A SNUIV OF OAITITLOMTR
 Brassica Oleracee Iinn, var. botyrtis D.O.

Thesis submittea to the Faculty of the Oraduate Sahool of the University of Maryland in partial fulifliment of the requirements for the degree of Doctor of Fhilosophy

1952

All rights reserved
INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

UMI

UMI DP70249
Published by ProQuest LLC (2015). Copyright in the Dissertation held by the Author.
Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

ACKONLEDGEMEM

The author whehes to ixquese his appreciation to Dr. A. Framer for his adrice and haip during the course of those experiments and the preparation of the reswseript.

Appeciation is also cemosed to Dr. H. A. Borthricit and to Dr. M. W. Parlar, U. S. D. A., Plent Industry Station, Deltuville, He for providing facilitiec for a mafor part of the exportmental work, and for tochutical advice curing the course of the experiments.

Bxperiment IV. Greenhouse 54
Sxperiment V. Greenhouse. 62
Discussion. 69
Sumary 7
SECTION UI, A STUDY OF THE BFEGCTS OR ENVIRONMBNT ON GRONTH AND
In cabinita. 8.
Introduction. 81
Revisw of Litorature. 81
Materials and Methods 84
Description of the controlled enviroment room 04
pests of the cabinets. 87
Design and general description of axperiments 3
Results 92
Series I, cabinets 92
Series II, cabinets. 92
Beries III, cabinets 9
Discussion. 101
Sumatry 104
APPEMDIX 111
 PTON TO YIETD AND ZARLLMESS IN SURGER CAULIFLONER. 31
Introduction. 111
Revied of Literature. 1.1
Materials and Methods 114
Experimental Results. 12.
Discussion. 26
Summary 26
 DSVBLOPAENT IN CAULIFLONER, (A) EFFTBTS C TREATMENTS OF TRANS- PLANTS ON SUBSEQUENT CRONTH AND DEVEIDPMET TH THE FIELD. 2. 3.
Introduction 129
Review of Literature 12%
Materials and Methods 231
Results 135
Bxpariment I. Bffocts of Daylength, Ageoo Transplants and Variety. 137
Experiment IIe Bifscts of Moisture Supply and Variety 14ε
Experiment III. Bffects of Pruning and Variety 146
Experiment IV. Effect of Cemperature During the Seediling Stage and Variety 148
Diacussion. 152
Sumary 156

1 Mean number of leaves per plant, their standard deviation and L. S. D. calculated assuming a number of replications (N) of 10 for the cauliflower varieties Snowball M and the Forbes raised under different environmental conditions36

2 Components of nutrient solutions for Experiment II 39
3 Components of nutrient solutions for Experiment III 40
4 Coxponents of nutrient solutions for Experiment IF 41
5 Experiment I, Greenhouse. The efiect of 8 -hour photoperiods for a definite duration of development followed by 16 -hour photoperiods during the remaining tine of the axperiment on the fresh weight, length of stom, and the number of nodes initiated on cauliflower plants at successive dates of harvest. 43

6 Exporiment II, Oreenhouse. The offects of five levels of nitrogen 2 nutrition on the fresh weight, length of stem, and number of nodes initiated in cauliflower plants at successive dates of harvest . 47

7 Experiment II, Greeniouse. The effect of two temperature levels on the fresi woight, length of stem, and number of nodes initiated in cauliflower plants at successive dates of harvest. 48

8 Ixperiment III, Oreenhouse. The effects of nutrient solutions deficient in nitrogen for indicated periods of time on fresh veight, length of stem and number of nodes initiated in cauliflower plants at successive dates of harvest 55

9 Experiment III, Greenhouse. Effects of two temperature levels on Presh weight, length of stem and number of nodes initiated in cauliflower plants at successive dates of harvest 56

10 Experiment IV, Greenhouse. The effects oi six levals of nitrogen ratrition on fresh weight, length of stom and number of nodes initiated in cauliflower plants at successive dates of harvest. 63

11 Experiment IV, Greenhouse. The affects of four levels of phosphorus nutrition on fresh weight, length of stem, and number of nodes initiated in cauliflower plants at successive dates of harvest . 64

12 Experiment IV, Greenhouse. The effecte of four levels of potassium nutrition on fresh woight, length of stem and number of nodes initiated in cauliflower plants at successive dates of harvest . 65
13 Experiment V, Greenhouse. Pactorial effects of nitrogen nutrition (s) x photoperiod (2) x teraperature on fresh weight, length of stem, and number of nodes initiated in caulirlower plants at successive date of harvest73
14 Experiment V, Greenhouse. Fresh woight of cauliflower plants atouccessive date of harvest for the different factorial combinationsin the nitrogen netrition (2) x photoperiod (2) x temperatureexperiment. 74
15 Experiment V, Greenhouse. Length of stem of cauliflower plants at successive dates of harvest for the different factorial combinations in the nitrogen natrition (2) x photoperiod (2) x teaperature experiment. 75
16 Experiment V, Greenhouse. Number of nodes of cauliflower plants at successive dates of harvest for the different factorlal combi- nations in the aitrogen mutrition (2) x photoperiod (2) x tam- perature experiment 76
SBCTION VI
1 Intensity and quality distribution of light in temperature controlledcabinets. Measurement taken on the top of the crocks at the 9locations in each cabinet indicated by the recorded figures . . . 88
2 Mean temperatures for the photoperiod, the dark period and for the24 -hour cycle and the respective standard deviation of the means for tthe three series of experiments in the controlled enviromments in89
3 Series 1, Cabinets. Fresh weight and number of nodes initiated in caulifiowe plants under four different temperatures in con- trolled condifions in cabinets at successive dates of harvest 93
4 Series II, Sabinets. Fresh weigit and number of nodes initiated in cauliflower plants under four different temperature in controlledconditions in cabinets at successive dates of harrest 97
5 Series III, Cabinets. Presh weight and number of nodes initiatedin cauliflower plants under four different temperatures in controlledconditions in cabinets at successive dates of harvest 98
APPENDIX
SBCTION III

1 Temparature and rainfall records at the Lewiston Airport for 1947 and 1948 season and the 45-year average for Lewiston. 115
2 Orades and total yield of heads in tons per acre of 22 cauliflower varieties 122

3 Total yield and weight of loaves in tons per acre and average
number of leaves per plant, days from transplanting to harvest
of $1 / 2$ of the pisunts and density of the hoads of 22 cauliflower
varieties 123
4. Ccefficients of correlation and of determination for total yield. arliness, waght of leavas and avaraga nuaber of leavas per plant 124
5 Frequency distribution of leaf number per plant 125
SECTION IV

1. Experiment III, pruning dates and number of leaves recroved per plant............................... 134
2 Experiment I. Factorial offects in plant withts in kg. per plot 1383 Exporiment I. Factorial erfeats in weight of heads and in thenumber of days from transplanting to harvest of $1 / 4,1 / 2$, and $3 / 4$of the mature piants, respectivaly................ 240
4 Experiment I. Factorial effects in weight of heads, earinsase, weight of leaves per plot and in number of leaves per piant.. Lhi
5 Experiment I. Factorial effects in weight of heads, earliness, percent of buttoned plants and density of head 142
6 Experizent I. Average nuriber of leaves jer plant at specific Bampling dates 145
7 axpariment I. Average waight per piant at specific eampling dates 146
\& Experiment II. Factorial affects in weight of plantm, in welghtof heads, in number of days from transplanting to $1 / 2$ of the plantzwereharvested and in number of leaves per plant 149

9 Experiment III. Pactorial affects in weight of plants, in weight of heads, in cays irom transplanting to $1 / 2$ of the plants harvested. in number of caraves per piant and in hadi density.. 250
10. Experiment IV. Factorial effacts in total weight of plants, total weight of heacie, number of leaves per plant and density of hesds.151
11 Sumary of range in variation in mean number of leaves per plant, within varieties observed under difierent environnental conditions 154

SDCTION I

Flgure

Pago
1 Cauliflower morphology. Young vegstative apical meristens with primordia of loaves, rudimentary stipules and scars after dissectod Leaves . 5

2 Cauliflower morphology. Different stages in the development of the apical noristome in ani 5 . Vagatstive maristens with primordia of leaves. C and D. Iransition stages with rounded apexes surrounded by whirl of bracts and slight dongation of stem just below the apas. Le Initiation of first order pedmeles in the axils of the bracts. F. Initiation of bracts by seoend order apexes7

3 Cauliflower morphology. Eifierent stages in the development of the curd. A. Initiation of Dirst order peduncles. D. Infitation of bracts and pactuncles of later orders. Co Naiure curd. Note similarity of structures in all stages of developrent. They are also all the same, namely naiced apexces and bracts6

4 Caulinlower morphology. Deferent stages in the developmant of the racene. A and B. Plowers just merging from the curd. Apexes of the flowers covered by sepals. antheria also initiated. but not sean. C and D. Later stiges in the devalopment of the racemes. 10

5 Cauliflower morphology. A Normal panicla before anthesis of lower flower. B. Abnormal panicle. Lowar flower with raceme devaloped

SBCTION II

1 Cauliflower plants and locations sampled for anatomical gtudy. Locations designated as follows A. Lower sten. B. Hiddle stes. C. Upper steri. D. First onder branch of inflorescence. E .
\$ Second order branch of inflorescence. F. Upper stem from plant in bloon. G. Pirst order branch of inflorescenc iron plant in blooz. H. Second order branch of inflorescenee from plant in bloon. . 19
2. Cauliflower anatomy. Cross section of flrst order branch of ihfloreseence showing dictyostele 22

3 Cauliflower anatomy. Cross saction of middle etan. Interfasicular cambiun have changed the etem to siphonostele. 21
4. Cauliflower anatouy. Crose section of va cular bundles of upper stem(inmeture). Oniy prinkiry yyian and eecondary xylem vessels Lignifled22

5 Caulillower anatom. Cross section of vascular bundles of middle
ston (mature). Primary xylem, secondary xylun and phloem fibers
ilgnified. 22

6 Cauliflower anatomy. A. Longitudinal sections of first order branch of inflorescance (imature). Only primary xylem and secondary xylem vessels lignifiad. B. Longitudinal soction of middle stan (mature). Primary and secondary xflem and phloom fibers lignified. C. Dei" 1 of reticulate vessel (mature).

7 Cauliflower anatong. A. Cross section of cortex with opidermis and B. pith of young sten. Wo intercellular spaces, cell walls wrinkled or zigzag shaped. C. Gross section of cortax with epidermis and D. pith of mature stew. Intercelluar spaces jressnt, cell walls smooth. E. Longitudinal section of cortex with epldermis and F. pith of young stean. Cells not elongated. G. Longitudinal section of cortex with epiderxis and H. pith of elongated stem. Note stretching of cells 24

Cauliflower anatowy. A. Cross eactions or lower stem. B. Cross section of middle stem. C. Cross section of upper stam. D. First order branch of infloresconce showing ontogeny of tissue maturation before elongation of branches of the inflorescence. Maturation proceeds upward frok older to younger tissue.25

9 Cauliflower anatozy. A. Cross section of middle stem. B. Croas section of upper stera from plant in bloom. C. First order branches of plant in bloon. D. Second order branches of plant in bloon showing ontogeny oi wissue maturation after elongation of branches of the inflorescence. Maturation proceeds upward from first order branches of inflorescence and also dowmard until it encounters already ligniried tissue in the main stean. 27

10 Cauliflower anatomy. Longitudinal section of a sanall branch of the curd. No floral parts can be distinguished. 28

sECTION V

1 Bxperiment I, Greenhouse. Growth curves(fresh weight and length of stem), rate of initiation of nodes and mean number of nodes initiated before initiation of the inflorescence in cauliflower variety. The Forbes raised under 8-hour photoperiod for a give duration of develpment followed by ló-hour photoperiod until termination of the experiment. 44

2 Experiment I, Greanhouse. Langth of stems of cauliflower plants
 duration of devolopment folbred by 16-hour photoperiod until terminationcol the experiment. is. 16 -hour photoperiod all the time, B. 8-hour photoperiod until 9.1 nodes. C. 8-hour photoperiod until 18.1 nodes. D. 2-hour photoperiod all the time 45

3 Experiment II, Greanhouse. Growth curves (fresh weight), rate of initiation of nodes and maan number of nodes initiated before initiation of inflorescence primordia in cauliflower variety Snowball M in the nitrogen nutrition series 112-33- and 10 p.p.p.N. 49

4 Experiment II, Greenhouse. Growth curvest (fresh weight), rate of initiation of nodes and mean number of nodes initiated before initiation of inflorescence primordia in cauliflower variety Snowball M at the $65-70^{\circ}$ and $55-60^{\circ}$ F. night temperatures . . .

5 Experiment II, Greenhouse. Growth curves (length of stem) for the cauliflower variaty Snowball H in the nitrogen nutrition series 112-33- and 10 p.p.m.N. and for the night temperatures 65-700 and $55-60^{\circ}$ F. 49

6 Experiment II, Greenhouse. Representative plants of cauliflower variety Snowball M of nitrogen nutrition series 112-61-33-18and 10 p.p.m.N. raised under $65-70^{\circ} \mathrm{F}$. night temperatures

7 Experiment II, Greenhouse. Representative plants of caulifiower variety Snowball M of nitrogen nutrition series 112-61-33-18and 10 p.p.m. N. raised under $55-60^{\circ}$ F. night temperatures
© Experiment II, Greenhouse. Kepresentative plants of cauliflower variety Snowball M of 112- and 10 p.pam. nitrogen nutrition series raised under $65-70^{\circ}$ and $55-60^{\circ}$ F. night temperatures 52

9 Experiment II, Greenhouse. Length of stems of cauliflower plants variety Snowbell M of nitrogen nutrition series 112-61-33-18and 10 pp . m.N. raised under $65-70^{\circ}$ and $55-60^{\circ}$ F. night temperatures 53

10 Experiment III, Greenhouse. Growth curves (fresh weight), rate of initiation of nodes and mean number of nodes initiated before initiation of inflorescence primordia in the cauliflower variety Snowball M in the nitrogen deficiency experiment 57

11 Experiment III, Greenhouse. Growth curres (fresh weight), rate of initiation of nodes and mean number of nodes initiated before initiation of infloresconce prinaordia in the cauliflower variety Snowball Mat $65-70^{\circ}$ and $55-60^{\circ}$. . night temperatures. 57

12 Experiment III, Greenhouse. Growth curves (length of stem) for the cauliflower variety Snowball if in the nitrogen deficiency experiment and the $65-70^{\circ}$ P. night temperatures. 5 ?

13 Experiment III, Greenhouse. Representative plants of nitrogen deficiency experiment raised under 65-700 F. night temperature. A. N. all the time. B. $-N$ from $1 / 4$ to $1 / 20$. C. $-N$ from $1 / 31$ to $2 / 18$. D. -N from $2 / 18$ to $3 / 9$. D. -N from $3 / 9$ to termination of the experiment58

14 Experiment III, Greenhouse. Representative plants of nitrogen defiefiency experiment raised under $55-60^{\circ} \mathrm{F}$. night temperature. A. N all the time. B. $-1 /$ from $1 / 4$ to $1 / 20$. C. $-N$ from $1 / 31$ to $2 / 18$ D. $-\mathbb{N}$ from $2 / 18$ to $3 / 9$. D. $-N$ from $3 / 9$ to termination of the experiment

15 Experiment III, Greenhouse. Ropresentaitive plants of nitrogen deficiency experiment. A. N. all the time. B. $-N$ from $1 / 4$ to $1 / 20$ raised at $65-70^{\circ}$ and $55-60^{\circ}$. night temperatures. 60

16 Experiment II ${ }^{I}$, Greonhouse. Lengh of stem of nitrogen deficiency axperiment. A. N. all the tinge B. $-N$ from $1 / 4$ to $1 / 20$. C. -1 Irom $1 / 31$ to 2/18. D. $-\mathbb{N}$ erom 2/18 to 3/9. E. -N from 3/9. to termination of the experiment raised at $65-70^{\circ} \mathrm{F}$. and $55-60^{\circ} \mathrm{F}$. night temperatures .61

17 Bxperimant IV, Oreenhouse. Orowth curves (fresh weight), rate of initiation of nodes and mean number of nodes initiated before initiation of inPloresconce primurda in the canliflower variety the Forbes under three levels of nitrogen natrition.......66

18 Experiment IV, Greenhouse. Growth curves (ireah weight), rate of initiation of nodes and nean number of nodes initiatad before initiation of inflorescence primordia in the cauliflower variety The Porbes ander three levels of phosphorus nutrition 66

19 Experiment IV, Greenhouse. Growth curves (fresh weight), rate of initiation of nodes and mean number of nodes initiated before initiation of inflorescence primorila in the cauliflower variety The Forbes under three levels of potassium nutrition66

20 Experiment IV, Greenhouse. Growth curves (length of stam) for cauliflower variety The Forbes under three levels of nitrogen, phosphorus and potassium nutrition. 66

21 Experiment IV, Greonhouse. Eapresantative plants from nitrogen, phosphorus and potassiun nutrition xperiment 6?

22 Experiment IV, Greenhouse. Representative plants iron nitrogen, phosphoris and potassium nutrition experinent68

23 Experiment V, Greenhouss. Growth curves (fresh weight), rate of initiation of nodes and mean number of nodes initiated before initiation of inflorescence primordis in the cauliflower variety The Forbes under two levels of nitrogen nutrition 77

24 Experiment 7 , Greenhouse. Growth curves (fresh weight), rate of initiation of nodes and maan mwber of nodes initiated beiore initiation of inflorescence primordia in the cauliflower variety The Forbes under 16-hour yhotoperiod and 8-hour photoperiod . . .77

25 Experiment V, Greenhouse. Growth curves (fresh weight), rete of initiation of nodes and mean number of nodes initiated before initiation of inflorescence primordia in the cauliflower variety The Forbes under $65-70^{\circ} \mathrm{F}$. and $55-60^{\circ} \mathrm{F}$. night temperature
26 Experiment V, Greenhouse. Growth curves (length of stem) for the nitrogen nutrition, photoperiod and temperature axperiments . .

27 Experiment V, Greenhouse. Representative from nitrogen x temperature x photoperiod experiment with cauliflower variety The Forbes 78

28 Experiment V, Greenhouse. Representative from nitrogen x tesiperature x photoperiod experiment with cauliflower variety The Forbes 79

29 Expariment V, Greenhouse. Length of stem of plante from nitrogen s photoperiod x temperature experiment with cauliflower variety The Forbes . 30

SECTION VI
1 Illustration of the construction made in the cold storage roora which consisted of a light pansi and forw temparature controlled growth cabinots. 86

2 Series I cabineta. Eate of initiation of codes and total number of nodes initiated before initiation of inflorescence primordis in the caullflower variety Snowbil 1 raised at four temperature levels in controlled onviroment cabinots. 94

3 Series I aubinats. Growth curves (fresh weight) for cauliflower variety Snowball M raised at four temperature levels in controlled environments in cabinets 94

4 Series I cabinets. Bepresentative plants from controlled environnent studies in cabinets. "Upper series were harvested March 12, middle series March 23 and lower series April 5. 95

5 Seriea II cabinets. Rate of initiation of nodes and total number of nodes initiated before initiation of infloreacence primordia in cauliflower variety The Forges raised at four temperature levels in controlled enviromment in cabinets.99

6 Series II cabinets. Growth curbes (fresh woight) for cauliflower variety the Forbes raised at four temperature levels in controllai onvironment in cabinots. 99

7 Series III cabinets. Rate of Initiation of nodes and total number of nodes initiated before initiation of inflorescence prinordia in cauliflowor variety The Forbes raised at four temperature levels and also twe alternative photoperiod and darik period temperatures in controlled onvironnent in cablneta. 100

8 Series III cabinots. Growth curves (fresh weight) for cauliflower variety The Porbes raised at four temperature levels and also at two alternative photoperiod and dark period temperatures in controlled environment in cabinets. 100

APTMOTX

SBCTION III

2 Cawliflower trimalng. Comerciai mathod of triming shown on two heads at left. Tro heals at ghigh ae trismed in these experinmats.

3 Prequency distribution number of leaves per plant for three cauliflower varietios. 120
section IV
2 Design of single plot for the factorial experinente . . . 236
2 Difforent kinds of abnormal cauliflower heads 143
3 Experiment I. Growth curves (iresh weight), rate of initiation of nodes and mean number or nodes initiatod before differentistion of the infioresconce primordia in cauliflower varieties Safis and 3nowball A. Different treatments given during propagation in coldirames. .

HTMODCTION

Wonogrwohs and farmer bulleting on the cultare of canliflower

 relatively low tenparature during the growing acason. fownver review of the lit rature on cauliflover prometion show that mort tochnienl
 thes the ffect of the anvironment on the devglopment of the mant have been nogleetea. It was the rarpose of inl the growth and devolomment of emaliflower as influonced by varlaty and onvirgnagh in order to elisainate some of the hatardis involved in the culture of the plent. Oextain other phases ware inciudea to gupply esm

STM 1041

Introtuction

 1. to decribe the morpholofical developmont of tho caulifloner plant
 in tudy of morphologicsi aiffarmcea among varietles, 1 and the eitect
 1. the sfatantion of the morphologiewl destriptiong equen by othe suthore
 In the phytiologicel experimente.

Reviev of Lifenture

 tractad thetention of botsnists an horticulturist for centarion but only thro tochnidal papern relating to his gubject have ben found.

suction 111.
$2_{\text {spection IT. Y, } 71 .}$
description of the cauliflows mes not very technical, and can be maman ined in three pointa: (1) The flowerg ware not apread as panicle, but held tightly together and formed a corymib (2)the pedienle grev fleny and lost their shape from beine hold tiently togetherf (3) nothing but rudiments of abortive flowers were promoed.

Mater (36) used more tochnical terme. He atated that cauliflower and broccoll afforded familiar illustrations of hypertrophy of flower taik accompanied by a corresponding cofoct ive development of the flowarg. Henalow (29) wrote nbout the clobulsp masses of the mpertrophied inflorescence with the flowery being in bud and the name implying flowery of the stem.

3ailey (4) semed to have transisted the botenical tarm hypertrophy coumon
 tens sad thickened malformed flowers, and he referred to the "stenmother" interpretation of the name cmulifiowar.

The moxphology of the cauliflower was clarified by Inand and Itce rechou (35). Thoy gald that the oullflower mee charactorized by on ocessive branching brought sbout by the suppression of the flower-axis of the inflorescence and promotion of the developmant and growth of the bronahoe. These second order bronches, after pariod of sative developaent, in turn were muppessed, sad a now order of brenches developed, - until the apmes of some of the last developed branchss uitimetely produced normal and functioning flowerg, while the rest of the brenches remined an naked aplcia meristaza.

Lund et al (35) sald further, that the developant mas brought a 11ttle farther in the defective "Rloy" auliflowere sad siso in the brocoolis, where lnitintion of the sepel wheri of the flowers and now
elongation of the pedicel took asace. They the mentioned that ome displacenent of the peduncles toct plece becuse of eroxing, and that the pecunclot becam rioghy.
 whortive flowe thoory wan (15). He studiod brocolis and his dewerigtion of the devolopment contirmed lund and fice rehou. Heo (48) tulied the cauliflower. He aerece with Dark, and compred the cauliflower curd to the condition ovident mone the carealy, vit. the forme tion of a tillering note. olahem (41) in ons of the latest non technical publicetions on the culture of grassice oleracen and related cmucifercus cronm, stopted Datho isfinition of the curd.

Watariale and Mathod

The cauliflower plente sampled for morgholegical atudy were the

 Belterille, Mnytand, durine the mintar of 1950-51. Mantere haveeted at fous different strge of development. shortiy aftar germina tion, at the 10 -node stage, at the 20 node stege, snd at the tize of initistion of the inflorescenco. Som cenliflower plante vere left intact and pernittod to ge to siod. 3ranches of the inflorascence, in ill stanes of development. were collectec frow the samp plante the sam das.
 tion under the binccular aicroscope and photomierography. some cruliflowers of both winter and sumer virieties were almo bought in the manet and stadiet for morehological diffences.

 -

 *renemarent and nmellast atructures.

Regult

Seeds sonked for 34 hours nnd dispeoted under the binecular ficreacopo
 shaped ootyladons folied over meh othes. wo structures ters pregont on

 of a divicar to cleft type. yith lobes of the leaf blade on both sides of the patiole.

The stipule locatec on each wide of the petiol were rudimontary on

leaves. No buds were distinguishable in the axils of the leaves although it may be assumad that meristems were there.

The sequence of stages in the change of the vegetative apical meristem into an inflorescence was shom in Figure 2, where A and B represented vegetative growing points with primordia of leaves, and C and D represented transition stages. The latter was characterized by enlargement and rouncing of the apex, and by initiation of several whorls of bracts. These bracte coula not be distinguished from leaf primordia until structures were infliated in their axils. The part of the stem immediately below the bracts elongated somewhat during this phase so that the inflorencence stood up as a small tower on the top of the stem.

Initiation of primary peduncles of the inflorescence in the axils of the bracts were the next step in the development. (Figure 2 M). These primary peduncles served as secondary apical meristems, initiated bracts and yielded secondary peduncles. (Figure 2 F). It is not known how mach branching occurred before the first of these meristems began to inltiate flowers, but branches of fifth order were observed on cauliflower of marketable size. The number of apexes in the curd of the above cauliflower were estimated to be five million by counting the number of primary branches, the number of secondary branches on the first primary, the number of tertiary on the first secondary etc. Each apex had one or two whorls of structure surrounding it that were either bracts in the wils of which a new order of peduncles would appear, or prinordia of flowers. Only a fow of the apexes developed flowers, fruit and seed during the subsequent phasss of the ilife cycie. (See Figure $3 A, B, C$, for development of the curd.) the suppressed parts did not absciss, but remained alive and some of them startad to grow after the seed crop on

Plfure 2. Cauliflower morpholory.
Different atares in the devoloment of the apical moristem.
A. and B. Verestetive neristerss with primordia of leaves.
C. and D. Transition stages with rounded apexes surrounded by whirl of bracts and aliciat olongation of stem just below the spex.
E. Initiation of ifrst order peduncies in tie arile of the bracts.
?. Initiation of bracts by second order apexes.

O. Hetare oard.

 The supprobsed branches dotoriorated most comoniy fron attacic of micro-

 - "

 and the prinordis or the androecis vere inituated at whotr baget the sephle grev rapidiy to cover the apexer and the ondroocid. and the podim cola thated to moncta. these stepa were all complated berozt the
 Plower abere Gevolopea into gyocela, and he petal mare finally initiam ted between the whorls of the andowectand the somels. At the that of
 panicle under cortain environwental ondtione.

 Ith flowers in an unoriariy manar on the panicle mirtymbret flower

P1pure 1. Gauliflower morpholory.
Different stuges in the devolcment of the racemo. A and B. Flowers fust omerning from the curd. Apexes of tho Plowers covorod by 3epals. Androecia niso instiatod, but not seen. G and D. Later stages in the develoment of the racemes.

Thene 5. Canisklower morpholeg.

B. Abneting pexielo. Lower flowes with reeope deverped Fithin the Rowers.
in the region where howers and recemea alternate. This may have been due to thelr photoperiodic exposures reported elsewhere. ${ }^{1}$ These abnomal flower: were one 3ided, the side facing away from the llorel exds being nomal, while the side factitg the Dloral axis had developed flowers withIn the Dlower. Even whole racames were found within Plowerg. These abnomalitities could be traced back to the arijeat stagea in the revelopanent of the individual flowers, the initiation of the sepsle and the androecie, and coincides with the main change of initiation of otructures viz. the shange from intiation of peduncles to flowers.

Another abnomality was encountered in the low temperature experi= ments with cauliflover. The growing points died on about 40 per cent of the plants, and the first or second leaf devoloped into a funnalshaped structure. The plents uere raisod under controlled condstions and no insects were present that could have injured the plants.

Discussion

The popular nam for the Srassioa plaracea botreytis is cavolfiore in Italy, coliflor in Spain, ouve flor in Portugal and cauliflouer in England. NLl these popular names are derived from the latin "caulisw and "iluris" (stem and flower). The two Latin words put together nave been give a distinct botanical morphological meaning: Nauifiory: the production of llowars fron the oli wood, as in the redbud, chocolite bree, and many tropical trees, (Wobstoris 0letionary). Authors have not been found who stated diretty that the cauliflower curd was a sta Lower, but both Bailey(4) and Renslow (23) anong others said that

ISection 5 pp (37)
the name implled "Plower of the stem," or "stexifower," and their reference to the meaning of the two Latin words could have oniy one iraplication, and have undoubtediy misled the authors to the incorrect definition of a cauliflower curd consisting of thickened me lormed abortive flowars.

It is intoresting to note that no author from the Horth European countries mentions that the cavililower consists of maliormed and aborbIve flowers. The reason may be found in thedr popular name of the plant. The Germans name it mbluwaitohis" the Dutch call it moloakool and the Scendinavians say "blomkeal." The Eaglish translation of this nem Qerman origin is "flowering tale" or flowering cabbage depending on which Inglish word is preferred as a name for the Brassioa oleraces tribe. The German neme does not inmly any abnomal development of the inflarescence as does the nawe cauliflower, but the origin of the German name can slso bo traced beck to Latin, since caulis was used as a genaic nano for the Brassicas by the anciant writers, (Sturtorant (53). Thus it appears that the Latin linguistic group adoptod the botanical sorphological meaning of caulis (stan), wile the German linguistic group used the generic msaning of cavils((kals). The lattor is undoubtediy the correct interpretation since the four teohnical papers inciuding the one, reject the theory of abortive flowers which is the sole foundation For the "cauliflory" theory.

The extensive work of Land and Kioerschou $(35)^{1}$ has been confirwed on all pointa except one. The question disagreed on is the cause of the excsssive branching of the inflorsacence. Lund et al. said that the suppression of the main apox followed by the davelopaent and the latar

[^0]14

ing is brought about by the absence of anical dominance of syy of the
apezes of the inflorescence buring the curd developing phase. Dominance
is later acquired by the first apmee to devolop normal and functionine
flowers mid the rest of the curd romains as naked apieal meristense.
Addtional evidente for the latter viow, ig the corymb-like development of the curc. The inflorescence would have boen aymoso-paniculate if the view of hand et al correot.

tion evident mang the caraels, vis. the formition of a tiliering node.
This my be equationed since the pike initiated by the tilloring node
conaigts of fairly definite number of flowsrs, whil the racemen of the paniel of the oumliflower are indetermingte wit continue to initiate nev nowers until the Geveloping seeds bate exhaustat the muply of
Florel ibnorblitites have been found in several crucifors and
sumera (54) cive them an atavistic interpretation, wile frber (3)
coubted the posibility of tracias the aceestry this whe caull-
flower abormality was followea back to the arilest stages in the
devalopmant of the racane which coincided \#ith the chenge from initiation
of podunclef to flowere. Thie coinoidence sumt bo considered as ovidence
for it phyaiological cause.

plant followed by the developmont of a funnel-shaped lsaf. wore also

今weden. (injublished). Decancolle (16) reported that znother subspecies

Shamazy

The 11terature on the subject of callflowtr morpholocy we surveyed suc two different thoughte on the morphology of the ourd wexpared. morphology of the developing ondiflowar plants from gerantion of tho

 madat types of leares and margod wh tho leat Blade on the acsile laven。
3. The cuxd of the csuliflower oonsistod of neked
 of indeteminate otmetures wion deviloped olthes
 Towtrs.
7. The excessive oranching wss breucht sbout by the Gbsence of apical tominane by any of the nozet of the inflorwsewne furtne the ound developing phane.
4. Dowincnes mate nequired by the first branches of the inflorercance to develop racesen, and they suppressed the other syexes of the curd, which remained as naked apienl meristeme. The mpm prested spexes dia not absoise, but deteriorated most comoniy from attack of aiferomatenism.
5. The porge of the recene were inceterminete. i.e. initiation of nev flowere took place until the developing seeds had exhansted the plant nutriente and the plant fooc.

Two morphological abnormalities, vit. the devolopaent of sucem nithin a flover, and dieback of the and mi meristem followed by the developant of s funnel-shaped leat. weseribed and defecte of -conomic inoptance were asociated wish theme abormalities.

Smatrex I:

Lataotucison

 to describe the natare of the anatomical wonomality lif any. and to

Reviev of ittoraturs

擎多 andomy of the caulislower has not attracted much attention.

[^1]correct definition of the curd. 713. the matiomed and abortive nower theory. They also mudied the different tismas, but did not deseribe sny thoormality la the matom of the pectuncles, nor ill they desoribe
 (35) and binton and anton (61) used arawinge for illustrations. while photomicrographs were uged in thi. gtady.

Matertals sud mode

 Frefhoum at the plant Industry station, Deltevilio. mpyland. furing the finter 1950-51. Th plants and the pointe at whoh semples were tiken ar shown in Pigure 2. These point on the plants were denigazted actollom:
4. Downs ster.
3. Kicile stan.
0. Tpper gtea.
2. Firet order branoh of the inflorescence.
5. Second order branch of the infloreecence.
P. Uppor tem from plent in bloom.
O. First orier brench from phint in bloom.
11. Seoond order branch from plant in bioom.

Thenterial ras killed and fired in

[^2]

Figure 1. Cauliflower plants and looations sampled for anatomical study. Locations dosicnated as follows:
A. Lower sten. B. Middle stom. C. Upper stom.
D. Pirst order branch of inflorescence.
E. Second order branoh af inflorescence.
F. Upper stem from plant to bloom.
G. Firgt order branch of infloresconce from plant in bloom.
E. Second order branch of inflorescence rron plant in bloom.
 onture uaing sontrat proces orth relw

Hegrita

 Ghonotele (Fimare 3).

The reaculty buctin (Piparen A and 5) rore colutaral int pried

 xylew (Figure 6. A tand 3), conginted of armany int apiral olemente

Left P1gure 2.

Cauliflower anatomy. Cross section of first order branch of infloroscence shoniny dictyoatele.

Right Rigure S.
Cauliflower anatomy. Cross section of vascular bundles of minele stem (mature). Primary xylom, secondary xylem, and phloem fibers lignified.

Left rigure 4.

Cauliflower anatomy.
Cross section of vascular bundles of upper stem
(immature). Only primary xylem and secondary xylem vessels lignified.

Figure 6. Gauliflower natomy.

 Ifesiditad.

C. Detall of reticalote festa! (wature).

Figure 7. Gauliflower anatomy.
A. Cross section of cortex with opidermis and is. pith of young stem, No intercelinlar spaces, cell walls wrinkied or zle-zag shapoi.
c. Cross section of cortex with epidermis and D. pith of mature gtem. Interce?lular spaces prosent, cell walls smooth.
is. Lomgitudinal saction of cortex with opidermis and ?. pith of younc stern. Cells not olongated.
G. Loneftudinal section of cortox with opidermis and汭. uiti of elongated stem. ifote stretchinf of cells.

Pirure 3. Caniliower anatomy.
i. Cross sections of lower stem. 3. Cross section of midale stem. 0 . Cross soction of umer ster. D. Irat order branch on inflorescence shoving ontoreny of tisoue maturation berore elonention of branches of the inflorescence, "aturation procecds unward from oldor to younger tissuo.
during the subsequant flowering phase, and the scerenchma tissues wore not lignified. The only tissues of the curd to be slightly lignified at the time of harvest for the warike were annular and spiral prinary pylea and secondary xylem vessels. However, lignification of pericyclic- and glem ibers and of xylem rays were prominent in the lower and middie part of the main stem (Figure E, A and B), while the upper part of the wain stera was not lignified as the peduncles (Figure E, C).

The expansion of the peduncles during the flowering phase was Pellowed by lignification of the tissue. Lignification semed to start. In the lower part of the primary peduncles (Figure 9, 0) and proceoded upward as the peduncles grew (Figure 9, D). Lignification also seaiod to proceed dowward from the expanding peduncles to the not previously Lignified part of the upper stan (Figure 9, A and E). Tho upper pert of the main stem was thus firat lignified on the side supporting axpending branches of the infloreacence.

No flower organs could be distinguished on the longitudinal section of a mall branch of the curd (F1gure 10), but bracts and apiesi meristens could be seen easily.

Discussion

Tha terns used by the different authors to describe the cauliniower curd are dafined by Jackson (29) as filois:

Hypertrophy: an abnomsl onlargeent of an organ, presumably by axcess of nourishment. Consolidated: (Consclides I make firm)

1. when unlika parts are coherent.
2. Crosier adds, having a small surface in proportion to bulk, as many cacti.

Flane 9. Gauliflowar anatory.
A. Cross gection of midde stom, B. Cross section of upner stem fromplent in bloon. C. Pirst order branohos of plant in bloom. D. Socond order branches of plant in bloom showing ontogeny of tiasue maturation after cloncation of branches of the inflorescence. Uaturation proceeds upward from first ordew branches of inflorescence and also downward until it encounters already ilinified tissue in the main stem.

Condencation: (Gondengatic, making dense) Cencontraifon.
Compacton: (Coposcha) plosely iomed or massed together.

from the usuat and natural structure.
adje morativas.
 description of the chulthowe intionscance: (I) whe words baea wte correctly appled by the disorant athors, although (2) non of the

 elongation of the peciuncles, anie a bimil langth-width ratio mich fucie the padunclea appear hypartiopinc.
 ony one sonomatity, nawaly the absence of ligifleation withe seler-
 alstinction betwen ancestral types of vegetables ant the hypartrophtealy developon atiole forms. hovovar, the hyparophy is froquanthy assuctatod with tha develognent of seconday and tertiary candiums which by thatr
 wis cound in the nomal caulinkorst antorifn arother subspecies on the

min interesting amormbity wae encountored in the wintar cauliflower
$1_{\text {Section }}$ I.
varibty "danary" planced in opring and exposed to the warm wathow conditions in Colloge Fark, Haryiand during the suwer 1950. The upper stern oniarged and developed into a Xohirabi-like structure instead of inftiating an inflorescence. the matony of the greatly enlargad upper part of the stom was not studisd, and it is not know whather secondary cambiun had developed or not, but the erowth nabit of the plants was that of cauliflower, not zohlrabi except. for the enlarged aplcal part. Flants were found in differant stages of such development, 80 it is winkely that it was due to seed adixixture.

The fibrous nature of the prominent bundle sheath should be pointed out. It is easily overlooked ly observing cross sections of peduncles duving the curd developing phase only, but longitudinal sections of peduncles befor and after longation disclosed that the bundle gheath consisted of potential fibers which becamo lignified following olongation of the pedurcles.

There ia no reason to believe that quality might be impaired by the premature lignification of the scleronchym of the peduncles. Lignification of sciorenchyma tisaue was Liuted to clongeted peducies and to tha bper pari of the main stam auporting flowering branches. This lignification occurred relatively long after the edsble state of maturity.
 mpical motistatag。

 and mpacal moteranal。

The oollateral vadeulay bundee contained both paricyciic and xyman

 the maxato
nnatomically abnoram tisnee not found，sula the snormally
 Inflarescance．absanca of longstion oi poancles during the tura devaloping phate．and abeone of ligniflection or the genierencizyat tisgue。

The experimental work perorted in section III and tho threo first exporiments on section IV were carred out at Lowiston, Idaho, and reported previously in a thosis written in partial fullfilment 0^{n} the requirements for the derroe laster of Science and presented to the rraduato school at the University of rdaho in 10l\%.

The eurvey of ilteroture, discussion, and sumary were rowritton after the $1: 1 \mathrm{res}$ factlifes of the U. S. D. A., Library became available to the author. Sections III and IV werc includge in this thesis bocsuse the author consider the material an intempal part of the study, wich will be submitted cor mulication soctionwise in the order civen in this thesis. Section III and IV are found in the appendix.

sict row

Introctuction

 Tuctod und
 than wismertalk sonktions.

Refie of Liseratur

 naterition on duvolooment of plants in erencrin. but the wavey wil be

surneek and Ooseg (39b) apoor to be the first to study the histolow
 Borthwick sud farker (10) degeribod the higtolog and the morphology of the Blloxi soyben and ued node coante and muber of flower primerata

 fication of the orgsn of perecption of photop riadie etimil in Bilexi soybean (11). Intrwation of photoperiod with bempertuture for oontrol of flowering in miloxi soybean (42). intertation of whotognthens with photoporiod for the control of flomering in 3iloxi noyban (43), and Semily. Pricer and Borthwiok (53). interaction of photoperiod and mastm

 contrel of flowerimg in siloxi soybean.
 atuay of the fifect of photoperiedinn and tompersture on devalopment of berley and action tpeetman for the control of hosel initiation in bariey worg worked oas by Berthwiek. Hendrick and Paxker (13). The
 worted out the ction mectrua for the photoperiodic contsel of fioweringe
 studies in theis extentive worts on the effects of fappratura on inition tion man mevelopmant of flower yrimorala in tulip and hyacinth baibe. Cresory sud juryis (18, 19, 20) mpplied node coante to their stuay of

Try

Snowbil mor fre forbes are elven in wale 1.
between tro mans at the 5 level using 10 replicetions of the varietion the standard deviation, and the L.s.D. required to test safference able from the sworiments roorted in section III and IT. The nas.

- Tr

a Aght tomperature of 65-70 F. Guring the minter of 1950-51.
at a nieht tomperaturs of $55-50 \%$., and the thiri section was held at
controlled memally. Two of the sections of this zreonhouse nare held

51. The greonhouse wes divided into three soctions in whick the niget
plant lacustry station, Holtsvillo, Maryland, during the winter of 1950

of the offects f anviromiont on Agrelomment.
of histological smid manological oxamination of the plants in as study

$4^{\circ} \mathrm{OL}$	$00^{\circ} \mathrm{Ot}$	$0^{\circ} \mathrm{g}$	oget "pwatax prots oy u Mctoonsp peqtrete
$0^{\circ} \mathrm{z}$	$00^{\circ} \mathrm{F}$	$4{ }^{\circ} \mathrm{L}$	
$0^{\circ} \mathrm{m}$	00°	2* 1	preanzed ptoo of peacca 70 N
0*	$76^{\circ} \mathrm{E}$	\%* 2 .	856t awy
			6agroe
$4 \cdot 9$	* 21	0.49	$098 T{ }^{\circ} \mathrm{Dtrataze}$
6	$06^{\circ} 2$	**8	0565 р世以
6*	$08^{\circ} 8$	$4{ }^{\circ} \mathrm{C}$	ftwmizeat pico of poscume zog
${ }^{\bullet}$	$9{ }^{\circ} \mathrm{g}$	$8^{\circ} 08$	
			3 TTequmete
peetex aequat own pat y			
Ptwe me7t	Wive 2		54at jo xequmu

 as yostible.
 of in B-hour photoperioc for a givan buntion of cavilopent on the sub-
 treatant
(a) $16-10 a \neq$ photoparlod continuously.
(b) 8 -hour photoperiod unt 119.1 nodes, fiollowed by 16 mave photeperiod.
(c) Bohour photepariot until 28.1 nodes, followed by 16-hour nhotoperiod.
(4) 8-hour photopstiod continuousye
(e) 8-hour photoperiod cont inuously

 topt on b-hour photopariod until termination of the experimont, wils

 of the morphology and the matomy of the cenleflewer arm.

[^3]pluating ate for the oxparisont ws cetober 18. 1900. The seed wat

 wth one 3 int of mutrian tolution.

 potg

 the wono potatatun phosphato and ano wodua photphate.
 the effects of two teavaruran nit five levals of nitrogen matrition on the frem welgt, length of stom, and number of moden laticted in

 of the matriont solutiong ara given in Table zo

solution naxioer	?	Nete par million of elemants												
		N	1	p	1	昜	1	08	\pm	紗	:	\%	1	01
1		112		13		36		160		56		100		-
a		01		*		*		87		*		\#		-
3		33		\#		*		*		${ }^{*}$		131		$=$
4		18		${ }^{*}$		\%		*		*		\%		39
5		10		\%		*		\cdots		*		*		60

 the efact, of temgersure and deficiancy of nitrogen furing indicated yeriods of thm on fresh waight, leagth of stan and nuabor of nodee

 The nutriant twatanatio were as rollows
（a）All mationt solution contimoushy．
（b）－ 7 from $1 / 4$ to $2 / \infty$ ．
（e）－Irom 1／31 to 2／1a．
（d）W yrom $2 / 18$ to 3／9．
（9）－ A rom $3 / 9$ to berchuation of tha foparianto
 are 䋨别 in Tato 3.

Solut ion nuaber	Parts reer milion of almanto											
	：${ }^{3}$	：	p	1 18	1	68	：	等	：	5	1	cl
1	112		18	86		160		58		100		－
7	0		\％	＊		87		＊		132		85

froerlmant iv what non orthogonal nitrogen，whonnorous and not－ ascium nutrition axperinat for tudying the ofiect of the mertionar glanents on the froh weight，langth of stem and aumar of nodes of
 Pebrutry 17． 1951 and the expriant wes parformed in the 35－60 ${ }^{4}$ nieht teagereture eoction of the greenhoues．The corponente of the nutrient solutions are eiven in teble 4.
frocrinent was aitrogen nutrition（2）x photoperiod（2）x thersenture（2）factorinlly destged experiment for bestine the offecte of the difforeat avironsantal oosibinations on the fresk yelgit．lencth of stok sin muber of nodes of cunliflows．Therbes tho variety
 wor follow：

Phodrhoxin seriet

Thie provided ight factorial onninetionv. The nutrient nolution
 difleront photonertods wore accomitishod in the mase sminer an in the photopertade azpertiment (eximunant 1).

All hants gery out st the ootyleroncy node then harontec. They
 iftuctin of lavem too mall to be dotecter by the naces oye were
 si lagth of nem wate also anda.
 \#tratification meed, but the plante were nored areand on the grean-

Resulte

Bypartiment I, Greenhouze

Rxogure: of couliflowe plante to B-hour photomedode bhrouthout
 freck patht oompred to costinubus i6mour photoperiods. Nowtrar. phante spoosoc to 8-hour photonsiods until diferentithon of 9.1 nodes commend to grow very rapidy following the chace to 16 mour

 becaug of the marliar inftistion and staxt of arowh of the curd.

 photoprioas reached the zten leagth of thoce azposed to lenour photom period antinucusly.
 darticicn of dovelopmont followed by 16 -hour photoperiode durker the rom
 ammber of noden Initintad on omaliklawer plontiv at eucoeacive dateo of

Piequre 1. Experiment 1. Greenhouse Orowth aurven (irvesh weight and length of stom), mate of inftiation of noden and moen number of aodes inttiated bofore initiation of the infioreaceace in caulifiover variety 男何 Torben raised under s-hour photopariod for a given dapation of developaent follored by 16 -houp photoperiod unt11 teruination of the experficent.

Inegth of them of emilifiower flame rarioty the hertes rultel undar e-buas photopariced tor a efrum mation of derologement followed by 16 mbout

(4) 20 mhour photegperied all the timo.
(B) Enhoar phateperied wan 114 noloe.
(0) mboar plotoge siof matil 18.2 mplam.
(b) Elmar photaporiat all the itme.

Oniy plants receiving contimous 8-hour photoperiods had significantly slower rate of initiat ion of nodes and plants exposed to 8-hour photoperiods during initistion of the first 9.1 nodes shomed an increase In menn mumber of nodes initiated before differentiation of the inflorescemce. However, the affects of photoperiods on the rate of initism tion and meen number of nodes initiated before differentiation of the inflorescence primordia were both very small.

gxperiment II, Greenhouse

None of the interactions of nitrogen matrition and temperature were significant. Nitrogen and temperature data were, therefore, presented in separate tables.

Significant decrease in fresin meight, which resulted iro low levels of aitreen, wers encountered ac soon as 7 weics aftar planting of the seed when the plants were of the size of trensplants (Table 6, Figures 3, 5, 6, 7, 3). Theme effects wert more pronounced as the plents advanced in erowth.

Hower rates of initiation of nodas mere also mooutered inder 10然 aitrogen marition (Table 6, Pigure 3) bat no significant aiffero onces in total number of nodeg, formed before initiation of the inflorescence primordia, were found.

Femperature did not influence fresh weight under the conditions of thig experizent (Table 7, Figures 4, 8) duy the higher temperatures resulted in longer stems (Table 7, Pigures 5, 9) than fere found in lots of 550 cogrees F. The 65-7eF. temperature caused a highly significont incraase in the tot ni number of nodes initiated before dif arentigtion of inflorescence prinordia (Table 7. Tigare 4) and had aso \%alight eflest on tha rate of initintion of nodes.
 nutrition on the rreat weight. leagth of stem, and number of moden
 enlture in the creanhorase. Flamted $\begin{aligned} & \text { Ioverber 28. 1900). }\end{aligned}$

 level on the fresh weight, longth of etem, and number of nodes initlated in camlirlower plontert suocensive Novembes 20, 1980).

8.77
6.18
7.85
12.41
12.23
16.17
12.09
9.90

Figure 6. Experiment II, Greenhouse Representative plants of cauliflower variety Snowball M of Mitrogen nutrition serios 112 -61-33-18- and 10 p.p.m. N. raised under 65-70\%. night termerature.

Figure 7. Bxperiment II, Greenhouse. Representative plants of cauliflower variety Snowball : of ilitrogen nutrition series 112-61-33-13- and 10 p.p.m. N. raised under $55-60^{\circ} \mathrm{F}$. night temperature.

Pigure 3. Axperiment II, ireenhouse. Representative plants of cauliflower variety Snowball in of 112- and 10 p.p.m. nitrogen nutrition series raisod uncer $65-70$ and $55-60 \mathrm{p}$. night temperature.

Lencth of atree of caulinowner pisute varioty Smembail M of aitrogem matitition eeries 122 61. 33- 18 mand 10 popom . m . reiged mader 6570 nad 56-69 \%. nighin teaperatrapes.

Nxpariment III, Grwenhouse

 4 (topaxat fablew。

 Femiltad in thmor*xy revation in the rata of initiation of node (Thble 8. Futa 10)

DIf

Teble B. Whperiment III. Greenhouse The effecte of nutrient solutione deficient in nitrogen for indicated periods of time on fresh weight. leneth of etem. and rumber of nodes initiated in coulirlower plants at eracesive dates of harvest. (sand calture in tho greenhoute. planted Noverater 28, 1950).

Table 9	Haqperimant III. Oqreanhoume. Itrect or two temperatare Ievel on tho freah woient. Iorech of tem. find namber plamead wovember ad. 1950).								
mate of manuest	30-70	2ery	cxay $55-80$	\because	$\text { In }{ }^{5}$		8 Nemem	2	
							-	*	
Jan 4. Ex	- 2.38	*	2.15	:			1.31	2	
Jen 13.051	\% 3.36	8	2.93	:			3.15	8	
stan 20. 52	5.8	8	5.5	\%	*-s.		. 5.8	*	36.48
Jan. 31. 51	13. 1	\%	15.6	\%	*.		23.3	8	53.83
Feb. 18. Ex	43.6	2	42.8	8	4.		- 43.2	\%	36.98
Mes. 12. ${ }^{\text {g }}$	215	8	128	*	m-8.		118	*	29.41
maturity	470	\%	453	:	-8.		- 45	\%	24.73
	-	8		8		.		3	
						\%		1	
	\% 5-3s	\%	3.45	\%	0.36	2	4.39	2	20. 55.
Jan 13. 51	19.38	1	8.88	\%	0.86	*	7.84	2	18.35
Jan a0. 51	12.6	2	9.1	2	0.6	\%	10.9	-	24.08
Jan s1. 52	17.6	2	13.8	\%	0.7	\%	15.7	8	10.48
Feb. 18. 51	25.1	\%	30.8	*	0.7	,	28.0	2	6. 99
Max. 21. 51	12. 6	*	27-7	8	1.5	2	29.7	*	8.75
Maturily	41.2	\%	55.0	8	2.8	\%	38.2	8	10.00
	$5 \quad 1$	8		8		\%		8	
	Mhaber of nodes per plase					8		*	
Sam. E. 52	10.0	\%	9.7	\%	0.3	8	9.9	*	8.0z
Jam. 1z. 51	\% 13.7	3	12.3	\%	W. 5 -	8	12.6	*	9.84
Ian. 20. 81	- 18.5	*	18.2		N.	8	15.3	8	11.68
Jan. 31. 51	- 20.8	2	20.3		1-5.	\%	20.	\%	14.65
Feb. 18. 81	- 37.7		35-8	\%	[-5.	8	26.7	:	20.98
Mas. 12. 51	\% 56. 4	8	48.7	z	3.3	*	51.5	:	11.24
Maturits	- 5P. ${ }^{\text {a }}$	\%	50.7	\%	4.4	*	36. 2	\%	13.95
	,	2		8		2		2	

Figure 13. Experiment III, Greenhouse. Representativo piants of iftrogen deficiency experiment raised under 65-70 F. night temperature.
(A) N. contimuousiy. (B) -1 from $1 / 4$ to $1 / 20$. (c) -11 rrom $1 / 31$ to $2 / 18$. (D) $-N$ from $2 / 18$ to $3 / 9$. (E) -il from $3 / 9$ to temination of the experiment. Seed planted 11/28.

Figure I_{4}. Experiment III, Greenhouse. Representative plants of nitrogen deficiency experiment raised under $55-60 \mathrm{p}$. night temperature. (A) W_{0} contimuously. (B) $-N$ from $1 / 4$ to $2 / 20$. (C) $-N$ from $1 / 31$ to $2 / 18$. (D) $\propto \mathbb{N}$ from $2 / 18$ to $3 / 9$. (E) -If from $3 / 9$ to termination of the experiment. (Seed planted 11/29)

Pigure 15. Experiment III, Greenhouse. Representative plants of nitrogen deficieney experiment raised at $65-70 \mathrm{P}$. and 55-60 F . night temperatures. (A) H . continuousily (B) -I from I/4 to $1 / 20$. (Seed planted 11/28)

(4) of the intersetions, only the two primery intom

(3) The relative importince of the throe parisble

 atom in the nitrogam-matrition x photoperiod x tomerature experimant

 number of nodes intitited betote cifferantiation of the inflorescence rate of initiotion of nodes whe follomad by a signifientiy higher
 spou zo tof

 8

 the mpeonhoase. planted Fobranw 17. Imwi).

79

		gigix	¢980	
	！			
象象范	枵象		\％\％\％\％	
		－fifon		
	y			
			\％${ }^{\text {¢ \％\％\％}}$	
	苞	h		
－	\％			
\％	\％			

 Fobrany 17. 1981).

Figure 17.
Experiment IV, Greonhouse. rate of initiation op nodes rate of inftiation of nodes and mean number of nodes initiated beiore initiation differentiated before initiof inflorescence primordia ation of inflorescence prim in the cauliflower varioty ordia in the cauliplower varThe Forbes under three lev- Lety The Forbes relsed under ols of nitrogen nutrition. Soed planted 2/17/51.

Experiment IV, Treenhouse. (rresh woicht) Grovth curves (irosh welght)

Flgure 18. and moan number of nodes liforentiatod berore lint three levels of phosphorus

Figure 19.
Experiment IV, areenhouse. Growth ourves (frenh weleht) rate of initiation of nodes and mean mumber of nodes inftiated berore dirferentiation of inflorescence primordia. in the cauliflower variety The Forbes ralsed under tirree levels of potassium mutrition. Seed planted $2 / 17 / 51$.

Figure 21. Ixperiment IV. Oxeenhouse.
Hepresentat ive plante from aitrogen, phoaphorus and potagstum nutrition experiment. Variety the Forbes planted 2/17/52.
－TE／AT／2 postrige opqrea eqx

The effocts of nftrocen nutation, hotopriod ond berperetare on
 fresh might and length of stem. The order of toportanco of the primaxy -ffocta on node initiction are (a) tomperature. (b) nitrogen natzition and (c) photoperiod. The interactions senn to have sinor influenco on the rete of initiation of noden exemp for the prinary interantion temparature x mitrition.

Discnesion

The main purpose of the study was to disclose the environaental condition responsible for promintum headieg in ceuliflower. The effocts of the environamt on the freah weight and lengh if stem sery as a backercund for evaluetion of the degreg to which the plants rempond in general to the trestmenta.

Decreseg in nitht temperature from 65-70 to 55-60 F. lowered the mean node maber of the cauliflower variety momban in from 58.2

 idensical temprature conditiona as mperiment II. The variety The Porbes mas usod in mpertacat V. Fis varisty also responded to a dscroase in nitht temurnture from 6570 to $55-60 \%$. The difference in monn number of nodes between the teo treatmente was 5.3. The com clusion is, therefore, thet temprature is the factor whion conses promature hacine in caulifiomer.

Decreases in photoperiods, in nitroeen, shonghoras, or potasitum nutrient levole show ather no sienificant differences or an increse in momber of noder compred to potit: a levels. These incrasas in
number of noteg ware syociates ofth a hocrenged wet of initintion. It ig possible that temprature why benterod the thotoportodic
 were covared with black satfoch cloth furine 16-hours of the photoneriodie cycle. It is also possible thes temporatum antert the nitrogen, phosphorus end potasium nutrition experiment as alag becuse of the slower rates of initiation of nodes. This delayed the differentiation of the inflorescence until later in the sorinf when the increased outaide temesmture made il imposmible to keep the grenhouse tampratures at the derired levele.

Hence it my be gtatec ind causen of the incresses in node mubers線 a result of decrecses in levels of matrition of particular elonents or expogur to 8 -hour nhotoperiode are ether not significent or uncertith as to canse.

Jecrease in length of thotovriod, level of mitrition and terngreture were savociated fith slower rate of intitation of nodes in 211 expariments. Bat theso offection marpriginely smell shen comared oith the drastie offocts of the treatmentg on fresh veights anc length of stems. It is therefore iarosaible to fadee the physiolocical ace of the plants from their ele.

Nitrogen deficioney sind s-hour photonamiod uring exily chaten of growth did not have any deoresing effect on the frem weight of the plante at the tormintion of the experiment although the decrease in froch weight curlng the trentionts were very distinctive. a morg rapid rate of growth followed wich treqtants and the plent eventually reached the size of the ones eroosed to optimal coadstions the antire time. It hat been dazonstrated thet innts gryoud to unfurorble conditiong dur-
ing the sealing stage surpesen the ones aposed to more favoroble con aitions. Tms thoapson (50) reported the beneficial effects of lowar temperature durine the ropagtion poriod for the subeequant grevth of onion plante in the fleld, while Bremer (9) roported alaller offect of Ghort photoperiods on the further growth of onion plant in the field. Carew at al (14) raporte incrased yiald of cxulflowar plant after erogure to short photopariod in the stadlug stace. Thase frect were
 thesis. I The conclusion was draw that the beneficial offect wore due to the increased tine for mtanlinhont in the fielt give the plants expesed to bhort photopertod becauge of the incrensed mubar of nodea and ala the glower rates of initiation under ghort biotoporiods. It is Woubthl whehar thin te the wole oxplanation since the time diferences are rather sall and similat offect: are found in caviflower planta Which are not tranmplanted.

Sumay

Decrease in tampereture fron 65-70 to 5im60\%. night temperature wa domongtrayed to cano a cecrease in men maber of nodes initisted before inititition of the infloresconce and that to ause premature honaing. Serious decrease in longth of photoperiod and in lovel motrition Fas asoctated with an increase in number of nodes, thus causine post mature homang.
wereasas in length of photopertod, matriont level nat temperature wargasociated with decreased rate of initiation of nodes, but to a
surpisinely sixil degree comprad to the argotic effects of the treatments on the fresh weight andaneth of tome of the plantw.

The stenificance of chack in growth during eariy stage of developmant diacuszed.

 different factorial corbinations in the nitrogen nutrition (2) x photoperida (2) x tempersture expariment. (sand culture in the preanhouse, planted February 17. 1951).

Table 25. Experiment V; Gromhouse. Length of stom of osuliflarsp plants at succeasive datea of harvast for the difforent factorial ocmbinations in the altrogon nutrition (2) x photoporiod (2) x tuaperature -xporiment, (rand oultare in the gremancume. planted Pobruary 17. 1351).

 different fuetorial oosabiations in the nitrogen mutrition (2) x photoperiod (2) x teaperature experiment, (and oulture in the greenhouse, planted Pobruary 17, 1951).

Tigure 37. Zxperiment V. Oreenhouse.
aspresentative from nitrogen x temperature x photoperiod experiment. with cauliflower variety The Forbes planted 2/17/51.

Pigure 28. 3xperimant V, Oreenhouse.
Representative from nitrosen x temperature x photoperiot exominent with emililower varisty The morben planted 2/17/81, pieture taken 5/19/51.

PLgure 29. heperiment V, Oroenhouse. Jength of stem of plants from nitrogen x photoperiod x temperatnre axparimont. mith osuliflowar variety the porbe nlanted $2 / 17 / 51$.

IN GADLDYS

Intwoduction

 Whs clovziy denongtrated in Section where nizt temperature vere conm trolled by theswatats milla the day tomper turea mero manaly controlled

 Ulisty of ifnding the quantitative ralotionship of temperatre to growth

 the ripht guality to dVe noral rateg of erowth end developmant.

 increage the number of nodes initiated before inftition of the in floreseence srimordin in ouliflower. Only one refexence to tomerature
 (6) gtudied cauliflower production in the trooics rad roporsad the tho mean maxim tomperatures for the montha of October through April

fron India headed under those environmemtal conditions.
Miller (39A) reported a study of aeed stalk development in cabbage. Cabbage plante ware kept in the vegetative stage for two years by exposing the plante to $60-70 \mathrm{~F}$. temperature in the greenhouse. The haads split, formed new leaves and headed ropeatediy for aight times in suctescion during those two years. Plants exposed to $50-60 \mathrm{~F}$. tanpersture in the greenhouse initiated inflorescences after several months. The initiation was greatly accelerated by 60 days exposure to cold etorege.

Bromer (6,7 and 8) studied the growth and devaloment of racish, carrot and lettuce under controlled tomperatures in hotbods. Samplinge Wore made at successive dates of harvest and rates of grouth were $111 \mathrm{us}-$ trated graphically. Ho found that the day-noutral head lettuce variety Ton Thumb did not head at constant temperatures above $18^{\circ} \mathrm{C}$, nor did it head if the mean daily temperatur axceeded 180 C.

Gergory and Purvis (18, 19, 20) studied the effects of vernalization on leaf number in rye and found that all rye varieties developed 7 leavas before initiation of infloresence primordia. The following 18 nodes were indeterminate and could develop either leaves or bracts, with prisordia of apkielets, depending on the environment. All of these 18 nodes developed leaves in unvernalised winter rye, while completely vernalized winter rye developed only 7 leaves and appeared like spring rye. Winter rye was completely vernalized after 14 weoks exposure to cold treatment. Rye could be partly vernalized by photoperiodiam and leaf number could be reduced to 16 by photoperiodic vernaliation.

Response of onions in bulbing, initiation of inflorescence and to seed stalk development as a result of nitrogen nutrition, photoperiod and temperature, has been reported by several authors. Allard and Garner (1)
$\varepsilon 8$
 found that high temperatures prevented boltin and promoted balbiag in all stages of development. Thas high tempera ure the firat season caused the sets to develop only a few loaves and to form bulbs very - rly. Wo infloresconce arimorifa were initinted the following ainter. If larger sets capsole of initiation of inflorescance primorita mere
gubjected to high temperature furing the assly part of the storage, no inflorescence primordia wore formed in them. Sets erown under concitions of high temperature the sooond season did not bolt, but formed buibs sgain. He mas found thet the fompersture offect on bulbing and geed-
stalk devalopment modified by daylungth. Short photopariod in
hibited buloing completely, but it allowed for bolting if the temper fux was not too hish.
Fieath and latur (27) also stuaded leaf dovelopment in onton. They found three different linds of lesves; ordinary leaves, thickened scales and non thickened scales. The mumber of ordinary leaves varied, but the number of seales gtayed fairly constant. The onion setw had three thickened scales and 7 non thickened soales. They state that there appears to be a miniman total mumber of leaves (isaves pins scelos) which mast be infitiated before infloresconce primorais can be formed.
The relation of terperature to plant growth and developisent in
vegetable crops hat bean sumarized by Thompson (55). This resuat ghows thet most work hag been ane on the ffocts of low tamparature on bolting or prematare seedstalk developwent. Low toapersture is tho 4 How is influencea by both length of day and temperature. Short photoperiod often ances inflorescence primorifa to stay domant or die. In anch
cases the piants are converted over from the reproductive to the vegeta tiva piase. High temperature on the other hand prevence inftiation of the inflorescence primorúia.

> Matertals ond rebrods

Description of the controlied environsent room. The controlled eaviroment studies were carxied out in a cold storage rom at the Univo arsity of Maryland, Departnent of Horticulture. The size of the cold storage roon was 6 . $\times 12$. The rom was oguipped with refrigeration nachinery of ingh capacity. four growth chambera with glass rops were conetructed. A panel of lamps harging ran the ceiling and extending beyond the cabinets provided artifiolal lighte This panel (Figure i) was provided by the Uivision ai Photoperiod at the U.3.D. H_{0}, Plant Industry station, Beltsville, Maryiand. It coneisted of 18 Conoral
 called 4500 hits) with the 2^{m} Lamphoiders spaced as close as possioie. On both sides of the fluorescant tubas there was one row of seven 100 watt inside-frosted incandeacant-filamant lakes. The nine 220-volt ballasts were placed on a frafo outzide the cold storage roome one row of incandescent lamps was connected to each of the hot lines of the 220 volt rluorescent circuit so that the entirs light panel was balanced. A 220-volt time switch was ineluded in the circuit. The switch turned the light on and oif automaticalyy as deaired.

The cabinets were made of $1 / 2^{4}$ plywood and displayed the following Seatures (Migure 1).
(1) Pour growth chanbers with inside seegureaents 19x4xic9 inchew, and with a 13 ass top.
(2) Malse hoors over an air Leeting fan dietribution chamber, inside mesqumanents $19 x 4 x 15$ inchem.
 able slits over 3 zis inche mare cold air ducts runnige under tho air dintribution chambers.
(4) Fens for air circulation in the duets and cabinete.
(5) simetal thermostatg in the doorg of tiw csbinete which controlled the tomperature through reley wiftchea placed on the sad elevation of the orbinete. (6) Man elazed arthenware erocks aberibed in section V.
(7) Copyor-congtentin thernocoulen for continaous racord ing of tanerttures. The thermocouplos were tied to a small stake in three of the crock of esen grocth chamer end located af a level jugt ovar the top of the jlants. they ware rotated syatanaticully withia the cadnets with the plants.
(6) ao distance from the light manel to the glas too was eight inchen, while the distence frow the light panel to the too of the crocics 29 inches.

The terperature of Serion i were manured with a potentiometer and eopormocntentan theraocuples using melting ice as reference. The tomperatures of sexies 11 wers contimally recorded by
 recorder using irommenstantan thormoccuples. the temporatures ghow a Alight downtad trend in the saxies III experimenta. it in posmible that this represente bias which entered the expriments by the exhnation of the battery of the tomperature reconder.

Ficure 2. Iliustration of the oonstructions mace in the cold storage rooil which congiated of a light penel and four teaperatorecontrolled crowth cabinets.

Tests of the catinetg. The intensity and the quaity distribution of the light in the temperature controlled cabinets are show in fable 1. The light intansity was moasured with a weston light meter which gives the intansity of the light in foot-candles. Borthwick and Parker ound that excellent growth could be obtained with General Electric 96 Standard Cool White slimine fluorescent 14 ght (formerly called 4500 white) if 10 incandescent light was added. It his apparent that the intansity and quality distribution of the light was not perfect, but it would have been very difficult to improve the situation hence variation within the cabineta was eliminated by systeantic movement of the plants.

Keeping the temperatures constant during the photoperiod and the cark cycle proved to be extremely difficult and was not frully accomplished. The difficulties wers caused by the mors than four kilowitts of light radiation during the photoperiod of wich a large part entered the cabinets. The excess radiatod hoat had to be disposed of by air circuiating fans. The variation encountered during the three series of temperature experiments are sumarized in Table 2. It is apparent that the temperature of the photoperiod was higher than the dark period for the 450 F . cabinets while the temperature of the dark poriod excesded the light period in the 75 F. cabinet. Best control was obtained in the 55° and 650\%. cabinets.

Design and genaral description of experiments. All three series of experiments in the cabinets were carried on in sard culture using the same glazed oarthenware crocks and the same method of planting as ciescribed alsewhere. ${ }^{2}$

Ifersonal communication.
2 Section 7.

Table 2. Intonaity and quality dietribution of ilghtin tamperature ocatrolled eabinete. Moasuraneat taicen on the top of the aroclo at the 9 lootion in enoh oabinet indicated by tha recorded figurep.

Type of light	1 3	450\%. eabinot			*	$65^{\circ} \mathrm{p} \cdot \mathrm{arbinet}$!	$79^{\circ} \mathrm{F}$. eabinet			!	$55^{\circ} \mathrm{F}$. abblnet		
	1				1				*				1			
Ineandescemt	-	140	145	186	8	150	156	258	1	160	159	152	1	186	147	156
Inflarescent	*	1190	1200	1120	1	1200	1290	1250	1	1800	1340	1800	1	1160	1210	1200
Incandeseant + inflorveent		1810	1350	1260	-	1410	1470	1410	1	1420	1490	1480	-	1310	1890	1380
	-				\%				+				*			
	-				1				*				1			
Incandeaeeat	*	135	182	128	*	159	112	148	1	143	145	140	\%	231	136	157
Inllorosount	*	1290	1810	1230	1	3880	1420	1500	1	1420	1480	1120	1	1290	1870	2840
Ineandeacont + Inrlorvecont		1400	1420	1350	-	1510	1580	1610	1	1800	1610	2860	*	1420	1580	1490
	*				*				1				*			
	1				1				*				t			
Inosulesaent	\%	145	145	183	1	145	147	148	t	151	145	145	t	132	142	14
Infloreecont	*	1170	1180	1100	4	1210	1200	1210	*	1290	1260	1200	*	1120	1180	1290
Incendesomb + inflorescent		2300	1510	1250	,	1850	1350	1850	+	1410	1100	1110	-	1280	1810	1820
	*				1				*				1			
	\%				8				*				!			
Inoamdeseont, mean	*		186		\%		147		*		149		*		139	
Iniloresount. mean	\%		1139		+		1289		-		1340		*		1229	
Lnomed. + Lnflorese man	t		1385		-		1438		*		1477		\%		1380	
Per oent inoandesoent	3		10.2		8		10.2		*		10.0		*		10.1	
	8				t				t				1			

Wable 2. Wen temomitures for the photoporiod, the dartr period and for the 24-bour cycle sid the respoctive standare devittion of the monns for the three series of experinents th the controlled environnents in the cobinets.

Geries I incluced one variable only, namely, the four temperature levels. Seed of the variety Snowball was pianted in the crocks in tho Ereonouse at the U.S.D.A., Plant Industry Station, Beltsville, Naryland on February 17, 1951. The geminated piants were thinned out to 9 plante to the crock and moved into the cabinets on harch 6. They were axposed to a 16 -hour photoperiod and an 8 -hour dark period. Gradual breakdom of the refrigeration systam started about the first of Aprix. This iwpaired the results of the axperiment.

The nutrient solution used was solution 1 of the nutrition experinents reported elsewhere. 1 Mutrient deficiency symptoms which appeared in the later stages of growth in the greanouse experiments were axagerated in the 65° and 750F. cabinet.

The pian for the experiment calloci for a study of fresh weight, length of stem, and number of nodes initiated at successive dates of harvest. Howover, the relatively high intensity of florescent light shortened the internodes so much that maasurements of stem length were omittea.

Series 11 included three levels of potassium nutrition and three Lovele of magnosium nutrition, superiaposed on the four temperature levels. The mutriant level of the other elements was the same as in solution 1 , except for the chlorine anion which accompanied the potassium salt, and the increase in sulphate ion concentration which accimpanied the magnesiua sait. An increase in the potassium concentration to 150 p.p.in. cured the deficiency symptoms, while the magnesium did not have any effect. The data for the superimposed nutrition experiment were not given since they ware

[^4]of ainor impertance and only 2 monlianten ware uged in ch asbinet.
The canliflower varioty whe Jorbes vas wed in Sarian in. The

 tameratur secordar funct loned satigfoctonily throughout the fapariment. Berias II inciuzec, beaiaes tha four reeular tomperature treatmonte

 had to be terminsted befor initiation of the infioregemoe in the 48 F.
onbingts.
The statigtias computed for the anocestive diter of k mast in clude wesu frash maiehte and menn numox of nodes per plant. frandasd Qevistiong ait tha ramang, tandard devithtone of the wosum times the t
 1atad. These statistion mbther than analysis of vatiance were ased in oraex so failitate the ovaluation of the particular curves.

 tion begone the lage date of bywert before tho intintion of the
inflorescence prinordia to the mean muber of nodes int tiated before initien thon of the infloranconce in the various cobtnots.

The groth curves (rosh moleht) were dram through points of mon

Resulte

 in tomperture to 74.4 . wes found durine the eriy whase of erok but

farloresconco prinordin ware not intinated in the planss exposed to 74.4.0 the the time of tematnation of the oxperiment, althouch the mean nuber of nodea intinted arceedea those of the other treatnents. (Thble 3. \#neure 2j. Initiaion of the inthorescence prinordia in the plants exposed to 65.10 .65 .7 and 48.37 . occurred atter 42,46 and 52 day

 of havest sre shom in Tigure 4.
he resulta of exies 1 so not inductive of the guantitative
 matem gtartoc lote in april.
gerios If orbinotg. the offects of the tomparstures on inititition of nodes in the second perise of temertore axocrinonta wore incressed

 froinde mivonsent atudios in abinets. upper
 and lower astec april 5. Ments labelea a mere raised
 cablnots.
rate up to 69.9%. ghile the rate of initiation in plants oxposed to 76.F\% W. Wurpessed durine later phasea of eromth by the plants given 89.98. (table 4, Menve 5). Initiation of the inflorescence ald not take place in the plente exmosed to 76.5° F., although the mean mamber of nodes per plant at the time of temination of the expertment was as high as 67.3. Inftiation occurred in the 69.90, 56.80 and 49.6\% cabinets cifter 41.52 and 87 days when thatr moan maber of nodes were 40.4. 22.4 sna 30.1 respect ively.

Increasea in fresh wight were ancumtered up to $69.9^{\circ} \mathrm{r}_{\mathrm{H}}$, while a further increate in the tempersture wother decreased than inereased the yield (Table 4. Fleure 6).

Series Ill cabinete. hates of initiation for comparmble temperatures vere lower in the serien III sxpetment than in the former. This may be the result of ghortening the photoperiod from 16 -hour to 13 -hour, wich reduced the light enerey availeble for photosynthesis by 1/4. The general trend in rete of initiation of nodes for the different constant temperm ture levels mas simiar in series II and IIX. Fith mate of intitation at the two upper tomperature levels cromeing in both meries (Table 5, Figure 7).

Tho highest temperature of this series was decreased to 71.4. F. and differentiation of the inflorescence occurred at this temperature. The muiber of dayt until initiation of the inflorescence in the 71.4. . 68.3 and 56.897. cabinets were 57, 53 and 58 days when the plante had initiated 48.5. 45.2 and 26.3 nodes respectively. Flants of the 45.3 . treatment aid not reach the stege of initiation of the inflorescence before terninem tion of the experinent.

Natee of initiation at the alternative iny and night temporatures ere intermediate betweon the two congtant temperatures and difierentiation of

the infloreacence primortio occurbe at dutes intermediate betreen the
 menta gtartad four age fiter the plant fore noved into the cabinets

 Growth rateo ware olso conaiderably lower in gorian II than in the former two sowleg. Tho hiphest matas of mrowih ware encountered with plant: exposed to altorneting temporatures 69.6 day and 55. 0^{3}. night. The meverge situation rerulted in conaiderraby les? frowth (nable 5. "1gnre7).

Dismasion

Number of nodes inftisted proved to be a useful measurowont for the
 (18. 19. 30) in theip otuiy of the derelopment of wre. A lower 11mit of

 sats. Intitation of 30 nodas had to be completed before differentietion of the inflorescence primominn could ocont in the canliflower rariety The Toxbos. However. it in likely that other varietieg of ounliflower
 with only 7 nodes. whic variatios leter then The Forbes may how himer node I1mits.

The maximut temperature at which initixtion took ylace in these experimenta was 7. 4 F. Fhils the minimum tomperxturo where difforentiation
 cence in the oulifhower variety The Rosbes mat bes betwen thoto two
tomparabues. This maxitum appears to be below the moan temperatures for the tropics reported by wood and James (62). Yet the caullilower varieties from Sutton anc Son, Calcutta, India, headed under tropical conditions. Two explanations for this phanomon are possible. (1) Caulilower varieties display dicierances in upper tomperature maxina at mich initiation my occur. (2) Cauiflower varieties display diferm onces in degres-hours below certatn maximat wich inftiation may occur. It is likeiy that both these expianstions hava to be considared in thinking of the entire caulidower population (sumer and winter cauilflowere).

The caulfilower is variously Liscod as blemial or annual by the different authors. Both seem to be right considering all cauliflowers. The early varieties from India are ammals, while the latest varieties of winter cauliflowar are biennials. All other varioties of cauliflower display different degrees of biennal habil.

It is interssting that both the maxinum temparature for initiation oi inflorescence and the temperacurs at which the lower linit of nodes are ancountered occur within the range cownonly encountered under field conditions. An explanation for the more frequeit occurence of buttoning in the apuing crop is suggestad. The low teaperaturas encountered in the spring may make the plants differentiate inilorescence preaturely and wain dry conditions following such promature heading may decrease the growth and result in buttoning. The reverse situation is usually the case in the fall. Sauliflower plants are raised and transplanted to the field wiar warm wather conditions. They suant and do not grow very well, but nether does initiation of the inflorescence taks place because the temperature is too high. Main and cooler tetuperatures are usually associated In the fall. The plants initiate the infiorescence and the development of the curd takes place under ideal conditions for cauliflower
prodetion.
Cauliflower seed production in many places is limited beosuse of the short seagon. Por thig reswon, the planta are mom the jrevious fall. wintered ovar in grembouses and tranglanted to the fields where the selections axe made. This means that the califlower piants raised for seed roducition aro exposed to lew tampratures furing the entire yinter. Such is not oomonly the case with culiflover raised for the matet. Selection for ood prodoction is, therefore, mander other conditions than those umally given the plants by the truek famern. These environmental differences nay not be serious, since excellent cauliflower seed has bean produced in the pagt, but breeders of canliflover nay find E-idance in thin study of the offects of temerature on growth ad development of exuliflower.

Altemative day snd night toxpermitures seon to influonce dovelopmont in s. iffercat maner than they influonce growth. Thus rate of initistion cnd menn mumer of noden initiated before differentiation of the inflorescence seem to be the sam for the sese man tarpersture whather it is con stant or altemating during the 34 hotur cyole, while the increase in frech weight is mach larger for the sam man temperature if the day temperature is high and the night temperature is low. Definite proof ror thit statemont is lacking at the momant. Bremer (7) found that heading or no hese ing in tha lettuce variety ton Thumb was deternined by the mean temperature. Thether ajernatine or constant, he did not get hoad formation if the moan tomperature was above 180 C.

Conaiderable work hat to be fon before the offecty of texperature on Growth and developant in cauliflower are fully know. To ghorton the time until initiation of the infloranconce is of considarable intovest for ceuli-
Slower seed production. It my be posable to to this by exposing the

Lion of the inflorescence and again give them optimum temperature for
further growth and development. Data for much a procedure are not avail m
sole the moment.
Sumaxy
The controlled environment studies demonstimt the effects of

the association of development with merinos and yield.
there appears to be an upper temperature limit beyond which india-
tron of the inflorescence does not take place and the osuliflower plants remain in the vegetative phase. The highest temperature at which initio
dion occurred in the eavifilover variety the Forbes mas 7. FF. and the
Lowest temperature at which initiation did not take place mas 76. Fr.
The upper dial for initiation mast be between those temperatures.
Initiation occurred at all temperature below this limit, but the number of nodes initiated before initiation of the inflorescence varied

tremendously.

Initiation of the inflorescence cannot take place in the cauliflower
variety the Forbes regardless of temperature as long ae the leaf number
Ie below 30 nodes.
Humber of days differentiation of the inflorescence determined
by rate of initiation and nodes and mean number of nodes initiated.
Very mall differences in muter of any until initiation of the inflorge-
cense were found in the region 60 70 ? . since the increase in note numbers

 ofindtintion mo thet a delay in initintion of the inflorenomot occurred.
 of growth. Deamil increage in mite of indtiation and freah matgh accuma
 4amernture undor the coniltions of theso expersuents. Howevor. it in nor
 production.

LIST OF REFRRMGES
v

1. Gamer, W. W., H. A. Allard. further studies in the responce of the plant to relative length of day and night. Jour. of Agr. Hes. Vol. 23: 871-920, 1923.
2. Arber, Agnes. Studies in floral morphology. II on some normal and abnormal crucifers; with a discussion on teratology and atavism. Mew Phytologist Vol. 30: 172-203, 1931.
3. Babi, M. F. flesidual effects of forcing and hardening of tomato, cabbage and cauliflower plants. U. S. Dept. of Agr. Tach. Bul. 760 , p. 35, 1941.
4. Bailey, L. H. Gentes Herbarusi. II. The cuitivated Brassicas (second paper). Ithaca, New York. p. 267, 1930.
5. Bramer, A. B. Blonkal 1920-1924. Moldinger Ira Norges Landbruskhuiskole. Vol. 5: 169-192, 1925.
6. Bremor, A. H. Temperature and plant growth I. Radish. Meldinger fra Norges Landbrukshbiskole. Vol. 8: 267-287, 1928.
7. Bremer, A. H. Cabbage lettuce in frames and open ground. Meldinger fra Norges LandbrukshViskole. Vol. 9:1-112, 1928.
8. Bremer, A. H. Temperature and plant growth III. Carrot. Meldinger fra Norges Landbrukshoiskole. Vol. 11: 55-100, 1931.
9. Bremer, A. H. How to exploit in practice the reaction of onion (Allium cepa) to different day lengths. Meldinger ira Morges Landbrukehogskole. Vol. : 185-206, 1950.
10. Borthwick, H. A., and M. W. Parker. Influence of photoperiods upon the differentiation of meristem and the blossoming of Bioxi soybeans. Bot. Caz. 99: 825-839, 1933.
11. Borthwick, H. A., and M. W. Parker, Photoperiodic percoption in Biloxi soybesns. Bot. Caz. Vol. 100: 374-387, 1938.
12. Borthwick, H. A*, M. W. Parker, and P. H. Heinze. Effect of photoperiod and temperature on development of barley. Bot. Gaz. Vol. 103: 326-341, 1941.
13. Borthwick, H. A., S. B. Hendricks, and M. W. Parker. Action spectrum for photoperiodic control of floral inltiation of long day plant, winter berley (Hordewn vulgare). Bot. Gaz. 110: 103-118, 1948.
14. Carew, John, and H. C. Thoupsor. A study of certain factors affecting "buttoning" of caulirlower. Proc. Aner. Soc. Hort. Sci. Vol. 51: 406-414, 1948.
15. Dark, S. O. S. The development of the flowers from the curd of broncoll (Brassica oleracea botrytis). Ann. Bot., N. 3. Vo.1. 2: 751-52, 1938.
16. Decandolle, Augustin Pyranas. Mmoir on the different specis races and varisties of the genus Brassica, and of genery allied with it with are cultivated in Guropa 1821. Transactions of the Horticultural Society of London, Vol. V: $1-\mathrm{V}, 1824$.
17. Ferry, Morse. A descriptive list of vazotable variaties. \$o. 11. Ferry Forse Sead Co. Detroit 31, Michigan; San Prancisco 24 , California. p. 64, *
18. Gregory, F. G., and O. H. Purvis. Studies in vernaligation of cereals, I. A comparative study of vomalization of winter rye by low temperature and by short clays. Ann. Bot. N. S. Vol. 1: 569, 1937.
19. Gregory, F. G., and O. N. Furvis. Studies in vernaisation of cereals. II. The vemalisation of excised embryos and of developing ears. Ann. Bot. if. S. Vol. 2: 237-251, 2938.
20. Gregory, F. O., and O. M. Purvis. Studies in vernalization of cereals. III. The use of anarobic conditions in the analysis of the vernalizing effoct of low teaperature during geraination. Ann. Bot. N. S. 2: 753-764, 1938.
21. Great Britain, Pinistry of Agriculture and Fisheries. Cauliflowers. Bul. 131, 2nd Edit. London P. 18, 1948.
22. Great Britain, Ministry of Agriculture and Fisheries, Marketing Division. Report on the production, marketing and transport of Italian caulifiowers. London p. 34 ; 1950.
23. Goubsl. K. Organography of plants, insbosondere dor archegoniaton and samerpilangen. Vol. I G. Fisher, Jens. p. $838,1898-1901$.
24. Hansen, Lars, Ejnar Blankholm og Asger Klougart. 30. Beretning for provedyrkning av kbikenurtur. Aarbog for Cartneri. Vol. 31: 191-201, 1949.
25. Heath, O. V. S. Studies in the physiology of the onion plant. I An investigation of factors concerned in the flowering ("bolting") of onions grown from sets and its prevention. Part 1. Production and storage of onion sets and field results. Ann. Appl. Biol. Vol. 30: 208-220, 1943.
26. Heath, O. V. S. Studies in the physiology of the onion plant. I. An investigation of factors concernod in the flowering (势olting") of onions grown from sets and its prevention. Part 2. Iffects. of day leagth and temperature on onions grown from sets, and general discussion. Appl. Biol. Vol. 30: 308-319, 1943.
27. Heath, O. V. S., and P. B. Mathur. Studies in the physiology of the onion plant. II. Inflorescence initiation and developent and other changes in the internal morphology of onion sets as influenced by temperature and day length. Ann. Appl. Biol. 3l: 173-186, 1944.
28. Henslow, G. History of the cabbage tribe. Jour. Boy. Hort. Soc. Vol. 34: 15-23, 1908.
29. Jackson, B. Dayt on. A ElosBary of botanic terms. Hafner Publishing Co., New York, p. 481, 1950.
30. Kraus, J. E. Effect of partial dofoliation at transplanting time on subsequent growth and yiald c. lettuce, cauliflower, celery, peppers, and onions. U. S. Sept. of Agr. Tech. Bul. 829, p. 35, 1942.
31. Lann, R., Gesta Tometorp, and Sven RLices3, Sort-och stamiforsok med k\&ksvextor aar 1946. With an English sumary, Earlinass, 272275. Heddelande 37 fraan Statens Tridgaardsforsok; Maimo 1947.
32. Lama, Re, S. E. Lenander, och B. Hylub. Redogbrelse fyr staniforsok och statakontroll av kVksvextstamar vid Statens TrllganardsfOrsDik aar 1938. Meddelande fraan Statens Tredgaardsforsbk Nr. 5, Kalmb, 1940.
33. Lamprecht, H. On Kara kterisering av tidigheten hos keksvikter. Keddelande Nr. 20 frasn Alnarp tridgaardars foreoksvexksamhet. 1927.
34. Lamprecht, H., Lamprecht, H. Gruppeinddeling av kokkenurter. Nordisk Jordbrugsforskning. Vol. 21: 316-325, 2939.
35. Lund, Samste, and Kioe rschou. En monografisk gkildring av havekaalens, Bybsens of Hapsens kulturformer. Kobenhavn. Kjobenhavn. p. 149. 1885.
36. Masters, M. T. Vesetable teratology, an acoount of the principal doviations from the usual constmuction of plants. R. Hardwiche, Iondon p. $534,1869$.
37. Neclelland, T. B. Studies of the photoperiodism of some economic plants. Jour. Agr. Res. Vol. 37: 603-621, 1928.
38. Motzger, J. Systematische Beschreibung der Kultivierten KohJarten mit ihran zaireichen Spielarten, threr Kultur und Okonomischen Benutzung. A. Osswald Heidelberg, p. 68, 1833.
39. a, Niller, J. C. A study of some factors affecting seed-stalk developnent in cabbage. Cornell Univ. Aer. Exp. Sta. Bul. 488, p. 46, 1929.
40. b Hurneek, A. E. and Gomez, E. T. Influence of length of day (photoperiod) on development of the soybean plart, var. Biloxi. Ho. Sta. Hes. Bul. 242, p. 28, 1936.
41. Nilsson, Ernst. De Viktigaste Svensks kolksvixterma. Verdandia smaakrifter 288. Albert Bonnier Forlag, Stockholm, p. 59, 1924.
42. Oldham, C. H. Brassica crops and ailied cruciforous crops. Lockrood (Agricultural and Horticultural series). p. 295, London, 1948.
43. Parker, M. W., and H. A. Borthwick. Effects of variation in temperature during photoperiodic induction upon initiation of flower primordia in Biloxi soybean. Bot. Gaz. Vol. 101: 145-167, 1939.
44. Parker, H. W., and H. A. Bcrtiwick. Floral initiation in ailoxi soybeans as influenced by photosynthetic activity during the induction period. Bot. Cas. Vol. 102: 256-268, 1940.
45. Parker, H. W., S. B. Hendricke, H. A. Bortimick, and N. J. Scully. Action spectmu for the photoperiodic control of floral initiation in Biloxi soybean. Science 102 (2641): 1520155, 1945.
46. Parker, H. W., 3. B. Hendricks, H. A. Borthalck. Action cpactrum Sor $^{\text {S }}$ the photoperiodic control of floral initiation of the long-day plant Hyoscyamus niger. Bot. Gaz. Vol. 111: 241-252, 1950.
47. Paul, W. R. C. A note on the cultivation of the cauliflower in the low-country districts of Ceylon. Trop. Agriculturist. Vol. Al: 91-94, 1933.
48. Pedersen, A. Nordisk 111ustrerot Havebrugsloksikon. Gads Kbbenhavn 3 Vols. 1945-48.
49. Rac, L. Narayana. Flowering branches from the curd of brassica oleracea Linn. var. botrytis D. C. Current Science Vol. 7: 237238, 1938.
50. Hobbins, if. Ke, G. T. Nightingale, and L. G. Schermerhorn. Premature heading of cauliflower as assiciated with chomical composition of the plant. N. J. Agr. Zxpt. Sta. Bal. 509, p. 14, 1931.
51. Rodrigo, P. A. Purther acclimatication studies on caulirlower. Philipp J. Agric., Vol. 10: 403-411, 1939.
52. Scully, N. J., W. W. Parker, and H. A. Borthwick. Interaction of nitrogen nutrition and photoperiod as expressed in bulbing and flower-stalk developnent of onion. Bot. Gaz. Vol. 107: 52-61, 1945.
53. Scully, N. J., M. W. Parker, and H. A. Borthwick. Ralationship of photoperiod and nitrogen nutrition to initiation of plower primordia in sofbean varieties. Bot. Gaz. Vol. 107: 218-231, 1945.
54. Sturtevant, B. L.e Notes on odible plants. State of New York, Department of Agriculture, IWenty-seventh Annual ilaport, Vol. 2-part II, pags 108.
55. Saunders, E. H. On carpel polyworphisn. I. Ann. Bot. 39, 123-167. 1925.
56. Thoapson, H. C. Temperature in relation to vegetative and reproductive developsent in plants. Proc. Amer. Soc. Hort. Sci. 37: 672-877. 1939.
57. Thompson, H. C., and Srdth, Orm. Seedstaik and bulb development in the onion (Alliua copa Lo). Cormell Univ. Agr. Sxpt. Bta Bul. 708, p. 21, 1938.
58. Thompson, R. C. Cauliflower and broccoll varieties and culture. U.S. Dept. Agr. Farmer's Bul. 1957, po 17, 1944.
59. Turrel, $F_{\text {. M., }}$ and A. P. Vanselon. Tablen of coefficients for estimating oblate and prolate sphoroidal surphaces and volunes from spherical surpisaces and volunes for finding surphaces and volumes. Proc. Amer. Soc. Hort. Sci. Vol. 49: 326-336, 1946.
60. Hent, 3 . W. Effect of tamporary shadrig on vegetables. Proc. Aner. Soc. Hort. 3ct. 48; 374-380, 1948.
61. Fint, F. The Themoperiodidicity. Vomalization and Photopariodism. A gymposiua. (Lotsya) Chronica Botanica Conpany, Walthat, 位sa., U. 3. 4. $9.196,1948$.
62. Winton, A. L. and Kate B. Winton. The siructure and composition of foode. Vol. II Vegetables, Lagumes, fruits. John Wilay and Sons, Lne. Wew York, Chapman and Hall, Livited, London, fo 904, 1935.
63. Nood, h. C., and H. K. Jamas. Cauliflower cultivainon in tha tropics. agricilture, grin. 702. 13: 216-220, 1936.

Introduction

Few, if any, cultivated plants show as many morphological ifferm onces as the species ingsfon oleracas. only very few of these differences have been assigned to specifle genes. Host of the differences appear to be quantitatively inherited or the effect of genes plus modifiers. It is of considerable importance to ind and to measure such differences and to correlate then in order to insure progregs in the desireble direction. 䵢ig paper concerns messureble diferences in morohological characteristien among variaties of cauliflower and the relationship of these characteristice to earlinesg and yield.

Review of diterature

Chiafly, two characteristics gem to have betn involved in the classification of cauliflower parieties. One of these was pysiolosical. nanely. carliness, the other was one the morpholosical characteristies, density of the heads. The Latter scems to be the older characteristic for claselfication. Thas becandolie (16) sald that the Prench gardeners reiged "Le Dur" (the hard). Le semi Dur" (the semi-hagd) and "Le tendre" (the soft or tender) which was the most upright in growth. DeCandolle stated further that these subrarieties founded on ifferent degrees of firmess of the Hootgtalks. Were fax frov offering conatant chanacter
istie，and semad orincipslly to dopend on the nature of the ground，and the influence of the elirate．filson（40）mentioned in hig deseription of the cavilflower，that axoellent varieties had short primay brenches fhich ceve the curds sery dense apearance when cut longitwinally． Araus（30）meesurad the density of the curd by dividing the meight of the heads into depth times width，欮d recorded the resulte as an index of density．

Lund and 基ice xghou（35）classified the verieties on the basia of carlinegs，named the clasges after the bect laom veriety in esch clags． end used morphological charecteristics for the description of the classes． They divided thepopulstion of flowering kale into four groupe，nemely （1）srfurter group，（2）Lenormand group．（3）Finter caulfilowor group or heeding broecoli group．and（4）Genuin broccoli．The folloming morpholo－ eicel chanacteristics were ued in their description：length of gen． color of leaveg．development of flower buds on curd．emsile varsus petiolate leaves，end incisione in the leaves．

Bremer（5）reported a muvey of the cauliflower populytion by ob－ servation triale and he classified the cauliflower varietien into four main groups with subdivisions．Hebt of trowth，color of leaves．earlinese and other cultural indexes were uged as ciassification chsractaristics． He，like mund et al（35），nomec the classes apter knora vorietiege

Mordiak Jordbrugsforskeres forening（Society of northera geicultural soientista）took up the question of atandardization of clagsfication and the use of aproved reforence varioties in their veriety tegting．Insprecht （34）proposed four groups of cauliflower based ontirely on sarlingss．翌he two latest maturing of Lamprecht＇a grops ware practically elimincted from the geed trade by the further develomeat of the califlower industry
in the Scandinavian countries. 紋rly and late parieties of the grfurter group are the only ones used today, and these varieties are classified In a very exact order of wituration with refarence to a standard. A nev method for calculating earliness was introduced by Latprecht (33). It has been modified by hamm of al (31) who also described the method in Bnglish.

The Swedish experiment atations (32) used an organoleptic seoring system for several morphological characters like density, smothness of the curd. ricy heads and so forth. Their orgnoleptic ratings were usad to eliminate virioties with undesirable characters. The Danish vegetable trials (24) also used an organoleptic scoring system, and their retings were incorporated with the yiald sad quality grading data into a common ladex upon which the recomendation or rejection of varieties mere based.

The diversified climate in U.S.A. calls for agreater range in vario-
 cauliflowars, or the heading broccolis, are of great importance in the southeastem and southmestem Onited states. Thompson (57) divided the cauliflowers into two mein groups: (1) The early to midseason varieties (irue canliflowers). (2) The late varieties including all Pacific Coast strains plus St_{t}. Valentine and H ite Cap . Such a digtinction is also made in Higland by the Ministry ob Agriculture and Fisheries (21) and by Oldham (41) in his late book "Mrasica Crops and Allied Crucifarous Crops." He also arranged the varieties according to the month of harvest and gave the respective dates of planting in another colum. Perry Morse (17) has named many of their strains of winter cauliflower after the month of harvest of the particular variety. This was also done in Italy as reported by Great Britain, Ministry of Agriculture and Fisheries (23).

The devalopant of canlinozer proanction in the topics called for special variatiea thst mould had under conditions of bigh temoexature.
 Judia, and the vatiebtea have beon tried in experinevts by paul (46). Hodrige (50), and moodet mi (62). Thes have aigo boan tried in the
 condition or coolar semperature.
 oall group, with ara comanly arown in the J. Bohe and in the Scandinavian countries, \quad (ere included in this axperimeat. It would have boen do sirable to include a reater range of varietiesi howewer this would have entailed a year round growing soason. Ldaho, where these experirants were conducted, does not offer such cilmatic conditionse

解terisits and Me hode

The aperimont an conducted noar Hewiston, lamo during the 1948 gstagon. Lewtston is located at the confluence of the olatimater sha Snake Hivere at 4640 罗. latitude and 117% longitude. The altitude i. about 1200 ieet above soa level. The ellmatic conditions for that Locality during the 1949 spring meason, (ition 1), were more rainy ada codier than norwal maich favored the ouniflower crop, and arcellent yiolds ere obtained.

The twonty-two variptias of cunliflozer were tested in complete fandomized block design with four replications. The plot size mas
 tween the plants in the row wat 13 Inches. The mudy row in each plot was sampled during the neriod of leaf initiation and mas reaoted esviy before crowing of the adjoining rows. The dietence at time of

	May	June	suly	Aus.	Sept.
Average temperatures, degreen Tahrenheit					
Lewiston elmport 1943	55.8	68.4	68.8	68.8	62.5
Lewieton alreort 1947	46.6	64.0	74.3	71.3	63.8
Lewiston City 45 -year average	59.1	67.4	76.1	74.2	64.1
Averace nrecipitation, inches					
Lewiston airport 1948	4.80	1.18	2.05	0.15	0.49
Lewiston airport 1947	0.38	2.43	0.03	0.13	2.36
Ieviston City 45-year average	1.50	1.46	0.49	0.43	0.89
-Data obtained from U. S. Weather Burecu records, The feather station was moved from the city of leviston to the Leriston firport in 1946. Tha experimental field was loc ted about 400 yards from the weather station.					

hrvest was, therefore, 18×24 inches which gev plants per plot.
The seed wes som on harch 26 in nurgery beds in the field, and the seedings were transpiantod to the field on way 15 to 20 . The plants were vary ganil at the tine of translanting and had no soll attached to the roots. They were transplanted 1 ith asecisl aibble mad not ratered. Some difichity was encountored with cutworms sad sowe replanting wes necessary. This was done during the first ten days zifer the original tranglanting.

The experinental field had been used for snsp beang the previous season, and a green manure crop of winter rye was som the arevious fall. Two hondred pounds of amonim sulfate per acre wee apolied in the spring yrevious to plowing.

Irrigation water wes applied once a weok after the rainy opring season wes over. The field was not quite level, and block one and two were flooded sommhat when irrlgated. This affectod the total growth appreciably but it dic not see to influence the rato of plant development. Leaf number and exrliness were the gam in all the blocks.

Harvesting was done trice a week after the plants reached marity. They were considered mature wen the heads hed devaloped ximat size without longation of the flowering branches and spreading ont of the hesd. The plants mere cut at tive soll surface and analyed for the different charecteristics. Every plant wa handied individually. This limited the number of plants that could ba ozazined in a day to about 200.

The data recorded at hirvest were: (a) totas wetght of plent. (b) total waigh of leaves, (c) net weight of hod, (d) cingafication of the heal necordine to U. 3. standards, (e) \#idth and depth measure
ments of the head, and (f) leat counts and clatsification into tho follow ing thre clasces: (1)nising loaves counted by bheir susciasion scars, (2) alongated leaves, axteading above the curd, and (3) shart leaves, not extemding above the curd. Figure (1) ghows asuliflower hacds aith the leaves renored to the ifrgt flomer branch. The cotyledon leaves were not countea, but all the leaves between the cotyledon leaves and the first ieaf with an axillary flower branch were counteci. These points may be detor ined precisely. However, some difficulty wes encountered whan funge or ingect: had destroyed the absciasion scars. The head were cat just belon the first infloresconce branch (Mgure 2): homoe the head weights were net, es wers also the yield figures caiculated from theme This method of handing the heads wes used in order to facilitate leaf counting and in oxder to eliainate errore in the trimaing operation. The experimental results were subjected to analysis of variance for reliability of interpretation. A variation of the nethod developed In sweden by Lam and Tomotrop (31) was used for calcalation of earliness. According to their definition, biological earliness is expregsed as the numberof days fron planting to harrest of $1 / 4,1 / 2$ or $3 / 4$ of the respective yields. Biologial earliness used in this paper is the number of day from trangolanting to harrest of $1 / 4,1 / 2$ or $3 / 4$ of the total nuber of plants, respectively. the carlinest fifures mere calculated by interpol tion between harvesting fintes. The formale for culculating the volume of an oblate spheroid an described by Iurrell and vanelov (5B) wad used for calculating the volume of the heads. The average head weight divided by the average head volume recorded as density.

Pigare 1. Cauliflower plante with the leavee etripped off up to where the first nower branch beging.

Magase 80

Wererimentel Recuits

The yield figures of the twenty-two yorieties or strains tested whowed thet the nighest yieldine variety nroduced more than twice the yield of the lowest (Teble 2). The figures axe net yield since all the leaves were removed and the stems cut just below the head. It was found that 30 to 50 per cent should be added to these figures if the yield data obtained are to be conparable to record froz other expexia ments or to comercially harvested cauliflower where part of the leaves are included in the yield records.

The other physiologiosl and morphologicel obaracteristics studied, weight of leaves, number of leaves, nuber of days from transplanting to hervest, and density of tho heads also showed a great periation among varieties (Table 3).

The relationship of the ifferent characteristies studied are interesto ing (Table 4). The courelation coefficients mere all significant at the 1 per cent level. but some of them explained too iltte of the totel variation to be of any great importance. However, the high correlation between yield of heads and leaf weight showed that leaf growth determiner to a great extent the size of the orop witch may be harvested. Leaf number and earlinegs also showed a nigh correlation i.e. varieties with fer ditg from planting to harvest had a small number of jeaves.

The frequency distribution for leaf number oer plant (Tsble 5) ; and frequency curves for three varietien (Figure 3): showed differences exnong Varieties in range of verietion. Glase intervals of five were selected because of the $2 / 5$ leci arrangement in cauliflower. An exsmingtion of the data gave evidence that the heaviest yielding varieties had the higho est frequency of number of lenves in class $51-55$ leaves per plent the

Table 2. Graden and total yiela of heade in tons per acre of 23 oarliflower varieties.

Variety or atrain	Fiold of hodds. tonglacre				
	$\text { U. } I^{8}$	$:$	V. So	:	Total
Snowball 4086 :	7.19	:	8.10	:	8.18
8nowball 1538 :	5.90	:	6.80	:	6.96
8nowbell I 6158 :	6.29	:	6.70	:	6.88
Snowball X 5090 :	5.04	:	5.73	:	6.56
mite Nountain 147/13x	5.12	:	8.96	:	6.39
Inprotiland Erfarter :	4.77	:	5.78	:	6.23
Snowhall (1) :	5.18	:	5.84	:	6.21
Early Snowball 247 :	4.30	:	5.56	:	6.12
Forbes Reliance :	4.64	:	5.40	:	5.87
Impr. Super Snowball :	3.75	:	5.51	:	6.62
Oodania :	5.48	:	5.79	:	5.98
Regam	3.56	:	4.90	:	5.48
Ircmarter :	4.42	:	4.96	:	5.28
The Forbes :	4.37	:	5.04	:	5.25
Super Snowball (2)	2.46	:	3.64	:	4.30
Safir :	3.45	:	4.11	:	4.28
Snowball 42098 :	1.83	:	3.20		3.81
Super Snowball (3) :	2.29	:	3.36	:	3.68
Early 8nowbell :	3.41	:	3.97	:	5.65
Snowdrift 1m690 :	1.46	:	2.18	:	3.89
Super Snowball 1-91 :	0.97	:	2.18	:	8.65
Dry Weather ${ }^{\text {a }}$	0.75	:	1.89	:	4.15
L.S.D. (19:1 odde) :	3.37	:	1.88	:	1.86
-		:		:	
Mean :	3.94	:	4.85	:	5.51
Coefficient of :		:		:	
rariability (per cent):	40.7	:	28.8	:	38.8

Table 4. Coefficients of correlation ond of determination for
total yield, earlinesa ($\frac{1}{a}$ of the plants harvested),
weight of leaves and averase number of lesves per plant.
**Sienificant at the 99 psr cent level.

Fable 5. Frequency dietribution of leaf mumer per plente

heaviest yielding of the aarly varieties had 4l-45 leaves per plant, and the earliest had 36-40 leavas per plant.

Discussion

Reconmendations of varieties cannot bo made with complete confidence since the experiment was conducted for one season only. The efficiency of the deaign may also be questioned, since the coefficient of variabilty was 23.8 per cent for the total yield data. This was due to partial flooding of two blocks during irrigation, and should not be considered as a reason for change in design.

It is interesting to note that the oarliness and number of leaf data showed auch less variability than the yield records. Thus earliness and number of leaves had a coofficiont of variebility of 3.9 and 3.3 per cent respectively. Larm of al (32) have reported sinailar variability for earliness in cauliflower. Whan they appliod analysis of variance to a series of variety tests they also found that the ranking of the varieties would not be altered from year to year although the interaction of year times earliness was significant, because the variance for varieties was significantly higher than the interaction variance. Thus it appears that one can place considerable conildence in the earliness data, and mall differences can be tested with relatively little effort.

The high correlation between earliness and number of leaves is interesting and hears out the relation of physiology to morphology. Leaf counting may prove to be an additional tool for further improvement of earlinass in cauliflower varieties. There is a limit to improvement in this direction, however, since the varieties from India headed after
initiation of only seven nodes ${ }^{1}$ and the plants were of the size of a small transplant only when the initiation of the inflorescence took place. There was not enough of the vagetative orgens present to nurse a curd to a marketable size. One has encountered cauliflower of marketable size with only $20-25$ lesves, but it would be hezardous to roise a caulflower veriety which normally headed with such a low number of leaves since the slightest retardation of the growth, at any time during the season, would result in "buttoning. ${ }^{2}$ It is possible that the dem velopment of an extraordinarily early variety with a small number of leaves might prove desirable for controlled conditions in greenhouses or coldrrames.

Another positive correlation has to be teken into account if one desires high yield in cauliflower, namely, leaf ond head weight. Leaf peight is again increased by a higher mumer of leaves, and a pronounced develoment of the leaves. A higher number of lecves give the plants longer time for establishment in the field after transplanting and be fore initiation of the curd takes place. This insures more vigorous growth of the leaves.

The striking differences in density of the heads are an indication thet there is more reason to consider it in a breeding program than is ust ally done. The housewife prefers the dense hoads, but the freezing an oic ling industry may profit with the less dense varieties which are wore easily trimmed for processing. This question is left open for future research.
${ }^{1}$ Unpublished observation trials.
$2_{\text {whttoning is a popular term for the mall and umarketable }}$ cauliflowers encountered in the fields.

The desirability of the use of individual plant records for vegetables, where the entire plant is harvested, should be stressed. Frequency curves can be plotted, standard deviation computad, and al3o coefficient of variability and these statistice will be characteristic of the varieties, not of the expamimental tachniqua as is the case wher the statistics are couputed incon the plot yields. Such a procedure fill mainly be of vaiue for plant breeters as gutde for kowing when a new viroiaty is homogenous erough for releasw.

Suwamy
The $2 t$ varisitiss of sumer cauliflower of the srfurtar or Bnownall grow testew could be divided into two groupe wisch dixPered in four characteristics, namely, yield, dariness, nurber of leaves, snd density of the haads.

The yield of the heads showed a high positive correlation with waight of the leaves, and the welght of the leaves semed to be associated with a higher numer of leaves which by the additional tine raquired for thet initiatson mabled the plants to becono firmby entabished in the shad bofore hitiation or the Anflorescence.

Burliness and noziver of leaves aiso ahowed high positive corcolaHon. Tus the variettes with the fower daye from tranglanting to haryest had whe mallest numbor of leaves.

A lower densty was associated with the eariy varieties. Such variatias also had longer intamodes on the main stat and the Riaga Sid not cover the hecde as will as tha later varistias.
grequency tables for number of Leaves per pant shoned that the best vaideties had the mallest range and that the later varioties generily thowad a wider rane than dta the carly rematies.

Introduction

Producers of cauliflowar frequently sustain logs in retum be cause of the occurrence in their fields of gmall unmarisetsble cauliflower heade porularly called "buttons." The buttoned condition is nos frequentiy enconatered in the soring crop of sumar caulifiower
 cult gesson for cauliflower production in northern thrope.

The problom la beat stated by asking some questions concerning the hanomenon of wuttoning. that is a buttont is it hereditary response or ig it a consequence of the environment? if the latter is the ease. is the buttoned condition socisted win premature (oarier) heading. or is it marely whernourishaght of the olantaf thisho if any.
 buttoninc bs avoided under fiele conditions? Some of the angers to these question are given in the following 3 parts of this thesite.

Revier of Hiterature

 Is not sgreed upon by the different authors. Bailey (4) considered but toning in caniflower the failure of head formation in cabbege, and
other "rogues" and ebnormilities as indicationg thet the developmant in these racen was not yet fixed and that the forms were interrelsted. The Danich vegetable trials (24) recomived the impottance of the selection of enftable wrieties snd conductev series of veriety teets tarainating during suly and ausust (serson for buttoning). Thoy found tremendous variction among varieties in their ebility to withstand cliantio con ditions fevoring buttoning. The ability of the sarticular varietieg to give a goo crop under log favoreble conditions yas aseocistad fith a relatively high rumber of lentes and late meturity as roported elsewhere. ${ }^{1}$
hobbing et al (49), however, produced buttong in cauliflower artificially in sand culture exporimente by growing them in matrient solution deficiant in nitrogen. They state that buttoning is the same as aremature heading mat that this condition is coused by aitrogon deficiency. they sugestelthe other factors which influenoe nitrogen absorgtion may cauge buttoning.

Carew and Thomoson (14) performed similar experiments to those of Pobbins et al, anc they obtained similar plant responses. They atated. honever, thet it is doubtral, in viep of their data, thet buttoning is the same as prenature heading bocause hesds were initinted at the same fine in ell cases. The heads only appered much earlier in nitroeson deficient plota because of lese foliage. Carm and Thompson also did axtenstye field Fork and found that the most important factor besides mutrition in preventing buttoning was the age of the tranglants. Iransplanting 4 to 6 weokold plants gave the highest ylele of rarketable heads.
$I_{\text {Section III. }}$

Another important aiscovary was thet a chack in arouth aithar by shortday freatrant, dryine out of fists, or exposure to cole teaporature did
 Irvus (30) conducted extentre wat on raning of callatoce at the
 nad Baccosed fielt of caulllowt.

Babb (3) he roported readts of axperiments on the effects of hardering gnt zavel of mutribion on varioun plants. Mo mon that herdening
 that hep nitrogen gyplicotion in the geeding stgee cocrossed yield. The sant fifect was found with nitrogen appliction in the field in one caso. but this effect we not significent. Te aid not gtste the ege of plants st the tima of traneptating.

It has been som by 简ent (59) that sheding and Aylenghtheva very Hexked efigct upon eronth of cullflower. Check olote (plantanot shaded) sevo grestegt head weight mid leaf weight. but lecf number seamed to be increcsed by homt dey. The significance of hig realte id doubtrul since the scmeriment rack not oxried out with replicated plota.

materials and methode

Thefiret thre of these axperiments were conducted near Ieviston. Intho. juring the 1949 seqson. The fourth experiment was conductod at the Giversity of baryland, College Fark, kispland, during the moing season of 1950 . Fhe clinatic conditions at hewiston orring the 1948 sesson are demoribed olsthare. ${ }^{1}$ The spring soason toollege park during

[^5]1950 was very cold with frequant frosts in Anril and the firgt part of Hey followed by wran and dry weather in the latter part of May and June when the cauliflowert were horvested. The climatic conditions were very unfavoreble for cauliflower and small gields were obtained in this experiment.

The experiments were limited to treatments of the transplants (seedlings) during the propagetion period and the effects of the treatmente were measured during the subsequent growth and development in the field. The factorial design was selected as the nost suitable design for answering the questions raiaed in the Introduction. Varieties were included as one variable in all experiments.

Sxperiment 1 consisted of a $2 \times 2 \times 2$ factorial designed experiment for testing the effects of photoperiods given the seediinge in the coldframe, age of transplants at traneplanting time, and variety, on the subw sequent growth and dev slopment in the field. The actual treatments were as followe:

Photoperiod: 9 hours vs. 12-15 hour (normal day). Age of transplants: 7 weeks vs. 9 weoks. Varietieg: Safir vs. Snowball A. This provided 8 factorial combinations. Two replicates were uged for each combination.

The seed wasm in flats in the greanouse on March 27 . The seede lings שere transplanted to flat: on April 3 and moved to the coldframe where photoperiodic treatment was sterted according to plan on April 5. The 9-hour photoperiod was accomplished by covering the glass of the frame with black roofing paper at 5:00 P. M. and uncovering at 3:00 A. $\mathrm{if}_{\text {. }}$ The 7week transplants were tranglanted to the field on hay 17 , and the 9 -week
transplants on May 31. The different coabinations were sampled for study of growth and development on the following dates: may 17 and 30 In the coldrame; June $14,22,27$ and July 5 in the fileld.

Experiment $I 1$ consisted of a 2×2 factorial design for testing the effect of moisture apply in the flats and variety on the subsequent growth and developoct in the fielu. The actual treatments were as follows:
nolsture suppay: noman vo. Low (waterea silghty only when mithen

Varicties: Sarir vie Snovball A.
This provided 4 factorisl conbinations. Two replicates were used for aach combination.

The seed was sown in flats in tine greonhouse on Harch 27. The secdlings were transpianted to hlats on April 3 and moved to the coldframes where the moisturg treatmerts wore started on April 5 and then transplanted to the field on hay 20. The low noisture treated plants were watared only slightly when they ahowed ofling. However, the wreatmant :as intermpted because of axcessive rain and leakage through the coldirame windors.

Sxperinat III conaisted of a $x 2$ factorial design for testing the effoct of pruning in the field on suosequent growth ant developenent. The actual treatments are as follows:

Pruing: Not pruned va. pruned (expanded leaves pruned to $1 / 2^{\prime \prime}$ or the petiolss).

Varieties: Batir vs. Bnowball A.
This provided 4 factorial comblations. Two replicatos were usen sor ach combination.

The seod was sown in the greanhouse on April s, transplanted to Ruatis and noved to the coldrame on Apinil 22. The plants were trans-
planted to the field on wisy 24. whlo (1) gives the dstes of pruang and mamber of leaves romoved.

Table 1. Rmperiment III, pruning dates and nuaber of leavea rearved per plant.

Date of pruning	Number of leaves removed
June 1	3
June 12	4
June 20	$4-6$
June 30	46
Total	$15-19$

Bxeriment iv consisted of $2 x 4$ factorial design for tenting the effect of exposure of seedings to low t emperature and ysifeties of califlower upon their sabsequent growth and devalopment in the field. Actral tratments wor as follows:

Temperatures: 60-65P. Auring the whole propagation period ve. 40°. for 30 days followod by 60-65\% T. until transpianting time.

Varieties: Snowbell m, The Porbes, Jamary and D.S.D.A. Plant Introdaction Serviee No. 181860.

Ths gave 8 factorial combinations and 4 replic tes were used for each combination.

The pleats for cold treatment were mown in soll in 9 " clay note, covered with clean s nd and placed in the laboratory for germination on Jamary 30. The germinated nlanta were moved to a cold storaze room at 40\%. on Tobruary 7. They were given a 15-hour photoperiod by gean of
incandescent light of relatively high intensity. The plants not exposed to low toxperature were planted in clay pots in the greenhouse on February 26. All conbinatione were trangghanted to rlats on warch 8 when the growasouse plants that were sown later had rachod a size similar to the ones In the cold storage. The flats wore placed in the greonhouse and rematiod Ghare until transplanting to the Licla on April 10. Hard frost was prem Licted by the Weather Buroau a Itar day artor transplancing. The experiment was saved by covering ail the plants with soil. The were uncoverad again when the danger of killing frost was over.

The individual plots were similar in all four experdments (Figure 2). Samplinge ware made before crowing of adjacent plants and the distance at the tine of final harvest was $10 \times 24^{\mathrm{m}}$. The plots then and 28 plantes each.

The culture of the plants in the Ifeld and the data obtained are cescribed elsewhere. ${ }^{1}$

Humber of leaves initiated at the specific dates of samplint is not the total number present, but the number which could be distinguished by the naked oye. The curve for the initiation of leaves is, therefore, probably lower than the true value.

Results

The data were presented as lactoriai effects because this method permitted the use of one of the dimension of the tables for the different characteristics studies. This made it easy to compare the afiectis of onvironment on the different charactaristies. The effects are the acturi direrances on a plot gielu bibla aid they can be directly compared to the statistic L. S. D.

L
Section III.

Figure la. Design of single plot for the factorial experimente.

Plot size, 4 by 21 feet $=84$ square feet.
Distance between plants when transplantet, 9 by 12 inches.
Distance between plants at final harvest, 18 by 24 inches.
$x=$ For first and second sampling.

- = For third sampling.

口 - For fourth sampling.
$0=$ For final harvest at maturity.

nigare 1.

(least sienificunt difforence) appearing in the respective columg. Sase of understanding is sacrificed sonemat by this rocedure since it is not commonly uged. this is ginim the cage \quad fith the interactions, but the clue to a correct interpretation is alway found in the ranking of the primary effects.

> Wporiment I. Tffect台 of Vaylength, ige of ransplants and Voriety

The primary effects on yield were all positive and significant at the 54 level in all but one csse. (7-weok old transplants Fs. 9-week old trangplents for U.S. Mo. 1 yield)(Table 2). The greategt offects were found in the total weight of plants. This is what could be expoted since the total weight of plents incluce all the variation of the bove ground parts of the plant. The results may be sumarized ss follows: (1) seven-week old transplants gave a heher yield than the nine-week old transplants. (2) Plants exposed to 9-hour photoperiod in the seedling stece out-yislded plents exposed to normal day. (3) The Feriety Safir gave higher ytelds than Snowball A. of the interections only the total weight of plants showed an effect exceeding the odes of 19:1. However, the trends were the same in the other yield columns. The interaction of transplants times daylength show that daylength treat ment was not so lmportant for 7 wook old transplante as it was for 3-week old trensplants. The interaction of dsylength times सariety ghove that the Farietg sefir responded more sogitively to 9 -hour photoperiod than Snombell A. did. The triple interaction showed that the veriety safir responded more positively when trenmpanted when 7 weeks old and given a 9 -hour shoto eriod than the variety $\operatorname{snowbll} \mathrm{A}$ did.

Table 2. Axperinent I. Tactorialefiects in plant weithto in kge per plot.

Daylergth and age of transplants ware show to have a marked ofect on earlinees (Table 3). Thus 7-woek old transplants ware about a week earliar than 9-weak old trangplanta. A P-hour photoparlod dalayed naturity This was especially trie for tha first one-half of the plants harventai. The dipfarances between raristica was significant ondy for the lateat part of the crop. This means that Safir had a longer harvesting sasson than the varioty Suwball A.

Number oi isaves devaloped gave interesting results (Ttbie 4). Laus, the age of plants at the tins of field transplanting had significant but mail affects. The 7-week old tranoplants devoloped on the average tut more leaves than the 9-woek cid intansplants. Photoperiod had a pors narked influence. The 9-hour day plants averaged 3.6 more leaves than those given a nomal day.

The coaffecents of complation and determination were calculatod between the different characteristies. It should be pointed out that the correlation coefficients ane not of any grest value for such a shas number of varlants. They were neraly calculated for comparison to tha coefficients found in the large variety test roportod olsewhers. The comparison showed the same trend however.
gifects upon two characters which may be classified as factors of quality, amely, density and buttoning are shown in Table 5. Dirferent types of abnormal cauliflowers are shown in Figure 2. There was some significant incress in buttoning when 9-weok old transplants wers used comparen to 7-teek old transplants. Citho rarieties, Bafir gave the mallest pormo centage of buttons. The prinury effect of lenith of photoperiod did rot exceed the chance value, but the intoraction of age of transplants timas

[^6]Table 3. Sxperiment I. Factorial effects in weight of heads and in the number of daye from transplanting to harvest of $1 / 4,1 / 2$, and $3 / 4$ of the mature flants. respectively.

Treatments compred:	Total yieldipays from transnlanting to			
	er ilot	:haypes	t: hervest	: harvent
7-week trunsplents ys.?		:	:	:
9-wek transplants :	+ 1.15	: - 6.9	-6.1	- 7.1
:		:	:	:
9-hour photoveriod vs.t		:	:	:
12-15-hour photoperiod:	+1.12	: + 8.9	+ 4.4	42.7
	:	:	:	:
Variety Saifir vs. :		:	:	:
Variety Snowall A.	+1.53	: + 1.4	- 0.0	+4.1
:		:	:	:
Interactione	:	:	:	:
Age of tranaplants x photoperiod			:	:
	- 0.51	: - 3.3	$+2.1$	+0.5
:		:	:	:
Age of tranenlante x :		:	:	:
จariety :	$+0.48$: - 2.2	- 2.2	- 2.1
:		:	:	
Photoperiodx variety:	$+0.38$: -0.0	+ 1.3	+ 2.4
:		:	:	:
Age of transplants x		:	:	:
photoperiod x variety :	+0.68	: + 1.1	$+1.7$	$+0.4$
:		:	:	:
L. S. D. (19:1 odds)	-	:	:	:
	0.70	3.2	3.0	3.0
		:	:	:
Mean	6.07	62.7	71.3	77.1
		:	:	:
Conficient of varian bility (por cent)		:	:	:
	9.7	4.3	3.6	4.0
		:	:	:

Table 5. Mreeriment I. Pactorial effect in weight of heads. earliness, percent of butteaed plints, and density of hesd.

Pigure 2. Different kinds of abnormal cauliflower heads.
 tandency to button for 7-weor old transplants but decressod the buttoning 17.6多 in 9-weak old transplants.

The results of the remervegt senting offer an explanation for the effect of ohotoperiod and age of trancolents on the subseguant yield and development in the riela (Tsbles 6 and 7 and Figure 3 . Rete of let initlation was lecressed only slightly at the time of transplanting of the 7-wek transplants. while in the 9-wek trancplants it wef chocked severe1y. The comproble curves for a hour photoperiod ware always lowep than the $12-15$-hour photoperiod, but the final numbar of lesves initiated was highest for the g-hour photoperiod an previousiy nescribed. Gus three effects of photoporiodism wer found. (1). The G-hour photoperiod withstood tranmplentine better than 12 -15-hour photoperiod. (2) Rate of les faitiation weag lower under the g-hour photoperlod and (3) whort photoparlod increased the ifnal number of leaves initisted.

The G-hour photopertod produced very marked check in the frowth of plants in the coliframe. The planter were only half the size of the
 both for the ray and late traneplanting. The plants given 9-hour photoperiod contimued to be maller until the firet prt of July when they stasted to erow rapidiy and soon surpsssed the noral day plants. The staring point or heavy erovth was very closely ascociated with the tine of comyletion or lenf inltiation.

Lete transplanting oused a check in growth in the flats and in the fiela. Tho check of growth in the rlats was beceuse of cromine, and the checir of erewth in the field wa apparently due to the very haraened donaition of the planes.

Table 6. Axperiment I. Average number of letwes per plent at specific saming detes.

Toble 7. Jrperinent I. average woight per plant at gpecifie sampling deteg.

Pigure 3. kxperiment I. Orowth curves (fresh woight). rete of initintion of nodes and mean number of nodes initiated bafore differertiation of the inflorescence orimordia in cauliflower varietien Snfir and Snowbell A. Different t reetrionta siven curing nromacotion in ocleframes.

Experiment II. fifects of koisture gapply and Variety

Wo Ignificant aifferences were found in kxperiment II. (Table 8). This may heve been tue to the rainy spring season and the leaky frame vindows which caused interraption of the treatments, that may also have been due to the mall size of the experiment (only 7 dogrees of freedoa) hence it may be stated low moisture in the seedling stace sems to be beneficial rather then detrimental.

Sxperiment III. Affects of Pruning and Friety
the eirect of
This experiment was planned to test pruaing on the subsequent doFelopment and wes bound to give results because of the drastic treatmente (Table 9). The idea behind the axperiment was thet runing would cause a decrease in losf area and, thereby, decrease photosyathesis. The dom creased photogynthosis pould again cause a decresed cho/w ratio and an incressed initiation of vegetative orsan (lecves). The leat number of the pruned plants was 7 leaves higher than the unpruned plants. This was the highest increase in leaf muber obtained. whether it was followsd by biochemicel changes is not known since the material was not analyeod.

moperiment IV. Riffoct of Temperature During the feeding
 Stage and Variety

Ohly two of the four variefies included in this experinent headed before the outside temperature became too marm. The result of the experiment was, therefore, calculated as 2×2 factorial experiment and is presented in the same way as the other experiments (Table 10).

Significant differences between varieties were the only effects found in this experiment. It 1 is interesting to note, howerer, that the mean

Toble 8. Mxperiment II. Hactorial effects in weight of plants. in weight of hosdg, in number of days from transplanting to $\frac{2}{3}$ of the plant mere havegted, nad in number of leaves per plent.

Sactors compared	: Total iweight of : planta ikg. plot	$\begin{aligned} & \text { : Total } \\ & \text { f: weight o: } \\ & \text { : heads } \\ & \text { : ig. plot } \end{aligned}$: Degs from of: tranmplant ing to $\frac{3}{3}$ ihsmest	$\begin{aligned} & \text { : Number ef } \\ & \text { : leaves } \\ & \text { : per plant } \\ & \text { : } \end{aligned}$
Low moistare supply $\nabla 9$. nownal molsture muprly in the seading stage		:	:	:
	:	;	:	:
	: +2.2	$+0.72$: +5.2	\% +4.1
	:	:	:	:
Variety Saftrve	:	:	:	:
Variety Snowball A	$:+1.1$: +1.13	$3:+4.4$: +2.3
	*	:	:	:
Moistarex Yariety	- -2.2	$: 0.46$: -3.8	: -5.4
	!	:	-	-
L. S.D. (19: 1 odds)	HS	HS	\%	: N 9
	:	:	:	:
Mean	: 16.5	5.97	: 71.0	- 42.3
	:	:	:	*
Coefficient of Varlability (por cent)	:	:	:	:
	: 12.9	17.4 4	4.5	: 7.0
	:	:	1	:

Table 9. Experiment III. Mactorial offacts in weight of plants, in wight of heade. in disys from tranplanting to $1 / 2$ of the plentg harvested. ir number of leaves jos plant and in foad jensity.

Treatmente comared:	$\begin{aligned} & \text { : Totsl } \\ & : \text { weight o } \\ & \text { plants } \\ & \text { ing plot } \end{aligned}$		Tot 51 eight of heads g. plot		bys from ranaplant ng to $1 / 2$ hervist	:	luyber of leaves per plant	:	$\begin{aligned} & \text { Density } \\ & \text { of } \\ & \text { heads } \end{aligned}$
Not praned ve. orumed:	$:+24.0$,	$+6.0$:	- 10.2	:	- 7.3	:	- 0.34
Veriety Sefiv vi. :	:	:		:		:		:	
Variety Snowbell S ;	; +2.5	:	+1.5	:	- 2.4	:	-0.3	:	- 0.08
	:	:		:		:			
Pruning x variety :	: - 0.8	:	$+0.5$:	$+2.5$:	$+3.4$:	- 0.00
	:	:		:		:		:	
	;	:		:		:		:	
L.S. D. (19:1 odds)	: 2.3	:	2.0	:	5.1	:	4.1	:	\%
	:	:		:		:		:	
Mean	: 25.9	:	5.5	:	77.7	:	27.0	:	0.75
	:	:		:		:		;	
Coefficient of	:	:		:		:		:	
varisbillty (per cent):	: 3.9	:	7.7	:	2.0	:	3.8	:	21.7
	:	:		:		:		:	

Table 10. Experiment IV. Factorial effects in total weight of plante, total wigint of heads, number of leaves ner plant and density of hemas.

Pactors compr red	$\begin{aligned} & \text { : Tctal } \\ & \text { : meighto } \\ & \text { iplanta } \\ & \text { izgnglat } \end{aligned}$: Totel of: weight of : heads :kg. nlot	$\begin{gathered} \text { of: } \\ \vdots \\ \hline \end{gathered}$	Numinar of leaves per piant	:	$\begin{aligned} & \text { Density } \\ & \text { of } \\ & \text { heats } \end{aligned}$
Not exposed to low	:	:	:		:	
temperature vs.	:	:	:		:	
exposed to 40°.	:	:	:	$+$:	
for 30 days	$+0.51$	$:-0.07$:	- 0.00	:	$+0.02$
	:	:	:		:	
Variety Snowball s	:	;	:		:	
ve. var. The Forbes	: +1.47	$:+0.36$:	$+4.0$:	$+0.19$
	:	:	:		:	
Temperature x	:	1	:		:	
verieties	: - 0.32	: + 0.06	:	$+0.3$:	- 0.00
	:	:	:		:	
	!	:	:		:	
L.S. D. (19:1 odas)	1.03	0.31	:	0.7	:	0.06
	:	!	:		:	
Sean	: 13.08	2.41	:	33.6	:	0.70
	:	:	:		:	
Confficient of varian: bility (per cent)		:	:		:	
	: 6.98	11.40	:	1.88	:	7.14
	:	:	:		:	

leaf maber for botin varieties was very much lower than that ancountered in the thre previcusly described expertments.

Discussion

The title of this chapter contains the yorde erowth and development. Nelther of these top werds have one and only one specific meaning. fhus growth may be ather an increase in fresh weight, an increase in dry weight, in increase in the oize of the plants, or an incroase in the size of a particular organ. Growth means increase in fresh weight for the Mrpose of tis thesin unles otherwise stated.

The $\operatorname{Tingil}^{\text {in }}$ word development is comanly used to describe changes which take place. If there are no changes there is no development or if there are chenges in a particular direction, there is developmont in thet direction.

The introduction of the concapt of vernalization confuged the terminology. The word development has besn defined by authore as the progress of a plant toward the completion of the life cycle vix. the production of flowers, fruits and seeds. One does not gree to such limitation of a common descriptive term and the word development is used to describe progressive changes which take slace.

The first question which the experiment was designed to answer was whether premature heading occurred in caullfiower. high correlation existed between the maber of leaves and earliness as worted elsewhere. ${ }^{1}$ mis means that the number of leaves can be used as arasure of premature heading and thet a decrease in the number of leaves of treated plants. compared to check plants, mist be considered as messure of aremeture
(earlier) heading. Only one of the treatments given the transplante showe a decrease in the number of lever, nemely, the use of 9-week old transplants. The ifference compared to the 7-week old check plants was not high although it exceeded the 5 per cent level of significance. However, an interesting fact was brought out by a summary of the mean leaf number in the seme variety in the differant oxperiments and observations made. Such a summery is given in Table 11 for the varieties Safir, the Porbes and Snowball M. It is apparent thet only a smoll part of the variation mong the means occurred ithin the experiments where the enVironmental factor, responsible for it, could have been identified. Most of the variation was encountered betwern the different tests and could, therefore, not be assiened to any particular envirenmental factor. The conclusion is that premature (earlier) heading occure in canliflower, but only environmental factors modifying, not deteraining the leaf maber, have been ldentified since the main difference among the mean le mumere Within the varieties occurred betwen experimente not mithin the experimentso

What answer does the experiment give to the next question, namely, is premature heading the same as buttoning it is show in experiment I that the 9-veek old transplants headed prematurely and this was followed by an increase in but onine. The ontire experiment at the Oniversity of Maryland headed prematurely and most of these plants buttoned alse. The conclusion that premature heading is the same as buttoning seoms, therefore, obvious bat should be anestioned for to reasons. Mirst, an increased number of leares was also associated with buttoning in the pruning experiment, and second, plants were encountered whioh produced excellent heads fith as low or lower number of leaves than in the promature heading plots. The question is than left open, although one feels contident that

Table 11. Sumary of rance in variation in nean number of leaves per plant within varieties observed under different environmental conditions.

Varioty	解vironmental conditions	Hean number of leaves
Safir	Variety test, Lewiston, ICaho	41.4
\#	Long day, young transyifints, Rxt. 1	41.4
"	long day, old transplants, Rxpt. I	39.1
*	Sort day, young traneplants, mot. I	45.1
"	Short day, old trangplants, Expt. I	44.4
*	Not pruned, Expt. III	44.9
*	Pruned, Expt. III	52.4
*	In greenhouse, Moscow. Idaho*	29.0
The Worbes	In variety test. Leviston, Idaho	37.4
"	Hot exposed to cold, Mxpt. IV	31.4
	Exposed to cold, fexpt. IV	31.7
* *	Planted directly in field, Meryland 1950*	58.0
Snowball	In paristy test, Lewiston, IEaho	50.8
${ }^{\prime}$	Hot exposed to cold. Expt. IV	35.7
\# \%	7xposed to cold, sxot. IV	35.4
\cdots	Planted directly in field, Harylend 1950*	67.0

Wot reported elsewhere.
excellent yields my be obtained from prenature headed planta, but that the danger of buttoning is increased if the plants are oxposed to an environamt which romotes premeture heading.

The Ianho tests confirmed the experiments by Carey ot al (14). The exposure of trangplants to a 9 -hour photoperiod incressed the yield and decreased the danger of butioning. The leaf count ghowed that this inorease in yiald was aspociated with an increased number of lecyen and delayed maturity. This effect of a 9-hour photooeriod is called post mature beading. Low moisture for the seedlings gave a similar efect althouph the effect did not exceed the 5 per cent level of significance. Babb (3) found that high nitrogen appliction to seedlings decreased subsequent yield. thus it seems that trensplants raised under luxurious conditiong cannot compete with the ones eroosed to moderate conditions.
the beneficial effect of usine young transplants asecomended by Garem ot 21 (14) on the basis of their experimonts was confirmed. An explenation for these recomondations can be found from tho ampling data and cuces for loef initiation and growth of plants constructed from the data. Erily transplanting gave the olentg ample time for establighment in the feld before initiation of the inflorescence, phile initietion occume in the flaty or shortly apter trangplanting to the field on the older tranglants. 究is result in motoning. An interaction between varieties and age of transolanss was expected and also found. This Interaction ainh have been larger if the Afference betpeen Yerieties has been more pronomeed.

Whe results of those axperimants mast be consilered negotive from a conareial point of view ghce the trantants of the transplants recomended in order to raise the yield also delayed meturity. if
higher flelds are desired they can be obtained nors cheaply by the selection of later varietias. If earliness is desired one may use larger and, therefore, older transplants and can avoid check in growth at transplanting Nive by use of transplants with an undisturbed root systera.

Suraary

Premature heading was fowi to occur la caulinlower but tha condition of premature hoading could not be adsigned to a spacific enviromontal factor since it occurred botween oxperinonts and not within an experinent.

Prowature heading was associatad with buttoning under certain conditions, but buttoning also occurred without premature hoading and premature heading ocoured without buttoning.

The dinger of buttoning was incrased if the plants ware exposor to an enviroment savoring preature heading since the heads were initiated aarlier, thus giving the plants shoreor time for setablishmant in the siald.

A 9-hour photoperiod inereasod the number of leaves as did low moisture in the Plats and prwing of the plants. This may bo called post mature hoading.

The increase in the number of laves was followed by higher yiala axcept in the pruning exporinent anc aiso by delayed maturity. Those baneficial affecto may be obtainad at no addtional cost by the salaction of later varioties.

[^7]Wane: hare Ramila
Formanent Addressi Skarpnes, Arendal, Norway.
Degree to be Conferred: Doctor of Philosopty, 1952.
Date of airthe August 30, 1914.
Place of Birth: Skarpnes, Arendal, iorway.
Macondary Education: Statens Hagebrukskole, Dfmesnoon, Nowway. Hamar Katedralskole, Horway.

Collegiate Institutions Attended:
Norges Landbrukshegskole, Norway 1939-42, Bachelor of Agriculture
University of Idaho, U.S.A. 1947-49, Mater of Science.
University of maryland, U.S.A. 1949-52, Doctor of Philosophy.
Fublications:
Ammid, Kaare. Four papers published in Norsk Gartnerforenings Tidskrift. Title and date of publication not available at the moment.

Kramer, Ae, K. Aamild, 12. B. Guyer, and H. Togers. *iew shear-press predicta quality of canned limas. Food Ingineering, April 1951, pp. 212-113.

Positions Held:
Teacher, Holt Landorukskole, Horway, 1942-43.
Technical counselar, Landbruksts Rabailageforretning, norway, 1943-44.

Research assistant, Morges Landbrukshbgskole, Morway, 1944-47.

Eesearch assistant, Statens Tridgaarisf0rsikk, ALnarp, Sweden, 1947.

Research Pollow, University of Idaho, U.5.Ao, 1947-49. Hesearch ssistant, Univerulty of Maryland, U.S.A. 1949-50.

[^0]: TIund aind Xioarschou's paper received a banish national award. It ie published in Danish, and no ralarence has bean found to it in Engliah litersture.

[^1]: 1. hances of youne cauliflower plants are aloo in some oountriese
 $2_{\text {The }}$ morphology of the canliflower is diseribed in spetion i
[^2]: 1spe seation V.

[^3]: $1_{\text {theorted in }}$ fection 1.
 $2_{\text {neportea in }}$ section II.

[^4]: $1_{\text {See Section }}$ V.

[^5]: ${ }^{1}$ Section 112.

[^6]: $1_{\text {Section III. }}$

[^7]: $1_{\text {See Section III. }}$

