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1 Introduction

1.1 VoiceQuality in VolP Networks

Voice quality is essential in any communication system that is based on speech
transmission. Voice over the Internet Protocol (VolP) systems have been increasingly
popular in the past few years and will continue to spread both in the carrier and
enterprise sectors. In fact, current projections estimate that the total market value for
services using VolP is forecast to grow amost ten fold over the next five years. It is
clear that VolP will evolve from being a replacement service for the public switched
telephone network (PSTN) market to providing truly converged services to the home
and business.

Voice is one of the hardest services to provide on an IP network. The PSTN was built
to provide an optimal service for time-sensitive voice applications, with low delay,
low jitter, and constant but low bandwidth. IP networks on the other hand have been
built to support nonreal-time data applications such as email or file transfer. These
applications are characterized by bursty traffic, with occasiona peaks in demand for
high bandwidth, but are not sensitive to delay. During a conversation, humans have
little tolerance to delays, jitter, echo (which is a direct consequence of the delay in
VolIP networks) and noise (which, for instance, can be introduced during low bit rate
voice coding that is commonly implemented by VolP systems).

In addition to the degrading factors introduced in the PSTN, VolP networks include
additional factors such as latency, delay jitter and packet loss. In order to provide a
good quality of service (QoS) for VoIP networks, the existence of an embedded
module that assesses the voice quality in each live call is necessary. This embedded
module is the main concern of this work.

The performance of a VolP network can be determined by a variety of parameters
such as the availability of the network and dial tone, call setup request processing
performance, call completion, call drop rate, one-way voice transport delay, voice
quality during the call, and so on. The next table briefly discusses the service
requirements that are taken into consideration when evaluating the performance of a
VolP network.



Service requirements Parameters

Service requirements - Avallability of dial tone.

before call setup - Availability of computing and network
resources for honoring call processing
requests.

Service requirements - Total amount of time to setup acall (can vary

during call setup from 500 msto 10 s, depending on

availability of the network).
The number of simultaneous calls that can be
handled without any per call wait.

Service requirements - Voice coding and processing delay
during aVVolP session - Voice packet loss
Echo
Jitter
Service requirements - Maintenance of acomplete call log and call
after a VolP session is complete detail record (CDR).

Table 1-1 Servicerequirementsthat aretaken into consider ation when evaluating the
performance of a Vol P network

Providing good QoS in VolP networks is of mgor importance for the transition from
the PSTN to VolIP networks. We are so used to the QoS provided by the PSTN that
anything less than that would become a barrier to the deployment of VolP systems
and networks. The evaluation of the QoS for a VolP systemor network depends on a
set of parameters and requirements that contain those described in Table 1-1. In this
work we will be concerned only with a subset of the requirements described in Table
1-1. We will not analyze the requirements related to the signaling and call control
protocols.

More specifically, in this work we will be interested in evaluating the service
requirements during a VolP session, that is, the voice quality over VolP networks
(here we are considering that the parameters that are associated to the requirements
during aVolP session in Table 1-1 are al grouped under what we are calling voice
guality). One of the main components of the voice quality parameters is the amount
of echo present in the conversation and we will discuss this to some detail and present
an algorithm to evaluate how efficient is the echo cancellation (or how the echo signa
is influencing the voice quality) in aVolP cal.

We can evauate the quality of voice over IP networks in three different perspectives:
the network quality, the objective quality, and the subjective quality, asillustrated by
the next figure.



W USB UsB W
: : = =

A
2y _ N ____

Y PAB mtarnet’, § PAK: =
Phnl‘lFE E E E E Phrne
- /O | |Voice | T ¢ e Voice
device client ranspor server
: 1 1
! + Network
| quality

Objective voice quality

B it bbbl
\ 4

Subjective voice quality

Figure 1-1 Different per spectives for voice quality evaluation in a Vol P network

The network quality reflects the provider’s perspective. The objective and subjective
quality reflect the customer’s perspective. The network quality can be relatively
easily measured by network parameters, such as the packet loss rate or packet delay
or jitter. Subjective quality is generally more meaningful than network quality, as it
relates directly to user-perceived quality. Assessing subjective voice quality,
however, requires listening tests with a large number of test subjects. For this reason,
objective quality measures that predict subjective quality are typicaly employed in
the evaluation of voice transmission systems.

In the next sections we briefly describe the different perspectives for voice quality
evauation in a Vol P network.

1.1.1 Network Quality

In general, poor network quality decreases the performance of a VolP system. In
Vol P applications, delay, jitter and packet loss are the main network impairments that
affect perceived voice quality. Jitter can be partially compensated for by using a
playout buffer at the recelving end, but this introduces further delay and additional
packet loss. There are several components (logical and physical) in the IP network
that cause delay, jitter and packet loss. Here we briefly describe some of these



components that characterize the network quality and at the same time impact the
quality of VolP systems.

There are several components of the network that can result in delay, jitter and packet
loss. Some of these comporents are

Network protocols - routing protocols, traffic control protocols
Router operation

Bandwidth of the links

Network reliability

Network reliability is an important component that introduces delay and packet 10ss,
specidly in the backbone of 1P networks. There are two important scenarios that can
directly influence the network reliability: routing reconfiguration and link failures.

Link failure:
There are many reasons that can lead to link failures such as fiber cuts, linecard or
router crashes and maintenance operations. In fact, long outage durations are typically
attributed to a link failure in the IP network backbone [R 9].

Routing reconfiguration:
It is typical for a routing protocol to require around 5 seconds to converge to a new
configuration when a link goes down and around 15 seconds when a link goes up.
During this reconfiguration period, forwarding may be disrupted and voice packets
may be lost.

All the network behavior described above can influence the amount of delay and
packet loss present in a Vol P system. When this happens, the IP network can exhibit
undesirable characteristics, such as large delay spikes, periodic delay patterns and
packet loss on one or more paths. All these lead to poor Vol P performarce. There are
experiments showing that calls using the G.711 (that is, PCM) encoder with high
intrinsic quality, good echo cancellation but with some delay and packet loss are
barely able to provide acceptable VolP service (MOS > 3.6 — MOS is defined in the
next section).

So, we can assess somehow the voice quality in a VolP system by assessing the
quality of the IP network, but this gives more a provider’s perspective. In order to
obtain a more precise evauation of the voice quality (a user’'s evaluation) we need to
go to the end points of the system as shown in Figure 1-1. The next sections describe
the other two possible perspectives on quality in performance evaluation of a VVolP
system.

1.1.2 Subjective Voice Quality

The MOS - mean opinion score - is a subjective voice quality assessment method. It
is considered by many researches as the best evaluation method for assessing voice



quality because its result is based on the human direct ears. The MOS is a subjective
rating system that is defined in ITU-T P.800. It is based on the opinions of several
testing volunteers who listen to a sample of voice traffic and rate the quality of that
transmission. The volunteers listen to a variety of voice samples and are asked to
consder factor such as loss, noise and echo. The volunteers then rate the voice
samples by giving a score in range from 1 to 5 as described in Table 1-2. The MOS
score is calculated as an average of scores given by al listeners.

The MOS scores are defined as follows

MOS score Description
5 Excedllent

4 Good

3 Fair

2 Poor

1 Bad

Table 1-2 Description of MOS scor es

While MOS represents the true perceptual assessment of speech quality, it has
obvious limitations. It is atime consuming process, it is not an automated method and
it can not be applied to estimate the quality of acall in areal-time environment.

It is interesting to note that even using this time consuming MOS methodology, most
experiments can only indicate the speech quality of unidirectional connections [R 7].
For instance, the MOS test does not indicate how the increased delay degrades the
fina QoS due to decreased interactivity when long transmission delays are
introduced.

We will refer to the MOS score through out this work as a reference to quantify and
compare the voice quality in different scenarios. This is what is normaly used in
research papers that assess voice quality.

1.1.3 Objective Voice Quality

One of the advantages of objective voice quality algorithms over subjective voice
quality algorithms is that objective agorithms can be automated and may not require
any human intervention at all. There are two main classes of objective voice quality
algorithms: active and passive algorithms.

Objective voice quality monitoring, whether active or passive, has recently gained
ground among VoIP providers. In active monitoring, a network analyzer injects
traffic patterns that resemble a Vol P application into the network; the analyzer then
observes the overall voice quality by comparing the impaired voice with the origina
voice sample using a perceptual model. Although this scheme can provide useful



input for optimization and network dimensioning, it uses network resources, provides
non real-time results, and can’'t concretely determine the causes of degradation.

A passive monitoring scheme, on the other hand, can operate in real-time, and lets
Vol P applications take corrective action when quality of service is unacceptable. For
these reasons, the algorithm we propose in this work is a passive, objective voice
quality agorithm.

Several active, objective agorithms have been proposed to automate the voice quality
assessment of a call. The most successful two methods are the PAMS - Perceptual
Analysis /| Measurement System - and the PSQM - Perceptual Speech Quality
Monitor.

In both methods a reference speech sample representing the transmitted speech signal
is passed through degradation producing the degraded speech sample representing the
received signal. Signal analysisis performed both on the time and frequency domains
of the two speech samples and an estimate of the MOS score is provided.

The next figure is a high level view of the common concepts behind the PAMS and
PSQM methods.

Voice
»| quality PSQM or PAM
Original evaluation score
SpeeCh y
signa
Network
impairments

Figure 1-2 Common conceptsfor the PSQM and PAM methods

Despite the fact that the objective techniques described above are automated and they
smplify the voice quality evaluation process compared to the MOS method, they are
considered intrusive or active. Thisis due to the assumption that the reference speech
sample representing the transmitted signa is available. This is, in general, not true in
live communication calls.

It is worth noting that the ITU-T Recommendation P.861 specifies a model to map
audio signals to their representation inside the head of a human. The basic idea of the
modeling approach is to take measurements of the processed (compressed, encoded,
etc) signal, perform an objective analysis between the original and the processed



version and offer an "opinion" as to the "goodness' of the signal. The result is an
absolute number.

The challenges of measuring voice quality in reaklife situations are a little more
complex, and more data is often necessary than derived in Recommendation P.861.
We can see this complexity in the block diagram description of the PSQM algorithm
in Figure 1-3.

The PSQM algorithm derives objective numbers that are an estimate of the quality of
the voice being delivered. The PSQM algorithm uses several steps in processing the
input and output signals. The next figure shows a block diagram with the processing
steps for the PSQM algorithm - extracted from [R 6]. In this block diagram, x[n] is
the input signal (reference) and y[n] is a scaed version of the output signal. The
PSQM aso requires time-aligned input and output stream samples which maybe
difficult to obtain in practice because this requires a precise knowledge of the delay
that affected the output signal.
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We note that the PSQM, besides requiring a reference signal and time-alignment of
the signals, also requires a considerable computational power in order to perform
operations such as FFTs and filtering. This is a heavy requirement to be posed to
embedded systems that are monitoring live calls, especially systems with a high
density of channels (which sometimes have hundreds of channels being processed by
a few DSPs in a single platform). This algorithm is just not applicable in this
scenario. On the other hand, our proposed algorithm is not as compl ete as the PSQM,
but offers a tradeoff between computationa requirements and accuracy of the
estimation of the voice quality.

As a result of the combinations of some ideas of the PSQM and PAMS methods,
recently the ITU-T created the PESQ - Perceptual Evaluation of Speech Quality - in
Recommendation P.862.

In order to provide a voice quality measure in real-time for ongoing calls, non
intrusive (or passive), objective approaches have also been proposed. One such
methodology relies on measuring various parameters that can affect the voice quality
in the IP network. Those parameters are packet loss, latency and delay jitter. An
example of this approach is the Emodel of the ITU-T Recommendation G.107. In
this method the two ends of a VolP cal can exchange information on these
instantaneous parameters and the voice quality measure can be obtained. However, in
this method the actual voice is not used and for this reason the results will not be
accurate enough. Most current methods [R 33] use the Emodd to measure voice
quality, but the E-model requires subjective tests to derive model parameters which is
time-consuming and often impractical. A rea life VolP network may cross severa
countries and in this case, the Emodel will need to be trained for each country. As a
result, the Emodel is only applicable to a limited number of codecs and network
conditions.

It is important to note here that al algorithms that were described (even the objective
ones) have some kind of heuristic motivation. For instance, in the PSQM algorithm
the "silent interval weighting" operation (Figure 1-3) is believed to alow a fitting of
the cognitive processing to cultural differences. Changing the way this operation is
done may result in more precise voice quality estimation in different cultures. In the
same way, some of the reasoning behind our proposed algorithm is based on
heuristics, for instance, on how humans perceive echo.

1.2 Contributions

As was stated in the beginning of this chapter, voice quality is essentia in any
communication system that is based on speech transmission. We also emphasized that
providing good QoS in VolP networks is of mgor importance for the transition from
the PSTN to VolP retworks. As was seen in Table 1-1, there are many parameters
that should be controlled in order to provide a good QoS in a VolP network or



system. In this work we will focus on the voice quality portion of the QoS set of

requirements. We will propose a real-time algorithm to evaluate the voice quality in a
VolP system or network. We will show the details and implementation results of one
building block of such algorithm. Specifically, we will focus on the building block
that eval uates the echo component of the voice quality in Vol P networks.

The date-of-the-art in the subject of evaluating the voice quality was briefly
highlighted in this chapter. As is stated in [R 8], the objective assessment methods
such as PSQM, PAM are mainly developed for the evaluation of the speech codec
performance ard are not fitted for the delayed and jittered speech signal. Another
trend of algorithms to estimate voice quality is represented here by the E-mode
(Section 1.1.3), which requires parameters that depend on the telephone terminal and
are difficult to be obtained. The conclusion is that “there is a need for smple speech
objective evaluation methods’ [R §].

In this work we propose a rea-time, low computational complexity fuzzy inference
system to evaluate the echo component of the voice quality over VolP networks
(Figure 4-2). We aso propose extensions to be incorporated in the algorithm in order
to obtain the overall performance of the Vol P system or network (Figure 4-3).

We suggest a simpler (compared to PSQM, PESQ or the Emodel) objective voice
quality evaluation method which divides the voice quality assessment into three main
engines that separately compute the contributions of the three main factors that affect
the voice quality — delay, jitter and echo. It should be clear that the main
developments in this work are done for the echo component of the voice quality.

The use of playout buffers at the receiving side of a VolP cal can be used to
compensate for the effects of jitter based on a tradeoff between delay and packet loss
[R 10]. However, as we can see in Figure 2-1, the effect of short delay (less than 300
ms) in the voice quality when echo is not present is minimal. If we can eliminate jitter
(at the same time decreasing the rate of packet loss - due to jitter compensation) by
increasing the delay and keeping the echo over control, the final voice quality of the
call should be better than dealing with jitter in the conversation. This is one of the
reasons why we emphasize the study of the echo quality parameter for estimating the
voice quality in Vol P networks.

Of course these elements are interconnected in nontrivial, nonlinear ways. For
instance, jitter requires a jitter buffer (playout buffer), which causes delay and delay
may amplify some existing echo that is generated by speech signal reflection
somewhere in the network. Our agorithm doesn’'t try to evaluate precisely each
separate contribution, nor does it try to precisely model how these components
interact. We use fuzzy logic inference systems separately fr each element (echo,
jitter, delay) to try to approximate their contribution and also the final voice quality
assessment.
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Besides using fuzzy logic, which already requires low computational effort, we try to
use as inputs for our fuzzy inference systems parameters that are “free” of
computational effort once they are aready available in the system for some other
purposes (e.g. the echo canceller has to estimate the loss in the echo path and we use
this estimation as an input to our fuzzy inference system that estimates the echo
component of the voice quality).

While most of the existing voice quality assessment techniques are active and can not
be applied to real-time analysisin live calls, our proposed algorithm does not interfere
with the call or the signals present in the network. This characteristic of being able to
analyze live calls with low computational complexity is the main advantage of our
proposed method over the methods described in this chapter. The main disadvantages
of our proposed algorithm, as we will show in Chapter 4, are the lack of accuracy
(usua fuzziness introduced by the fuzzy engine) and the need for calibration of
thresholds of the algorithm for each specific Vol P system or network.

Findly, we would like to give an idea of where our algorithm fits in the bigger picture
of evauating the performance of VolP networks, that is, not only the voice quality,
but the performance of the whole Vol P system or network. As was described in Table
1-1, we can split the analysis of the performance of a Vol P system with respect to the
various stages of a call over IP networks. We have performance requirements before
the call is set up, during the setup, during the Vol P session and after the Vol P session.
For each one of these steps that define a VolP call, we have a set of parameters that
are used to evauate the performance of the specific step. In the next diagram we
show how our proposed algorithm fits in the larger view of analyzing the
performance of a Vol P system.

- before call setup
Performance - during call setup - delay
of aVolP . duringaVolP . . jitter
System or session {V0| ce quality packet loss
network . after session is - echo
complete

Figure 1-4 Componentsrequired for evaluating the performance of a Vol P network, highlighting
where the Vol P voice quality fitsin the bigger picture

1.3 ThesisOutline

In Chapter 2 we describe how echo is created in VolP networks and the relationship
between echo control and voice quality. The description of the echo problem givenin
this chapter is important because the main result of this work is an agorithm to

11



evaluate the echo component of the voice quality in VolP systems a networks. In
Chapter 3 we give an overview of fuzzy logic and soft computing, which was the
methodology used in the development and implementation of our proposed algorithm.
Chapter 4 is our original contribution and the main result of this work. It describes the
ideas, implementation and simulation results of our proposed algorithm. We present
our conclusions and some directions for further work in Chapter 5.

12



2 Echo Control and Woice Quality

2.1 Echo in Telecommunications Networks

In most cases our everyday conversations take place in the presence of echoes. We
hear echoes of our speech waves as they are reflected for instance from the floor and
the walls. However, if the reflected waves arrive shortly after we speak them, we do
not perceive them as echo but as some reverberation. On the other hand if the
reflected wave takes 20 or 30 milliseconds (ms) to come back to us, we will identify
it as an annoying echo.

Similarly, in telecommunications networks echo can also be quite annoying and, if
left uncontrolled, can make it impossible to carry on a conversation. Hearing your
own voice in the receiver while you are talking is common and reassuring to the
speaker. Hearing your own voice in the recelver after a delay of more than about 25
ms, however, can cause interruptions and can break the cadence in a conversation.

Whether a caller hears echo is chiefly dependent on the amount of delay present in
the circuit or network. Most callers will hear echo of their own voice if the circuit
contains as little as 30 milliseconds of round-trip delay. If the round-trip delay
approaches 50 ms, virtualy al callers will complain of echo if it is left uncontrolled.

2.1.1 Network Delay M akes Echo Noticeable

Delay is introduced into the telecommunications network primarily by transmission
facilities and transmission equipment. Negligible delay is introduced into the
telecommunications network by some types of transmission equipment, such as a
digital switch. Other transmission equipment, such as low bit rate voice encoders,
often introduces significant delays. Depending on the network topology, and the type
of transmission equipment used in the network, 30 ms of roundtrip delay can occur in
connections that are across country or just across town.

The next table depicts some typical transmission facility delays.

Transmission facility Delay per 100 miles
T1 carrier over copper 1ms

Fiber optic cable 1ms

Microwave radio 0.7 ms

Table 2-1 Some typical transmission facility delays
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Even when echo control is present, there is alimit for the amount of delay that will be
tolerated by an average user. The ITU-T Recommendation G.114 provides limits for
one-way transmission time (delay) on connections with adequately controlled echo.

One-way transmission time User acceptance

0to 150 ms Acceptable for most users
150 to 400 ms Acceptable but has impact
400ms and above Unacceptable

Table2-2 ITU-T limitsfor one-way transmission time (delay) with echo control

The next figure shows how for a specific network configuration the quality of a call
degrades with increasing delay. The figure also shows how this degradation is further
affected by the presence of echo.

best \_
no echo
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g. ‘\i'\\
< T~
(‘D \\~\~
o] S~o
c RN
< 0T Tl
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worst I I I |
0 100 200 300 400

one-way delay, ms

Figure2-1 Impact of delay on call quality with and without echo

It is clear from the figure above that echo is a determinant component in decreasing
the quality of the call. More specifically, echo has two drawbacks: it can be loud and
it can be long. The louder and longer the echo, the more annoying it becomes.

So far, we have analyzed the phenomenon of echo in telecommunications networks in
general. The next sections discuss in more detail what causes delay in Vol P networks
(which is important because echo is noticeable only when delay is present) and we
also discuss the echo problem specifics for Vol P networks.
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2.1.2 Delay in VolP Networks

Differently from PSTN networks, where delay is in large part due to the propagation
delay in the transmission facilities, which means that short distance calls rarely suffer
from delays, VolP networks have delay injected by several reasons as we describe
next.

Traditionally used in the PSTN network, the pulse code modulation (PCM) method of
encoding voice signa (as defined in ITU-T's G.711 standard) generates a bit stream
of 64Kbps. On the other hand, in VolP applications low bit rate voice encoding
algorithms are widely used. For instance, the most popular frame-based vocoders that
utilize linear prediction are the G.723 standard, generating a bit stream of 5.3 Kbps,
and the G.729 standard, producing a bitstream of 8K bps.

However, this reduction in rate using vocoders does not come for free. There is a
coding delay associated to each vocoder, for instance, in G.723 systems there is
approximately a 37.5 ms delay due to the agorithmic portion of codec delay (the
coder process the voice signa in 30 ms frames). As we will see, this delay when
added to other delays introduced by the network will result in an end-to-end delay
that greatly increases the perception of echo in Vol P networks.

Buffers are another cause of delay in VolP networks. IP based networks employ
buffers for several reasons. At the access domain, a buffer provides temporary storage
for packets before they are routed to the appropriate transport network. The amount of
delay suffered by packets at this level of the network depends on buffer size, traffic
density and packet priority. At the transport domain, buffering is needed to support
proper routing and multiplexing of packets. In this domain, the total amount of delay
depends on severa aspects such as propagation time, transmission capacity and
header processing delays. Findly, at the packet delivery domain, the packets that
arrive earlier than the expected time need to be stored temporarily before being
delivered. For VolP applications, delayed packets may become useless after a
specified amount of time. The delay jitter buffer holds these packets that arrived
earlier and also delayed packets in an attempt to neutralize the effects of packet inter-
arrival jitter. This helps maintaining the liveliness of real-time communication over 1P
networks, increasing the voice quality. These playout buffers at the receiving side of a
VolIP cal can be used to compensate for the effects of jitter based on a tradeoff
between delay and packet loss.

Besides these “designed” delays described above, IP networks are susceptible to
several network scenarios that can drastically increase the amount of delay in one or
more paths of the network. These scenarios such as link failure and routing
reconfiguration, were described in Section1.1.1.

In an ideal VolP network we would have a one-way delay that would be less than 150
ms.
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2.1.3 Echoin VolP Networks

As described in the previous section, in VoIP systems the delays introduced by
coding the speech into packets and removing network jitter are long enough to make
the system susceptible to echo problems even for short distance calls. Echo
cancellation is therefore likely to be needed in most Vol P systems. Thisis in contrast
to the PSTN where echo cancellation is only necessary on long-haul connections.

In general, short-delay echoes are rarely distinguished from side-tone unless either the
round-trip delay exceeds 30 ms or the echo level is extremely high. For this reason
echo cancellation is not required on short PSTN connections. However, round-trip
delays of VolP systems are unlikely to be less than 30 ms, ensuring that some form of
echo cancellation is invariably required.

If a VolP system connects to a local PSTN, echo cancellation is probably needed to
cancd the local hybrid reflections. If the system does not connect to a local PSTN,
echo cancellation should still be included to remove any acoustic echo.

As was mentioned in the last paragraph, in genera there are two possible origins for
echo in telecommunications networks. Echo can originate from hybrid reflections in
the network or from poor acoustic isolation. Depending on how the echo originated it
is called line echo or acoustic echo. These two types of echo are described in Sectiors
2.2 and 2.3 respectively.

2.2 Line Eho

In a traditional network, line echo is caused by a mismatch in impedance from the
four-wire network switch conversion to the two-wire local loop. Echo in the PSTN is
regulated with echo cancellers and a tight control on impedance mismatches at the
common reflection points.

The 2-wire local loop consists of a single pair of wires that carry both directions of
the conversation. At the local telephone exchange, this 2-wire pair is connected to a
4-wire trunk by using a device called a hybrid. The hybrid splits the 2-wire local 1oop
into two separate pairs of wires, one for the send path and one for the receive path as
described by the following figure.
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Recelve path
Figure2-2 The hybrid device and line echo generation

Because the hybrid cannot be made to split the 2wire loop perfectly, some of the
receive signa is erroneoudly leaked into the send path and is called echo.

Telephony networks in parts of the world where analog voice is primarily used
employ echo suppressors. This is not the best mechanism to use to remove echo. For
instance, a line that has an echo suppressor can not use ISDN because the echo
suppressor cuts off the frequency range that is used by the ISDN. Our proposed
algorithm does not deal with echo suppressors.

On the other hand, in IP networks, echo cancellers can be built into the codecs and
operate on each DSP. In our proposed agorithm we take advantage of the
measurements made by those echo cancellers present in the DSP to draw conclusions
about the echo quality in the call and more generally the voice quality of the call.
Note that once the echo canceller has already computed such measurements (that will
be describe in more detail on Chapter 4) there is no extra computational effort
required by the algorithm for the DSP.

2.2.1 Line Echoin VolP Networks

In VolP networks line echo is generated from the telephone network (PSTN) toward
the packet network. Normally the IP portion of the Vol P solution adds more than 50
ms of round trip delay and for this reason line echo cancellers are essentia for VolP
networks when they interface with the PSTN. The echo-cancellation tail length varies
among different Vol P applications. The tail-length requirement is determined by the
distance between the gateway equipment and the four-to-two line hybrid. Typically
this ranges from an 8 ms tail length for residential applications to 128 ms tail length
for carrier applications.

The following figure is a very smplified block diagram of a TDM-IP gateway with a
line echo canceller.
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Figure2-3 Simplified block diagram of a TDM-IP gateway

2.3 Acoustic Echo

While not as prevalent as echo caused by the hybrid (line echo), acoustical echo can
also be encountered in the telecommunications networks. Acoustical echo is caused
by poor isolation between the microphone and speaker of some telephone sets. Most
hands free speakerphone systems incorporate specia echo control circuitry to ensure
that echo is not a problem. Another example is the need for acoustic echo cancellation
to protect the landline subscriber from acoustic echo originating from digital wireless
networks.

In the case of VolP networks, acoustic echo is normally present when at least one of
the callersis using a computer with a loudspeaker and a microphone.

As is the case for line echo, acoustic echo becomes audible when there is long delay.
On the other hand, differently from line echo, acoustic echo usually is not severe
enough to make the conversation impossible.

The methodology for canceling acoustic echo differs in many aspects from the
methodology used for canceling line echo. In this work we will not be dealing with
acoustic echo in VolIP networks. Our proposed agorithm is valid only for line echo
signals and in the next section we describe with more details the ideas behind the line
echo cancellation.

2.4 Line Echo Cancellation

In this section we describe an overview of the building blocks of a line echo
canceller. Our proposed algorithm to evaluate the echo component of the voice
quality is based in measurements realized by the echo canceller. This section aso
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defines the notation and some parameters that will be used when we describe our
algorithm.

In this work we will adopt the notation used by the ITU-T Recommendation G.165
[R 35] and by most books and articles on echo cancellation. A line echo canceller has
four ports, two on the near end side and two onthe far end side. The four ports are
described in the next figure, which was again extracted from ITU-T Recommendation
G.165.

_ Send path
Sin
Near
e /
Hvbrid Echo Far end
] ri
2-wire | Echo canceller _
4-wire
Rout Rin
Receive path

Figure2-4 Circuit with a line echo canceller

The four ports of the echo canceller are denoted as follows:

* Receive-in (Rin)

* Receive-out (Rout)
* Send-in (Sin)

* Send-out (Sout).

An echo canceller monitors speech from the far end that passes through its receive
path and uses this information to compute an estimate of the echo that is then
subtracted from its send path. If the estimation is good, the echo is cancelled and only
the near end speech is sent to the far end. Good echo cancellation is essential for the
quality of the voice in the network.

Echo cancellation occurs between the send-in and send-out ports, reducing the echo
present in the send path. The total amount of echo attenuation that an echo canceller
provides is called echo return loss enhancement (ERLE). ERLE is the difference in
the echo level between the send-in and send-out ports and it is measured in dB.

An echo canceller normally consists of three major building blocks:
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» Adaptive filter
* Double-talk detector
* Nonlinear processor

In the next figure, we expand the echo canceller that was represented in Figure 2-4
with its mgjor building blocks listed above.

Send path
Sin X Sout
Subtractor Nonlinear
; processor
echo —
- error sign
estimate ‘ g
Near : | Adaptive
end Double filter Far end
tak
detector
A
Rout Receive path Rin

Figure 2-5 Block diagram of aline echo canceller

We now introduce two parameters that ae commonly defined and used for echo
cancellers as described by Figure 2-5. These parameters will also be used as inputs of
our proposed algorithm. They are

Echo return loss (ERL):
The amount of echo attenuation provided by the hybrid Figure 2-4). That is, the
attenuation of the signal from the Rout port to the Sin port of the echo canceller. The
ERL is measured in dB.

Combined loss (ACOM):
It is defined by the sum (in dB) of the ERL, the attenuation provided by the adaptive
filter (cancellation loss) and the attenuation provided by the nonlinear processor
(nonlinear processing loss) Figure 2-5.

We now give a high level description on how the blocks shown in Figure 2-5 interact
to realize the echo cancellation.
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The first step in echo cancellation occurs when the signal coming from the Rin port is
sampled and given to the adaptive filter. The signal then travels from the Rout port of
the echo canceller, to the hybrid, where most of the signd is transferred to the 2-wire
loop connected to the near-end telephone.

A portion of the signal is leaked by the hybrid to the Sin port of the echo canceller.
This is the echo that needs to be cancelled by the adaptive filter.

The echo path (Figure 2-4) is highly variable, so the filter that is required to redlize
the echo cancellation can not be a fixed filter. In fact, the echo path must be estimated
for the particular loca loop to which the hybrid gets connected. One option to derive
the filter is to measure the impulse response of the echo path and then approximate it
by atapped delay line. However, in general the echo path is not stationary. Therefore,
such measurements would have b be made repeatedly during a conversation. To
eliminate the need of such measurements the filter is made adaptive. An algorithm is
implemented which uses the residua error to adapt the filter to the characteristics of
the local loop (Figure 2-5). The adaptive filter computes an estimate of the echo. The
resulting estimation of the echo is then subtracted from the signal coming from the
Sin port, which is composed by the echo and possibly some near end speech and
noise.

The resulting output is residual echo that is passed on to the nonlinear processor and
is aso fed back to the adaptive filter as the error signal. However, this error signal is
truly an error signa only when there is no near end speech. If there is near end
speech, the “error signa” does not accurately indicates the degree of success of the
cancellation and the adaptation algorithm will not converge, resulting in a failed
attempt to cancel the echo. For this reason, there is a need to have double talk
detection, so that the adaptation would only occur when there is no double talk (both
callers speaking simultaneously).

When the echo canceller’s double talk detector senses that both the near end and far
end callers are speaking at the same time, it informs the adaptive filter so that the
filter can ignore the error signal that comes from the subtractor, freezing the filter
adaptation. As we said before, near end speech can distort the error signal and
confuse the adaptation process, for this reason adaptation is halted when double talk
is detected. Of course, the echo canceller still continues to cancel echo during double-
talk. As soon as the double talk detector senses that double talk is no longer present, it
informs the adaptive filter so that it can, once again, use the error signal to adapt to
the impulse response of the hybrid.

The quantization noise introduced by the PCM representation of speech samples and
nonlinear echoes make it difficult for the adaptive filter to develop an absolutely
perfect echo estimate. Nonlinear echoes can be caused by clipped speech signals,
speech compression or poor quality speakerphones. It is extremely difficult to
develop an accurate echo estimate of these nonlinear echoes because the echo
canceller’s linear impulse response model cannot be correlated with these nonlinear
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echoes. Consequently, residual echo from the subtractor is reduced to an inaudible
level by some nonlinear processing. The nonlinear processor has a suppression
threshold that is typically adaptive, based on the Rin and Sin signa levels. The
threshold is made adaptive because, if the nonlinear processor smply blocked all
signas in the send path, there would be noticeable clipping of speech. For a more
detailed description about a nonlinear processor see [R 35].
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3 Fuzzy Logic

3.1 Introduction to Fuzzy Logic

"A fuzzy design is an attempt to systematize the natural variations in human
perception of truth and to imitate rudimentary skills of approximation” [R 29]. In
other words, a fuzzy nodel of a system is a set of fuzzy rules Section 3.4.4) by
which the behavior of the system is approximately emulated. We will discuss with
more details the principles of fuzzy logic and how we can use it in the following
sections.

The next table was extracted from reference [R 29] and it shows some of the existing
applications that use fuzzy logic.

Application Product
Automatic train operation (Sendai subway system, Japan) Industrial
Nuclear reactor control (Art Fugen, Japan) Industrial
Home heating system (Viessmann-INFORM, Germany) Commercia
Fingerprint classification (NIST, USA) Research
Camera tracking (NASA, USA) Industrial
Target tracker in Patriot missile (MMES, USA) Industrial
Autofocus still camera (Sanyo, Japan) Commercia
Fire detector (Cerberus, Switzerland) Industrial

Table 3-1 Some successful fuzzy systems

3.2 Advantages of Using Fuzzy Logic

Representing a solution with fuzzy sets generally reduces the computational
requirements of the system Approximating a group of related data points by a few
fuzzy categories serves this purpose. In some cases, fuzzy methodology makes a
solution possible that would otherwise be unthinkable due to cost of computing every
single crisp data point.

By selecting the number of fuzzy representative sets, there is a way of adjusting the
precision level of a solution. If more fuzzy sets are used in design, systems will
require more memory and faster CPUs. At he limit, the number of fuzzy sets
becomes equal to the number of crisp data points. That represents the most precise
and costly solution.

Two important characteristics of successful fuzzy systems are:

1. The fuzzy systems are smple in terms of their objective and structure -
which we call afuzzy inference system (Section 3.4.8).
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2. The fuzzy systems employ solutions articulated in daily language by
means of |F-THEN fuzzy rules (Section3.4.4).

A successful fuzzy system is robust, has adjustable precision and when compared
with traditional systems of computation they are more practical and cost effective.

We have seen that the measure of how much the echo is contributing to decrease the
quality of a cal is a subjective measure. We will see in Chapter 4 that our proposed
algorithm to evaluate the echo component of the voice quality in a VolP system
(Figure 4-2) is based on several parameters thet are not precise values, but estimated
values. Findly, as described in Section 3.4.2, fuzzy logic is useful to mode
approximate reasoning and is tolerant to imprecise data. In light of the two
observations in the beginning of this paragraph, it seems that fuzzy logic would be an
adeguate tool for the implementation of our proposed algorithm.

3.3 Fuzzy Logic and Embedded Systems

An agorithm to evaluate the voice quality in a VolP system or network should be a
real-time algorithm in order to give operators the precise current voice quality in their
network and a chance to react as fast as possible when the quality drops. There are
two distinct approaches for were such algorithm should run:

1. It can run inside the embedded system that processes the call.
2. It can run in a network server.

In approach one, there is a disadvantage that embedded systems normally have
limited processing power, which is used for high priority tasks like call control,
speech compression and echo cancellation. It is common to have a situation that such
embedded systems are working very close to their processing capacity. An advantage
of this approach is that each embedded system can take action based on the real-time
results of the algorithm and try to improve its performance without having to rely in
decisions based by aremote server that may even be offline for some reason.

On the other hand, approach two seems to relieve the embedded system of such high
processing requirement, once the algorithm would be running in a server somewhere
in the network. This approach has a tremendous disadvantage of requiring al the
embedded systems in the network to send information about each of their calls to this
centralized server (which can be ore or more servers). In this case, the bandwidth of
the network is compromised. It also has the disadvantage of removing from the
network device the ability of monitoring its own voice quality, generate alarms or
even try some self-fixing action. It should also be noticed that even in this approach
there is some extra processing required from the embedded systems, once they will
have to code the required information and access the network in order to send it to the
Server.
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Of course we can mix the ideas of these two approaches and try to find a compromise
between network usage and required processing power from the embedded systems.

In this work, we focus on the first approach and we use the ideas of fuzzy logic to
develop an agorithm that requires low processing power from the embedded system
that carries the Vol P application.

3.4 Fundamentals of Fuzzy Logic

This section briefly describes some fundamental ideas of fuzzy logic that will be used
in the development of our proposed algorithm. The description here of the fuzzy logic
tools is far from complete. In general, every step of the fuzzy algorithm (also called
fuzzy inference system) has several variants. For each step of the fuzzy algorithm,
such as fuzzy rules (Section 3.4.4), fuzzy operations (Section 3.4.3), fuzzy
implication (Section 3.4.5) and defuzzification (Section 3.4.7), we will describe only
the variant that will be used in our proposed algorithm (Chapter 4). For instance, there
are several proposed methods of defuzzification, but in Section 3.4.7 we will describe
only the method used in our proposed agorithm.

Before going into the details of each step of a generic fuzzy inference system, we will
give an overview of such a system. Generally, in introductory books on fuzzy logic
such description is given only after all steps have been described. We think there
might be some gain in having a first look of the whole system before the parts are
explained.

The next figure extracted from [R 29], depicts a generic fuzzy inference system. The
figure will later be analyzed and explained in more details in Section3.4.8.
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Figure 3-1 Block diagram of a generic fuzzy inference system

In the next sections we give a brief introduction to fuzzy logic and describe with
some detail the blocks present in Figure 3-1.

3.4.1 Fuzzy Logic Versus Boolean Logic

Some books describe fuzzy logic as an extension of Boolean logic. In this section we
briefly draw some comparisons between Boolean logic and fuzzy logic.

Boolean logic consists of three elements. truth values, linguistic connectors and
reasoning types. In Boolean logic, truth values are either 1 or 0. In fuzzy logic, truth
is a matter of degree and truth values can range between 1 and O in a continuous
manner. In fact, this idea of continuum variation of truth values constitutes the most
outstanding difference between Boolean logic and fuzzy logic. This will be discussed
in more details in Section3.4.2.

The other two elements that compound the theory of Boolean logic - linguistic
connectors (union, intersection, negation) and modes of reasoning (such as syllogism)
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- function in the same way for fuzzy logic and Boolean logic. However, their
properties and interpretation are affected and they are analyzed with more details in
Sections 3.4.3 and 3.4.4 respectively.

The first important definition in fuzzy logic is what is caled a fuzzy set and it
describes exactly this idea of degree that makes fuzzy logic different from Boolean
logic.

3.4.2 Fuzzy Setsand Membership Functions

In classical set theory, an element either belongs to a set or not. The characteristic
function of asubset A of aset X isthe indicator function

ca(X): X ® {0, 1},
with domain X which hasvalue 1 at points of A and O at pointsof X - A, that is

. (X)_‘ll, x1 A
AV o, xi A’

Using the characteristic function defined above, we can also expressthe set A as
A={xlca®) =1} ={x|xl A}

As our proposed agorithm only takes real values as inputs, we will from now on
consider only the case where the universe X = A, the set of real numbers.

Motivated by the ideas of classical set theory described above, we can define a fuzzy
et as collection of elements with a varying degree of inclusion.

In classical set theory the characteristic function defines a crisp boundary between the
elements that belong to a set A and the elements that do not belong to A. In fuzzy
theory a function that plays a similar role to the characteristic function is called
membership function. A membership function can take values in the interval [0, 1].
For afuzzy set A, the membership function is defined as

m(X): A ® [0, 1]

That is, a membership function is a curve that defines how each point in A is mapped
to a membership value (or degree of membership) between 0 and 1. If m(x) >
M (X2), then "x; belongs more to A than %".

In a similar way as described before for the characteristic function, we can express
the fuzzy set A as

A={(xmX)]|d A},
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where (X, my(x)) isasingleton.

As an example, suppose that all possible temperatures cover the real line A (imagine
that there is no limit for negative temperatures). The following figure depicts a
possible membership function my(x) for the fuzzy set A = “good temperature to have
the ECE annual barbecue”.

W‘ M (X)

0

o »
N Ll

-10 0 10 20 30 40 50 60 70 80 90 100 °F

Figure 3-2 Example of a fuzzy member function

For instance, we can say that any temperature between 70° F and 80° F is very good
for a barbecue. We can also say that if we have a temperature between 50° F and 60°
F it won't be so good, some people will complaint that it's cold. That is why
temperatures between 70° F and 80° F have a high value for my(x) and temperatures
between 50° F and 60° F have lower values for my(x). However, it doesn’t make too
much sense to say that 60° F is a good temperature to have a barbecue, but 59° F is
not. So it makes more sense to define the set A = “good temperature to have the ECE
annual barbecue’ as afuzzy set instead of aclassical, crisp set.

The difference between crisp (or classical) sets and fuzzy sets is exemplified by the
difference between a characteristic function and a membership function as described

in the next figure. The membership function nmu(x) describes the membership values
for the fuzzy set A = “good temperature to have the ECE annua barbecue’. The

characteristic function cg(x) describes the set B = “temperature is equal or larger than
30° F and equal or smaller than 90° F”.
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Figure 3-3 Comparing a characteristic function to a member ship function

It is clear that the fuzzy set A is imprecise, subjective and it is strongly based in
human interpretation. Different temperatures ¥ A belong to A to certain extent. On
the other hand, the set B is completely determined and precise, with a sharp
boundary. Some temperatures are in B and all remaining temperatures are not.

The geometrical shape of the membership function should reflect the uncertainty in
the corresponding fuzzy variable. For this reason we should not design such
membership functions with a high level of detail. In our proposed agorithm we used
only membership functiors that are piece-wise-linear.

In our work, we explore these ideas of fuzzy sets as a model of approximate
reasoning for our proposed agorithm.

3.4.3 Fuzzy Set Operations

Compared to classica set theory, fuzzy set theory offers a family of set operations
due to the nature of fuzzy sets. For example, the intersection between two crisp sets
such as “ECE students with GPA greater than 3.0" and “ECE students that live in
college park™ will be a deterministic set. On the other hand, the intersection between
two fuzzy sets such as “ECE students with good GPA” and “ECE students who live
close to the campus’ will be a matter of degree that should be determined from the
individua membership functions of the fuzzy sets.

In this section we define the intersection and wnion of fuzzy sets. These operations
(together with fuzzy implication - Section 3.4.5) will be used to compose fuzzy rules,
which will be the main logic behind our proposed algorithm.

a) Union of fuzzy sets

There are many possible ways to define the union operator in fuzzy logic and each

definition potentially produces a different outcome.
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In our work we used the following definition for the union of fuzzy sets:
Suppose we have N fuzzy sets that are represented by the membership functions
m), m), ..., m(x) X A

then, the union of these fuzzy sets is a new fuzzy set with a membership function
my(X) given by

my(x) = max (m(x) , m(x) , ..., my(x) ) for all Xi A
b) Intersection of fuzzy sets

Again, there are many possible ways to define the intersection operator in fuzzy logic
and each definition potentially produces a different outcome.

In our work we used the following definition for the intersection of fuzzy sets:
Suppose we have N fuzzy sets that are represented by the membership functions
m), mX), ..., m(x) X A

then, the intersection of these fuzzy sets is a new fuzzy set with a membership
function m(x) given by

m(x) =min (m(x) , m(x) , ... , mi(x) ) for all i A
The fuzzy operations described above are the main blocks that build what is called
composite fuzzy rules. A fuzzy system has its behavior dictated by the fuzzy rules,
which are described in the next section.

344 Fuzzy Rules

The basic principles of inference in fuzzy logic are adaptations of the classical
inference principles to the fuzzy domain.

Fuzzy reasoning is based on inference rules of the form
IF <premise>, THEN <consequence>

similarly to classica logic, but now we use fuzzy sets instead of classical sets. As
fuzzy sets define linguistic variables, fuzzy inference rules can model a system
linguistically. In fact, our proposed algorithm does just that, modeling linguistically
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for instance, what is a good and a bad echo signal in terms of the overall voice quality
aswe will seein Chapter 4.

An example of asimple fuzzy ruleis:
IFxisA, THENyisB
where A and B are fuzzy sets.

Fuzzy agorithms are just a set of fuzzy rules (which are also called IF/THEN rules).
In Chapter 4, the main logic behind our proposed algorithm is described in terms of
fuzzy rules and as we will see, those fuzzy rules alow degrees of association between
the inputs of the algorithm to better reflect what would be, for instance, a good and
bad echo signal with respect to the voice quality of the call.

Interpreting an IF/THEN rule involves two distinct parts:

Evaluate the premise, that is, use membership functions to map the input values
into fuzzy sets

Apply that result to the consequence - also known as implication.

In the next section we discuss how to compute this implication. However, before
proceeding to the next section we will show in a block diagram how a set of fuzzy
rules are used by the fuzzy algorithm to produce an output (extracted from [R 29]).
This will help to clarify the discussions in the next sections (fuzzy implication,
aggregation and defuzzification).
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__________________________________________________________________________

 Rulel | Premise | _| | Consequence
Rule2 | Premise Consequence _
: 1 Aggregation !
i . v :
+ Rulek | Premise _ || Consequence |
: Defuzzification |
| THEN

Output
(single number)

Figure 3-4 Set of rules being aggregated and the final defuzzification

If we now compare Figure 3-4 with the figure that shows a block diagram of a fuzzy
inference system (Figure 3-1 in the beginning of Section 3.4) we see that Figure 3-4
shows with some more details what is described by the last (bottom) three blocks of
Figure 3-1. Later, in Section 3.4.8, we will come back to these figures to put al the
blocks together.

3.4.5 Fuzzy Implication

The fuzzy implication is a mechanism that performs the inference of a fuzzy rule. In
the conditional proposition (fuzzy rule) described in the previous section we reed to
define how the consequence is affected by the premise. The idea here is that the
consequence specifies a fuzzy set to be assigned to the output. The fuzzy implication
then modifies that fuzzy set to the degree specified by the premise.

As shown in Figure 3-4, the implication process is the first step towards computing
the output of the fuzzy inference system. That is, after we have computed the
consequences of all fuzzy rules, which is done by the implication method, we
aggregate them and defuzzify.

There are severa ways to specify the fuzzy implication operator. Some of the most
used implication operators are known as Lukasiewicz, Zadeh, Larsen, Mamdani,
standard and drastic product implication operator. There is an almost exhaustive list
of such operators and their mathematical definitions in terms of membership
functions in reference [R 29]. Also, this same reference [R 29] analyzes which set of
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operators is probably best adjusted to the characteristics of a problem. In our
proposed algorithm we first tried the Mamdani implication operator. The simulation
results, after the tuning of the membership functions, were quite good. However, we
got even better results using the Larsen implication operator, which acts like a scaling
operator, that is, the output membership function is scaled by some factor that is
determined by the premise. The Larsen implication operator is the one chosen for our
proposed a gorithm.

In order to give an example of how this operator works, suppose we have a fuzzy rule
like
IFXisA, THENyisB

where the fuzzy sets A and B are respectively described by the fuzzy membership
functions my(x) and ng(x) as shown in the next figure. Then, for the Larsen
implication method, if we have the input variable x set to the value 3 then the output
fuzzy set of this rule is given by the membership function nx(x) as shown in the next
figure.

A A nB(X)
M) ME(X) exnnsen
1 1
S /2
1 ‘o'
< 0 E > < 0 !

012345678910 x

Figure 3-5 Example of the fuzzy implication method chosen for our proposed algorithm

That is, the degree of which the particular value of the input variable x belongs to the
fuzzy set A is used to scale the membership function of the output (consequence) of
therule.

3.4.6 Aggregation Operator

For a set of inputs to the fuzzy agorithm, severa fuzzy rules may be used to provide
the final output of the algorithm. However, in an intermediate step of the algorithm
(Figure 3-4) we are required to aggregate the few fuzzy output sets (or membership
functions) that are the result of the few fuzzy rules that were used. Aggregating two
or more fuzzy output sets yields a new fuzzy set (or membership function) in the
fuzzy algorithm.
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There are few different ways to specify the fuzzy aggregation operator. In our
proposed algorithm we will use the fuzzy union (Section 3.4.3) as the aggregation
operator.

In order to exemplify how the aggregation of membership functions work using the
fuzzy union operator, suppose that two fuzzy rules generate two membership
functions my(x) and ng(x) as described in the Figure 3-6 below. Then the aggregation
of these two outputs using the union operator is given by nx(x) as shown in the figure
below.

A m;(X)

A

X

Figure 3-6 Example of the fuzzy aggregation method used in our proposed algorithm

3.4.7 Defuzzification

In the proposed fuzzy system for our algorithm we require a final crisp output. That
is, the output of the algorithm is a number between zero and one that informs how
good was the echo signal with respect to the voice quality in the call. In order to
convert a result from a fuzzy set b a crisp result we use a process that is called
defuzzification.

Defuzzification is the process that selects a single value to represent the information
contained within a fuzzy set. It is the fina treatment to obtain a scalar that is often
suitable for the operation of systems in practice Figure 3-4). There are severa
methods suggested in the literature for the defuzzification process. Different methods
may lead to different results. For our proposed algorithm we used what is called the
centroid method (also called center of mass). In fact this is probably the most
commonly used defuzzification method.

In the centroid method, the defuzzified output x is defined by
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where n(x) is the output membership function after the aggregation of individual
IF/THEN rules.

So, for instance, in the example described in Figure 3-6, the output membership
function after aggregation is nmx(x). The defuzzification in that example is then
computed as the center of mass of nx(x) as shown in the figure below.

A ne(X)

A

Xc X

Figure 3-7 Example of a defuzzification by center of mass

3.4.8 Fuzzy Inference System

In this section we put together all the ideas that we developed in the previous sections
of this chapter. Fuzzy inference is the process of formulating the mapping from a
given input to an output using fuzzy logic. The mapping then provides a basis from
which decisions can be made. A fuzzy inference system has a simple input-output
relationship as was shown in Figure 3-1. Input data is collected from the externa
world. Then it is processed by the fuzzy inference system to produce the output data
to be used back in the external world.
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Figure 3-8 Detailed fuzzy inference system
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4 A FRuzzy Algorithm to Evaluate the Echo Component of the

Voice Quality in aVolP Network

4.1 Objective Evauation of the Voice Quality

In Section 1.1 we described the several parameters that can be used to evaluate the
performance of a VolP system or network (Table 1-1). In this work we are focusing
on measuring the voice qudity in a VolP system or network and in Section 1.1 we
showed three different perspectives for voice quality evaluation in a VolP network.
We decided to adopt the objective evaluation of the voice quality (Section 1.1.3) for
our proposed algorithm for two reasons:

Differently from the subjective quality method (Section 1.1.2), an objective
method can be automated once it doesn’t require human intervention or feedback.
If well designed, such a method can even estimate the quality in rea-time.

Differently from the network quality method (Section 1.1.1), an objective method
takes into consideration the user’s perspective of the call and not only parameters
that qualify the performance of the IP network.

Asis described in [R 5], there are three classes of objective voice quality evaluation
metrics. network-parameter based metrics, psycho-acoustic metrics, and elementary
metrics.

Parameter-based metrics do not consider the actual voice signal. Instead, these
metrics sum impairment factors that characterize the individual components of
the communication system. For instance, in the Emodel (Section 1.1.3) the
packet loss and delay in a Vol P system are translated into impairment factors.
Parameter-based metrics such as the E-model  hold promise for predicting
subjective voice quality but still require extensive refinements and
verifications.

Psycho-acoustic metrics transform voice signals to a reduced representation to
retain only perceptually significant aspects. These metrics am to predict the
subjective quality over a wide range of voice signal distortions. One example
of such metric is the PESQ agorithm (Section1.1.3).

Elementary objective voice quality metrics rely on low-complexity signal
processing parameters and techniques to predict subjective voice quality.
Elementary metrics generally have smaller correlations with subjective voice
quality than highly complex psycho-acoustic metrics and do not provide the
perception modeling needed for psycho-acoustic coder agorithm
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development. However, elementary metrics represent a good engineering
tradeoff for communication and networking system researchers and
developers in that they alow for fairly detailed conclusions about voice
quality while having low computational complexity.

The agorithm that we propose in this chapter is a fuzzy algorithm that estimates the
amount of echo present in a VolP cal after echo cancellation Based on the
descriptions given in Section 1.1 about the different perspectives for evaluating the
voice quality in VolP networks and based on the objective voice quality metrics
described above we have the following diagram:

Network quality
Voice - Subjective voice quality - Parameter-based metrics
quality - Objective voice quality ® - Psycho-acoustic metrics
Elementary metrics

Figure4-1 Classification of voice quality algorithms for Vol P systems

So, the fuzzy algorithm proposed in this chapter estimates the echo quality factor of
the voice quality and it is a building block of an objective, passive, voice quality
algorithm based on elementary metrics that can run in rea-time and estimate the
voice quality for live calsin aVolP system or network.

As we mentioned in Chapter 1, the critical issues in delivering good voice quality
over IP networks are: packet loss, delay, echo and jitter. These issues are al
correlated, but there is a stronger correlation between jitter, delay and packet loss.
Jitter in Vol P systems is normally compensated for by using a playout buffer at the
receiving end, which introduces delay and additional packet loss. So we can imagine
afuzzy inference system that evaluates the voice quality in a Vol P network described
by the following blocks:
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Voice quality fuzzy inference system

Echo quality
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_:_p system
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ahl fuzzy inference
% sstem
|

Network quality

Combines echo
quality and L
network I Estimated
quality : voice
1 quality

Figure4-2 Fuzzy inference system to estimate the voice quality in an Vol P network

We note that in the above figure, the block that combines the echo quality and
network quality into a final voice quality estimative can be a fuzzy inference system

or not.

We can go even further and imagine a fuzzy inference system that estimates the
performance of a VolP network (not only the voice quality - see Table 1-1) for acall.
Based on Table 1-1 and Figure 1-4 we can have such fuzzy inference system

described as follows

Vol P performance fuzzy inference system

Combinesthe
call setup
quality and the

voice quality

Input 1, Call setup
parameters ——»  (beforeand Call setup
.. | during)fuzzy | qualit
I inference
— Y stem _
I
I
Input ‘
paFr) ameters : Voice quality
1 fuzzy inference
_|r_> sysiem Voice quality
1)
I

Estimated
VolP
network
performance

for acall

Figure 4-3 Fuzzy inference system that estimates the performance of a Vol P network for a call

39



That is, the fuzzy inference system that estimates the voice quality in a Vol P network
(Figure 4-2) is a building blodk of the larger system described in Figure 4-3.

However, this seems to be a long shot and in this chapter we have a much simpler
objective. In the next section we propose an echo quality fuzzy inference system,
which is a component of a larger system Figure 4-2) that can estimate the voice
quality in a Vol P system or network.

4.2 Channel Based Algorithm

A VoIP system or network may carry a huge number of VolIP calls simultaneously. In
fact there are high density platforms available in the market that can handle dozens of
VolP calls per card. In this section we propose an algorithm to evaluate the quality of
the echo signa for a single VolP channel. There are many possible ways of
aggregating the echo component of several channels in he network to provide an
evaluation of the echo in the network as whole and this will be discussed later.

The objectives of the proposed algorithm have already been described in the previous
sections and chapters. The following list is a summary of such objectives.

Obtain the echo quality component of an objective voice quality algorithm based
on elementary metrics to estimate the voice quality in a Vol P system (Section4.1
and Figure 4-2).

The algorithm must have a computational complexity low enough such that it can
run in an embedded module inside every VolP channd in the VolP system or
network (Section1.1).

The agorithm must be able to run for live VolP calls without the need of a
reference signal, which is one of the limitations of several objective voice quality
methodol ogies including the PSQM (Section1.1.3).

The agorithm must give a rea-time estimation of the echo signal by outputting a
few parameters (or scores).

The algorithm’s output scores will not be as reliable and precise as the MOS
(Section 1.1.2) or the PSQM / PESQ (Section 1.1.3) scores. As is common for
elementary rretrics methodologies of evaluating objective voice quality (Section
4.1), there will be a tradeoff between precision and computational complexity that
we should be willing to accept.

In order to achieve the objectives listed dove we propose the following design
characteristics for the algorithm.

Use a fuzzy inference system to estimate the echo component of the voice quality.
This should give the algorithm a low computational complexity, the ability to run
in rea-time for live cals embedded in every VolP channel. The usage of fuzzy
logic will also result in some imprecision for the final scores.

In order to obtain a real-time, low computational complexity algorithm we chose
to use as inputs to our fuzzy inference system parameters that are already being
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computed or estimated by the echo canceller, such as estimates for the ERL and
ACOM (Section2.4), speech powers estimations and noise powers estimations.

We should note that athough the fuzzy logic implementation results in low
computational complexity it has the disadvantage of not being precise. As we said
before, it reflects approximate human reasoning and it will never be as good as the
subjective MOS (Section 1.1.2) and it won't be as precise as the PSQM or PESQ.

Based on the ideas described in Chapter 3, we will now design a fuzzy inference
system to evaluate the echo component of the voice quality. The first step is to define
the input parameters that will be used by the fuzzy inference system. In order to
achieve minimum computational power, we used only parameters that are aready
estimated and used by the echo canceller Figure 2-5). Of course, different echo
cancellers may estimate a different set of parameters and in this case we should need
some extra computations to estimate the required parameters for the algorithm
proposed here. The input parameters that we will use are:

Echo return loss (ERL) - Section2.4

Combined loss (ACOM) - Section2.4

Recelve speech power - an estimate of the speech power in the receive path
(Figure 2-5)

Receive noise power - an estimate of the noise in the receive path (Figure 2-5)
Transmit speech power - an estimate of the speech power in the send path (Figure
2-5) after the echo cancellation

Transmit noise power - an estimate of the noise in the send path (Figure 2-5)

Then we need to define the fuzzy sets and membership functions for each input so
that we can associate the raw input parameters to a fuzzy set (Section3.4.2).

Based on the input parameters define above, we will use the fuzzy sets described in
the next table.

Fuzzy set Description

Good ERL Represents values of ERL that will help the echo canceller
to realize a good echo cancellation.

Bad receive speech The receive speech powersin this set are either to low or to

power high, making it difficult for the echo canceller to generate
the signal that must be subtracted in the send path.

Bad transmit noise Represents values of the transmit noise that may disrupt the

power convergence of the adaptive filter.

Bad ACOM With high probability, Vol P systems with ACOM values in
this set will have echo problems and the voice quality will
be bad.
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Moderate ACOM Represents values of ACOM that may indicate that the echo
cancellation was not good enough and some echo may be
leaked to the far end.

Good ACOM VolP systems with ACOM values in this set are able to
cancel most of the echo in the calls.

Table4-1 Fuzzy sets associated to the input parameters

The output of the fuzzy inference system will be an estimate of the echo component
of the voice quality. We defined the following three output membership functions:

The membership function for the fuzzy set “bad echo (be)”

11 2% 0£ x£ &
Mhe(X) = | 2

{0, otherwise

The membership function for the fuzzy set “moderate echo (me)”

) 1
L 2X,0£ XE =
r 2

1
Mhe(X) = 1 2(1- %5 <xE1

I
10, otherwise
i
I

The membership function for the fuzzy set “good echo (ge)”

Low-11exe1
Me(X) = | 2

{0, otherwise

Graphically we have
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Figure4-4 Output member ship functionsfor the echo component of the voice quality

Now it is time to define the input membership functions (Section 3.4.2). The
approach we used is to define the input membership functions based in empirical
reasoning and then we spent some time tuning those membership functions. But the
tuning is done after the fuzzy inference system is designed because we need to use the
output of the algorithm as a feedback for tuning. For this reason, we will describe the
input membership functions later in this section. First we will describe our proposed
fuzzy inference system with the complete set of fuzzy rules, operations, and
defuzzification.

The fuzzy rules (Section 3.4.4) together with the fuzzy membership functions are the
main elements that reflect the empirical reasoning behind the proposed fuzzy
inference system. The next table describes the fuzzy rules that we adopted for our
proposed algorithm and the empirical reasoning behind each rule.

Fuzzy rule Empirical reasoning
IF ACOM isbad THEN echo is The ACOM is a mgor parameter for estimating
bad. the quality of the echo signal (Section 2.4). If the

ACOM is bad, most probably the user is
perceiving echo.

IF ACOM isgood, THEN echois With a good ACOM, some echo is being
good. cancelled successfully, independently of the
other parameters.

IF ACOM ismoderate AND ERL  If ACOM is moderate, there is some uncertainty

isgood THEN echo ismoderate.  about the quality of the echo signal. So we use
the ERL to better estimate it.

| F receive speech power is bad The signal levels for transmit and receive speech
AND transmit noiseisbad THEN as well as for transmit noise are all contributing
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echo isbad. to abad echo signal.
Table 4-2 Fuzzy rulesto evaluate the echo component of the voice quality

The fuzzy implication operator that we chose for our proposed algorithm is Larsen
operator as described in Section3.4.5. The defuzzification method (Section 3.4.7) that
we chose is the center of mass method.

An advantage of using fuzzy logic is that we can first define the fuzzy input variables
and elaborate the fuzzy rules and then we can tune the membership functions by
running the algorithm for calls for which we know the MOS. That is exactly what we
did in order to define the following membership functions for each one of the fuzzy
inference input variables.

We used Matlab and its fuzzy logic toolbox to implement our proposed algorithm and
run aset of 32 cals. We implemented it in a way that we would give to Matlab 5
different fuzzy inference systems at atime. The difference between the fuzzy systems
was only in terms of the membership functions. All systems had the same input
variables, fuzzy operations, and fuzzy rules, but different membership functions for
the fuzzy variables. Then, after running all 32 calls for each one of the 5 fuzzy
inference systems we could compare the result of the fuzzy algorithm to the expected
MOS scores (after the echo cancellation). We chose to use 5 different fuzzy inference
systems in each tuning step because there are so many parameters that you can
change in a membership function that you easily get lost if you try to change severa
parameters at once. So, for instance, if we are tuning a specific triangular membership
function that has a positive and a negative slope we would first tune the positive slope
of the triangle and try it with say 3 to 5 different positive slopes. As we followed this
tuning methodology for each parameter of the membership functions, we never found
it necessary to use more than 5 different versions of such parameter (the positive
dopein this case).

As a result of the tuning process described above we derived the following
membership functions for the fuzzy sets described in Table 4-1.

Echo return loss (ERL)

The membership function for the fuzzy set “good ERL (gerl)”

x- 20

: 20£ X £30
.
Myeri (X) = | 1, x>30

: 0, otherwise
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Graphically we have
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Figure4-5 ERL fuzzy membership function

Combined Loss (ACOM)

The membership function for the fuzzy set “bad ACOM (bacom)”

123- X 68 x£23
i 17
Mbacom(X) = i 1Lx<6

: 0, otherwise

A

The membership function for the fuzzy set “moderate ACOM (macom)”

i x-12
12222 108 x£ 23
i 11
L35
Miacom(X) = | ————,23 <X £ 36
i 13
10, otherwise
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|

The membership function for the fuzzy set “good ACOM (gacom)”
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Figure4-6 ACOM fuzzy member ship functions

Receive speech power

The membership function for the fuzzy set “bad receive speech power (brsp)”
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Graphically we have
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Figure4-7 Receive speech fuzzy membership function

Transmit noise power

The membership function for the fuzzy set “bad transmit noise power (btnp)”
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Figure4-8 Transmit noise fuzzy member ship function

Now we show an example of a fuzzy rule computation carried by the fuzzy inference
system proposed above. Suppose we have the following set of inputs (raw data)

ERL =23 dB

ACOM = 28dB
Receive speech power = -27dBm
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Trarsmit noise power = -50dBm
Suppose we want to compute the fuzzy rule
“1F ACOM is moderate AND ERL is good THEN echo is moderate”

asdescribed in Table 4-2.

The fuzzy set “moderate ACOM” is described by the membership function mynacom(X),
the fuzzy set “good ERL” is described by the membership function mye(x) and
finadly, the fuzzy set “moderate echo” is described by the membership function
Mne(X). All these membership functions were previoudly defined in this section.

Now we map the input data into the fuzzy sets:

36-28 8

28) = =—

Miacom(28) 13 13
23-20 3
23) = =
Men(23) = =5~ =1

The fuzzy AND operator (intersection of fuzzy sets) that we are using is defined in
Section3.4.3., the fuzzy implication operator that we are using is the Larsen operator,
so the output of thisruleis given by:

13
[ZX0EXEZ
I5
3 [3(1- x) 1
X) = —Mmpe(X) = | —<x£1
) = 3 = 123
i 0, otherwise

The next figure is a graphical representation of the computation described above - this
kind of graphica analysis helps in the tuning of the membership functions and the
fuzzy rules.
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Figure4-9 Graphical interpretation of the fuzzy rule

Once all the rules described in Table 4-2 are computed as shown above, the output
membership functions (‘consequences of the fuzzy rules - which is n(x) in the
example above) are then aggregated Section 3.4.6) and the output of the fuzzy
inference system is computed using the center of mass defuzzification method
(Section3.4.7) - asdescribed in Figure 3-8.

The idea is to run such computation periodically throughout a VolP call, getting
instantaneous values of the quality of the echo signal in such calls. This was done in
our simulations and the next figure shows the output of the fuzzy agorithm for a call
with a relatively bad echo signal. More simulation results are described in Section
4.4.

(Quality of the echa signal

1 1 1 1 1 1
a 10 20 30 A0 S0 (=n]
Tirme in seconds

Figure 4-10 Echo quality estimation for a simulated call

This was a call with duration of about one minute. We computed the quality of the
echo signal every two seconds. The higher the number for the estimative of echo
quality, the better it is as described by the membership functions on Figure 4-4.
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Figure 4-11 and Figure 4-12 below show the signals used to estimate the quality of
the echo signal. Although we really need to listen to this signal in order to evaluate
the voice quality, we can clearly see the echo component embedded in the signal.

hme oE0 oo 01150 00,0 0:28.0 03300 01360 02a0,0 03480 0:60.0 03660 00,0 [

Figure4-11 Speech and echo signalsin the send path

Below we have the speech signal in the receive path. A portion of this signal will be
reflected into the send path to compose the echo signa (Figure 2-2).

Figure4-12 Speech signal in the receive path

4.3 Network Based Algorithm

So far we have anadyzed the echo signa present in a single channél in a VolP
network. But it is interesting to have voice quality performance or, in the case of this
chapter, echo quality for a group of channels in the network. In a practical scenario,
we can imagine a group of VolP channels that are in the same subnetwork, so it
makes sense for the network provider to have an aggregate estimate of that
subnetwork echo quality besides having the echo quality for each individual channel.
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Figure 4-13 Estimating the voice quality for a subnetwork of VolP channels

In a similar way, we can also have a hierarchy of subnetworks that ends with the
provider’s complete IP network and we can evauate the echo quality for each level of
these subnetworks hierarchies.

4.4 Simulation Results

We ran the proposed channel based algorithm for 32 calls with different levels of
voice quality. These calls were al previously generated in the lab and recorded in
PCM format. We split the calls into two groups. The first group contains 16 calls
where echo was effectively cancelled or no echo was created in that call. The second
group contains calls with various levels of echo signals and background noise. Then,
we ran these calls through a Texas Instruments DSP platform with a line echo
canceller. We then collected the measurements from this echo canceller, parsed these
measurements and finally used them as inputs to our fuzzy algorithm. As described in
the previous section, the collected measurements from the echo canceller were the
ERL, ACOM, transmit speech power, receive speech power, transmit noise power
and receive noise power.

The fuzzy agorithm was implemented in Matlab, using the fuzzy inference toolbox
provided by Matlab. The setup parameters that are necessary to implement our
proposed algorithm using this toolbox are listed in the appendix. For each simulated
VolP cdl we had the near end signal, the far end signa and the measurements
provided by the echo canceller. As was described, the proposed algorithm gives an
instantaneous estimation of the echo signal for the call. During our simulations we
chose to compurte this estimation every two seconds.

51



There are several ways to report the results of the agorithm for each call. One
possible way isto report every instantaneous output of the fuzzy algorithm and in this
case we can have a picture of the evolution of the echo component of the voice
quality throughout the call as described in Figure 4-10. However, from a network
provider perspective this would require a lot of bandwidth, data storage and possibly
unnecessary processing. For this reason, we also developed some aternative ways to
try to consolidate all these temporal measurements (Figure 4-10) into a small set of
measurements for the whole call.

One approach that we considered was to provide an average of the outputs of the
fuzzy inference system throughout the call. We obtained even better results if before
computing the average we discard the 5% highest and lowest outputs of the fuzzy
inference system. Using this idea, we can provide a single number that reflects the
overal echo signa quality for the observed Vol P call.

The next figures show the simulation results for the approach described above. We
ran al the 32 calls and computed an estimate of the echo component of the voice
quality for each call by computing the average output of the fuzzy inference system
The following figure depicts the result of the ssimulation for the group of 16 calls with
good echo signal. Each bar represents the average quality for one Vol P call.
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Figure4-14 Average quality for callswith good echo component

Anayzing the figure above, we note that the algorithm was realy effective in
estimating the echo component for these calls. There is a little variation (less than
15%) between the scores for this group of 16 calls and in fact they have very similar
MOS scores. We should note that due to the design of the output functions of the
fuzzy rules, the defuzzification method and the fuzzy implication method chosen for
the algorithm, the maximum value for the quality of the echo signal is 5/6, or 0.8333.
So, the figure above really shows calls with good echo signal.
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The second group contains calls where echo was not effectively cancelled or there
was some high noise or high difference level between the receive path signal and the
send path signal. The results for these calls are shown below. Again, each bar
represents the average quality for a VolP call. There are a total of 16 calls in this
group.
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Figure4-15 Average quality for calls with bad echo component

We see from this figure that the algorithm was able to declare severa calls as having
bad echo quality. However, some calls (like call number 8 and number 15) obtained a
much higher score than they really deserved.

Of course, using the approach described above, we lose the detailed information
about the call. For instance, if we get an average score for the voice quality in a given
call we do not know if the call had a good quality for approximately half of the time
and a bad quality in the remaining time or if the call quality was average during the
whole call. So, another possible way of aggregation that is in between the detailed
temporal results and the average proposed above is to provide a histogram of the
levels of echo and voice quality for the call.

For instance, for the call described by Figure 4-10 we have the following histogram
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Figure4-16 Histogram showing the echo signal quality

The next figure shows a histogram for a simulated call that had a good estimated echo
quality for most of the call.
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Figure4-17 Histogram for a call with a good estimated echo signal quality

We aso used the complete set of instantaneous outputs of the fuzzy inference system
to analyze the influence of the different input data into the output provided by the
algorithm. For instance in the example provided in Section 4.2 we could compare the
influence of the receive and transmit speech powers (Figure 4-12 and Figure 4-11
respectively) with the output of the proposed agorithm (Figure 4-10).

In the next figure we use another simulated call with undesirable echo signal and
unsatisfactory echo cancellation to compare the output of the proposed fuzzy
algorithm to the estimated level of combined loss (ACOM) for that call. The call has
an approximate duration of one minute.

54



0.8 T T T T T T 25

07F
20k

06}

0aF

ACOM in dB

04F

Cluality of the echo signal

021

D‘] 1 1 L 1 1 1 1 1 1 1 1 1
] 10 20 30 40 50 =i} 0 10 20 30 40 50 G0
Time in seconds Tirme in seconds

Figure 4-18 Comparing the estimated echo quality with the estimated ACOM

We conclude from these simulations that our proposed algorithm to evaluate the echo
component of the voice quality in aVolP call gave very good results for calls that had
little or no echo. That is, the proposed agorithm was able to estimate with good
accuracy that the final voice quality was not affected by echo in those calls (Figure
4-14). We should note that due to our choices of defuzzification method and the
output membership functions, even for calls with perfect quality the output wouldn’t
be 1.0 . So the outputs shown in Figure 4-14 redly reflect very good voice quality as
we expected.

On the other hand, for calls where the voice quality was not so good due either to
some high background noise, transmit/receive speech signal level disparity or
presence of echo, the algorithm had afair performance. As we can see in Figure 4-15
the algorithm was able to point out calls with voice quality problem but we still think
that some calls got higher scores than expected considering our subjective analysis of
the call. For instance, again in Figure 4-15 we got a few calls with scores around 0.6
which fails to point out the real subjective quality of the call which was lower than
that. There is not a single reason why these calls got scores higher than expected,
once different cals, with different issues (sometime echo, sometimes high
background noise) presented high scores. We tried to tune the membership functions
and modify or add fuzzy rules in order to improve the output of the algorithm but the
results shown in this section are the best we could obtain.

Finaly, we suggest that before using this algorithm in a deployed Vol P network, the
network provider should run several testing calls in order to calibrate the output
values of the algorithm, not the fuzzy rules or the fuzzy membership functions. That
is, after running severa calls with known voice quality, the provider can generate
thresholds to compare against the output of the algorithm in order to determine the
voice quality. For instance in our simulations we could suggest that any output of the
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algorithm that is below 0.5 indicates bad voice quality and anything above 0.7
indicates good voice quality. Any call with quality in between these numbers have
some moderate voice quality. Which shows that, as designed, the algorithm’s output
is fuzzy, imprecise and it only gives us a degree of truth.
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5 Summary and Future Work

5.1 Summary

VolP service is bound to grow considerably in the years to come. Even so, VoIP
reliability and voice quality remain important factors, specialy when compared
against the PSTN, that limit the widespread adoption of VolP in consumer markets.
In this work we propose a fuzzy algorithm to estimate the echo quality component of
the voice quality in Vol P networks.

The proposed agorithm is a building block EFigure 4-2) of an objective, passive,
voice quality algorithm that can run in real-time and estimate the voice quality for
live calls in a VolP system or network. The use of fuzzy logic was motivated by the
low computational complexity normally required by such methods also called soft
computing methods. The proposed agorithm can run in real-time in the embedded
system that processes the VolP call, giving operators an amost instantaneous
estimation of the quality of their network. Another advantage of the proposed
algorithm is that it doesn’t require a reference signal and this is another reason why it
can be run for red life calls. On the other hand, the algorithm carries a tradeoff
between precision and complexity. The main disadvantage of the proposed algorithm
isthat it is not as precise in its estimates as the PESQ, MOS or the E-model methods.
As designed, the algorithm is based on a fuzzy engine and the results of the fuzzy
inference system for rea calls must ke analyzed against results of the algorithm for
calls that have known MOS scores.

We simulated the algorithm using Matlab and the ssimulation results presented in
Section 4.4 show that it estimated with very good precision the quality of the echo
component for calls with no or very little echo Figure 4-14). On the other hand,
although the agorithm was able to detect and estimate the bad quality of calls with
some echo, it also missed to point out other calls that presented bad quality (Figure
4-15).

In this work, we aso presented some extensions for the proposed algorithm in order
to estimate the voice quality of a VolP call taking into consideration aso the effects
of jitter, packet loss and delay (Figure 4-2). In the same way, we proposed building
blocks of a more complete algorithm to estimate the performance of a Vol P system or
network (Figure 4-3). These and a few other points are described with more detail in
the next section, which proposes topics for future work related to this subject.
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5.2 Further Work

In this section we discuss two main directions of future developments related to the
algorithm proposed in this work.

We can improve the accuracy of the proposed algorithm.

We can modify the proposed agorithm so that it can be used in different
scenarios

One possible way of improving the accuracy of a fuzzy inference system is to add
more input fuzzy variables ard more fuzzy rules. As was said before, a new version
of the algorithm with a larger set of fuzzy rules that uses the information of packet
loss, delay and jitter may be considered as a good contribution in a future work. It
would give a more precise estimate of the voice quality than taking only the echo
component into consideration. Also, we should consider the possibilities of including
fuzzy rules that incorporate knowledge of other speech parameters that can be
affected by the IP network such as speech clarity and loudness. Of course, we will
need to add new fuzzy membership functions for the new parameters, new fuzzy rules
will be created and some existing fuzzy rules will need to be modified. All these
should be followed by an extensive tuning of the membership functions and possibly
the rules, using calls with known MOS.

Regarding different scenarios, there are few directions that can be followed in order
to increase the range of scenarios that can take advantage of a similar algorithm. For
instance, the main results of this work were developed for line echo present in aVolP
call. So, a modified algorithm could be used for smilar purposes in a scenario where
the echo present in the call has acoustic nature. It would be very useful for network
operators to have a similar algorithm to evaluate the quality of an acoustic echo
signal. The characteristics of the acoustics echo and acoustic echo cancellers are
different from the characteristics of the line echo and line echo cancellers. For
instance, the echo path for acoustic echo can be much longer and can vary much more
(in length) than for line echo. The acoustic echo generated by a handsfree phone for
example will vary based on different room sizes. Also, the adaptive filter agorithm in
genera is different between the acoustic and the line echo canceller implementations.
The bottom line is that the algorithm proposed here is not valid for scenarios where
the echo is of acoustic nature and modifying the algorithm to handle this scenario is
an important extension of this work.

Still in this context of modifying the proposed agorithm for different scenarios,
another interesting direction is to adapt the algorithm for 802.11 or Wi-Fi networks,
which are also becoming very popular. In fact, the use of VolP over such networks is
aready being caled Vo802.11 [R 34]. It seems that the chief challenge to V0802.11
is that, relative to wired IP networks, packets are dropped at an excessive rate - in
general 20% more packets are dropped. This can lead to distortion of the voice to the
extent that the conversation is unintelligible and this must be taken into consideration
when adapting our proposed algorithm to the V0802.11 environment. Again, we may
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need to add new fuzzy variables and fuzzy rules to deal with the problem of packet
loss in wireless IP networks. We should note here that this may not be a trivial task
once in the V0802.11 environment there are new speech processing algorithms that
provide diversity, which alow for some speech segment recovery even when a few
packets are lost. Of course, this diversity leads to increased delays and that is the
price to be paid. So, this trade-off between diversity, delay and packet loss should be
included in the fuzzy rules of the modified agorithm.
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Appendix

The implementation of the proposed fuzzy agorithm was done using the Fuzzy Logic
Toolbox provided by Matlab. The toolbox uses files with extension “.fis”. We list
below the “.fis’ file with the necessary parameters to simulate our algorithm. In order
to use it in Matlab, we suggest to copy and paste it in a notepad and save it as a “txt”
file. Then the user should rename it with a“.fis” extension and load it using the
tool box.

/********************************************/

[ System

Name=" Echo_Conponent _Al gorit hmi
Type=' mandani '

Versi on=2.0

Numl nput s=4
NumQut put s=1

NunmRul es=4

AndMet hod="m n'

O Met hod=" max'

| mpMet hod=" pr od'

AggMet hod=" max’

Def uzzMet hod=' centroi d'

[ nput 1]

Name=' ERL'

Range=[ 6 30]

NumvFs =1

MF1=" Good' :"trinf',[20 30 30]

[ I nput 2]

Name=" ACOM

Range=[ 6 40]

NumvFs =3

MF1="Bad':"trinf',[6 6 23]

MF2=' Mbderate':"trinf',[12 23 36]
MF3=" Good' :"trinf',[23 40 40]

[ I nput 3]

Name=' Transm t _Noi se_Power"'
Range=[ - 60 - 36]

NumvFs =1
MF2="Bad':"trinf', [-45 -36 -36]

[ I nput 4]

Name=' Recei ve_Speech_Power"'
Range=[-30 -5]

NumvFs =2

MF1='Badl' :'trinf',[-30 -30 -25]
MF2="Bad2' :"trinf',[-15 -5 -5]

[ Qut put 1]
Nane=' Echo'
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Range=[ 0 1]

NumvFs =3

MF1="Bad':"trinf',[0 O 0.5]
MF2=" Mbderate' :"trinf',[0 0.5 1]
MF3="Good' :"trinf',[0.5 1 1]

R

|l es

OoOwoo—
ONEFRWC
NOOOO®
rOOO—
wooo
PR R Re

)

)
)
)

PN R W
NN N N
R R R

/********************************************/

Thiswill take care of the main computations of the algorithm, but it will be necessary
to use other Matlab M-files that are implementation dependent in order to implement
the algorithm. In our simulations we used the following logic diagram of M-files.

M-file(s) for parsing and pre-
processing of input parameters
from the echo canceller.

M-file(s) with
graphical user !
interface and loop
control for the Fuzzy toolbox for the
periodic > estimation of the echo
computation of the component (“ fis’ file).
echo component
throughout the
cal. A

M-file(s) for storing and
processing the outputs of the
fuzzy toolbox. For instance,
compuing the averages and
histograms, comparing the
outputs against thresholds,
and producing plots.
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