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Abstract

Many applications have stimulated the recent surge of interest single-chip parallel processing. In such machines, it
is crucial to implement a high-throughput low-latency interconnection network to connect the on-chip components,
especially the processing units and the memory units. In this paper, we propose a new mesh of trees (MoT)
implementation of the interconnection network and evaluate it relative to metrics such as wire area, register count,
total switch delay, maximum throughput, latency-throughput relation and delay effects of long wires. We show that
on-chip interconnection networks can facilitate higher bandwidth between processors and shared first-level cache
than previously considered possible. This has significant impact for chip multiprocessing. MoT is also compared,
both analytically and experimentally, to some other traditional network topologies, such as hypercube, butterfly, fat
trees and butterfly fat trees. When we evaluate a 64-terminal MoT network at 65nm technology, concrete results
show that MoT provides higher throughput and lower latency especially when the input traffic (or the on-chip
parallelism) is high, at the cost of larger area. A recurring problem in networking and communication is that of
achieving good sustained throughput in contrast to just high theoretical peak performance that does not materialize
for typical work loads. Our quantitative results demonstrate a clear advantage of the proposed MoT network in the
context of single-chip parallel processing.

1 Introduction

The advent of the Billion-transistor chip era coupled with a slow down in clock rate improvement brought
about a growing interest in parallel computing. Ongoing expansion in the demands of scientific and commercial
computing workloads also contributes to this growth in interests. To date, the outreach of parallel computing
has fallen short of historical expectations. This has primarily been attributed to programmability shortcomings
of parallel computers. The Parallel Random Access Model (PRAM) is an easy model for parallel algorithmic
thinking and for programming. Current multi-chip multiprocessor designs that aim to support the PRAM (such
as Tera/Cray MTA [1] and SB-PRAM [2]), although interesting, are constrained by inter-chip interconnections.
Latency and bandwidth problems have limited their success in supporting PRAM. With the continuing increase
of silicon capacity, it becomes possible to build a single-chip parallel processor as is being demonstrated in the
Explicit Multi-Threading (XMT) project [31, 22] that seeks to prototype a PRAM-On-Chip vision.

Parallel computing generally requires a larger number of memory accesses than serial computation per clock. A
standard technique for hiding access latencies is by feeding functional units with instructions coming from multiple
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hardware threads. This allows, for example, overlapping several arithmetic instructions as well as read instructions
each requiring waiting for data. Such overlap implies a steady and high demand for memory accesses. To facilitate
concurrent accesses by many processing elements, memory is normally partitioned on parallel machines [15]. For
example, [1] uses 512 memory modules of 128MB each, and [2] uses as many memory modules as processing
elements.

To handle the high level of parallelism needed for a PRAM on-a-chip, XMT uses a novel memory architecture
where partitioning of data memory starts from the first level of the on-chip cache. It is a challenging task to
provide connectivity between many processing units and many memory modules on-chip. A poorly designed
interconnection network may create on-chip queuing bottlenecks, when concurrent read and/or write requests are
issued to the memory. This will significantly affect the network’s throughput, memory latency, and the overall
system performance.

1.1 Existing Approaches

Hypercube, butterfly and fat tree topologies and their variations have been popular for interconnection networks
in parallel computing studies (e.g. [18, 27, 12, 33, 7]) as well as in machine architectures (e.g. [1, 10, 19]). In all
these topologies, data packets between different sources and different destinations can interfere with one another.
For background, note also that source to destination traffic is expected to be balanced. This is because that
the use of universal hashing [21, 10] will prevent hot spots. On the other hand, Crossbar networks provide one
standard type of high-throughput interconnection networks, where packets do not interfere. They achieve this
by scheduling the switches based on the global state of the network. The overhead for global scheduling may be
acceptable with large payloads in messages. However, in the XMT single-chip parallelism context, the messages
between processors and cache are very small (one word for load instructions and at most two words for the store
instructions). Therefore, the networks that need to globally schedule the switches will incur significant overheads.

1.2 Contribution and Paper Organization

In this paper, we study the interconnection network design problem for a certain memory architecture that is
designed to achieve high single-chip parallelism. We first analyze the existing interconnection network models and
conclude that they do not meet the latency and throughput requirements for such interconnection network. We
then propose a new approach based on the concept of mesh of trees (MoT). We conduct simulation to evaluate the
performance of both the existing approaches and the proposed MoT network.

The paper makes two contributions. First, on-chip implementations of several of the most popular interconnec-
tion network topologies are compared in terms of total wire area, total switch delay, maximum throughput, and
trade-offs between throughput and latency. We are unaware of a similar comprehensive comparative study in the
literature. Second, although MoT is a well-known concept for parallel algorithms and architectures, it has not been
applied to build interconnection network. We describe the MoT network structure and demonstrate, through both
theoretical analysis and simulation, that the proposed MoT network can achieve competitive throughput and low
latency, especially when the input traffic (or the on-chip parallelism) is high. Assuming 1GHz clock rate at 65nm
technology, a 64-terminal MoT network can provide a 4Tbps throughput, with a total (from source to destination)
switch delay of 280ps.

2 Background and Related Work

2.1 Existing Interconnection Network Models

2.1.1 Hypercube

An n-dimensional hypercube, Qn, connects N = 2n nodes by connecting a node to n other nodes. If we label the
nodes from 0 to N − 1 in binary, a pair of nodes are connected directly if and only if their labels differ by one
bit [7, 12, 17]. This connection consists of two uni-directional physical communication channels (wires). Figure
1(a) depicts the best known implementation of Q4 in terms of area efficiency [12]. N = 16 nodes (PC stands for
Processing Cluster in the figure) are connected by wires in tracks shown in the shaded areas between the PCs.
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Figure 1. (a) A physical implementation of 4-dimensional hy percube. (b) Butterfly network and (c) its
layout with N = 8 PCs as shown in [32].
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Figure 2. Two types of fat trees with constant switch size. (a ) k-ary n-tree with k = 2, n = 4, N = kn =
16; (b) Butterfly Fat Tree with N = 16.

2.1.2 Butterfly

A binary butterfly network also connects N = 2n nodes as shown in Figure 1(b). The 8 PCs are connected to each
other through switch nodes labeled (by their vertical layers) A, B, C, and D. For example, the connection between
source 0 and destination 5 and the connection between source 6 and destination 6 are highlighted. Figure 1(c)
shows the best known physical layout to implement the same butterfly network for single chip multiprocessors [32].

2.1.3 Fat Trees

Fat tree network provides multiple paths between each pair of nodes. A disadvantage of fat tree is its large switch
size. The following two structures were proposed to overcome this disadvantage.

1. The k-ary n-tree [27] connects N = kn PCs with a fat tree of n levels as illustrated in Figure 2(a). Root
nodes (small circles in the center) have k children, switch nodes (oval shape internal nodes) have k children
and k parents, and there are two unidirectional links between a child and parent. Thus there are 2k input
ports and 2k output ports for each switch node.

2. Figure 2(b) depicts a butterfly fat tree with N = 16 PCs. Each internal switch node (the square with no
label surrounded by 4 PCs) is connected to 4 PCs and the 2 root switch nodes. Thus it has 6 input ports



and 6 output ports.

We assume that all of the above networks use virtual channels (VCs) in switch nodes to improve throughput.
VCs act as buffers for incoming data packets that are stalled due to contention in later stages. A packet is stored in
a virtual channel in the switch until an output port and physical channel toward its destination becomes available.
More details on VCs and their use in interconnection networks can be found in [6, 7, 11, 27].

2.2 A Memory Architecture for Single-Chip Parallelism
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Figure 3. Memory Architecture: (a) Global memory is partiti oned into modules (separated by dashed
lines). Each module has its own possibly multi-level on-chi p caches (within dotted lines). (b) Each
PC is connected to the network by two unidirectional channel s. (c) Tentatively memory modules
and processors are colocated within a PC, but logically sepa rated as shown in (a). P : Processing
elements (hardware threads), I : Instruction Cache, L1-D and L2-D : First and second level of data
caches, NIF : Network interface to regulate the communication to the int erconnection net work.

Using multiple memory modules (or banks) has been a common approach to increase memory bandwidth. In
general, the global memory space is partitioned over the modules, and accesses to different modules are handled
concurrently. The following memory structure (see Figure 3(a)) is used in the XMT single-chip parallel architecture,
[23], which is designed to optimize single-task completion time. A globally shared memory space is partitioned
into multiple memory modules. Each memory module consists of on-chip cache and off-chip memory portions.
A universal hashing function is used to avoid pathological access patterns (similar to [10, 1, 2]). This structure
completely avoids cache coherence issues because the processors do not have their private caches. However, it
imposes significant challenges for the interconnection network design.

First, a hardware thread should be able to send memory requests to any memory location on the chip. Coupled
with the objective of avoiding cache coherence issue, this requires placing an interconnection network between
processing units and the first level of the cache and will cause a higher latency compared to cache access latencies
of traditional serial processors. Multiple threads will run concurrently to hide this latency. In order to satisfy
the steady and high demand of threads for data, the interconnection network needs to provide high throughput
between the processing units (threads) and the memory modules.

Second, the interconnection network needs to provide low on-chip communication latency. This will allow
designating fewer threads just to hide latencies and will simplify the overall design. It will also improve performance
in cases where a sufficiently large number of thread contexts is not available to overlap communication with
computation.

Finally, the interconnection network needs to take as little chip area as possible.
Hypercube, fat trees, and butterfly networks cannot provide the high throughput and low latency requirements

for such memory structure designated for single-chip parallel processing. This is mainly due to their inability to
avoid or reduce packets interference. Consider two packets going from sources si and sj to destinations di and
dj , respectively. In a non-interfering network, excess traffic destined to target node di will not interfere with or
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steal bandwidth from traffic destined to target node dj [7]. Hypercube, fat trees, and butterfly networks are not
non-interfering and packet interference will cause degradation of their performance in terms of throughput and
latency.

In this paper, we propose a new interconnection network implementation based on mesh of trees (MoT). The
MoT structure guarantees that unless the memory access traffic is extremely unbalanced, packets between different
sources and destinations will not interfere. We will demonstrate, both analytically and experimentally, that the
proposed MoT network can provide high throughput with low latency.

3 Mesh of Trees Network

In earlier sections the memory architecture and its implementation challenges were overviewed. We now present
the MoT network in the context of single-chip parallel processing.

3.1 Topology

The mesh of trees (MoT) concept is discussed in books such as [17], and papers such as [16, 9]. In an intercon-
nection network based on their approach, functional units (processing units and memory modules) will be placed
at the leaves of the trees, and a communication path involves climbing up and down some part of the tree. This
approach is not interference free and would create performance bottlenecks, as children of internal nodes would
compete for resources (connections in the communication path) even when their destinations are different.

We implement the MoT network in a different way as shown in Figure 4 with four processing clusters (PCs)
and four memory modules (MMs). We treat the PCs as sources for packets and the MMs as destinations for
convenience. Unlike the above conventional MoT approach, we put the PCs and MMs at the roots of the trees
instead of the leaves. The network consists of two main structures, a set of fan-out trees and a set of fan-in trees1.
Figure 4(b) shows the binary fan-out trees, where each PC is a root and connects to two children (we call them
up child and down child), each child will have two children of their own. The 16 leaf nodes also represent the leaf
nodes in the binary fan-in trees that have MMs as their roots (Figure 4(c)).

1They are called row and column trees in [17]. Here we use the names of fan-out and fan-in trees to convey the data flow direction.



There are two interesting properties of our MoT network. First, there is a unique path between each source and
each destination. This simplifies the operation of the switching circuits and allows faster implementation which
translates into improvement in throughput when pipelining a path (registers need to be added to separate pipeline
stages). Second, packets between different sources and destinations will not interfere, unless the traffic is heavily
unbalanced. When several packets need to reach the same destination, some packets may be queued at fan-in tree
nodes. Since each node has a limited queue storage capacity, packets can be backed up to previous nodes in the
fan-in trees. In extreme cases such backup can spill to the fan-out trees. This is the only case that the path to
one destination can affect the path to a different destination. But for that to happen, the demand for the first
destination needs to be very high, and exceed the storage capacity of the fan-in tree nodes. We will further discuss
this below in the flow control section.

3.2 Routing

Routing is the process of finding a path for each packet from its source to its destination. Figure 4(d) gives the
communication paths from PCs to MMs for three memory requests. Each memory request will travel from the PC
(source) through a fan-out tree and then a fan-in tree before it reaches the MM (destination). There is no routing
decision to be made in the fan-in trees as all packets move toward the root. In fan-out trees, routing decision is
trivial from the binary representation of the destination. For example, when PC 0 sends a packet to MM 2 (10 in
binary) as shown in Figure 4(d), the packet goes from the root to its down child (because of the first bit 1 in 10)
and then it selects the up child (because of the 0 in the next bit position in 10) and reaches the leaf. This simple
routing scheme also ensures that the fan-out tree part of the network is non-interfering. Similarly, packets with
different destinations will not interfere in the fan-in trees.

3.3 Flow Control
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Figure 5. Switch primitives for MoT network. Data paths are m arked with thick lines. Control paths
are simplified. (a) Fan-Out tree primitive: One input channe l, two output channels; (b) Fan-In tree
(arbitration) primitive: Two input channels, one output ch annel; (c) Pipeline primitive: One input
channel, one output channel. Signals: req: Request; ks : Kill-and-Switch; write/read : Write and Read
pointers; B : Storage Buffer; select :Result of Arbitration; destination: Destination address

Flow control mechanisms manage the allocation of channels and buffers to packets. Figure 5 illustrates the
switching primitives in our MoT network. Each node in the fan-out and fan-in trees of the network will be
implemented as the fan-out or fan-in (arbitration) primitives as shown in Figure 5 (a) and (b). The pipeline
primitive in Figure 5(c) is used to divide long wires into multiple short segments.

In general, packets do not compete for resources in the fan-out trees. They stall only when the fan-in trees stall
and the stall propagates to the fan-out trees. As we have explained earlier, this occurs rarely when traffic pattern
is extremely unbalanced.

Arbitration in fan-in trees ensures that the two children of a node pass requests to their parent in an alternating
fashion when there is a stream of incoming packets at each child. In other words, if a request from one child loses
the arbitration to the other childs request in one cycle, the request is guaranteed to win the arbitration in the next
cycle.



Root

0

1

2

3

Pa
irs

 o
f F

an
−I

n 
Tr

ee
s

7

6

5

4

Pairs of Fan−Out Trees

Single Fan−In Tree

(a)
Single Fan−In TreeA Pair of 8−leaf

Fan−Out Trees

(d)
A Pair of 8−leaf Fan−In Trees

(e)
A 32−leaf Fan−In Tree

(c)

Fan−Out Trees
A Pair of 32−leaf

An 8−cluster Mesh−of−Trees Interconnection Network
(b)

Root

Root

Root

Root

w

h

Figure 6. Detailed floorplan of the MoT interconnection netw ork. (b): the 8-cluster MoT network
floorplan; (a) and (d): details of a fan-out tree pair and a fan -in tree pair in (b); (c) and (e): layout of
32-leaf trees.

The use of local flow control mechanisms reduces the communication overhead. However, in the absence of a
global stall signal, a node has to get the stall information from its immediate successor. A toggled kill-and-switch
(ks) signal allows the subsequent data packet to appear at the output port. The lack of the toggle keeps the same
packet at the output, effectively signaling a stall condition. In order to prevent data loss, our implementation uses
a slightly modified version of a relay station [3]. Each output port has two buffers, and a small control circuit
ensures that consecutive packets are stored in different buffers. If in a given cycle ks signal is not toggled one more
data packet can be read without overwriting the stalled one.

3.4 Floorplan

Figure 6 depicts our proposed floorplan for the MoT networks. We first explain the layout of the fan-out and
fan-in trees. Both the fan-out and fan-in trees are placed in pairs for better area utilization. Figure 6 (a) shows
such a pair of 8-leaf fan-out trees for an MoT network with N = 8 clusters. The two root nodes of the two fan-out
trees are connected to the source clusters by the thick lines. Plain empty circles are internal nodes and filled circles
are leaf connections. Figure 6 (c) shows the same layout for a pair of 32-leaf fan-out trees. Figure 6 (d) shows
a pair of 8-leaf fan-in tree. The filled circles are leaves. They are connected to internal nodes represented by the
empty squares. Roots of the two fan-in trees are connected to the destination clusters through the connections
with arrowhead. Figure 6 (e) gives the layout of one 32-leaf fan-in tree.



Figure 6 (b) shows how the fan-out and fan-in trees are placed between the eight clusters. Each pair of the
fan-out trees is placed vertically and each pair of fan-in trees is laid out horizontally. At the top and the bottom,
there is only one single fan-in tree each. The leaves of fan-out tree are connected to the leaves of fan-in trees. The
path of a packet from cluster 6 to cluster 1 is highlighted.

4 Evaluation

We evaluate the proposed MoT network and compare it with other networks in the following four categories:
Wire area, total switch delay, maximum throughput and throughput-latency relation. Table 1 describes the symbols
we used in these evaluations.

Symbol Description Symbol Description

Aw Wire area k Network radix (for butterfly and fat tree)
b Number of bits per channel N Number of terminals

dw Wire pitch (technology dep. parameter) n Network dimension
FO4 Technology independent Fan-Out-4 delay Qn Hypercube with n dimensions
Hchip Height of the chip t(Qn) Number of wire tracks of Qn

H(s, d) Hop count from node s to node d v Number of virtual channels
Hmin The average minimum hop count Wchip Width of the chip

Table 1. List of symbols used in the interconnection network evaluation.

4.1 Area Evaluation

The network area will be determined by the wires, and the switches and other silicon resources can be laid
underneath the wires. For simplicity we use two metal layers, one for horizontal and one for vertical wires. Future
technology generations will allow around ten metal layers [30]. This would reduce the area cost of all networks.
Figure 7 summarizes the area comparison of different networks with parameters for 65nm technology [30]. MoT
network has more wires and less wire sharing to achieve high throughput and low latency. As expected, it requires
more area, for example, 60% more than the most area efficient implementation of hypercube. The following
elaborates how these area values are derived.

4.1.1 Mesh of trees

In the structure of Figure 6 (b), the width of wire area is b·dw·N2 ·(log N+2) and height is b·dw·
(

N
2
· (2 logN + 1) + 1

)

.
Their product gives the wire area of MoT network. When we stretch the network along the vertical direction to
the height of the chip in order to reach all the processing clusters, the area with such overheads becomes:

Aw =
1

2
· b · dw · Hchip · N · (log N + 2)

4.1.2 Hypercube

As shown in Figure 1(a), the chip area is N · (s + ww)2, where s is the size of a PC, ww = 2 · t(Qn/2) · b · dw is the
width of the wire area between two PCs. The constant 2 is due to the use of unidirectional channels, t(Qn/2) is
the number of tracks in such area, and n = log N . We use the formula for t(Qn/2) from [12], subtract the area of
PCs, and obtain hypercube network’s wire area:

Aw = 4 · b · dw · Wchip ·
√

N ·
⌊

(2/3)
√

N
⌋

− 4 ·
(⌊

(2/3)
√

N
⌋

· b · dw

)2
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Figure 7. Wire Area Comparison at (a) 65nm Technology and (b) 45nm Technology. Hchip = Wchip =
20mm, b = 80, and dw = 290nm for 65nm Technology and, 210nm for 45nm Technology [30].

4.1.3 Butterfly

The number of wire tracks required in both dimensions can be obtained from the layout of [32]. Similar to the
MoT approach, their product gives the wire area and when we include the overheads, the area can be expressed
as:

Aw = b · dw · Hchip · (2N + log N − 3)

4.1.4 Fat trees

The wire area does not change for k-ary n-trees with different values of k and n as long as N = kn is kept constant.
We calculate the total wire area by iteratively adding wires starting from the root. Without overheads, the wire
area is:

Aw = b · dw · (N · Wchip(1 − 2−⌊
log N

2 ⌋) + N · Hchip(1 − 2−⌊
log N−1

2 ⌋))

The area of butterfly fat tree can be obtained similarly:

Aw = b · dw ·
√

N ·
(

Wchip ·
⌊

log N

2

⌋

+ Hchip ·
⌊

log N − 1

2

⌋)

4.2 Register Count

Routing switches consist of several data registers of b-bits each, and some control circuit that handles resource
allocation, and forward and backward signaling. In typical routing switches [7], the control circuit handles both
routing (from one input to which output) and arbitration (from which input to one output) at the same time.
In these switches, the effective number of inputs and outputs are multiplied by the use of virtual channels for
increased performance. Each such such virtual channel uses one b-bit register for one data packet.

In our proposed MoT network, routing and arbitration are are handled by different primitives. Furthermore,
each primitive has either one or two input and output ports and no virtual channels, making the decision logic
simpler. Therefore, we assume that the control circuitry of our primitive circuits consume negligible area compared
to b-bit data registers, especially for high values of b, such as 80 used in Figure 7.
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Figure 8 depicts the area of wires and data registers for different N values for 65nm technology. It shows that
the assumptions of wires dominating total area is valid. Table 2 compares the register count for MoT and other
networks as a measure of cost. MoT requires more registers when other networks has fewer VCs. However, when
we scale the value of v to improve throughput, other networks need more registers shile still not being able to
provide the same throughput as MoT (see Table 3). The following shows how these numbers are derived.

N 4 8 16 32 64
MoT 72 336 1440 5952 24192
Butterfly v = 4 128 384 1024 2560 6144
Butterfly Fat Tree v = 4 96 192 384 768 1536
Hypercube v = 4 64 192 512 1280 3072
Fat Tree (k = 4) v = 4 160 304 576 1104 2144
Butterfly v = N 128 768 4096 20480 98304
Butterfly Fat Tree v = N 96 384 1536 6144 24576
Hypercube v = N 64 384 2048 10240 49152
Fat Tree (k = 4) v = N 160 608 2304 8832 34304

Table 2. Register count for MoT and other networks

4.2.1 Mesh of Trees

As shown in Figures 4 and 6, the network consists of N fan-out and N fan-in trees, each with (N − 1) nodes.
The leaves do not contain switching circuits, since they are only wire connections. Based on the primitive circuits
shown in Figure 5, the total number of b-bit registers is equal to 6 N(N −1). The number of transistors per one-bit
register varies between 8 and 12 based on their design [29]. Assuming 10 transistors per bit, the total number of
transistors of data registers in MoT network is 60 · b · N(N − 1). Transistor density estimation for a particular
technology node is from [30].

4.2.2 Hypercube

Hypercube has N switching nodes, each with log N input and output ports. Each of the 2 · N log N input and
output ports contains v data registers [7], one per virtual channel. Therefore, the total number of b-bit registers is
equal to 2 · v · N log N .



4.2.3 Butterfly

Similarly, the butterfly network has a total of 4 ·N log N input and output ports with v virtual channels each, and
therefore 4 · v · N log N b-bit registers.

4.2.4 Fat Trees

The k-ary n-tree with N = kn terminals has N root nodes with 2 · k · N total ports, and N logk N internal nodes
with 4 · k · N logk N total ports. In total they require 2 · v · k · (2 · N + logk N) b-bit registers.

In the butterfly-fat-tree, the total number of switches approaches to N/2 as N grows [8, 24, 11]. Each switch
node has 6 input and 6 output ports. Therefore the total number of b-bit registers will be approximately 6 · v ·N .

4.3 Total Switch Delay

The total switch delay is measured as the product of the average number of hops from source to destination and
the switch delay of the switch circuit. Switch delay for MoT is derived from the synthesis results using Synopsys
tools and others are computed following the formulas given in the literature [26, 11]. This switch delay is measured
in terms of FO4, a technology independent delay unit that represents the delay of an inverter driving four identical
inverters. As Figure 9 shows, a 64-terminal configuration of the proposed MoT network has the smallest total
switch delay, 2.8 to 6.0 times less than others. The following describes how we obtain the switch delay and average
number of hops.

0 50 100 150 200
0

50

100

150

200

250

300

350

400

Number of Terminals (N)

T
o

ta
l D

e
la

y 
in

 t
e

rm
s 

o
f 

F
O

4

Mesh of Trees
Hypercube v=4
Hypercube v=N
k−ary n−tree (Fat Tree) k=4, v=4
Butterfly Fat Tree v=4
Butterfly v=4
Butterfly v=N

Figure 9. Technology independent total switch delay compar ison.

4.3.1 Mesh of Trees

We synthesize the switch primitives described in Figure 5 in Synopsys. The timing analysis shows that the circuit
delays vary between 2.25 FO4 and 2.81 FO4. For simplicity we assume a conservative constant delay of 3 FO4.
From the MoT topology, it is easy to see that the number of hops is 2 logN +1 for all source and destination pairs.

4.3.2 Hypercube

The switch node of a hypercube that connects N processing clusters has log N + 1 input and output ports. We
assume a typical setting of v = 4 virtual channels, and an aggressive one v = N to improve throughput, and
compute the switch delays based on [26]. Under uniform traffic pattern, the average number of hops for hypercube
is 1

2
log N [7].



4.3.3 Butterfly

In the binary butterfly networks we described in Section 2.1, each internal switch node has two input and two
output ports. The switch delay is computed similar to the hypercube [26]. The number of hops is always equal to
log N + 1.

4.3.4 Fat trees

Internal switches in a k-ary n-tree have 2k input and 2k output ports. The root switches have k input and k output
ports. Switch delays are computed based on [26] with v = 4 and v = N virtual channels. Similarly, we calculate
the switch delay for butterfly fat tree based on the analysis in [11].

Average hop count for the k-ary n-tree is listed in the following equation, when we set k = 4, the equation gives
the average hop count for the butterfly fat tree.

Hmin =
1

N2

N−1
∑

s=0

N−1
∑

d=0

H(s, d) =
2 · (k − 1)

N · k ·
log

k
N

∑

t=0

t · kt

4.4 Maximum Throughput

In order to evaluate the maximum throughput provided by each network model, we assume the maximum packet
generation rate of one packet per cycle (1.0 ppc) at each input port of the network2. At this generation rate, the
network will saturate with packets, and the injection and delivery rates will come to balance at the maximum
throughput. We assume uniform traffic pattern, which is expected for the memory architecture described in
Section 2.2. Uniform traffic pattern is a reasonable assumption due to the use of hashing mechanism, which has
an effect similar to randomization that distributes the memory accesses evenly among modules [21, 10, 1, 2].

We obtain the results for hypercube, butterfly, and MoT networks from theoretical analysis and simulation. The
results for fat tree networks are from [27] and [25]. As one can see from Table 3, the proposed MoT network can
provide the highest maximum throughput, which is 76% and 28% higher than butterfly and hypercube with v = 4
virtual channels, and 3% and 16% higher than butterfly and hypercube with 64 virtual channels, respectively.

4.4.1 Mesh of Trees

Each PC injects 1.0 ppc into its fan-out tree (see Figure 4 (b)). Each leaf will receive 1/N ppc for the uniformly
injected traffic. In the fan-in tree, the 1/N ppc traffic will accumulate to 1.0 ppc at the root node. Therefore, MoT
network is capable of delivering the maximum 1.0 ppc at each destination port.

In simulation, due to temporary imbalances in traffic caused by the stochastic nature of the generation process,
1.0 ppc is not expected. As we increase N , the number of terminals, there will be more pipeline stages between
the leaves of fan-out tree and fan-in tree. This will relieve some of this imbalance and provide higher throughput.
In fact, we observe the maximum throughput of 0.951 ppc per port for N = 16 goes up to 0.977 ppc when N = 64.

4.4.2 Hypercube

Since a single port connects the PCs to the network, and the highest injection rate through that port is equal to
1.0 ppc, the maximum achievable throughput is equal to 1.0 ppc. In hypercube network, data packets from different
sources to different destinations may compete for some common channels and cause interference and throughput
decrease. When the number of virtual channel is fixed (e.g., at a typical value v = 4), the maximum throughput
decreases as N increases because there might be more interference. Adding more virtual channels will improve
throughput at the cost of increased switch delay. The simulation results shown in Table 3 support these analysis.

2Note that in several other studies of interconnection networks, long data packets are divided in shorter units, called flits. Since
our interconnection network is in a critical path between the processors and the cache memory, we do not cut a packet in shorter flits
and assume that the entire packet of b bits is injected at once [1]



Configuration Max Throughput Configuration Max Throughput

Hypercube N = 16 v = 4 0.777 Butterfly N = 16 v = 4 0.602
Hypercube N = 64 v = 4 0.763 Butterfly N = 64 v = 4 0.553
Hypercube N = 16 v = 16 0.787 Butterfly N = 16 v = 16 0.861
Hypercube N = 64 v = 64 0.843 Butterfly N = 64 v = 64 0.946
Fat Tree N = 256 k = 4 n = 4 v = 2 0.55 BFT N = 64 v = 4 0.28
Fat Tree N = 256 k = 4 n = 4 v = 4 0.72 BFT N = 64 v = 8 0.30
Mesh of Trees (theoretical) 1.0 Mesh of Trees N = 16 0.951
Mesh of Trees N = 32 0.963 Mesh of Trees N = 64 0.977

Table 3. Maximum throughput (in packets per cycle per port ) provided by different networks ( N : numb-
ner of terminals, v: number of virtual channels, BFT: Butterfly Fat Tree.).

4.4.3 Butterfly

Under uniform traffic, the theoretical maximum throughput of the butterfly network is 1.0 ppc per port. However,
similar to hypercube, the actual throughput might be reduced due to packet interference. Table 3 reports the
maximum throughput for butterfly network with different settings. Interestingly, it outperforms hypercube with
the presence of large number of virtual channels.

4.4.4 Fat trees

Because of its sufficiently many physical channels, the k-ary n-tree network can provide 1.0 ppc per port when
an off-line routing algorithm is used to avoid packet interference. However, on-line routing algorithms cannot
guarantee interference-free packet transmission and this results in throughput less than 1.0 ppc. Butterfly fat tree
has fewer physical channels than the k-ary n-tree and therefore will have lower throughput. Results from [25] and
[27] are summarized in Table 3.

4.5 Throughput and Latency

As traffic in the network increases, packets will experience longer latencies. We follow the guidelines in [7]
to design simulations in order to evaluate the throughput and latency of various network models under different
input traffic. We are particularly interested in the case when the input traffic, or the on-chip parallelism, is high.
Hypercube and butterfly networks are simulated on the simulator provided by [7] with N = 64 terminals, and
different number of virtual channels, namely a typical v = 4 setting and an aggressive v = 64 setting. Router
switches have three cycle switch latency per speculative virtual channel router design of [26]. MoT network is
simulated using an RTL SystemC simulator we implemented.

First, to validate our own simulator, we implement a single-cycle butterfly switch similar to the switch primitives
shown in Figure 5. We then use our simulator to simulate the butterfly network with N = 64 and this switch.
The results are reported in Figure 10 as the two curves marked systemC BF. The simulation results from [7] on
the butterfly network with the N = 64 v = 2 configuration and single-cycle switch latency are also reported in
Figure 10 as the curves marked booksim BF. One can see that these curves match reasonably well which indicates
the accuracy of our simulator.

We vary the input traffic from the low 0.1 ppc per port to the maximum 1.0 ppc. Traffic is generated as a
Bernoulli process and the packet destinations are uniformly random. The latency of a packet is measured as the
time from it is generated to the time it is received at the destination, which includes the waiting time at the source
queue. For each input traffic rate, we use different seeds to generate a set of traffic with the same traffic rate.
These input traffic sets are injected to simulators for each network model and the average throughput and latency
are reported in Figure 10.

MoT network provides competitive throughput and latency and has a clear advantage over others when the
input traffic is high. More importantly, MoT network has a more predicable latency when the input traffic varies.
For example, when we increase the input traffic from 0.1 ppc per port to 0.9 ppc, the hypercube latency increases



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

Input Traffic (packet per cycle per port)

La
te

nc
y 

(c
yc

le
s)

booksim BF
systemC BF
MoT
Hypercube v=4
Hypercube v=64
Butterfly v=4
Butterfly v=64

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Input Traffic (packet per cycle per port)

T
hr

ou
gh

pu
t (

pa
ck

et
 p

er
 c

yc
le

 p
er

 p
or

t) booksim BF
systemC BF
MoT
Hypercube v=4
Hypercube v=64
Butterfly v=4
Butterfly v=64

Figure 10. Throughput and latency of various networks for N = 64 terminals.

by a factor of 3.2,butterfly network latency increases by a factor of 3.9,while MoT latency increases only by a factor
of 1.6.

4.6 Delay Effects of Long Wires

In the existence of long wires at current and future technologies, wire delay becomes more and more important
because it results in an increase in clock period and thus reduces throughput in terms of packets per second. One
method to deal with such adverse effects of long wires is to cut them into shorter segments by inserting pipeline
stages ([4, 13, 20]). This will maintain the throughput at the cost of longer latency in terms of clock cycles.

We have modified our network simulator to account for the additional cycles that were created by pipelining.
The results show that for MoT network, as expected, the throughput in terms of ppc does not change and the
latency increases by the same amount for all different rates of traffic load as shown in Figure 11. Now we report
the results on the long wire effect on latency for MoT, butterfly and hypercube networks.

Given a hypothetical clock period of 16FO4 as per [14, 28], for example), ITRS estimations [30] imply that this
corresponds to a clock frequency of approximately 7.2 GHz at 65nm technology. If we neglect the circuit switch
delay, the maximum traversable wire distance per cycle Lcrit = 1.22 mm. The switch delay of MoT primitives is
less than 3FO4 (Section 4.3), and the remaining 13FO4 corresponds to 1.1 mm. Considering such switch delay
will not impact our results on the comparison of different networks. Finally, we assume that global wires are used,
wire delay is quadratically proportional to the wire length, and Hchip = Wchip = 20 mm.

Based on the layouts in Figures 6, 1(a), and 1(c), we measure the distance between each network switch circuit.
For MoT we use the primitive circuits (Section 3.3), and for butterfly and hypercube networks we use the pipelined
switches described in [26] and a one-cycle pipeline stage to cut the wires. Based on the Lcrit value we determine
the number of pipeline stages that we need to insert. The minimum latency between a source and destination is
computed by adding the cycles spent in a switch node and pipeline stages on wires.



Table 4 reports the average minimum latency for the three network models with different number of terminals.
The average is taken over all the possible source-destination pairs3. MoT outperforms both hypercube and butterfly.
For example, then there are 32 terminals, MoT network has average latency 11% and 23% lower than a hypercube
and butterfly respectively.
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Figure 11. Latency and Throughput results of MoT network for various values of Lcrit with N = 64
terminals.

N 8 16 32 64 128
MoT 13.0 16.0 19.1 22.3 27.6
Hypercube 15.5 19.0 21.5 24.0 26.0
Butterfly 17.0 N/A 25.0 N/A 34.5

Table 4. Average minimum packet latency (in clock cycles). 6 5nm Technology, Hchip = Wchip =
20 mm, Lcrit = 1.22 mm

5 Conclusion and Future Work

A high-performance interconnection network between processors and memory modules is desirable for parallel
computing. First, it enables support of easy parallel programming approaches, e.g., PRAM-like [31, 22] that
cannot be supported otherwise [5]. Second, it allows feeding data to the functional units at a sufficient rate. The

3For even powers of 2, the butterfly network in 1(c) needs to be modified, therefore we omitted the results for those values.



necessity of having a high data rate is amplified by the architectural choice of XMT to put the network between
the processing units and the first level of data cache.

We introduce a certain Mesh of Trees (MoT) interconnection network and compare it with traditional networks
in terms of wire area, total switch delay, maximum throughput and latency-throughput relation. From a broader
perspective, our most interesting results are probably the ones related to the effective throughput. A recurring
problem in networking and communication is that of achieving good sustained throughput in contrast to just high
theoretical peak performance that does not materialize for typical workload. This is where our quantitative results
demonstrate a clear advantage for the proposed MoT implementation. Particularly, at 65nm technology, a 64-
terminal MoT network operating at 1GHz clock rate, provides up to 62G words (4T bits) per second throughput.
Between the source and destination terminals, the total switch delay is approximately 280ps. Ongoing studies on
wire delays will allow more accurate latency and throughput analysis.

The interconnection network of multi-chip Tera parallel computer has a bisection bandwidth of one 64-bit word
per cycle per processor [1]. By providing the same per-cycle bandwidth and a matching actual throughput within
the chip, MoT eliminates the clock cycle limitations of inter-chip communication. This results in much faster clock
rates and significantly lower memory access latency.

It would be useful to better understand the cost-performance trade-offs of interconnection network designs for
single-chip parallel processors with a large number of processing units. According to our results, the proposed MoT
network outperforms all of the existing approaches in terms of latency and throughput, while this comes at a price
of increased area. We plan to study opportunities for reducing the wire area, and the effects of wire delays on packet
latency, as well as other cost factors such as the area cost of circuit resources and power requirements. Meanwhile
we will also study different approaches, e.g. two parallel butterfly networks, that might provide competitive
performance at a lower area cost. The study and results presented in this paper lay a foundation for such future
work.

Finally, the use of MoT network is not limited to parallel processors. As the number of functional units grow in
system-on-chip applications, on-chip networks will be required to satisfy the communication needs. MoT network
may provide an alternative solution, where high-throughput and low-latency communication is needed.
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