximum likelihood confidence interval (CIMLE), empirical Wald confidence

interval (CIEP ), and Agresti-Coull confidence interval (CIAC), in terms of length

and coverage of the true probability values.

This dissertation is organized as follows: The first chapter explains the notion

of out-of-sample fusion and differentiates it from the traditional “within-sample”

methods. The second chapter briefly reviews semiparametric density ratio method-

ology and focuses primarily on certain asymptotic results which are essential for

this dissertation. Some available approaches of constructing confidence intervals,

especially the Wald interval and the CIAC are reviewed in Chapter 4.

Chapter 5 compares the out-of-sample fusion with several available methods in

terms of confidence interval estimation. Theorem 5.3.1 states that the asymptotic

confidence intervals of threshold probabilities resulting from density ratio models

are always shorter than those obtained from the empirical approach (i.e. Wald)

and Agresti-Coull methods. The ensuing simulation studies show that although

the intervals resulting from out-of-sample fusion are considerably shorter than those

from the Agresti-Coull (AC) method, the nominal confidence levels specified are

still maintained. This chapter is concluded with a guideline for the practical use of

3



out-of-sample fusion.

In chapter 6,repeated out-of-sample fusion (ROSF) is introduced. It is con-

sidered a derivative and ramification of out-of-sample fusion. It repeatedly fuses

a given sample with different sets of artificial samples, which leads to a collection

of probability estimates after applying the density ratio model separately for each

artificial sample. Confidence intervals can be constructed from these estimates. The

resulting confidence intervals are even shorter than those obtained from a typical

out-of-sample fusion method, but their coverage of the true probability values are

often significantly below the nominal coverage. In order to overcome this problem,

new confidence intervals are proposed by hybridizing these short intervals with the

intervals computed by the AC method. Although the notion of the hybridization

has not been established theoretically, some empirical guidelines are suggested from

numerical studies.

In chapter 7, a multivariate out-of-sample fusion density ratio model has been

applied to case-control cancer data. The results not only confirm the perviously

published results , but also illustrate a graphical approach to compare conditional

pdfs from case-control data. The difference between the case and control can be

appreciated graphically.

Chapter 8 discusses the application of the density ratio model and out-of-

sample fusion to microarray data related to colon cancer. It not only identifies the

most significantly differentially expressed gene groups which are made of 2 or 3

member genes, but also shows that different association may exist among member

genes in the same gene group. The appendix includes a manual for a new R package

4



called DensityRatio which implements the density ratio model in general with real or

artificial data. All results, tables and figures in this dissertation were generated by

this package, which is also useful for traditional density ratio model analysis.
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Chapter 2

Out-of-Sample Fusion

Utilizing artificial data is common in statistics. Monte Carlo methods (Metropo-

lis and Ulam, 1949), such as importance sampling, and Markov Chain Monte Carlo,

use artificial data. In this spirit, this dissertation proposes a novel method, called

“out-of-sample fusion”, to utilize external artificial samples assuming a density ratio

model. Unlike a typical bootstrap approach (Efron, 1979), which involves repeated

sample-generating strictly “within the original sample”, out-of-sample fusion takes

advantage of externally generated artificial samples which can be performed by the

computer independently. The artificial samples may resemble the original sample in

terms of underlying distribution, moments and certain statistical features. However,

they may differ from the original sample dramatically, as will be demonstrated in

the next chapters.

The out-of-sample fusion method assumes a density ratio model. In this dis-

sertation, a density ratio model in conjunction with out-of-sample fusion is called

an OSF DR model. In a traditional density ratio model, inference is drawn from

many samples, which are the various sets of real observations or measurements in

the same study. They are often the measurements from multiple instruments. In

contrast, in the OSF DR model, the problem is to draw inference about a single

6



population represented by the reference sample. The rest of the samples required

by the OSF DR model are generated by the computer. Since more data are used

to draw inference, the resulting estimates are considered more efficient than those

obtained from traditional methods only using the reference sample alone, provided

that the density ratio model assumption holds.

It is worth mentioning here, although certain distributions are employed to

generate the artificial samples, they are not pursued during OSF DR model imple-

mentations. The only underlying assumption is a specified tilt function described

in the coming chapter.

The OSF DR model can be extended as a repeated out-of-sample fusion (ROSF

DR model) by repeatedly fusing the reference sample with different sets of artificial

samples to obtain the desired estimates. It is just like viewing the reference sample

from the different angles. Thus, it leads to a more thorough interpretation for

the reference sample. However, confidence intervals for the threshold probabilities

obtained with this method do not have satisfactory coverage which is often less than

nominal. We propose a strategy to maintain the optimal coverage with the aid of

the Agresti-Coull method. It turns out that the resulting hybrid confidence intervals

are about 15-30 % shorter than those derived from the AC method alone. A full

examination of these points is given later in Chapter 4.

Implementation of OSF DR models using multivariate cancer data and high

dimensional genomic data are described in Chapter 6 and 7, respectively.

7



Chapter 3

Semiparametric Density Ratio Models

This chapter briefly reviews the underpinnings of the traditional density ratio

model which can be considered as a special case of biased sampling models. Our

OSF DR model idea is an offshoot of the traditional density ratio model.

3.1 Semiparametric Density Ratio Models

The origin of density ratio models can be traced back to any one of Cox’s

linear models of the log density ratio (Cox, 1969), Anderson’s generalized logistic

models for multiple population mixtures (Anderson, 1972) and Vardi’s length biased

models (Vardi, 1982, Vardi, 1985). However it is more intuitive to link them to biased

sampling models. Vardi studied a length-biased sampling model (Vardi, 1982). If

the selection probability for any particular object is proportional to its length, then

the following model gives the distribution of the length of sampled objects:

F (y) =
1

µ

∫ y

0

xdG(x), y ≥ 0 (3.1)
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where

µ =

∫ ∞
0

xdG(x).

Here the cdf G is unknown and is to be estimated. The cdf F , the length-biased

distribution corresponding to G, is a weighted version of G in terms of the weight

function x. In Vardi’s original treatment (Vardi, 1982), the weight functions were

assumed completely known. But there are many practical situations in which a

complete specification of the weight function is too restrictive and mostly unrealistic.

One way to relax the assumption on the weight functions is to assume the weight

functions belong to a parametric family. These models are called semiparametric

biased sampling models. (Gill et al., 1988; Gilbert, 2000):

Fi(y) = Wi(G)−1
∫ y

−∞
wi(x)dG(x), i = 1, · · · , s (3.2)

Wi(G)−1 =

∫ ∞
−∞

wi(x)dG(x), i = 1, · · · , s (3.3)

A density ratio model is often considered as a special case of a biased sampling

model with a parametrized weight function:

wi(x) = exp{α + β · h(x)} (3.4)

It can also be motivated from a case-control study in which the case sample

is assumed to be a weighted control sample with a weight function exp{α + β ·

9



x}. For example, Prentice and Pyke, 1979; Qin and Zhang, 1997, and Qin, 1998,

assumed

g1{x|D = 1} = eα+β·x · g0{x|D = 0)}, (3.5)

where D = 0 stands for the control and D = 1 for the case. It is easy to see that

the biased sampling model here is actually a logistic regression model. It means

that the logistic regression model for a case-control study is equivalent to the biased

sampling model with a weight function exp{α + β · x}.

Motivated by either biased sampling models or case-control studies, density

ratio models were developed and elaborated (Qin, 1993; Qin and Lawless, 1994;

Qin and Zhang, 1997; Qin, 1999; Zhang, 2000; Fokianos et al., 2001; Fokianos,

2004; Kedem et al., 2008; Kedem et al., 2009, and Voulgaraki et al., 2012). For the

two-sample case:

x1 = (x11, · · · , x1n1)
′ ∼ g1(x),

x0 = (x00, · · · , x0n0)
′ ∼ g0(x),

the density ratio model is:

g1(x)

g0(x)
= eα+β·h(x), (3.6)

and h(x) is called as a tilt function, which can be regarded as distortion of sample

x1’s pdf from the reference sample x0’s pdf . Actually this model is quite intuitive

since the density ratio of two pdf’s has the form (2.6) if both of them come from the

same exponential family. Thus, if both g1(x,θ) and g0(x,θ) are from an exponential

10



family {Pθ : θ ∈ Θ},Θ ⊂ Rk:

Pθ = p(x,θ) = d(θ)S(x) exp

 k∑
j=1

Cj(θ)Tj(x)

 , x ∈ χ ⊂ Rq,

where C1, · · · , Ck and d are real-valued functions of θ, and real-valued functions

T1, · · · , Tk and S have their supports on Rq. Then,

g1(x)

g0(x)
=
d(θ1)

d(θ0)
· exp


k∑

j=1

[ Cj(θ1)− Cj(θ0) ] · Tj(x)


= exp


k∑

j=1

[ Cj(θ1)− Cj(θ0) ] · Tj(x) + log

{
d(θ1)

d(θ0)

}
= exp {α+ β · h(x)}

Where,

α = log

{
d(θ1)

d(θ0)

}
,

β = {C1(θ1)− C1(θ0), · · · , Ck(θ1)− Ck(θ0)},

h(x) = {T1(x), · · · , Tk(x)}

The one-to-one correspondence between h(t) and pdfs is shown below:

h(t) = t g(x) ∼ Exp{λ}

h(t) = {t, t2} g(x) ∼ N (µ, σ2)

h(t) = {t, log(t)} g(x) ∼ Γ(k, λ)

h(t) = {log(t), log(1− t)} g(x) ∼ Beta(α, β)

11



However, if g1(x,θ), g0(x,θ) come from different exponential families with the same

support then:

g1(x)

g0(x)
=
d1(θ1)S1(x)

d0(θ0)S0(x)
· exp


k∑

j=1

[ C1j(θ1) · T1j(x)− C0j(θ0) · T0j(x) ]


= exp

log
d1(θ1)

d0(θ0)
+ log

S1(x)

S0(x)
+

k∑
j=1

[ C1j(θ1) · T1j(x)− C0j(θ0 · T0j(x) ]

 (3.7)

Denote

α = log

{
d(θ1)

d(θ0)

}
, φ(x,β) = log

S1(x)

S0(x)
+

k∑
j=1

[ C1j(θ1) · T1j(x)− C0j(θ0) · T0j(x) ]

Then

g1(x)

g0(x)
= exp {α + φ(x,β)} (3.8)

Model (3.6) is a special case of model (3.8), which was proposed by Zhang (2000).

3.2 Distribution Estimation for Density Ratio Models

The approach estimating parameters for density ratio models can be demon-

strated best by the two-sample univariate case (Qin and Zhang, 1997). The same

strategy can be applied to the multiple-sample case (Lu, 2007) or the multivariate

case (Voulgaraki et al., 2012) . Consider the two independent random samples x1

and x0 in Model (3.6) with h(x) = x and denote x0 as the reference sample :

g1(x)

g(x)
= eα+βx, g0(x) = g(x). (3.9)
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Let t be the concatenated or fused data from both x0 and x1:

t = (x′1,x
′
0) = (t1, · · · , tn), n = n1 + n0.

Denote pi = dG(ti) as the mass at ti, i = 1, · · · , n. The empirical likelihood function

becomes (Owen, 2001):

L(α, β,G) =

n0∏
i=1

pi ·
n1∏
j=1

pj · eα+β·x1j =
n∏
i=1

pi ·
n1∏
j=1

eα+β·x1j . (3.10)

It is subject to two constraints:

n∑
i=1

pi = 1,
n∑
i=1

pi[w1(ti)− 1] = 0, where w1(t) = eα+β·t.

The estimates α̂ and β̂ can be computed by maximizing the likelihood function

(3.10), and p̂i and Ĝ(t) are obtained as functions of α̂ and β̂:

p̂i =
1

n0

· 1

1 + ρ exp{α̂ + β̂t}
,

Ĝ(t) =
n∑
i=1

p̂iI{ti ≤ t}

=
1

n0

n∑
i=1

I{ti ≤ t}
1 + ρ exp{α̂ + β̂ · t}

.

13



where ρ = n1/n0 and I{ti ≤ t} is an indicator function which equals one for ti ≤ t

and zero otherwise. The estimate Ĝ1(t) is estimated by accumulating p̂i · eα̂+β̂·ti .

More generally, for multiple samples x1,x2, · · · ,xm,x0:

xi = {xi1, · · · , xini} ∼ gi(x), i = 1, · · · ,m,

we still consider x0 as the reference sample: g0(x) = g(x), G0(x) = G(x). Assuming

a multiple sample density ratio model:

gi(x)

g(x)
= eαi+βih(x), (3.11)

then

p̂i =
1

n0

· 1

1 + ρ1 exp(α̂1 + β̂1h(ti)) + · · ·+ ρm exp(α̂m + β̂mh(ti))
. (3.12)

Therefore,

Ĝ(t) =
1

n0

·
n∑
i=1

I(ti ≤ t)

1 + ρ1 exp(α̂1 + β̂1h(ti)) + · · ·+ ρm exp(α̂m + β̂mh(ti))
, (3.13)

where ρi = ni/n0 and h(t) is the tilt function which is assumed known.

When the data are assumed continuous, the p̂i can be smoothed by a kernel to

produce a more precise kernel density estimate than the traditional kernel density

estimate since more data are used due to a sample concatenation (Fokianos, 2004,

Cheng and Chu, 2004 and Qin and Zhang, 1997). A multivariate extension is
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discussed in Voulgaraki et al. (2012), where it is also shown how to obtain optimal

bandwidths.

3.3 Some asymptotic results of density ratio models

The asymptotic behavior of Ĝ(t) is described in Qin and Zhang (1997) and

Zhang (2000) for the two-sample case. Moreover, Lu (2007) discussed the multiple-

sample case using the same strategy. The efficiency of Ĝ is elaborated in Gilbert

(2000). Although the formula do not look straightforward, computing the parame-

ters and Ĝ(t) is surprisingly fast for moderate sample sizes and 1 ≤ m ≤ 5).

Qing and Zhang (1997) and Zhang (1998) derived some asymptotic results for

the two-sample case. Let (α0, β0) be the true value of (α, β). Then under the density

ratio model (3.6), as n→∞,

n−1/2


α̃− α0

β̃ − β0

 −→ N(0, S−1V S−1) = N(0,Σ), (3.14)

Σ =
1 + ρ

ρ

A−1 −
 1 + ρ 0

0 0


 ,

where the matrix A can be obtained from:

Ak(t) =

∫ t

−∞

exp(α0 + β0y)

1 + ρ · exp(α0 + β0y)
· yk · dG(y),
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A0 = A0(∞), A1 = A1(∞), A2 = A2(∞), A =

 A0 A1

A1 A2

 .

They also showed that under the model and suitable regularity conditions, as n→

∞,√n{Ĝ(t)− G̃(t)} converges weakly,

√
n{Ĝ(t)− G̃(t)} D−→ W (t), (3.15)

where W (t) is a Gaussian process with mean 0 and covariance function specified

by

E{W (s)W (t)} = ρ(1 + ρ)(A0(s), A1(s))


 1

0

− A−1
 A0(t)

A1(t)


 ,

and

ρ =
n1

n0

, G(t) =
1

n0

n∑
i=1

I{ti ≤ t}
1 + ρ · exp{α0 + β0 · t}

.

Here G̃(t) is the empirical cdf of G(t),

G̃(t) =
1

n0

∑
I{ti ≤ t}.

In a later work, Qin and Zhang (1998) obtained the results:

√
n(Ĝ(t)−G(t))

D−→ U(t), (3.16)
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where U(t) is a Gaussian process with mean 0 and covariance function:

E{U(s)U(t)} = (1 + ρ){G(t)−G2(t)}

−

ρ(1 + ρ)(A0(s), A1(s))


 1

0

−A−1
 A0(t)

A1(t)



 .

Lu (2007) obtained the multisample version of (3.14), (3.15) and (3.16) (as shown in

Theorem 2.1, Theorem 3.8 and Theorem 3.9 (Lu, 2007)). The following quantities

must first be defined to describe the asymptotic behavior of Ĝ(t),

Aj(t) =

∫
wj(y)I(y ≤ t)∑m

k=0 ρkwk(y)
dG(y),

Bj(t) =

∫
wj(y)h(y)I(y ≤ t)∑m

k=0 ρkwk(y)
dG(y),

Ā(t) = (A1(t), . . . , Am(t))′, B̄(t) = (B′1(t), . . . , B
′
m(t))′.

Here ρ = diag(ρ1, . . . , ρm)m×m where Ip is the p × p identity matrix, ⊗ denotes

Kronecker product, and ρi = ni/n0, i = 1, · · · ,m.

The main result of Lu (2007) is the following thorem: Theorem (Lu 2007,

Thoerem 3.9): The process
√
n(Ĝ(t) − G(t)) converges to a zero-mean Gaussian

process in the space of real right continuous functions that have left limits with
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covariance matrix given by

Cov{√n(Ĝ(t)−G(t)),
√
n(Ĝ(s)−G(s))} =(

m∑
k=0

ρk

)(
G(t ∧ s)−G(t)G(s)−

m∑
j=1

ρjAj(t ∧ s)
)

+
(
Ā′(s)ρ, B̄′(s)(ρ⊗ Ip)

)
S−1

 ρĀ(t)

(ρ⊗ Ip)B̄(t)

 . (3.17)

The immediate application of this theorem is the construction of pointwise sym-

metric confidence intervals for G(t) for each given t. The following chapter is based

on this result to obtain the confidence interval for the probability of passing the

threshold t, R(t) = 1−G(t).
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Chapter 4

Threshold Probabilities and Confidence Intervals

The purpose of this chapter is to review threshold probabilities and the widely

available confidence intervals resulting from various methods, especially the interval

from maximum likelihood method, the Wald interval and the Agresti-Coull inter-

val. These intervals will be compared with the interval obtained from OSF DR

models.

4.1 Threshold Probabilities

This dissertation deals with an out-of-sample fusion approach through confi-

dence interval estimation for threshold probabilities. By threshold probability we

mean a probability that a variable falls in a designated domain, which usually is

a specific interval. As an example in engineering, the threshold probability can be

interpreted as a failure probability of vehicles after the velocity or weight exceeds

a certain value. In time-to-event data from clinical trials, it is the probability of

surviving longer than a designated time. We say it follows a general risk definition

if the designated domain is considered a risk domain where there is an undesirable,

adverse or failure consequence, such as the risk to have certain cancer or disease
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once the blood pressure or weight exceeds a certain threshold. In this study, we use

both risk and threshold probability interchangeably. This chapter briefly reviews

the commonly available approaches to construct a confidence interval for threshold

probabilities.

In this dissertation by threshold probability we mean 1 − G(t), t being the

threshold.

4.2 Confidence Intervals

4.2.1 CI based on maximum likelihood methods

In parametric scenarios, it is straightforward to construct confidence inter-

vals for threshold probabilities using the maximum likelihood method and the delta

method. Assume θ̂ is the maximum likelihood estimator of θ. According to asymp-

totic theory, under regularity conditions:

√
n(θ − θ̂) ∼ N (0, I−1(θ)) (4.1)

where I(θ) denotes Fisher information. Since the threshold probability is a function

of a parameter θ, R(t,θ) = 1−G(t,θ) can be obtained by maximum likelihood.

This interval,called CIMLE, is often the most efficient CI estimate asymptot-

ically. However it requires too many assumptions and sometime it is not easy to

compute and often no explicit formi available.
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4.2.2 Empirical Wald Interval

The empirical interval, called CIEP , is one of earliest confidence intervals con-

structed (Laplace, 1812). It is always taught in standard statistical texts. It results

from inverting a Wald test. Therefore it is always called the standard Wald interval.

It is obtained as follows: In the nonparametric scenario, let x = {x1, · · · , xn}, i =

1, · · · , n, be an iid sample from a distribution G(t). Then the empirical distribution

function is defined as:

G̃(t) =
1

n

n∑
i=1

1{xi ≤ t}. (4.2)

For a fixed t, the indicator 1{xi ≤ t} is a Bernoulli random variable with parameter

p = G(t), hence G̃(t) is a binomial random variable with mean G(t) and variance

nG(t)(1 − G(t)). The empirical distribution converges weakly to the true cdf for

every t:

√
n(G̃(t)−G(t))

D−→ N{0, G(t)(1−G(t))} = N{0, σ2
EP (t)} (4.3)

Thus, once the confidence level 1− α is specified, a confidence interval for G(t) can

be constructed :

{G̃(t)− z1−α/2 · σEP (t)/
√
n, G̃(t) + z1−α/2 · σEP (t)/

√
n} (4.4)

Confidence intervals of threshold probabilitiesR(t) = 1−G(t) follow from (4.4).

This method is a robust nonparametric method that does not assume any

distribution for the sample. It is used widely especially in survival analysis. Without

censoring, the well known Kaplan-Meier is just the empirical distribution.
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However, this confidence interval, which is based on a Wald test, may not have

the coverage claimed by the confidence level. This is true not only in small samples.

but also even for some relatively large samples its coverage can be well below the

specified nominal coverage, especially when the threshold t goes to either boundary,

which means that G(t) is close to 0 or 1 (Brown et al., 2001 and Brown et al.,

2002). Some alternative methods have been proposed, such as the Clopper-Pearson,

Wilson score, and the Agresti-Coull methods. We shall proceed to describe them

briefly.

4.2.3 Clopper-Pearson Interval

The Clopper-Pearson interval is an early and widespread method for calculat-

ing binomial confidence intervals (Clopper and Pearson, 1934). This is often referred

to as an exact method since it is based on the cumulative probabilities of the bino-

mial distribution. However, the intervals are not exact because of the discreteness

of the binomial distribution. The Clopper-Pearson interval is given by

{θ|P [Bin(n, θ) ≤ X] ≥ α/2} ∩ {θ|P [Bin(n, θ) ≥ X] ≥ α/2} , (4.5)

where X is the number of successes observed in the sample and Bin(n; θ) is a bi-

nomial random variable with n trials and probability of success θ. The relationship

between the cumulative binomial distribution and the beta distribution leads to an

alternate format of the Clopper-Pearson interval. Note that the endpoints are what

would be expected from a Bayesian analysis which yields these posterior distribu-
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tion limits under the assumption of a Beta(1,1) or, equivalently, uniform prior on

(0,1).

B(α/2;x, n− x+ 1) < θ < B(1− α/2;x+ 1, n− x) (4.6)

Where B(·, ·, ·) is the incomplete beta function. This interval is conservative

since its coverage is greater than or equal to the nominal coverage for any population

proportion.

4.2.4 Wilson score Interval

The Wilson interval is given by (Wilson, 1927):

p̂+ 1
2n
z21−α/2 ± z1−α/2

√
p̂(1−p̂)
n

+
z2
1−α/2
4n2

1 + 1
n
z21−α/2

(4.7)

It improves the normal approximation interval in terms of coverage for small prob-

abilities. The Wilson interval is derived from

{
θ|zα/2 ≤

p̂− θ√
θ(1− θ)/n

≤ z1−α/2

}

by solving for θ. Its actual coverage probability is closer to the nominal value

than the Wald interval. The center of the Wilson interval is a weighted average of

p̂ = X/n and 1/2:
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p̂

(
n

n+ z21−α/2

)
+

1

2

(
z21−α/2

n+ z21−α/2

)
,

with p̂ receiving greater weight as the sample size increases.

4.2.5 Agresti-Coull Interval

The Agresti-Coull Interval (Agresti and Coull, 1998), CIAC , is called an inter-

val resulting from an “adjusted Wald test” initially which improves the coverage of

the CIEP , especially when the sample size is small and the threshold probabilities

are close to 0 or 1. However it is a very conservative confidence interval since it is

usually wider than the alternative CIs. It can be considered as a derivative of Wilson

score intervals regarding coverage and interval length. Like the CI resulting from

inverting a Wald test, the Agresti-Coull interval still uses the normal approximation,

however with a modified sample size and a modified point estimate to replace the

true sample size and the usual point estimation p̂ = X/n. Given X successes in n

trials, define

ñ = n+ z21−α/2, p̃ =
X + z21−α/2

ñ

Then, a confidence interval for p is given by

p̃± z1−α/2
√
p̃(1− p̃)

ñ
. (4.8)
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where z1−α/2 is the 1− α/2 percentile of a standard normal distribution, as before.

For example, for a 95% confidence interval, let α = 0.05, so z1−α/2 = 1.96 and

z21−α/2 = 3.84. If we use 2 instead of 1.96 for z1−α/2, this is the so called “add 2

successes and 2 failures” interval.

Additional methods other than those described above can be found in Brown

and DasGupta (2001).

In this dissertation, a new statistical method, an out-of-sample density ratio

model (OSF DR model), is proposed to obtain shorter yet reliable confidence in-

tervals (CIOSF ) for threshold probabilities by fusing artificial data with a reference

real data sample. The resulting CIOSF is evaluated extensively with the alternative

CIs including CIMLE, CIEP and CIAC in terms of their lengths and coverages to the

true value of actual parameters.

This dissertation is organized as follows: The first chapter explains the notion

of out-of-sample fusion and differentiates it from the traditional “within-sample”

methods. The second chapter briefly reviews semiparametric density ratio models

and focuses primary on some asymptotic results which are essential for this disser-

tation. Some available approaches of constructing confidence intervals, especially

the Wald interval and the Agresti-Coull interval are reviewed in chapter 3.

Chapter 5 compares the out-of-sample fusion with several available methods

in terms of confidence interval estimation. Theorem 5.3.1 states that confidence

intervals of threshold probabilities resulting from density ratio models are always

shorter than those obtained from the empirical approach. The ensuing simulation

studies show that although the intervals resulting from out-of-sample fusion are con-
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siderably shorter than those from the Agresti-Coull method, the nominal confidence

levels specified are still maintained. This chapter is concluded with a guideline for

the practical use of out-of-sample fusion.

In chapter 6,“repeated out-of-sample fusion” is introduced. It is considered a

derivative and ramification of out-of-sample fusion. It repeatedly fuses a given sam-

ple with different sets of artificial samples, which leads to a collection of estimates

after applying the density ratio model to each scenarios. Confidence intervals can

be constructed from these estimates. Although the resulting confidence intervals are

even shorter than those obtained from a typical out-of-sample fusion method, their

coverages of the true value are often significantly below the nominal coverage. In

order to achieve optimal confidence intervals, new confidence intervals are proposed

by hybridizing these intervals with the intervals computed by the AC method. Al-

though the notion of the hybridization has not been established theoretically, some

empirical guidelines are summarized from numerical examples.

In chapter 7, a multivariate out-of-sample fusion density ratio model has been

applied to case-control cancer data. The results not only confirm the perviously

published results , but also illustrate a graphical approach to compare conditional

pdfs from case-control data. The difference between the case and control can be

better appreciated graphically.

Chapter 8 discusses the application of the density ratio model and out-of-

sample fusion to microarray data related to colon cancer. It not only identifies

the most signifcantly differentially expressed gene groups which are made of 2 or 3

member genes, but also shows the different association may exist among member
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genes in the same gene group.

The appendix includes a manual for a new R package DensityRatio which

implements the density ratio model including the out-of-sample fusion strategy. All

results, tables and figures in this dissertation have been generated by this package,

which is also useful for traditional density ratio model analysis.
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Chapter 5

Density Ratio Models with Out-of-Sample Fusion

This chapter provides the implementation procedure for the density ratio

model with out-of-sample fusion (OSF DR model) through CI estimation for thresh-

old probabilities 1 − G(t). The resulting CIs are compared to those obtained from

the Agresti-Coull method (AC) and the empirical approach (EP) in terms of their

expected lengths and coverage probabilities. Finally a guideline is proposed for its

practical implementation.

This chapter is organized as follows: Section 5.1 gives the procedure to im-

plement the OSF DR model. Section 5.2 deals with comparison of OSF DR model

with MLE approach in a parametric setting in terms of CI estimation. In Section

5.3, we state that and prove a theorem that shows that CIOSF is shorter than the

standard Wald CI, which is called empirical CI in this dissertation (CIEP ). One

will notice that the theorem is also applicable under DR model with samples from

different real sources instead of artificial data.

Section 5.4 compares CIOSF to CIAC in terms of their expected lengths and

coverage probabilities. CIAC is a threshold probability CI produced by Agresti-Coull

method (1998). It improves the coverages of CIEP when the threshold probabilities
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are close to 0 or 1. In section 4.5 one observes that even in some misspecified

scenarios, that is, where the density ratio model assumption does not hold, the

OSF DR model still gives reasonable CIs for threshold probabilities. Section 5.6

summarizes the results and provides a guideline to employ the OSF DR model for

CI estimation in practical uses.

5.1 OSF DR Model Procedure

This section presents a typical method utilizing an OSF DR model to produce

estimates of threshold probabilities and their CIs (CIOSF ) with one artificial sample.

The same strategy can also be applied in multiple-artificial-sample scenarios.

Let x0 be an iid sample from a given population:

x0 = {x01, x02, · · · , x0n}.

1. x1 is a sample from a normal distribution with the same mean and variance

of x0, n1 = n0.

2. Assume a density ratio model:

g1(x)

g(x)
= exp{α + β · x+ γ · x2},

where g(x), g1(x) are the pdfs of x0,x1, respectively. For convenience, set
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h(x) = (x, x2).

3. Estimate the threshold probability at t : R(t) = 1 − G(t) according to the

estimation method presented in Chapter 2:

R̂(t) = 1− Ĝ(t) = 1− 1

n

n∑
i=1

I{ti ≤ t}
1 + ρ · exp{α̂ + β̂ · t+ γ̂ · t2}

,

where

ti is a component from: t = {x′1,x′0}′, i = 1, · · · , n,

α̂, β̂, γ̂ are estimates of α, β, γ, respectively,

ρ =
n1

n0

= 1, since n1 = n0 = n, and

I{ti ≤ t} is an indicator function which equals one for ti ≤ t and zero otherwise.

4. According to (3.16), the confidence interval for R(t) at the 100(1− α)% level

is:

{R̂(t)− z1−α/2 · σ̂(t)/
√
n, R̂(t) + z1−α/2 · σ̂(t)/

√
n}, (5.1)

σ̂(t) is the estimate for σ(t) from formula (3.16) when t = s:

√
n(Ĝ(t)−G(t)) −→ W (t) = N(0, σ2(t)), (5.2)
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σ2(t) = E{U(t)2}

= (1 + ρ){G(t)−G2(t)}

−

ρ(1 + ρ)(A0(t), A1(t))


 1

0

− A−1
 A0(t)

A1(t)



 .

5.2 Comparing CIOSF to CIMLE

In standard statistical texts, given an iid sample x0 from a normal distribution

N (µ, σ2) with a sample size n, the procedure to obtain the confidence interval for a

threshold probability R(t) with the nominal confidence level 100(1− α)% is stated

as below, where

R(t) = P{X ≥ t} = 1− Φ

(
t− µ
σ

)
≡ Ψ(θ), θ = (µ, σ)′.

To construct a 100(1− α)% CI for R(t), we resort to asymptotic results:

√
n(θ̂ − θ) ∼ N (0, I−1(θ)),

√
n(R̂(t)−R(t)) ∼ N (0, [Ψ′(θ)] · I−1(θ) · [Ψ′(θ)]T ) ≡ N (0, σ2

R(t)),

Ψ′(θ) =

{
∂Ψ

∂µ
,
∂Ψ

∂σ

}
=

{
φ

(
t− µ
σ

)
,
t− µ
σ2

φ

(
t− µ
σ

)}
.
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The CI, called a CIMLE in this dissertation, is obtained:

{R(t)− z1−α/2 · σR(t)/
√
n,R(t) + z1−α/2 · σR(t)/

√
n},

where Φ(t) and φ(t) are the standard normal cdf and pdf at t, respectively and I(θ)

is the Fisher information. Once the asymptotic variance is acquired, the CIMLE can

be constructed easily by plugging in their estimates.

However, generally obtaining MLEs is not always straightforward. Simple

explicit forms of MLEs are not often available. Numerical methods are frequently

needed. Usually iterative steps are involved and sometimes slow convergence may

occur and extra caution needs to be exercised to differentiate a global maximizer

from local maximizers. An example is a CIMLE from a sample drawn from a beta

distribution:

g(x,θ) =
Γ(θ1 + θ2)

Γ(θ1)Γ(θ2)
· xθ1−1(1− x)θ2−1, 0 ≤ x ≤ 1, θ = (θ1, θ2).

In general, CIOSF can be computed regardless of the complexity of the reference

population pdf. However, the CIOSF is not as efficient as the CIMLE, obviously,

since it does not take into account all the information available in the reference

distribution since the distribution of the population is not utilized during the cal-

culation for CIOSF .

Fokianos and Qin used a density ratio method to draw inference for a beta

distributed sample by combining it with one uniformly distributed artificial sample
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(Fokianos and Qin, 2008). The variance of the semiparametric estimate of θ is larger

compared to its MLE counterpart. They believe that the decreased efficiency is due

to the introduction of extra uncertainty from the uniformly distributed artificial

sample.

In general the OSF DR model provides a convenient alternative to obtain

statistical inference even in some parametric settings, a slight loss of efficiency is

not a paramount issue.

5.3 Comparing CIOSF to CIEP , CIAC

A typical DR model requires more than one sample. An OSF DR model makes

it possible to apply a density ratio model to only the reference sample itself. Other

samples required by the model can be generated by the computer. The resulting

CIOSF has a shorter length than that of CIEP which utilizes the reference sample

only. Theorem 5.3.1 proves this assertion.

Theorem 5.3.1 Under regularity conditions, a confidence interval for a threshold

probability obtained from an OSF DR model is always shorter than that computed

by either an empirical method or AC method:

CIOSF ≤ CIEP ; CIOSF ≤ CIAC in terms of their lengths. (5.3)

Proof
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One only needs to compare their standard deviations in order to compare

lengths of two confidence intervals. The theorem can be proved by following Theo-

rems 3.8 and 3.9 in Lu (2007).

According to Theorem 3.9 in Lu (2007):

√
n{Ĝ(t)−G(t)} ∼ N (0, σ2(t)), (5.4)

where σ2(t) is given by

m∑
k=0

ρkG(t)(1−G(t))−


m∑
k=0

m∑
j=1

ρjAj(t)− (Ā′(t)ρ, B̄′(t)(ρ⊗ Ip))S−1


ρĀ(t)

(ρ⊗ Ip)B̄(t)




.

Here n is the combined number of observations from m + 1 samples, ρ0 = 1,

n = n1 + · · ·+ nm + n0. The symbols ⊗, ρ, Aj(t), Bj(t), Ā(t) and B̄ have already

been defined in Chapter 2.

From Theorem 3.8 in Lu (2007):

√
n{Ĝ(t)− G̃(t)} ∼ N (0, σ2

E(t)), (5.5)
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where σ2
E(t) is given by

m∑
k=0

m∑
j=1

ρjAj(t)− (Ā′(t)ρ, B̄′(t)(ρ⊗ Ip))S−1


ρĀ(t)

(ρ⊗ Ip)B̄(t)

 .

Also for the nonparametric estimate G̃(t):

√
n0{G̃(t)−G(t)} ∼ N (0, σ2

EP ) = N (0, G(t)(1−G(t)), (5.6)

where n0 is the number of observations from the reference sample only. Consider

ρi = 1, i = 0, · · · ,m. Then from (5.4) and (5.6),

σ2(t) =
m∑
k=0

ρkG(t)(1−G(t))− σ2
E(t)

= (m+ 1)σ2
EP (t)− σ2

E(t).

Denote standard errors (SEs) of σ2, σ2
E and σ2

EP as:

SE(t) =
σ(t)√

(m+ 1) · n0

, SEE(t) =
σE(t)√

(m+ 1) · n0

, SEEP (t) =
σEP (t)√

n0

.

It follows that

SE2(t) = SE2
EP (t)− SE2

E(t) ≤ SE2
EP (t). (5.7)
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Since SEs are nonnegative, then,

SE(t) ≤ SEEP (t).

It follows:

CIOSF ≤ CIEP in terms of their length;

CIOSF ≤ CIAC results naturally since CIEP and CIAC are equivalent asymptoti-

cally.

For example, m = 1, i.e. the two-sample case, Theorems 3.8 and 3.9 in Lu

(2007) for multiple samples reduce to the results in Qin and Zhang’s papers (Qin

and Zhang, 1997 and Zhang, 2000). We have

√
n{Ĝ(t)− G̃(t)} ∼ N (0, σ2

E(t)), (5.8)

√
n(Ĝ(t)−G(t)) −→ W (t) = N(0, σ2(t)), (5.9)

σ2
E(t) = ρ(1 + ρ)(A0(t), A1(t))


 1

0

− A−1
 A0(t)

A1(t)


 ,
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σ2(t) = (1 + ρ){G(t)−G2(t)}

−

ρ(1 + ρ)(A0(t), A1(t))


 1

0

− A−1
 A0(t)

A1(t)





= (1 + ρ){G(t)−G2(t)} − σ2
E(t).

Compare σ2(t) and σ2
E(t):

σ2(t) = (1 + ρ)σ2
EP (t)− σ2

E(t)

=
n0 + n1

n0

σ2
EP (t)− σ2

E(t)

≤ n

n0

σ2
EP (t).

Consider

σ2(t) = n · SE2(t) = (n0 + n1) · SE2(t),

σ2
EP (t) = n0 · SE2

EP (t),

it is easy to obtain:

SE(t) ≤ SEEP (t).

This theorem shows OSF DR models provide a shorter CI than the empirical

method if the model assumption is justified. One can easily observe that the theorem

applies to a typical density ratio model with real multisource samples instead of
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artificial samples. However, the theorem does not address the coverage of these

CIs. The common practice to evaluate CIs is to ensure they provide the desirable

coverage for the true parameter values. The next section addresses their coverage

and provides numerical evidence to support this theorem.

5.4 Comparing CIOSF to CIAC

We have shown in Section 4.3 theoretically that CIOSF is shorter than either

CIAC or CIEP . In this section, Theorem 5.3.1 is confirmed numerically CI coverage

of the actual value of the threshold probability. Moreover, a comparison of CIOSF

with the CIAC is made in terms of both their expected length and coverage. The

effect of sample size and model misspecification on CIOSF length and coverage is

investigated subsequently. Based on these results, a guideline to use DR OSF models

for threshold probability CI construction is formulated in the following section.

The reference sample used in this section is from a population with a standard

normal distribution: N (0, 1), n0 = 100, fused with some of x1,x2,x3,x4. These

samples, having the same size 100 also, are from the populations:

x1 ∼ N (1, 1), x2 ∼ N (1, 2),

x3 ∼ N (0, 1), x4 ∼ N (0, 1).
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Figure 5.1: Goodness-of-fit test: Ĝ(t) versus G̃(t)

5.4.1 Diagnostic plots for the goodness-of-fit test

Goodness-of-fit tests are needed to justify the density ratio model applicability.

If Ĝ(t) is the reference cdf acquired by OSF and G̃(t) is the corresponding empirical

cdf, most goodness-of-fit methods measure the discrepancy between Ĝ(t) and G̃(t)

(Qin and Zhang, 1997, Gilbert, 2004 and Voulgaraki et al., 2012). A simple graphical

method is to plot Ĝ(t) versus G̃(t).

Figure 5.1 suggests that regardless of the number of artificial samples used to

obtain Ĝ(t), Ĝ(t) and G̃(t) are close enough to justify the density ratio model. It is

obvious due to the normality of both the reference sample and the artificial samples

which conform to the density ratio model with tilt function: (x, x2).
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5.4.2 Lengths of CIOSF , CIAC and CIEP

Figure 5.2 shows that CIOSF , CIAC and CIEP are functions of the threshold

T . The CIOSF is obtained by concatenating or fusing the reference sample x0 with

x1 and x2. In order to better appreciate the difference of their CI lengths, the

correspondent standard deviations of Figure 5.2 are plotted in Figure 5.3, which

shows all SEs reach their maximum around 0 and diminish gradually to either end.

Without considering either end of the support, the CIOSF is always shorter than

either CIAC or CIEP , which confirms Theorem 5.3.1. The striking chaotic behaviors

in either end of the support deserve special attention. The CIEP turns out to have

0 length where there are no sample observations available. CIAC , considered an

improved CIEP , agreeing well with CIEP at the middle of its support, however, is

exceptionally wide at either end of the support. The whole purpose of introducing

CIAC is to let the confidence interval resulting from the Wald test have an overall

coverage which agrees with the nominal confidence level specified over the whole

support (Agresti and Coull, 1998). In contrast, the length CIOSF diminishes more

reasonably and naturally as the threshold goes to the boundaries. Under the scenario

that CIEP is nonzero, the relation below is always observed:

CIOSF < CIEP < CIAC .

Figure 5.4 shows CIOSF only. The four lines are obtained when different

numbers of artificial samples are concatenated with the reference sample. The gap in

CIOSF becomes wider in the middle when more artificial samples are used, however
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in either end of the threshold T support (R(t) = 1 − P (X > t) = 0.05), its length

does not change much with an increase of the number of artificial samples relative

to the case when only one artificial sample is fused. So including more artificial

sample does not have an obvious advantage in terms of its CI length for very large

or small threshold probabilities, in which case it seems to be reasonable to fuse only

2 or 3 artificial samples with the reference sample for CIOSF estimation when we

deal with small threshold probabilities.

5.4.3 Coverage Probabilities of CIOSF , CIAC and CIEP

A short length does not secure a superiority of a CI over other intervals as men-

tioned before. It is required to take the coverage of the true value of the parameter

into consideration. The coverage probability of a confidence interval is the proba-

bility of covering the actual value of the parameter of interest. Here the parameter

is the threshold probability 1−G(t).

Suppose the population of interest is N (0, 1). Given the threshold T = 1.645,

the theoretical threshold probability is R(T ) = 1 − P (X > T ) = 0.05. Figure 5.5

shows the 100 intervals generated by 100 different reference samples from the same

population with OSF, AC and EP methods separately. i.e. each interval is obtained

by a different reference sample, however all reference samples are from the same

population specified. In this case, it is N (0, 1). The sample size is 100 for either the

artificial sample or the reference sample. The CIOSF is calculated using x1 and x2

along with the reference sample x0. At the left panel of Figure 5.5, 100 vertical lines
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Table 5.1: Coverages and lengths of 100 CIs obtained from OSF, AC and EP meth-
ods

OSF AC EP

Coverage % 95 97 91
Mean length 0.0715 0.0968 0.0858

length/AC length % 74 100 89

are 100 CIs while the horizontal dash line indicates the true value of the threshold

probability, 0.05. The bold intervals which do not intersect with the 0.05 dash line

are those that fail to cover the true value. Thus the percentages of the non-bold

intervals are the coverage probabilities of the confidence intervals. The right panel

of Figure 5.5 shows the histogram of length distribution of 100 CIs produced from

all three methods. The CI expected lengths and CI coverages for all three methods

have been calculated and stated in Table 5.1. It shows the expected length of CIOSF

is much shorter than those of CIAC and CIEP , however, its coverage is more than

that of CIEP while lower than that of CIAC which is a very conservative CI since it is

always higher than the nominal level (95%) with an exceptional large length.

It is obvious that

Coverage: CIAC > CIOSF > CIEP

Width: CIAC > CIEP > CIOSF

However, the results shown in Table 5.1 results from one run only. In order to
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Table 5.2: Mean coverage and widths resulting from 100 runs.

OSF AC EP

Coverage % 94.78 96.94 91.51
Mean length 0.0595 0.0944 0.0827

length/AC length % 63 100 88

make the above assertion more convincible, 100 runs are performed. The results are

summarized at Table 5.2 which shows the expected coverages and expected lengths

obtained. Table 5.2 confirms that in the pervious single run scenario CIOSF achieves

significant reductions in terms of the CI length. It is about 30% shorter than either

CIAC or CIEP . The superiority of CIOSF over CIEP is fairly convincing. This trend

has been confirmed by varying the sample sizes for either artificial samples or the

reference sample. Figure 5.6 shows the results of CI comparisons when varying the

sample sizes: 50, 100, 500, 2000. Obviously all three methods are asymptotically

consistent since in considerable big sample sizes, all of these CIs converge to the

nominal coverage while their expected lengths converge to 0. CIAC always achieves

the nominal coverage: 95%. CIOSF coverage probability is very close to nominal

and both methods are superior to CIEP in terms of coverage. The trend tends to

more obvious as the sample size shrinks. The notable difference in small sample size

makes the superiority of CIOSF fairly obvious.
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5.5 Misspecified OSF DR models

We revisit the choice of artificial samples. An educated choice on purpose for

the artificial samples leads to a near perfect goodness-of-fit test, which may incur

criticisms of subjective sample manipulation. In a typical density ratio model, all of

the samples come from real multiple sources, so the density model may not hold as

wished. However, for a density ratio model with artificial samples (OSF DR model),

there is flexibility in making some reasonable preference during the artificial sample

selection. It is possible to let the artificial samples resemble the reference sample to

some extent by carefully examining its statistical structures. The “optimal” artificial

samples can be screened by goodness-of-fit tests. This leads to a better satisfaction

of the assumption of the density ratio model. Still we are interested in the outcome

in case of choosing artificial samples unwisely. That is, the artificial samples do not

follow the density ratio model completely. We therefore study the robustness of the

density ratio model with OSF for misspecified cases. We focus on small sample size

since the above study sugests the CIOSF has more convincing advantage over the

other CIs in this scenario. Suppose the artificial samples chosen are:

x1 ∼ Expon(1), x2 ∼ N (1, 1), x3 ∼ t(5).

The reference sample is still from a standard normal N (0, 1) and the tilt function

used in the density model is (x, x2). The difference from the reference is striking:

x1 has support (0,+∞), while x0 has all of R as its support. Suppose we totally
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ignore model conformation and insist on using the OSF DR model. Figure 5.7 is

obtained and we see it has the same format as Figure 5.5. The similarity to Figure

5.5 is striking. CIOSF has the same coverage as CIAC but its intervals are much

shorter, and both methods are superior to CIEP .

Another extreme example is shown in Figure 5.8. The artificial samples used

are:

x1 ∼ Expon(1), x2 ∼ Binom(5, 0.6), ,x3 ∼ Poisson(1), x4 ∼ t(5).

Note these two examples are representatives of many arbitrarily chosen artificial

samples that we experimented with. We see that misspecified OSF DR models

often give coverage identical to that from correctly specified models. However if any

one of the artificial samples comes from a Cauchy distribution, the OSF DR method

fails, see Voulgaraki et al. (2012).

5.6 Guideline for CIOSF

In the previous sections, we suggest that the CIOSF has an advantage in both

large or small sample size scenarios, compared to either CIAC or CIEP . Since

CIAC has excellent coverage probability of the true value of 1−G(t) over the whole

support, it has been suggested as an alternative to the CIEP , i.e. the Wald CI

which is regarded as the “standard confidence interval” taught in most of standard

statistical texts (Agresti and Coull, 1998 and Brown et al., 2001). However, its rather
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Figure 5.7: Mean coverage and widths of 100 CIs obtained from OSF, AC and EP
methods,sample size:100, artificial samples involved are from exponential, normal
and t(5) distribution, the reference sample is from N (0, 1).
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wide interval length is at odds with practitioners who prefer sharp intervals with

a reasonable coverage, which may be somewhat lower than the nominal confidence

level. Obtaining a CI which is up to 30% shorter than the best CI at the price of

a slight coverage loss is often desirable. In relatively large sample size scenarios,

the CIOSF can often be more than 20% shorter than CIAC without sacrificing any

coverage probability. We can acquire even better CIs by taking advantage of CIOSF

and CIAC using hybridization, which will be discussed in the next chapter.
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Chapter 6

Density Ratio Models with Repeated Out-of-Sample Fusion

6.1 Introduction

In the previous chapter, the OSF DR model has been illustrated through the

CI estimation for a threshold probability R(t) = 1−G(t) at t. The resulting CIOSF

appears to have considerable advantages over the alternative CIs. However, in some

scenarios, its coverage is somewhat lower than that of CIAC and sometimes it is

even slightly lower than the nominal coverage specified in small samples. An en-

hanced OSF DR model is introduced in this chapter, which is called DR model

with repeated out-of-sample fusion (ROSF DR model). The OSF DR model com-

putes ONE estimate of R(t) and then constructs its CI by acquiring its asymptotic

variance. In contrast, ROSF DR model calculates many estimates of R(t) by con-

catenating different sets of artificial samples repeatedly. Based on these estimates,

a CI is constructed (CIROSF ). Computation of the CIROSF involves no asymptotic

theory.

We illustrate the ROSF DR model by CI estimation of threshold probabilities
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also in a two-sample scenario. Suppose

x0 ∼ g(x) with support [a, b],

x1 ∼ g1(x) ≡ Uniform[a, b].

Then

g1(x)

g(x)
= [(b− a)g(x)]−1 = exp{ constant− log(g(x)) }.

This suggests that if the second derivative of log(g(x)) does not vary much, then

the density model ( 3.6) with tilt function as h(x) = (x, x2) approximately holds.

This includes the normal, exponential distribution, and all the distributions which

are not far from normal, such as gamma with a moderately large shape parameter

and t distribution with df > 5. However, the choice of h(x) = (x, x2) may still

produce reasonable results even for some misspecified cases which seem to violate

the model assumption because the second derivative of the quantity log(g(x)) is far

from constant. This discussion provides a rationale to choose uniformly distributed

artificial samples under the density model with h(x) = (x, x2). Usually we choose

subsets of the reference support as the supports of artificial samples although it is

not necessary. A procedure, based on this strategy, is presented in Section 5.2.

The expected length and coverage probability of CIROSF have been investi-

gated. A comparison of CIROSF to CIAC has been made. Aiming for a CI having

a coverage no lower than the nominal coverage anywhere, a hybrid CI ( CIHB) is
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proposed by combining CIROSF and CIAC :

CIHB = ( w1LROSF + (1− w1)LAC , w2UROSF + (1− w2)UAC ), (6.1)

where

W = (w1, w2) : the relative weight of CIROSF and CIAC ,

LROSF , UROSF : lower bounds and upper bounds of CIROSF ,

LAC , UAC : lower bounds and upper bounds of CIAC .

The HB confidence interval is intended to take advantage of both shortness of

CIROSF and superior coverage of CIAC . A detailed study on CIHB has been per-

formed when the reference sample is from various populations: such as normal,

gamma, logistic, uniform and exponential.

Even though a theoretical treatment is not yet available a guideline to choose

an optimal weight vector is provided based on numerical evaluation. A carefully

formulated Hybrid CI is useful in terms of both expected length and coverage of the

true value.
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6.2 Procedure to obtain CIROSF and CIHB

A possible procedure to obtain a CIROSF and CIHB is described next. Suppose

that x0 is a sample of size n0 = 50 from an unknown population. It is regarded as

the reference or original sample when the density ratio model is applied.

1. x0 is fused with any one of 49 uniform samples from Unif(−2 − i, 3 + i), i =

1, ..., 49, respectively, each of size 50, to yield 49 DR estimates p̂i (p̂i = R̂i(t))

in total: p̂1, . . . , p̂49 .

2. Construct a CI based on percentiles: Order the p̂i according to their value and

take the 2.5 and the 97.5 percentiles as the limits of a nominal 95% confidence

interval for p.

3. Repeat 50 times steps 1 and 2 to produce 50 CIs and average them to yield a

CIROSF .

4. Compute CIAC of x0 according to the AC method described in Chapter 3.

5. Obtain CIHB based on formula (6.1).

To illustrate the procedure, consider the case where x0 ∼ N (0, 1), w =

(0.25, 1.5). The choice of the weight vector W brings about a shift of the HB

confidence intervals relative to AC as can be seen from Table 6.1. The table reports

five cases out of 100, from which the coverage probabilities for CIROSF , CIAC and

CIHB were 81%, 95% and 95%, respectively. We do not advocate such an extreme

choice as w2 = 1.5. However, we use it here to point out the potential of the hybrid

method.
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Clearly, the choice of weight vectors determines how much the CIHB moves

inside CIAC . In this example, for w2 = 0.25 the left limit of CIHB moves much less,

thus deferring more to CIAC . In general, small values of the weights bring about a

more cautious movement inside CIAC . We may decide to set one of the weights to

zero, in which case the corresponding limit is the same as that from CIAC .

Table 6.1: 95% confidence intervals for R(T ) = 0.05 using three methods. The experiment

was repeated 100 times of which five typical cases are listed here. Efficiency is the ratio

of lengths relative to that of CIAC , x0 ∼ N (0, 1), and all samples are of size 50.

Method
¯̂

R(T )
¯̂
L

¯̂
U

¯̂
U − ¯̂

L Efficiency

ROSF 0.062 0.041 0.104 0.063 0.409
AC 0.091 0.014 0.168 0.154 1.000
HB 0.021 0.072 0.051 0.331

ROSF 0.102 0.074 0.153 0.079 0.441
AC 0.129 0.039 0.218 0.179 1.000
HB 0.048 0.121 0.073 0.408

ROSF 0.080 0.052 0.129 0.077 0.461
AC 0.110 0.026 0.194 0.167 1.000
HB 0.032 0.097 0.065 0.389

ROSF 0.048 0.021 0.123 0.103 0.741
AC 0.073 0.003 0.142 0.139 1.000
HB 0.008 0.114 0.106 0.763

ROSF 0.080 0.060 0.099 0.039 0.232
AC 0.110 0.026 0.194 0.168 1.000
HB 0.035 0.052 0.017 0.101

6.3 Coverage and length of CIHB

Aiming to generalize the results in the previous section, an investigation has

been made where the reference samples are from distributions frequently encoun-

tered. Although only gamma, logistic, uniform and exponential scenarios are pre-
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sented here, lognormal and t have also been investigated. In this section we use

graphical displays along with tables to illustrate the preceding hybrid HB method

in the scenarios other than normal. The graphical displays for CIHB show reduced

confidence interval length and at the same time very similar coverage as that from

AC. All sample sizes are 50 for the reference and the fusion samples. As noted,

there are many ways to fuse the reference data, but we shall follow the procedure

specified in the previous section.

Table 6.2: Coverage and average length from 100 runs for nominal 95% confidence inter-

vals for R(T ) = 0.05, In (*) the fusion samples were changed to x1 ∼ Unif(0, 3 + i) from

x1 ∼ Unif(−2− i, 3 + i), 1, ..., 49. All sample sizes are 50.

Coverage Ave. Width
x0 T w1 w2 SP AC HB SP AC HB

N(0, 1) 1.645 0.40 0.40 0.75 0.97 0.97 0.046 0.142 0.103
Logistic(0,1) 2.944 0.40 0.40 0.58 0.97 0.96 0.039 0.143 0.101
U(0, 50) 47.500 0.40 0.40 0.28 0.98 0.96 0.026 0.143 0.096
Γ(5, 0.5) 18.307 0.40 0.40 0.31 0.96 0.95 0.035 0.138 0.097
Γ(5, 0.5)∗ 18.307 0.40 0.40 0.52 0.96 0.95 0.043 0.146 0.105
Exp(1) 2.996 0.25 0.40 0.48 0.97 0.96 0.037 0.139 0.093

All the results reported below were obtained from 100 runs. The coverage

and average length of confidence intervals from 100 runs are given in Table 6.2. The

reference samples are different in all runs. In the first five cases reported in the table

6.2, with w = (0.40, 0.40), the CIHB s are about 30% shorter than the corresponding

CIACs. In the exponential case, the choice w = (0.25, 0.40) gives similar coverage

and length reduction as in the other cases.

The scenarios of the reference coming from various distribution have also been

shown in the following Figures 6.1, 6.2, 6.3, 6.4 and 6.5. All figures have the same

format as Figure 5.5 .
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Figure 6.1: CI Coverages and length distribution from 100 runs.

Running condition: x0 ∼ N (0, 1), w = (0.40, 0.40);

Summarized results: CIROSF 75%, CIAC 97%, CIHB 97%;
¯̂

R(T )ROSF = 0.059,
¯̂

R(T )AC = 0.084; SP intervals here are CIROSF s.
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Figure 6.2: CI Coverage and length distribution from 100 runs.

Running condition: x0 ∼ Logistic(0, 1), w = (0.4, 0.4);

Summarized results: CIROSF 58%, CIAC 97%, CIHB 96%;
¯̂

R(T )ROSF = 0.050,
¯̂

R(T )AC = 0.080; SP intervals are CIOSF here.
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Figure 6.3: CI Coverages and length distribution from 100 runs.

Running condition: x0 ∼ Uniform(0, 50), w = (0.40, 0.40);

Summarized results: CIROSF 36%, CIAC 97%, CIHB 95%;
¯̂

R(T )ROSF = 0.046,
¯̂

R(T )AC = 0.083; SP intervals are CIROSF .
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Figure 6.4: CI Coverages and length distribution from 100 runs.

Running condition: x0 ∼ Γ(5, 0.5), w = (0.40, 0.40);

Summarized results: CIROSF 31%, CIAC 96%, CIHB 95%;
¯̂

R(T )ROSF = 0.047,
¯̂

R(T )AC = 0.084; SP intervals are CIOSF here.
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Figure 6.5: CI Coverages and length distribution from 100 runs.

Running condition: x0 ∼ Exp(1), w = (0.40, 0.40);

Summarized results: CIROSF 31%, CIAC 97%, CIHB 93%;
¯̂

R(T )SP = 0.046,
¯̂

R(T )AC = 0.077; SP intervals are CIOSF here.
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Figures 6.1 and Figure 6.5 show that choosing w = (0.40, 0.40) for the reference

with any one of normal, logistic, uniform distributions, and w = (0.25, 0.40) for

an exponential distributed reference sample we obtained a nice hybrid confidence

interval for R(t) which has a much shorter length while its coverage specified by

the nominal confidence level is still maintained. The detailed results are shown in

the captions of related figures. The gain of 15% ∼ 30% shortening is significant in

practical applications. We also notice that the point estimate for R(t) seems more

accurate for ROSF method than AC. The validation of this assertion requires a

thorough investigation in the future. As mentioned previously, we also observed that

a useful CIHB can be obtained when the reference is different from the distributions

presented above.

6.3.1 Guidelines for the choice of W

From the discussion above, one will notice that the choice of the weight vector

W is essential in order to implement the HB methods. Although we do not have

a rigorous way obtain the optimal W has been found yet, we find the choice of W

does not entirely depend on the reference distributions. While a universal W may

exist. A rigorous treatment is not available so far. Clearly the coverage probability

is a function of W. Consider the case of Figure 6.1, treat The W = (w1, w2) as a

variable instead of a specific value: w = (0.40, 0.40). Allow either w1 or w2 runs

over (0, 1). The result is plotted at Figure 6.6 as a contour picture. The x, y axis are

w1andw2 respectively. The numbers on the contour lines are coverage probabilities.

64



 78 
 82 

 84 

 86 
 88 

 90 

 92 
 94 

 96 

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 6.6: Coverage of CIHB as a function of w = (w1, w2), x0 : N (0, 1), x axis is
w1 and y axis is w2.
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It is obvious that the w = (0.0, 0.0) is the case CIAC while the CIROSF has the

w = (1.0, 1.0) according to the formula proposed in 6.1. It seems that the choice

w = (0.40, 0.40) is a feasible choice for a standard normal distributed reference

sample to get a CIHB with a 95 % coverage. The other reference scenarios have

also been studied. Figure 6.7 has the same format as Figure 6.6, except that the

reference distribution is different, and is stated in the captions. If these figures are

observed collectively, it seems that w = (0.25, 0.4) is a good candidate for reference

samples from a range of distributions to achieve approximately 95% coverage.
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Figure 6.7: Coverage of CIHB as a function of W = (w1, w2), top left: x0 :
logistic(0, 1); top right: x0 : Uniform(0, 50); bottom left: x0 : Γ(0, 1); bottom
right: x0 : exp(0, 1)
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Chapter 7

Analysis of the Testicular Germ Cell Tumor (TGCT) Data

In this chapter we apply the OSF DR model discussed in the previous chapters

to the Testicular Germ Cell Tumor (TGCT) data set. These TGCT data have been

analyzed by Voulgaraki et al. (2012) using a multivariate density ratio model. A

summary of their work is made after a brief description of the TGCT data. Our

analysis can be regarded as an extension of their work. The results show that the

analysis with an OSF DR model not only confirms their inference, but also provide

further evidence regarding the differences between cases and controls in the TGCT

study.

7.1 Introduction

Germ cell tumors account for 90-95% of primary testicular tumors, which are

the most common malignant tumors in men ages 20 to 35 years old in the United

States. Approximately 9,000 new cases are diagnosed in the United States each year,

and about 350 to 400 cases lead to deaths. Germ cell tumors are very sensitive to

chemotherapy and cure rates are 90-95 %. It is commonly believed that the primary

risk factor for the development of this cancer is undescended testicles, along with

other risk factors: family history, physical activity, weight, dairy consumption, and
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age at puberty.

7.2 Descriptive Analysis of the TGCT data

The TGCT data from the Servicemen’s Testicular Tumor Environmental and

Endocrine Determinants Study (2002-2005) contain 763 case and 928 controls after

removing the incomplete observations.

Table 7.1: TGCT data set

SUJECT Age CCTL Height Weight BMI Race Family
ID years (0-4) cm kg History

1 TC10012SA 19 2 172.72 77.11 25.85 1 0
2 TC10022SA 33 2 177.80 81.65 25.83 1 0
3 TC10041SN 24 1 193.04 99.34 26.66 1 0
4 TC10050SA 23 0 182.88 83.92 25.09 1 0
5 TC10051SA 22 1 187.96 104.33 29.53 1 0
6 TC10060SA 26 0 170.18 64.41 22.24 1 0
7 TC10061SA 26 1 180.34 85.28 26.22 1 0
8 TC10073SA 42 3 172.72 70.31 23.57 1 0
9 TC10080SA 36 0 170.18 72.58 25.06 1 0

10 TC10081SA 36 1 180.34 80.29 24.69 1 0

...
...

...
...

...
...

...
...

The TGCT data have eight variables: subject ID, Age, an indicator for case or

control (0=case, 1-4=control), Height (cm), Weight (kg), BMI (kg/m2) of partici-

pants, family history of testicular cancer (0=no, 1=yes) and race (1=white,2=black,

3=other). In this study, we focus on three variables: Height, Weight and Age

(see Table 6.1). Table 7.2 shows the summary statistics for both case and control
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groups.

Table 7.2: TGCT case-control summary statistics.

Variables CCTL Range Mean SD

Age
Control 18.00 ,46.00 27.91 5.93
Case 18.00 ,45.00 27.82 5.99

Height (cm)
Control 152.4, 215.9 178.3 7.06
Case 160.0, 203.2 179.6 7.03

Weight (kg)
Control 38.55, 127.01 80.13 11.14
Case 50.80, 131.54 81.43 11.69

It is obvious that the controls and the cases are very similar in terms of their

summary statistics. The similarity can be further demonstrated by histograms of

Age, Height and Weight (see Figure 6.1). The patterns of the histograms for ei-

ther case or control are almost the same. Normal curves have been added to the

histograms, which have the same means and variances of the variables given in Ta-

ble 7.2. The Age distribution is skew since this cancer is associated with younger

groups. Scatterplot matrices for both case and control are shown in Figure 6.2. In

order to illustrate the correlations, regression lines have been added. The correlation

matrices are denoted by ρControl and ρCase:

ρControl =



A H W

A 1.000 −0.021 0.115

H −0.021 1.000 0.505

W 0.115 0.505 1.000

 ρCase =



A H W

A 1.000 0.021 0.162

H 0.021 1.000 0.521

W 0.162 0.521 1.000



Both scatterplot matrices and correlation matrices demonstrate that in either

case the correlations among the variables are strikingly similar. Weight and Height
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Figure 7.1: Histograms for case
(right) and control (left)
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Figure 7.2: Scatterplot matrix for case
(bottom) and control (top)

have a significant correlation (ρ ≈ 0.5), and a relatively weak correlation between

Age and Height is observed (ρ ≈ 0.15). The correlation between Age and Weight is

close to zero (ρ ≈ ±0.02).

We see that the TGCT profile of both case and control are very similar, and

that the descriptive data analysis does not differentiate the cases from the controls.
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7.3 Analysis of TGCT data

Although the descriptive data analysis fails to detect any obvious discrepancy

between the case and control, Voulgaraki et al (2012) pointed to a difference after

analyzing the TGCT data with a density ratio model using a tilt function h(t) = t.

Note that this tilt function holds when the reference and distortion distributions are

normal with the same covariance matrices,

x0 ∼ g0(x) = N (µ0,Σ), x1 ∼ g1(x) = N (µ1,Σ).

Taking x0 as the reference sample, the density ratio of the two pdfs is:

g1(x)

g0(x)
= exp{(µ1 − µ0)

′Σ−1x− 1

2
(µ′0Σ

−1µ0 − µ′1Σ−1µ1)}. (7.1)

Denote

α = −1

2
(µ′0Σ

−1µ0 − µ′1Σ−1µ1), β = Σ−1(µ1 − µ0),

to obtain

g1(x)

g0(x)
= exp(α + β′x), (7.2)

which is a density ratio model with tilt function: h(x) = x.

Voulgaraki et al. (2012) show that (7.2) is justified by plotting Ĝ vs G̃. They

show that compared with generalized additive models (GAM), multiple regression

(MR) and Nadaraya-Watson (NW) regression, the density ratio model leads to an
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equally good regression of Weight given Height and Age due to efficient multivariate

kernel density estimates based on multiple sources.

In this study, we use an OSF DR model. Either the control or the case

sample of the TGCT data is combined with the same computer generated artificial

sample separately. The artificial sample can be the sample with statistical structure

resembling either case or control. The flexibility of choosing artificial samples lets

us view the reference sample from different angles. We validated the results of

Voulgaraki et al. (2012) by providing a graphical means to the difference between

case and control.

7.3.1 Bivariate OSF DR Model for TGCT Data

Since Age has low correlation with Weight or Height and the Weight and

Height are moderately correlated, it is reasonable to analyze the TGCT with a

bivariate OSF DR model. According to what was previously demonstrated, the

assumption of density ratio models will be better satisfied if the artificial samples

are similar to the reference sample. We choose a normal sample with mean and

variance of the pooled case and control sample as our artificial sample. To generate

kernel density estimates of either case and control, the bandwidth matrices have

been chosen according to the algorithm suggested by Voulgaraki et al. (2012), and

are given below:
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HControl =


Height Weight

Height 1.1010 0

Weight 0 1.7566

 HCase =


Height Weight

Height 1.1236 0

Weight 0 2.1079


Figure 7.3 shows plots of joint kernel density estimates of Height and Weight

for both case and control in contour and perspective styles. The table 7.3 shows the

joint distribution of Height and Weight:

Table 7.3: joint distribution of P (Height ≤ Height,Weight ≤ Weight)

Height Weight Control Case

170. 60. 0.3165 0.3031
175. 60. 0.4033 0.3747
180. 60. 0.5244 0.4987
185. 60. 0.6335 0.6149
170. 70. 0.3165 0.3031
175. 70. 0.4033 0.3747
180. 70. 0.5244 0.4987
185. 70. 0.6335 0.6149
170. 80. 0.3165 0.3031
175. 80. 0.4033 0.3747
180. 80. 0.5244 0.4987
185. 80. 0.6335 0.6149
170. 90. 0.3165 0.3031
175. 90. 0.4033 0.3747
180. 90. 0.5244 0.4987
185. 90. 0.6335 0.6149

7.3.2 Trivariate OSF DR models for TGCT data

The joint distribution of Age, Height and Weight of case and control have

also been evaluated. The artificial sample used follows a normal distribution having

the mean vector and covariance matrix of the pooled data from both case and
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Figure 7.3: 3D plot for kernel density estimates of Height and Weight
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control. The resulting pdfs are difficult to visualize since they have four dimensions.

For illustration purposes, the third variable is fixed at designated values and the

resulting pdfs (for example f(A,H,W = w0)) can be viewed in contour plots. These

Table 7.4: The fixed variables and their values in contour plots

Figures Variable fixed Values of the fixed variable fixed

Figures 7.4 , 7.5 Weight (kg): 72,76,80,84,88,92
Figures 7.7 , 7.8 Height (cm): 172.1,174.7,177.3,179.9,182.5,185.1

contour plots are in general similar although some differences in the area away from

the contour center can be discerned. However these discrepancies result from the

sparseness of the observations.

We next consider conditional pdfs. Figures 7.6, and 7.9 show the estimated

f(W |A,H)’s and f(H|A,W )’s, respectively. For both case and control, these con-

ditional densities are quite similar. However once the conditional values increase,

the conditional densities show different behaviors. The conditional densities can be

used in the estimation of the corresponding conditional expectations.

It is important to note that the results obtained from different artificial data

samples are strikingly similar, but this is not shown here.

7.4 Summary

In this chapter we have implemented a multivariate version of the OSF method.

The results confirm perviously published results graphically using plots of joint and

conditional pdfs.
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Figure 7.4: Contour plots for the control pdf for fixed weights
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Figure 7.7: Contour plots for the control pdf for fixed Heights
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Figure 7.8: Contour plots for the case pdf for fixed Heights
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Chapter 8

Analysis of Microarray Data of Colon Cancers

8.1 Introduction

Microarray data are now routinely used to analyze how gene expression pro-

files relate to certain diseases. Extensive literature reports how to identify individual

genes according to their significantly differential expressions using different strate-

gies. These strategies lead to numerous R packages such as qvalue and limma which

are involved in this study. The popularity of these packages is due to their handling

of pairwise multiple tests. However, it is also believed that a given disease may

relate to expression profiles of groups made of several genes instead of individual

genes (Guillot et al., 2007).

In this chapter, we apply the OSF DR model to a case-control microarray data

using similar approaches as those applied to the TGCT data. The artificial sample

employed in this study is a sample from a normal distribution with a mean and

variance that are computed from the pooled sample of both case and control. This

analysis has there are two goals :

1. Differentiate the case and control by identifying the most significantly differ-

entially expressed gene groups.
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2. Detect the association of member genes among the groups in either the case

or the control.

For sets of multiple genes, the computation cannot be carried out on all pos-

sible sets (think about how big is
(
5000
2

)
if we know

(
500
2

)
= 124, 750). Guillot (2007)

believed that genes involved in the best sets of 2 or 3 genes were those ranking high

in terms of univariate differential expression. We restricted the search in a list of

top 200 genes in differential expression and ranked genes according to their occur-

rence in the best sets of genes. We decided to use the same strategy to alleviate our

computation burden.

Note the choice of 2 or 3 genes in a designated gene group is arbitrary and is

done entirely for demonstration and data visualization purposes. The method and

strategy employed here are also applicable to gene groups containing more than 3

genes. It is our purpose to demonstrate an application of the density ratio model

with OSF to high dimensional data and to provide an alternative strategy to tackle

the microarray interpretation.

8.2 Description of Microarray Data of Colon Cancer

We use a colon microarray data contain 68 subjects (30 controls and 38 cases)

and 5339 genes. The data format is shown in Table 8.1.
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Table 8.1: Part of colon cancer microarray data : 5339 genes and 68 subjects: 30 in
control, 38 in case

ID Type 238493 at 1562133 x at 1559616 x at 235687 at · · · , · · ·
1 Control 2.8539 -0.6096 -1.2855 -1.0888 · · · , · · ·
2 Control 0.5906 0.0024 -0.6383 -0.7287 · · · , · · ·
3 Control 0.6176 -0.4620 -0.7241 -0.3482 · · · , · · ·
4 Control 0.8220 -0.5143 -0.6485 -1.0201 · · · , · · ·
5 Control 2.0971 -0.6756 -0.8039 -0.5683 · · · , · · ·
6 Control 0.1188 -0.6273 0.0188 -0.8524 · · · , · · ·

· · · · · · · · · · · ·

63 Case 1.2171 -0.2321 -1.5178 -0.2983 · · · , · · ·
64 Case 0.1281 -0.3300 -0.7632 -0.0570 · · · , · · ·
65 Case 3.6614 -0.3115 -1.8012 -0.7528 · · · , · · ·
66 Case 1.5992 0.5000 -1.1992 -0.4584 · · · , · · ·
67 Case 0.4309 0.2062 -0.5090 -0.7522 · · · , · · ·
68 Case 1.5078 -0.1746 -0.7188 -0.6654 · · · , · · ·

8.3 Microarray Data Analysis

To analyze that the microarray data by the OSF DR model we follow the

following steps:

1. Use Package qvalue to rank the significance of differentially expressed genes

in the case and control. The top 200 genes have been identified according to

the significance of their differential expression between the case and control.

2. Select the most significant gene groups (every group contains 2 or 3 genes

in this study) by the OSF DR models. The artificial samples involved are

sampled from a normal distribution with the pooled mean and variance from

both the case and control. The significance is based on their q-values, which

are elaborated in the R package qvalue. They can be obtained from the p-value
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of the null hypothesis: case and control have the same distribution.

3. Visualize the association between the member genes in a two-gene group, the

scatterplots of the top 4 pair genes are plotted. Moreover, their joint pdfs are

also plotted as contour plots.

4. Plot scatterplots for the top 4 of the most differentially expressed three-gene

groups.

8.4 Results and Discussion

The ranking of the significantly differentially expressed gene groups can be

performed according to the procedure specified in the previous section: identify

first 200 most significantly expressed individual genes; Then use the two-sample

multivariate OSF DR model to test every pair of genes among 200 individual genes

(
(
200
2

)
= 19, 900 pairs), which leads to 19, 900 p-values. Finally, rank the q values

according to the R qvalue package.

It brought our attention that the association among the member gene in gene

groups is not related to the significance of differential expression. The scatterplots

of the top 4 gene pairs are illustrated in Figure 8.1. Their linear regression line

and GAM line have been added to illustrate the trends. Obviously although the

first pair is the most significantly expressed gene pair, the trends for both case and

control are similar from either linear regression or GAM. However, the third pair

seems to have a very different association among the member genes in the case

and the control. We believe that these association information could be important
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for the colon cancer study and diagnoses. The gene pairs which have significantly

differential expressions between case and control deserve special attention if there

are different associations among the member gene between the case and control. One

may believe intuitively that similar association among the member genes in either

group is due to some effects unrelated to the colon cancer regardless how significant

their differential expressions are. Indeed, it is also reasonable to investigate the

association among member genes even in some less differentially expressed gene

groups.

Figures 8.2 and 8.3 show their joint pdfs. These contour pictures can illustrate

not only their significance of expression (comparing the contour centers) but also

visualize their association between the two genes in the pair. It is believed that the

shapes and curvatures are related to the association. A metric could be developed

in the future to quantify their associations based on these contour plots.

Figure 8.4 illustrates the scatterplots of first 4 groups from the most signifi-

cantly expressed three-gene groups. Table 8.2 shows the top 10 individual genes, 4

gene pairs and 4 three-gene groups according to their rankings in terms of differential

expression between the case and control. It is obvious:

1. Genes involved in the best sets are not those ranking high in terms of univariate

differential expression.

2. For 3-gene groups, some genes appear more frequently in many of the best

sets: such as 1554970 at which appears in groups 1 and 4, all first 4 groups

include 206349 at. This trend does not appear in the best 2-gene groups.
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Table 8.2: Ranking of gene or gene groups according to their significantly differential
expressions between case and control of colon cancer microarray data.

number gene Rank gene or genes in gene groups

1 1 220423 at
1 2 224144 at
1 3 206025 at
1 4 236285 at
1 5 206349 at
1 6 208288 at
1 7 204844 at
1 8 217240 at
1 9 208105 at
1 10 1553857 at
1 · · · · · ·
2 1 {218623 at, 205656 at}
2 2 {218623 at, 209934 s at}
2 3 {218623 at, 203305 at}
2 4 {203042 at, 203305 at}
2 · · · · · ·
3 1 {1554970 at, 217240 at, 206349 at}
3 2 {230412 at, 206349 at, 224144 at}
3 3 {1555612 s at, 230412 at, 206349 at}
3 4 {1554970 at, 1555612 at, 206349 at}
3 · · · · · ·

8.5 Summary

This chapter analyzes microarray data from colon cancer and identifies the

most significantly differentially expressed gene pairs or three-gene groups. For the

gene pairs, the associations between the two genes are also illustrated. We be-

lieve that the associations between genes may shed more light on the colon cancer

diagnose.
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Figure 8.1: The scatterplots of 4 gene pairs which are most significantly differentially
expressed. The linear regression line and GAM line are also plotted to illustrate the
trend.
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Appendix A

R package: Density Ratio

The R package DensityRatio is developed by Wen Zhou, University of Mary-

land. It computes estimates for parameters, distributions and densities in either

typical density models or out-of-sample fusion density ratio models (OSF DR). All

figures in this dissertation are graphed by this packages. Please find a brief sum-

mary of the functions included in the DensityRatio package, along with a detailed

description, function codes and examples in this appendix.

A.1 Summary of functions in the DensityRatio package

• CONDITION calculates and plots the conditional kernel densities for a pair

of 3-covariate samples. It gives conditional pdfs, conditional means and vari-

ances also. The algorithm of choosing bandwidth used to compute the kernel

pdf is from Voulgaraki et al (2012).

CONDITION(Y1,Y2,index_1=10, index_2=10,gridsize=20,variable="A")

Y1: First 3-covariate samples,

Y2: Second 3-covariate samples,

gridsize: The number of grid points,
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variable: Column name of the samples,

index_1: index for the first column,

index_2: index for the second column.

#### Example #######

data(TGCT)

Y1 <- Control

Y2 <- Case

CONDITION(Y1,Y2,index_1=10, index_2=10,variable=’C’)

• CONTOUR plots the kernel density for two 3-covariate samples. It depends

on CONTOUR.0, CONTOUR.1,CONTOUR.2 and CONTOUR.3.

CONTOUR <- function(Y1,Y2,gridsize=20,variable="A",a)

Y1: First of 3-covariate samples,

Y2:Second of 3-covariate samples,

gridsize: The number of grid points.

variable: Column name of the samples,

a: index for the column,

### example ###

data(TGCT)

Y1 <- Control

Y2 <- Case

CONTOUR(Y1,Y2, variable=’C’,a=10)
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• SE is the most important function in this package. It requires a matrix input

consisting of several artificial samples and a real data reference sample as its

columns. It is a multiple univariate version of function SP2K. It outputs the

estimates for the parameters and probabilities assuming a density ratio model.

It also calculates confidence intervals for OSF DR, AC, Wilson, and EP (Wald)

methods. The function SP.AC.EP is the direct application of function SE. To

run use:

X: matrix consisting of multiple univariate samples of the same length,

the last component being the reference sample.

T: threshold value

### Example ###

X <- cbind(rnorm(100,1,1),runif(100,-3,3),rnorm(100))

SE(X)

Note: rnorm(100) is the "real data" reference sample.

• SIMULATION.FUSION This executes repeated out of sample fusion us-

ing hybridization for simulation purposes. We obtain confidence intervals for

ROSF, AC, andEP (Wald) methods.

The reference sample is simulated from any one of the following x0 distribu-

tions: normal, gamma, uniform, logistic and exponential distribution.

SIMULATION.FUSION(dist=’normal’,N=NULL,a=NULL,b=NULL,

K=100,alpha=0.05,W=c(0.4,0.4))

dist: specify the distribution
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K: Number of runs.

N: number of observations in exact sample.

Note: x_1 is simulated 50 times from different uniform distributions

as explained on page 51 (Section 5.2 of Chapter 5).

W: a vector which is the relative weight of SP vs AC

SIMULATION.FUSION(dist=’normal’,N=50,a=0,b=1,K=10)

# SP AC HB

# Mean 0.064 0.09 0.077

# Width 0.079 0.15 0.122

# Coverage 70.000 90.00 90.000

### runif(50,0,50)

SIMULATION.FUSION(dist=’uniform’,N=50,a=0,b=50,K=5)

• SP2K is from Professor Benjamin Kedem. It implements a two-sample uni-

variate density ratio model. It compute estimate of parameters, probabilities

and threshold probabilities. It also perform equidistribution test and model

validations. It is the base for function SE, which implements a multivariate

univariate sample version density ratio model and the function TWOSAM-

PLE.DR, which implements two-sample multivariate version of density ratio

models.

SP2K(x1,x2,Increment=0.05,BandWidth=0.5,T),

x1:vector of sample value,univariate sample only,
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x2:vector or sample value (reference sample),univariate only,

Increment:Increment controls the grid at which est.

g,g1,G,G1 are evaluated, default value is 0.05.

BandWidth:Bandwidth for calculation kernel smoothing density,

it controls smoothness of kernel est. of g,g1

and the default value is 0.5.

T: Threshold

### Example ###

SP2K(rnorm(100,1,1),rnorm(100),Increment=0.05,BandWidth=0.5,T=1.645)

• TWOSAMPLES.DR implements two sample density ratio models for both

univariate and multivariate samples. It is the base for functions CONDITION

and CONTOUR. It also performs an equidistribution test.

TWOSAMPLES.DR(x1,x2)

x1:First sample}

x2:Second sample (reference sample)

### EXAMPLE 1 (Univerate) ############

TWOSAMPLES.DR(rnorm(100,1,1),rnorm(100))

### EXAMPLE 2 (Multivariate) ##########

x1 <- cbind(rnorm(80,1,1),rnorm(80,0.5,1))

x2 <- cbind(rnorm(100,0,2),rnorm(100))

TWOSAMPLES.DR(x1,x2)
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CONDITION Conditional Densities for Two 3-Covariate Samples

Description

The function CONDITION calculates and plots the conditional kernel densities for two 3-covaraite
samples.The samples should have identical column names.The function also computes conditional
mean and variance.

Usage

CONDITION(Y1,Y2,index_1=10, index_2=10,gridsize=20,variable="A")

Arguments

Y1 First of the two 3-covariate samples, which is required to have a column name

Y2 Second of the two 3-covariate samples, which is required to have the exactly
same column name as that of the first sample

gridsize The number of grid points.

variable Column name of the samples, three levels only: ’A’, ’B’, ’C’

index_1 index for the first column

index_2 index for the second column

Details

The function CONDITION calculates and plots the conditional kernel densities for two 3-covariate
samples, it needs the functions: CONDITION.0, CONDITION.1 and CONDITION.2.

Value

M Conditional mean.

SE Conditional variance.

Note

This function needs CONDITION.0, CONDITION.1,CONDITION.2, DR.KS

1
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Author(s)

Wen Zhou

See Also

DR.KS, CONDITION.0, CONDITION.1,CONDITION.2

Examples

#### Example 1 #######
### 1. Load the data.

data(TGCT)

### 2. Create the two 3-covariate samples.

Y1 <- Control[1:100,]
Y2 <- Case[1:100,]

### 3. Read the function CONDITION’s arguments.

args(CONDITION)

### 4. Plot the conditional pdf of C condition on A and B. level b and c

CONDITION(Y1,Y2,index_1=10, index_2=10,variable=’C’)

#### example 2 ########
Y1 <- cbind(rnorm(100,1,1),rnorm(100,0.5,1),rnorm(100))
Y2 <- cbind(rnorm(100,2,1),rnorm(100,0.5,1.2),rnorm(100))
colnames(Y1) <- c("Col_1","Col_2","Col_3")
colnames(Y2) <- c("Col_1","Col_2","Col_3")

CONDITION(Y1,Y2,index_1=10,index_2=10)

CONTOUR Contour plot for kernel densities of two 3_covariate samples

Description

The function CONTOUR plots the kernel density for two 3-covariance samples.

Usage

CONTOUR <- function(Y1,Y2,gridsize=20,variable="A",a)



CONTOUR 3

Arguments

Y1 First of the two 3-covariate samples, which is required to have a column name

Y2 Second of the two 3-covariate samples, which is required to have the exactly
same column name as that of the first sample

gridsize The number of grid points.

variable Column name of the samples, three levels only: ’A’, ’B’, ’C’

a index for the column, scalar or vector.The choose of a value depends on gridsize.

Details

The function CONTOUR plots the kernel densities for two 3-covariance samples.

Value

value value of the last variable

Note

It depends on CONTOUR.0, CONTOUR.1, CONTOUR.2

Author(s)

Wen Zhou

See Also

CONTOUR.0, CONTOUR.1, CONTOUR.2

Examples

### Code ###

################################################################################
### Function: CONTOUR
### Wen Zhou 8/24/2012
################################################################################

CONTOUR <- function(Y1,Y2,gridsize=20,variable="A",a) {
Name <- colnames(Y1)

LIST <- CONTOUR.0(Y1,Y2,gridsize)
L1 <- switch(variable,

A=LIST[[1]],
B=LIST[[2]],
C=LIST[[3]])

L2 <- switch(variable,
A=c(Name[2],Name[3],Name[1]),
B=c(Name[1],Name[3],Name[2]),
C=c(Name[1],Name[2],Name[3]))

CONTOUR.1(L1[[1]],L2,a=a)
dev.new()
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CONTOUR.1(L1[[2]],L2,a=a)

}

################################################################################
### Function: CONTOUR.0, CONTOUR.1
### Wen Zhou 8/24/2012
################################################################################
### a is a scalar or vector
CONTOUR.0 <- function(Y1,Y2,gridsize=20) {

fhat <- function(Y1,Y2, gridsize=20) {
RRR1 <- DR.KS(x2=Y1, gridsize=gridsize)
RRR2 <- DR.KS(x2=Y2, gridsize=gridsize)
list(RRR1,RRR2)
}

L_C <- fhat(Y1,Y2,gridsize=gridsize)
L_B <- fhat(cbind(Y1[,1],Y1[,3],Y1[,2]),cbind(Y2[,1],Y2[,3],Y2[,2]),gridsize=gridsize)
L_A <- fhat(cbind(Y1[,2],Y1[,3],Y1[,1]),cbind(Y2[,2],Y2[,3],Y2[,1]),gridsize=gridsize)

list(L_A=L_A,L_B=L_B,L_C=L_C)

}

CONTOUR.1 <- function(S,L=NULL,gridsize=51,a) {
k <- length(a)
if(k==1) {

contour(S$grid[[1]],S$grid[[2]],S$estimate[,,a],xlab=L[1],
ylab=L[2],cex.main=0.8,
main=paste(L[3],’ = ’,round(S$grid[[3]][a]),sep=’’))}

else{
n <- ifelse(k/2-ceiling(k/2)==0,k/2,(k+1)/2)

par(mfrow=c(n,2))

for(i in 1:k) {
contour(S$grid[[1]],S$grid[[2]],S$estimate[,,a[i]],

xlab=L[1],ylab=L[2],
main=paste(L[3],’ = ’,round(S$grid[[3]][a[i]],2),sep=’’))}
}

return(round(S$grid[[3]][a],2))
}

### example 1 ###

### 1. Samples.

data(TGCT)

### 2. Create the two 3-covariate samples.
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Y1 <- Control[1:100,]
Y2 <- Case[1:100,]

### 3. Read the function CONTOUR’s arguments.
head(CONTOUR)
### 4. Run

CONTOUR(Y1,Y2, variable=’C’,a=c(10,12,14,16))

### Two contour plots

#### example 2 ########
Y1 <- cbind(rnorm(100,1,1),rnorm(100,0.5,1),rnorm(100))
Y2 <- cbind(rnorm(100,2,1),rnorm(100,0.5,1.2),rnorm(100))
colnames(Y1) <- c("Col_1","Col_2","Col_3")
colnames(Y2) <- c("Col_1","Col_2","Col_3")

CONTOUR(Y1,Y2, variable=’C’,a=c(10,12,14,16))

DATA DESCRIPTION Dataset (TGCT)

Description

Dataset included.

Details

Case, Control

Author(s)

Wen Zhou, Benjamin Kedem

Maintainer: Wen Zhou <wenzhou@math.umd.edu>

References

Kedem, Qin, Zhang

See Also

ks

Examples

data(TGCT)
head(Control)
head(Case)
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SE Estimation of the Confidence Interval for Multiple Univariate Samples

Description

The function MULTISAMPLES.DR estimates the parameters,their stand deviation, confidence in-
terval for threshold probability and test the equidistribution for multiple univariate samples accord-
ing density ratio model.

Usage

SE(X,T=1.645, tilt="normal")

Arguments

X matrix made from multiple same length univariate sample, the last component
is the reference sample

T threshold value

tilt tilt function, only normal and gamma available

Details

This function estimates parameters and their standard deviation, threshold probability and its con-
fidence interval and test the equidistribution of all samples according to density ratio models.The
same sizes should be equail

Value

par estimate for parameters.

p Jump probability.

Prob confidence intervals for SP,AC,EP

Note

This is the multiple sample version of SP2XXSQK.

Author(s)

Wen Zhou

See Also

TWOSAMPLES.DR



SE 7

Examples

################################################################################
### Function: SE compute the confidence intervals for SP(OSF),AC, EP.
### X is made from sample vectors, T is threshold
### Wen Zhou 1/31/2013
################################################################################

SE <- function(X,T=1.645,tilt="normal") {

### X = cbind(x1,x2,..., xm, x0)

m <- ncol(X) -1
n <- nrow(X)
N <- (m+1)*n

### t = c(x1’,x2’,...,xm’,x0’)’ # fusion of samples plus reference.

t <- NULL
for (i in 1:(m+1)){
t <- c(t,X[,i]) } # t has N elements

### 1. Functions involves ###

### a. H(x)=c(1,h(x))=h(x)=(1,x,x^2); x is a n X 1 vector
if (tilt=="normal")
{ H <- function(x) rbind(rep(1,n), x , x^2)}
else if (tilt=="gamma") {
H <- function(x) rbind(rep(1,n), x , log(x))
}

else { stop("tilt is either normal or gamma")}

### b. w = exp(alpha + beta*x + gamma*x^2), w is a n X 1 vector.
### It is w(theta, x)*I(x <= a)

w <- function(theta,x,a=max(x)) {
IN <- exp(colSums(theta*H(x)))
ifelse(x<=a,IN,0) }
### c. MINUS log-likelihood function:
###

minusloglike <- function(theta){
A <- B <- rep(0,n)
Theta <- matrix(rep(0,3*m),m)

for(i in 1:m) {
Theta[i,] <- theta[(3*i-2):(3*i)]
A <- A + w(Theta[i,],t)
B <- B + log(w(Theta[i,],X[,i])) }

### log(1 + sum (w)) - sum( alpha + beta*x + gamma*x^2)
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sum(log(rep(1,n) + A)) - sum(B) }

### 2. Parameter Estimation: parameter, W ###

### Maximizing loglikelihood by minimizing MINUS loglikelihood

min.func <- nlminb( start=rep(c(-0.02,.2,.2),m),obj = minusloglike)

### Parameter estimates: alpha_hat, beta_hat, gamma_hat, p_hat

parameter <- matrix( min.func$par, 3,m)
row.names(parameter)=c("alpha","beta","gamma")

### c. W(t) = cbind(w1(t), w2(t), ... , wm(t))
### Weight Matrix: nrow=m X n; ncol=m

W <- function(x,a=max(x)) {
weight <- matrix(rep(0,m*N),N)

for (j in 1:m) {
weight[,j] <- w(parameter[,j],x,a=max(x))}
return(weight) }

### p=dG,

p <-( n*(1 + rowSums(W(t))) )^(-1)

#### 3. S calculation

### Lu’ Dissertation,P24: A, B, C calculations

### (I0)_ij = int w_i*w_j dG/(1 + colSums(W))
### = sum(w_i*w_j*p*np)=sum(n*w_i*w_j*p^2)
### since dG=p=1/(1+colSums(W)

I0 <- t(W(t))
I1 <- t(W(t))
I2 <- t(W(t))
I3 <- t(W(t))
I4 <- t(W(t))

Amat <- I0 # Lu’ Dissertation: P23

### Bmat: made by m*m blocks, every block result from
### h(x)=(x,x^2)’;
### odd row is I1, even row is I2

Bmat <- matrix(rep(0,2*m*m), m*2)

for (i in 1:m) {
Bmat[2*i-1,] <- I1[i,]
Bmat[2*i,] <- I2[i,]

}

### Cmat: made by m*m blocks, every block resulted from
### h(x)h’(x) = matrix((x,x^3, x^3, x^4), nrow=2)
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C_01 <- matrix(rep(0,2*m*m), m*2)

### odd row is I2, even row is I3

for (i in 1:m) {
C_01[2*i-1,] <- I2[i,]
C_01[2*i,] <- I3[i,]

}

C_02 <- matrix(rep(0,2*m*m), m*2)

### odd row is I3, even row is I4

for (i in 1:m) {
C_02[2*i-1,] <- I3[i,]
C_02[2*i,] <- I4[i,]

}

### Cmat: 2*m X 2*m, odd column is C_01, even column is C_02

Cmat <- matrix(rep(0,4*m*m), m*2)
for (i in 1:m) {

Cmat[,2*i-1] <- C_01[,i]
Cmat[,2*i] <- C_02[,i]

}

### E1 = int w_i*t dG = sum(w_i*t*p)

E1 <- colSums(p*W(t)*t)
E2 <- colSums(p*W(t)*t^2)
E3 <- colSums(p*W(t)*t^3)
E4 <- colSums(p*W(t)*t^4)

### E_0: vector m X 1 blocks,every blocks is a 2X1 vector resulted
### from h(x,x^2)

E_0 <- rbind(E1,E2)

### construct Emat (diagonal matrix with 2X1 blocks as diagonal element)

L <- rep(0,m); L <- as.list(L)
for (i in 1:m){
L[[i]] <- E_0[,i] }

library(Matrix)
Emat <- bdiag(L)
Emat <- as.matrix(Emat)
### construct Emat_bar ( diagonal matrix with 2X2 matrix as diag element )

### EE_01 is 1 X m blocks, every block made by 4X1 vector:

EE_01 <- rbind(E2,E3,E3,E4)

### construct block diagonal matrix with matrix(EE_01[,i],2) as diag blocks.

LL <- rep(0,m); LL <- as.list(LL)
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for (i in 1:m) {
LL[[i]] <- matrix(EE_01[,i],2)}

Emat_bar <- bdiag(LL)

### S calculation

rho <- diag(m); RR <- rho

S11 <- rho - rho
S12 <- rho
S12 <- as.matrix(S12)
S21 <- t(S12)
S22 <- RR
S22 <- as.matrix(S22)

S1 <- cbind(S11,S12); S2 <- cbind(S21,S22)

S <- rbind(S1,S2)/m

### 4. Computation of Standard Deviation of Parameters ###

### Sigma calculation: Lu’s Dissertation P28

J <- function(num_1) matrix(rep(1,num_1*num_1),num_1)
O <- function(num_1,num_2) matrix(rep(0,num_1*num_2),num_2)

mat_0 <- rbind(J(m),O(m,2*m) )

mat <- cbind(mat_0,O(m*2,m*3))

Sigma <- solve(S) - (m+1)*mat
dia_SS <- diag(Sigma)
dia_S <- dia_SS*(dia_SS > 0)
par_SE_0 <- sqrt(dia_S/N)

par_SE <- matrix(par_SE_0,3)
row.names(par_SE)=c(’alpha’,’beta’,’gamma’)

### 5. Computation of variance of probability ###

### Guanhua Lu’ Dissertation P50, A_t, B_t Calculation

### A_t = int w_j I(t <=x) dG/(1+sum(W))=sum(w_j I(t<=x)*np^2

A_t <- function(x) {
colSums(n*p^2*W(t,x)) }

### B_t’(B_tp) has 1 X m blocks, every block is 1X2 vector due to h(x)

B_tp <- function(x) {
B_t1 <- function(x) {

colSums(n*p^2*W(t,x)*t) }
B_t2 <- function(x) {

colSums(n*p^2*W(t,x)*t^2) }

B_tt <- rbind(B_t1(x),B_t2(x))
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B_tp <- rep(0,2*m)

for (i in 1:m) {

B_tp[2*i-1] <- B_tt[1,i]
B_tp[2*i] <- B_tt[2,i]

}
return(B_tp)
}

### Calculation of G(t) and Covariance

G_Lu <- function(x) sum(p[t<=x])
G_EP <- function(x) sum(X[,m+1]<=x)/n

### Guanhua Lu’s Dissertation P72, Covariance of G(t)

A_B <- function(x) c(A_t(x), B_tp(x))

Term_1 <- function(x) G_Lu(x)*(1-G_Lu(x))
Term_2 <- function(x) sum(A_t(x))
Term_3 <- function(x) A_B(x)

Var_Lu <- function(x) m*(Term_1(x)-Term_2(x)) + Term_3(x)

Var_EP <- function(x) G_EP(x)*(1-G_EP(x))

### make sure Variance always are nonnegative
### Confidence Interval Calculation

SE_Lu <- function(x) ifelse(Var_Lu(x)>0,sqrt(Var_Lu(x)/N),0)
SE_EP <- function(x) sqrt(Var_EP(x)/n) # not m*n

U_EP <- function(T) 1 - G_EP(T)
U_Lu <- function(T) 1 - G_Lu(T)

U_Lu_L <- U_Lu(T) - 1.96*SE_Lu(T)
U_Lu_U <- U_Lu(T) + 1.96*SE_Lu(T)

U_EP_L <- U_EP(T) - 1.96*SE_EP(T)
U_EP_U <- U_EP(T) + 1.96*SE_EP(T)

Lu <- c(U_Lu(T), SE_Lu(T), U_Lu_L,U_Lu_U)

EP <- c(U_EP(T), SE_EP(T), U_EP_L,U_EP_U)

### Agresti Coull (AC) Interval Calculation

p0 <- sum(X[,m+1] > T)
z <- 1.96
n_AC <- n + z^2
p_AC <- (p0 + z^2/2)/n_AC
meanAC <- p_AC
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SE_AC <- sqrt(p_AC*(1-p_AC)/n_AC)
LAC <- p_AC - 1.96*SE_AC #L
UAC <- p_AC + 1.96*SE_AC #U

AC <- c(p_AC,SE_AC,LAC,UAC)

#### Wilson Score Interval Calculation
p.w <- p0/n
term1 <- (p0 + z^2/2)/(n + z^2)
term2 <- z*sqrt(n)/(n + z^2)*sqrt(p.w*(1-p.w) + z^2/(4*n))

WL <- max(0, term1-term2)
WU <- min(1,term1+term2)

pW <- term1
SE_W <- WU-WL

Wilson <- c(term1, (WU-WL)/(2*z),WL,WU)

Prob <- rbind(Lu,AC,Wilson,EP)
colnames(Prob)=c("Prob","SE","L","U")
rownames(Prob)=c("Lu","AC","Wilson","EP")

### 6. LR test for equidistribution and gamma=0 ###

### H_0: all the samples are the same

logL <- - minusloglike(min.func$par)
logL0 <- - minusloglike(rep(0,3*m))
LR <- -2*(logL0 - logL)
pvalue_LR <- 1 - pchisq(LR,3*m)

### H_0: gamma=0

H_test <- function(x) rbind(rep(1,n), x)

### b. w = exp(alpha + beta*x + 0*x^2), w is a n X 1 vector.
### It is w(theta, x)*I(x <= a)

w <- function(theta,x,a=max(x)) {
IN <- exp(colSums(theta*H_test(x)))
ifelse(x<=a,IN,0) }

### c. MINUS log-likelihood function:

minusloglike_0 <- function(theta){
A <- B <- rep(0,n)
Theta <- matrix(rep(0,2*m),m)

for(i in 1:m) {
Theta[i,] <- theta[(2*i-1):(2*i)]
A <- A + w(Theta[i,],t)
B <- B + log(w(Theta[i,],X[,i])) }

### log(1 + sum (w)) - sum( alpha + beta*x + gamma*x^2)

sum(log(rep(1,n) + A)) - sum(B) }
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min.func_0 <- nlminb(start=rep(c(-0.02,.2),m),obj=minusloglike_0)
parameter_0 <- matrix(min.func_0$par,2,m)
row.names(parameter_0)=c("alpha","beta")

logL00 <- -minusloglike_0(min.func_0$par)
LR0 <- -2*(logL00 - logL)
pvalue_LR0 <- 1- pchisq(LR0,m)

list(par=parameter,par_SE=par_SE,par0=parameter_0,
S=S,pvalue_LR=pvalue_LR,pvalue_LRgamma=pvalue_LR0,Prob=Prob) }

### Example 1 ###

x1 <- rnorm(50,1,1)
x2 <- rnorm(50)
x3 <- rnorm(50,2,1)
x4 <- rnorm(50)
X <- cbind(x1,x2,x3,x4)
SE(X,T=1.645)$Prob

### example 2 ###

SP_AC_EP <- function(N=100,K=100,alpha=0.05) {

### 1.obtain K intervals

Prob2 <- list()
for (i in 1:K) {

### Specify samples

DATA <- cbind(rnorm(N,0.5,1),rnorm(N,1,1),rnorm(N),rnorm(N))
Prob2[[i]] <- SE(DATA)$Prob
}

SP <- matrix(rep(0,4*K),K); AC <- SP; EP <- SP
for (i in 1:K) SP[i,] <- Prob2[[i]][1,]
for (i in 1:K) AC[i,] <- Prob2[[i]][2,]
for (i in 1:K) EP[i,] <- Prob2[[i]][3,]

Min <- -0.01 + min(rbind(SP[, 3], AC[, 3]))
Max <- 0.03 + max(rbind(SP[, 4], SP[, 4]))
par(mfcol = c(3, 2), oma = c(2, 1, 1, 3), mar = c(2, 4, 1, 1))

### 2. plot confidence intervals

plotCI(SP[,3], SP[,4], alpha, ylim = c(Min, Max), ylab = "SP Intervals")
plotCI(AC[,3], AC[,4], alpha, ylim = c(Min, Max), ylab = "AC Intervals")
plotCI(EP[,3], EP[,4], alpha, ylim = c(Min, Max), ylab = "EP Intervals")

### 3. plot histograms

Max_His <- max(4*AC[,2])
hist(4*SP[, 2], breaks = 10, main = "", xlim = c(0,Max_His))
hist(4*AC[, 2], breaks = 10, main = "", xlim = c(0,Max_His))
hist(4*EP[,2], breaks = 10, main = "", xlim = c(0,Max_His))
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### 4.calculate coverage and mean width

MC <- function(SP) {
SP_M <- mean(SP[,4] - SP[,3])
SP_C <- sum((SP[,3]< alpha)&(SP[,4]>alpha))*100/nrow(SP)
c(SP_M, SP_C)
}

lapply(list(SP,AC,EP), MC)

}

SIMULATION.FUSION CI Estimation of Threshold Probability with Repeated FUSION

Description

The function SIMULATION.FUSION estimates a family of confidence intervals for density ratio
models and Agresti Coull methods

Usage

SIMULATION.FUSION(dist=’normal’,N=NULL,a=NULL,b=NULL,K=100,alpha=0.05,W=c(0.4,0.4))

Arguments

dist specify the distribution which is used to simulate the data. it has arguments:normal(a,b),gamma(a,b),loistic(a,b),
exponential(a),uniform(a,b),lognorm(a,b)

K times of simulations

N number of observatons

alpha probability

W a vector which is the relative weight of SP vs AC

Details

This function plots a family of confidence intervals according to the specified distributon using
density ratio models,a family of Agresti Coull CIs and their hybrid CIs.

Value

SP Semiparametric CI

AC Agresti Coull CI

HB Hybrid CI according to the weight of SP and AC
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Note

Please see Fusion method

Author(s)

Wen Zhou

See Also

FUSION.CI,FUSION.CI.PLOT,plotCI,AC

Examples

### Code ###

###############################################################################
### SIMULATION.FUSION
###############################################################################

SIMULATION.FUSION <- function(dist=’normal’,N=NULL,a=NULL,b=NULL,K=100,
alpha=0.05,W=c(0.4,0.4)) {
DATA <- FUSION.CI(dist,N,a,b,K,alpha)
FUSION.CI.PLOT(DATA,W,alpha) }

################################################################################
### Function: FUSION.CI
### Wen Zhou 5/16/2012
################################################################################

FUSION.CI <- function(dist=’normal’,N=NULL,a=NULL,b=NULL,K=100,alpha=0.05) {

### Semiparametric (SP) Interval Calculation
SP_vec <- matrix(numeric(4*K),K)
AC_vec <- matrix(numeric(4*K),K)

for(k in 1:K){

Temp <- switch(dist,
normal=list(x2=rnorm(N,a,b),T=qnorm(1-alpha,a,b)),
gamma=list(x2=rgamma(N,a,b),T=qgamma(1-alpha,a,b)),
log=list(x2=rlogis(N,a,b),T=qlogis(1-alpha,a,b)),
exp=list(x2=rexp(N,a),T=1-qexp(1-alpha,a)),
uniform=list(x2=runif(N,a,b), T=qunif(1-alpha,a,b)),
lnorm=list(x2=rlnorm(N,a,b), T= qlnorm(1-alpha,a,b)))

x2 <- Temp$x2; T <- Temp$T

L <- 0; U <- 0
P <- 0; meanP <- 0; index <- 0
for(j in 1:50){

for(i in 1:49){
x1 <- runif(N,-2-i,3+i)
P[i] <- SP2(x1,x2,T)$Upper_G ### SP2X(x1,x2,T)
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}
meanP[j] <- mean(P)
L[j] <- sort(P)[1]
U[j] <- sort(P)[48]
}
SP_vec[k,] <- c(mean(meanP),mean(L),mean(U),mean(U-L))

### Agresti Coull (AC) Interval Calculation
AC_vec[k,] <- AC(x2,T)
}

list(SP=SP_vec, AC=AC_vec)
}
###############################################################################
### SAMPLE.FUSION.CI
###############################################################################

SAMPLE.FUSION.CI <- function(x2,K,T=1.645) {

### Semiparametric (SP) Interval Calculation
SP_vec <- matrix(numeric(4*K),K)
AC_vec <- matrix(numeric(4*K),K)

L <- 0; U <- 0; P <- 0; meanP <- 0
for(j in 1:K){

for(i in 1:49){
x1 <- runif(length(x2),-2-i,3+i)
P[i] <- SP2(x1,x2,T)$Upper_G ### SP2:simplified SP2K

}
meanP[j] <- mean(P)
L[j] <- sort(P)[1]
U[j] <- sort(P)[48]

AC_vec[j,] <- AC(x2,T)
}
SP_vec <- cbind(meanP,L,U,U-L)

list(SP=SP_vec, AC=AC_vec)
}

### Agresti Coull (AC) Interval Calculation
AC <- function(x2,T) {
X <- sum(x2 > T)
n <- length(x2)
z <- 1.96
nT <- n+z^2
pT <- (X+z^2/2)/nT
meanAC <- pT
LAC <-ifelse(pT<1, pT - z*sqrt(pT*(1-pT)/nT),pT) #L
UAC <-ifelse(pT<1, pT + z*sqrt(pT*(1-pT)/nT),pT) #U

return( c(pT,LAC,UAC,UAC-LAC))
}

################################################################################
### SAMPLE.FUSION
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################################################################################

SAMPLE.FUSION <- function(x2,K=100,W=c(0.4,0.4),T) {
DATA <- SAMPLE.FUSION.CI(x2,K,T)
alpha <- sum(x2 > T)/length(x2)
FUSION.CI.PLOT(DATA,W,alpha)

}

################################################################################
### FUSION.CI.PLOT
################################################################################

### DATA <- FUSION.CI output

FUSION.CI.PLOT <- function(DATA,W=c(0.4,0.4),alpha=0.05) {

SP <- DATA$SP
AC <- DATA$AC

#### plot CI and Hist

HBL <- W[1]*SP[,2] + (1-W[1])*AC[,2]
HBU <- W[2]*SP[,3] + (1-W[2])*AC[,3]

### Average width for SP,AC,HB

Width <- c(mean(SP[,4]),mean(AC[,4]),
mean(HBU-HBL))

### Mean for SP,AC, HB

Mean <- c(mean(SP[,1]),mean(AC[,1]),
mean(cbind(SP[,1],AC[,1])))

### coverage for SP, AC,HB.

HB_C <- sum((HBL<alpha)&(HBU>alpha))*100/length(HBL)
SP_C <- sum((SP[,2]<alpha)&(SP[,3]>alpha))*100/length(HBL)
AC_C <- sum((AC[,2]<alpha)&(AC[,3]>alpha))*100/length(HBL)

Coverage <- c(SP_C,AC_C,HB_C)

HHBB <- rbind(Mean, Width,Coverage)
colnames(HHBB) <- c("SP","AC","HB")
rownames(HHBB) <- c("Mean","Width","Coverage")
small=round(HHBB,digits=3)

Min <--0.01 + min(rbind(SP[,2],AC[,2]))
Max <- 0.03 + max(rbind(SP[,3],SP[,3]))

par(mfcol=c(3,2),oma=c(2,1,1,3),mar=c(2,4,1,1))
plotCI(SP[,2],SP[,3],alpha,ylim=c(Min,Max),ylab="SP Intervals")
plotCI(AC[,2],AC[,3],alpha,ylim=c(Min,Max),ylab="AC Intervals")
plotCI(HBL,HBU,alpha,ylim=c(Min,Max),ylab="Hybrid Intervals")

### Histogram Plot
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Max_His <- max(AC[,3])
hist(SP[,4],prob=TRUE,breaks=10,main="",xlim=c(0,Max_His))
hist(AC[,4],prob=TRUE,breaks=10,main="",xlim=c(0,Max_His))
hist(HBU-HBL,prob=TRUE,breaks=10,main="",xlim=c(0,Max_His))

return(small)
}

################################################################################
#### FUSION.CI.CONTOUR output contour and table
#### a, b are vectors. alpha confidence level.
####
#### Wen Zhou 8/24/2012
################################################################################

FUSION.CI.CONTOUR <- function(DATA,a=seq(0,1,0.1),b=seq(0,1,0.1),alpha=0.05) {

### internal function 1 hybrid(X)

hybrid <- function(W) {
HBL <- W[1]*DATA$SP[,2] + (1-W[1])*DATA$AC[,2]
HBU <- W[2]*DATA$SP[,3] + (1-W[2])*DATA$AC[,3]
HB <- sum((HBL<alpha)&(HBU>alpha))*100/length(HBL)
return(HB)
}

### internal function 2 Mat(fun,a,b)
### fun should accept size-2 vector

Mat <- function(fun,a,b) {

z <- expand.grid(a,b)

A <- matrix(apply(z,1,fun),ncol=length(b))

contour(a,b,A)
return(A)

}

### program:

Mat(hybrid,a,b)

}

################################################################################
### Function plotCI
### Wen Zhou 8/24/2012
###############################################################################
plotCI <- function(L, U,a,ylim=ylim,ylab=ylab) {

plot(L, xlim=c(0,length(L)),
ylab=ylab, ylim=ylim,type=’n’)

for (i in 1:length(L)) {
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if (L[i] > a || U[i]<a) {
segments(i, L[i],i,U[i],lwd=2)
}
else{
segments(i, L[i],i,U[i],col="pink")
}
}

abline(h=a, col=’purple’,lty=2,lwd=2)
list(CIs=cbind(L,U),a=a)
}

### rnorm(50,0,1)

SIMULATION.FUSION(dist=’normal’,N=50,a=0,b=1,K=10)
# SP AC HB
# Mean 0.064 0.09 0.077
# Width 0.079 0.15 0.122
# Coverage 70.000 90.00 90.000

system.time(SIMULATION.FUSION(’normal’,N=50,a=0,b=1,K=10))
# user system elapsed
# 107.018 7.997 116.421

### runif(50,0,50)

SIMULATION.FUSION(dist=’uniform’,N=50,a=0,b=50,K=5)

SP2K Estimation of CI for the Threshold Probability

Description

The function SP2K estimates the parameters according the density ratio model and test the null
hypothesis of equidistribution; and also estimate the kernel density and confidence intervals of
threshold with three methods: SP, AC and EP.

Usage

SP2K(x1,x2,Increment=0.05,BandWidth=0.5,T)

Arguments

x1 vector of sample value,univariate sample only

x2 vector or sample value (reference sample),univariate only

Increment Increment controls the grid at which est. g,g1,G,G1 are evaluated, default value
is 0.05

BandWidth Bandwidth for calculation kernel smoothing density,it controls smoothness of
kernel est. of g,g1 and the default value is 0.5

T Threshold
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Details

This function estimates parameters according to density ratio models,calculates the threshold prob-
ability, compares the two samples.plot both G1,G2 and g1,g2 and compare the kernel densities g1
and g2 and their histograms. it tests the equidistribution of g1 and g2 and also calculate the CIs for
the threshold probability with three methods: SP,AC and EP

Value

par estimate for parameters, alpha,beta,gamma.

pval_LRgamma p values for null hypothesis: gamma=0.The test is likelihood test.

pval_LR p values for null hypothesis: alpha=0,beta=0,gamma=0,the test is likelihood test.
It can be interpreted as equidistribution test.

Sum_p summation of probability for every observations of reference sample x2, the
value should be 1.

Sum_p1 summation of probability for every observations of reference sample x1, the
value should be 1.

ALPHA value to check the integral relations

S Asymptotic variance matrix

Prob Threshold probability and its confidence intervals

Note

This is the program developed by Professor Benjamin Kedem in 2006.

Author(s)

Benjamin Kedem

See Also

TWOSAMPLES.DR, MULTISAMPLES.DR

Examples

### Example 1 ###

SP2K(rnorm(100,1,1),rnorm(100),Increment=0.05,BandWidth=0.5,T=1.645)

TWOSAMPLES.DR Estimation of the jump probabilites and test the equidistribution for
two samples

Description

The function TWOSAMPLES.DR estimates the parameters and tests the equidistribution of two
samples according density ratio model. The sample can be either univariate or multivariate.
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Usage

TWOSAMPLES.DR(x1,x2)

Arguments

x1 First sample

x2 Second sample (reference sample)

Details

This function estimates parameters according to density ratio models; tests the equidistribution by
the likelihood ratio test.

Value

par estimate for parameters, alpha,beta,gamma.

Sum_p summation of probability for every observations of reference sample x2, the
value should be 1.

Sum_p1 summation of probability for every observations of reference sample x1, the
value should be 1 .

pval p value for the test: G1=G2

Note

This is simplified version of SP2K and MULTISAMPLES.DR.

Author(s)

Wen Zhou

See Also

MULTISAMPLES.DR

Examples

### Code ###

################################################################################
### Function: TWOSAMPLES.DR Compute jump probability and test equdistribution.
### Two sample case: x1,x2 are either univariate or multivariate samples.
### Wen Zhou 8/21/2012
################################################################################

TWOSAMPLES.DR <- function(x1,x2) {

### Univarite Case ###

if (is.vector(x1) && is.vector(x2)) {

n1 <- length(x1); n2 <- length(x2)
rho <- n1/n2; n <- n1+n2
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t <- c(x1,x2) #Data fusion.

###MINUS log-likelihood
minusloglike <- function(theta) {
sum(log(1+rho*exp(theta[1] + theta[2]*(t) + theta[3]*(t)^2))) -
sum(theta[1]+theta[2]*(x1)+theta[3]*(x1)^2)}
###Maximizing loglikelihood by minimizing MINUS loglikelihood
min.func <- nlminb( start=c(-0.02,.2,.2),obj = minusloglike)

###Parameter estimates
Theta <- min.func$par
names(Theta)=c("alpha","beta","gamma")

###Reference dist. p=dG and its distortion p1=w*dG
p <- 1/(n2*(1+rho*exp(Theta[1] + Theta[2]*(t) + Theta[3]*(t)^2)))
p1 <- p*exp(Theta[1]+Theta[2]*(t)+Theta[3]*(t)^2)

###The LR Test of Equidistribution (beta,gamma)=(0,0)
LR <- -2*(minusloglike(Theta) - minusloglike(c(0,0,0)))

pval <- 1 - pchisq(LR,2)
list(par=Theta,p=p,sum.p=sum(p),p1=p1,sum.p1=sum(p1),p_value=pval)

}

### Multivarate Case ###

else {
# a. Sample Size

n1=nrow(x1); n2=nrow(x2)
rho1=n1/n2; n=n1+n2
t=rbind(x1,x2)

# b. A: vector X matrix
A <- function(theta, x) {

B <- cbind(rep(1,nrow(x)),x)
colSums(theta*t(B)) }
# c. likelihood function

minusloglike = function (theta){
sum(log(1+rho1*exp(A(theta,t))))-sum(A(theta,x1))

}
# 2. Parameter Estimation and distribution Estimation (p,p1)

init <- rep(0.2,ncol(x2)+1)
min.func = nlminb (start=init, obj=minusloglike)
# Parameter estimtates
Theta=min.func$par
p = 1/(n2*(1+ rho1*exp(A(Theta,t))))
p1=exp(A(Theta,t))*p

# 3. Test H_0: G1=G2
LR <- -2*(minusloglike(Theta) - minusloglike(numeric(length(Theta))))

pval <- 1 - pchisq(LR,2)
list(par=Theta,p=p,sum.p=sum(p),p1=p1,sum.p1=sum(p1),p_value=pval)

}

}

### EXAMPLE 1 (Univerate) ############
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TWOSAMPLES.DR(rnorm(100,1,1),rnorm(100))

### EXAMPLE 2 (Multivariate) ##########
x1 <- cbind(rnorm(80,1,1),rnorm(80,0.5,1))
x2 <- cbind(rnorm(100,0,2),rnorm(100))
TWOSAMPLES.DR(x1,x2)
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