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Attributes are semantic features of objects, people, and activities. They allow

computers to describe people and things in the way humans would, which makes

them very useful for recognition. Facial attributes - gender, hair color, makeup, eye

color, etc. - are useful for a variety of different tasks, including face verification

and recognition, user interface applications, and surveillance, to name a few. The

problem of predicting facial attributes is still relatively new in computer vision.

Because facial attribute recognition is not a long-studied problem, a lack of publicly

available data is a major challenge. As with many problems in computer vision,

a large portion of facial attribute research is dedicated to improving performance

on benchmark datasets. However, it has been shown that research progress on

a benchmark dataset does not necessarily translate to a genuine solution for the

problem. This dissertation focuses on learning models for facial attributes that

are robust to changes in data, i.e. the models perform well on unseen data. We

do this by taking cues from human recognition, and translating these ideas into



deep learning techniques for robust facial attribute recognition. Towards this goal,

we introduce several techniques for learning from noisy unconstrained visual data:

utilizing relationships among attributes, a selective learning approach for multi-

label balancing, a temporal coherence constraint and a motion-attention mechanism

for recognizing attributes in video, and parsing faces according to attributes for

improved localization.

We know that facial attributes are related, e.g. heavy makeup and wearing lip-

stick or male and goatee. Humans are capable of recognizing and taking advantage

of these relationships. For example, if a face of a subject is occluded, and facial hair

can be seen, then the likelihood that the subject being male should increase. We in-

troduce several methods for implicitly and explicitly utilizing attribute relationships

for improved prediction.

Some attributes are more common than others in the real world, e.g. male v.

bald. These disparities are even more pronounced in datasets consisting of posed

celebrities on the red carpet (i.e. there are very few celebrities not wearing makeup).

These imbalances can cause a facial attribute model to learn the bias in the dataset,

rather than a true representation for the attribute. To alleviate this problem, we

introduce selective learning, a method of balancing each batch in a deep learning

algorithm according to each attribute given a target distribution. Selective learning

allows a deep learning algorithm to learn from a balanced set of data at each iteration

during training, removing the bias from the label imbalance.

Learning a facial attribute model from image data, and testing on video data

gives unexpected results (e.g. gender changing between frames). When working



with video, it is important to account for the temporal and motion aspects of the

data. In order to stabilize attribute predictions in video, we utilized weakly-labeled

data and introduced time and motion constraints in the model learning process.

Introducing temporal coherence and motion-attention constraints during learning

of an attribute model allows the use of weakly-labeled data, which is essential when

working with video.

Framing the problem of facial attribute recognition as one of semantic segmen-

tation, where the goal is to predict attributes at each pixel, we are able to reduce

the effect of unwanted relationships between attributes (e.g. high cheekbones and

smiling).

Robust facial attribute recognition algorithms are necessary for improving the

applications which use these attributes. Given limited data for training, we develop

several methods for learning explainable facial features from noisy unconstrained

visual data, introducing several new datasets labeled with facial attributes and im-

proving over the state-of-the-art.
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Chapter 1: Introduction

1.1 Motivation

Facial attribute recognition is a new and interesting problem in the field of

computer vision. Being able to automatically recognize semantic features of faces in

the way that humans do is very useful for many applications. Facial attributes can be

used for face recognition and verification, surveillance, human-computer interaction,

and many other applications. Existing approaches for facial attribute prediction

focus on improving performance on a benchmark dataset: CelebA [2]. However,

the state-of-the-art methods for facial attribute recognition on CelebA do not take

advantage of techniques from human recognition. In this dissertation, we take cues

from human vision and perception and translate those into novel deep learning

approaches for facial attribute recognition. We focus on building robust models for

facial attributes that can be used for any of the aforementioned applications. In

order for these models to perform well on unseen data, we take cues from the ways

in which humans recognize and understand visual data to learn more robust models

with deep learning techniques. With the methods discussed in this dissertation, we

are able to accurately describe faces in images and video.
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1.2 Using Attribute Relationships

When first introduced, facial attributes were treated as independent features,

and separate models were used for the prediction of each attribute [3] [4] [5] [6].

Recently, attribute prediction algorithms have been taking advantage of attribute

relationships [7] [8] [9] [10]. Attributes can be strongly related, such as heavy makeup

and wearing lipstick or male and goatee and many others. In order to take these

relationships into account during training of our model, we introduce a multi-task

deep convolutional neural network (MCNN) with an auxiliary network at the top

(AUX) which takes advantage of attribute relationships for improved classification.

We call our final network MCNN-AUX. MCNN-AUX uses attribute relationships in

three ways: by sharing the lowest layers for all attributes, by sharing the higher layers

for spatially-related attributes, and by feeding the attribute scores from MCNN into

the AUX network to find score-level relationships. Using MCNN-AUX rather than

individual attribute classifiers, we are able to reduce the number of parameters in

the network from 64 million to fewer than 16 million and reduce the training time

by a factor of 16. We demonstrate the effectiveness of our method by producing

results on two challenging publicly available datasets (CelebA and LFWA) achieving

state-of-the-art performance on most attributes.
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1.3 Selective Learning

Despite the usefulness of facial attributes, to date there is only one large-

scale dataset labeled with these features, CelebA [2]. Impressive results have been

achieved on this dataset, but it exhibits a variety of very significant biases. As

CelebA contains mostly frontal idealized images of celebrities, it is difficult to gen-

eralize a model trained on this data for use on another dataset (of non celebrities).

A typical approach to dealing with imbalanced data involves sampling the data in

order to balance the positive and negative labels, however, with a multi-label prob-

lem this becomes a non-trivial task. By sampling to balance one label, we affect

the distribution of other labels in the data. To address this problem, we intro-

duce a novel selective learning method for deep networks which adaptively balances

the data in each batch according to the desired distribution for each label. The

bias in CelebA can be corrected for in this way, allowing the network to learn a

more robust attribute model. We argue that without this multi-label balancing, the

network cannot learn to accurately predict attributes that are poorly represented

in CelebA. We demonstrate the effectiveness of our method on the problem of fa-

cial attribute prediction on CelebA, LFWA, and the new University of Maryland

Attribute Evaluation Dataset (UMD-AED), outperforming the state-of-the-art on

each dataset.
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1.4 Temporal Coherence and Motion Attention

Recent research progress in facial attribute recognition has been dominated

by small improvements on CelebA [2]. We extend attribute prediction research to

unconstrained videos. Applying attribute models trained on CelebA – a still image

dataset – to video data highlights several major problems with current models, in-

cluding the lack of consideration for both time and motion. Many facial attributes

(e.g. gender, hair color) should be consistent throughout a video, however, current

models do not produce consistent results. We introduce two methods to increase the

consistency and accuracy of attribute responses in videos: a temporal coherence con-

straint, and a motion-attention mechanism. Both methods work on weakly labeled

data, requiring attribute labels for only one frame in a sequence, which we call the

anchor frame. The temporal coherence constraint moves the network responses of

non-anchor frames toward the responses of anchor frames for each sequence, result-

ing in more stable and accurate attribute predictions. We use the motion between

anchor and non-anchor video frames as an attention mechanism, discarding the

information from parts of the non-anchor frame where no motion occurred. This

motion-attention focuses the network on the moving parts of the non-anchor frames

(i.e. the face). Since there is no large-scale video dataset labeled with attributes, it

is essential for attribute models to be able to learn from weakly labeled data. We

demonstrate the effectiveness of the proposed methods by evaluating them on the

challenging YouTube Faces video dataset [11]. The motion-attention and temporal

coherence methods outperform attribute models trained on CelebA, as well as those

4



fine-tuned on video data. This work is the first to address the problem of facial

attribute prediction in video.

1.5 Parsing Faces with Attributes

Many facial attributes are related (e.g. gender and mustache, attractive and

heavy makeup, etc.). However, we are able to recognize these attributes indepen-

dently. Humans are capable of recognizing gender without superficial cues from hair

length or makeup. Deep learning algorithms place a significant weight (we argue

too much) on these relationships when learning to recognize facial attributes. We

introduce face parsing with attributes as a way to de-emphasize relationships be-

tween facial attributes, allowing the model to learn a more robust representation of

the attributes. Face parsing provides an additional level of supervision in our DL

facial attribute framework. Face parsing with facial attributes is similar to semantic

segmentation in that we want to classify every pixel in the face as belonging to some

class. However, face parsing with attributes differs from semantic segmentation in

that every pixel can have multiple labels (e.g. high cheekbones and rosy cheeks

come from the same area of the face and so that area would have both labels). Face

parsing with attributes produces a map that indicates which attributes are present

at each pixel. In face parsing with attributes, an input image results in multiple

maps, where each map indicates the location of the particular attribute in the im-

age. The proposed method, AttParseNet, combines facial attribute recognition with

face parsing, out-performing the state-of-the-art on three facial attribute benchmark

5



datasets: CelebA, LFWA, and UMD-AED. This work was the first to address the

problem of parsing faces according to semantic attributes.

1.6 Contributions

In this dissertation we make the following contributions:

1. We introduce a multitask network (MCNN-AUX) for attribute recognition uti-

lizing implicit and explicit relationships among attributes for improved pre-

diction.

2. We introduce selective learning, a multi-label balancing technique for deep

learning allowing for learning of a more robust representation of facial at-

tributes from severely imbalanced data.

3. We introduce two methods for transferring attribute models trained on images

to video data: temporal coherence and motion-attention.

4. We frame the problem of facial attribute recognition as one of parsing faces

according to attributes, achieving state-of-the-art results.

5. We released a new facial attribute recognition evaluation dataset: University of

Maryland Attribute Evaluation Dataset (UMD-AED). We labeled four frames

from every video of YouTube Faces with facial attributes, and made the data

publicly available for future research on attribute recognition in video. We

also released automatically generated facial attribute segments for CelebA,

allowing for future research in the direction of parsing faces with attributes.
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1.7 Organization

The remainder of this dissertation is organized as follows. Chapter 2 discusses

the relevant literature in attribute recognition, multi-task learning, semantic seg-

mentation, and multiple instance learning. Chapter 3 details our work on utilizing

relationships between attributes in order to improve prediction. In chapter 4 we

discuss our approach to the multi-label balancing problem in deep learning appli-

cations, which we call selective learning. Chapter 5 details our temporal coherence

and motion-attention methods for adapting a model trained on still images for use

on video. We re-frame the problem of facial attribute recognition as one of parsing

faces according to attributes in chapter 6. Finally, we conclude and discuss future

research directions in chapter 7.
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Chapter 2: Related Work

There has been many years of research in gender recognition, attribute recog-

nition, domain adaptation, video processing, face parsing, and multiple instance

learning. We review the relevant literature here.

2.1 Gender Recognition

There have been decades of research on gender recognition. Humans are ca-

pable of determining the gender of a face with very high accuracy and pinpointing

exactly how we do this has been of interest for many years [12].

Feature extraction has been the main source of improvement for gender recog-

nition algorithms with SVMs and neural networks being the most common classifiers

until recently. In some of the earlier gender recognition algorithms, pixel values were

used directly as features for classification [13] [14]. [15] showed that a neural network

could learn gender reliably from very small images - 8x6 - ones which humans could

not identify as faces. Pixel values as features are very difficult to deal with as their

complexity increases with the size of the image, making it infeasible to use large

images. As a result, dimensionality reduction techniques gained popularity for use

on pixel value features. PCA was the dimensionality reduction tool of choice in gen-
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der recognition [16] as well as age and ethnicity recognition [17]. [18] used PCA and

DCT for dimensionality reduction of face images. Independent component analysis

was also used for gender recognition of frontal face images [19]. Rectangle features

were introduced by [20] for face detection. They were useful in gender and ethnicity

recognition as well with [21] and [22] extending their work.

Local Binary Pattern (LBP) features were introduced in 1994, and have been

successfully used for many different computer vision problems [23]. Gender recogni-

tion was no exception, with [24] using features made up of LBP histograms extracted

from small patches of the face, [25] using the distance between a reference histogram

and the LBP histogram from a test image to classify the image, and [26] using Ad-

aboost to choose the best LBP features for gender recognition. [27] used a multi-scale

approach combining LBP, and pixel features. [28] combined LBP features with con-

trast features for their gender classifier. Many different variations on LBP have been

introduced. The local directional pattern utilizes gradient magnitude to character-

ize the texture by edge responses in different directions [29]. Interlaced derivative

patterns use a four-channel derivative image to construct a feature vector [30]. [31]

introduced a new feature combining centralized binary pattern with Gabor gradient

magnitude to get Centralized Gabor Gradient Histogram (CGGH).

Gabor wavelets were introduced in [32], and have been popular in gender

recognition [33] [34]. [35] used a hierarchy of Gabor and Laplace features for gender

recognition. Combining LBP with Gabor wavelets, [36] introduced the local Gabor

binary mapping pattern feature for gender classification.

SIFT features were introduced in [37] and were the most popular features
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for classification problems up until the rise of CNN-based features. [38] used SIFT

features for gender classification, while [39] used boosted SIFT features, and [40]

combined SIFT and Gabor features.

In addition to the appearance-based features mentioned above, there have

been many geometric features proposed for gender recognition. [41] used fiducial

distances as features, while [42] combined appearance-based features - such as LBP

and discrete cosine transform - with their Geometrical Distance Feature (GDF).

With decades of research in automatic gender recognition, researchers have

found that gender classification is affected by age and ethnicity [43] [44] [45]. [46]

used a dropout-support vector machine for age and gender recognition. They later

extended this work to use deep CNNs for feature extraction and classification in [47].

In recent years, the problem of gender classification has transformed into the problem

of facial attribute classification.

2.2 Attribute Recognition

2.2.1 Objects

Work on attributes for objects began with [48] where the authors shifted the

focus from identifying objects to describing them using attributes. Learning at-

tributes, rather than classes, allows for describing unseen objects. Lampert et al.

demonstrated this, producing results on a large-scale animal dataset annotated with

attributes [49]. Following up on this, [50] took the arrangement and interactions of

attributes into consideration when recognizing objects, allowing for detailed descrip-
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tions of objects which have not yet been seen. Learning attributes and object classes

jointly improved object recognition whether it was done iteratively or by modeling

attribute correlations [51] [52]. In [53], each scene was represented as a collection of

objects, so the objects were used as attributes for scene classification. Focusing on

attribute correlations which are harmful for recognition, [54] introduced a method

which encouraged related attributes to have similar features and unrelated attributes

to have dissimilar features. [55] used a mult-task network to learn attributes for an-

imals and clothing, and showed improved results over individual networks.

2.2.2 Activities

Utilizing both manually-specified and data-driven attributes, [56] was one of

the first works to use attributes for human action recognition. [57] used a generative

model to learn the distribution and dynamics of activities in an attribute space.

NuActive used attributes for recognizing unseen human activities with an active-

learning approach to reinforce the recognition accuracy of the algorithm [58]. [59]

proposed a variation of a Conditional Random Field for activity recognition us-

ing attributes, focusing on recognizing unseen activities as well. Yao et al. jointly

learned a bases of attributes and action parts for human action recognition in still

images [60]. Action parts included objects and poselets related to the action. Using

attributes to regularize a multi-task classifier for action recognition, [61] imposed

attribute constraints on the actions according to a manually defined class-attribute

matrix. [62] aimed to find the best set of attributes for action recognition by auto-
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matically choosing a subset of manually specified and data driven attributes. Using

a subset of attributes for action recognition boosted performance over using the

entire attribute set.

2.2.3 People and Faces

Approaching the problem of person search in surveillance, Vaquero et al. used

attributes rather than identity, creating a system which allowed a user to specify

attributes for a search [63]. [64] used separate attribute classifiers for each pose

in order to identity attributes of people in images from personal photo albums.

Focusing on part extraction for attribute recognition, [65] proposed an appearance-

based approach for part extraction. [66] proposed a model which recognizes both

human attributes and actions using part templates. Wang et al. used a part-based

model for attribute recognition, utilizing RGB-D data [67]. Using attributes for

pedestrian re-identification, [68] employed a multi-label CNN to recognize attributes

using overlapping body parts as input. [69] proposed jointly learning all attributes

using the entire person as input, ignoring individual parts. Pose Aligned Networks

for Deep Attributes (PANDA) achieved state-of-the-art performance by combining

part-based models with deep learning to train pose-normalized CNNs for attribute

classification [6].

Facial attributes - gender, hair color, eye color, etc. - have been the most

popular and have been successful in face verification and recognition [3] [4]. [3] first

introduced the concept of facial attributes for face verification, following up on that
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work with [4]. They used 65 - and then 73 - binary attributes as face descriptors.

Even before this, Kumar et al. used attributes for image search in their FaceTracer

work, predicting attributes using a combination of SVMs and Adaboost [70]. In [71],

rather than manually labeling attributes, they trained one SVM for each pair of

people in a dataset so that each SVM could distinguish between the two people on

which it was trained. The feature for each image was then constructed by classifying

the image using the pair SVMs, describing each person by their likeness to the people

in the training dataset. Facial attributes have also found success in image search and

retrieval as they can be used to search a database of images very quickly [3] [4] [9].

With the release of two face datasets with attribute labels, great advances

have been made in the recognition of facial attributes in the past few years [5]. [5]

used two deep CNNs, one for localizing the face in the image (LNet), and one for at-

tribute prediction (ANet). Their method, LNet+ANet, outperformed PANDA and

FaceTracer on the CelebA dataset [70] [6]. Using wearable cameras, collecting face

tracks with weather and location metadata, [72] achieved state-of-the-art results on

attribute prediction by first training a verification network on the wearable camera

data, then fine-tuning the network for attribute prediction. In [8], the authors try

to adjust for the imbalance in CelebA by introducing a mixed objective loss, which

adjusts the back-propagation weights according to a given target distribution.

Much of the past work has generally considered attributes to be independent,

with [3], [6], and [5] training a separate classifier for each attribute. There have been

a few exceptions, however. [9] used the correlation amongst attributes to improve

image ranking and retrieval, learning pairwise correlations based on the outputs of
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independently trained attribute classifiers.

2.3 Multi-Task Learning

Multi-task learning (MTL) is a way of solving several related problems si-

multaneously, utilizing shared information [73] [74] [75]. MTL has found success

in the domains of facial landmark localization, pose estimation, action recognition,

face detection, and many more [76] [77] [78] [79] [80] [81]. MTL has been applied

to video data for both recognition and tracking [82] [83]. Utilizing pose as a part

of MTL for face recognition creates a face recognition system which is robust to

extreme changes in pose [84] [78].

In [85], [51], and [52] attributes and object classes were learned jointly to im-

prove overall object classification performance. [51] used multiple instance learning

to detect and recognize objects in images by learning attribute-object pairs. [52]

used an undirected graph to model the correlation amongst attributes in order to

improve object recognition. In [85], attributes and objects shared a low-dimensional

representation allowing for regularization of the object classifier.

Facial attributes fit nicely into a MTL framework, as predicting each attribute

is a separate problem, but each set of attributes share the same face. Combining the

problem of facial landmark localization with facial pose and attribute recognition the

MTL framework, [80] found that the landmark localization was much more robust.

[80] used three attributes: gender, smiling and wearing glasses to improve facial

landmark localization. [77] used MTL to jointly learn face detection, landmarks,
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pose, and gender combining features from intermediate layers in order to learn the

different tasks. Learning individual CNNs for each attribute, then performing MTL

at the feature level, [55] was able to accurately predict clothing attributes. [7] used a

Restricted Boltzmann Machine (RBM) for multi-task attribute learning, achieving

state-of-the-art results on several large-scale attribute datasets. Addressing the

problem of dataset bias in a multi-task setting, [8] introduced a mixed-objective

optimization network for attribute prediction, achieving state-of-the-art results.

2.4 Domain Adaptation

There have been many different methods for domain adaptation over the years

[86]. Object recognition has benefitted from domain adaptation methods, especially

since the introduction of a benchmark dataset [87]. Semi-supervised approaches

have dominated the field with dictionary learning methods [88] [89], and metric

learning methods [87]. Many unsupervised approaches have been introduced as well,

with dictionary [90] and manifold-based methods [91] [92] being the most popular.

Face recognition can easily be framed as a domain adaptation problem with faces

in different poses and with different illuminations and resolutions contributing to

domain shifts [93] [94] [95].

[96] tackled the problem of domain adaptation of clothing attributes from

ideal images to images taken in unconstrained environments. The authors used a

two-stream CNN to model the two domains in separate paths, using connections

between the two paths to ensure that the features are similar for both domains.

15



Their architecture worked in unsupervised and supervised settings.

[8] addresses the problem of dataset bias in a multi-label setting. The authors

introduce a Mixed-Objective Optimization Network (MOON) for attribute recog-

nition, by weighting the back-propagation error for each attribute according to a

given target distribution.

In [97], the feature extraction portion of the network fed into two different

predictor portions: the class predictor, and the domain predictor. As the domain

predictor backpropagated the error, it reversed the gradient when it passed through

the feature extraction portion of the network. This allowed the network to learn the

class labels while keeping the feature distributions for the two domains similar.

Bootstrapping is a popular approach for unsupervised domain adaptation [98]

[99] [100] [101]. Bootstrapping consists of training a model on the source data,

testing it on the target data and iteratively retraining the model adding samples

from the target data to the training set.

2.5 Video Processing

There have been several decades of research in automated video processing

[102] [103] [104] [105]. Here we review some recent publications which are related

to our work.

There are several datasets labeled with attributes for actions, however the

attributes are labeled for each action, not for each video, and certainly not for

each frame. For example, for the action applying lipstick, there is an attribute arm
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up. If in some frame the subject’s arm is not up, that frame is still labeled as

such [106] [107].

The concept of temporal coherence and feature stability in video has been ap-

plied to deep networks in the past. In [108], the authors introduced the concept of

steady feature analysis, which aims to learn invariant features from unlabeled data

for use in recognition tasks. Rather than encouraging features between video frames

to be similar, steady feature analysis encourages feature changes to be smooth, plac-

ing constraints on the higher order derivatives of the feature space. Altering stochas-

tic gradient descent to apply a coherence constraint to unlabeled video frames while

at the same time learning from images with labels, [109] learned models for different

recognition problems by leveraging labeled and unlabeled information. To perform

unsupervised feature learning using autoencoders, [110] used temporal coherence to

leverage unlabeled data. In [111], they learned feature representations with unla-

beled video using tracking as the only supervision. They enforced triplet constraints

at every frame according to the query, the tracked object and a random patch from

the frame that does not overlap with the tracked object.

In [112], the authors used the magnitude of the optical flow to amplify features

for action recognition. The idea here is that parts of the image with more motion

than others will correspond to higher weighted features for action recognition.
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2.6 Face Parsing

In semantic segmentation, the goal is to assign a class label to every pixel in an

image, effectively segmenting it into its parts. The problem of semantic segmentation

has been studied for many years. We review the relevant literature here. Face

parsing is a form of semantic segmentation where the goal is to segment the face into

its parts (eyebrows, mouth, nose, etc.). For many years, Conditional Random Fields

(CRFs) were used by all state-of-the-art methods for face parsing [113] [114] [115].

Like with many other fields, DL became the new state-of-the-art in face parsing

and semantic segmentation. With the introduction of Fully Convolutional Networks

(FCNs) in [116], DL became the go-to method for semantic segmentation. There is

not as much work on face parsing as on semantic segmentation because the focus

continues to be on facial landmark localization rather than segmenting faces into

their parts. [117] combines CNNs with CRFs and introduces a nonparametric prior

from exemplar images for improved face parsing. [118] uses a hierarchical deep learn-

ing approach focusing on parsing faces with partial occlusions. More recently, [119]

combines facial alignment with segmentation, using a shared representation to im-

prove learning of both tasks for the purpose of virtual makeup and face swapping.

Attention has also been introduced as a way to improve semantic segmentation when

working with multi-scale images [120].
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2.7 Data

We use many of the same datasets for our work, so we outline them here.

CelebA was collected for attribute classification and was labeled with the 40

binary facial attributes [5]. The CelebA dataset consists of 200,000 images: 160,000

for training and 20,000 each for validation and testing.

The well-known LFW dataset has been used mostly for face-verification [121].

It contains images of faces with varying pose, illumination, and resolution. There

are a total of 13230 face images in the dataset. Pose and illumination are the biggest

challenges in this dataset. Binary labels were recently added for the 40 attributes

in CelebA making it LFWA [5]. The LFWA dataset contains 13,143 images with

6,263 for training and 6,880 for testing. LFWA consists of still images of celebrities,

so it is similar to CelebA, but with lower resolution images.

YouTubeFaces is a video face verification dataset. It consists of 3, 425 videos

of celebrities from YouTube, with a total of roughly 620, 000 frames [122]. The data

varies significantly from CelebA and LFWA in quality, resolution, lighting, and pose.
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Chapter 3: Using Attribute Relationships for Improved Prediction

3.1 Overview

Improving the accuracy of attribute classifiers is an important first step in

any application which uses these attributes. In most works to date, attributes have

been considered independent of each other. However, attributes can be strongly

related, such as heavy makeup and wearing lipstick as well as male and goatee and

many others. We propose a multi-task deep convolutional neural network (MCNN)

with an auxiliary network at the top (AUX) which takes advantage of attribute

relationships for improved classification. We call our final network MCNN-AUX.

MCNN-AUX uses attribute relationships in three ways: by sharing the lowest layers

for all attributes, by sharing the higher layers for spatially-related attributes, and by

feeding the attribute scores from MCNN into the AUX network to find score-level

relationships. Using MCNN-AUX rather than individual attribute classifiers, we are

able to reduce the number of parameters in the network from 64 million to fewer

than 16 million and reduce the training time by a factor of 16. We demonstrate

the effectiveness of our method by producing results on two challenging publicly

available datasets achieving state-of-the-art performance on many attributes.
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Figure 3.1: Overview of MCNN. The input image on the left is cropped to 227x227

and the training mean is subtracted. The image is then passed through the network

producing attribute scores, which are then thresholded to give a positive or negative

response. The red attributes indicate a lack of the attribute and the green attributes

indicate a positive instance.
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3.2 Proposed Approach

3.2.1 Multi-Task CNN (MCNN)

The proposed MCNN takes an image as input and outputs 40 separate at-

tribute scores, which are then thresholded to obtain binary outputs. We describe

the details of the architecture below. Figure 3.1 shows the MCNN architecture.

Conv1 consists of 75 7x7 convolution filters, and it is followed by a ReLU, 3x3 Max

Pooling, and 5x5 Normalization. Conv2 has 200 5x5 filters and it is also followed by

a ReLU, 3x3 Max Pooling, and 5x5 Normalization. Conv1 and Conv2 are shared for

all attributes. This allows for learning of implicit relationships amongst attributes

at a lower level. After Conv2, groupings are used to separate the layers. We use nine

groups for the MCNN: Gender, Nose, Mouth, Eyes, Face, AroundHead, FacialHair,

Cheeks, and Fat. The attributes in each group are listed in table 3.1. There are

six Conv3s: one each for Gender, Nose, Mouth, Eyes, and Face, and one for the

remaining groups - Conv3Other. Each Conv3 has 300 3x3 filters and is followed by

a ReLU, 5x5 Max Pooling and 5x5 Normalization. The Conv3s are followed by fully

connected layers, FC1. There are 9 FC1s - one for each group. Each FC1 is fully

connected to the corresponding previous layer, with Conv3Other connected to the

FC1s for AroundHead, FacialHair, Cheeks, and Fat. Every FC1 has 512 units and

is followed by a ReLU and a 50% dropout to avoid overfitting. Each FC1 is fully

connected to a corresponding FC2, also with 512 units. The FC2s are followed by a

ReLU and a 50% dropout. Each FC2 is fully connected to one output node for each
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Group Attributes

Gender Male

Nose Big Nose, Pointy Nose

Mouth Big Lips, Lipstick, Mouth Slightly Open, Smiling

Eyes
Arched Eyebrows, Bags Under Eyes, Bushy Eyebrows,

Eyeglasses, Narrow Eyes

Face Attractive, Blurry, Heavy Makeup, Oval Face, Pale Skin, Young

AroundHead

Balding, Bangs, Black Hair, Blond Hair, Brown Hair, Earrings,

Gray Hair, Hat, Necklace, Necktie, Receding Hairline, Straight

Hair, Wavy Hair

FacialHair 5 o’clock Shadow, Goatee, Mustache, No Beard, Sideburns

Cheeks High Cheekbones, Rosy Cheeks

Fat Chubby, Double Chin

Table 3.1: Attributes and their corresponding groupings.

of the attributes in that group. For example, FC2Nose is connected to output nodes

for Big Nose and Pointy Nose. The grouping of attributes in the Conv3, FC1, and

FC2 layers allows for the learning of explicit relationships among attributes from

similar locations in the face image.

The nine groups were manually chosen according to attribute location. Some

groupings were separated from others and some were absorbed into others through

experimentation on the validation portion of the CelebA dataset giving the groupings

in table 3.1. Male was kept separate from all other attributes as we found that

male classification was improved by sharing layers with other attributes, but the

classification of the other attributes suffered. We found the best compromise was
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to include male in the shared Conv1 and Conv2 layers and then to have separate

Conv3, FC1, and FC2 layers.

We use Caffe [123] for our implementation, training, and testing of MCNN

and MCNN-AUX. We use a sigmoid cross-entropy loss for all attribute scores to

facilitate training. As preprocessing steps, the training mean is subtracted from

the images and they are cropped randomly with a size of 227x227. This helps the

network to be robust to shifts in the input. Unlike other attribute classification

methods, we do not perform any alignment or part extraction in the preprocessing

stage. Both alignment and part extraction are expensive and error-prone processes,

and so we save time and avoid problems associated with poor alignment by skipping

these steps. Our method is also more applicable to real-world imagery for which

alignment may be challenging.

If we were to use an independent CNN for each attribute, following the ar-

chitecture of one path in the MCNN - 3 convolutional layers and 3 fully connected

layers - each CNN would have over 1.6 million parameters. For all 40 attributes,

there would be over 64 million parameters. Using MCNN, we reduce the number of

parameters to fewer than 16 million, over four times fewer.

3.2.2 MCNN-AUX

After training the MCNN, we add one fully connected layer after the output of

the trained MCNN. This layer creates the two-layer AUX network. Figure 3.2 shows

the connection between MCNN and AUX. The input to AUX is the attribute scores
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Figure 3.2: AUX network architecture. The output of the MCNN is fully connected

to the final layer creating the 2-layer AUX network.

from the trained MCNN, and the output is the final attribute scores. Starting with

the weights from the trained MCNN, we learn the weights for the AUX portion

of the network, freezing the weights from the MCNN. The AUX network allows

for learning score-level attribute relationships. The AUX network adds only 1600

parameters to the fewer than 16 million from MCNN.

3.3 Experiments

In our experiments, we used two challenging, publicly available datasets: CelebA

and LFWA. Since the CelebA dataset is so large, we did not need to augment it

in any way. If we did not augment the LFWA dataset, the network would severely

overfit to the training data due to the large number of parameters. We augmented

the LFWA dataset by jittering the original images by increments of 10 pixels. After

jittering, we had over 75,000 images for training.
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3.3.1 Independent CNNs

We train independent CNNs for all the 40 attributes for both datasets in or-

der to compare these results with those from MCNN and MCNN-AUX. We use one

portion of our MCNN network for this. Each independent CNN has 3 convolutional

layers, and 3 fully connected layers with the parameters specified in previous sec-

tions. We train these networks for 22 epochs for both datasets and use a batch size

of 100. The independent CNNs each take about an hour to train for the CelebA

dataset and about 30 minutes for the LFWA dataset. For all 40 attributes, training

independent CNNs takes over 40 hours for CelebA and over 20 hours for LFWA.

3.3.2 MCNN

To train MCNN, we use batches of size 100, and train for 22 epochs for both

datasets. Training takes about 2.5 hours for the CelebA dataset and about 1 hour

for the LFWA dataset. We see a significant reduction in training time from 40

hours to 2.5 hours for CelebA and 20 hours to 1 hour for LFWA using MCNN over

independent CNNs.

3.3.3 MCNN-AUX

Taking the trained MCNN, we fix the weights for that portion of the MCNN-

AUX network and only train the AUX network. This takes about 20 minutes to

train for CelebA and about 10 minutes for LFWA.
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3.3.4 Results

We present results for our independent CNNs, MCNN, and MCNN-AUX. We

compare with the state-of-the-art, Liu et al. [5], and a baseline of always choosing

the most common label for each attribute.

We see from Table 3.2 that our independent CNNs outperform Liu et al. on

most attributes for CelebA. The independent CNNs improve on Liu et al. by 15%

for necklace, 12% for blurry, 9% for straight hair, and 8% for big nose. MCNN makes

even further improvements, and finally MCNN-AUX gives the highest accuracy for

most attributes.

We see that the largest increase in performance is from the method of Liu et al.

to the independent CNNs, with smaller improvements being made with MCNN and

MCNN-AUX. From this, we determine that the value in MCNN and MCNN-AUX is

in the reduced training time and number of parameters, which reduces the chances

of overfitting. We do not expect to see an increase in performance with MCNN-AUX

for every attribute, as many attributes do not have strong relationships with others.

Determining which relationships to use can be done using a set of validation data,

however, in this work we chose not to remove any relationships in our testing. All

three of our methods outperform the baseline for every attribute in CelebA.

Figure 3.3 shows a heatmap of the weights for the AUX network on the CelebA

dataset. From Figure 3.3 we can see that each attribute contributes the most to its

final classifier score. This is expected as MCNN already produces strong attribute

classification accuracies. Some intuitive relationships can be seen in the heatmap.
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Table 3.2: Results for CelebA. The highest accuracy for each attribute is in bold.
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5 o’clock Shadow 90.01 91 93.94 94.41 94.51 Heavy Makeup 59.50 90 90.95 91.37 91.55

Arched Eyebrows 71.55 79 83.16 83.55 83.42 High Cheekbones 51.81 88 87.34 87.55 87.58

Attractive 50.41 81 82.22 82.94 83.06 Lipstick 52.18 93 93.80 93.95 94.11

Bags Under Eyes 79.73 79 84.83 84.89 84.92 Male 61.34 98 98.02 98.16 98.17

Bald 97.88 98 98.85 98.87 98.90 Mouth Slightly Open 50.49 92 93.99 93.74 93.74

Bangs 84.42 95 95.99 96.04 96.05 Mustache 96.13 95 96.67 96.93 96.88

Big Lips 67.29 68 70.80 71.20 71.47 Narrow Eyes 85.13 81 87.22 87.16 87.23

Big Nose 78.79 78 84.47 84.50 84.53 Necklace 86.20 71 86.41 86.82 86.63

Black Hair 72.83 88 89.41 89.87 89.78 Necktie 92.99 93 96.71 96.53 96.51

Blond Hair 86.67 95 95.88 95.97 96.01 No Beard 85.36 95 95.93 96.11 96.05

Blurry 94.94 84 96.07 96.08 96.17 Oval Face 70.43 66 74.70 75.81 75.84

Brown Hair 82.03 80 88.75 88.99 89.15 Pale Skin 95.79 91 97.07 97.01 97.05

Bushy Eyebrows 87.04 90 92.87 92.80 92.84 Pointy Nose 71.42 72 77.47 77.47 77.47

Chubby 94.69 91 95.55 95.66 95.67 Receding Hairline 91.51 89 93.41 93.81 93.81

Double Chin 95.42 92 96.43 96.41 96.32 Rosy Cheeks 92.82 90 95.02 95.13 95.16

Earrings 79.33 82 90.35 90.32 90.43 Sideburns 95.36 96 97.77 97.82 97.85

Eyeglasses 93.54 99 99.67 99.63 99.63 Smiling 50.03 92 92.65 92.66 92.73

Goatee 95.41 95 97.13 97.30 97.24 Straight Hair 79.01 73 82.62 83.39 83.58

Gray Hair 96.81 97 98.07 98.20 98.20 Wavy Hair 63.59 80 83.24 83.92 83.91

Hat 95.79 99 98.97 99.04 99.05 Young 75.71 87 87.98 88.30 88.48
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Figure 3.3: Heatmap of AUX network weights on CelebA. Along the x-axis, we have

the MCNN output units and on the y-axis, the AUX units. Red indicates a strong

relationship, and blue indicates a strong inverse relationship. Best viewed in color.
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We see that bald is strongly related to receding hairline and has an inverse relation-

ship with straight hair and wavy hair and that no beard has an inverse relationship

with 5 o’clock shadow, mustache, and sideburns. There are many more just like

these. We do see some unexpected relationships as well, like high cheekbones and

smiling having a strong connection. This would likely indicate that people are not

very good at determining when someone has high cheekbones and therefore the labels

for this attribute are somewhat noisy.

Table 3.3 shows the results for the LFWA dataset. We can see that the ac-

curacies are lower for this dataset than for the CelebA dataset. This is likely due

to overfitting because LFWA is much smaller than CelebA. The independent CNNs

outperform Liu et al. on most attributes with an improvement of 11% for blurry,

11% for rosy cheeks, 10% improvement for pale skin, and 5% improvements for both

straight hair and wavy hair. MCNN improved the classification accuracy of many

attributes, but we see that a few, such as blurry and eyeglasses, did not improve with

MCNN. For blurry and eyeglasses this makes sense, as both attributes are relatively

unrelated to the other attributes, and therefore do not gain anything from shared

information. We note that though MCNN-AUX does not improve the results for

some attributes, we do not pre-train the networks using a larger dataset, as in Liu

et al., which used a much larger dataset to initialize the weights of their networks.

Pre-training on external data would likely improve the results, however that is not

the focus of this work.

Figure 3.4 shows a heatmap of the weights for the AUX network on LFWA.

There is much more white in this heatmap than in that of Figure 3.3 indicating
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Table 3.3: Results for LFWA. The highest accuracy for each attribute is in bold.

Attribute

B
a
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M
C
N
N

M
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N
N
-A

U
X

Attribute

B
a
se

li
n
e

L
iu

e
t
a
l.
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d
e
p
e
n
d
e
n
t

M
C
N
N

M
C
N
N
-A

U
X

5 o’clock Shadow 58.64 84 77.39 77.70 77.06 Heavy Makeup 89.20 95 95.63 95.84 95.85

Arched Eyebrows 74.88 82 81.4 82.36 81.78 High Cheekbones 67.74 88 88.02 88.25 88.38

Attractive 62.87 83 80.20 80.42 80.31 Lipstick 85.53 95 94.68 94.89 95.04

Bags Under Eyes 58.29 83 83.24 83.51 83.48 Male 78.77 94 93.27 93.66 94.02

Bald 89.37 88 91.51 91.99 91.94 Mouth Slightly Open 58.70 82 82.41 83.47 83.51

Bangs 83.59 88 90.47 89.99 90.08 Mustache 86.62 92 93.69 93.53 93.43

Big Lips 62.86 75 79.06 79.21 79.24 Narrow Eyes 65.50 81 82.48 82.73 82.86

Big Nose 68.59 81 84.43 84.76 84.98 Necklace 80.49 88 89.98 89.66 89.94

Black Hair 87.63 90 91.84 92.35 92.63 Necktie 64.09 79 80.34 80.50 80.66

Blond Hair 95.74 97 97.23 97.45 97.41 No Beard 70.05 79 81.45 82.13 82.15

Blurry 84.02 74 86.71 85.30 85.23 Oval Face 51.49 74 77.06. 77.38 77.39

Brown Hair 64.56 77 80.84 80.94 80.85 Pale Skin 52.09 84 94.31 93.41 93.32

Bushy Eyebrows 53.70 82 84.79 85.11 84.97 Pointy Nose 71.10 80 84.41 84.18 84.14

Chubby 63.92 73 75.85 76.90 76.86 Receding Hairline 59.84 85 86.00 86.26 86.25

Double Chin 62.44 78 82.00 81.17 81.52 Rosy Cheeks 79.65 78 89.46 87.52 87.92

Earrings 86.86 94 94.73 94.91 94.95 Sideburns 68.72 77 81.70 82.73 83.13

Eyeglasses 81.99 95 92.15 91.22 91.30 Smiling 60.50 91 92.22 91.75 91.83

Goatee 74.68 78 83.34 82.52 82.97 Straight Hair 64.44 76 81.54 78.72 78.53

Gray Hair 84.25 84 88.98 89.04 88.93 Wavy Hair 55.49 76 81.58 81.96 81.61

Hat 85.52 88 89.79 90.20 90.07 Young 79.60 86 85.11 85.37 85.84
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Figure 3.4: Heatmap of AUX network weights on LFWA. Along the x-axis, we have

the MCNN output units and on the y-axis, the AUX units. Red indicates a strong

relationship, and blue indicates a strong inverse relationship. Best viewed in color.
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that there are fewer strong relationships in LFWA than in CelebA. This makes

sense, as the classification accuracies for MCNN on LFWA were not as high as on

CelebA. Again, we believe that this is due to the small size of the dataset. Though

jittering LFWA helps, it does not compare to having a large amount of unique data

as in CelebA. As with CelebA, we see that each attribute contributes most to its

overall classification accuracy, though not quite as strongly. We again see promising

relationships, with bald and receding hairline being strongly related as well as heavy

makeup and lipstick and several others. We see that there are some noisy labels as

in CelebA with smiling and highcheekbones being strongly related.

3.4 Summary

In this chapter, we detailed our MCNN-AUX network, showing that though

facial attributes have been treated as independent problems in the past, there is a

lot to be gained from shared information amongst attributes. Framing the attribute

prediction problem as a multi-task learning problem is very natural and allows for

a large reduction in training time and in the number of parameters required for

the classifier. MCNN-AUX reduced the number of parameters from 64 million to

fewer than 16 million, and reduced the training time by 16 times. We demonstrated

the effectiveness of our independent CNN, MCNN, and MCNN-AUX classifiers on

the challenging CelebA and LFWA datasets, achieving state-of-the-art performance

for most attributes. Attribute relationships can be exploited in many ways and we

presented three ways here: by sharing lower layers of MCNN, by grouping simi-
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lar attributes in higher layers of MCNN, and by introducing an auxiliary network

(AUX), which learns attribute relationships at the score level. Attribute relation-

ships are learned implicitly at the lower levels, and explicitly in the higher grouped

layers. Even without pre-training, we were able to outperform the method of [5] for

many attributes. We demonstrated through experiments that a multi-task frame-

work for attribute prediction outperforms independent classifiers. Taking advantage

of implicit and explicit relationships among attributes allows for improved attribute

prediction which will lead to improved facial recognition.
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Chapter 4: Selective Learning

4.1 Overview

Facial attributes are intuitive descriptions of faces and have proven to be very

useful in face recognition and verification. Despite their usefulness, to date there

is only one large-scale facial attribute dataset, CelebA [2]. Impressive results have

been achieved on this dataset, but it exhibits a variety of very significant biases.

As CelebA contains mostly frontal idealized images of celebrities, it is difficult to

generalize a model trained on this data for use on another dataset (of non celebri-

ties). A typical approach to dealing with imbalanced data involves sampling the

data in order to balance the positive and negative labels, however, with a multi-

label problem this becomes a non-trivial task. By sampling to balance one label,

we affect the distribution of other labels in the data. To address this problem, we

introduce a novel selective learning method for deep networks which adaptively bal-

ances the data in each batch according to the desired distribution for each label.

The bias in CelebA can be corrected for in this way, allowing the network to learn a

more robust attribute model. We argue that without this multi-label balancing, the

network cannot learn to accurately predict attributes that are poorly represented

in CelebA. We demonstrate the effectiveness of our method on the problem of fa-
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cial attribute prediction on CelebA, LFWA, and the new University of Maryland

Attribute Evaluation Dataset (UMD-AED), outperforming the state-of-the-art on

each dataset.

4.2 Proposed Approach

4.2.1 Multi-Task Attribute CNN

For attribute prediction, we use a multi-task deep attribute CNN (AttCNN)

implemented in Caffe [124]. Table 4.1 shows the AttCNN architecture. There are

three convolution layers (Conv1-3), each followed by a ReLU, max pooling and a

local response normalization layer. The convolution layers are followed by three

fully connected layers (FC1-3). FC1, and FC2 are both followed by a ReLU and a

50% dropout. FC3 is the output layer, with 40 nodes, one for each attribute. A

sigmoid cross-entropy loss is used to facilitate training of the AttCNN. At test time,

we apply the sigmoid function to FC3, taking values above 0.5 as positive instances

of an attribute, and values below 0.5 as negative attribute responses.

4.2.2 Selective Learning

We introduce a novel selective learning method which adaptively balances each

batch according to the desired distribution for each label in a multi-task learning

framework. In other words, selective learning performs multi-label balancing of

the training data. Consider, for example, the two attributes bald, and male. We

intuitively know that the distribution for male is much more balanced than that for
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Layer Parameters/Activation/Pooling/Norm

Conv1

75 7x7 Filters, Stride 4

ReLU

Max Pooling 3x3, Stride 2

Norm 5x5

Conv2

200 5x5 Filters

ReLU

Max Pooling 3x3, Stride 2

Norm 5x5

Conv3

300 3x3 Filters

ReLU

Max Pooling 5x5, Stride 2

Norm 5x5

FC1

512 Units

ReLU

Dropout 50%

FC2

512 Units

ReLU

Dropout 50%

FC3 40 Units

Table 4.1: AttCNN Architecture. Conv1 is the bottom layer, and FC3 is the top

and final layer producing 40 outputs.
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bald, and so we would expect to see more positive instances of male than bald. If we

were to train a separate model for each attribute, we would be able to sample the

data such that our model for bald could learn from a more balanced set. However, in

a multi-task setting, where we learn all attributes at once, it is much more difficult

to handle these imbalances. Selective learning offers a solution to this problem

by adaptively balancing each label in every batch of data according to a target

distribution for that label.

4.2.2.1 Batch Balancing

For each label (attribute) in each batch, if the distribution for that label does

not match the desired target distribution, then we must adapt the batch accordingly.

For each label, there are three cases: 1) the batch distribution is equal to the target

distribution, 2) the label is over-represented, and 3) the label is under-represented.

If the batch distribution for a label is equal to the target distribution, then we do

nothing, and the selective learning batch (SL batch) is the same as the original batch

for that label.

If a label is over-represented in a batch, that means there are more positive

instances and fewer negative instances than if the batch followed the target distri-

bution. When there are too many positive instances in the original batch, we take

a random subset from the positive samples according to the target distribution and

add those to the SL batch, ignoring the rest of the positive samples. For example, if

we have a batch of size 100, with 70 positive instances, and a balanced target distri-
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bution, then we sample 50 positive instances, ignoring the other 20. At this point,

the SL batch contains a subset of the positive samples from the original batch.

We must now adjust the negative instances for the given label. Since the

positive instances are over-represented, we were able to simply sample from the

positive instances to meet the target distribution, but there are not enough negative

instances to meet the target distribution. Instead, we weight the negative samples

so they effectively match the target distribution. Using the same example from

above, we have 30 negative samples in the original batch, so in the SL batch, we

weight the negative samples by 5
3

so that the negative samples effectively match the

balanced target distribution. That is, the SL batch contains a subset of the positive

samples, and all the negative samples, with an additional weight attached to them.

If a label is under-represented, we reverse the above process, sampling from the

negative instances and weighting the positive instances.

4.2.2.2 Implementation

Selective learning can be used with any loss function in a deep network. Here

we describe the implementation details of the method.

For each label (attribute) a, we have some target distribution PT (a) and some

batch distribution PB(a). If PT (a) = PB(a), i.e. the batch distribution for a matches

the target distribution, then the loss is calculated normally and the back-propagation

error is unchanged. In practice, the SL batch is constructed by adding weights to

every sample in the original batch.
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Let |B| be the size of the batch. If PB(a = 1) > PT (a = 1), i.e. a is over-

represented in the batch, the SL batch consists of all the samples from the original

batch with weights to reduce the number of positive instances, and to increase the

effective number of negative instances. Specifically, a random subset of PT (a = 1)|B|

positive instances are given a weight of 1, with all other positive instances given a

weight of 0. The negative samples are each weighted by PT (a=0)
PB(a=0)

giving the negative

samples the same effect as if they matched the target distribution.

Similarly, if PB(a = 1) < PT (a = 1), i.e. a is under-represented in the batch,

the SL batch consists of all the samples from the original batch with weights to

reduce the number of negative instances, and to increase the effective number of

positive instances. A random subset of PT (a = 0)|B| negative instances are given

a weight of 1, with all other negative instances given a weight of 0. The positive

samples are each weighted by PT (a=1)
PB(a=1)

giving them the same effect as if they matched

the target distribution.

Selective learning allows the network to learn from adapted batches for each

label (or attribute), so that all labels – even under-represented and over-represented

labels – are learned as if the data matched a desired target distribution. Selective

learning is capable of both turning off back-propagation, and re-weighting the error

for any attribute in any sample. Training of deep networks is done on a batch-by-

batch basis, and so it makes sense to perform weighting and balancing at the batch-

level. In MOON [8], each sample is re-weighted according to the target distribution,

and so individual batch distributions are not taken into account, which leads to

imbalances in training.
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Figure 4.1: Visualization of the proposed selective learning (right) and normal learning

without batch balancing (left). A blue node is a positive instance of an attribute and

a white node is a negative instance of an attribute. The green upward pointing arrows

indicate the back-propagation error. In a loss without selective learning (left), every

attribute in every sample has the same weight, as indicated by the arrows all being the

same thickness. In a loss with selective learning (right), we see that some attributes

in some samples are not used for learning (they have no back-propagation arrows), and

some samples have a higher weight (thicker green arrows) to account for imbalance. The

two losses are demonstrated on 5o’clockShadow and Young, two of the most imbalanced

attributes in CelebA.
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Figure 4.1 is a visualization of selective learning in comparison with normal

multi-task learning. The left side shows a multi-task loss without selective learning,

and the right side shows a multi-task loss with selective learning. Two attributes

are highlighted: 5 o’clock shadow and young. We can see that both are highly

imbalanced, and with selective learning, each attribute is learned from its adapted

batch, effectively removing the imbalance.

In our experiments, we apply selective learning to the proposed AttCNN, which

uses a sigmoid cross-entropy loss. In the following section we demonstrate the

effectiveness of selective learning on several challenging attribute datasets. We note

that selective learning is extremely versatile and can be applied to any multi-label

problem. It can easily be used for tasks other than facial attribute prediction, such

as facial landmark detection (where nose points may be over-represented and ear

points may be under-represented), body part localization (where some body parts

may be occluded more than others), face verification across pose (where frontal

is extremely over-represented) or any multi-task problem where the training data

is imbalanced. Selective learning can also be used to combine data from several

different sources, with some, or no common labels for use in training a deep network,

since it adaptively balances every batch for each label.
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Figure 4.2: Sample images from CelebA

Figure 4.3: Sample images from LFWA

4.3 Experiments

4.3.1 Data

We use three datasets in our experiments: CelebA, LFWA, and UMD-AED

- a new evaluation dataset. Sample images from CelebA can be seen in figure 4.2.

Sample images from LFWA can be seen in figure 4.3.

For each attribute, the percentage of positive labels is plotted for both LFWA

and the CelebA train split in figure 4.5. We can see that LFWA exhibits some of the

same imbalances as CelebA, though not to the same extreme, likely due to the size of

the dataset. For instance, black hair, blond hair, heavy makeup, and high cheekbones

are even more under-represented in LFWA than in CelebA. So, if a model learned

to prefer to output 0 for those attributes, then it would perform better on LFWA

than on CelebA, without truly having learned a representation for those attributes.
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Figure 4.4: Sample images from UMD-AED

4.3.1.1 University of Maryland Attribute Evaluation Dataset

In order to better evaluate an attribute model, we constructed a new evaluation

dataset, UMD-AED. UMD-AED contains 2, 800 face images, each labeled with a

subset of the 40 attributes from CelebA and LFWA. UMD-AED was collected in

such a way that each attribute has the same number of positive and negative samples,

hence why not every attribute is labeled in each image. Specifically, every attribute

has 50 positive and 50 negative samples. Though UMD-AED is a small dataset, it

is extremely effective at highlighting weakness in attribute models, as we will see

in our experiments. With deep learning dominating almost every field in computer

vision, most work is concerned with the quantity of data, rather than the quality.

In our collection of UMD-AED, we focused on quality data which would effectively

test the attribute representations learned by deep networks. By quality we mean

that UMD-AED represents a wide variety of data, with low and high quality images,

extreme lighting and poses, as well as different ages and skin tones, as can be seen

in figure 4.4.

UMD-AED was constructed by performing an image search with each of the

40 attributes as search terms, running the face detector from [77], and hand-curating

the resulting face images. UMD-AED is much more representative of real-world data
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Figure 4.5: Percentage of positive attribute labels for CelebA train, and LFWA.

than CelebA or LFWA. As we will demonstrate in our experiments, to compare

performance of attribute models on the test split of CelebA if they were trained

on CelebA is optimistic. Evaluating models on UMD-AED will provide a much

more unbiased metric for success of attribute prediction algorithms. If a model has

learned a true representation for an attribute, then it can be expected to perform

well on UMD-AED. We will make this dataset publicly available so that future work

on attribute prediction can be evaluated on a balanced, real-world dataset.
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Method Accuracy

LNet+ANet [2] 87.30

Walk and Learn [72] 88.15

MOON [8] 90.94

AttCNN (Ours) 90.97

Table 4.2: Average attribute accuracy on the CelebA test set.

4.3.2 AttCNN

We train AttCNN directly on the CelebA training set, without any pre-training.

As preprocessing steps, we subtract the training mean from each image, and take

a random crop of 227x227 from the original image of size 256x256. The network

weights are learned from scratch – starting with random initialization – using only

the CelebA training set. AttCNN is trained for 22 epochs with batches of size 200,

using a sigmoid cross-entropy loss.

We compare our AttCNN to the state of the art methods in table 4.2. AttCNN

is comparable with the three previous state-of-the-art methods for attribute predic-

tion: MOON [8], LNet+ANet [2], and Walk & Learn [72]. Table 4.2 shows that

AttCNN outperforms all three methods on average. This is an impressive feat, as

AttCNN has fewer than 6 million parameters, and is trained from scratch, whereas

the most recent state-of-the-art, MOON, has 138 million parameters and is pre-

trained on a large-scale object-recognition dataset, and both LNet+ANet and Walk

& Learn are pre-trained on identification and verification data.

We argue that the success of AttCNN is due to training directly on attribute
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Figure 4.6: Results for AttCNN on CelebA test set along with the recent state-of-the-art

methods. Best viewed in color.

data. All three of the previous state-of-the-art networks have too many parameters

to train directly from the 160, 000 images in the train split of CelebA. With AttCNN

as our base network, we demonstrate the effectiveness of the proposed selective

learning approach in the following section.

4.3.3 Selective Learning

We test the proposed selective learning method on CelebA, LFWA, and UMD-

AED, and then compare with the state-of-the-art MOON method.
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Method Average Accuracy

MOONBalanced 86.33

AttCNNBalanced 85.05

Table 4.3: Average attribute accuracy on the CelebA test set using the balanced networks.

For our first experiment, we train AttCNN using selective learning with a

balanced target distribution. We denote this model as AttCNNBalanced. We train

AttCNNBalanced for 22 epochs and we use batches of size 200 just as with the original

AttCNN. Table 4.3 shows that AttCNNBalanced performs comparably to, though not

as well as the balanced MOON on the CelebA test set. However, we believe this

to be an artifact of the extreme imbalance in CelebA, which is not being effectively

removed by MOON, as we will demonstrate in our experiments on LFWA and UMD-

AED.

We perform two experiments adapting training of AttCNN to the CelebA

training distribution ( AttCNNP (a)=train) and to the CelebA test distribution (

AttCNNP (a)=test), and present the results in table 4.4. Using selective learning with

P(a)=train, we improve on the state-of-the-art for the CelebA test set with 91.05%

average attribute prediction accuracy. This improvement highlights the need for la-

bel balancing at the batch-level as even slight changes in distributions within batches

results in decreased performance. With P(a)=test, we see a small improvement, but

we normally do not have access to the distribution of the test set. We provide this

result to highlight the fact that the bias in CelebA extends from the training set to

the validation and test sets. If the bias was less severe in the CelebA test set, we
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Method Average Accuracy

AttCNNP (a)=train 91.05

AttCNNP (a)=test 91.07

Table 4.4: Average attribute accuracy on the CelebA test set using AttCNN with target

distributions given by the CelebA train (P (a) = train) and test (P (a) = test) sets.

AttCNNP (a)=train is bolded as it is the new state-of-the-art on CelebA.

Method Average Accuracy

MOONUnBalanced 68.98

MOONBalanced 70.49

AttCNN 71.21

AttCNNP (a)=train 71.49

AttCNNBalanced 73.03

Table 4.5: Average attribute accuracy on LFWA using MOON and AttCNN.

would see a larger improvement when adjusting for the testing distribution.

We tested the balanced and unbalanced MOON, as well as AttCNN, AttCNNP (a)=train,

and AttCNNBalanced on LFWA. The results are reported in table 4.5. AttCNNBalanced

outperforms MOON by over 2.5%. We see that even just adapting each batch to

align with the distribution of the training data ( AttCNNP (a)=train), outperforms

both the unbalanced and the balanced MOON. Figure 4.7 shows the prediction ac-

curacy for each attribute on LFWA using the balanced MOON and AttCNNBalanced.

We can see that the two curves are very close, except for a few attributes: hat, bald,

gray hair, chubby, blurry, and pointy nose. We can see from figure 4.5 that these

attributes were much more under-represented in CelebA than in LFWA, and so the
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Figure 4.7: Results for AttCNNBalanced and MOONBalanced on LFWA. Best viewed in

color.

bias of CelebA appears to have negatively affected the performance of MOON on

LFWA. This same bias seems to have positively affected MOON on the CelebA test

set, as seen in table 4.3.

For a less biased evaluation of the proposed attribute model, we test on UMD-

AED, and these results are presented in table 4.6 as well as figure 4.9. We see that

AttCNNBalanced outperforms MOON on almost every attribute. Here we truly see

the effect of the extreme imbalance in CelebA on MOON, with many attributes

achieving roughly 50% accuracy. In table 4.6 AttCNNBalanced outperforms the bal-

anced MOON by a significant margin – over 11%, and AttCNNBalanced gives a 4%

improvement over AttCNN. From this result, on a dataset with an even distribution

for every attribute, and a better representation of real-world images, we can see that
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Method Average Accuracy

MOONUnBalanced 56.36

MOONBalanced 59.46

AttCNN 66.85

AttCNNP (a)=train 67.40

AttCNNP (a)=0.5 71.11

Table 4.6: Average attribute accuracy on UMD-AED using MOON and AttCNN.

(a) (b) (c) (d) (e)

Figure 4.8: Samples from CelebA train set with bad or ambiguous labeling for (a)oval

face, (b)attractive, (c)high cheekbones, (d)archedeyebrows, and (e)lipstick. Positive labeled

images are in the left columns, and negative labeled images are in the right columns.

There is an obvious bias towards celebrities in this data. From (b), it is unclear what

distinguishes an attractive person from an unattractive person.
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selective learning addresses the problem of multi-label balancing for deep networks

trained on imbalanced data.

Our evaluation of AttCNNBalanced on UMD-AED not only highlights the ef-

fectiveness of our method, but also indicates areas for improvement. Both MOON

and AttCNNBalanced struggle with oval face, attractive, high cheekbones, arched eye-

brows, and lipstick. All of these are very subjective attributes, with the exception

of lipstick, and so there is likely some noise in the CelebA labels. Exploring the

dataset, we find that this is exactly the case. We provide some sample images from

CelebA in figure 4.8 to demonstrate the noisy labeling, showing samples with both

positive and negative labels for the above attributes, with positive labels on the left

and negative labels on the right. In many cases it is impossible to determine why

one image has a positive label and another has a negative label. All of the subjects

in figure 4.8(c) appear to have high cheekbones, but half of them are labeled as not

having them. The negatively labeled samples in figure 4.8(d) have more arch in

their eyebrows than the positively labeled samples. We argue that these subjective

attributes should be removed from the attribute prediction task, as the goal is to

accurately describe a face using attributes, and highly subjective attributes will not

help with this cause.

Though lipstick is not a subjective attribute, we decided to perform the same

analysis due to the poor performance of both MOON and AttCNN on this at-

tribute. We found that the labels were just as noisy for lipstick as for the subjective

attributes. Figure 4.8(e) shows samples from CelebA labeled with lipstick and not

lipstick. None of the women in figure 4.8(e) are wearing lipstick, and yet half of them
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Figure 4.9: Results for AttCNNBalanced and MOONBalanced on UMD-AED. Best viewed

in color.
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are labeled as such. Even with multi-label balancing using selective learning, there

is no way to correct for this much noise in the labels. It is clear from these analyses

that the next step in attribute prediction research is to collect a new large-scale

dataset with more precise labels for training.

4.4 Summary

In this chapter, we introduced a novel selective learning technique for multi-

label balancing of biased training data, and demonstrated its effectiveness on the

problem of facial attribute prediction, improving on the state-of-the-art. Selective

learning adapts every training batch for each attribute according to a desired target

distribution, allowing for balanced training with each batch. Since deep learning

methods are trained on a batch-by-batch basis, it only makes sense to apply label

balancing at the batch level. To test the capabilities of selective learning, we intro-

duced a new evaluation dataset - UMD-AED. UMD-AED has an even distribution

for each attribute, allowing for evaluation of attribute models in a balanced setting.

We introduced AttCNN, a deep network with fewer than 6 million parameters

which is trained directly from CelebA. AttCNN outperformed the three previous

state-of-the-art methods on CelebA, without pre-training on an external dataset.

Training AttCNN with selective learning, we outperform the state-of-the-art on

CelebA, LFWA, and UMD-AED, by 0.11%, 2.54%, and 11.65% respectively. The

performance of our model on UMD-AED highlights the effectiveness of selective

learning in allowing a deep network to learn a true representation of the data, rather
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than just the bias of the training set. UMD-AED will be made publicly available so

that future research on attribute prediction can be evaluated on a balanced dataset.

Selective learning can be applied to any multi-label problem which uses deep

networks, including face verification across pose, facial landmark localization, and

body part detection and localization, among many others. Though we demonstrate

selective learning using a sigmoid cross-entropy loss, it can be used with any loss

function. It can also be used to combine data from different sources with few or no

common labels, since every batch is adapted for each label, no learning will occur

for a particular label if it is not represented in the batch. Selective learning is an

extremely versatile method that can be applied to many problems, and will help ease

the difficulty associated with multi-label balancing in large-scale datasets, which are

needed to train deep networks.
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Chapter 5: Stabilizing Facial Attributes in Video

5.1 Overview

Recent research progress in facial attribute recognition has been dominated by

small improvements on the only large-scale publicly available benchmark dataset,

CelebA [2]. We propose to extend attribute prediction research to unconstrained

videos. Applying attribute models trained on CelebA – a still image dataset – to

video data highlights several major problems with current models, including the

lack of consideration for both time and motion. Many facial attributes (e.g. gender,

hair color) should be consistent throughout a video, however, current models do not

produce consistent results. We introduce two methods to increase the consistency

and accuracy of attribute responses in videos: a temporal coherence constraint,

and a motion-attention mechanism. Both methods work on weakly labeled data,

requiring attribute labels for only one frame in a sequence, which we call the anchor

frame. The temporal coherence constraint moves the network responses of non-

anchor frames toward the responses of anchor frames for each sequence, resulting

in more stable and accurate attribute predictions. We use the motion between

anchor and non-anchor video frames as an attention mechanism, discarding the

information from parts of the non-anchor frame where no motion occurred. This
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motion-attention focuses the network on the moving parts of the non-anchor frames

(i.e. the face). Since there is no large-scale video dataset labeled with attributes,

it is essential for attribute models to be able to learn from weakly labeled data.

We demonstrate the effectiveness of the proposed methods by evaluating them on

the challenging YouTube Faces video dataset [11]. The proposed motion-attention

and temporal coherence methods outperform attribute models trained on CelebA,

as well as those fine-tuned on video data. To the best of our knowledge, this work

is the first to address the problem of facial attribute prediction in video.

5.2 Proposed Approach

5.2.1 Multi-Task Attribute CNN

We use a multi-task attribute CNN (MACNN) for feature learning and clas-

sification. All attributes are learned simultaneously in MACNN. MACNN’s archi-

tecture is detailed in table 5.1. MACNN has a very small architecture, with only

four convolution layers, and one fully connected layer added for classification. The

network has fewer than 3 million parameters. AttCNN with Selective Learning,

the state-of-the-art method for attribute prediction, has roughly 6 million parame-

ters [1]. MACNN has fewer than half of the parameters of AttCNN. The proposed

motion-attention and temporal coherence methods discussed in the following sec-

tions use MACNN as the base network.
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Layer Parameters/Activation/Pooling/Norm

Conv1

100 5x5 Filters

ReLU

Max Pooling 3x3

LRN 5x5

Conv2

200 3x3 Filters

ReLU

Max Pooling 3x3

LRN 5x5

Conv3

300 3x3 Filters

ReLU

Max Pooling 5x5

LRN 5x5

Conv4
300 5x5 Filters

ReLU

FC1 40 Units

Table 5.1: MACNN Architecture. Conv1 is the bottom layer, and FC1 is the top

and final layer producing 40 outputs.
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Figure 5.1: A visualization of the proposed motion-attention technique.

5.2.2 Motion-Attention

We introduce a novel attention technique based on motion in a video. Given

two consecutive (or nearly consecutive) frames of a face video, we expect the at-

tributes to remain the same, even if there is a small amount of motion. This is

a reasonable assumption as most videos are captured at more than 20 frames per

second and the face should not change much in 1
20

of a second. In order to account

for motion in a video, we introduce an attention mechanism based on motion be-

tween frames. This motion-attention mechanism is applied in a CNN, focusing the

network on regions of motion, suppressing input from regions of a video frame where

no motion occurred. The intuition here is that between nearly consecutive frames in

a video taken from a stationary camera, the motion will occur only in the portion of

the frames containing the face. Therefore, motion-attention will focus the network

on the face, suppressing information from the background.

For each pair of consecutive frames (fi, fj), we have an associated binary op-
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tical flow image mij, which is the result of thresholding the optical flow between fi

and fj. That is, mij has a value of 1 where there is motion between fi and fj, and a 0

where there is no motion. Optical flow images can be combined for non-consecutive

frames by taking the maximum value at each location for all flow images. For ex-

ample, if we have three consecutive frames, fi, fj, and fk, we can compute mik by

taking the maximum of both mij and mjk for every location in the image. That is,

for all (x, y), mik(x, y) = max(mij(x, y),mjk(x, y)). So, the binary flow image for

non-consecutive frames has a 1 at every location where there is motion between any

of the frames, and a 0 where there is no motion between any of the frames. These

binary flow images are used as attention maps to focus the network on regions of

motion.

For each video, we have one anchor frame f0, and the rest are non-anchor

frames ft, t ≥ 1. The anchor frame has attribute labels, and the non-anchor frames

are unlabeled. For each pair of frames (f0, ft) we have the corresponding binary

motion frame m0t. The process of computing m0t is described above. Each m0t is

used to turn off activations for parts of ft where there is no motion, acting as an

attention mechanism for the network. This encourages the network to focus on the

parts of ft which moved (i.e. the face), suppressing the portions of ft which did not

move (i.e. background). We refer to this method as a motion-attention mechanism.

Figure 5.1 visualizes the proposed motion-attention mechanism, with two paths, one

for the frame ft, and one for the binary flow image m0t.

Note that in figure 5.1, the motion-attention mechanism is being applied after

the first convolution layer, but the motion-attention can be applied at any point in
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the network. Since motion-attention can be applied at any point in the network, m0t

must first be resized to match the size of the feature maps where it will be applied.

That is, if a layer L produces nL feature maps of size wL by hL, then m0t must

be resized to wL by hL and then multiplied element-wise with all nL feature maps,

producing nL focused feature maps. A receptive-field resizing is applied to m0t so

that each neuron in the resized m0t has the same receptive field as the neuron in L

where it is applied. That is if a neuron in the resized m0t has a value of 1, then it

means that there was motion between f0 and ft in the receptive field of that neuron,

and similarly if it has a value of 0, then there was no motion between f0 and ft in

the neuron’s receptive field.

The motion-attention mechanism is applied during training. In the forward

pass, m0t is used to turn off the activation for neurons corresponding to regions

without motion, and in the backward pass, no learning is performed for those neu-

rons. We use both anchor and non-anchor frames as input to the network. For

the anchor frames, f0, we define m00 to be an image with all 1s, so no attention is

used on the anchor frames. As noted earlier, the non-anchor frames ft do not have

attribute labels, and so the labels for the anchor frames are used as the labels for the

non-anchor frames. The motion-attention works as a type of regularization deter-

ring the network from over-fitting to the training data. By focusing the network on

regions of motion in the non-anchor frame, motion-attention forces the network to

explicitly account for motion and to learn how and what motion affects the labels.

Consider a video of a person talking. Let’s say the anchor frame f0 is labeled

as a positive instance of mouth slightly open. We can assume that in f1 the person’s
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Figure 5.2: Visualization of two streams using the temporal coherence loss.

mouth will still be open, but perhaps a little more or less open, depending on what

they are saying. In this instance, m01 may be 0 everywhere but around the mouth,

where it is 1. So the motion-attention mechanism would focus the network on the

mouth. Since the subject’s mouth is likely still open, we use the label from f0 for f1,

and now the network is only looking at the mouth, allowing the network to learn a

more robust representation for mouth slightly open. The proposed motion-attention

mechanism can be used alone, or with the proposed temporal coherence constraint

described below.

5.2.3 Temporal Coherence

We introduce a temporal coherence (TC) constraint which works in a multi-

stream network. A single-stream network is a normal network which takes an input

image (or images), and outputs a label (or set of labels). A multi-stream network

contains multiple copies of a single stream network, all sharing the same weights,
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each with their own input and output, and the streams are connected in some way.

The TC constraint is implemented as a loss that takes two layers as input, one from

the first stream and the corresponding layer from another stream. The first stream

of the network acts on an anchor frame of a video (f0), and the other streams act on

non-anchor frames some time t away from f0 (ft). Specifically, the second stream

has f1 as input, the third stream has f2 as input and so on. The weights are shared

among all the streams. The TC loss can be attached between any two streams at

any point in the network, and is visualized in figure 5.2 with two streams.

Let Fi be the single stream CNN associated with input frame fi. Since all

streams in the network share the same weights, instead of referring to each stream

individually, we will simplify notation by ignoring the stream, as the input indicates

the stream. Let F l(f0) and F l(ft) be the lth layer’s activations for f0 and ft input

respectively. The TC loss aims to move F l(ft) toward F l(f0), taking into account

the distance t. That is, for a robust attribute model, we expect the activations for

the anchor frame (f0) to be similar to the activations for a non-anchor frame (ft),

assuming that not too much time has passed between f0 and ft. We also expect

that the activations for frames that are closer together will be more similar than the

activations for frames that are farther away.

Since f0 is an anchor frame, we have labels for f0, and so we apply a multi-

label attribute loss on the first stream of the network (F0), which takes f0 as input.

For Ft, the stream with the non-anchor frame ft as input, we apply the TC loss in

order to move the activations of Ft towards those of F0. In other words, the error

from the TC loss is only propagated through the Ft stream, not the F0 stream, and
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the multi-label loss error is only propagated through the F0 stream since we only

have labels for f0.

More formally, the TC error for layer l is given in equation (5.1), where λ(t)

is some non-increasing positive function of t. λ(t) is essentially the effect of the

frame difference on the error, and therefore on learning. It makes sense for λ(t) to

not increase as t increases, as the farther two frames are from each other in a video

sequence, the less likely they are to be similar, and so the effect of the error between

their activations should be less. Equation (5.1) is used in the forward pass of the

network using a TC loss, and equations (5.2) and (5.3) are used in the backward

pass, propagating the error back through the network. Equation (5.2) indicates that

the error only back-propagates for non-anchor frame inputs. A visualization of the

proposed TC loss is shown in figure 5.2.

ETC =
λ(t)

2
||F l(ft)− F l(f0)||22 (5.1)

δETC

δF l(f0)
= 0 (5.2)

δETC

δF l(ft)
= λ(t)(F l(ft)− F l(f0)) (5.3)

One may ask why we chose this formulation rather than assuming ft has the

same attribute labels as f0. We illustrate this with an example: Let’s say that we

have two consecutive frames, f0 and f1. In f0, the subject is frontal, there is no

blur, and the subject does not have arched eyebrows (i.e. arched eyebrows is labeled
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(a)arched

eyebrows

(b)bags

under eyes
(c)blurry

(d)double

chin
(e)hat

(f)mouth

open

(g)narrow

eyes
(h)smiling

Figure 5.3: Samples from YouTubeFaces where attributes change between frames. In (a),

the top frame shows the man having arched eyebrows, but in the bottom frame he does

not. (b) shows a frame where the woman has bags under eyes and then a frame where she

does not. Similarly for (c)-(h)

as negative). In f1, the subject moves, raising their eyebrows. The label for arched

eyebrows in f0 no longer applies. Our goal is to make the attribute model more

robust using video data, and so we do not want the network to make a decision

based on something it does not know. Therefore, we want to move the activations

for f1 towards not arched eyebrows, but not necessarily label f1 as a negative instance

of arched eyebrows. This gives us some intuition as to why we do not want to label

f1, or any ft, with the same attributes as f0. As we will see in our experiments,

the proposed TC constraint improves attribute predictions over fine-tuning with ft

labeled with the attributes from f0. The proposed temporal coherence constraint is

able to utilize weakly labeled data to make a more robust attribute model without

having access to labels for all frames.

In labeling four frames from every video in YouTubeFaces we found that there

are eight attributes from the forty labeled in CelebA that can vary throughout a
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video: arched eyebrows, bags under eyes, blurry, double chin, hat, mouth slightly

open, narroweyes, and smiling. Figure 5.3 shows some examples of videos where

these attributes change.

5.3 Experiments

5.3.1 YouTube Faces

We labeled four frames in YouTubeFaces [11] in every video with the 40 binary

attributes from CelebA. The four frames correspond to the first frame, one from a

third of the way through the video, one from two-thirds of the way through the

video and the last frame: T0, T1, T2, and T3 respectively. For benchmarking

purposes, there are 10 splits provided with the data for cross-validation testing. We

use the anchor (attribute-labeled first frame) and non-anchor (no attribute labels)

frames from the training portion of each split to fine-tune MACNN with our different

methods. In all our experiments we test on the labeled frames from the test splits,

and average over all 10 splits. We use the face boxes provided with the dataset,

extracting each face from its original frame, and resizing it to 178×218, the same

size as the aligned CelebA images. We do not perform alignment on the YouTube

Faces frames, as attributes should be invariant to such mis-alignments.

5.3.2 MACNN

We use the aligned 178x218 CelebA images for training our base attribute

model, MACNN. We implement and test MACNN using Caffe [124]. MACNN is
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Method Average Accuracy

LNet+ANet [2] 87.3%

Walk and Learn [72] 88.1%

MOON [8] 90.90%

AttCNN [1] 91.05%

MACNN (Ours) 90.9%

Table 5.2: Average attribute accuracy on the CelebA test set.

trained from scratch using only the aligned CelebA training images, without pre-

training on an external dataset. A sigmoid cross-entropy loss is used to facilitate

training with batches of size 100. As pre-processing steps, we subtract the training

mean from all images and take random crops of 178x178 from each 178x218 input

image. After 53 epochs, the error on the validation set no longer decreases, so

training is stopped. We note that since MACNN only has 3 million parameters, it

takes less than an hour to train on a single GPU.

We compare MACNN with state-of-the-art methods for attribute prediction

in Table 5.2 to show that it is a good starting point for our temporal coherence and

motion-attention work. From Table 5.2, we see that MACNN performs roughly as

well as AttCNN – the current state-of-the-art – on average.

We use MACNN for our experiments rather than AttCNN because AttCNN

has roughly 6 million parameters, while MACNN has only 3 million parameters, is

very quick to train, and is less likely to over-fit. Testing MACNN on the anchor

frames of YouTube Faces resulted in an average attribute accuracy of 83.80%.

The average attribute accuracy on YouTube Faces anchor frames is computed as

67



Model T0 T1 T2 T3 Average

MACNN0 86.55 86.57 86.44 86.23 86.44

MACNN1 86.67 86.64 86.58 86.40 86.57

MACNN2 86.55 86.61 86.56 86.20 86.48

MACNN3 86.41 86.46 86.42 86.12 86.35

MACNN10 85.68 85.75 85.58 85.53 85.64

Table 5.3: Average attribute accuracy on YouTube Faces labeled test (T0, T1, T2, T3)

frames fine-tuning with anchor and non-anchor frames using the anchor labels.

follows. For each split, we compute the accuracy for each attribute, giving us 40

attribute accuracies for each split. Averaging the accuracies for all 40 attributes

gives us a single average attribute accuracy for each split. We then average this

average attribute accuracy for the 10 splits, giving us 83.80% for MACNN. For

all of the experiments below, we start with MACNN (trained on CelebA), and we

fine-tune it on YouTube Faces using four different methods: fine-tuning with anchor

and non-anchor frames, using anchor labels for both (5.3.3), using motion-attention

(5.3.4), using temporal coherence (5.3.5), and using motion-attention and temporal

coherence (5.3.6).

5.3.3 Fine-Tuning

Taking a model trained on still images, and fine-tuning it on labeled video

data is one way to adjust the model to better handle video data. We do that

here by fine-tuning MACNN on the anchor frames for each split in YouTube Faces

using a sigmoid cross-entropy loss on the attributes. We call this fine-tuned network
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MACNN0, which we evaluate on the test portion for that split. We also fine-tune

MACNN on non-anchor frames as well as the anchor frames. Non-anchor frames

do not have labels, so we assume that the non-anchor frame has the same labels as

its corresponding anchor frame. MACNN1 is MACNN fine-tuned on f0 and f1 with

both using the labels from f0, MACNN2 is MACNN fine-tuned on f0, f1, and f2 all

with the labels from f0, and so on. Remember that f0 is the anchor frame and f1,

f2, etc. are non-anchor frames.

We evaluate our MACNNi on the labeled test data for each split (T0, T1,

T2, T3) providing the accuracies over all splits on each of the four frames as a

measure of stability. Table 5.3 shows the average attribute accuracies, averaged

over the 10 splits for MACNNi for i = 0, 1, 2, 3, 10 on each of the four labeled

frames per sequence. Fine-tuning on the anchor frames, MACNN0, provides a 2.5%

improvement over the original MACNN, which had an average accuracy of 83.80%.

However, the improvements do not continue as more non-anchor frames are added

to the training set for fine-tuning. In fact, MACNN3 produces worse results than

fine-tuning on the anchor frames alone. MACNN3 is fine-tuning with f0 and 3

non-anchor frames using the same labels as f0. We expected the performance of

fine-tuning using anchor labels on non-anchor frames would degrade as more non-

anchor frames were added because as non-anchor frames move farther away from the

anchor frames, it becomes less likely that they share the same label. We also note

the sharp decline in performance between MACNN3 and MACNN10. We believe

this to be due to two factors: one being that simply fine-tuning using anchor labels

for non-anchor frames leads to overfitting of the network, and the other being that
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Model T0 T1 T2 T3 Average

MA1 86.73 86.82 86.78 86.50 86.70

MA2 86.91 86.97 86.94 85.65 86.86

MA3 86.95 87.09 86.94 86.72 86.92

MA10 87.15 87.17 87.11 86.84 87.06

Table 5.4: Average attribute accuracy on YouTube Faces labeled test (T0, T1, T2, T3)

using MAi.

the assumption that f0 and ft have the same, or similar, attribute responses breaks

down as t gets larger. We see a similar, though less severe, phenomenon with TCi

and MATCi in the following sections.

5.3.4 Motion-Attention

For our motion-attention experiments, we similarly fine-tune MACNN on an-

chor and non-anchor frames, using the labels from anchor frames for both. The

motion-attention is applied after the first pooling layer in MACNN. MA1 is the

motion-regularized model trained on f0, and f1 with corresponding motion-attention

maps m00 and m01 respectfully. That is, m00 is an image of all 1s because there is

no motion before the anchor frame, and m01 is a binary image capturing the motion

between f0 and f1. MA1 uses a sigmoid cross-entropy loss for both anchor and non-

anchor frames using attribute labels from anchor frames (i.e. both f0 and f1 are

labeled with the attributes from f0). MA2 is the motion-attention model trained

on f0, m00, f1, m01, and f2 and m02 (f0, f1, and f2 are labeled with the attributes

from f0), and so on. MA0 is equivalent to MACNN0, since m00 – defined to be all
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Model T0 T1 T2 T3 Average

TC1 86.52 86.63 86.60 86.40 86.53

TC2 86.74 86.81 86.80 86.52 86.71

TC3 86.77 86.85 86.88 86.54 86.76

TC10 86.54 86.60 86.54 86.39 86.51

Table 5.5: Average attribute accuracy on YouTube Faces labeled test (T0, T1, T2, T3)

using TCi.

1s – provides no attention. The average attribute accuracies on anchor frames using

MAi for i = 1, 2, 3, 4 are reported in table 5.4. There is a consistent improvement

when fine-tuning with motion-attention, and as non-anchor frames are added to the

training set, the improvements continue, unlike regular fine-tuning. The motion-

attention mechanism keeps the model from over-fitting since it cannot see the entire

non-anchor frame, and so the motion-attention works as a kind of regularizer. We

see that even MA10 shows improvements where MACNN10 showed a sharp decline

in performance.

5.3.5 Temporal Coherence

For the TC loss experiments, we define λ(t) = e
1
t
−1 for t ≥ 1, so the effect of

each non-anchor frame on learning decreases with time. When fine-tuning MACNN

using the TC loss, the loss is employed between the final convolution layers (conv4)

of the two streams. A sigmoid cross-entropy loss is applied to the anchor frames –

to learn the attributes in the anchor frames – in addition to the TC loss. Figure 5.2

visualizes the attribute loss on the anchor stream, and the TC loss between the two

71



conv4 layers. The figure only visualizes two streams, but there can be many streams

depending on the number of non-anchor frames used in training. We call our models

trained with the TC loss TC1 if it fine-tunes on f0 and f1, TC2 if it fine-tunes on f0,

f1, and f2, and so on. TC0 is equivalent to MACNN0, because without a non-anchor

frame, there can be no TC loss, and so we end up with a single-stream network

employing a sigmoid cross-entropy loss on the attribute labels of anchor frames.

Table 5.5 shows the average attribute accuracy on the anchor frames over the 10

splits of YouTube Faces using the TC loss while fine-tuning. As seen with motion

attention, there is a consistent improvement using the TC loss when fine-tuning,

and as the number of non-anchor frames used for training increases, so does the

average attribute accuracy. However, unlike MA10, we do not see an improvement

with TC10. We believe this is due to the fact that the network is over-fitting a little,

even with the TC loss. Though we do see a drop in performance with TC10, it is

not nearly as severe as the one we saw with MACNN10, so the TC loss is helping

the network to not overfit, and to account for the attributes which can change

throughout a video. The TC loss on non-anchor frames improves over MACNNi

because it is less strict, and therefore allows pairs of anchor and non-anchor frames

to have different attribute labels.

5.3.6 Motion-Attention with Temporal Coherence

We combine the proposed motion-attention mechanism and temporal coher-

ence loss into one network by applying both methods on non-anchor frames. Com-
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Model T0 T1 T2 T3 Average

MATC1 86.60 86.75 86.68 86.41 86.61

MATC2 86.93 86.98 86.98 86.61 86.87

MATC3 87.04 87.05 87.01 86.71 86.96

MATC10 86.83 86.79 86.66 86.43 86.67

Table 5.6: Average attribute accuracy on YouTube Faces labeled test (T0, T1, T2, T3)

using MATCi.

bining both methods results in a multi-stream network where the anchor frames

use a sigmoid cross-entropy loss, and the non-anchor frames each employ a TC loss

and a motion-attention mechanism. We apply the motion-attention after the first

pooling layer, and the TC loss at the conv4 layer. The models trained in this way

are denoted MATC1 (one non-anchor frame), MATC2 (two non-anchor frames) and

so on. Table 5.6 reports the average attribute accuracy for each of the MATC mod-

els on the labeled frames. Combining the two methods results in an improvement

over using them individually, with MATC1, MATC2, and MATC3 producing better

results than both TC and MA individually. We do see that the dip in performance

for TC10 carries over to MATC10, reducing performance slightly. We again believe

this to be due to the network slightly overfitting even with the TC loss.

5.4 Summary

In this chapter, we introduced two methods for explicitly incorporating video

information into the training of attribute networks: a temporal coherence constraint

and a motion-attention mechanism. Though some work has been done on adapting
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attribute models trained on CelebA to better handle data from different distributions

[8], we argue and show that time and motion must specifically be accounted for when

training attribute models on video data. We demonstrated the effectiveness of our

methods on the challenging YouTube Faces dataset, improving over the baseline of

fine-tuning directly on the video data using only weakly labeled data. Our results

show that when we do not account for time and motion in learning attribute models,

as in MACNNi, the model behavior is erratic. The proposed methods are able to use

information provided by many non-anchor frames far away from the original anchor

frames, which we cannot do when fine-tuning without these methods. We also

note that there are only 3425 anchor frames, and so the fine-tuning is performed

using roughly 3000 frames for each split, which is a very small amount of data

for a CNN. As more labeled video data becomes available, the positive effects of

the proposed temporal coherence and motion-attention methods will be even more

obvious. Our results demonstrate the need to explicitly account for temporal and

motion constraints when training attribute models on video data. The next step in

learning robust attribute models for video data is to label a new video dataset with

facial attributes, so that the effects of time and motion on attributes can be more

thoroughly studied.
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Chapter 6: Parsing Faces with Attributes

6.1 Overview

Many facial attributes – semantic features of faces – are related (e.g. gender

and mustache, attractive and heavy makeup, etc.). However, we are able to rec-

ognize these attributes independently. Humans are capable of recognizing gender

without superficial cues from hair length or makeup. Deep learning algorithms place

a significant weight (we argue too much) on these relationships when learning to rec-

ognize facial attributes. In this chapter, we introduce face parsing with attributes

to reduce the emphasis on such relationships in facial attribute recognition. Face

parsing acts as an additional level of supervision in our attribute recognition model.

The proposed method, AttParseNet, combines facial attribute recognition with face

parsing, out-performing the state-of-the-art on three facial attribute benchmark

datasets: CelebA, LFWA, and UMD-AED. To the best of our knowledge, this work

is the first to address the problem of parsing faces according to semantic attributes.
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Figure 6.1: Example of the input and output of an attribute face parsing algorithm.

The input is an image of a face, and the output is a set of maps, one for each

attribute indicating the locations where that attribute is present in the image. The

segments are displayed in different colors over the original image for readability.

Only the positive attributes are shown.

6.2 Proposed Approach

The proposed approach consists of three main parts: generating attribute

segments, parsing faces according to attributes, and attribute recognition. We detail

these steps in the following sections.

6.2.1 Generating Segments

CelebA is a large-scale dataset labeled with semantic facial attributes. The

dataset provides original images (ranging from face to full body) as well as cropped

and aligned face images [2]. For this work, we use the original images. Five facial

landmark points (left eye, right eye, nose, left mouth edge, and right mouth edge)

are provided along with every cropped and aligned image, but none are provided for

the original images. We use the Dlib facial landmark detector that gives boundaries
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for the chin, mouth, eyes, nose, and eyebrows [125]. With these rough boundaries,

we are able to create segment maps for each of the attributes in CelebA, using a

rather simple rule-based approach, which we detail here. Figure 6.2 shows examples

of how we generate segments given detected facial landmarks. In the figure, red

points are those which come from the facial landmark detector and the light blue

points are the ones we generate in order to create segments.

There are a total of 16 segments. Each of the attributes in CelebA comes from

one or more of these segments. Six of the segments come directly from the facial

landmark points, and the other 10 are generated as we describe below.

Table 6.1 details the segments and their corresponding attributes, and fig-

ure 6.3 shows an example of the segments for each attribute.

For the face segment, we consider the two upper-most facial landmarks from

the left side of the face (let’s call them pl and pl−1 respectively). We want to

continue the points upward and inward, as the forehead tends to be narrower than

the cheekbones. If the slope of the line between pl−1 and pl is negative, then the

points at the top of the chin were continuing outward. Since we want them to

move inward, we negate the slope and add this to pl so that the next point (pl+1)

is moving inward. If the slope of the line between pl−1 and pl is positive, we simply

add it to pl to get our pl+1. We continue this process, adding the same slope to

the most recent point until the next point will pass the top of the left eyebrow, at

which point we stop adding points. We similarly repeat this process on the right

side of the chin, finding the slope of the line between pr−1 and pr. In this case, if the

slope is negative, the points are already moving inward, and so we do not negate
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a) b) c) d)

e) f) g) h)

i) j)

Figure 6.2: Examples of segment generation for the following segments: a)Face

b)Cheek c)Earlobe d)Under Eye e)Forehead f)Glasses g)Neck h)Nose i)Top Head

j)Under Chin. Red points are points provided by the facial landmark detector, and

blue points are ones generated by our method as described in section 6.2.1.

the slope. If the slope is positive, we negate it before adding it to the most recent

point. The face segment is contained by the chin points, these added points, and

the tops of the eyebrows.

For the cheek segment, we must generate all boundaries for the cheeks because

they are not provided as part of the facial landmarks. We do this by combining

points from the eyes, nose and chin. The left cheek segment is generated with four

points: top left, top right, bottom left, and bottom right. The top left point has

the x-value from the top left chin landmark, and the y-value from the bottom of
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the left eye. The top right point has the x-value from the nose bridge, which is

calculated as the center of the two eyes, and the y-value from the bottom of the left

eye. The bottom left point has the x-value from the third left chin point, and the

y-value from the bottom of the nose. The bottom right point has the x-value from

the bottom left part of the nose, and the same y-value as the bottom left point of

the cheek. The points for the right cheek are similarly generated using the right side

of the nose and chin and the right eye.

The earlobe segment is generated by the top three landmarks from the chin,

and two points off of the chin. The three landmark points on the top of the chin

are pl, pl−1, and pl−2, for the left side of the chin, where pl is the upper-most left

point on the chin. The two points off of the chin are generated using the distances

between the three chin points. The ear height is calculated as the distance between

pl and pl−2 and the ear width is calculated as 3
4

of the ear height. The first point is

located half way between pl and pl−1 and a distance of ear width to the left. The

second point is located half way between pl−1 and pl−2 and a distance of ear width

to the left. The segment for the right earlobe is computed similarly.

The under eye segment is generated simply with four points: the left side

of the eye with the y-coordinate of the bottom of the eye, the right side of the eye

with the y-coordinate of the bottom of the eye, and both of these points with 2∗eye

height added to the y-coordinates.

The forehead segment is generated by adding points to the edge of the face

in the same way as with the face segment. However, for the forehead segment, the

addition of points only stops when the points pass the center of the eyebrow. The
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Segment Attributes

Face attractive, chubby, male, oval face, pale skin, young

Cheek high cheekbones, rosy cheeks

Earlobe earrings

Under Eye bags under eyes

Glasses eyeglasses

Neck necklace, necktie

Nose big nose, pointy nose

Top Head
bald, black hair, blond hair, brown hair, gray hair, hat,

receding hairline, straight hair, wavy hair

Under Chin double chin

Chin 5 o’clock shadow, goatee, no beard, sideburns

Above Lip 5 o’clock shadow, goatee, mustache

Brow arched eyebrows, bushy eyebrows

Mouth
big lips, heavy makeup, lipstick, mouth slightly open,

smiling

Full blurry

Eye heavy makeup, narrow eyes

Forehead bangs

Table 6.1: Segments and their corresponding attributes. Some attributes are covered

by only one segment (e.g. earrings), while others require multiple segments (e.g.

goatee).
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points used to create the forehead segment are the tops of the eye brows as well

as the points added past the face segment.

The glasses segment is generated using the left and right points of the eye-

brows and the bottom points from the under eye segment.

The neck segment is one of the largest segments, as a necklace can be anywhere

on the neck. This segment is generated from the chin points and two bottom points.

The bottom points are generated from the x-coordinate of the left-most (or right-

most for the right side) chin point and the y-coordinate is the bottom of the image.

The nose segment is computed very simply. Facial landmarks give the bottom

left, bottom right and point of the nose, and we find the bridge of the nose by finding

the midpoint between the eyes. If one of the eyes is not visible (the person is in a

profile position), then we take the bridge to have the same y-value as the center of

the visible eye, and the x-value of the bottom of the nose (left or right side depending

on which is visible). The combination of the nose bridge and the facial landmark

nose points gives the nose segment.

We have two different meanings for the top head segment. For the hat at-

tribute, we use a fixed top head which contains the following points (30, 0), (147, 0),

(30, 50), (147, 50) (we are using 178x218 images). For all other attributes, top head

starts from the center of the forehead segment, and creates a semi-circle with a

radius of half of the width of the forehead.

The under chin segment is generated by simply using the chin landmarks

and then adding 10 to each of their y-values to get the points under the chin.

The remaining six segments are generated directly from the facial landmarks.
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Figure 6.3: Examples of the segments generated by the rules detailed in section 6.2.1.

The segments are binary images of the same size as the original face image, with 1

indicating that the attribute is present at that location, and 0 indicating that the

attribute is not present at that location. For readability, the segments are presented

over their corresponding face images, with white areas being positive segments.
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Chin connects the chin points to the bottom of the mouth. Above lip connects

the bottom of the nose to the top of the mouth. Brow uses all the eyebrow points.

Mouth uses all the mouth points. Full simply uses four points from the edge of

the image, and eye uses all eye points. Table 6.1 details which segments are used

for each attribute.

As can be seen from figure 6.3, the hair attributes come from the whole image

other than the face and the neck segments. In table 6.1 the hair attributes are

listed in the top head row because there is no other segment.

From figure 6.3 we can see that these segments are weakly labeled. There are

cases where the segments do not fully cover the area of interest (e.g. forehead,

top head), segments that cover the area of interest nicely (e.g. brow, mouth),

and segments that cover more areas than needed (e.g. full, neck). The goal of

this work is to take advantage of these weakly labeled segments to learn a more

robust attribute model. We show through our experiments that the added level

of supervision from the attribute segments allows the network to learn a better

attribute model, out-performing the state-of-the-art methods.

6.2.2 Parsing Faces with Attributes

Once the weakly labeled segments have been generated, the next step is to

build a model which can parse faces according to their attributes. We aim to parse

faces into their attribute components, much like in a semantic segmentation task.

In semantic segmentation, the goal is to assign a class label to every pixel in an
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image. Face parsing – a specific type of semantic segmentation – has in the past

been limited to parsing the face into a handful of categories (e.g. hair, eyes, mouth,

nose, etc.), none of which overlap. Instead, we want to assign a set of attribute

labels to every pixel. The difference between this and semantic segmentation is that

every pixel can have multiple labels (e.g. rosy cheeks and high cheekbones).

We use a deep convolutional neural network (CNN) as our segmentation model,

which we call AttParseNet. The segmentation CNN has six convolution layers, with

a ReLU after each convolution layer except for the last, and a pooling layer between

the first and second layers. AttParseNet is shown in figure 6.4, and is an adaptation

of the network from [1]. As our segmentation loss, we implement a version of selective

learning, as described in [1], in a euclidean loss layer. Selective learning essentially

balances each label in each batch by only learning from certain samples in each

batch for each label. We use selective learning in two ways: as the authors of [1]

do – to balance the positive and negative labels for each attribute in each batch –

and also to balance the number of positive and negative pixels in each segmentation

map, so that learning is not dominated by the background class.

We apply selective learning assuming a balanced target distribution for each

attribute, and a balanced pixel distribution for positive and negative pixels in each

segment map. For each face image, there are 40 segment maps, one for each at-

tribute. For each attribute a, if a is present in the image, then its corresponding

map has a value of 1 at each location in the attribute segment (see figure 6.3), oth-

erwise, the map contains all 0 values. In each batch, the selective learning euclidean

loss learns from an equal number of positive samples as negative samples for each
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attribute, and for each sample, each positive pixel is weighted according to the total

number of positive pixels in the map, and similarly for the negative pixels. This

allows for more balanced learning, not letting attributes with large segments to be

learned more quickly than attributes with small segments. This is a big problem,

as there are some segments which are very small (e.g. arched eyebrows, bags under

eyes), and some segments which are very large (e.g. blurry, straight hair). In addi-

tion to this, if an attribute is not present in an image then every pixel in the map for

that attribute has a value of 0, further biasing learning toward the background (or

negative) class. Selective learning at the pixel level helps to alleviate this problem.

The euclidean selective learning loss is applied on the Conv6 layer. The Conv6 layer

results in 40 26x21 feature maps, one for each attribute, as is demonstrated in the

top portion of figure 6.4. Since the original image size is 178x218, we must apply

max pooling on the segment maps so they match the final feature map output from

Conv6.

The face parsing with attributes described above is part of the attribute recog-

nition network, adding an additional level of supervision to training. We describe

the attribute recognition portion of the network below.

6.2.3 Attribute Recognition

We use face parsing with attributes as part of our attribute recognition frame-

work. As we see from figure 6.4, attribute classification and segmentation occur in

the same network, AttParseNet. They both have their own losses, and contribute
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Figure 6.4: Segmentation Network

to learning of the network weights. Each of the feature maps resulting from Conv6

corresponds to an attribute segmentation, of which there are 40. Each of those

maps is then connected to its own fully connected layer (with a single neuron)

which classifies the map as a positive or negative instance of a particular attribute.

The figure indicates that there is a segmentation loss, and an attribute loss. The

segmentation loss was described in the previous section. The attribute loss is the

same sigmoid cross-entropy loss with selective learning from [1] assuming a balanced

target distribution for all attributes.

The face parsing with attributes is an added level of supervision in the attribute

recognition framework, which leads to a more robust attribute model, as we show

in our experiments.

6.3 Experiments

To demonstrate the effectiveness of the proposed methods, we perform exten-

sive experiments on three benchmark datasets: CelebA, LFWA, and UMD-AED.
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For all of our experiments, the models are trained on the training split of CelebA,

and tested on the testing split of CelebA, on the full LFWA, and on UMD-AED.

We compare the proposed AttParseNet method with the state-of-the-art AttCNN

for facial attribute recognition: [1].

6.3.1 AttParseNet

We train AttParseNet directly on the unaligned cropped faces from the CelebA

training set, resized to 178x218, without any pre-training. We implement and test

our network in Caffe [124]. As we compare with the method from [1], we follow the

same learning procedure: training our networks for 22 epochs. AttParseNet uses

the weakly labeled segments for training only. At test time, segments are not used.

For a fair comparison, we train the method of [1] using the unaligned CelebA

images as well. In order to encourage future research in this direction, we will make

the attribute segments for CelebA publicly available.

6.3.2 Results

Figure 6.5 shows the average accuracy for each attribute on the testing split

of CelebA for both the previous state-of-the-art, AttCNN [1] and the proposed

AttParseNet. As we can see, the proposed method outperforms the state-of-the-

art on all but three attributes: lipstick, attractive, and young. Lipstick is poorly

labeled in CelebA, as has been previously pointed out in [1], and the difference

between AttParseNet and AttCNN on this attribute is rather minor. For attractive
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Figure 6.5: Average attribute accuracies for the test split of CelebA using AttCNN

[1] and the proposed AttParseNet.

and young we believe the difference between AttCNN and AttParseNet to be due

to the ambiguity of those attributes. The segments for attractive and young are

the same, as we showed in figure 6.3. For this work, we made the assumption

that attractive and young come only from the face, and nothing else. However,

where exactly attractive and young manifest themselves in a face image is unclear.

Further research is needed to determine where exactly certain attributes come from.

We leave this for future work.

Despite the ambiguity in the segments for certain attributes, AttParseNet out-

performs AttCNN by over 5% on 16 attributes. The average accuracies of AttCNN

and AttParseNet on CelebA are presented in table 6.2. Adding segment supervision

to the attribute recognition framework produces an almost 4% average improve-
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Method MOON [8] AttCNN [1] AttParseNet (Ours)

Accuracy 86.33% 84.80% 88.73%

Table 6.2: Average accuracy over all attributes on the testing split of CelebA.

MOON was trained and tested on the aligned CelebA images. AttCNN and

AttParseNet are trained and tested on the unaligned CelebA images.

ment on CelebA, with over half of the attributes having over 90% accuracy. This

indicates that prior methods for attribute recognition were taking advantage of un-

wanted relationships between attributes in CelebA, and were therefore not learning a

true representation for some attributes. Some examples of such attributes include:

necklace, straight hair, double chin, and chubby. With the supervision from the

weakly labeled segments we generate, we see significant improvements in prediction

accuracy for these attributes.

We note that these results are based on AttCNN and AttParseNet trained on

the unaligned CelebA training images. AttCNN trained and tested on the aligned

CelebA images achieves an average accuracy of 85.05%. As the segments we generate

are based on the unaligned CelebA images, we do not provide results for AttParseNet

trained on the aligned CelebA images. We also note that these are results on CelebA

assuming that training accounted for the imbalance in the labels for CelebA [8]

[1]. When training with the unbalanced CelebA, [1] achieves an average attribute

accuracy of 91.05% on the testing portion of CelebA.

We also compare AttCNN with AttParseNet on the University of Maryland

Attribute Evaluation Dataset (UMD-AED). UMD-AED consists of roughly 3000 im-
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Figure 6.6: Average attribute accuracies for UMD-AED using AttCNN [1] and the

proposed AttParseNet.

ages sparsely labeled with attributes. Each attribute has roughly 50 positive and 50

negative samples. This dataset was introduced in [1] as an evaluation dataset for at-

tribute recognition methods trained on CelebA. We train AttCNN and AttParseNet

on the unaligned images from the training split of CelebA and present the results

on UMD-AED in figure 6.6.

As we can see, the two methods perform comparably on UMD-AED. AttCNN

outperforms AttParseNet most significantly on blurry and hat. We noted in sec-

tion 6.2.1 that some segments are more roughly labeled than others. The segments

for both blurry and hat are very roughly labeled. The segment for blurry is the full

image, when in reality, the face may be blurry, or the background, or both. The

segment for hat contains the forehead as well as a constant rectangular block from

90



Method AttCNN [1] AttParseNet (Ours)

Accuracy 75.78% 76.73%

Table 6.3: Average accuracy over all attributes on UMD-AED. Both AttCNN and

AttParseNet are trained on the unaligned CelebA images.

the top of the image, which may or may not contain the hat.

The proposed AttParseNet significantly outperforms AttCNN on bald, 5 o’clock

shadow, heavy makeup, arched eyebrows, and lipstick. The segments for all of these

attributes are rather tight, even though they are weakly labeled. This indicates that

for the attributes with accurate weakly labeled segments, the segment supervision

improves attribute prediction in general (both on CelebA and UMD-AED). The

proposed AttParseNet also achieves 100% accuracy on gender.

The average attribute accuracies for both AttCNN and AttParseNet on UMD-

AED are presented in table 6.3. Adding weak segment supervision to the attribute

recognition framework improves the average accuracy by almost 1%. We note that

in [1], AttCNN is trained on the aligned CelebA images and achieves an average

attribute accuracy of 71.11% on UMD-AED. An over 4% improvement is achieved

by simply training on the unaligned CelebA images. Even further improvements are

made by adding weak segment supervision with AttParseNet.

We also compare AttCNN and AttParseNet on LFWA [2]. Figure 6.7 shows the

average prediction accuracy for each attribute on LFWA. We see that AttParseNet

significantly outperforms AttCNN on hat, black hair, gray hair, chubby, and straight

hair. The average accuracy over all attributes is presented in table 6.4. AttParseNet
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Figure 6.7: Average attribute accuracies for LFWA using AttCNN [1] and the pro-

posed AttParseNet.

Method AttCNN [1] AttParseNet (Ours)

Accuracy 72.71% 74.21%

Table 6.4: Average accuracy over all attributes on LFWA. Both AttCNN and

AttParseNet are trained on the unaligned CelebA images.

outperforms AttCNN on average by 1.5%.

Though we use face parsing as a means for improving facial attribute recogni-

tion, we do not compare our method with other face parsing or semantic segmenta-

tion methods, because our data is weakly labeled in two ways. First, the segments

used in this work are automatically generated via the set of rules outlined above,

and are not very precise. In some cases – e.g. straight hair – the segments cover

too much area, and in some cases – e.g. blond hair – the segments do not cover the
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full area. Second, it is an unanswered research question as to what area is covered

by some attributes. For example, how does one determine gender? Does it comes

from the entire face, as we’ve chosen here? As another example, smiling can be

determined from the eyes, the nose, and the cheeks, as well as the mouth. This

ambiguity in how many attributes manifest themselves is another reason why the

segment data in this work is weakly labeled. Because of this, we do not feel that this

problem is a traditional semantic segmentation problem, and so we do not compare

our method to established methods in this field.

6.4 Summary

In this chapter we introduce a new method for facial attribute recognition in

images, which we call AttParseNet. AttParseNet adds weakly labeled face parsing

as an additional level of supervision in the attribute recognition network. We intro-

duce a rule-based method for generating weakly labeled facial attribute segments

based on landmark points. Using these weakly labeled attribute segments, we are

able to add a segmentation loss to the attribute recognition framework in addi-

tion to an attribute prediction loss. Combining these two learning tasks in a single

network allows for improved facial attribute recognition. We demonstrate the effec-

tiveness of the proposed approach by comparing with the state-of-the-art method on

three benchmark datasets: CelebA, LFWA, and UMD-AED. AttParseNet out-

performs the state of the art on all three datasets, by 4%, 1.5%, and 1%

respectively, achieving 100% accuracy on gender on UMD-AED. These
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improvements indicate that previous methods were taking advantage of unwanted

attribute relationships for prediction, and therefore were not learning a true repre-

sentation for the attributes.

This is the first work to frame the attribute recognition problem as one of

semantic segmentation. These results are very promising as we are able to achieve

significant improvements over the state-of-the-art even with every rough facial at-

tribute segment labels. As the segment labels are cleaned, the results will continue

to improve. The next step in this research involves collecting ground truth seg-

ments in order to improve attribute recognition and to allow for more research in

the direction of facial attribute segmentation.
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Chapter 7: Conclusion and Future Work

In this dissertation we proposed several approaches to learning explainable

facial features from noisy unconstrained visual data, including (1) using attribute

relationships, (2) using selective learning to balance multi-label data, (3) incorpo-

rating time and motion constraints into model learning to better handle video data,

and (4) re-framing the problem of attribute prediction as one of semantic segmen-

tation. We evaluated each approach extensively on challenging datasets, including

CelebA and LFWA. In addition, we introduced a new dataset, UMD-AED, for eval-

uating attribute recognition methods. We also labeled over 10,000 frames from

the YouTube Faces dataset, and released rough attribute segmentation maps corre-

sponding to CelebA images to enable research and development in these directions.

The methods detailed in this dissertation have repeatedly pushed the state-of-the-

art in attribute prediction and are useful for any future research in the area. Most of

the proposed methods are not limited to attribute recognition, but are rather general

purpose machine learning methods suitable for any noisy unconstrained recognition

task.

95



7.1 Future Work

There are many avenues for future research in both attribute prediction and

in recognition from noisy unconstrained data. We detail some directions for future

research below.

7.1.1 Social Trait Recognition

The work on selective learning was inspired by research in developmental psy-

chology the learning process of babies [126]. One potential area of investigation is

to study the problem of social trait recognition from faces using attributes. Social

traits consist of three main categories: attractiveness, competence, and trustwor-

thiness. Humans can form a first impression of someone, based on these categories,

in fewer than 33 milliseconds. People with visual impairments, or those on the

autism spectrum may not be capable of making such judgments, though it may

helpful for them to do so. For example, in the case of outdoor navigation, some-

one with a visual impairment may benefit from having a system that can identify

friendly (trustworthy) people to help them when they are lost or confused. We have

done some preliminary work on this topic, pulling from our past research on facial

attribute recognition.

7.1.2 Micro-Expression Recognition

Expression recognition from images is a long-studied problem, mostly focused

on recognizing a handful of posed expressions [14]. Facial expressions provide an
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abundance of information without words. A smile can indicate that someone is hav-

ing a good time, while a frown can indicate that they are uncomfortable. However,

rarely do people actually frown when they are upset, and in fact they may continue

to smile, but to most observers there are obvious differences between a true smile

and the smile of someone who is uncomfortable. These are very subtle cues that

someone with a visual impairment or someone on the autism spectrum may miss

out on, resulting in difficult social exchanges. Recognizing these types of micro-

expressions is key to improving social interactions for people who cannot recognize

them naturally. The first step in this work will be to label data for the problem of

micro-expression recognition. The best type of data for this problem will be movies

and television shows, as micro-expressions will be realistic, and there are a wide

range of these expressions that can be annotated.

7.1.3 Subject Clustering

Subject clustering is the problem of determining the number of unique subjects

in a collection of images and building clusters for each subject. It is useful for

organizing personal photo collections [127] [128], face verification and recognition

[129], and image retrieval [130] [131].

This problem can be approached in the supervised and unsupervised settings.

CelebA and LFWA are labeled with attributes and identities, and so it can be used

for a supervised clustering approach, to determine which attributes are useful for

clustering, and to evaluate the unsupervised approach. Approaches to develop and
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use an attribute-based subject clustering work are as follows. First, develop two

baselines for attribute-based clustering: divisive hierarchical clustering and agglom-

erative clustering. Second, investigate the clustering power of each facial attribute,

and determine the relationship between clustering power and capacity for recogni-

tion. Third, identify redundant/overly correlated attributes based on joint cluster-

ing power. Fourth, use attributes for face recognition based on a reduced set of

attributes selected based on their clustering power. And, finally determine which

attributes are dynamic (i.e. change between two images of the same person) by per-

forming attribute-based clustering and using identity information to absorb clusters

together, loosening the constraint on a particular attribute. This information can

be used to improve face verification, comparing with the method of [62].
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