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Improving the healthcare system is an important task that is always both

socially and individually beneficial, and statistics is one of the useful tools that

have been applied in pursuit of this goal. However, limitations on current meth-

ods and the introduction of new forms of data have created many new challenges

and research opportunities. It is therefore crucial to explore and extend statistical

methods to better understand and leverage healthcare utilization data, particularly

recent and emerging data in new forms. In this dissertation, we develop and ap-

ply various innovative statistical methods to address five specific healthcare issues.

First, we successfully develop a novel approach to model the length of hospital stay

using mixture distributions through an EM algorithm. Second, we extend a two-

state continuous time Markov chain to estimate patient readmission risk at a large

academic hospital in the U.S. Third, we study changes in accessibility in emergency

departments from 2016 to 2018 among 21 hospitals in Maryland Region III. Fourth,

we investigate the impact of the global budget payment model on emergency depart-

ment accessibility. Lastly, we use a multi-state Markov model to explore cascading

events during emergency room crowding, also in Region III of Maryland.
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Chapter 1: Introduction

1.1 Background

There has been increasing pressure to eliminate unnecessary healthcare costs

in the United States (U.S.) healthcare system, which exceeded $750 billion in 2011

and represented a third of the total amount Americans spent on healthcare [20].

The major sources of waste in the U.S. healthcare system include inefficiencies in

care coordination and delivery, overtreatment, and administrative logistics [20]. It

is estimated that if waste reduction strategies were implemented, the total realized

savings could have exceeded $11 trillion dollars for all payers from 2011 through

2019. Such savings could then be redirected to improve patient care and health

outcomes [20]. In addition to its obvious connection to high costs, however, hospital

inefficiency has also been directly linked to poor patient healthcare outcomes, and

efforts to reduce costs through a focus on inefficient spending should also ensure

that the results do not adversely affect patient outcomes [103].

A variety of statistical tools have been widely used to address different kinds

of healthcare issues [104]. Normal distribution-based methods are frequently used to

estimate average healthcare resource use and costs [13, 25, 26, 72, 123]. For instance,

the two sample t-test is widely used to identify significant differences in healthcare

1



efficiency indicators, such as length of hospital stay or healthcare expenditures.

For multiple group comparisons, analysis of variance (ANOVA) can be applied.

Linear regression is also widely used to explore the relationship between the response

variable and covariates of interest. If the assumption of normality is violated, one

may need to transform the data by using tools such as Box-Cox transformations

before applying the above methods [69]. Additionally, generalized linear models such

as logistic regression or Poisson regression can be implemented to binary outcomes

(e.g., whether hospitals comply with a certain healthcare policy or not) or to count

data (e.g., the number of patients readmitted to hospitals) [17, 23, 24, 98]. Mixture

models have been used in the literature to explore positive and skewed data such

as length of stay, waiting time in emergency room, or demand for medical care.

Mixture models are flexible enough to accommodate such data [11, 42, 146]. In

addition to parametric models [68, 97, 112], nonparametric and semi-parametric

models are also very useful in many healthcare problems, since they allow for more

modeling flexibility and balance between estimation bias and estimation efficiency

[36, 46, 60, 93, 111]. Time-to-event data are probably the most common type of data

collected in healthcare research, and they are well suited to the use of survival data

analysis [18, 48, 49, 113, 145]. Recently, an increasing number of applications have

also used Bayesian approaches to analyze healthcare data [84, 92, 94]. When real

data are limited or when the proposed statistical methods require validation, Monte

Carlo simulation techniques can be used to generate different types of healthcare

data [37, 146]. In this dissertation, we build on these foundations to develop and

apply various innovative statistical methods to address five specific healthcare issues.
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1.2 Main Contributions

The first of these issues is the need to better understand the underlying struc-

ture of length of stay distributions, as such an understanding can support opera-

tional and clinical decision making in hospitals. This issue is addressed in Chapter

2, where our objective is to develop robust methods to model length of hospital stay.

The distribution of length of stay is often skewed and multimodal and the data may

thus contain a significant number of outliers. We define several lognormal-based

mixture distributions with two components, one to fit the majority of the obser-

vations and the other to fit the abnormal observations. This work results in three

proposed lognormal-based mixture distributions: one utilizes an exponential distri-

bution as the second component, one utilizes a gamma distribution, and one utilizes

a lognormal distribution. We estimate the parameters of each mixture model using

the expectation-maximization (EM) algorithm and evaluate the finite-sample per-

formances of our proposed methods using simulation studies. In addition, we apply

our proposed method to a dataset collected from multiple studies conducted at the

University of Maryland School of Medicine (UMMC) and compare the fit of our

mixture models with the fit obtained by other methods.

Research concerning our second healthcare issue, hospital readmission, has

mostly focused on regression models including various risk factors that may influ-

ence the likelihood of this undesirable outcome. These models are useful in certain

settings, but in many cases their performance is still in need of improvement, and

the dynamics of how readmission risk changes over time are often ignored. In Chap-
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ter 3, our objective is to develop a new method to model readmission risk over time,

starting from the point of discharge. We propose a continuous-time Markov chain

model and develop both point estimators and interval estimators for readmission

risk. We derive the asymptotic distributions of the proposed estimators and val-

idate their performance through simulation studies. We then apply our proposed

methods to estimate readmission risk over time using discharge and readmission

data for surgical patients.

Our third healthcare issue is facility accessibility in hospital emergency de-

partments (EDs). Accessibility is tracked by the Maryland Institute for Emergency

Medical Services Systems (MIEMSS) through its County/Hospital Alert Tracking

System (CHATS), which generates alert data for each hospital in the state. The

initiation of one type of alert indicates the lack of a certain facility at the emergency

department. In Chapter 4, our goal is to identify the trend in ED accessibility

changes in Maryland’s most populous region, namely, Region III. Since the data

are skewed, we use nonparametric tests to evaluate any statistical differences in ED

accessibility from 2016 to 2018. We also model the duration of each type of alert

and of alert-free periods to understand specific risk changes over time related to ED

accessibility.

The fourth issue concerns payment models implemented in the attempt to

limit spending growth in healthcare and improve the quality of medical care. In

2014, Maryland revised its all-payer model to establish the global budget payment

model in pursuit of these goals, and in Chapter 5, we investigate the impact of this

new model on ED accessibility in the state. We use Kruskal-Wallis tests to compare

4



the durations of alerts collected before and after the new model was implemented

in 2014. Furthermore, we develop a linear mixed model to understand the impact

of the global budget payment model on ED accessibility in Maryland Region III.

Lastly, we address emergency room crowding. Periodically, the EDs in Mary-

land Region III experience a high level of crowding that we call a cascading event,

in which patients in need of urgent care face reduced ED accessibility. In Chapter

6, we develop a multi-state Markov model to predict the risk of a cascading event

over time. We also extend the model to incorporate time-dependent intensities and

covariates of interest, which allows for hypothesis testing in more general scenarios.

The finite sample performances of the proposed methods are evaluated through sim-

ulation studies, then applied to real data collected at Maryland Region III hospitals

from 2016 to 2018.
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Chapter 2: Lognormal-based Mixture Models for Robust Fitting of

Hospital Length of Stay Distributions

2.1 Introduction

Length of stay (LOS) in hospitals serves as an important indicator of the

efficiency at which care is being provided, but similar to costs, there are potential

benefits and pitfalls involved with reducing LOS. On the one hand, reducing LOS

will allow hospitals to better utilize their limited resources such as beds, clinical

staff, and medical equipment, ultimately providing more access for patients in need

[103]. However, a shorter LOS could be the result of a patient being inappropriately

discharged too soon, likely interrupting the recovery and thereby increasing the

likelihood of adverse events (e.g., complications, readmissions) and increased costs.

On the other hand, a longer LOS is more costly per discharge and blocks access for

other patients. In addition, patients who stay longer are susceptible to developing

hospital acquired infections (HAIs) [21]. Achieving an optimal length of stay can

simultaneously improve patient outcomes and save overall costs.

Length of stay distributions are typically difficult to fit, and often vary sig-

nificantly across multiple units in a single facility, and across multiple facilities
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[12, 63, 89]. In particular, length of stay distributions are often highly skewed and

multimodal, and they often contain a significant proportion of outliers [96, 105,

106, 125, 139]. Weissman [139] states that the frequency distributions are usually

skewed to the right and include two populations of interest: the “body”, the portion

with the majority of the observations, and the “tail”, which captures the behavior

of the outliers. Three theoretical distributions that display this body-and-tail be-

havior include the lognormal, Weibull, and gamma distributions, which have often

been used in fitting LOS data [96]. Unfortunately, these individual distributions

are not particularly robust, as they do not consistently fit LOS distributions well

across multiple patient populations [89]. To address this limitation, several single

and mixture distributional models have been proposed, often including these distri-

butions as components, with the lognormal distribution being the most commonly

used [12, 58, 63, 73, 115, 119]. These models are useful, but they all suffer from

several drawbacks. They are not robust enough to fit LOS in a wide variety of cases.

These methods are either computationally complex or have more than two compo-

nents. These limitations make the estimation of parameters difficult. Additionally,

phase-type and related distributions have been leveraged to estimate length of stay.

This facilitates approximation of any positive-valued distribution [52, 100, 132]. For

example, Marshall et al. (2003) used Bayesian belief networks with Coxian phase-

type distributions for modeling length of stay [99]. Tang et al. (2012) also used

Coxian phase-type distributions to model length of stay, and they were able to cap-

ture the heterogeneity in LOS by selecting an appropriate number of phases and

utilizing a regression model for the hazard rates [132]. However, the generality of

7



the phase-type distributions makes it difficult to estimate all the parameters [99]. In

our work, the goal is to fit an assortment of LOS distributions using a mixture model

with two components, where robustness and simplicity are the guiding principles.

We propose this lognomal-based mixture model where we consider the lognormal

distribution to provide information for the majority of observations, since (1) it is

widely used and logarithmic LOS roughly appears to be normally distributed, and

(2) the lognormal distribution has a robust fitting performance in either single or

mixture models [12, 63, 73, 119]. The parameters from the exponential family would

have an appealing form when differentiating [45] among distributions with positive

support which are most appropriate for modeling LOS. Thus, we suggest three com-

monly used distributions, specifically, exponential [63], gamma [89], and lognormal

[12, 73, 96], as the second component in our mixture models.

In addition to defining the elements of a mixture model, we must also ap-

ply a method for estimating the distributional parameters. Maximum likelihood

estimation (MLE) is the most frequently used method due to several advantageous

statistical properties. However, if no closed-form solution can be found to the opti-

mization problem, the solution to the MLE formulation must be solved numerically

via a method such as Newton-Raphson or Fisher Scoring. Rather than apply a nu-

merical method for minimizing the negative log-likelihood function associated with

an MLE approach, we prefer to use the expectation-maximization (EM) method,

which is an iterative approach to find the ML estimates for parametric probability

distributions.

We propose three mixture models for fitting hospital LOS, using the EM algo-
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rithm to estimate the mixture model parameters. These are lognormal-exponential,

lognormal-gamma, and lognormal-lognormal mixture models. We show that our

models are robust for fitting LOS distributions across many hospital settings. The

rest of this chapter is organized as follows. In Section 2.2, we present our method-

ology for estimating the mixture model parameters using the EM algorithm. In

Section 2.3, we validate the performance of our parameter estimation approach for

each mixture model using simulation. In Section 2.4, we test our mixture models

on observed data collected from multiple research studies by researchers at the Uni-

versity of Maryland School of Medicine and their colleagues. Finally, we conclude

in Section 2.5 with a discussion of our results and directions for future research.

2.2 Methods

Estimating a parameter θ of a parametric probability distribution is essential in

the fitting of any distribution. The most common approach for parameter estimation

is maximum likelihood estimation (MLE), for which the objective is to maximize

the log-likelihood function given by:

l(θ) = logL(θ) =
n∏
i=1

f(xi|θ)

where {Xi, ..., Xn} is an independent and identically distributed (i.i.d.) sample from

a population with probability density function (pdf) or probability mass function

(pmf) f(x|θ).

Among all estimation methods, maximum likelihood estimation (MLE) has
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excellent performance due to several advantageous properties under regularity con-

ditions [32]:

• consistency: the sequence of MLEs converges in probability to the value being

estimated.

• asymptotic normality: the distribution of the normalized MLE tends to the

Gaussian distribution as the sample size increases.

• efficiency: the variance of the MLE attains the Cramér-Rao Lower Bound

(optimal asymptotic variance) when the sample size tends to infinity.

When direct likelihood maximization is not feasible, the EM algorithm pro-

vides an alternative approach. The EM algorithm is particularly useful when applied

to incomplete data, such as parameter estimation for mixture distributions. The EM

algorithm centers around the idea of replacing a difficult likelihood maximization

problem with a sequence of easier maximizations whose limit provides a solution

to the original problem. The E step calculates the conditional expectation of the

log-likelihood of the complete data given the observed data and current estimated

parameters. The M step performs maximum likelihood estimation of parameters,

using the estimated log-likelihood calculated in the E step.

The popularity of the EM algorithm was driven by the work of several authors.

Sundberg’s work provided the foundation for this iterative method, but Dempster,

Laird, and Rubin (DLR) introduced the EM algorithm and proved the convergence

of EM [45, 129–131]. Wu later corrected the proof of convergence of EM in DLR’s
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paper [143]. We apply the EM algorithm to estimate the parameters for three

lognormal-based distributions in the following subsections.

2.2.1 Lognormal-Exponential Mixture Model

Assume we have n i.i.d. continuous length of stay observations xi ∈ R, i =

1, ..., n, drawn from a Lognormal-Exponential Mixture Model (LEMM). Our objec-

tive is to estimate the parameter set θ = {p, µ, σ, λ} that best fits the observed data.

We assume the observations xi belong to a mixture distribution defined by:

Xi = ZiUi + (1− Zi)Vi

where

Ui ∼ f1(ui|µ, σ)

Vi ∼ f2(vi|λ)

Zi ∼ f3(zi|p)

and Zi is independent of Ui and Vi. We note here that Zi is a Bernoulli random

variable with probability parameter p that determines whether a particular patient’s

LOS Xi will be drawn from the distribution of Ui with probability p or Vi with

probability 1−p. For any ui, the probability density function (pdf) for the lognormal
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distribution is defined as

f1(ui|µ, σ) =
1√
2πσ

1

ui
exp

(
−(log(ui)− µ)2

2σ2

)
, µ ∈ R, σ ∈ R+.

The pdf for an exponential distribution is:

f2(vi|λ) = λe−λvi , λ ∈ R+.

The pmf for a Bernoulli distribution is:

f3(zi|p) = pzi(1− p)(1−zi), p ∈ [0, 1].

The pdf for the LEMM is then defined as:

f(xi|p, µ, σ, λ) = pf1(xi|µ, σ) + (1− p)f2(xi|λ).

The expectation step (E-step) of the EM algorithm proceeds as follows:

ε
(m)
i = E(Zi|Xi, θ

(m))

= P (Zi = 1|Xi, θ
(m))

=
p(m)f1(xi|µ(m), σ(m))

p(m)f1(xi|µ(m), σ(m)) + (1− p(m))f2(xi|λ(m))
.

With the assumption that the samples are i.i.d., we calculate the so-called Q-function
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as:

Q(θ|θ(m)) = Σn
i=1

{
E(Zi|Xi, θ

(m)) log[pf1(xi|µ, σ)]

+ (1− E(Zi|Xi, θ
(m))) log[(1− p)f2(xi|λ)]

}
= Σn

i=1

{
ε
(m)
i log[pf1(xi|µ, σ)]

+ (1− ε(m)
i ) log[(1− p)f2(xi|λ)]

}
= Σn

i=1

{
ε
(m)
i

(
log(p)− log(σ)− log(xi)−

(log(xi)− µ)2

2σ2

)
+ (1− ε(m)

i )[log(1− p) + log(λ)− λxi]
}

+ C

where C does not depend on any of the elements of θ.

The maximization step (M-step) of the EM algorithm determines the next

iterate of θ that maximizes the Q-function derived above:

θ(m+1) = argmax
θ
Q(θ|θ(m)).

The optimal p, µ, σ, and λ are found by equating the respective partial deriva-

tives to zero, and solving. For p, we have:

∂Q(θ|θ(m))

∂p
= Σn

i=1

(
ε
(m)
i

p
+

(1− ε(m)
i )

p− 1

)
= 0

which yields

p(m+1) =
1

n
Σn
i=1ε

(m)
i .
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For µ and σ, we have:

∂Q(θ|θ(m))

∂µ
= Σn

i=1ε
(m)
i

(
− 1

2σ2
2(log(xi − µ)

)
= Σn

i=1ε
(m)
i

log(xi)− µ
σ2

= 0

and

∂Q(θ|θ(m))

∂σ
= Σn

i=1

{
ε
(m)
i

(
− 1

σ
+ σ−3(log(xi)− µ)2

)}
= Σn

i=1

{
− ε

(m)
i

σ
+
ε
(m)
i (log(xi)− µ)2

σ3

}
= 0

which yields

µm+1 =
Σn
i=1ε

(m)
i log(xi)

Σn
i=1ε

(m)
i

and

(σ2)(m+1) =
Σn
i=1ε

(m)
i (log(xi)− µm+1)2

Σn
i=1ε

(m)
i

.

And finally, for λ, we have:

∂Q(θ|θ(m))

∂λ
= Σn

i=1(1− ε
(m+1)
i )(

1

λ
− xi) = 0

which yields

λ(m+1) =
Σn
i=1(1− ε

(m)
i )

Σn
i=1(1− ε

(m)
i )xi

.

We summarize the process for estimating the parameters p, µ, σ, and λ for

LEMM in Algorithm 1.
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Algorithm 1. EM algorithm for estimating LEMM parameters

1. Choose initial estimates θ(0)={p(0) = 0.5, µ(0) = x̄, σ(0) = s, λ(0) =

1/x̄} where x̄ = n−1Σn
i=1xi and s2 = (n− 1)−1Σn

i=1(xi − x̄)2.

2. E-step: For i = 1, ..., n, compute

ε
(m)
i =

p(m)f1(xi|µ(m), σ(m))

p(m)f1(xi|µ(m), σ(m)) + (1− p(m))f2(xi|λ(m))
.

3. M-step: Compute new estimates

p(m+1) =
1

n
Σn
i=1ε

(m)
i ,

µ(m+1) =
Σn
i=1ε

(m)
i log(xi)

Σn
i=1ε

(m)
i

, (σ2)(m+1) =
Σn
i=1ε

(m)
i (log(xi)− µm+1)2

Σn
i=1ε

(m)
i

,

λ(m+1) =
Σn
i=1(1− ε

(m)
i )

Σn
i=1(1− ε

(m)
i )xi

.

4. Repeat steps 2 and 3 until max
j
|
θ
(m+1)
j − θ(m)

j

θ
(m)
j

| < δ, where δ is a

selected threshold for convergence.
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2.2.2 Lognormal-Gamma Mixture Model

Similarly, the iterative equations for the five parameters of the LGMM are as

follows:

p(m+1) =
1

n
Σn
i=1ε

(m)
i ,

µ(m+1) =
Σn
i=1ε

(m)
i log(xi)

Σn
i=1ε

(m)
i

, (σ2)(m+1) =
Σn
i=1ε

(m)
i (log(xi)− µ(m+1))2

Σn
i=1ε

(m)
i

,

α(m+1) = ψ−1
{(log β(m))Σn

i=1(1− ε
(m)
i )− Σn

i=1 log xi(1− ε(m)
i )

Σn
i=1(1− ε

(m)
i )

}
,

β(m+1) =
Σn
i=1(1− ε

(m)
i )xi

α(m+1)Σn
i=1(1− ε

(m)
i )

where Γ(x) =
∫∞
0
zx−1e−zdz denotes the gamma function and ψ(x) = Γ′(x)/Γ(x)

denotes the digamma function. The derivation for these iterates is presented in

Appendix A.

We summarize the EM algorithm for estimating the parameters p, µ, σ, and

λ for the LGMM in Algorithm 2.

Algorithm 2. EM algorithm for estimating LGMM parameters

1. Choose initial estimates θ(0)={p(0) = 0.5, µ(0) = x̄, σ(0) = s, α(0) =

α̂, β(0) = β̂ } where x̄ = 1
n
Σn
i=1xi, s

2 = 1
n−1Σn

i=1(xi − x̄)2, α̂ is MLE

for α, and β̂ is MLE for β.
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2. E-step: For i = 1, ..., n, compute

ε
(m)
i =

p(m)f1(xi|µ(m), σ(m))

p(m)f1(xi|µ(m), σ(m)) + (1− p(m))f4(xi|α(m), β(m))

where

f4(xi|α, β) =
1

Γ(α)βα
xα−1i e−

xi
β , α, β ∈ R+.

3. M-step: compute new estimates

p(m+1) =
1

n
Σn
i=1ε

(m)
i ,

µ(m+1) =
Σn
i=1ε

(m)
i log(xi)

Σn
i=1ε

(m)
i

, (σ2)(m+1) =
Σn
i=1ε

(m)
i (log(xi)− µ(m+1))2

Σn
i=1ε

(m)
i

,

α(m+1) = ψ−1
{(log β(m))Σn

i=1(1− ε
(m)
i )− Σn

i=1 log xi(1− ε(m)
i )

Σn
i=1(1− ε

(m)
i )

}
,

β(m+1) =
Σn
i=1(1− ε

(m)
i )xi

α(m+1)Σn
i=1(1− ε

(m)
i )

.

4. Repeat steps 2 and 3 until max
j
|
θ
(m+1)
j − θ(m)

j

θ
(m)
j

| < δ, where δ is a

selected threshold for convergence.
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2.2.3 Lognormal-Lognormal Mixture Model

Last, we present the iterative equations for the five parameters of the LLMM

below:

p(m+1) =
1

n
Σn
i=1ε

(m)
i ,

µ
(m+1)
1 =

Σn
i=1ε

(m)
i log(xi)

Σn
i=1ε

(m)
i

,

(σ2
1)(m+1) =

Σn
i=1ε

(m)
i (log(xi)− µm+1)2

Σn
i=1ε

(m)
i

,

µ
(m+1)
2 =

Σn
i=1(1− ε

(m)
i ) log(xi)

Σn
i=1ε

(m)
i

,

(σ2
2)(m+1) =

Σn
i=1(1− ε

(m)
i )[log(xi)− µm+1]2

Σn
i=1(1− ε

(m)
i )

.

The derivation for these iterates is presented in Appendix B.

We summarize the EM algorithm for estimating the parameters p, µ1, σ1, µ2

and σ2 for the LLMM in Algorithm 3.

Algorithm 3. EM algorithm for estimating LLMM parameters

1. Choose initial estimates θ(0)={p(0) = 0.5, µ
(0)
1 = x̄, σ

(0)
1 = s,

µ
(0)
2 =m̃, σ

(0)
2 = IQR} where x̄ = 1

n
Σn
i=1xi, s

2 = 1
n−1Σn

i=1(xi − x̄)2,

m̃ is the median for the sample data, and IQR is the interquartile

range for the sample data. For cases in which the same distribution
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is used for both mixture components, we must use different initial

estimates so that each component is distinct.

2. E-step: For i = 1, ..., n, compute

ε
(m)
i =

p(m)f1(xi|µ(m)
1 , σ

(m)
1 )

p(m)f1(xi|µ(m)
1 , σ

(m)
1 ) + (1− p(m))f1(xi|µ(m)

2 , σ
(m)
2 )

.

3. M-step: compute new estimates

p(m+1) =
1

n
Σn
i=1ε

(m)
i ,

µ
(m+1)
1 =

Σn
i=1ε

(m)
i log(xi)

Σn
i=1ε

(m)
i

, (σ2
1)(m+1) =

Σn
i=1ε

(m)
i (log(xi)− µm+1)2

Σn
i=1ε

(m)
i

,

µ
(m+1)
2 =

Σn
i=1(1− ε

(m)
i ) log(xi)

Σn
i=1(1− ε

(m)
i )

, (σ2
2)(m+1) =

Σn
i=1(1− ε

(m)
i )(log(xi)− µm+1)2

Σn
i=1(1− ε

(m)
i )

.

4. Repeat steps 2 and 3 until max
j
|
θ
(m+1)
j − θ(m)

j

θ
(m)
j

| < δ, where δ is a

selected threshold for convergence.

2.3 Simulation

In this section, we validate the performance of each parameter estimation algo-

rithm via simulation. In each scenario, we generate 300 samples from a selected mix-

ture distribution (specifically, LEMM, LGMM, and LLMM) and apply our proposed
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algorithms for estimating the associated distributional parameters with ε = 10−4.

We evaluate the goodness of fit of our estimated distributions using the Cramer-Von

Mises test [40].

2.3.1 Simulation for LEMM

The LEMM has four parameters, θ = {p, µ, σ, λ}. Let’s consider the scenario

in which the true values of these parameters are:

p = 0.8, µ = 0, σ = 1, λ = 2.

We generate 300 observations from this mixture distribution as follows:

1. Generate 300 observations zi from the Bernoulli distribution with p = 0.8.

2. Generate 300 observations ui from a lognormal distribution with µ = 0 and

σ = 1.

3. Generate 300 observations vi from a exponential distribution with λ = 2 .

Then we calculate the observations xi = ziui + (1 − zi)vi. We apply Algorithm 1

to the sample data in order to estimate the distributional parameters, arriving at

estimates of

p = 0.7884, µ = 0.0043, σ = 1.0015, λ = 2.0203.

after iterations. The resultant p-value of the Cramer-Von Mises goodness-of-fit test
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is 0.987, indicating a very close fit of the estimated distribution. In Figure 2.1, we

visualize the fitted and true distributions over the observed sample data.
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Figure 2.1: Simulation results for the Lognormal-Exponential Mixture Model. We
generated 300 samples from a LEMM with p = 0.8, µ = 0, σ = 1, and λ = 2.

2.3.2 Simulation for LGMM

For the LGMM, we select the following values for the parameters, θ = {p, µ, σ, α, β}.

p = 0.8, µ = 0, σ = 1, α = 1.5, β = 0.5.

Following a similar process as for Simulation above, we generate 300 observations

for the LGMM in the following manner:

1. Generate 300 observations zi from the Bernoulli distribution with p = 0.8.

2. Generate 300 observations ui from a lognormal distribution with µ = 0 and

σ = 1.
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3. Generate 300 observations vi from a gamma distribution with α = 1.5 and

β = 0.5.

After applying Algorithm 2, we estimate the parameters as follows:

p = 0.8117, µ = 0.0110, σ = 1.0077, α = 1.4725, β = 0.5010.

The p-value from the Cramer-Von Mises test is 0.887, validating the fit of the LGMM

to the simulated data. In Figure 2.2, we visualize the fitted and true distributions

over the observed sample data.
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Figure 2.2: Simulation results for the Lognormal-Gamma mixture model. We gen-
erated 300 samples from a LGMM with p = 0.8, µ = 0, σ = 1, α = 1.5, and
β = 0.5.
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2.3.3 Simulation for LLMM

For the LLMM, we select the following values for the parameters θ = {p, µ1, σ1, µ2, σ2}:

p = 0.8, µ1 = 0, σ1 = 1, µ2 = 2, σ2 = 1.

We follow a similar process as above to generate 300 observations for the LLMM in

the following way:

1. Generate 300 observations zi from the Bernoulli distribution with p = 0.8.

2. Generate 300 observations ui from a lognormal distribution with µ1 = 0 and

σ1 = 1.

3. Generate 300 observations vi from a lognormal distribution with µ2 = 2 and

σ2 = 1.

After applying Algorithm 3, we estimate the parameters as follows:

p = 0.7909, µ1 = −0.0349, σ1 = 1.0132, µ2 = 2.0760, σ2 = 0.9917.

The p-value from the Cramer-Von Mises test is 0.991, validating the fit of the LLMM

to the simulated data. In Figure 2.3, we visualize the fitted and true distributions

over the observed sample data.
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Figure 2.3: Simulation results for the Lognormal-Lognormal Mixture Model. We
generated 300 samples from a LLMM with p = 0.8, µ1 = 0, σ1 = 1, µ2 = 2, and
σ2 = 1.

2.4 Real Data Analysis

In order to test the robustness of our mixture models, we evaluate their per-

formance using two sets of data collected via independent research studies at the

University of Maryland School of Medicine. In the first study, researchers from the

Department of Epidemiology and Public Health collected data from twenty medical

and surgical intensive care units in order to study the impact of universal barrier

precautions (i.e., gloves and gowns) on the transmission of multidrug-resistant or-

ganisms [62]. In the second study, the hospital provided surgical data during the

first half of 2007. We were provided the date and time of the surgery, the dates

when the patient was admitted to and discharged from the hospital, and surgical

specialty group. Both sets of data contained de-identified length of stay observa-
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tions, and, therefore, our studies were exempt from evaluation by the Institutional

Review Board.

We summarize the descriptive statistics for each length of stay distribution

in Tables 2.1 and 2.2, respectively, for the two sets of data and visualize these

distributions for different patient types in Figure 2.4. In the first set of data, the

median length of stay ranges from 3 to 5 days, the IQR over different sites varies

from 3 to 5 days, and the length of hospital stay ranges widely from 1 to 125 days.

In the second data set, the median length of stay ranges from 1 to 7 days, the middle

50% stay at hospital varies from 1 to 10, and all patients stay at hospital from 1

to 75 days. Across all patients admitted for our data sets, more than half stay less

than 5 days, most are discharged within a week, and less than 10% stay for more

than two weeks. These trends describe strongly right-skewed distributions that are

difficult to fit.

Site
Number of

patients
Median

Q1

(1st quantile)
Q3

(3rd quantile)
Short stay

(LOS ≤ 5 days)
Discharged
in a Week

Discharged
after 2 weeks

Site 1 731 5 3 8 442 (60%) 542 (74%) 71 (10%)
Site 2 550 3 2 6 400 (73%) 444 (81%) 25 (5%)
Site 3 564 3 2 5 425 (75%) 477 (85%) 33 (6%)
Site 9 894 4 3 7 611 (68%) 712 (80%) 64 (7%)
Site 11 895 4 3 7 590 (66%) 698 (78%) 80 (9%)
Site 12 731 4 2 7 492 (67%) 566 (77%) 50 (7%)
Site 13 578 3 2 4 484 (84%) 516 (89%) 20 (3%)
Site 14 884 4 3 7 566 (64%) 673 (76%) 66 (7%)
Site 17 568 3 2 6 390 (69%) 451 (79%) 39 (7%)
Site 18 1201 3 2 5 972 (81%) 1079 (90%) 41 (3%)
Site 20 512 3 2 5.25 384 (75%) 434 (85%) 19 (4%)

Table 2.1: Descriptive statistics for observed length of stay (in days) for intensive
care unit patients.

In Tables 2.3 and 2.4, we report the p-values for the Cramer-Von Mises
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Surgical Specialty
Number of

patients
Median

Q1

(1st quantile)
Q3

(3rd quantile)
Short stay

(LOS ≤ 5 days)
Discharged
in a Week

Discharged
after 2 weeks

Cardiac Surgery 425 7 4 10 133 (31.3%) 224 (52.7%) 48 (11.3%)
Neurosurgery 597 4 2 7 358 (60%) 443 (74.2%) 65 (10.9%)
Organ Transplant 334 6 2 9 147 (44%) 211 (63.2%) 37 (11.1%)
Thoracic Surgery 159 3 1 7 95 (59.7%) 120 (75%) 14 (8.8%)
Vascular Surgery 211 4 2 7 128 (60.7%) 157 (74.4%) 10 (4.7%)
Electroconvulsive Therapy 89 5 1 11 43 (48.3%) 50(56.2%) 14(15.7%)
Gynecology 239 1 1 3 235 (98.3%) 236(98.7%) 2(0.8%)
Pediatric Bronchoscopy 207 1 1 3 164 (79.2%) 170(82.1%) 16(7.7%)
Surgical Oncology 223 4 1 8 126 (56.5%) 156(70%) 15(6.7%)
General Surgery 513 2 1 5 384 (74.9%) 445(86.7%) 20(3.9%)

Table 2.2: Descriptive statistics of observed length of stay (in days) for surgical
patients.

test for each fitted distribution. For comparison purposes, we select single or

mixture distributions with positive support, including lognormal, inverse gamma

(IG), loglogistic, Exponential-Exponential (EE), Hyperexponential (HE), phase-

type (PH), Lognormal-Loglogistic mixture (LL), and Lognormal-Loglogistic-Weibull

(LLW) mixture distribution. We estimate the parameters for each of these baseline

distributions via MLE except for the EE model, for which we estimate the pa-

rameters using EM. Our three proposed mixture models perform better than the

comparison models, because the p-values of the CVM goodness of fit test are con-

sistently greater than others. Compared with LEMM and LGMM, LLMM performs

consistently better across the various ICUs and surgical patient populations. The

lognormal distribution has been used extensively as a single distribution to model

patient length of stay [12, 63, 73, 119], which may explain why a mixture model

only containing lognormal distributions performs better than mixtures of lognormal

and other components. Of the baseline methods, the phase-type distribution per-

formed the best across the different LOS distributions. When fitting our 21 surgical

groups using the phase-type distribution, only two groups have p-values of the CVM
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Model Site 1 Site 2 Site 3 Site 9 Site 11 Site 12 Site 13 Site 14 Site 17 Site 18 Site 20

Lognormal 0.06 0.021 0.014 0.054 0.106 0.143 < 0.01 0.109 0.2 < 0.01 0.141
IG 0.048 0.013 0.013 0.017 0.089 0.103 < 0.01 0.105 0.033 < 0.01 0.109
Loglogistic 0.2 0.072 0.025 0.084 0.145 0.189 0.018 0.157 0.39 0.015 0.198
EE < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
HE < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
PH 0.302 0.005 0.041 0.077 0.162 0.083 0.003 0.192 0.363 0.015 0.194
LL < 0.01 0.128 0.012 0.13 0.158 0.03 0.018 0.274 0.381 0.016 0.216
LLW 0.045 < 0.01 < 0.01 0.011 < 0.01 < 0.01 < 0.01 0.076 0.042 < 0.01 0.037
LEMM 0.0278 0.12 0.031 0.064 0.152 0.202 0.018 0.217 0.014 0.016 0.221
LGMM 0.06 0.125 0.038 0.063 0.157 0.202 0.018 0.239 0.127 0.016 0.225
LLMM 0.335 0.128 0.034 0.125 0.158 0.206 0.018 0.259 0.381 0.016 0.216

Table 2.3: Cramer-Von Mises goodness-of-fit test p-values for observed length of
stay of intensive care unit patients for Lognormal, IG, Loglogistic, EE, HE, PH, LL,
LLW, LEMM, LGMM, and LLMM.

Model
Cardiac
Surgery

Neurosurgery
Organ

Transplant
Thoracic
Surgery

Vascular
Surgery

Electroconvulsive
Therapy

Gynecology
Pediatric

Bronchoscopy
Surgical

Oncology
General
Surgery

Lognormal < 0.01 0.098 < 0.01 0.013 0.089 0.024 < 0.01 < 0.01 < 0.01 < 0.01
IG < 0.01 0.109 < 0.01 0.017 0.126 0.011 < 0.01 < 0.01 < 0.01 < 0.01
Loglogistic < 0.01 0.104 0.024 0.013 0.066 0.028 < 0.01 < 0.01 < 0.01 < 0.01
EE < 0.01 < 0.01 0.016 0.025 0.014 0.102 < 0.01 < 0.01 < 0.01 < 0.01
HE < 0.01 < 0.01 0.012 <0.01 0.013 <0.01 < 0.01 < 0.01 < 0.01 < 0.01
PH 0.06 0.141 0.149 0.12 0.41 0.142 < 0.01 < 0.01 0.016 0.04
LL 0.016 0.083 < 0.01 0.639 0.374 0.917 < 0.01 < 0.01 0.05 0.06
LLW < 0.01 < 0.01 < 0.01 0.011 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
LEMM 0.168 0.134 < 0.01 0.025 0.089 0.141 < 0.01 < 0.01 < 0.01 < 0.01
LGMM 0.057 0.083 0.057 0.259 0.097 0.62 < 0.01 < 0.01 0.056 < 0.01
LLMM 0.098 0.08 0.462 0.649 0.495 0.936 0.43 0.069 0.485 0.058

Table 2.4: Cramer-Von Mises goodness-of-fit test p-values for observed length of
stay of surgical patients for Lognormal, IG, Loglogistic, EE, HE, PH, LL, LLW,
LEMM, LGMM, and LLMM.

goodness of fit test less than 0.01.

In Figures 2.5 and 2.6, we visualize the histogram of the observed length of

stay with the estimated LEMM, LGMM, and LLMM density function. Overall,

these models are robust to fit the length of stay data well. Particularly, the LLMM

consistently fit the best out of the three lognormal-based mixture models.

We summarize the estimated mixture model parameters for each hospital pop-

ulation. Here, we only present the estimated mixture model parameters for the
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Category
LEMM LGMM LLMM

p µ σ λ p µ σ α β p µ1 σ1 µ2 σ2

Site 1 0.754 1.422 0.611 0.05 1 1.698 0.902 1.365 3.031 0.09 3.618 0.175 1.508 0.699
Site 2 0.662 1.108 0.327 0.106 0.663 1.094 0.333 1.473 6.470 0.175 2.609 0.446 1.084 0.427
Site 3 0.686 0.943 0.518 0.112 0.645 0.886 0.485 1.411 6.118 0.098 2.804 0.181 1.061 0.617
Site 9 0.987 1.478 0.631 0.014 0.990 1.481 0.633 1.319 67.17 0.596 1.822 0.704 1.045 0.312
Site 11 0.926 1.389 0.646 0.067 0.898 1.36 0.627 1.437 9.752 0.071 2.779 0.532 1.354 0.625
Site 12 0.923 1.366 0.580 0.061 0.907 1.346 0.566 1.435 10.954 0.209 2.117 0.766 1.268 0.526
Site 13 0.906 0.995 0.463 0.087 0.909 0.988 0.462 1.428 8.377 0.051 2.763 0.467 1.005 0.478
Site 14 0.852 1.535 0.645 0.057 0.811 1.485 0.617 1.439 11.566 0.246 2.532 0.688 1.391 0.581
Site 17 0.032 4.668 0.096 0.190 0.040 4.439 0.458 1.381 3.618 0.032 4.668 0.096 1.385 0.731
Site 20 0.866 1.212 0.597 0.071 0.867 1.197 0.592 1.431 10.255 0.056 3.19 0.269 1.244 0.622

Cardiac Surgery 0.395 1.960 0.281 0.121 0.261 1.916 0.224 1.511 5.448 0.439 1.275 1.176 2.065 0.372
Neurosurgery 0.910 1.325 0.850 0.078 0.699 1.098 0.716 1.430 7.911 0.841 1.640 0.768 0.124 0.091
Organ Transplant 0.999 1.544 0.951 0.115 0.394 1.168 0.928 1.434 5.826 0.835 1.845 0.730 0.018 0.037
Thoracic Surgery 0.305 0.073 0.075 0.138 0.313 0.074 0.076 1.435 5.112 0.678 1.678 0.785 0.075 0.077
Vascular Surgery 1 1.275 0.830 0.101 0.922 1.219 0.802 1.426 6.715 0.062 1.724 0.631 0.396 0.304
Electroconvulsive Therapy 0.315 0.072 0.042 0.091 0.32 0.072 0.043 1.416 7.813 0.642 2.212 0.687 0.085 0.061
Gynecology 0.978 0.577 0.489 0.111 0.979 0.576 0.489 1.402 6.613 0.533 1.018 0.412 0.132 0.058
Pediatric Bronchoscopy 1 0.715 1.008 0.798 1 0.715 1.008 1.279 0.973 0.429 1.589 1.012 0.057 0.028
Surgical Oncology 0.310 0.068 0.047 0.136 0.314 0.068 0.047 1.389 5.31 0.673 1.77 0.707 0.069 0.049
General Surgery 0.448 0.38 0.32 0.174 0.429 0.341 0.192 1.398 4.047 0.740 1.283 0.724 0.12 0.093

Table 2.5: Parameter estimates for lognormal-based mixture models for different
patient populations.

Category
LEMM LGMM LLMM

p µ σ λ p µ σ α β p µ1 σ1 µ2 σ2

Number of iterations 203 157 92 434 385 218 161 23 349 14 44 409 312 56
Execution time 0.2 seconds 0.25 seconds 0.27 seconds

Table 2.6: Number of iterations (until convergence) and execution time (R 3.5.1)
for estimating parameters for lognormal-based mixture models.

LEMM, the LGMM, and the LLMM in Table 2.5.

We present the convergence of all parameters in the lognormal-exponential

mixture model (LEMM), the lognormal-gamma mixture model (LGMM), and the

lornormal-lognormal mixture model (LLMM) in simulation study. In the Figure 2.7

through 2.9 and Table 2.6 below, we demonstrate that our convergence criteria are

satisfied in all cases in less than 500 iterations.
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2.5 Discussion

Length of stay is an important criterion of hospital utilization [35, 101, 116].

Appropriate modeling of hospital LOS can help decision-makers evaluate the effi-

ciency of the care they provide and compare their performance with distributions

for similar patient populations. However, the distribution of length of stay is usually

right-skewed with more than one mode and it includes outliers [96, 105, 106, 125,

139]. These particular features make model fitting more complicated for length of

stay. In the existing literature, different combinations of mixture distributions have

been proposed to model the length of stay, having both pros and cons.

We have developed a robust method for fitting LOS distributions using lognormal-

based mixture models, with the assumption that most distributions are fit well with

two appropriately defined components. Our data analyses using real-world data

demonstrate lognormal is an effective component. We employed the EM algorithm to

estimate the parameters of each mixture model, because closed-form solutions could

not be produced via MLE. We demonstrated that our mixture models performed

consistently well for a variety of LOS distributions, including for ICU settings across

multiple sites and for different classes of surgical patients at the same site. With two

components in our mixture models, we also validated that our three algorithms are

easier to implement. Our hope is that better estimation of these distributions can

support improved operational and clinical decision-making in hospitals, ultimately

leading to improved outcomes for patients and more efficient delivery of care by

providers.
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In general, mathematical modeling has far-reaching implications that could

help hospitals more efficiently allocate their limited resources. We believe there are

many practical applications that could benefit from the use of parametric models

such as the lognormal-based mixture models that we have proposed. While para-

metric LOS distributions have been used in a predictive manner [57], they have

been used much more often to support simulation modeling at the hospital level

[15, 50, 55, 59, 71, 80, 102, 110]. Oftentimes, these models rely on accurate distribu-

tions of LOS in order to properly simulate patient flow within a hospital, providing

an advantage over methods that rely on deterministic estimates of LOS which often

result in underestimating bed capacity requirements [61]. In particular, simulation

provides a useful method for informing bed planning and capacity management. For

example, Costa et al. (2003) and Torabipour et al. (2016) each developed models

that relied on parametric distributions of LOS to simulate patient flow through var-

ious hospital units, and they used these models to support bed capacity planning

[39, 134]. Likewise, Zhu (2012) used simulation to determine an appropriate level

of ICU bed capacity [148]. Additionally, simulation models based on historical LOS

distributions have been used to improve the scheduling of surgical patients or fore-

casting emergency department crowding in hospitals [4, 51, 70, 120]. For all of these

studies, the authors relied on parametric distributions, such as lognormal etc., for

LOS, which our methods consistently outperform in terms of fit. The use of our

models in such studies may improve the accuracy of the simulated outcomes, and

thus, impact the subsequent prescriptive policies.

It would be interesting to extend our analysis in two ways. The first extension
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would involve removing the assumption that the distribution of length of stay is a

mixture with no more than two components. The parameters for such a mixture

model would be more complex to estimate, but would be more flexible in capturing

the behavior of more than two components. This type of model may be appropriate

for more heterogeneous patient populations, such as those observed in general or

surgical hospital units or the emergency department. The challenge associated with

this approach would be to develop a method for optimizing the number of mixture

model components, taking into consideration the quality of fit and the complex-

ity of the model. The second extension involves developing mixture models with

components other than exponential-family distributions, which is a more difficult

estimation problem. These problems are beyond the scope of this chapter and will

be interesting topics for future research.
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Figure 2.4: Distributional summary of observed length of stay (in days) in medical
and surgical intensive care units.
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Figure 2.5: Length of stay distribution for different sites at ICU, shown with density
plots for lognormal-exponential mixture model (LEMM), lognormal-gamma mixture
model (LGMM), lognormal-lognormal mixture model (LLMM) and Cramer-Von
Mises p-values for goodness of fit tests.
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Figure 2.6: Length of stay distribution for different surgical specialties, shown with
density plots for lognormal-exponential mixture model (LEMM), lognormal-gamma
mixture model (LGMM), lognormal-lognormal mixture model (LLMM) and Cramer-
Von Mises p-values for goodness of fit tests.
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Chapter 3: A Continuous-time Markov Model for Estimating Read-

mission Risk for Hospital Inpatients

3.1 Introduction

Estimating hospital readmission risk can support clinical and operational de-

cision making in hospitals. On the clinical side, medical staff can incorporate knowl-

edge of the readmission risk into their plan of care for patients. For example, patients

with a low risk of readmission could be evaluated further for the possibility of early

discharge, whereas patients with a high risk of readmission could be retained for

further evaluation and treatment. With respect to operations, hospital beds are

a critical resource that must be managed efficiently. On one hand, patients being

discharged early frees up beds for incoming patients [7, 44]; but on the other hand,

patients who are discharged inappropriately could experience adverse outcomes in

the future, including not only readmission but increased morbidity and mortality

[22, 41, 75, 95]. In addition, understanding how readmission risk varies over time

can help hospitals to better plan their capacity for other limited resources such as

medical equipment and clinical staff.

In addition to the clinical and operational considerations, readmissions also
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have a significant financial impact on hospitals. Readmission rates have been used

as a key indicator for hospital performance, as indicated by recent efforts by the

U.S. Centers for Medicare and Medicaid Services (CMS) to disincentivize hospitals

by lowering reimbursement rates for readmitted patients [81, 91, 127]. Since 2012,

CMS has reduced Medicare payments for Inpatient Prospective Payment System

(IPPS) hospitals with high 30-day readmission rates in an effort to promote high-

quality and patient-centered care. This change has motivated hospitals to think

more holistically about how to make better clinical decisions for admitted patients,

which in turn will likely drive better operational and financial outcomes.

Since the enforcement of CMS reimbursement penalties, modeling readmission

risk has been an area of focus for research in the healthcare space. Early studies

apply traditional statistical methods such as linear, generalized linear, or nonlinear

regression models to estimate the readmission risk for a patient [30, 64, 81, 87, 136,

147]. Generalized additive models have also been applied to the readmission risk

estimation problem, which relax the linearity assumption from traditional regression

models [31]. Supervised machine learning models have been applied to this problem

as well, including support vector machines and random forests [79]. Most recently,

deep learning has been leveraged to estimate readmission risk, which offers additional

prospects for incorporating rich predictor data. For example, Jamei et al. used

Google’s TensorFlow library to build an artificial neural network model to predict

the risk of 30-day hospital readmission using data from more than 300,000 hospital

stays,[78] and Xie et al. employed the trajectory-based deep learning methods for

predicting the readmission risk to capture various illness trajectories and account
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for the patient heterogeneity using data from 18 million patients [79, 144].

These models may be useful in specific settings (e.g., unit type, patient cohort),

but their performance may be limited for clinical purposes. For example, in a

systematic review, Kansagara et al. tested 26 regression models for readmission

risk, and found that most models perform poorly for individual patients [81]. The

aforementioned statistical and machine learning techniques rely on a broad range of

information to train them, which may not be accessible or even (digitally) available

in every hospital setting. In addition to the data requirements, the development,

evaluation, and implementation of these models requires a certain level of expertise

and resources that may also not be available.

In addition, most of the aforementioned models do not incorporate the effect of

time since discharge on readmission risk. Hospital readmissions usually occur shortly

after a patient is discharged, and the likelihood declines over time. Approximately

one third of readmissions occur within a month of discharge, half of them within

90 days, and 80% within a year [10, 19, 34, 38, 67, 128, 149]. There are various

conventions for defining the most relevant time window to consider when evaluating

readmissions, such as within 1, 2, 4, or 12 months of the time of discharge [8, 9, 29,

43, 56, 83, 138, 141]; however, most preventable readmissions have been reported

to occur within one month of discharge [9, 56, 91]. Therefore, we focus on the 30-

day readmission window, which is consistent with the CMS reimbursement penalty

definition.

In this study, our goal is to estimate the risk of readmission for patients over

time. Specifically, we select surgical patients since they involve more resources from
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hospitals such as nurses, bed planning, and more post-operative care. Readmission

after surgery happens frequently and is associated with high cost [140]. Surgical

complications and respiratory failures result in most of the readmissions or mortal-

ity in a surgical clinic [14, 137]. In addition to biomedical applications [33], Markov

chains also have been used to model readmission in a variety of hospital settings,

such as estimating the probability of this outcome for hospital patients with chronic

obstructive pulmonary disease or respiratory failure, or patients in geriatric settings

[16, 133]. Our work is not limited to scenarios where patient-specific data is required,

and could be employed anywhere that the time of patient discharge and readmission

is available. We propose a two-state continuous-time Markov chain model with a

constant transition rate, which we use to compute point and interval estimators for

the readmission probability as a function of the time since the patient is discharged

[66]. Our version of the readmission problem has several challenging characteristics.

First, we have a limited amount of information on which to base our estimations

for readmission risk. In contrast with many of the previous models, we do not have

access to electronic medical record data that would likely contain many significant

predictors of readmission risk. We only have information on the times of discharge

and readmission, along with some basic information that we can use to group the

patients into cohorts (e.g., surgical specialty). The second challenge is that we need

to develop an appropriate link between readmission probability and time. More-

over, we need to be able to develop asymptotic distributions in order to compute

the interval estimators. To address these limitations, we utilize techniques from

stochastic processes and survival analysis to develop our models for readmission
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risk. The stochastic processes will be utilized to link readmission probabilities with

time. Meanwhile, we use survival analysis to gain information from the time until

the occurrence of events of interest, that is, discharge or readmission, assuming the

constant transition rate.

The remaining sections of this chapter are organized as follows. In Section

3.2, we formulate our problem and describe the data we use in this study. We

describe our methodology for estimating readmission probabilities using the two-

state continuous-time Markov chain. In Section 3.3, we validate the performance of

our estimation approach for different hospital readmission scenarios using simulation

studies. In Section 3.4, we test the performance of our estimation approach using

real data collected by researchers at the University of Maryland Medical Center.

Finally, we conclude with a discussion of our results and future research directions

in Section 3.5. In this final section, we also illustrate how hospitals could aggregate

these dynamic estimations for individual patients into an overall estimate of expected

readmissions within a 30-day time window.

3.2 Methods

In this section, we introduce the two-state continuous-time Markov chain to

formulate our model for patient discharge and readmission. We then estimate our

readmission probabilities using maximum likelihood estimation (MLE). Finally, we

present asymptotic distributions and interval estimation for the readmission proba-

bility.
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A significant portion of hospitals’ revenues and profits come from surgical

volume [7]. Tsai et al. found that almost one in seven surgical patients is readmitted

to the hospital within 30 days [135]. Our study population consists of surgical

patients admitted to the University of Maryland Medical Center between January

1, 2007 and June 1, 2007. The dataset contains the surgical specialty group that

performed the surgery, the dates when the patient was initially admitted to and

discharged from the hospital, and the dates when the patient was readmitted, as

illustrated in the diagram below:

(timeline)

Admission Surgery Discharge

t = 0

Readmission

t > 0

We want to analyze how readmission risk changes as a function of time once a

patient has been discharged after surgery at a large, academic medical center. After

a patient is initially discharged, the patient will remain in one of two hospital states:

discharge or readmission.

Thus, we denote our probabilities of interest as follows:

P00(t) = Pr{Patient remains discharged at time t after being discharged}

P01(t) = Pr{Patient is readmitted at time t after being discharged}

Our goal is to estimate these two probabilities. We propose the following

methods to achieve these estimators.

3.2.1 The Continuous-time Markov Model

We define the state of a patient at time t ∈ R+ as :
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ζt =


0 if the patient is discharged at time t

1 if the patient has been readmitted and is still in the hospital at time t.

We model the evolution of the patient state as a stochastic process using a

continuous-time Markov chain with a constant transition rate. We illustrate the

two-state, continuous-time Markov chain in the diagram below:

0 1

After a patient is initially discharged at time t = 0, the patient remains dis-

charged unless he or she is readmitted at some future time t. If readmitted, patients

remain in state 1 until they are discharged, at which point they transition back to

state 0.

We seek to estimate two probability functions:

1. Probability of remaining discharged at time t after being discharged.

P00(0, t) = Pr(ζt = 0|ζ0 = 0) = P00(t)

2. Probability of being readmitted at time t after being discharged.

P01(0, t) = Pr(ζt = 1|ζ0 = 0) = P01(t)

We note that for patients who are readmitted multiple times, we simply model
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the probability of remaining discharged or being readmitted since their most recent

discharge.

3.2.2 The Estimators

We use the Kolmogorov backward equations [90] to model the rate of change

of our readmission probabilities over time, which are appropriate for modeling

continuous-time Markov processes. This approach yields the following system of

ordinary differential equations:

dP00(t)

dt
= λ00P00(t) + λ10P01(t)

and

dP01(t)

dt
= λ01P00(t) + λ11P01(t)

where λij is the transition rate from state i to state j and i, j = 0 or 1.

The system of equations are equivalent to the following matrix form

d

dt
~P (t) = A ~P (t)

where

~P (t) =

P00(t)

P01(t)
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and

A =

λ00 λ10

λ01 λ11

 .

The solution to the system is

~P (t) = eAt ~P (0)

where

~P (0) =

P00(0)

P01(0)

 =

1

0

 .

Let λ1 and λ2 be two distinct eigenvalues of A. To obtain the closed-form of ~P (t),

we decompose the matrix A as

A = QΛQ−1

where Λ is the diagonal matrix whose diagonal elements are the eigenvalues of

A, and Q is the square matrix whose columns are the corresponding eigenvectors.

Specifically,

Λ =

λ1 0

0 λ2


where

λ1 =
1

2
(λ00 + λ11 +

√
(λ00 − λ11)2 + 4λ01λ10),

λ2 =
1

2
(λ00 + λ11 −

√
(λ00 − λ11)2 + 4λ01λ10).
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and

Q =

 λ10 λ10

λ1 + λ01 λ2 + λ01

 .

Here, we see that the two eigenvectors are linearly independent, so we can perform

eigendecomposition for the coefficient matrix A above as follows:

~P (t) = eAt ~P (0) =
+∞∑
k=0

(At)k
1

k!
~P (0)

=
+∞∑
k=0

QΛkQ−1
tk

k!
~P (0) = Q(

+∞∑
k=0

Λk t
k

k!
)Q−1 ~P (0)

= Q

eλ1t 0

0 eλ2t

Q−1 ~P (0).

After we compute the matrix multiplication, we have

P00(t) =
eλ1t(λ2 + λ01)− eλ2t(λ1 + λ01)

λ2 − λ1

and

P01(t) =
(eλ1t − eλ2t)(λ1 + λ01)(λ2 + λ01)

λ10(λ2 − λ1)
.

The matrix A is the generator matrix for our Markov chain model; therefore the

row sums are equal to zero. Thus, we have λ1 = 0 and λ2 = −λ01 − λ10, and the

following equations are achieved.

Solving the equations [117] yields

P00(t) =
−λ10 − λ01eλ2t

λ2
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and

P01(t) =
−λ01 + λ01e

λ2t

λ2

where λ2 = −λ01 − λ10.

The stationary distributions of the continuous-time Markov chain model are

lim
t→∞

P00(t) =
λ10

λ01 + λ10

and

lim
t→∞

P01(t) =
λ01

λ01 + λ10
.

These limits and can also be viewed as limits of both readmission probabilities.

Hence, the two estimators are

P̂00(t) = P00(t, θ̂) =
−λ̂10 − λ̂01eλ2(θ̂)t

λ2(θ̂)

and

P̂01(t) = P01(t, θ̂) =
−λ̂01 + λ̂01e

λ2(θ̂)t

λ2(θ̂)
,

where θ = {λ01, λ10} and λ̂ij is the MLE of λij, where i, j = 0 or 1.
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3.2.3 Asymptotic Distributions of the Estimators

In addition to the point estimates derived in the previous subsection, we would

like to have some guarantee of capturing the probabilities of interest using an in-

terval estimator. In order to succeed at interval estimation, we need to derive the

asymptotic distributions of the estimators below. We begin with the asymptotic

distribution for P01(t, θ̂). The distribution for P00(t, θ̂) follows in a similar fashion.

Theorem 3.1. The asymptotic distribution for P01(t, θ̂) is

√
n(P01(t, θ̂)− P01(t, θ))

D−→ N (0, a21λ
2
01 + b21λ

2
10)

where

a1 =
λ10 − (λ10 + λ01λ2t)e

λ2t

λ22

and

b1 =
−λ01 + λ01(1− λ2t)eλ2t

λ22
.

Proof. Let’s first expand P01(t, θ̂) using a first-order Taylor series around θ̂ = θ,

giving

P01(t, θ̂) = P01(t, θ) +
∂P01(t, θ)

∂λ01
(λ̂01 − λ01)

+
∂P01(t, θ)

∂λ10
(λ̂10 − λ10) + r(n)

where r(n) = o
(
(λ̂01 − λ01) + (λ̂10 − λ10)

)
. Since each λ̂ij is the MLE of λij, where
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i, j = 0 or 1, we have the following asymptotic distribution for λij:

√
n(λ̂ij − λij)

D−→ N (0, σ2
ij)

where σ2
ij = λ2ij, where i, j = 0 or 1.

Since λ̂ij
P−→ λij, it follows that r(n)

P−→ 0. By applying Slutsky’s Theorem to

√
n(P01(t, θ̂)− P01(t, θ)) = a1

√
n(λ̂01 − λ01) + b1

√
n(λ̂10 − λ10)

where

a1 =
∂P01(t, θ)

∂λ01
and b1 =

∂P01(t, θ)

∂λ10
,

the results now follow.

By using Theorem 1, we have a general method to construct the approximate

1− α confidence interval for P01(t, θ).

Let’s define σ2
1(θ) = a21λ

2
01 + b21λ

2
10. Since θ̂ is the MLE for θ, we have

σ1(θ̂)
D−→ σ1(θ).

Thus, we have

σ1(θ)/
√
n

σ1(θ̂)/
√
n

P−→ 1.
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On the other hand, we have

P01(t, θ̂)− P01(t, θ)

σ1(θ)/
√
n

D−→ N (0, 1).

By applying Slutsky’s Theorem, it yields

P01(t, θ̂)− P01(t, θ)

σ1(θ)/
√
n

σ1(θ)/
√
n

σ1(θ̂)/
√
n

=
P01(t, θ̂)− P01(t, θ)

σ1(θ̂)/
√
n

D−→ N (0, 1),

giving the approximate 1− α confidence interval

P01(t, θ̂)− zα/2
σ1(θ̂)√
n
≤ P01(t, θ) ≤ P01(t, θ̂) + zα/2

σ1(θ̂)√
n
.

Theorem 3.2. The asymptotic distribution for P00(t, θ̂) is

√
n(P00(t, θ̂)− P00(t, θ))

D−→ N (0, a22λ
2
01 + b22λ

2
10)

where

a2 =
−λ10 + (λ10 + λ01λ2t)e

λ2t

λ22
and b2 =

λ01 + λ01(λ2t− 1)eλ2t

λ22
.

Proof. The proof of Theorem 2 is almost identical to that of Theorem 1.

Similarly, we have the approximate 1− α confidence interval for P00(t, θ)

P00(t, θ̂)− zα/2
σ2(θ̂)√
n
≤ P00(t, θ) ≤ P00(t, θ̂) + zα/2

σ2(θ̂)√
n
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where

σ2
2(θ) = a22λ

2
01 + b22λ

2
10.

3.3 Simulation

In this section, we validate the performance of our estimation via simulation

in order to demonstrate the flexibility of our method. In each scenario, we generate

500 readmitted patients and compare our estimators with the empirical readmission

probability. Here, we consider three scenarios to validate our methods, assuming

λ01 = 0.01 and λ10 = 0.05.

In scenario A, we simulate 500 trajectories for patients who are readmitted once

within 72 hours of discharge. First, we generate 500 interevent times between the

initial discharge and the impending readmission by sampling from the exponential

distribution with λ01 = 0.01. Then, we generate 500 length of stay observations for

the readmitted patients by sampling from an exponential distribution with λ10 =

0.05.

In scenario B, we simulate 500 trajectories for patients who are readmitted

twice within 2 weeks of discharge. In order to conduct this experiment, we simply

repeat the two steps from scenario A to simulate multiple discharges and readmis-

sions.

For each scenario, we compute the empirical risk as the proportion of patients
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who are in state 0 or 1 at time t:

P̃0j(t) =
# of patients in state j at time t

500

where j = 0 or 1.

Last, we compare P̃0j(t) with P̂0j(t) where j = 0 or 1 in each scenario, since

∀t > 0, P̃0j(t)−P̂0j(t)
P−→ 0. We provide more details about the relationship between

P̃0j(t) and P̂0j(t) below. Here, P̂00(t) and P̂01(t) are defined in section 3.2.2 above.

Here, we prove Theorem 3.3 below.

Theorem 3.3. ∀t > 0, P̃0j(t)− P̂0j(t)
P−→ 0.

Proof. To ease the notation, denote P̃0j(t) as P̃n(t), P̂0j(t) as P̂n(t), where n repre-

sents the sample size, and let P (t) be the true transition probability.

First, since ∀t > 0, P̃n(t)
P−→ P (t), it follows that ∀δ > 0, ∀ε > 0, ∃N1 > 0, s.t.

when n > N1, Pr(|P̃n(t)− P (t)| > δ/2) < ε/2.

Then, since ∀t > 0, P̂n(t)
P−→ P (t), it follows that ∀δ > 0, ∀ε > 0, ∃N2 > 0,

s.t. when n > N2, Pr(|P̂n(t)− P (t)| > δ/2) < ε/2.

Therefore, ∀δ > 0, ∀ε > 0, let N = max(N1, N2) + 1. Then,

Pr(|P̂n − P | > δ) ≤ Pr(|P̃n(t)− P (t)|+ |P̂n(t)− P (t)| > δ)

≤ Pr(|P̃n(t)− P (t)| > δ/2 ∪ |P̂n(t)− P (t)| > δ/2)

≤ Pr(|P̃n(t)− P (t)| > δ/2) + Pr(|P̂n(t)− P (t)| > δ/2)

< ε, ∀n > N.
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Also, it’s easy to observe that P̃n(t) follows a binomial distribution for a given

t.

In addition to the comparison, we also implement 5-fold cross-validation to

assess the method. We split the data into 5 roughly equal-sized parts. For each part,

we train the model on the 4 parts of the data, and calculate the mean integrated

squared error (MISE), defined below, using the remaining part.

MISE = E
∫ t

0

(P̃0j(t)− P̂ k
0j(t))

2dt =
1

5

5∑
k=1

∫ t

0

(P̃0j(t)− P̂ k
0j(t))

2dt

where P̂ k
0j(t) is the estimator calculated by the data without the kth part.

In Figure 3.1, and 3.2, we visualize the comparison of our estimators with the

empirical risks. The MISE is 4.35, validating the fit of the method to the simulated

data. As we can see for each figure, the empirical risk is approximately centered on

the estimated readmission risk and mostly contained within the estimated interval

limits. The method is robust for patients with single and multiple readmissions.

3.4 Real Data Analysis

In this section, we evaluate our methods using real data collected for a previous

study conducted by researchers at the University of Maryland School of Medicine

[7]. We apply our methods on data collected for four cohorts of surgical patients,

including organ transplant surgery, general surgery, urology surgery, and pediatric
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Figure 3.1: Empirical and estimated readmission risks for patients readmitted 1
time within 72 hours.
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brochoscopy. In addition to these four groups, we also analyze all surgical patients,

because these patients are occupying critical bed resources longer than others. We

show that our method is useful to estimate readmission probabilities across multiple

surgical patient cohorts.

In Table 3.1, we summarize the descriptive statistics for each group of pa-

tients, including the number of patients and their average stay at the hospital and

average time between admission and readmission. The average stay at the hospital

ranges from 283 to 429 hours, while average time between admission and readmis-

sion ranges from 204 to 450 hours. In Table 3.2, we report the estimates for our two

parameters λ01 and λ10, and the p-values for the Cramer-Von Mises test [40] for each

fitted distribution. As shown in the table, the p-values for each surgical cohort are

not statistically significant (p > 0.05), thus validating our assumptions about the

exponential distribution of times between states and the constant transition rate.

Organ Transplant General Surgery Urology Pediatric Bronchoscopy All surgical patients

Number of Patients 57 60 65 25 456
Average length of stay in hospital (hours) 305 283 307 286 370
Average time between hospital stays (hours) 290 204 253 450 222

Table 3.1: Descriptive statistics for different surgical patient cohorts.

Organ Transplant General Surgery Urology Pediatric Bronchoscopy Stay over 48 hours

λ̂01 0.0034 0.0049 0.0039 0.0022 0.0045

P-value (λ̂01) 0.058 0.1232 0.1510 0.1574 0.0364

λ̂10 0.0033 0.0035 0.0033 0.0035 0.0027

P-value (λ̂10) 0.059 0.1438 0.0827 0.0977 0.0143

Table 3.2: Parameter estimates and goodness-of-fit p-values for different surgical
patient cohorts.

In Figures 3.3 through 3.7, we visualize our point and interval estimators of

readmission risks compared to empirical estimators. As we can see in Figure 3.3,
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the curves of the estimation of P00(t) and P01(t) oscillate around the curves of

the empirical estimation over time and these curves are contained in the interval

estimator nearly all the time. We observe similar patterns for the scenarios visualized

in Figures 3.3 through 3.7.
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Figure 3.3: Empirical and estimated readmission risks for 57 organ transplant
surgery patients.

Due to the sample size consideration, we implement 2-fold cross-validation for

all surgical patients. We show the trajectories for p01 using different training and test

sets in Figure 3.7. Additionally, we also summarize the MISE results for different
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Figure 3.4: Empirical and estimated readmission risks for 60 general surgery pa-
tients.
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Figure 3.6: Empirical and estimated readmission risks for 25 pediatric bronchoscopy
surgery patients.
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Figure 3.7: Empirical and estimated readmission risks for all 456 surgical patients.
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surgical group patients in Table 3.3; this validates the good fit for the transition

probabilities.

Organ Transplant General Surgery Urology Pediatric Bronchoscopy All surgical patients

MISE 9.77 11.02 6.09 3.58 9.43

Table 3.3: MISE for different surgical patient cohorts.

3.5 Discussion

Appropriate modeling of readmission risks can help hospitals make efficient

decisions with respect to clinical and operational objectives. However, the perfor-

mance of individual prediction models for readmission risk has had limited impact

to date. In this chapter, we provide a consistent approach that hospitals can use

to estimate readmission risks based on limited information. Our approach makes

it useful for hospitals to evaluate clinical outcomes or plan for future operations.

Our method does not rely on complex data sources that vary from hospital to hos-

pital, but rather the method is easy to implement in a variety of settings as long

as discharge and readmission times for patients are accessible. We believe that this

study will benefit both high- and low-resource settings to support decision-making

for hospitals, particularly for short- and long-term bed planning. For the former,

our method could be used as a simple approach prior to the development and im-

plementation of sufficiently accurate individual prediction models. For the latter,

our method could provide much needed decision support where the availability of

digitized data and analytical expertise are often limited [53].

We model hospital readmission risks using a two-state continuous-time Markov
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chain with constant transition rate. Starting from the Kolmogorov backward equa-

tions, we developed point and interval estimators for the probability of readmission

as a function of time. We demonstrated that our methods to estimate readmission

risk performed well for both simulated and real scenarios and that our two-state

and constant transition rate assumptions were validated by the latter analysis.

This study could be applied to healthcare practice in the following ways. First,

we could use our estimators to monitor the readmission risk trajectory for patients

over time. Second, our methods could be used to evaluate the quality of care pro-

vided by a particular hospital, by examining both the post-discharge behavior of

readmission probability (e.g., does it rise slowly or sharply) as well as the steady-

state risk. Third, we could use our model to monitor the expected number of read-

mitted patients over time, based on the patients that have been recently discharged.

For example, we estimate that the expected number of readmitted patients among

patients who have been discharged within the previous 30 days is
∑30

i=1wiP01(ti),

where wi is the number of patients discharged i days ago and ti is the time period

between today and the time when wi patients were discharged. We illustrate the

timeline in the diagram below:

· · ·t30 t29 t28 t2 t1 today

w30 w29 w28 w2 w1

From the continuous-time point of view, if the ith patient is discharged at time

ti, where i ∈ Z+ and we assume there are Nt−nt + 1 patients discharged within the

previous 30 days, then we observe the following timeline:
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Figure 3.8: Probability trajectories for each patient discharged within 30-day time
window.

· · ·Day 0 Day 1 Day 2 Day 3 Day 30

tnt tnt+1 · · · ti tNt−1 tNt· · ·

We visualize the readmission probability trajectories for each patient over a

30-day time window in Figure 3.8.

Let’s define Xi(t) = 1 if the ith patient will be readmitted at time t, otherwise,

Xi(t) = 0, namely:

Xi(t) =


1, with probability P01(t− ti),

0, with probability 1− P01(t− ti),

and let X(t) denote the total number of patients who were discharged within the
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previous 30 days and readmitted at time t. Then it follows that

X(t) =
Nt∑
i=nt

Xi

and

EX(t) =
Nt∑
i=nt

EXi(t) =
Nt∑
i=nt

P01(t− ti) for all t,

where ∀t, Nt ∈ Z+, nt ∈ Z+, tNt ≤ t < tNt+1, |t−tnt| ≤ 30 (days) and |t−tnt−1| > 30

(days). Using these definitions, we are able to estimate the expected number of pa-

tients readmitted at time t. We demonstrate this idea in a simple simulation, which

we visualize in Figure 3.9. In this scenario, we stochastically generate 100 discharge

times uniformly throughout the two-month time period, and aggregate the readmis-

sion probabilities for patients discharged within the previous 30 days using EX(t).

We observe that the expected number of readmitted patients increases as the time

since discharge increases for the included patients (i.e., those discharged within the

most 30 days) and as new patients are discharged, and decreases as any included

patients are readmitted or as the time since discharge for included patients moves

beyond the 30-day window. We assume that each discharged patient will be read-

mitted with probability of λ01/(λ01 +λ10), and generate their time until readmission

from an exponential distribution with λ01. We also indicate the average value of

this time series, which hospitals could use as an estimate for the expected number

of readmissions. We can calculate this average estimate by 1
tb−ta

∑nt
i=1

∫ tb
ta
P01(t−ti)dt

if we are interested in a specific time period [ta, tb]. This steady-state value in Fig-
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Figure 3.9: Expected number of readmitted patients over time after a 30-day
warmup period, assuming 100 uniformly distributed patient discharges and tran-
sition rates λ01 and λ10 equal to 0.0049 and 0.0035, respectively. We also indicate
the average of the long-term number of expected readmitted patients in the second
month with the dotted line.

ure 3.9 is approximately 10 patients for the second month. This type of information

would be useful for hospitals so that they could anticipate arrivals for readmitted

patients and factor this information into their bed management policies.

In future work, our methodology could be extended in the following ways.

First, it would involve developing time-dependent transition rates. Although we

validate this assumption for surgical cohorts in our sample, it may not work for

other patient cohorts. Second, we choose the patient group selected from 2007. It

will be beneficial to have recent data analyzed so the model could be updated. The

third extension would involve removing the two-state assumption. In Table 3.4, we
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estimate the time until readmission and length of stay parameters for patients who

are readmitted twice in our surgical cohort samples. The similarity between the

first and second sets of estimates supports our use of the two-state and Markovian

assumption; therefore, relaxation of this assumption would likely have minimal im-

pact on our results. However, development of such an approach may prove beneficial

for other patient samples. These problems are beyond the scope of this chapter and

will be interesting topics for future research.

Organ Transplant General Surgery Urology Pediatric Bronchoscopy All surgical patients

λ̂101
a 0.0035 0.0055 0.0036 0.0027 0.0029

λ̂110
b 0.0034 0.0031 0.0032 0.0025 0.0021

λ̂201
c 0.0027 0.0041 0.0039 0.002 0.0037

λ̂210
d 0.0031 0.0042 0.0035 0.0036 0.0029

a Time to first readmission after initial discharge
b Time to second discharge after first readmission
c Time to second readmission after second discharge
d Time to third discharge after second readmission

Table 3.4: Parameter estimates of different time periods for five surgical patient
cohorts.
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Chapter 4: Decreasing Trend of Hospital Emergency Department Ac-

cess Observed in Maryland Region III from 2016 to 2018

4.1 Introduction

Hospital emergency department (ED) services play an important role in the

healthcare system for critically ill patients and urgent unplanned conditions. Thus,

efforts to improve the efficiency of ED services are critical [82, 88]. Access to ED

services is one important indicator of the efficiency at which a hospital is operating,

which not only includes the ED but also inpatient services [6, 27, 118]. In this study,

we utilize data collected in Maryland Region III on the frequency and duration of

ED alert status to study such accessibility changes over the past three years.

In the literature, several studies have analyzed changes in ED utilization, but

it usually contains broader regions such as the whole nation and typically investi-

gated a relatively older time period [28, 47, 121]. To our best knowledge, none of the

studies specifically evaluated such a critical health care issue in Maryland locally.

In this chapter, we try to fill this gap and focus on analyzing the accessibility and

efficiency of ED services in Maryland for the most recent (and complete) three years

(2016-2018), specifically, in Region III. Region III in Maryland contains five counties
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(Anne Arundel, Baltimore, Carroll, Harford, and Howard) and Baltimore city, and

is the most populous region in the state. In this study, we enrolled 21 hospitals in

this region, including Anne Arundel Medical Center, Baltimore Washington Medi-

cal Center, Bon Secours Hospital, Carroll Hospital Center, Franklin Square Hospi-

tal, Good Samaritan Hospital, Greater Baltimore Medical Center, Harbor Hospital,

Harford Memorial Hospital, Howard County General Hospital, Johns Hopkins Hos-

pital (JH), Johns Hopkins Bayview Hospital (JH Bayview), Mercy Medical Center,

Northwest Hospital Center, Sinai Hospital, Saint Agnes Hospital (St. Agnes), Saint

Josephs Hospital (St. Joseph), Union Memorial Hospital, University of Maryland

Medical Center (UMMC), University of Maryland Medical Center Midtown (Mid-

town), and Upper Chesapeake Medical Center [1]. We develop statistical tools to

estimate and examine the changes in ED accessibility over time using data collected

by the state of Maryland on the alert status of each hospital’s ED. By analyzing the

frequency and duration of yellow, red, and reroute alerts, we provide an assessment

of the overall trends related to ED accessibility in Region III hospitals from 2016 to

2018.

The remaining sections of this chapter are organized as follows. In Section

4.2, we formulate our problem and describe the data we use in this study. We

describe our methods for comparing changes in the duration of alerts for the last

three years. In Section 4.3, we present the descriptive statistics for the duration of

alerts, significant changes over the three years, and the patterns of those significant

changes. In Section 4.4, we discuss several future research directions. Finally, we

conclude with a discussion of our results in Section 4.5.
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4.2 Data and Methods

4.2.1 Data Source and Management of Emergency Department Re-

source Availability

Provided by the Maryland Institute for Emergency Medical Services Systems

(MIEMSS), the County/Hospital Alert Tracking System (CHATS) generates real-

time and historical data about the timing (i.e., start and end date and time) of yel-

low, red, and reroute alerts for each hospital in the state [2]. The system is updated

every 60 seconds and enables the EDs to provide notice to surrounding hospitals

and EMS providers about their operational status and thus control incoming patient

demand. The event of high ED utilization or unavailability of monitored beds may

result in a hospital activating an alert status. Specifically, a yellow alert is initiated

when the ED is experiencing a high level of crowding such that patients with urgent

needs (e.g., emergency severity index level 2 and 3 patients) are not being managed

safely. In such cases, the ED will temporarily request that no new patients in need

of urgent medical care can be received, and they should go to other EDs around.

When the hospital does not have any available electrocardiogram-monitored beds,

the ED will activate its red alert status. Reroute alerts are activated when an Ad-

vanced Life Support (ALS)/Basic Life Support (BLS) unit is being held in the ED

of a hospital because of the lack of an available bed.
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4.2.2 Study Population

We specifically focus on the data collected from 21 EDs in Maryland Region

III in 2016, 2017, and 2018 in the database. The Region III area in Maryland in-

cludes Baltimore City and Anne Arundel, Baltimore, Carroll, Harford, and Howard

counties.

4.2.3 Statistical Methods and Data Analysis

In order to investigate the changes in the levels of access for the 21 EDs over

the last three years, we study trends related to the frequency and duration of each

type of alert. We calculate descriptive statistics for the time between alerts and

the duration of alerts for each of the 21 hospital EDs. Kruskal-Wallis test [85] is

used to check for any significant statistical differences in these measures over the

most recent (and complete) three years. We tried the exponential, Weibull, and

log-logistic distributions to model the durations of these alerts, and validated the

distribution fitting using the Cramer-von Mises test to identify the most appropriate

model fitting.

Specifically, for each hospital, we analyze the duration of time between alerts,

for example, the duration of yellow, red, and reroute alerts. We are also interested in

each hospital’s alert-free period, which represents the hospital ED’s high efficiency

and accessibility. We define the alert-free period as the time from the end of any

alert to the beginning of the next alert, which we illustrate in the diagram below:
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· · ·10:00am 2:00pm 4:00pm timeline

start of alerts end of alerts start of a first alert

alert-free period

To evaluate if there are overall ED accessibility changes in the last three years

for each hospital, we apply the Kruskal-Wallis test using different metrics, such

as total alert-free period, the duration of red, reroute, and yellow alerts. When

significant statistical differences across the three years is discovered, we further

compare consecutive years pair-wisely to identify the specific statistically significant

changes.

In addition to using descriptive statistics for identifying the ED accessibil-

ity differences during the most recent three years, we also fit survival models to

“time to alert” data in each hospital to examine specific change trends between

years. Particularly, we present the probability of not getting alerts in hours start-

ing from the end of previous alerts in each of the 21 hospital EDs for 2016, 2017,

and 2018 separately. We further considered each specific time of alert, yellow, red,

and reroute and illustrate the hazard rate changes over time using survival figures.

We fit distributions for time-to-event data such as exponential, Weibull, log-logistic,

lognormal, and gamma distributions with the method of maximum likelihood esti-

mation (MLE), and then examine the model-fitting with the Cramer-von Mises test

to find the best fit and the most appropriate distribution assumptions [40].

To model alert-free period data, we first use X, Y, Z to denote the duration

from the end of alerts to the beginning of a first alert caused by red, reroute, and
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yellow respectively. Then our alert-free period denoted by U will be min(X, Y, Z).

We fit X, Y , and Z using exponential and Weibull distributions and compare the

fits using criterions of Akaike information criterion (AIC) and Bayesian information

criterion (BIC) [3, 124]. To estimate parameters in the models of X, Y , and Z, we

need to write the log likelihood function as:

logL =
n∑
j=1

3∑
i=1

log [fi(tj)]
δi(tj)[Si(tj)]

1−δi(tj)

where the alert status indicator is defined as

δi(tj) =


1 if alert i occurs at time tj

0 otherwise,

n is the number of alert-free periods, and fi(tj) and Si(tj) are density and sur-

vival functions for X, Y , and Z. Here the index i is from 1 to 3 representing Red,

ReRoute, and Yellow Alerts. We estimate parameters in exponential and Weibull

distributions by maximizing this log likelihood function. When assuming exponen-

tial, the estimated parameters are λi =
∑nh
j=1 δi(tj)∑nh
j=1 tj

. When using Weibull, we maximize

the log likelihood function numerically. Modeling of U becomes a competing risk

model among the events of red, reroute, and yellow alert signals.
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4.3 Results and Findings

In Tables 4.1, 4.2, 4.3, and 4.4, we present descriptive statistics including the

number of alerts, total hospital-wise alert duration, and median and interquartile

range (IQR) for the alert-free periods, Red Alert duration, ReRoute Alert duration,

and Yellow Alert duration, respectively for all 21 hospitals in Maryland Region III

from 2016 to 2018.

As shown in Table 4.1, the total number of alerts ranges from 57 (Harford

Hospital) to 352 (Baltimore Washington) in 2016, from 28 (Harford Hospital) to 415

(St. Agnes) in 2017, and from 94 (Harford Hospital) to 480 (St. Agnes) in 2018.

From 2016 to 2018, the number of alerts strictly increased in eight hospitals (Bon

Secours, Howard, John Hopkins, JH Bayview, Sinai, St. Agnes, St. Joseph, and

Upper Chesapeake), while two hospitals (Good Samaritan and Greater Baltimore)

are observed to have decreased total number of alerts from year to year. The median

duration of alert-free periods ranges from 11.33 hours (Baltimore Washington) to

69.11 hours (Carroll Hospital) in 2016, from 10.57 hours (St. Agnes) to 137 hours

(Harford Hospital) in 2017, and from 8.21 hours (St. Agnes) to 47 hours (Harford

Hospital) in 2018. The median duration of alert-free periods becomes shorter and

shorter from 2016 to 2018 for seven hospitals (Bon Secours, Carroll, Good Samaritan,

Howard, Sinai, St. Agnes, and UMMC). Only Union Memorial Hospital is observed

with an increased median alert-free duration year by year from 2016 to 2018.

The number of red alerts ranges from 1 (Mercy Medical) to 105 (Union memo-

rial) in 2016, from 2 (Baltimore Washington) to 115 (St. Agnes) in 2017, and from
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Hospitals Variables Year 2016 Year 2017 Year 2018 P-values

Anne Arundel Total Number of Alerts 287 223 281
Hours of Alert-free Period* 12.68 (25.99) 19.1 (40.35) 12.65 (29.68) 0.0091

Baltimore Washington Total Number of Alerts 352 284 363
Hours of Alert-free Period* 11.33 (22.13) 13.27 (30.42) 10.98 (20.8) 0.4353

Bon Secours Total Number of Alerts 86 96 191
Hours of Alert-free Period* 50.82 (136.58) 35.81 (128.13) 18.03 (41.08) < 0.0001

Carroll Hospital Total Number of Alerts 74 117 95
Hours of Alert-free Period* 693.11 (93.31) 28.62 (59.42) 21.07 (36.4) < 0.0001

Franklin Square Total Number of Alerts 281 81 180
Hours of Alert-free Period* 13.32 (9.28) 37.32 (114.37) 21.79 (36.4) < 0.0001

Good Samaritan Total Number of Alerts 206 172 152
Hours of Alert-free Period* 17.91 (29.45) 18.58 (47.33) 23.4 (48.06) 0.0605

Greater Baltimore Total Number of Alerts 182 173 155
Hours of Alert-free Period* 21.78 (42.12) 21.38 (37.23) 23.23 (48.7) 0.9635

Harbor Hospital Total Number of Alerts 247 184 298
Hours of Alert-free Period* 16.42 (35.37) 18.13 (65.28) 13.83 (26.11) 0.0085

Harford Hospital Total Number of Alerts 57 28 94
Hours of Alert-free Period* 44.12 (109.82) 137 (353.14) 47 (116.6) 0.0042

Howard County Total Number of Alerts 93 109 141
Hours of Alert-free Period* 43.08 (86.38) 41.85 (80) 34.3 (59.32) 0.175

Johns Hopkins Total Number of Alerts 181 202 211
Hours of Alert-free Period* 16.85 (32.4) 15.3 (24.9) 12.62 (16.78) 0.0002

JH Bayview Total Number of Alerts 320 336 344
Hours of Alert-free Period* 11.76 (14.68) 13.82 (13.68) 13.13 (12.75) 0.2454

Mercy Medical Total Number of Alerts 210 193 207
Hours of Alert-free Period* 20.06 (32.18) 20.48 (33.77) 19.45 (32.13) 0.8712

Midtown Total Number of Alerts 248 220 405
Hours of Alert-free Period* 13.49 (32.07) 19.05 (32.02) 8.35 (13.07) 0.1761

Northwest Total Number of Alerts 175 153 163
Hours of Alert-free Period* 22.37 (53.89) 23.85 (53.97) 22.4 (56.93) 0.8569

Sinai Hospital Total Number of Alerts 289 302 344
Hours of Alert-free Period* 15.18 (21.42) 14.92 (18.71) 9.13 (14.71) < 0.0001

St. Agnes Total Number of Alerts 301 415 480
Hours of Alert-free Period* 14.9 (25.88) 10.57 (14.075) 8.21 (12.14) < 0.0001

St. Joseph Total Number of Alerts 185 262 249
Hours of Alert-free Period* 18.62 (35.7) 15.39 (26.38) 16.57 (28.22) 0.1853

UMMC Total Number of Alerts 289 364 353
Hours of Alert-free Period* 15.5 (17.53) 13.15 (13.3) 10.37 (10.95) < 0.0001

Union Memorial Total Number of Alerts 227 189 193
Hours of Alert-free Period* 15.38 (30.37) 20.5 (40.92) 21.02 (38) 0.1324

Upper Chesapeake Total Number of Alerts 165 167 247
Hours of Alert-free Period* 25.55 (58.85) 37.25 (59.5) 17.75 (30.44) 0.0005

* reports the corresponding median hours of all alert-free periods, in parentheses are the interquartile ranges
(IQRs).

Table 4.1: Descriptive statistics for total alert, including any kind of alert, in each
hospital and each year.
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1 (Franklin square) to 150 (Sinai Hospital) in 2018. In particular, Howard County

hospital had no red alerts in 2017 and Mercy Medical had no red alerts in 2017 and

2018. Among the 21 hospitals in Maryland Region III, only Mercy Medical hospi-

tal and Union Memorial hospital had decreased total durations of red alerts from

2016 to 2018. Most of the other hospitals experienced some increased trend of the

total durations of red alerts, and 10 hospitals (Carroll, Good Samaritan, Greater

Baltimore, Johns Hopkins, Midtown, Northwest, Sinai, St. Agnes, St. Joseph, and

UMMC) had strictly increasing total red-alert durations year by year, which indi-

cates that over the years, the hospital’s total red-alert duration becomes longer and

longer. For the past three years, five hospitals (Franklin Square, Harbor, Harford,

Howard, and Mercy Medical) had a fairly small amount of red alerts. However,

eight hospitals (Greater Baltimore, John Hopkins, JH Bayview, Midtown, Sinai, St.

Agnes, UMMC, and Union Memorial) experienced a relatively large number of red

alerts. With regard to the median duration of red alerts, it ranges from 0.22 hours

(Mercy Medical) to 20.06 hours (Good Samaritan) in 2016, from 2.51 hours (Bal-

timore Washington) to 21.49 hours (John Hopkins) in 2017, and from 2.36 hours

(Franklin Square) to 31.72 hours (Carroll Hospital) in 2018. From 2016 to 2018, four

hospitals (Bon Secours, Northwest, UMMC, and Upper Chesapeake) were observed

to have longer and longer median durations of red alerts over the years and only

two hospitals (Greater Baltimore and St. Agnes) did a great job to control their red

alert durations well, such that the median durations of red alerts becomes shorter

over the three years, however not statistically significant.

In Table 4.3, the number of reroute alerts ranges from 4 (Union Memorial)
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to 289 (Baltimore Washington) in 2016, from 1 (Carroll) to 236 (St. Agnes) in

2017, and from 11 (Union Memorial) to 295 (Baltimore Washington) in 2018. Six

hospitals (Bon Secours, Howard, Northwest, Sinai, St. Joseph and Union Memorial)

have the number of reroute alerts increasing and only Midtown was having a smaller

and smaller number of reroute alerts across the last three years. We notice that the

median duration of reroute alert for most hospitals oscillates around one hour.

In Table 4.4, the number of yellow alert ranges from 35 (Bon Secours and

Harford) to 273 (Franklin Square) in 2016, from 14 (Bon Secours and Harford)

to 280 (JH Bayview) in 2017, and from 66 (Harford) to 313 (Midtown) in 2018.

We notice that at five hospitals (John Hopkins, Sinai, St. Agnes, UMMC, and

Upper Chesapeake) both the number of alerts and the total alert durations have

increased over the years, while two hospitals (Good Samaritan and Northwest) have

a decreasing trend. We further compare the duration of each yellow alert from

year to year. The median duration of yellow alerts ranges from 3.05 hours (Sinai)

to 12.71 hours (John Hopkins) in 2016, from 2.44 hours (Harford) to 11.96 hours

(John Hopkins) in 2017, and from 3.19 hours (Franklin Square) to 14.98 hours (John

Hopkins) in 2018. The median duration of yellow alerts for five hospitals (Carroll,

Midtown, Northwest, Sinai, and UMMC) were statistically significantly increasing

over the three years, while at two hospitals (Greater Baltimore and Union Memorial)

they were significantly decreasing.
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Hospitals Variables Year 2016 Year 2017 Year 2018 P-values

Anne Arundel Total Number of Alerts 21 12 23
Total Alert Duration 214.1 80.4 224.13
Hours of Each Alert* 7.52 (10.11) 4.87 (3.55) 7.23 (9.46) 0.2355

Baltimore Washington Total Number of Alerts 7 2 34
Total Alert Duration 34.14 5.02 313.35
Hours of Each Alert* 4.48 (3.3) 2.51 (1.42) 7.35 (7.23) 0.0201

Bon Secours Total Number of Alerts 17 4 14
Total Alert Duration 120.97 36.55 365.51
Hours of Each Alert* 5.06 ( 5.16) 8.01 (6.16) 10.93 (7.81) 0.0502

Carrol Hospital Total Number of Alerts 8 30 68
Total Alert Duration 121.45 518.22 2736.6
Hours of Each Alert* 9.43 (8.91) 13.43 (14.68) 31.72 (46.53) 0.0022

Franklin Square Total Number of Alerts 2 3 1
Total Alert Duration 15.95 33.8 2.36
Hours of Each Alert* 7.98 (0.085) 8.31 (8.71) 2.36 (0) 0.3041

Good Samaritan Total Number of Alerts 37 56 56
Total Alert Duration 939.15 1111.42 1337.11
Hours of Each Alert* 20.06 (19.47) 15.51 (17.44) 17.34 (14.48) 0.1882

Greater Baltimore Total Number of Alerts 53 52 65
Total Alert Duration 939.15 1111.42 1337.11
Hours of Each Alert* 12.16 (14.02) 10.89 (11.07) 9.9 (13.25) 0.2912

Harbor Hospital Total Number of Alerts 2 2 11
Total Alert Duration 37.72 9.06 80.35
Hours of Each Alert* 18.86 (8.76) 4.53 (0.84) 7.89 (5.87) 0.1762

Harford Hospital Total Number of Alerts 3 2 7
Total Alert Duration 48.53 5.85 83.17
Hours of Each Alert* 12.82 (13.53) 2.93 (1.95) 6.44 (1.35) 0.2106

Howard County Total Number of Alerts 2 0 7
Total Alert Duration 11.31 0 39.13
Hours of Each Alert* 5.66 (0.62) NA 4.81 (5.12) 0.5582

Johns Hopkins Total Number of Alerts 48 58 95
Total Alert Duration 1047.27 1396.87 1934.54
Hours of Each Alert* 18.16 (12.48) 21.49 (18.29) 14.85 (16.63) 0.0557

JH Bayview Total Number of Alerts 55 47 57
Total Alert Duration 373.81 260.81 385.07
Hours of Each Alert* 4.85 (6.47) 4.15 (4.89) 5.69 (5.38) 0.5313

Mercy Medical Total Number of Alerts 1 0 0
Total Alert Duration 0.22 0 0
Hours of Each Alert* 0.22 (0) NA NA NA

Midtown Total Number of Alerts 85 81 167
Total Alert Duration 883.04 1049.08 2178.46
Hours of Each Alert* 7.44 (10.99) 9.61 (13.24) 8.66 (11.325) 0.3127

Northwest Total Number of Alerts 6 15 26
Total Alert Duration 77.72 209.39 516.65
Hours of Each Alert* 9.24 (6.26) 15.04 (11.54) 15.5 (17.99) 0.3686

Sinai Hospital Total Number of Alerts 61 73 150
Total Alert Duration 699.76 1317.99 2256.48
Hours of Each Alert* 8.27 (10.55) 12.16 (16.9) 10.44 (11.98) 0.0665

St. Agnes Total Number of Alerts 67 115 148
Total Alert Duration 886.3 1555.83 1598.37
Hours of Each Alert* 11.61 10.68 (10.82) 9.83 (7.25) 0.157

St. Joseph Total Number of Alerts 26 23 48
Total Alert Duration 255.7 289.24 475.32
Hours of Each Alert* 7.29 (5.93) 10.75 (11.84) 7.75 (8.67) 0.5014

UMMC Total Number of Alerts 53 89 113
Total Alert Duration 341.77 577.44 777.13
Hours of Each Alert* 4.72 (4.59) 5.55 (5.33) 5.98 (5.44) 0.5382

Union Memorial Total Number of Alerts 105 106 75
Total Alert Duration 1921.74 1507.97 1049.85
Hours of Each Alert* 11.63 (11.91) 11.32 (13.31) 11.96 (11.57) 0.5938

Upper Chesapeake Total Number of Alerts 18 5 21
Total Alert Duration 346 93.57 407.79
Hours of Each Alert* 11.62 (8.83) 11.88 (11.49) 16.45 (9.54) 0.5415

* reports the corresponding median hours of all alert durations, in parentheses are the interquartile ranges
(IQRs).

Table 4.2: Descriptive statistics for red alert in each hospital and each year.
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Hospitals Variables Year 2016 Year 2017 Year 2018 P-values

Anne Arundel Total Number of Alerts 254 214 287
Total Alert Duration 375.92 309.57 551.11
Hours of Each Alert* 1.32 (1.12) 1.31 (1.26) 1.57 (1.75) 0.0061

Baltimore Washington Total Number of Alerts 289 216 295
Total Alert Duration 425.39 281.04 414.11
Hours of Each Alert* 1.3 (1.08) 1.18 (0.94) 1.21 (1.09) 0.1696

Bon Secours Total Number of Alerts 51 88 118
Total Alert Duration 52.36 100.05 160.99
Hours of Each Alert* 0.83 (0.52) 0.89 (0.72) 1.15 (0.97) 0.0223

Carrol Hospital Total Number of Alerts NA 1 NA
Total Alert Duration 0 1.6 0
Hours of Each Alert* NA 1.6 (0) NA NA

Franklin Square Total Number of Alerts 74 44 63
Total Alert Duration 82.6 43.55 71.06
Hours of Each Alert* 1.03 (0.64) 0.81 (0.73) 1.03 (0.72) 0.285

Good Samaritan Total Number of Alerts 27 23 34
Total Alert Duration 30.2 24.72 40.33
Hours of Each Alert* 0.61 (0.83) 1.04 (0.59) 1.01 (0.79) 0.2008

Greater Baltimore Total Number of Alerts 16 15 24
Total Alert Duration 30.2 24.72 40.33
Hours of Each Alert* 0.81 (0.36) 0.97 (1.11) 1 (0.68) 0.5369

Harbor Hospital Total Number of Alerts 179 150 249
Total Alert Duration 196.14 174.22 329.26
Hours of Each Alert* 0.96 (0.81) 0.95 (0.82) 1.11 (0.9) 0.0051

Harford Hospital Total Number of Alerts 29 20 59
Total Alert Duration 28.01 18.43 50.8
Hours of Each Alert* 0.95 (0.65) 0.72 (0.87) 0.63 (0.88) 0.6458

Howard County Total Number of Alerts 8 18 62
Total Alert Duration 11.94 26.6 127.13
Hours of Each Alert* 1.08 (1.48) 0.99 (1.06) 1.66 (1.32) 0.0172

Johns Hopkins Total Number of Alerts 36 55 40
Total Alert Duration 46.66 66.77 56.68
Hours of Each Alert* 1.06 (1.09) 1.06 (0.65) 1.17 (1.14) 0.6008

JH Bayview Total Number of Alerts 147 133 145
Total Alert Duration 174.01 159.29 167.19
Hours of Each Alert* 1 (0.76) 1.03 (0.74) 1.04 (0.71) 0.7447

Mercy Medical Total Number of Alerts 45 54 50
Total Alert Duration 62.02 74.72 65.02
Hours of Each Alert* 0.78 (1.08) 0.94 (1.21) 0.86 (0.84) 0.5658

Midtown Total Number of Alerts 86 80 75
Total Alert Duration 93.63 101.84 78.44
Hours of Each Alert* 0.85 (0.74) 0.97 (0.99) 0.92 (0.65) 0.4453

Northwest Total Number of Alerts 43 47 67
Total Alert Duration 41.15 48.56 78.22
Hours of Each Alert* 0.86 (0.68) 0.93 (0.68) 1.07 (0.79) 0.253

Sinai Hospital Total Number of Alerts 45 62 65
Total Alert Duration 27.14 69.4 78.58
Hours of Each Alert* 0.52 (0.53) 0.98 (0.83) 0.82 (0.94) 0.0001

St. Agnes Total Number of Alerts 176 236 182
Total Alert Duration 191.92 277.58 222.81
Hours of Each Alert* 0.93 (0.625) 1.05 (0.77) 1.11 (0.88) 0.0406

St. Joseph Total Number of Alerts 66 73 100
Total Alert Duration 67.6 82.05 116.45
Hours of Each Alert* 0.95 (0.66) 0.97 (0.74) 0.92 (0.85) 0.705

UMMC Total Number of Alerts 100 170 151
Total Alert Duration 131.27 197.62 271.94
Hours of Each Alert* 0.94 (0.68) 0.93 (0.79) 1.18 (1.13) 0.0041

Union Memorial Total Number of Alerts 4 5 11
Total Alert Duration 4.17 3.79 20.8
Hours of Each Alert* 0.58 (1.57) 0.44 (0.51) 1.34 (0.99) 0.1512

Upper Chesapeake Total Number of Alerts 143 119 213
Total Alert Duration 129.16 128.92 236.6
Hours of Each Alert* 0.67 (0.65) 0.9 (0.89) 0.97 (0.93) 0.006

* reports the corresponding median hours of all alert durations, in parentheses are the interquartile
ranges (IQRs).

Table 4.3: Descriptive statistics for reroute alert in each hospital and each year.
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Hospitals Variables Year 2016 Year 2017 Year 2018 P-values

Anne Arundel Total Number of Alerts 155 43 82
Total Alert Duration 1588.46 338.06 712
Hours of Each Alert* 6.89 (8.795) 5.49 (5.68) 6.89 (6.54) 0.2953

Baltimore Washington Total Number of Alerts 144 117 146
Total Alert Duration 947.6 647.82 961.92
Hours of Each Alert* 5.84 (4.86) 4.55 (4.13) 5.92 (4.6) 0.0605

Bon Secours Total Number of Alerts 35 14 97
Total Alert Duration 149.36 64.23 425.85
Hours of Each Alert* 3.86 (2.54) 5.09 (5.06) 3.92 (3.08) 0.9825

Carrol Hospital Total Number of Alerts 73 111 102
Total Alert Duration 570.86 1200.06 1593.07
Hours of Each Alert* 6.68 (5.19) 9.94 (7.66) 11.16 (12.3) < 0.0001

Franklin Square Total Number of Alerts 273 56 162
Total Alert Duration 3945.31 309.41 822.74
Hours of Each Alert* 10.54 (10.02) 2.47 (6.49) 3.19 (3.05) 0.0001

Good Samaritan Total Number of Alerts 185 140 110
Total Alert Duration 1496.42 1111.46 946.89
Hours of Each Alert* 6.32 (5.38) 6.09 (6.13) 7.96 (6.9) 0.2008

Greater Baltimore Total Number of Alerts 167 136 96
Total Alert Duration 1496.42 1111.46 946.89
Hours of Each Alert* 7.64 (7.55) 7.48 (7.59) 5.63 (4.25) 0.0013

Harbor Hospital Total Number of Alerts 155 71 128
Total Alert Duration 685.29 291.04 610.19
Hours of Each Alert* 3.67 (3.58) 3.27 (3.58) 4.14 (4.08) 0.2311

Harford Hospital Total Number of Alerts 35 14 66
Total Alert Duration 128.37 40.06 357.23
Hours of Each Alert* 3.07 (2.46) 2.44 (2.39) 5.04 (4.17) 0.0002

Howard County Total Number of Alerts 90 102 104
Total Alert Duration 851.4 512.87 558.94
Hours of Each Alert* 7.89 (7.12) 3.58 (4.64) 3.82 (3.72) < 0.0001

Johns Hopkins Total Number of Alerts 176 188 199
Total Alert Duration 2938.75 3022.04 4231.27
Hours of Each Alert* 12.71 (10.63) 11.96 (12.34) 14.98 (20.46) 0.0085

JH Bayview Total Number of Alerts 270 280 269
Total Alert Duration 2872 2328.71 2488.66
Hours of Each Alert* 9.03 (10.04) 7.16 (7.35) 8.1 (7.85) 0.0506

Mercy Medical Total Number of Alerts 186 166 179
Total Alert Duration 1221.96 967.93 1440.2
Hours of Each Alert* 5.32 (5.41) 4.66 (5.25) 6.27 (6.49) 0.0172

Midtown Total Number of Alerts 145 106 313
Total Alert Duration 636.59 574.31 2087.34
Hours of Each Alert* 3.23 (3.71) 4.69 (5.54) 5.36 (5.99) < 0.0001

Northwest Total Number of Alerts 148 127 103
Total Alert Duration 746.87 729.03 718.73
Hours of Each Alert* 4.37 (5.44) 4.71 (4.11) 5.62 (6.62) 0.0428

Sinai Hospital Total Number of Alerts 238 253 295
Total Alert Duration 1162.11 1324.14 2315.62
Hours of Each Alert* 3.05 (4.97) 3.25 (3.53) 5.5 (6.99) < 0.0001

St. Agnes Total Number of Alerts 188 284 385
Total Alert Duration 1026.79 1354.1 2176.41
Hours of Each Alert* 4.69 (4.36) 4.06 (4.23) 4.74 (4.63) 0.0136

St. Joseph Total Number of Alerts 148 218 187
Total Alert Duration 1473.93 1647.4 1492.87
Hours of Each Alert* 7.85 (8.49) 5.89 (6.98) 6.09 (6.49) 0.0015

UMMC Total Number of Alerts 220 229 254
Total Alert Duration 2032.88 2216.97 3388.78
Hours of Each Alert* 8.25 (7.61) 9.12 (6.95) 11.78 (7.44) < 0.0001

Union Memorial Total Number of Alerts 190 138 157
Total Alert Duration 1470.35 952.13 886.9
Hours of Each Alert* 5.33 (5.95) 5.03 (4.79) 4.28 (5.05) 0.0199

Upper Chesapeake Total Number of Alerts 77 100 156
Total Alert Duration 515.8 649.02 1476.82
Hours of Each Alert* 5.74 (5.88) 5.24 (5.12) 8.02 (6.98) < 0.0001

* reports the corresponding median hours of all alert durations, in parentheses are the interquartile ranges
(IQRs).

Table 4.4: Descriptive statistics for yellow alert in each hospital and each year.
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Although we have observed some significant overall change trends over the

three years in Tables 4.1-4.4, we further employed Kruskal-Wallis test in order to

evaluate any statistically significant differences between any two years. We chose

Kruskal-Wallis test, such a nonparametric test, instead of traditional methods such

as t-tests with normality assumptions, because our preliminary exploration shows

that the empirical distributions of alert-free period or any alert duration are all

skewed. We summarize the pair-wise comparison test results for those hospitals

that have any significant differences in Table 4.5 for alert-free period, Table 4.6 for

red alert duration, Table 4.7 for reroute alert duration, and Table 4.8 for yellow

alert duration. P-values smaller than 0.05 reject the null hypothesis and suggest

that the changes are significantly different. In Table 4.5, we observe that the alert-

free period in 10 hospitals (Bon Secours, Carroll, Franklin Square, Harbor, Harford,

Johns Hopkins, Mercy Medical, Sinai, St. Agnes, UMMC, and Upper Chesapeake)

are statistically significant from year to year. For red alert duration (Table 4.5),

only one hospital (Carroll) has significant changes from year 2018 compared to

either 2016, or 2017. For reroute alert durations, four hospitals (Harbor, Sinai,

UMMC, Upper Chesapeake) have significant changes from year to year, and for

yellow alert durations, 11 hospitals (Carroll, Franklin Square, Greater Baltimore,

Harford, Howard County, Johns Hopkins, Midtown, Sinai, St. Joseph, UMMC, and

Upper Chesapeake) significantly changed from year to year over the last three years.

In addition, we analyzed the time to alert, and duration of each type of alert,

using time-to-event analysis, and visualized the estimated survival functions of each

metric in Figures 4.1 to 4.4 for each hospital. For the alert-free periods, the survival
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Hospitals 2016 v.s. 2017 2016 v.s. 2018 2017 v.s. 2018

Bon Secours 0.1588 < 0.0001 0.0075
Carrol Hospital 0.0002 < 0.0001 0.1275
Franklin Square < 0.0001 < 0.0001 0.0024
Harbor Hospital 0.1566 0.0611 0.0032
Harford Hospital 0.0057 0.0129 0.0011
Johns Hopkins 0.0949 < 0.0001 0.0198
Sinai Hospital 0.1435 < 0.0001 < 0.0001

St. Agnes < 0.0001 < 0.0001 0.0021
UMMC 0.0011 0.0259 < 0.0001

Upper Chesapeake 0.9362 0.0018 0.0007

Table 4.5: P-values of Kruskal-Wallis tests for alert-free periods.

Hospitals 2016 v.s. 2017 2016 v.s. 2018 2017 v.s. 2018

Carroll Hospital 0.3612 0.0303 0.0023

Table 4.6: P-values of Kruskal-Wallis tests for red alert durations.

Hospitals 2016 v.s. 2017 2016 v.s. 2018 2017 v.s. 2018

Harbor Hospital 0.5693 0.0024 0.0243
Sinai Hospital < 0.0001 0.0041 0.1215

UMMC 0.6789 0.0053 0.0043
Upper Chesapeake 0.0222 0.0019 0.6647

Table 4.7: P-values of Kruskal-Wallis tests for reroute alert durations.

Hospitals 2016 v.s. 2017 2016 v.s. 2018 2017 v.s. 2018

Carroll Hospital 0.0005 < 0.0001 0.1083
Franklin Square < 0.0001 < 0.0001 0.0092

Greater Baltimore 0.2465 0.0002 0.0167
Harford Hospital 0.1062 0.0031 0.0009
Howard County < 0.0001 < 0.0001 0.5364
Johns Hopkins 0.1419 0.0959 0.0025

Midtown 0.2334 < 0.0001 0.0056
Sinai Hospital 0.5314 < 0.0001 < 0.0001

St. Joseph 0.0004 0.0068 0.3713
UMMC 0.2523 < 0.0001 < 0.0001

Upper Chesapeake 0.9567 0.0014 0.0002

Table 4.8: P-values of Kruskal-Wallis tests for yellow alert durations.
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curves represent the probability of remaining alert-free over time starting from the

end of previous alerts. For the duration time of red, reroute, and yellow alerts, the

survival curves allow us to compare the probability of remaining on experiencing a

given type of alert over time starting from the alert initiation.

Figure 4.1 illustrates the probabilities of remaining alert-free during the next

5 days starting from the end of previous alerts for Bon Secours, Carroll Hospital,

Franklin Square, Harbor, Harford, Johns Hopkins, Sinai, St. Agnes, UMMC, and

Upper Chesapeake. Among those 10 hospitals, we notice that six hospitals (Bon

Secours, Carroll, Johns Hopkins, Sinai, St. Agnes, and Upper Chesapeake) have

similar patterns. These six hospitals have the lowest survival curves in 2018, fol-

lowed by 2017, and then 2016, which means that the risk of experiencing alerts was

increasing over years from 2016 to 2018 in those hospitals. Among the other four

hospitals, Midtown doesn’t have much changes at all over the three years. But for

Franklin Square hospital, Year 2016 experienced the lowest probability of remaining

alert free, followed by 2018, while 2017 had the best alert-free experiences. For

Harbor and Harford hospitals, we also observed the lowest probability of being alert

free in the last year 2018, but followed by 2016, and then 2017.

For red alert, our previous results in Table 4.6 show that only one hospital

(Carroll) has significant differences in red-alert durations. We examined the prob-

ability of remaining the red-alert status once it starts in Carroll hospital for 2016,

2017, and 2018 respectively in Figure 4.2. Obviously, this probability is always

higher in 2018 compared to 2017 and 2016, while 2016 has the lowest probability of

remaining to be red-alert status.
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Figure 4.1: Probability of remaining alert-free over time starting from the end of
previous alerts.
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Figure 4.2: Probability of remaining red-alert status starting from the initiation of
red alert.

We also model the reroute alert durations and yellow alert durations for those

hospitals which demonstrate significant differences in the pair-wise year comparisons

using Kruskal-Wallis tests. In Figure 4.3, the probabilities of remaining reroute alert

status are very similar for Years 2016 and 2017, but become much higher in 2018,

for Harbor Hospital and UMMC. But for Sinai Hospital and Upper Chesapeake

Hospital, the probability of remaining to be reroute alert is the lowest for 2016,

and becomes higher later on in years 2017 and 2018, but the later two years have

the probability curves crossed over. For yellow alerts in Figure 4.4, seven hospitals

(Carroll, Harford, Johns Hopkins, Midtown, Sinai, UMMC, Upper Chesapeake)

have the highest probabilities of remaining to be yellow-alert status once the yellow

alert starts in 2018, which indicates a more serious ED crowding problem in 2018.

Among these seven hospitals, Sinai, UMMC and Upper Chesapeake have similar

risk of remaining yellow-alert status over time in 2016 and 2017, while Midtown and

Carroll observe the risk to be higher from 2016 to 2017, and Harford and Johns
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Figure 4.3: Probability of remaining reroute-alert status starting from the initiation
of reroute alert.

Hopkins get it improved in 2017, but much worse in 2018. Greater Baltimore also

has the worst situation in 2018, but its 2016 and 2017 have similar risk. The other

three hospitals, Franklin Square, Howard County, and St. Joseph have the highest

risk of remaining to be yellow-alert status once it starts in 2016, and get it improved

in 2017 and 2018, which is a good sign of better ED management over years.
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Figure 4.4: Probability of remaining yellow-alert status starting from the initiation
of yellow alert.

88



4.4 Study Limitations

There are several potential limitations of this study and our current investi-

gations. Although we identified a subset of EDs for which the level of access has

significantly changed, we are not able to explain the reasons why those changes oc-

curred. While we suspect that the changes occur due to different management plan

changes within each individual hospital, our study cannot support or justify such

an explanation since we did not collect related data and we did not see broader and

consistent changes across the whole region. The study could be extended to address

such issues if we had more data on hospital level information.

4.5 Conclusion

Emergency departments (EDs) in the U.S. and across the world are facing

increasing levels of overcrowding, which is not only affecting the patients within

the crowded ED but also patients requesting access to EDs via emergency medical

services (EMS). We investigate three-year trends in the accessibility to ED among

21 hospital EDs in Region III of Maryland using alert-status data provided by the

Maryland Institute for Emergency Medical Services Systems (MIEMSS). Specifi-

cally, we study the frequency and duration of these alerts (i.e., yellow, red, reroute)

as well as alert-free time in EDs to provide evidence of any ongoing trends related

to ED accessibility.

We use different metric to evaluate ED accessibilities, including alert-free pe-
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riods, durations of red alerts, durations of reroute alerts, and durations of yellow

alerts. We employ nonparametric tests to identify significant changes of each metric

in each hospital’s ED. We find that about half of EDs have statistically significant

changes, which show evidence for decreasing ED accessibility in Maryland Region

III. In addition, for those hospitals which have significant changes, we fit statisti-

cal models on time to alert and duration of each alert types, and we present the

probabilities of not getting alerts and of remaining at each alert type over time

to visualize the changes of the corresponding accessibility risk for those EDs from

2016 to 2018. There is statistical evidence showing that more than one third of the

EDs have higher risk of remaining to be yellow-alert status over time once it starts

in 2018 compared to 2016 and 2017, and also almost one third of the EDs have

shorter alert-free periods and higher risk of experiencing an alert in 2018 than in

the previous two years.

Ten Region III EDs have experienced significant increase in the frequency of

alerts over the last three years (p < 0.01). The Carroll Hospital ED is the only

hospital to observe a significant increase in the frequency of red alerts (p < 0.01).

For reroute alerts, we observe increase among four hospitals (p < 0.01), and for

yellow alerts, more than half of the hospitals in Region III observed significant

increases. (p < 0.01).

All of these signify a concerning trend about the accessibility of ED services

and ED crowding in Maryland’s most populous region, and improved management

need to be done in order to improve the situation.
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Chapter 5: Impact of Global Budget Program on Emergency Room

Accessibility in Region III of Maryland

5.1 Introduction

There has been increasingly more money spent in the United States (U.S.)

related to healthcare than any other comparable countries in the world. It is esti-

mated that about seven percent of its Gross Domestic Product (GDP) was spent

on healthcare in the U.S. in 1970 [114]. Until 1980, healthcare expense in the U.S.

was still similar to several other developed countries. But this gap between U.S.

and others in terms of spending on healthcare has grown significantly since 1980,

according to research from Kaiser Family Foundation [114]. In the most recent re-

search, health related spending in the U.S. is projected to grow at an average of

5.5 % per year through 2024 leading to $5.4 trillion in total or 19.6 % GDP [126].

Therefore, there is an increasing interest in the payment models with purposes to

reduce expenditures, improve quality, and eliminate any unnecessary hospitaliza-

tions. Moreover, Maryland’s unique hospital payment model to control healthcare

spending starts to draw a growing attention in recent researches [109, 122].

The state of Maryland sets the same hospital rates for all payers such as Medi-
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care, Medicaid, and private insurers since 1970s. This All-Payer Model was revised

in 2014 to implement the Global Budget payment system. The revised model re-

quests a specific annual amount for all payers to pay in an effort to limit the growing

spending in healthcare and improve service quality. Each hospital understands what

revenue they can receive due to the budget specified at the beginning of the year.

Therefore, hospitals have to monitor their spending all the time. Reported by CMS,

Maryland has been able to limit hospital spending and enhance inpatient and out-

patient services since 2014 accordingly [122]. Although the Global Budget payment

model aims to control the expenditure growth and improve the quality of services,

it may change the accessibility of emergency rooms (ER) in Maryland.

In this Chapter, we evaluate the changes in ER accessibility before and after

the Global Budget payment system established in Maryland, using data on ER

alert status of each hospital obtained in the County/Hospital Alert Tracking System

(CHATS). We analyze the frequency and duration of yellow, red, and reroute alerts,

and examine changes of a variety of alerts before and after the new Global Budget

payment system was initiated. Moreover, we investigate those changes from 2011

to 2013, in order to verify the significance of changes due to this specific payment

model. In this study, we develop appropriate statistical tools and models to present

data observations, to evaluate the changing process of ER alert durations from 2011

to 2018, and to explore the impact of the Global Budget Program on accessibilities

in ER.

The remaining sections of this chapter are organized as follows. In Section

5.2, we introduce our problem and describe the data we use in this study. We
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develop our methods for comparing changes in the duration of ER alerts before and

after the Global Budget Program was implemented. In Section 5.3, we present the

descriptive statistics for ER alert durations, test for significant changes in adjacent

years. In Section 5.4, we discuss several future research directions. and conclude

with an impact discussion of our results.

5.2 Statistical Methods

We first calculate descriptive statistics for three types of ER alerts and the

duration of each type of alerts among 21 hospitals in Maryland Region III. Then, we

use Kruskal-Wallis test to detect statistically significant differences in these measures

comparing 2013 and 2015. Since all hospitals initiated the Global Budget program

in their system in 2014, we did not use the data immediately collected from 2014

and allow a warm-up period for hospitals to have the program taking effects. For

comparison purpose, we also consider alerts data prior to 2014 in order to control

for the longitudinal time effect, that is, to control for the fact that the potential

significant changes before and after 2014 may be due to purely time changes.

Additionally, we adjust for other variables in our final model. Covariates of

interest in our investigation include time, indicator of whether having global budget

program implemented or not yet, population size, and area/location. Alert data

were acquired longitudinally. Thus, we evaluate potential risk factors using a mixed

effect model with a random intercept and first-order autoregressive (AR1) process

on log duration of yellow alert. With log transformation, the response variable
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becomes more normally distributed than the original measure, so that mixed effect

model fits better.

Y ij = X ijβ + bi + eij

where

bi ∼ N (0, σ2
b ) and eij ∼ N (0, σ2)

In this mixed effect model, we assume that the mean response for ith hospital at

the jth year differs from the population mean, X ijβ, by a hospital effect and a

within-hospital random error, namely, bi and eij respectively [54]. The fixed effects

in this model are to evaluate the influence of covariates on mean responses, while the

random effects are introduced into the model to accommodate the within-hospital

correlations over years. The AR1 correlation structure allows the response measures

closer together to be more correlated than those further apart over years within

the same hospital. In the mean model, we specify a polynomial regression term to

capture the expected nonlinear trend of log responses over years. With the estimated

coefficient of our model, we are able to predict hours of yellow alert at a given year

adjusted for statistically relevant covariates.
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Figure 5.1: Hospitals and Counties in Marylands Global Budget Program [122].

5.3 Analysis Results and Findings

In Figure 5.1 [122], we notice that most hospitals in Maryland Region III,

except for Carroll Hospital, entered the Global Budget program in 2014. In Tables

5.1, 5.2, 5.3, and 5.4, we compare ER’s total number of alerts, hours of alert free

period, and durations of red alerts, reroute alerts, and yellow Alerts among 21

hospitals in Region III before and after the Global Budget Program was established.

Table 5.1 presents the results for alert-free periods. Almost all hospitals, except

for Bon Secours, have increased number of alerts in 2015, compared to 2013. The

changes in hours of alerts-free periods are consistent as well. Only Bon Secours,

Good Samaritan, Great Baltimore, Harford Hospital, Northwest, Sinai Hospital,

UMMC, Union Memorial, and Upper Chesapeak do not observe significant changes

in median hours of alert-free periods. All other 12 hospitals in Region III have

experienced significantly reduced hours of alert-free periods (p < 0.05).

95



Hospitals Variables Year 2013 Year 2015 P-values

Anne Arundel Total Number of Alerts 37 267
Hours of Alert-free Period* 41.05 (167.72) 14.3 (22.78) < 0.0001

Baltimore Washington Total Number of Alerts 37 210
Hours of Alert-free Period* 67.93 (148.37) 17.58 (40.09) 0.0002

Bon Secours Total Number of Alerts 36 37
Hours of Alert-free Period* 127.98 (353.4) 111.57 (246.1) 0.9736

Carroll Hospital Total Number of Alerts 3 86
Median (IQR) 596.93 (708.12) 42.31 (110.54) 0.0431

Franklin Square Total Number of Alerts 100 251
Hours of Alert-free Period* 32.93 (90.525) 14.43 (18.38) < 0.0001

Good Samaritan Total Number of Alerts 130 157
Hours of Alert-free Period* 33.93 (64.23) 24.63 (50.22) 0.2817

Great Baltimore Total Number of Alerts 28 146
Hours of Alert-free Period* 43.72 (186.34) 25.85 (55.09) 0.1216

Harbor Hospital Total Number of Alerts 50 128
Hours of Alert-free Period* 85.68 (169.53) 25.12 (67.95) < 0.0001

Harford Hospital Total Number of Alerts 39 37
Hours of Alert-free Period* 170 (261.95) 143.37 (377.22) 0.9214

Howard County Total Number of Alerts 88 79
Hours of Alert-free Period* 34.21 (68.28) 57.6 (115.63) 0.0257

Johns Hopkins Total Number of Alerts 103 152
Hours of Alert-free Period* 37.53 (77.59) 22.16 (39.24) 0.0077

JH Bayview Total Number of Alerts 235 361
Hours of Alert-free Period* 18.18 (32.57) 11.87 (11.63) < 0.0001

Mercy Medical Total Number of Alerts 92 134
Hours of Alert-free Period* 46.21 35.35 (62.5) 0.0339

Midtown Total Number of Alerts 46 130
Hours of Alert-free Period* 95.56 (209.99) 34.88 (71.79) 0.0002

Northwest Total Number of Alerts 143 181
Hours of Alert-free Period* 21.2 (60.13) 16.35 (36.83) 0.1713

Sinai Hospital Total Number of Alerts 141 267
Hours of Alert-free Period* 12.98 (35.63) 14.23 (26.32) 0.5592

St. Agnes Total Number of Alerts 116 191
Hours of Alert-free Period* 38.68 (97.63) 22.7 (40.61) 0.0057

St. Joseph Total Number of Alerts 54 195
Hours of Alert-free Period* 43.22 (98.26) 18.22 (27.42) 0.0088

UMMC Total Number of Alerts 132 133
Hours of Alert-free Period* 25.89 (60.15) 37.63 (50.02) 0.2432

Union Memorial Total Number of Alerts 101 172
Hours of Alert-free Period* 27.85 (49.58) 21.25 (33.93) 0.2943

Upper Chesapeake Total Number of Alerts 107 113
Hours of Alert-free Period* 27.23 (81.53) 33.75 (81.05) 0.3239

* reports the corresponding median hours of all alert-free periods, in parentheses are the interquartile
ranges (IQRs).

Table 5.1: Descriptive statistics for alerts-free periods.
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As to red alerts in Table 5.2, we observe different trends on the change of num-

bers of alerts from 2013 to 2015 across different hospitals. For example, increased

number of red alerts are observed in Johns Hopkins from 2 in 2013 to 49 in 2015,

Johns Hopkins Bayview from 28 in 2013 to 52 in 2015. But on the other hand,

Northwest, UMMC, and Upper Chesapeake have the number of red alerts decreased

in 2015, compared to 2013. We test on the differences between 2013 and 2015, in

terms of duration of each alert in hours, and found that the median red alert dura-

tion is significantly shorter in 2015 for Anne Arundel, Midtown, and UMMC, but

all with more alerts and longer total alert duration in 2015. Only Johns Hopkins

hospital has significantly longer red alert durations as well, besides having more red

alerts and longer total red alert duration in 2015, which is after the Global Bud-

get program compared to before. Most of the hospitals in Table 5.2 do not have

significant differences comparing 2013 with 2015.

In Table 5.3, only one hospital, Baltimore Washington, has significant differ-

ence in median duration of each reroute alert comparing 2013 and 2015, but the

increase is not big. Two hospitals (Anne Arundel and Baltimore Washington) in

Anne Arundel have the number and total time of reroute alert dramatically in-

creased. Hospitals in Carroll (Carroll Hospital), Harford (Upper Chesapeake and

Harford Hospital), Howard (Howard County Hospital), and Anne Arundel don’t

have much changes, while five hospitals (Franklin Square, Good Samaritan, Harbor

Hospital, Johns Hopkins, and St. Joseph) in Baltimore city and county experience

big changes in number of reroute alert.
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Hospitals Variables Year 2013 Year 2015 P-values

Anne Arundel Total Number of Alerts 13 27
Total Alert Duration 218.84 212.24
Hours of Each Alert* 16.31 (14.18) 5.34 (6.54) 0.0102

Baltimore Washington Total Number of Alerts 0 1
Total Alert Duration 0 0.63
Hours of Each Alert* NA 0.63 (0) NA

Bon Secours Total Number of Alerts 13 16
Total Alert Duration 153.15 246.16
Hours of Each Alert* 9.76 (10.27) 8.98 (11.18) 0.6295

Carrol Hospital Total Number of Alerts 0 4
Total Alert Duration 0 136.74
Hours of Each Alert* NA 16.33 (31.3) NA

Franklin Square Total Number of Alerts 0 2
Total Alert Duration 0 18.15
Hours of Each Alert* NA 9.08 (0.38) NA

Good Samaritan Total Number of Alerts 4 9
Total Alert Duration 31.38 51.41
Hours of Each Alert* 5.99 (8.12) 4.99 (5.96) 0.8167

Greater Baltimore Total Number of Alerts 9 36
Total Alert Duration 98.33 569.61
Hours of Each Alert* 6.86 (9.84) 12.09 (17.09) 0.2938

Harbor Hospital Total Number of Alerts 0 3
Total Alert Duration 0 25.78
Hours of Each Alert* NA 5.44 (5.49) NA

Harford Hospital Total Number of Alerts 10 1
Total Alert Duration 61.38 26
Hours of Each Alert* 5.61 (5.49) 26 (0) 0.1138

Howard County Total Number of Alerts 0 2
Total Alert Duration 0 3.92
Hours of Each Alert* NA 1.96 (1.96) NA

Johns Hopkins Total Number of Alerts 2 49
Total Alert Duration 14.93 1313.55
Hours of Each Alert* 7.47 (2.23) 21.3 (21.63) 0.0289

JH Bayview Total Number of Alerts 28 52
Total Alert Duration 137.62 257.07
Hours of Each Alert* 3.49 (4.47) 3.38 (6.06) 0.8165

Mercy Medical Total Number of Alerts 2 2
Total Alert Duration 0.77 0.84
Hours of Each Alert* 0.39 (0.26) 0.42 (0.29) 0.6831

Midtown Total Number of Alerts 9 39
Total Alert Duration 118.55 288.23
Hours of Each Alert* 14.56 (7.55) 6.16 (5.18) 0.011

Northwest Total Number of Alerts 26 10
Total Alert Duration 255.47 148.42
Hours of Each Alert* 6.68 (7.53) 12.47 (6.54) 0.1913

Sinai Hospital Total Number of Alerts 29 36
Total Alert Duration 346.41 403.06
Hours of Each Alert* 8.25 (8.44) 7.8 (8.11) 0.8328

St. Agnes Total Number of Alerts 4 20
Total Alert Duration 9.71 175.8
Hours of Each Alert* 2.57 (3.31) 4.82 (8.26) 0.0528

St. Joseph Total Number of Alerts 10 25
Total Alert Duration 45.48 177.64
Hours of Each Alert* 3.08 (7.73) 6.79 (7.59) 0.1653

UMMC Total Number of Alerts 43 31
Total Alert Duration 448.53 142.28
Hours of Each Alert* 8.18 (7.65) 4.59 (4.94) 0.0005

Union Memorial Total Number of Alerts 47 64
Total Alert Duration 505.17 899.39
Hours of Each Alert* 7.84 (10.29) 10.23 (11.82) 0.417

Upper Chesapeake Total Number of Alerts 55 12
Total Alert Duration 1007.37 268.61
Hours of Each Alert* 12.7 (12.18) 10.68 (20.12) 0.7068

* reports the corresponding median hours of each alert duration, in parentheses are the in-
terquartile ranges (IQRs).

Table 5.2: Descriptive statistics for duration of red alert.
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Hospitals Variables Year 2013 Year 2015 P-values

Anne Arundel Total Number of Alerts 12 187
Total Alert Duration 14.09 252.32
Hours of Each Alert* 1.24 (1.11) 1.25 (1.015) 0.6753

Baltimore Washington Total Number of Alerts 29 155
Total Alert Duration 33.89 235.34
Hours of Each Alert* 1.15 (1) 1.46 (1.34) 0.0417

Bon Secours Total Number of Alerts 15 18
Total Alert Duration 14.11 28.44
Hours of Each Alert* 0.79 (1) 0.89 (1.89) 0.4263

Carrol Hospital Total Number of Alerts 1 0
Total Alert Duration 0.45 0
Hours of Each Alert* 0.45 (0) NA NA

Franklin Square Total Number of Alerts 19 42
Total Alert Duration 22.63 51.48
Hours of Each Alert* 1.04 (0.52) 1.09 (0.39) 0.6423

Good Samaritan Total Number of Alerts 47 15
Total Alert Duration 61.45 18.24
Hours of Each Alert* 0.97 (1.05) 1.09 (0.66) 0.7548

Greater Baltimore Total Number of Alerts 7 10
Total Alert Duration 5.16 9.61
Hours of Each Alert* 0.52 (0.7) 0.88 (0.25) 0.1432

Harbor Hospital Total Number of Alerts 41 97
Total Alert Duration 69.09 118.48
Hours of Each Alert* 1.02 (0.85) 0.94 (0.91) 0.2644

Harford Hospital Total Number of Alerts 17 19
Total Alert Duration 8.47 12.54
Hours of Each Alert* 0.41 (0.54) 0.44 (0.49) 0.2882

Howard County Total Number of Alerts 23 12
Total Alert Duration 51.78 23.76
Hours of Each Alert* 1.59 (1.42) 1.02 (1.05) 0.0707

Johns Hopkins Total Number of Alerts 57 16
Total Alert Duration 79.9 36.14
Hours of Each Alert* 1.22 (1.18) 1.06 (3.13) 0.831

JH Bayview Total Number of Alerts 96 111
Total Alert Duration 132.39 133.81
Hours of Each Alert* 1.07 (1.15) 0.98 (0.55) 0.1146

Mercy Medical Total Number of Alerts 54 22
Total Alert Duration 62.06 38.25
Hours of Each Alert* 0.97 (0.67) 0.97 (1.45) 0.7571

Midtown Total Number of Alerts 20 22
Total Alert Duration 35.57 23.54
Hours of Each Alert* 1.19 (1.74) 0.77 (1.11) 0.0641

Northwest Total Number of Alerts 22 35
Total Alert Duration 20.83 43.99
Hours of Each Alert* 0.91 (0.52) 1.03 (0.89) 0.1736

Sinai Hospital Total Number of Alerts 35 41
Total Alert Duration 43.49 41.16
Hours of Each Alert* 0.77 (1.01) 0.79 (0.8) 0.6998

St. Agnes Total Number of Alerts 82 95
Total Alert Duration 114.12 120.45
Hours of Each Alert* 1.14 (1.01) 1.04 (0.84) 0.165

St. Joseph Total Number of Alerts 3 37
Total Alert Duration 12.5 51.76
Hours of Each Alert* 2.01 (4.43) 1.23 (1.05) 0.2478

UMMC Total Number of Alerts 43 36
Total Alert Duration 55.33 52.76
Hours of Each Alert* 1.04 (1.15) 0.92 (0.85) 0.7677

Union Memorial Total Number of Alerts 11 1
Total Alert Duration 13.03 2.45
Hours of Each Alert* 1.39 (1.08) 2.45 (0) 0.1924

Upper Chesapeake Total Number of Alerts 42 83
Total Alert Duration 32.61 77.53
Hours of Each Alert* 0.71 (0.55) 0.83 (0.64) 0.0893

* reports the corresponding median hours of each alert duration, in parentheses are the
interquartile ranges (IQRs).

Table 5.3: Descriptive statistics for duration of reroute alert.
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Hospitals Variables Year 2013 Year 2015 P-values

Anne Arundel Total Number of Alerts 24 169
Total Alert Duration 307.47 1429.51
Hours of Each Alert* 9.08 (8.77) 6.49 (7.37) 0.0211

Baltimore Washington Total Number of Alerts 17 106
Total Alert Duration 103.15 664.2
Hours of Each Alert* 5.51 (1.87) 5.69 (3.42) 0.898

Bon Secours Total Number of Alerts 11 7
Total Alert Duration 37.03 17.91
Hours of Each Alert* 3.45 (1.65) 1.9 (1.19) 0.1351

Carrol Hospital Total Number of Alerts 4 87
Total Alert Duration 19.16 798.39
Hours of Each Alert* 3.99 (4.04) 8.24 (5.08) 0.0604

Franklin Square Total Number of Alerts 99 242
Total Alert Duration 909.82 3088.26
Hours of Each Alert* 7.02 (6.73) 10.65 (8.79) 0.0002

Good Samaritan Total Number of Alerts 101 147
Total Alert Duration 636.17 990.01
Hours of Each Alert* 5.38 (4.96) 5.78 (4.16) 0.1539

Greater Baltimore Total Number of Alerts 20 130
Total Alert Duration 135.45 994.43
Hours of Each Alert* 6.53 (5.54) 7.01 (5.54) 0.556

Harbor Hospital Total Number of Alerts 22 58
Total Alert Duration 68.92 220.64
Hours of Each Alert* 2.6 (1.87) 2.93 (2.03) 0.3322

Harford Hospital Total Number of Alerts 20 23
Total Alert Duration 51.73 68.25
Hours of Each Alert* 2.56 (1.65) 3.25 (2.03) 0.3807

Howard County Total Number of Alerts 74 74
Total Alert Duration 714.06 752.8
Hours of Each Alert* 9.14 (9.03) 7.51 (6.78) 0.3644

Johns Hopkins Total Number of Alerts 57 153
Total Alert Duration 366 2005.71
Hours of Each Alert* 5.76 (5.94) 11.09 (7.97) < 0.0001

JH Bayview Total Number of Alerts 176 318
Total Alert Duration 1115.67 3200.43
Hours of Each Alert* 4.59 (6.91) 8.62 (9.59) < 0.0001

Mercy Medical Total Number of Alerts 51 123
Total Alert Duration 168.13 632.97
Hours of Each Alert* 2.67 (2.84) 3.94 (4.38) 0.002

Midtown Total Number of Alerts 28 91
Total Alert Duration 134.23 363.01
Hours of Each Alert* 3.75 (3.4) 3.37 (2.95) 0.2035

Northwest Total Number of Alerts 123 169
Total Alert Duration 509.08 987.31
Hours of Each Alert* 2.74 (3.59) 4.23 (5.64) 0.0003

Sinai Hospital Total Number of Alerts 99 228
Total Alert Duration 456.28 1508.58
Hours of Each Alert* 1.87 (5.07) 3.83 (7.12) < 0.0001

St. Agnes Total Number of Alerts 53 130
Total Alert Duration 203.58 571.27
Hours of Each Alert* 2.52 (3.51) 3.55 (3.46) 0.0618

St. Joseph Total Number of Alerts 46 164
Total Alert Duration 261.43 1682.21
Hours of Each Alert* 4.21 (3.94) 8.54 (7.79) < 0.0001

UMMC Total Number of Alerts 77 92
Total Alert Duration 608.1 586.92
Hours of Each Alert* 6.34 (7.2) 5.19 (4.83) 0.2713

Union Memorial Total Number of Alerts 64 141
Total Alert Duration 368.46 832.57
Hours of Each Alert* 4.86 (4.2) 4.95 (3.7) 0.9899

Upper Chesapeake Total Number of Alerts 51 73
Total Alert Duration 233.95 432.35
Hours of Each Alert* 3.32 (4.01) 4.78 (3.99) 0.0482

* reports the corresponding median hours of each alert duration, in parentheses are the
interquartile ranges (IQRs).

Table 5.4: Descriptive statistics for duration of yellow alert.
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Table 5.4 presents the comparison between 2015 and 2013, in terms of yellow

alert numbers, total alert duration, and hours of each alert. Only Howard County,

Harford Hospital, and Bon Secours kept about the same amount of yellow alerts.

All other hospitals have the number of yellow alerts greatly increased. The median

duration of each yellow alert is marginally significantly increased in Carroll county

(Carroll Hospital) and significantly increased in Anne Arundel, Franklin Square

hoptital, Johns Hopkins, JH Bayview, Mercy Medical, Sinai Hospital, St. Joseph,

and Upper Chesapeake.

Summarizing Tables 5.1-5.4, six hospitals, including Anne Arundel, Baltimore

Washington, Franklin Square, Harbor Hospital, Johns Hopkins, and JH Bayview

hospitals, report dramatical decreases of ER’s alert-free period in 2015 after the

Global Budget Program was implemented comparing to 2013 before the program.

There are also six hospitals (Franklin Square, Johns Hopkins, JH Bayview, North-

west, Sinai Hospital, and St. Joseph in Figure 5.2) showing significant changes in

yellow alerts. However, although we observe such significant changes in alert-free

period and ER’s yellow alert, we are not certain if the changes are due to other

potential reasons such as longitudinal time effects or impacted by the Global Bud-

get Program, given that not much impact on reroute alert and red alert has been

observed.

Thus, we further look into the previous years, 2012 and 2013 to evaluate if there

are similar changes from year to year even before the Global Budget Program. From

the test results in Table 5.5, we can see that there are five hospitals (Franklin Square,

Howard County, JH Bayview, Sinai, and Union Hospitals) experiencing significant
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Figure 5.2: Hospitals with significant changes (red) in region III from 2013 to 2015.

changes in ER’s yellow alerts, and three hospitals (Harford, Johns Hopkins, and

Upper Chesapeake Hospitals) with significant changes in ER alert-free periods. Most

of the 21 hospitals in Maryland Region III do not see significant changes in red and

reroute alerts from 2012 to 2013. This is similar to the comparison results of 2013

v.s. 2015, and demonstrate a potential longitudinal time effect.

To control for such a time effect and further investigate the association between

Global Budget Program implementation and the ER’s accessibilities, we collect all

data from 2011 to 2018 and fit a longitudinal regression model adjusting for time and

other potential confounders. We focus on ER’s yellow alerts, given that the average

hours of yellow alert is increasing over the time each year regardless of regions. In

Figure 5.3, we also notice that the average hours of yellow alert of Baltimore and
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Hospitals Alert-free Period Red Alert Reroute Alert Yellow Alert

Anne Arundel 0.6415 0.1439 0.5375 0.1031
Baltimore Washington 0.3851 NA 0.1819 0.2437
Bon Secours 0.3427 0.1724 0.7072 0.0516
Carrol Hospital 0.0914 NA 0.3173 0.351
Franklin Square 0.0618 NA 0.7349 0.0019
Good Samaritan 0.0632 1 0.5688 0.3363
Greater Baltimore 0.7507 0.8137 0.0946 0.2701
Harbor Hospital 0.5286 NA 0.7471 0.5881
Harford Hospital 0.0026 0.2513 0.136 0.0519
Howard County 0.0421 NA 0.041 0.0059
Johns Hopkins < 0.0001 0.1109 0.7699 0.9009
JH Bayview 0.0489 0.3604 0.0012 < 0.0001
Mercy Medical 0.1572 1 0.0419 0.0659
Midtown 0.2535 0.0594 0.2301 0.191
Northwest 0.1045 0.0774 0.8395 0.1212
Sinai Hospital 0.9944 0.0757 0.0141 < 0.0001
St. Agnes 0.2459 0.5637 0.3137 0.1326
St. Joseph 0.7502 0.6121 0.1011 0.7388
UMMC 0.6062 0.3326 0.9014 0.8359
Union Memorial 0.1172 0.7708 0.4615 0.0027
Upper Chesapeake 0.0103 0.0964 0.7766 0.78

Table 5.5: Summary of Kruskal-Wallis test p-values for the difference in outcome
probability over time for 2012 and 2013.
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Figure 5.3: Mean duration of yellow alert profile each year by different regions.
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Figure 5.4: Histogram of yellow alert durations (skewed) and QQ-plot of the log
duration of yellow alerts (more normal with log scale).

Baltimore County are generally lower than the average in Region III before 2016,

but become higher after 2016, which shows that location and population size may

take an effect as well.

We fit a mixed effect model on the total duration of ER yellow alert to evaluate

the impact of the Global Budget Program, with a random intercept and an AR1

correlation structure to account for within-hospital correlations among the repeated

alert measures for each hospital. The histogram of total duration of ER yellow alert

(Figure 5.4) shows that its distribution is very skewed, and thus we apply a Log

transformation in order to get a more normally distributed outcome variable (Q-Q

plot in Figure 5.4). Considering the nonlinear change of ER yellow alert durations

over time, we fit a polynomial regression with regard to time. We also control for

the population size of each hospital’s location in the model. Table 5.6 presents the
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Effect Estimate SE P-values

Intercept 2.2172 1.3451 0.1015
Time* 5.9852 2.1173 0.0054
Time2* -4.27 1.2366 0.0007
Time3* 1.2778 0.3204 0.0001
Time4* -0.1649 0.0381 < 0.0001
Time5* 0.0077 0.0017 < 0.0001
Population** 0.0001 < 0.0001 0.1459
Global Budget program*** -0.171 0.2733 0.5325

* reports that year-2010
** reports county/city population
*** reports if enrolled in the Global Budget program

Table 5.6: Esimated coefficients, standard errors (SE), and P-values obtained from
mixed model analysis of log total yellow alert duration on covariates of interest.

estimated coefficients, standard errors (SE), and P-values. No statistically signifi-

cant association is observed between the total hours of yellow alert and population

or whether the hospital enroll the Global Budget Program or not. The predicted

mean trajectory of yellow alert durations obtained from our model is consistent with

the observed mean profile in region III (Figure 5.5), Baltimore County (Figure 5.6),

and Baltimore city (Figure 5.7).
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Figure 5.5: Comparison of fitted model with observed data in region III.
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Figure 5.7: Comparison of fitted model with observed data in Baltimore city.
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Figure 5.6: Comparison of fitted model with observed data in Baltimore county.

5.4 Discussion and Conclusions

The state of Maryland continues to implement All-Payer model and established

the Global Budget program to control the expenditure and improve the quality of
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services in 2014. In this study, we focus on investigating the impact of the Global

Budget payment model on ER accessibilities among 21 hospitals in Maryland Region

III. Particularly, we look into the changes in red, reroute, and yellow ER alerts,

as well as alert-free periods from 2012 (the year right before the Global Budget

program was implemented) to 2015 (the year right after the Global Budget program

was implemented). Although we observe changes in 2015 compared to 2013, and

notice that about one third of hospitals had changes in yellow alert and alert-free

period, similar patterns have been observed when comparing 2012 with 2013. We

further fit a mixed effect model on repeated alert measures to capture within-hospital

correlations and adjust for other potential risk factors and confounders. The mean

profile of predicted total durations of yellow alerts obtained from the mixed model

are consistent with the observed data. In this study, the total duration of yellow alert

in each year is increasing from 2011 to 2018. This nonlinear trend is accommodated

by fitting a polynomial regression curve in time. From the results of our multivariate

mixed effect model, no significant changes are observed for hospitals enrolled in

the Global Budget program or not. Thus, we do not have enough evidence to

demonstrate that the Global Budget payment program initiated in 2014 influences

the ERs accessibilities in Maryland Regrion III.

The work could be extended in several ways. The first extension would be to

apply the investigation to Baltimore City only. The performances in ER’s accessi-

bility are similar in rural hospitals, but is very different than that in city. Thus, a

separate study on hospitals in Baltimore city may avoid heterogeneity between hos-

pitals in region III. The second future research extension would be to collect more
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hospital-specific or region-specific covariates to take into account, such as bed size,

median home income, and other social-economical variables. For instance, bed size

might have some interaction with the Global Budget program. A study accounting

for these potential confounders and effect modifiers may help us understand if the

interaction between other covariates and the Global Budget program will impact

the accessibility of ERs in Maryland.
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Chapter 6: Multi-state Markov Model for Cascading Problems in

Emergency Rooms in Maryland

6.1 Introduction

Emergency rooms (ERs) serve as an important part in American’s healthcare

system and they are significantly critical for providing urgent treatment and acute

care to patients without any appointment [65, 74, 107]. Most of the cases seeking for

ER services may require immediate attention or even be life-threatening. As noted

in the 2006 Institute of Medicine report, ERs have become “the safety net of the

safety net”. Thus, accessibility to ER services is especially necessary for emergency

care such as trauma, stoke, acute coronary syndrome, and burn [5, 86]. While rapid

access to ER services is essential given the above special properties of ER services,

long waiting time or inaccessibility to ER services is pretty common and frequently

occurs everyday [108]. ER crowding has become a widespread problem in hospitals

across the United Sates, particularly severe in urban and teaching hospitals.

We recently focused on investigating the cascading problems in ERs of region

III in Maryland, which is the most populous area in Maryland, including five counties

(Anne Arundel, Baltimore, Carroll, Harford, and Howard) and Baltimore City. We
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studied accessibility to ER services among 21 hospitals in the region: Anne Arundel

Medical Center, Baltimore Washington Medical Center, Bon Secours Hospital, Car-

roll Hospital Center, Franklin Square Hospital, Good Samaritan Hospital, Greater

Baltimore Medical Center, Harbor Hospital, Harford Memorial Hospital, Howard

County General Hospital, Johns Hopkins Hospital (JH), Johns Hopkins Bayview

Hospital (JH Bayview), Mercy Medical Center, Northwest Hospital Center, Sinai

Hospital, Saint Agnes Hospital (St. Agnes), Saint Joseph’s Hospital (St. Joseph),

Union Memorial Hospital, University of Maryland Medical Center (UMCC), Uni-

versity of Maryland Medical Center Midtown (Midtown), and Upper Chesapeake

Medical Center [1]. For each hospital, the County/Hospital Alert Tracking System

(CHATS) generates real-time and historical data about the timing (i.e., start and

end date and time) of alerts by the Maryland Institute for Emergency Medical Ser-

vices Systems (MIEMSS) [2]. The event of high ER utilization or inaccessibility to

ER may result in a hospital activating an alert status. Specifically, a yellow alert

is initiated when the ER is experiencing a high level of crowding such that patients

with urgent needs (e.g., emergency severity index level 2 and 3 patients) are not

being managed safely. Under such circumstances, the ER will temporarily request

that it receives no patients in need of acute medical care.

We present the total hours of the duration of yellow alerts in Maryland in

Figure 6.1. The deeper the color is, the longer the total hours of yellow alert

durations are. Compared to other regions in Maryland, we observe longer total hours

of yellow alert durations in Region III. This observation motivates us to investigate

more on the potential issues about ER accessibility in this region and if there are
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any statistically significant risk factors related to increased ER crowding to help

facilitate future management to improve this issue.

Figure 6.1: Choropleth map for the duration of yellow alerts in Maryland.

In this chapter, we particularly focus on one of the ER accessibility issues: the

cascading problem. We illustrate this problem in Figure 6.2, where yellow indicates

the occurrence of yellow alert in this hospital’s ER. Figure 6.2 shows the yellow alert

status for 21 hospitals in Maryland Region III from November 24 to November 29

in 2018. We can see that only a few hospitals have yellow alerts occasionally before

November 27 and after. However, more than half of the 21 hospitals have yellow

alerts around November 27. We call this scenario as a cascading event.
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Cascading

Figure 6.2: Cascading problem observed around November 27, 2018.

In this project, our goal is to model such a cascading problem, understand its

evolution, and explore reasons that may cause the issue. We propose a multi-state

Markov model to formulate the cascading problem, in which we use polynomial and

Fourier series to approximate the general form of baseline intensities. Our proposed

method is not limited to the case where the assumption of time-homogeneity holds,

and could be used anywhere when intensities is time-sensitive [76, 77]. Furthermore,

we develop an adjusted model to modify the hazard ratio in order to explain an cas-

cading event. The cascading problem has several challenging characteristics. First,

we need to find an appropriate model in order to translate the cascading problem

into a mathematical and statistical model. After setting up this fundamental model,

we can use more tools to quantify issues of interest. Unfortunately, we haven’t seen

any previous work related to this new healthcare issue arising from CHATS. The
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second challenge is violation of the time-homogeneity assumption frequently used in

multi-state Markov model. When intensities are time-dependent, such homogeneity

model assumption becomes unrealistic. To address such limitations and overcome

the challenges, we propose to utilize two types of functions of time to estimate the

intensities in order to provide more flexibilities and better fit the data. Moreover, we

need to develop an appropriate model to reduce time-varying hazard ratios, which

explain significant impact to cascading issues from different hospitals.

The remaining sections of this chapter are organized as follows. In Section

6.2, we formulate our problem mathematically and present our proposed method for

understanding the cascading transition via a multi-state Markov model. In Section

6.3, we extend the method to more general scenarios, and validate the performance

of our proposed estimation method when the assumption of time-homogeneity is

violated. In Section 6.4, we apply our proposed method to a dataset collected from

CHATS from 2016 to 2018 and illustrate our findings, followed by Section 6.5, where

we conclude with a brief discussion on our results and future work.

6.2 The Proposed Method Using Multi-state Markov Models

In this section, we introduce a modified multi-state Markov model to fit data

arising from cascading problems in ER crowding. After we formulate the cascading

events in this region using a multi-state Markov model, we propose to estimate the

parameters of our scientific interest through maximum likelihood estimation (MLE)

and derive the asymptotic distributions of our proposed estimators. Finally, we
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present the hypothesis testing procedure for the cascading factors.

To start, we introduce two basic concepts in multi-state Markov model before

we formally introduce the specific model for the cascading problem: the transition

probability and intensity. The transition probability is the probability moving from

one state to another state. When using continuous-time Markov models, a com-

mon assumption is the time-homogeneity assumption. Under this assumption, the

transition probability only relies on the length of the time interval, denoted as s,

no matter when it starts. That is, the transition probability is independent of the

start time t. With time-homogeneity assumed, we have the following property of

the transition probability that the next move of the process is from state i to state

j:

Pij(t, t+ s) = P{X(t+ s) = j|X(t) = i} = Pij(s) for any states i and j.

The intensities describe the instantaneous rate of moving from state i to state j.

The movement between states is represented by the transition intensities below.

λij(t) = lim
s→0

P (X(t+ s) = j|X(t) = i)

s

for states i 6= j. When the time-homogeneity assumption holds, the intensities

remain constant over time. It has an obvious drawback ignoring time-dependent

intensities. In the following, we will generalize the multi-state Markov model to

accormodate more flexible forms of the intensities and the transition probabilities
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when modeling the cascading events.

6.2.1 The Multi-state Markov Model

We use yellow alert as an example for presentation purpose. We model the

time varying alert state of each hospital by a binary stochastic process:

ζi(t) =


1 if having yellow alerts at time t

0 otherwise

where i = 1, ..., 21. That is, if hospital i has a yellow alert at time t, we define the

alert state of hospital i, ζi(t), as 1. Otherwise, we have the state of hospital i at

time t as 0. Then based on the alert process from all 21 hospitals, we define the

alert status of the whole region III at any time t as ζ(t) =
∑21

i=1 ζi(t). It is easy to

see that ζ(t) ranges from 0 to 21.

Then with two pre-specified thresholds τ1 and τ2, we define X(t), the Markov

state at time t with three levels of the region, as follows:

X(t) =



0 if ζ(t) ≤ τ1, (normal)

1 if τ1 < ζ(t) ≤ τ2, (cascading level I)

2 if ζ(t) > τ2, (cascading level II)

We model the evolution of the region state as a stochastic process using a

continuous-time Markov chain. We illustrate the multi-state Markov model in the
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diagram below:

0 1 2

where we define 0 as normal, 1 as cascading level I, and 2 as cascading level II,

indicating three region states.

Starting from a normal status where the number of hospitals having yellow

alerts at time t is less than or equal to τ1, the region remains at normal status unless

more than τ1 but less than τ2 hospitals start to have yellow alerts which lead to less

accessibility to emergency rooms. The region becomes very urgent once more than

τ2 hospitals start to have yellow alerts at time t. The region may transit between

adjacent states among normal, cascading level I, and level II.

Given such a transition path defined above, we have the following intensity

matrix:

Q(t) = {λij(t)} =


λ00(t) λ01(t) 0

λ10(t) λ11(t) λ12(t)

0 λ21(t) λ22(t)


where each row sums to zero. Thus, the diagonal entries are λii(t) = −

∑
j 6=i λij(t),

and

λij(t) = lim
s→0

P (X(t+ s) = j|X(t) = i)

s

for states i 6= j.
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6.2.2 The Proposed Estimators and Asymptotic Distributions

To investigate the effects of covariates, we model the intensity λij(t) as

λij(t) = λ0ij(t) exp(βx),

where λ0ij(t) represents the baseline intensity process,

β = (β0, β1, ..., βn)

and

x′ = (x0, x1, ..., xn).

Here x contains the variables of interest, and β contains the effect of covariates

from state i to j. We generalize the baseline intensities by approximating log(λ0ij(t))

using polynomial and Fourier series. Thus, this yields

λij(t) = exp[log{λ0ij(t)}] exp(βx)

= exp(αijt) exp(βx)

= exp(bijz)
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When using polynomial approximation, we define

α′
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When using Fourier approximation, we define
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The likelihood is then maximized over the corresponding parameter space for α and

β. We suppose that the data consist of a series of transition times {t1, ..., tk, ..., tnij}

and the corresponding transitions from i to j, where states i and j ∈ S = {0, 1, 2}.

Also let fij(t) denote the density, Fij(t) denote the cumulative density function, and

Sij(t) denote the survival function corresponding to λij(t). We derive the likelihood

function as follows:

L =
∏

(i,j)∈S

nij∏
k=1

fij(tk)

=
∏

(i,j)∈S

nij∏
k=1

λij(tk) exp

{
−
∫ tk

0

λij(sk)dsk

}
.

Then the log-likelihood function can be written as:

logL =
∑

(i,j)∈S

nij∑
k=1

log
{
λij(tk) exp

(
−
∫ tk

0

λij(sk)dsk

)}

=
∑

(i,j)∈S

nij∑
k=1

log
{

exp(αijtk) exp(βx) exp

(
−
∫ tk

0

exp(αijsk) exp(βx)dsk

)}

=
∑

(i,j)∈S

nij∑
k=1

{
αijtk + βx−

∫ tk

0

exp(αijsk) exp(βx)dsk

}

Using maximum likelihood estimation (MLE), we propose to estimate the parame-

ters in the above model as:

b̂ij = argmax
bij

∑
(i,j)∈S

nij∑
k=1

{
αijtk + βx−

∫ tk

0

exp(αijsk) exp(βx)dsk

}
.

Under regularity conditions, our proposed estimators b̂ij have excellent properties
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such as consistency, efficiency, and asymptotic normality. The asymptotic distribu-

tion of b̂ij is

√
nij(b̂ij − bij)

D−→ N (0, I−1)

where I is the Fisher information for bij . After some algebra and regular derivations,

we summarize the asymptotic properties of α̂0
ij, α̂

1
ij, and β̂ with the first order

polynomial approximation in the following Theorems.

Theorem 6.1. Under regularity conditions, the asymptotic distribution of α̂0
ij is

√
nij(α̂

0
ij − α0

ij)
D−→ N (0, I−1

α0
ij

)

where

Iα0
ij

=
eα

0
ij+βx

α1
ij

{
AeA/e

1
ij

1

bα1
ij

(1 +
1

b
)e−b − 1

}
, A = eα

0
ij+βx, and b =

A

α1
ij

.

Proof. We start from the full log likelihood function

logL =
∑

(i,j)∈S

nij∑
k=1

{
α0
ij + α1

ijtk + βx−
∫ tk

0

eα
0
ij+α

1
ijskeβxdsk

}
.

Then we calculate the second derivative of the log likelihood function:

∂ logL

∂α0
ij

= nij−eβx
nij∑
k=1

∫ tk

0

eα
0
ij+α

1
ijskdsk,

∂2 logL

∂(α0
ij)

2
= −eβxeα0

ij
1

α1
ij

{ nij∑
k=1

eα
1
ijtk−nij

}
.
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Together with the following fact:

E eα1
ijtk =

∫ tk

0

eα
1
ijskfij(sk)dsk

= AeA/e
1
ij

1

bα1
ij

(1 +
1

b
)e−b

where

A = eα
0
ij+βx, and b =

A

α1
ij

,

we can derive the Fisher information as below:

Iα0
ij

= −
E ∂2 logL

∂(α0
ij)

2

nij
=
eα

0
ij+βx

α1
ij

{
AeA/e

1
ij

1

bα1
ij

(1 +
1

b
)e−b − 1

}
.

The results now follow.

Theorem 6.2. Under regularity conditions, the asymptotic distribution of α̂1
ij is

√
nij(α̂

1
ij − α1

ij)
D−→ N (0, I−1

α1
ij

)

where

Iα1
ij

=
eβx

(α1
ij)

2

{
eα

0
ij

{
E1 − (α1

ij + 1)E2 + α1
ijE3

}
− eα0

ij

}
,

E1 = AeA/e
1
ij

1

bα1
ij

(1 +
1

b
)e−b, E2 = AeA/e

1
ij

1

α1
ij

1

b2
{
e−b − Ei(−b)

}
,

E3 =
AeA/α

1
ij

(α1
ij)

3b2

{
2

b
G 3,0

2,3

(
b
∣∣ 1,1
0,0,0

)
+(2−2 log(b))

{
e−b log(b)+Γ(0, b)

}
+
{

[log(b)]2−2 log(b)
}
e−b

}

A = eα
0
ij+βx, and b =

A

α1
ij

.
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Proof. The proof is similar to that of Theorem 6.1, but the derivatives of the log

likelihood function now are

∂ logL

∂α1
ij

=

nij∑
k

tk −
eβx

α1
ij

nij∑
k=1

{
(tk − 1)eα

0
ij+α

1
ijtk + nije

e0ij

}

∂2 logL

∂(α1
ij)

2
= − eβx

(α1
ij)

2

{
eα

0
ij

nij∑
k=1

{
eα

1
ijtk︸ ︷︷ ︸
1

−(α1
ij + 1) tke

α1
ijtk︸ ︷︷ ︸

2

+α1
ij (tk)

2eα
1
ijtk︸ ︷︷ ︸

3

}
− nijeα

0
ij

}
.

Hence, we need to calculate the expectations for parts 1, 2, and 3, respectively.

For part 1,

E eα1
ijtk = AeA/e

1
ij

1

bα1
ij

(1 +
1

b
)e−b = E1,

and for part 2,

E tkeα
1
ijtk = AeA/e

1
ij

1

α1
ij

1

b2
{
e−b − Ei(−b)

}
= E2

where Ei denotes the exponential integral.

For part 3,

E(tk)
2eα

1
ijtk =

AeA/α
1
ij

(α1
ij)

3b2

{
2

b
G 3,0

2,3

(
b
∣∣ 1,1
0,0,0

)
+ (2− 2 log(b))

{
e−b log(b)+

Γ(0, b)
}

+
{

[log(b)]2 − 2 log(b)
}
e−b

}
= E3,

where Gm,n
p,q

(
z
∣∣ a1,...,ap
b1,...,bq

)
is the Meijer G-function and Γ(0, x) is the incomplete gamma

function.
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Thus, it yields the Fisher information below

Iα1
ij

= −
E ∂2 logL

∂(α1
ij)

2

nij
=

eβx

(α1
ij)

2

{
eα

0
ij

{
E1 − (α1

ij + 1)E2 + α1
ijE3

}
− eα0

ij

}
,

and then Theorem 6.2 follows.

Theorem 6.3. Under regularity conditions, the asymptotic distribution of β̂ is

√
nij(β̂ − β)

D−→ N (0, I−1β ),

where

Iβ = −eβxx2
∑

(i,j)∈S

{
eα

0
ij

α1
ij

{
AeA/e

1
ij

1

bα1
ij

(1+
1

b
)e−b−1

}}
, A = eα

0
ij+βx, and b =

A

α1
ij

.

Proof. A similar proof applies. Now the first and second derivatives of the log

likelihood function with respect to β are

∂ logL

∂β
=
∑

(i,j)∈S

nij∑
k=1

{
x− eβxx

∫ tk

0

eα
0
ij+α

1
ijskdsk

}

and

∂2 logL

∂(β)2
=
∑

(i,j)∈S

nij∑
k=1

−eβxx2

∫ tk

0

eα
0
ij+α

1
ijskdsk.
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Then, we derive the expectation of the second partial derivative as

E
∂2 logL

∂β2
=
∑

(i,j)∈S

nij∑
k=1

−eβxx2 E
∫ tk

0

eα
0
ij+α

1
ijskdsk

=
∑

(i,j)∈S

nij∑
k=1

−eβxx2 e
α0
ij

α1
ij

{
AeA/e

1
ij

1

bα1
ij

(1 +
1

b
)e−b − 1

}
.

Thus, we have

Iβ =
−E ∂2 logL

∂β2

nij
= −eβxx2

∑
(i,j)∈S

{
eα

0
ij

α1
ij

{
AeA/e

1
ij

1

bα1
ij

(1 +
1

b
)e−b − 1

}}

where

A = eα
0
ij+βx, and b =

A

α1
ij

.

Therefore, Theorem 6.3 follows.

6.2.3 Hypothesis Testing

We further investigate the reasons that may cause the cascading problem in

this region. It is reasonable to believe that continuous yellow alerts at some big

hospitals such as University of Maryland Medical Center (UMMC) or John Hopkins

Hospital (JH) makes ERs in the region hardly accessible. Thus, identifying such

hospitals is the first step to solve the cascading issue. We name such hospitals

as indicator hospitals. To achieve this goal, we need to compare cascading events

caused by indicator hospitals and those caused by non-indicator hospitals. In the

following multi-state Markov model, we include a binary indicator variable x to
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denote whether the cascading event is caused by an indicator hospital or not. Then

the hazard ratio can be interpreted as the differences between two cases. We have

the model

λij(t) = λ0ij(t)e
βijx

where x = 1 if the cascading event is caused by indicator hospitals, and x = 0,

otherwise. Thus, βij = log(HRij) where HRij is a hazard ratio comparing state i

versus state j. Hence, the null and alternative hypotheses for the test of the effect

of indicator hospitals are

H0 : βij = 0 for all i, j vs. H1 : βij 6= 0 for some i, j.

Given the natural order as we define the levels of region alert states X(t), we

modify the Markov model accordingly to make sure that the state-wise hazard ratio

always follows one direction. Here hazard ratios provide group comparisons in terms

of inaccessibility of ERs in the region over time:

λij(t) = λ0ij(t)e
βijx

where βij = (−1)I{i>j}β, i.e.

βij =


β i < j

−β i > j.
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Therefore, the hypotheses becomes

H0 : β = 0 vs. H1 : β 6= 0,

and β = log(HR). The parameter estimation is similar as in Section 6.2.2. Following

Wilks’ theorem [142], the asymptotic distribution of the likelihood ratio test (LRT)

statistic (L0/L1), where L0 is the maximum value of the likelihood under H0 and L1

is the maximum value of the likelihood across the full parameter space, is as follows:

−2 log(
L0

L1

)
D−→ χ2

1

where χ2
1 is a χ2 random variable with 1 degree of freedom.

6.3 Simulation

In this section, we validate the finite sample performances of our proposed

methods via simulation studies. We approximate the intensities by either polyno-

mial and Fourier series. In order to demonstrate the flexibility of our methods, we

consider two scenarios: (1) intensities are time-homogeneous in Section 6.3.1 and

(2) intensities are time-heterogeneous in Section 6.3.2.

6.3.1 The Time-homogeneous Scenario

When intensities are time-homogeneous, they remain constant over time. Specif-

ically, we generate the transition time between different states from an exponential
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distribution. We denote tij time until transition from state i to j where i, j ∈

{0, 1}. In the time-homogeneous scenario, we assume that t01 ∼ Exp(1/7), t10 ∼

Exp(1), t12 ∼ Exp(1), and t21 ∼ Exp(1). Here, Exp(λ) denotes an exponential dis-

tribution with rate parameter λ, that is, the density function is f(t) = λe−λt and

the hazard rate is λ. The intensity matrix is

Q(t) =


−1/7 1/7 0

1 −2 1

0 1 −1

 .

We simulate the cascading transition process across a 3-year period to avoid a factor

of seasonality. We generate data as follows:

1. The region starts from state 0.

2. If the region starts in state 0, we simulate t00 ∼ exp(−λ00), and then at time

t00 it jumps to 1.

3. If the region starts in state 1, we simulate t11 ∼ exp(−λ11), and then it jumps

to 0 with probability −λ10
λ11

. Otherwise, it jumps to 2.

4. If the region starts with state 2, we simulate t22 ∼ exp(−λ22), and then it

jumps to 1.

5. We repeat steps 2 to 4 until the total time reaches 3 years.

When the assumption of time-homogeneity for intensities holds, the simulation

for cascading transition in the region within a month can be illustrated in Figure
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Figure 6.3: A cascading simulation in the region within a month in the time-
homogeneous scenario.

6.3.

We validate the goodness of fit by comparing between true and estimated

survival curves between transition states in terms of Mean Integrated Squared Error

(MISE):

MISE = E
∫ t

0

(Sij(t)− Ŝij(t))2dt =
1

K

K∑
k=1

∫ t

0

(Sij(t)− Ŝkij(t))2dt,

where K is number of simulated datasets. Due to the complexity of likelihood

function when using Polynomial or Fourier approximations, we numerically maxi-

mize the likelihood function to estimate the desired parameters. The underline true

survival and the estimated survival are shown in Figures 6.4 and 6.5 for using Poly-

nomial and Fourier approximations respectively. In Table 6.1, we summarize the

estimated MISEs when using different order-Polynomial or Fourier approximations
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Figure 6.4: The comparison between true and estimated survival curves between
states by polynomial approximation in time-homogeneous scenario.

for the time-homogeneous scenario.

More specifically, we employ constant, first, second, third, and combination of

first and third order polynomial approximations (Figure 6.4 and Table 6.1). The 3rd

order polynomial approximation diverges from the true survival curve when fitting

transitions from normal ER level to Cascading level I, while other cases yield an

estimated survival curve close to the truth and achieve small MISEs. In transition

from Cascading level I to Normal ER level or from Cascading I to II, the 3rd order
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Figure 6.5: The comparison between true and estimated survival curves between
states by Fourier approximation in time-homogeneous scenario.

polynomial approximation can estimate the true survival curve better compared to

lower orders of approximations. All work well for the transition from Cascading

level II to I, and have been validated.

Similarly, we try Fourier approximations with the constant, first and second

order Fourier series in Figure 6.5 and Table 6.1. For the transition from normal ER

level to Cascading level I, all methods fit the data well and yield good estimates of

the true survival curve. They all diverge a little bit from the true survival curves for
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transition from ER Cascading level I to Normal ER status and from Cascading level

I to level II. Compared to the case using the second order Fourier series, constant

or the first order Fourier approximation performs better for the transition from ER

Cascading level II to level I.

Survival function
Polynomial Fourier

0th 1st 2nd 3rd 1st 2nd

S01 0.0085 0.0259 0.0164 0.3407 0.0037 0.0004
S10 0.0795 0.0692 0.0967 0.0131 0.093 0.1115
S12 0.0796 0.094 0.0889 0.0151 0.0919 0.0825
S21 0.0019 0.0016 0.0035 0.0001 0.0017 0.0045

Table 6.1: Summary of MISE for time-homogeneous scenario.

6.3.2 The Time-Heterogeneous Scenario

A more common or more general scenario assumes no time-homogeneity for in-

tensities, which means that the intensities rely on time. In such scenarios, we assume

the transition time between states follows a Weibull distribution. Let Weibull(p, q)

denote a Weibull distribution with shape and scale parameters, p and q, then its

density function is g(t) = (p/q)(t/q)p−1e−(t/q)
p

and hazard rate is h(t) = (p/qp)tp−1.

We assume that t01 ∼ Weibull(3, 8), t10 ∼ Weibull(4,1), t12 ∼ Weibull(4, 1), and

t21 ∼ Weibull(3,1). Since each row of the intensity matrix is supposed to sum to

zero, we specify the intensity matrix as follows:

Q(t) =


− 3

83
t2 3

83
t2 0

4t3 −8t3 4t3

0 3t2 −3t2

 .
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The data can be generated in the following manner:

1. The region starts from state 0.

2. If the region starts with state 0, we simulate t00 ∼Weibull(3, 8), then it jumps

to 1.

3. If the region starts with state 1, we simulate t11 ∼ Weibull(4, (1/2)1/4), then

it jumps to 0 with probability −λ10(t)
λ11(t)

. Otherwise, it jumps to 2.

4. If the region starts with state 2, we simulate t22 ∼Weibull(3, 1), then it jumps

to 1.

5. We repeat steps 2 to 4 until the total time reaches 3 years.

The simulated data for cascading transition in a region within the first month

assuming time-heteriogeneous intensities is illustrated in Figure 6.6.

In Figures 6.7 and 6.8, we compared our estimated survival curves using Poly-

nomial and Fourier approximations with the true survival curve. In Table 6.2, we

report the MISEs calculated by using each type of Polynomial and Fourier series.

We found that the third order Polynomial dramatically diverge from the underlying

true survival curve in the transition from ER normal level to Cascading level I. For

the other three transitions, the first and second order Polynomial series perform

better than the rest by a smaller MISE. It turns out that there is no statistically

significant difference after four weeks for the transition from cascading level I to nor-

mal, cascading level I to II, and cascading level II to I. When using either constant,
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Figure 6.6: A cascading simulation in the region within a month in time-
inhomogeneous scenario.

or the first and second order Fourier series for the proposed method, all three mod-

els obtain an estimate that diverge from the true survival curves at certain levels

when fitting the transition from ER normal status and Cascading level I. For the

other three transitions between Markov states, the first and second order Fourier

approximation perform relatively better, but it does not demonstrate dramatically

better performance after staying at the current states for more than four weeks.

Survival function
Polynomial Fourier

0th 1st 2nd 3rd 1st 2nd

S01 0.4812 0.0259 0.0388 4.19 0.0429 0.3868
S10 0.1098 0.0313 0.032 0.0968 0.0323 0.0362
S12 0.1099 0.0172 0.0175 0.0968 0.0323 0.0362
S21 0.0699 0.0015 0.0031 0.0709 0.0014 0.0011

Table 6.2: Summary of MISE for time-inhomogeneous case.
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Figure 6.7: The comparison between true and estimated survival curves between
states by polynomial approximation in time-inhomogeneous scenario.
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Figure 6.8: The comparison between true and estimated survival curves between
states by Fourier approximation in time-inhomogeneous scenario.
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In fact, we have the following Theorem about the jumping probabilities.

Theorem 6.4. In the multi-state Markov model illustrated by diagram below:

0 1 2

the jumping probability from 1 to 0 is −λ10(t)
λ11(t)

.

Proof. Let Tij denote a random variable for sojourn time from state i to j.

(time)
1 0

T11 (sojourn time)

Considering an infinitely small time period ∆t, then

Pr(jump to 0 after staying at 1 for t11)

=Pr(T10 < T12|T11 ∈ (t11, t11 + ∆t))

=
Pr(T10 < T12, t11 ≤ T11 ≤ t11 + ∆t)

F11(t11 + ∆t)− F11(t11)

=
(
∫ t11+∆t

t11
S12(t)dF10(t))/∆t

(F11(t11 + ∆t)− F11(t11))/∆t
=
S12(t)f10(t)

f11(t)
(as ∆t −→ 0)

=
S11(t)f10(t)

S10(t)f11(t)
= −λ10(t)

λ11(t)

6.3.3 Hypothesis Testing

Additionally, we validate the performance in the adjusted model using simula-

tions. In this simulation, we assume constant intensities and constant hazard ratio
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(HR). Specifically, we assume HR is 0.5 and the intensity matrix in one group is

Q(t) =


−1/7 1/7 0

1 −2 1

0 1 −1

 ,

and the intensity matrix in another group is

Q(t) =


−2/7 2/7 0

1/2 −5/2 2

0 1/2 −1/2

 .

We evaluate each parameter estimation in terms of Mean Squared Error (MSE)

and bias in the tables below. Small MSEs and biases in Table 6.3 for the adjusted

model and Table 6.4 for the full model indicate that the proposed method work well

in both cases.

criterion λ01 λ10 λ12 λ21 HR

MSE 2.16e-02 6.41e-02 4.78e-02 1.8e-02 2.97e-02

Bias -0.0144 -0.0024 0.0064 -0.0012 0.0403

Table 6.3: Simulation results for the adjusted model.

criterion λ01 λ10 λ12 λ21 HR01 HR10 HR12 HR21

MSE 2.1528e-02 8.2348e-03 4.7707e-02 2.1817e-02 8.0841e-03 4.403e-02 2.2601e-01 1.826e-02
Bias -0.0143 -0.0026 0.0064 -0.0012 0.0045 0.0113 -0.1699 0.0472

Table 6.4: Simulation results for the model with varying HR between states.
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6.4 Real Data Analysis

In this section, we analyze the yellow alerts data collected from CHATS for

all emergency rooms in 21 hospitals in region III from 2016 to 2018. We first

evaluate the transition between different levels of accessibility in emergency rooms.

To achieve this goal, we employ a multi-state Markov model using the proposed

and generalized methods described above. In addition, we further investigate the

underlying reasons that may cause the cascading events in order to support better

decision-making for both patients and hospital administrators.

To understand the evolution in the proposed multi-state Markov model, we

consider the following transition probabilities and intensities.

• Transition probabilities:

Pij(t, t+ s) = P (X(t+ s) = j|X(t) = i) = Pij(t) for any states i and j.

• Intensity matrix Q(t) = {λij(t)} whose rows sum to zero, diagonal entries are

λii = −
∑

i 6=j λij, and

λij(t) = lim
s→0

P (X(t+ s) = j|X(t) = i)

s

for states i 6= j.
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• Transition probabilities and intensities are connected via Kolmogorov equation

P
′
(t) = Q(t)P(t) where P(t) = {Pij(t)}.

Thus, we solve for P01(t), P11(t), and P21(t) via the following system of ODE using

the Runge-Kutta method.

P ′01(t) = λ00(t)P01(t) + λ01(t)P11(t)

P ′21(t) = λ21(t)P11(t) + λ22(t)P21(t)

P ′11(t) = λ10(t)P01(t) + λ11P11(t) + λ12(t)P22(t)

In the system of ODE, we try different ways to approximate the intensities using

Polynomials or Fourier series. Among all approximations, the second order poly-

nomial performs the best and achieves a better goodness of fit to the data, and we

have the empirical transition probability calculated as below:

P̃ij(t) =
# of transitions to state j from i at time t

total number of transitions starting from state i

where i, j = 0, 1, 2.

In Figure 6.9, we visualize our estimated transition probabilities from normal

ER status to Cascading level I compared to the empirical data. As we can see, the

estimated curve oscillate around the empirical one within two weeks and it achieves
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Figure 6.9: Empirical and estimated transition probability from normal to cascading
level I within two weeks.

the maximum after one week at around Day 8.

In order to find indicator hospitals that may cause the cascading effects, we

conduct analyses to explore the connection between hospitals by calculating the

conditional probabilities below:

Pr(hospital j will have a yellow alert|hospital i is having a yellow alert)

=
total duration of simultaneous yellow alerts at both hospitals i and j

total duration of yellow alerts in hospital i
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Figure 6.10: Probability of having a yellow alert at hospital i conditional on hospital
j having a yellow alert.
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To better illustrate the results in Figure 6.10, we demonstrate the connections

between hospitals in the following diagram. For instance, we list 11 hospitals in Bal-

timore area and place them in the diagram according to their location in Baltimore.

The number 0.23 above the arrow going from Sinai Hospital to Good Samaritan in-

dicates that if Sinai hospital is having a yellow alert, then the probability that Good

Samaritan also has a yellow alert is 0.23. Similar interpretations can be applied to

other hospitals.

Sinai Hospital Good Samaritan

Union Memorial

Midtown

Johns Hopkins

Mercy Medical JH Bayview

Bon SecoursUMMC

St. Agnes

Harbor Hospital

0.23

0.22

0.19

0.50
0.24 0.52

0.390.04

0.24

0.11

From the results, we notice that two major hospitals, University of Maryland Medical
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Center (UMMC) and John Hopkins Hospital (JH) significantly influence the other

hospitals in this region. To further investigate this issue, we use adjusted model to

calculate the hazard ratio. We define any cascading level (normal, level I, or level

II) caused by JH or UMMC as group A, and all the remainders as group B. We

calculate the hazard ratio (HR) using the validated method described before, and

get a HR as 0.63 (95%CI=0.58-0.67, p < 0.01). That is, group B has the hazard

risk reduced by about 37% for the transition to a higher cascading level compared

to group A.

6.5 Discussion

A cascading event happening in ER is an important issue, in which case hos-

pitals cannot provide necessary emergency services to the acute care of patients in

the region. However, the issue has not obtained enough attention and has not been

studied well in the literature. The main reason is that such cascading problems

are hard to handle quantitatively. Therefore, the investigation in this Chapter be-

comes complicated, but important for the emergency service system in Region III

of Maryland.

In this chapter, we have developed a multi-state Markov model to address the

cascading event. We use a general form of intensities to accommodate potential

violations of time-homogeneity assumption and extend the model to handle time-

varying hazard ratios appropriately. Our extensive simulation studies illustrate good

performances of the proposed method. We demonstrate that polynomial and Fourier
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approximation to baseline intensities and the generalized model for handling time-

varying hazard ratios perform consistently well. We also apply the new method to

yellow alert data in ERs of 21 hospitals in Maryland Region III.

6.5.1 Applications in Emergency Room

The proposed method and this study could help patients and hospital admin-

istrators to understand the evolution of cascading events, as well as similarity and

heterogeneity among hospitals in terms of accessibility to emergency rooms in Re-

gion III. For example, we are able to observe this evolution of accessibility status

of emergency rooms in Maryland Region III via transition probabilities between

different states in the Markov model.

We also anticipate that this study could help patients, hospital administra-

tors, or emergency service staff to allocate patients’ flow or resources in Region III

wisely to avoid overload. For instance, Figure 6.10 can help us to understand the

correlations of yellow alert status between different ERs. Once a yellow alert is

initiated at one ER, we can roughly estimate the probability of starting a yellow

alert at another ER. Also, using our proposed method, one can calculate the hazard

ratio, which provides guidance on differences in risks to cause a cascading event

from different ERs. These results could be used to allocate resources in ERs ahead

of time.

In addition, the proposed method can be used to predict the time left at

current ER accessibility state. For instance, expected time remaining at current

144



cascading level can be evaluated given the elapsing time and other covariates at the

current time. This is essentially to calculate the Mean Residual Life Time (MRLT),

m(t), below

m(t) = E(Tij − t|Tij > t) =
1

S(t)

∫ ∞
t

S(u)du.

where S(t) can be estimated by the proposed methods in this Chapter. By estimat-

ing the remaining time at current cascading level, it helps to reallocate the resources

available, for example, reallocating more beds or other facilities or gradually control

the numbers of patients in need of care.

Furthermore, by adding some covariates of interest, such as bed size or number

of service staff, we would be able to know how those covariates impact the cascading

problems in the region, which provide us guidances on how to reduce such risk of

cascading events.

6.5.2 Future Research

It would be of interest to extend our current work in several ways. Firstly, it

would be helpful to consider reparametrization to reduce the dimension of param-

eters, since using polynomial and Fourier series would involve a high dimension of

parameters and make the computation complex and time-consuming. The second

extension would be related to our current data limitations. If more data at hospital-

specific level is accessible, such as the number of beds in the 21 emergency rooms,

the study may provide more insights on the cascading issues. The last extension

could be: applying the method to only eleven hospitals in Baltimore city, where the
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hospitals are more closely connected. These problems are beyond the scope of this

chapter, but would be interesting topics for future research.
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Chapter 7: Conclusions

Numerous healthcare problems consistently attract researchers’ attention be-

cause these problems are closely related to individual and social well-being and new

challenges are always developing over time. While statistical tools are critical and

useful in understanding healthcare issues, the emerging healthcare challenges call

for the exploration, application, and development of more suitable and appropriate

statistical methods.

In this dissertation, we have applied and developed a variety of statistical

methods to address different healthcare problems. First, we performed exploratory

data analysis to investigate interesting data characteristics using statistical visual-

ization tools such as boxplot, Q-Q plot, histogram and descriptive statistics. Then,

we used more complex statistical tools to address each healthcare issue under study.

Specifically, we developed mixture models with the EM algorithm to model length

of hospital stay in Chapter 2; stochastic processes in Chapter 3 were applied to

study patients’ readmission risk; nonparametric tests in Chapters 4 and 5 identified

significant differences for hospital alert duration over time; survival curves in Chap-

ter 4 visualized changes in alert duration; linear mixed models in Chapter 5 helped

us investigate the impact of the global budget payment model on ED accessibil-
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ity; and we used survival analysis and Markov chain models in Chapter 6 to study

the evolution of and reasons for a cascading event. Finally, our use of innovative

statistical techniques obtained some interesting findings and applications, and the

research methodology can be extended to other studies in the future. For instance,

the distribution model we found for length of stay can be used to simulate patients’

stay in other real-world scenarios. Our proposed two-state continuous-time Markov

chain can be generalized to monitor the expected number of readmitted patients over

time. Among our noteworthy findings, we observed a recent decrease in the level

of ED accessibility in Maryland Region III, and we found that the global budget

program had no impact on ED accessibility. Both of these findings have significant

implications for future healthcare policy making in Maryland. Lastly, we built a

multi-state Markov model that calculates the expected time of a current alert state

and identifies reasons for cascading events, which can provide guidance for future

ED management in Maryland.

Healthcare is undergoing a period of pivotal change. The digital and mobile

revolution allows organizations to collect personalized healthcare data from each

patient and compare it with other patient data using artificial intelligence-based

methods. It also enables us to better quantify characteristics of each patient and

distinguish individual patients, thus allowing the creation of more precise and more

personalized treatment plans to improve healthcare for every individual. The com-

plexity and volume of personalized healthcare data are staggering. The ongoing

development of appropriate statistical methods is therefore necessary in order to

resolve the more challenging precision medicine and personalized healthcare issues.
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Appendices

Appendix A: The Derivation for LGMM

In this appendix, we present the associated derivations for the EM algorithm

for the Lognormal-Gamma Mixture Model.

Assume n independent and identically distributed (i.i.d.) length of stay ob-

servations xi ∈ R, i = 1, ..., n, drawn from a LGMM, our objective is to estimate

the parameter set θ = {p, µ, σ, α, β} that best fits the observed data. We assume

the observations xi belong to a mixture distribution defined by:

Xi = ZiUi + (1− Zi)Vi

where

Ui ∼ f1(ui|µ, σ)

Vi ∼ f4(vi|α, β)

Zi ∼ f3(zi|p)

and Zi is independent of Ui and Vi. For any vi, the pdf for the Gamma distribution
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is defined as

f4(vi|α, β) =
1

Γ(α)βα
vα−1i exp(−vi/β), α, β ∈ R+.

The pdf for the LGMM is then defined as:

f(xi|p, µ, σ, α, β) = pf1(xi|µ, σ) + (1− p)f4(xi|α, β).

The E-step of the EM algorithm proceeds as follows:

ε
(m)
i =

p(m)f1(xi|µ(m), σ(m))

p(m)f1(xi|µ(m), σ(m)) + (1− p(m))f4(xi|α(m), β(m))
.

With the assumptions that the samples are i.i.d., we calculate the Q-function below:

Q(θ|θ(m)) = Σn
i=1

{
ε
(m)
i log[pf1(xi|µ, σ)]

+ (1− ε(m)
i ) log[(1− p)f4(xi|α, β)]

}
= Σn

i=1

{
ε
(m)
i

(
log(p)− log(σ)− log(xi)−

(log(xi)− µ)2

2σ2

)
+ (1− ε(m)

i )[log(1− p) + log Γ(α)− α log β+

(α− 1) log xi −
xi
β

]
}

+ C

where C does not depend on any of the elements of θ.
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The M-step determines the next iterate of θ that maximizes the Q-function

above:

θ(m+1) = argmax
θ
Q(θ|θ(m)).

The optimal p, µ, σ2, α, β are found by equating the respective partial derivatives

to zero, and solving.

For p, µ, and σ2, similarly to the LEMM, we have

p(m+1) =
1

n
Σn
i=1ε

(m)
i ,

µ(m+1) =
Σn
i=1ε

(m)
i log(xi)

Σn
i=1ε

(m)
i

,

and

(σ2)(m+1) =
Σn
i=1ε

(m)
i (log(xi)− µ(m+1))2

Σn
i=1ε

(m)
i

.

For α and β, we have

∂Q(θ|θ(m))

∂α
= Σn

i=1(1− ε
(m)
i )(ψ(α)− log β + log xi) = 0

and

∂Q(θ|θ(m))

∂β
= Σn

i=1(1− ε
(m)
i )(−α

β
+
xi
β2

) = 0
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which yields

α(m+1) = ψ−1
{(log β(m))Σn

i=1(1− ε
(m)
i )− Σn

i=1 log xi(1− ε(m)
i )

Σn
i=1(1− ε

(m)
i )

}

and

β(m+1) =
Σn
i=1(1− ε

(m)
i )xi

α(m+1)Σn
i=1(1− ε

(m)
i )

where Γ(x) =
∫∞
0
zx−1e−zdz denotes the gamma function and ψ(x) = Γ′(x)/Γ(x)

denotes the digamma function.
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Appendix B: The Derivation for LLMM

In this appendix, we present the associated derivations for the EM algorithm

for the Lognormal-Lognormal Mixture Model.

Assume n independent and identically distributed (i.i.d.) length of stay obser-

vations xi ∈ R, i = 1, ..., n, drawn from a LLMM, our objective is to estimate the

parameter set θ = {p, µ1, σ1, µ2, σ2} that best fits the observed data. We assume

the observations xi belong to a mixture distribution defined by:

Xi = ZiUi + (1− Zi)Vi

where

Ui ∼ f1(ui|µ1, σ1)

Vi ∼ f1(vi|µ2, σ2)

Zi ∼ f3(zi|p)

and Zi is independent of Ui and Vi.

The pdf for the LLMM is defined as:

f(xi|p, µ1, σ1, µ2, σ2) = pf1(xi|µ1, σ1) + (1− p)f1(xi|µ2, σ2).
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The E-step of the EM algorithm proceeds as follows:

ε
(m)
i =

p(m)f1(xi|µ(m)
1 , σ

(m)
1 )

p(m)f1(xi|µ(m)
1 , σ

(m)
1 ) + (1− p(m))f1(xi|µ(m)

2 , σ
(m)
2 )

.

With the assumptions that the samples are i.i.d., we calculate the Q-function below:

Q(θ|θ(m)) = Σn
i=1

{
ε
(m)
i log[pf1(xi|µ1, σ1)]

+ (1− ε(m)
i ) log[(1− p)f1(xi|µ2, σ2)]

}
= Σn

i=1

{
ε
(m)
i [log(p)− log(σ2)− log(xi)−

(log(xi)− µ1)
2

2σ2
1

]

+ (1− ε(m)
i )[log(1− p) + log(σ2)− log(xi)

− (log(xi)− µ2)
2

2σ2
2

]
}

+ C

where C is a constant that does not depend on θ.

The M-step determines the next iterate of θ that maximizes the Q-function

above:

θ(m+1) = argmax
θ
Q(θ|θ(m)).

The optimal p, µ1, σ
2
1, µ2, σ

2
2 are found by equating the respective partial

derivatives with zero, and solving. Similarly as two models above, we have

p(m+1) =
1

n
Σn
i=1ε

(m)
i ,
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µ
(m+1)
1 =

Σn
i=1ε

(m)
i log(xi)

Σn
i=1ε

(m)
i

,

and

(σ2
1)(m+1) =

Σn
i=1ε

(m)
i (log(xi)− µ(m+1))2

Σn
i=1ε

(m)
i

.

For µ2 and σ2
2, we have

∂Q(θ|θ(m))

∂α2

= Σn
i=1(1− ε

(m)
i )

log(xi)− µ
σ2

= 0

and

∂Q(θ|θ(m))

∂β
= Σn

i=1 −
(1− ε(m)

i )

σ
+

(1− ε(m)
i )(log(xi)− µ)2

σ3
= 0

which yields

µ
(m+1)
2 =

Σn
i=1(1− ε

(m)
i ) log(xi)

Σn
i=1(1− ε

(m)
i )

and

(σ2
2)(m+1) =

Σn
i=1(1− ε

(m)
i )[log(xi)− µ(m+1)]2

Σn
i=1(1− ε

(m)
i )

.
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