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Astrophysical environments probe matter in ways impossible on Earth. In

particular, matter in compact objects are extraordinarily dense. In this thesis we

discuss two phenomena that may occur at high density.

First, we study toroidal topological solitons called vortons, which can occur

in the kaon-condensed color-flavor-locked phase of high-density quark matter, a

candidate phase for the core of some neutron stars. We show that vortons have

a large radius compared to their thickness if their electrical charge is on the order

of 104 times the fundamental charge. We show that shielding of electric fields by

electrons dramatically reduces the size of a vorton.

Second, we study an unusual phase of degenerate electrons and nonrelativistic

Bose-condensed helium nuclei that may exist in helium white dwarfs. We show that

this phase supports a previously-unknown gapless mode, known as the half-sound,

that radically alters the material’s specific heat, and can annihilate into neutrinos.

We provide evidence that this neutrino radiation is negligible compared to the star’s

surface photoemission.
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Part 0

Introduction
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Compact objects are astrophysical objects that are extremely dense. The com-

pact objects with the surest theoretical and observational footing are white dwarfs,

neutron stars, black holes, while more exotic possibilities include quark stars, strange

stars, and others. These objects create their high-density matter via gravitational

confinement—such a technique is not realizable in an Earth-based laboratory, so

these objects provide a unique way of probing an otherwise-inaccessible portion of

the phase diagram of matter.

Compact stars are typically the end of a star’s evolutionary lifecycle. When

it is done burning its nuclear fuel, a generic main-sequence star will finish its life

as a white dwarf (WD), which is held up entirely by quantum-mechanical electron

degeneracy pressure. If its mass is less than the famous Chandrasekhar limit of

about 1.4 solar masses, the electron degeneracy pressure will stabilize it eternally,

and the remainder of the star’s life will be simply radiating whatever heat it still

contains.

On the other hand, if its mass is more than the Chandrasekhar limit, or

if the star becomes heavier than that limit by accreting (from a binary partner,

for example), or collides with another white dwarf, then the degeneracy pressure

cannot sustain the star, and it will collapse in a catastrophic explosion known as a

supernova. Depending on just how heavy the star is, it might collapse into a black

hole or a neutron star. To get an idea of how these objects compare, a typical white

dwarf density is 106g/cm3, while a typical neutron star’s crust is that dense and its

core is around 6 to 8 · 1014g/cm3, or roughly comparable with nuclear density.

From a nuclear physics standpoint, a black hole is relatively uninteresting,
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but both white dwarfs and neutron stars are playgrounds on which we can test our

understanding of matter at high density.

This thesis is organized into two disparate, stand-alone parts, each focuses on

an aspect of matter in these high-density environments.

Part 1 is about vortons, which are toroidal topological objects that can arise in

a certain phase of high-density quark matter that may occur in neutron star cores.

Vortons can arise in any two-bosonic-species system if both species want to condense

but repel one another. If one species gets trapped in the core of a vortex loop in

the bulk of the other, it can provide an angular momentum barrier that stabilizes

the loop and prevents it from shrinking under its own tension.

Part 1 investigates vortons in both cold atom BECs and the more complicated

case of high-density quark matter, where the quarks can pair into a BCS-like color

superconductor. If the quark masses are not negligible compared to the chemical

potential, the low-energy excitations of this color superconductor themselves try to

condense, providing a perfect environment for vortons. The work described in this

section was originally published in References [1], [2], and [3].

Part 2, is about a particular phase that may occur in white dwarfs made of

helium, where the nuclei get close enough together that they become a charged

Bose-Einstein condensate, neutralized by a background of degenerate electrons. We

show that this condensate supports an unusual gapless quasiparticle, which we call

the half-sound, that was first described in Reference [4]. We discuss two possible

observational signatures that would reveal whether this phase occurs in helium white

dwarf cores.

3



First, we show that a gas of these half-sound phonons has a very low specific

heat compared to the other uncondensed phases that otherwise occur. This low spe-

cific heat may change the cooling curve of these objects, which might be detectable

through careful population studies.

Second, we quantify the likelihood that two half-sound phonons annihilate and

yield a neutrino-antineutrino pair. We show that this process is very large compared

to the expectation from näıve dimensional analysis, but is only competitive with

surface photoemission if the condensation temperature is very high. It is with this

motivation that we study a similar model and show that it does not have a very high

condensation temperature, so that it seems unlikely that any star’s cooling curve

will be noticeably altered by the fact that the star’s core is radiating neutrinos. This

discussion will broadly follow References [5] and [6].

Broadly speaking, then, this thesis is about two different high-density phe-

nomena which may be relevant to the physics of compact objects.

Let us begin.
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Part 1

Vortons
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Introduction

A vorton is a toroidal soliton that can exist in any system of two bosonic species

where the species repel one another yet each species is individually inclined to form

a Bose-Einstein condensate (BEC). A vorton is a vortex loop of one species which

has a core inhabited by a condensate of the second species. When a straight vortex

has a charged condensate in its core it is typically referred to as a superconducting

string[7]. Superconducting strings and vortons were originally discussed while trying

to understand the implication of GUT-scale models on the physics of the early

universe[8].

Vortices, which we will discuss in Chapter 1, terminate at the boundaries of

the bulk they live in, or can be thought to have infinite extent. They have a property

known as winding number which characterizes the vorticity of the surrounding field.

The winding number, as we will see, is an integer and thus cannot change smoothly

from one value to another: it is conserved in time. Therefore, we are guaranteed

that vortices with winding number 1 are stable.

We should refine the notion of winding number conservation a bit. Globally,

winding number is conserved, but two vortices might combine to form a new vortex

whose winding number was the original vortices’ sum, or a vortex with a large wind-

ing number might split into smaller vortices. If two vortices with exactly opposite

winding numbers encounter one another, they can even annihilate, leaving no vortex

at all. Nonetheless, after the vortices have had time to settle down, their nonzero

winding number guarantees there will be some vortices about.

Vortices need not be pinned to the boundary. Instead, a vortex might close
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on itself—making a loop. If a vortex is reminiscent of a tornado or hurricane, then

a vortex loop is a smoke ring. In this case the winding number characterizes the

circulation of the field through the loop.

It is hard to see how to stabilize a vortex loop alone: any point and the

one directly across the center of the loop will have opposite winding numbers and

therefore could annihilate. Thus, vortex loops in single-species systems typically

shrink from their own tension, eventually collapsing to nothing. If they are in

motion relative to the bulk, such vortices might be sustained by the Magnus force.

For a vorton, however, the situation is different. The existence of the second

species provides dynamical stability even if the loop is at rest relative to the bulk.

If the two species repel one another, then the second species can live in the “eye”

of vortices of the first species.

If the second species has nonzero conserved quantities, like electric charge or

angular momentum, it can give the loop a stable equilibrium radius. In particular, if

the core species might have a winding number l of its own, as indicated in Figure 1.

In this case, the energy E of a vorton with radius R will scale like

E = TR +
l2

R
(1)

where T is the tension that shrinks a regular vortex loop. In contrast, it is easy to see

that an energy of this form is minimized for some finite R0, so that the equilibrium

circumstance is a vorton that is stable against shrinking itself to nothing.

Suppose there was a region filled with a bulk of condensate of one species.

Strong enough repulsive interactions ensure that it is energetically unfavorable for

7



Figure 1: The purple torus separates the bulk species from the interior core species.

The winding of the circulation of the bulk is indicated by the green arrow, while the

winding of the inner species is indicated in black.

any of the second species to also be in that region, so before discussing vortons it is

prudent to understand the vortices that arise in a single-species condensate.

In the first chapter of this part we will discuss a simple vortex, and in the

following chapters we will discuss two different systems that support vortons: two-

species cold-atom laboratory experiments and the color-flavor-locked phase of high-

density quark matter. The cold-atom case follows the story here, while the dense

quark matter case is more subtle because they are electrically charged, and both

gauge invariance and overall charge neutrality add nontrivial complication. It is

thus prudent to understand the cold atom case before the high density case. Cold

atom vortons are discussed in Chapter 2; dense matter vortons in Chapter 3.
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Chapter 1

Typical Vortices

Simple BECs support vortices. A vortex is a one-dimensional defect. A vortex

in a real medium stretches across the bulk and terminates in two places on its

boundary, or eventually shrinks to nothing under the influence of its own tension.

In order to avoid discussing the specifics of the size, shape, and boundary of the

bulk, it is often most simple to think about the bulk being infinitely large, in which

case the vortex is infinitely long. It is also simplest for many purposes to consider

a straight vortex.

In this chapter we will review the topological stability of straight vortices, and

discuss how to determine their tension. These results will be used in the discussion

of vortons in later chapters of this part.

1.1 Topological Stability of a Vortex

To understand the topological properties of an infinitely long straight vortex,

one may simply consider a cross-sectional slice, and then translate that slice along

the length of the vortex. The boundary of such a two-dimensional slice can be

entirely parameterized by an angle θ ∈ [0, 2π), the axial coordinate.

The ground state of a condensed complex scalar (or pseudoscalar) ϕ can be
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described by a real magnitude f and a phase φ that changes from place to place,

ϕ (r) = f (r) eiφ(r), (1.1)

where r is the coordinate in space. In most systems the ground state will be ho-

mogeneous, so that φ can be set to zero by a global phase convention and f(r) = v

and we call v the vacuum expectation value (VEV). The phase φ also takes values

in the range [0, 2π). We can think of φ at any fixed radius (including the limiting

value r = ∞) as a function of θ. Because θ represents a physical location and the

condensate must be single-valued, we know that φ must be periodic in θ, modulo

2π. That is, it must be that

φ(r, θ + 2π) = φ(r, θ) + 2πw (1.2)

where w is any integer and we suppress the z dependence under the assumption

of translational symmetry. This directly encodes the fact that the first homotopy

group of the circle, π1(S1), is the group of integers, Z. Any two distinct φ(θ)s may

be smoothly transformed into one another if they have the same w, while if they

have distinct w no smooth transformation can exist. Such functions are said to

be topologically distinct, or to belong to different topological sectors, or to have

different winding numbers.

The winding number of a particular ϕ around some region containing the

origin may be calculated by integrating the logarithmic derivative of ϕ around a
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curve that goes around that region once

2πw ≡
∮
dr · ((−i∇) logϕ) = −i log

(
ϕ(r0, θ0 + 2π)

ϕ(r0, θ0)

)
(1.3)

= −i log
(
ei(φ(r0,θ0+2π)−φ(r0,θ0))

)
= −i log

(
e2πiw

)
(1.4)

where r0 and θ0 specify some point on the curve, as long as that curve avoids

regions where f(r) vanishes. The second line follows from the first because by

single-valuedness f(r, θ + 2π) = f(r, θ), and the final equality follows from (1.2). If

f(r) vanishes the field is automatically single-valued without the restriction (1.2),

and moreover we cannot take the logarithmic derivative and the winding number

along the curve is not well-defined. As long as we do not encounter anyplace where

f(r) vanishes we are free to deform the curve however we like and we are guaranteed

to get the same answer. If we take the curve to be the boundary at infinity, then

we say that whole two-dimensional slice has winding number w.

That no smooth transformation can connect functions with different winding

numbers implies three things. First, suppose the winding number around some

region is nonzero. Then, somewhere in that region f(r) must vanish. This is most

simply illustrated by example. Let

ϕ(r) = f(r)eiwθ, (1.5)

the typical axially-symetric vortex ansatz, where we only require f(r =∞) = v. It

is easy to verify that the winding number is w. Because w 6= 0, the value of ϕ at

the origin would be multivalued unless f(0) = 0.

Secondly, if one slice of a vortex has winding number w, so do all the other
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slices. In this case simply consider the smooth transformation to be translation

along the vortex. We therefore say the whole vortex has winding number w.

Finally, if the time evolution of such a configuration is smooth, it must be

that the winding number is conserved in time, so that we can never take a field

configuration that starts with some winding number and evolve it to a configuration

with another winding number without creating regions where the VEV vanishes.

Because a field typically develops a VEV to minimize energy in the first place such

a change will be a tunneling process; such a change cannot be the result of the

classical equations of motion. We therefore say that winding number is conserved

in time, even though extraordinarily rare quantum fluctuations might allow us to

escape this conclusion.

1.2 Vortex Tension

A major factor in the evolution of a vortex is its tension. If both ends of a

vortex are not tethered to something rigid, then the vortex will shrink along its

length until it disappears. It is therefore important to understand how to compute

the tension of such an object.

The tension T of a vortex is simply the energy per unit length of the field

configuration with the vortex with the energy per unit length of the condensed

ground-state subtracted off.

Let us consider, for example, a model where the Lagrangian is given by

L = |∂ϕ|2 − V
(
|ϕ|2

)
(1.6)
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with a potential that has a global minimum at |ϕ|2 = v2. The ground state is

homogeneous: ϕ0(r) = v, while an axially-symmetric vortex with winding number w

can be generically parameterized by ϕ(r) = f(r) exp(iwθ), with f(r) some function

that needs to be determined and that will depend on the potential V (|ϕ|2).

In this model f(r) will minimize the energy per unit length, which is näıvely

the integral of the Hamiltonian density

T [ϕ(r)] =

∫
d2r H =

∫
d2r |∂ϕ|2 + V

(
|ϕ|2

)
. (1.7)

Because V (|v|2) need not be 0, this integral is divergent. This divergence is superfi-

cial, and reflects the fact that the cross-section that we consider is infinite in extent.

The correct expression for the tension is

T [f(r), w] = T
[
f(r)eiwθ

]
− T [v] (1.8)

which can be considered simply a shift of the potential, zeroing it at |v|2. If we expect

that the system will minimize its energy then this expression not only determines

the tension as a function of the radial profile: it also dictates that the preferred

radial profile f(r) should minimize T [f(r), w]. We should note here that in most

cases if |w| > 1, a single vortex with winding w is disfavored and instead |w| vortices

of winding number ±1 (following the sign of w) is energetically preferred.

Depending on the situation, we may require field configurations to have certain

quantities conserved. In that case, instead of minimizing the Hamiltonian density, we

will minimize an analogous expression that allows us to minimize the action subject

to those constraints by incorporating Lagrange multipliers (which act like chemical

potentials) and their corresponding conserved quantities. While these technical steps

13



might differ, the simple understanding and procedure for regularizing the relevant

per-unit-length quantities discussed here are directly analogous.
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Chapter 2

Vortons in Two-Species BECs

Since the initial laboratory creation of BECs in cold atom traps experimental

capabilities have developed rapidly, so that such set-ups are commonplace, allow-

ing for a plethora of interesting detailed studies of BEC physics. In particular,

experimentalists can reliably create two-species condensates in such traps (for some

examples see Refs. [9, 10, 11]) and such systems are known to support vortices,

vortons, and another class of topological soliton: the Skyrmion[12, 13]. Moreover,

the manipulation of Feshbach resonances[14, 15] afford the experimenter the ability

to tune interactions (usually one at a time) as they like[16]. For a relatively recent

review of this technique, see Reference [17]. These circumstances raise the possibil-

ity that vortons might be observed in the laboratory as a matter of course or even

might be created purposefully as objects of interest in their own right.

This chapter will closely follow Reference [3]. We will discuss straight vortices

with condensed cores in two-species BECs, the corresponding vortons, and mecha-

nisms by which such vortons can arise in the laboratory. For concreteness we will

focus on lithium-rubidium systems and potassium-rubidium systems. Numerical

studies that will be discussed in Sec. 2.2 indicate that when the ratio of mass of the

species making up the bulk to the mass of the species which resides in the vortex

core is large, the corresponding vortons have a larger aspect ratio R/δ. We therefore
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typically discuss systems where the bulk is rubidium. We will provide evidence that

these realistic systems can contain observable vortons.

It is simpler to read, write, think, and think clearly about “lithium” and

“rubidium” than “species 1” and “species 2”. Therefore, we may in the text use

lithium and rubidium as names of the two species, but until specific masses or

scattering lengths are plugged in the discussion may be understood as general and

these names as mere convenience.

2.1 Vortices with Condensed Cores

Cold-atom traps are easily used to trap spinless nonrelativistic bosons. When

these bosons are dilute, meaning that the relevant scattering lengths are much

smaller than the interparticle spacing, they are well-described by the Hamiltonian

H =
~2

2MRb

|∇ϕRb|2 +
~2

2MLi

|∇ϕLi|2 + V (ϕRb, ϕLi), (2.1)

with

V (ϕRb, ϕLi) =
1

2

8π~2aRb

MRb

|ϕRb|4 +
1

2

8π~2aLi

MLi

|ϕLi|4

+
2π~2aRbLi

MRbLi

|ϕRb|2 |ϕLi|2 − µRb |ϕRb|2 , (2.2)

where ϕi is a second-quantized field that annihilates species i (i ∈ {Li,Rb}), ai and

Mi are that species’ scattering length and mass, aRbLi is the interspecies scattering

length and MRbLi is the reduced mass. The chemical potential µRb incentivizes the

uniform condensation of rubidium. Ignoring effects of the lithium and at leading
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order in the diluteness expansion (n
−1/3
Rb and n

−1/3
Li � aRb, aLi, and aRbLi),

µRb =
8π~2aRb

MRb

nRb, (2.3)

where nRb is the asymptotic number density of the rubidium.

We treat the lithium and rubidium asymmetrically because of the physical

situation we will be interested in: a vast bulk of rubidium that forms a reservoir

that essentially fixes the density of rubidium and a conserved number of lithium

atoms that are stranded in the core of a vortex in that bulk.

We enforce the fact that the lithium atoms are trapped in the core by restrict-

ing ourselves to the situation when the two species are phase-separated, meaning

that the interspecies repulsion makes a uniform mixture of both species unstable

against clumping and separating in space. This instability turns on when

4aRbaLi

MRbMLi

<

(
aRbLi

MRbLi

)2

(2.4)

and prevents the lithium from leaking out of the vortex core[18]. By artificially

manipulating aRbLi with the Feshbach resonance tuning technique, one may toggle

or enhance this instability.

Condensation is characterized by a non-vanishing matrix element of the re-

spective field operator ϕ. When the system is dilute in the sense mentioned above,

the mean-field approximation becomes accurate and the matrix elements themselves

obey the classical equations of motion—the Gross-Pitaevski equations. For conve-

nience we will represent the matrix element by the same symbol as the operator

itself.
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A straight vortex of a single species is well described by the ansatz (1.5),

ϕRb(r) = fRb(r)eiwθ (2.5)

where r and θ are cylindrical coordinates and the ansatz is invariant under transla-

tions along z, the axial coordinate. To keep ϕRb single-valued w must be an integer

and fRb (r = 0) = 0. The chemical potential µRb entices the asymptotic value to

simply reflect the bulk density, fRb (r → ∞) =
√
nRb. Energetically, if |w| > 1, the

vortex will split into |w| vortices of equal winding, so we will always take w = 1, but

keeping w general provides a quick way to identify phenomena that are connected

to the vorticity.

The radial profile fRb(r) may be determined by solving the Gross-Pitaevski

differential equations with the boundary conditions fRb(0) = 0, fRb(∞) =
√
nRb.

Alternatively, it may be determined by equivalently minimizing the energy with

respect to f(r), which is the approach we will take throughout this work. This

approach limits us to discussing equilibrium and prevents us from making a detailed

study of the dynamical stability of the resulting field configurations. The dynamical

stability of Skyrmions has been demonstrated by detailed numerical calculations[19,

20], but we are satisfied to determine the equilibrium properties with significantly

less effort and then to argue the stability of vortons.

In order to understand how thick the single-species vortex is, let us make a

simple variational argument from (2.1) with ϕLi = 0. A constant may be added to

H so that

H =
~2

2MRb

|∇ϕRb|2 +
1

2

8π~2aRb

MRb

(
|ϕRb|2 − nRb

)2
+O

(
n2

Rb |ϕRb|0
)
. (2.6)
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A rough guess for the shape of fRb(r) might be a simple linear rise from 0 at the

origin to
√
nRb at radius δ, so that the gradient of fRb near zero is simply

√
nRb/δ.

With a field profile of that form, the energy is easily computed to be

E(δ) =

∫ R

0

2πrdr H =
nRbπ

6MRb

(
3 + 3w2 + 8anπδ2 + 6w2 ln

(
R

δ

))
(2.7)

where R is an IR cutoff. This energy is minimized by a thickness

δ =

√
3w√

8πaRbnRb

, (2.8)

which is sensiblyR-independent. So, the string thickness is of the scale 1/
√

8πaRbnRb,

also called the healing length, and is proportional to the winding number. The fac-

tor of
√

3 depends on the profile being linear; picking another reasonable profile will

change this pure number but not the parametric dependence of the string thickness

δ on the scattering length or density.

So far our discussion has been limited to the case when ϕLi vanishes. Instead

let us consider the case when the mean-field solution takes the form

ϕRb = fRb(r)eiwθ as before and ϕLi = fLi(r)e
ikz. (2.9)

Using these functional forms in (2.1) and the energy per unit length E⊥ is

E⊥ =

∫
dr 2πr

[
~2

2MRb

((
∂fRb

∂r

)2

+
w2

r2
f 2

Rb

)
+

~2

2MLi

((
∂fLi

∂r

)2

+ k2f 2
Li

)

+ V (fRb, fLi) +
1

2

8π~2aRb

MRb

n2
Rb

]
, (2.10)

where the last term has been added to zero the energy of the homogeneous ground

state: w = 0, fRb(r) =
√
nRb, and fLi(r) = 0.
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Since we require, for stability purposes, the interspecies interaction to be re-

pulsive, we know aRbLi > 0. Then, by looking at the potential, it is obvious that

the field profiles which minimize E⊥ definitely have fLi(r) = 0. This, however, cor-

responds to a vortex loop without any condensate in its core. However, we have

not yet included the fact that the number of lithium atoms is fixed and that these

atoms are trapped in the core. To incorporate this requirement into the case of

an infinitely long vortex we should minimize the energy per unit length with the

number of lithium atoms per unit length

N⊥Li =

∫
dr 2πr f 2

Li(r) (2.11)

fixed. This incentivizes fLi to take nonzero values, while the repulsive lithium-

rubidium interaction encourages the lithium to occupy the rubidium vortex core,

where fRb goes to zero and the repulsive interaction energy is least.

A nonzero k in (2.9) corresponds to the inner species flowing along the axis of

the vortex (and will correspond to flowing around the vorton). That k not vanish

will therefore be important to provide an angular momentum barrier. However, we

should note that a larger k tends to reduce the lithium condensate in much the

same way that forcing too much current through a superconductor can quench the

superconductivity (as happened, for example, to the LHC magnets). This effect will

be made more explicit in Section 3.2.1.

With the expressions for straight vortices in hand we can now discuss vortons.
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2.2 Vortons

A vorton is a toroidal vortex loop with a condensed core, or, more simply, a

loop of superconducting string. When the aspect ratio R/δ is large, the curvature

corrections are small and the expression for the energy per unit length (2.10) becomes

a reliable approximation to the true energy per unit length.

With the realization that the energy of a straight superconducting string re-

liably approximates the energy of a superconducting loop when R/δ � 1, we can

think of a vorton as simply a straight superconducting string in space that is peri-

odic along its length. In particular, let z = ±πR be identified. Then the arc length

along the vorton is simply the extent of the superconducting string. The periodicity

in z also supplies a constraint: any field must obey

ϕ(r, θ, z − πR) = ϕ(r, θ, z + πR). (2.12)

In particular, this means that the phase of lithium in (2.9) must be

k =
l

R
(2.13)

where l is an integer. This l is the winding number of the lithium’s phase around

the vortex loop in much the same way w is the winding number of the rubidium’s

phase around the boundary, and can be computed given a field configuration by

direct analogy with w in (1.3).

What is the effect of neglecting the curvature effects by this compactifica-

tion? The energy of a straight vortex in a compactified space will have no gradients

along the length of the vorton, and these gradients are guaranteed to raise the
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energy. Therefore we expect that doing a more precise calculation with a curved

loop should yield an equilibrium radius larger than one calculated with the present

approximation, so that our calculations of R0/δ should be considered pessimistic.

With the quantization of k in place we can now see how the inner condensate

provides stability and protects the vorton against shrinking to nothing. The total

energy and total number of lithium atoms are given by

E = 2πRE⊥ and NLi = 2πRN⊥Li (2.14)

respectively. The energy scales like

E ∼ 2πRT +
L2

R
(2.15)

where T simply denotes the part of E⊥ that is independent of R and L2 characterizes

the remaining terms (solely the term proportional to k). We see that one term scales

like R and another like R−1. This guarantees that the vorton does not shrink forever

but instead stabilizes at some finite equilibrium radius R0. What is the origin of

this stabilization?

For a superconducting string, k parameterizes the current that flows in the

condensed core. Bending that current into a loop obviously gives rise to an angular

momentum perpendicular to the plane of circulation. Moreover, the fact that this

piece of the energy scales like R−1 indicates that this stabilizing term is indeed

coming from an angular momentum barrier.

Minimizing E with respect to fRb, fLi, and R while holding NLi, nRb, aRb, aLi,

aRbLi, MRb, MLi, w and l fixed yields good candidate field configurations. We will

always take w = 1 so that the Rubidium vortex cannot split apart. The sign of w
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is conventional, in the sense that the two vortons with opposite w have exactly the

same equilibrium size, since the energy is an even function of w.

Performing such a minimization cannot be done analytically. However, some

behaviors are easy to predict. For example, a larger angular momentum should nat-

urally lead to a larger equilibrium radius but should not change the string thickness

too drastically. Therefore, increasing l should increase R0 and R0/δ.

Another dependence that is easy to understand is how things should change as

a function of the interspecies scattering length. As that interaction becomes more

and more repulsive, the region where the two species coexist should shrink, so that

eventually increasing aRbLi should not matter any more.

Contrastingly, how some parameters affect the aspect ratio are not so easy

to predict. For example, as espoused in the introduction to this chapter, when

the ratio of the mass of the bulk species to the mass of the core species is large,

R0/δ grows. This is why we primarily focus on rubidium and lithium, and even use

their names as handy placeholders. However, that R/δ grows with MRb/MLi is by

no means obvious. Decreasing MLi increases the energy (and pressure) of a given

field profile and vorton shape. If we could adjust the mass of the inner species, the

vorton would respond by altering itself in two ways: making the field profile wider

(and thus increasing δ) or making the vorton longer (and thus increasing R0). It

is difficult to argue a priori which increase will be larger, and therefore whether

a large mass ratio helps justify the geometrical approximation R0/δ � 1 must be

determined numerically.
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2.3 Realistic Numbers

Let us now discuss realistic cold atom numbers. For concreteness and exper-

imental relevance we take the condensates to be the | F = 1,mF = 1 〉 hyperfine

states of their respective species. For the bulk condensate we will use realistic num-

bers of 87Rb, while the core species might be either 7Li or 41K[21, 22, 23, 24]. The

interspecies scattering length aRbLi can be tuned through the use of a Feshbach

resonance[16], guaranteeing that we are always in the phase-separation regime.

Figure 2.1: The field profiles for 7Li (red) and 87Rb (purple), with l = 5 and all

other parameters given by the first row of Table 2.1. The string thickness δ and

the healing length (8πnRbaRb)−
1
2 are shown in black for easy reference. Because the

natural scale for the radial changes are given by the rubidium healing length, we

scale the radial coordinate by that amount. We similarly show the densities in units

of nRb. This figure is a modified version of a figure first produced for Reference [3].

In order to numerically minimize the energy with a fixed number of lithium

atoms, given in (2.14), we pick the two species, which amounts to picking the two
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masses and three scattering lengths (one may be tuned by an external magnetic

field), the asymptotic number density of the rubidium, and the number of trapped

lithium atoms. The question becomes: how do we know how many lithium atoms

we should require to keep the vorton stable and big enough?

If the scattering lengths of the two species are similar (as is the case for the

atomic systems of interest), then it is reasonable to think that the vorton will be

stabilized when the densities (and thus pressures) are roughly comparable. Thus, we

can estimate the required number of lithium atoms by simply multiplying the cross

section of the vorton πδ2, where δ is of order of the healing length by the vorton’s

length 2πR. If we then specify a rough aspect ratio R0/δ that we want the vorton

to have, we can estimate

NLi ≈ 2π

(
R0

δ

)
δ πδ2nLi. (2.16)

So for example, a bulk of rubidium with number density around 1013cm−3 has a

healing length of roughly 0.45µm. If we want a vorton with R0/δ ≈ 2.5 then we can

use (2.16) to learn that such a vorton should require roughly 104 lithium atoms.

With this estimate in hand, we can now perform numerical minimizations

where we expect the vortons to be of reasonable size. Such a minimization leads

to radial profiles like the one shown in Figure 2.1, which was produced with the

parameters specified by the first line of Table 2.1. The angular momentum number

l = 5 was motivated by current limitations of Gauss-Laguerre beam technology,

which will be further discussed in Section 2.4.2. We see that the scale on which the

rubidium changes is indeed roughly the healing length, and that the string thickness
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δ is also of this scale (it is roughly 7 or 8 times larger in this case). In Table 2.1

we show the numerical results for a few experimentally reasonable choices of the

species, bulk density, the number of trapped core atoms, and the density of the bulk

species. We see that all of these choices yield vortons of reasonable size with R0/δ

around 2. This ratio is not that large, meaning that curvature corrections to the

energy in (2.14) may not be negligible. However, as argued earlier, these corrections

are expected to make vortons larger, and thus we expect the reported R0/δ ratios

to be underestimates. These results make it reasonable to pursue more detailed

numerical simulations of vortons and may justify experimental investigation.

2.4 Production Mechanisms

With the stability of reasonably-sized and reasonably-proportioned vortons

established, we should now ask: can vortons be realized easily in the laboratory?

There are two mechanisms that we will discuss by which vortons might be produced.

The first, the Kibble-Zurek mechanism[25, 26], works by taking a hot system and

rapidly cooling it, quickly eliminating thermal fluctuations and locking in whatever

topological quantities where there by chance. The second, using Raman scattering

and Gauss-Laguerre beams, is a method that is more technically challenging but

should allow an experimenter to create vortons intentionally.
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2.4.1 The Kibble-Zurek Mechanism

The topological winding numbers w and l provide a vorton with stability at low

temperatures, where thermal fluctuations cannot dissipate vorticity by, for example,

sending the condensate in some region to zero. This suggests one way to create

vortons: start at a high temperature, where the phase of the fields are uncorrelated

beyond some length, and cool it fast enough that the phases in different places

do not have time to correlate. One possible configuration of the phases in such a

system is that the vorticity around a certain region is nonzero, meaning that there

is a vortex. These vortices are left over as defects in much the same way crystals

or magnets can have planes where two misaligned crystal structures or magnetic

domains meet.

Rapid cooling locking in vortices is called the Kibble-Zurek mechanism, and

was first understood in the context of early-universe cosmology[25, 27, 26, 28], but

has shown up in a variety of physical circumstances (for some good examples see

Refs. [28, 29, 30]) and is known to survive spatial inhomogeneities[31]. Moreover,

experiments have verified this mechanism producing vortices in trapped 87Rb[32].

Suppose we tuned via Feshbach resonance the interspecies scattering to be

negligible, so that the system was not in the phase-separation regime specified by

(2.4), and the system was warm enough so that the phase of the rubidium atoms

were uncorrelated. Then, quenching the system could create vortices in the rubidium

and subsequently tuning the interspecies scattering length to turn on the phase-

separation instability should cause those vortices to trap nearby lithium atoms.
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Any net vorticity that the lithium has will provide a finite angular momentum and

sustain such a vorton.

Modeling such a process is complex, but some reasonable assumptions and sim-

ple arguments can help us approximate the likelihood of such a vorton arising. We

first assume that we can cool rapidly so that the phases of both fields in each place

are the same before and after the cooling, so that the phases remain uncorrelated

from place to place. If we can turn on the phase-separation instability quickly, the

lithium atoms will quickly get ejected or become trapped by the potential created

by the rubidium bulk.

If we assume that the two species are decoupled before the cooling, the vorticity

of each is governed by its respective correlation lengths. The correlation lengths ξRb

and ξLi can be estimated to be the inverse of the typical phonon momentum at the

initial temperature, k = T/cs, where

cs =
√

4πan/M (2.17)

is the speed of sound for the appropriate species, so that the correlation length is

ξ =
TM

4πan
. (2.18)

The correlation length of the rubidium will set the scale on which vortices

are created (out of equilibrium) and by which they are separated. The rubidium

vortices will be oriented randomly, so that some of the neighboring vortices will be

oriented in the opposite sense, or so that a few of the neighboring vortices will form a

directed cycle where the angular momentum around each vortex points towards the

next vortex. These vortices can connect to form a loop. This process is topological
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in the sense that if the correlation length were scaled up with the other relevant

lengths, the same vortices would still form a loop. We therefore know that the

number of vortices that form a loop is given by some fixed probability distribution

having to do with combinatorics and nothing else.

Of these vortices, we should try to understand what fraction will be stabilized

by their core of trapped lithium. As we have seen, a nonzero l (or equivalently, a

net angular momentum around the loop) is required to stabilize a vorton with finite

R0. Following an argument from Reference [26] let us estimate this winding number

now.

The winding number l is given, by analogy with (1.3),

2πl =

∮
ds · (−i∇ logϕLi) =

∮
ds · ∇ (phase of ϕLi) (2.19)

where s is the length differential around the loop. Because the phase of ϕLi is

uncorrelated on the length scale ξLi, it should change between 0 and π roughly

2πR/ξLi times. However, because of the random nature of thermal fluctuations it

is extremely unlikely that the phase should always go in one direction, but instead

should randomly increase or decrease by π that many times. Therefore, we expect

the total change in phase to be 2π times the typical distance moved in a one-

dimensional random walk in 2πR/ξLi steps. In other words, we expect

|l| ∼

√
2πR

ξLi

(2.20)

≈
√

2π
MRb

MLi

(
aLinLi

aRbnRb

)1/4

(2.21)

where we used R ∼ ξRb in the second line. We see the advantage of using atoms

with disparate masses: if the bulk species is much heavier than the inner species,
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the likelihood that the Kibble-Zurek mechanism produces vortons with large angular

momentum is enhanced. We could also try to create systems with a very sparse bulk

and a dense inner species—such a scenario would similarly help enhance the angular

momentum of the vorton.

2.4.2 Raman Scattering and Gauss-Laguerre Beams

The Kibble-Zurek mechanism is simply one of odds—in each run of the ex-

periment one is stuck with the vortices that thermal fluctuations provided initially.

We now address how vortons might be created intentionally by the experimentalist.

The idea behind this procedure was suggested to us by Porto[33].

A loop of vortex could be created in the bulk by using two counter-propagating

beams tuned in a particular fashion. The first frequency should be chosen to take

the bulk and move it to an excited state; the second should match the transition

from the excited state to a different state in the hyperfine multiplet of the original.

Let us denote these two frequencies ωa and ωb, and note that the requirement that

ωb returns the excited state to the same hyperfine multiplet implies ωa and ωb are

nearly equal. One well-known choice for the excited state would be the D1 line of

rubidium.

By aligning lasers of the two frequencies in opposite directions atoms will

absorb a photon of the first frequency and thus momentum ~k = ~ωa/c. Then, by

stimulated emission the same atoms emit photons in the opposite direction, so that

it gains a momentum ~ωb/c, for a total momentum of ~(ωa + ωb)/c. This allows us
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to take a part of the bulk and give it a net flow in one direction.

Figure 2.2: The geometry of the two counter-propagating beams. The two colors

(and letters) represent the two frequencies, while the dark red arrow represent the

direction of propagation. Figure reproduced from Reference [3].

Now it is easy to make a vorton. If, instead of the beams being wholly one

frequency or the other, we arrange it so that the cross-section of one beam could

have a disk of one frequency surrounded by an annulus of the other frequency, while

in the other beam the frequencies would be switched, as shown in Fig. 2.2, the

central cylinder would be kicked one way, while the rest of the bulk would be kicked

the other way. At the cylindrical interface, there would be dramatic shearing, which

would very likely lead to the creation of vortex loops.

This injection of momentum could potentially throw the atoms out of the trap.

For example, the D1 transitions mentioned earlier would give the atoms energy of

the order of 10µK. By making the lasers dim and limiting the number of optically

scattered atoms, these high-energy atoms could scatter off of nearby atoms and

distribute their optically-gained momentum, diluting the large deposited energy.
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With these vortex loops created in the rubidium bulk, one need only tune the

system into the phase-separation regime described by (2.4). Then, as in the Kibble-

Zurek mechanism, the lithium will quickly leave the rubidium bulk by either totally

fleeing it or by taking shelter in the rubidium vortices.

Once trapped, the vorton can be stabilized by giving the lithium atoms a net

angular momentum around the loop. This can be accomplished with Gauss-Laguerre

beams[34, 35], which are beams with annular cross-sections and helical phases. For

some good visualizations of such beams, see Reference [36]. To understand how

this can spin up the lithium, imagine an infinite Archimedes screw, but from a

perspective that rotates with the screw and translates with the rising water. From

this point of view, the water simply spins cyclicly around the screw’s core. This is a

reasonable way to imagine how Gauss-Laguerre beams impart angular momentum

around the vortex loop.

These helical beams are regularly produced in laboratories, and higher-order

beams (beams with large orbital angular momentum) can be made with great fi-

delity. Current technology limits small beams to l . 5, which motivated our choice

l = 5 when displaying some numerical predictions for vorton size in Table 2.1, as vor-

tons with larger angular momentum are intuitively going to be larger than vortons

with smaller angular momentum. With improvements to beam generation technol-

ogy, one expects a larger attainable l and thus larger equilibrium vortons[37, 38].

? ? ?

This concludes our discussion of vortons in atomic traps. In the next chapter we
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will investigate another system which supports vortons: the kaon-condensed color-

flavor-locked phase of quark matter. We will make extensive use of the intuition

and terminology developed here, but as we will see, when the species involved are

charged scalars subtleties involving gauge invariance complicate the relatively simple

procedure discussed here, as well as introduce far-field effects that aid stabilization.
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Chapter 3

Vortons in Kaon-Condensed Color-Flavor-Locked Quark Matter

A large fraction of the content in this chapter is either directly reproduced

verbatim from or prominently inspired by my candidacy paper[39].

3.1 The Kaon-Condensed Color-Flavor-Locked Phase

At high temperature it is clear that Quantum Chromodynamics (QCD) is

weakly-coupled and perturbative, and one might therefore expect that QCD is also

perturbative at high density. However, in the last decade or so, it has become clear

that even though it is weakly coupled, the true behavior at finite density is a non-

perturbative color-superconducting phase[40, 41, 42]. This presents a difficulty for

understanding high-density phenomena from first-principles, because we lack a good

computational method for extracting non-perturbative behavior directly from the

QCD Lagrangian. At zero density, we can use direct lattice simulations to inform

our understanding, but at finite density the Euclideanized action remains complex,

rendering the usual strategy of estimating the partition function by importance sam-

pling the functional integral exponentially difficult—an issue known as the fermion

sign problem.

Instead, we are forced to rely on an effective field theory (EFT) approach

to describe such color-superconducting phases. These phases arise in essentially
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the same manner as normal electromagnetic superconductivity arises in familiar

systems—the Cooper pairing of fermions. In contrast to familiar superconductors

in which the only species free to pair are electrons, the nonabelian structure of

QCD’s SU(3)C gauge group provides a large number of imaginable pairings.

For phenomenologically interesting densities (eg. conceivable densities of neu-

tron star cores), we only need to concern ourselves with the three lightest quark

flavors. For a good review of the most widely expected phases in this case and

some calculational methods required for this kind of analysis see References [42, 43].

Among the the possible pairings with three quark flavors and three colors is a par-

ticularly symmetrical Cooper pairing scheme, which characterizes the phase known

as color-flavor-locked matter (or sometimes simply color-flavor-locking; abbreviated

CFL either way). At asymptotically high density, the symmetry breaking pattern

is known because QCD becomes weakly coupled, shoring up the EFT on which we

will rely.

The coincidental matching between the number of phenomenologically relevant

flavors and the number of colors the quarks in the SU(3) fundamental representation

can carry allows one to pair all of the quarks. The condensate is characterized by[44]

〈
qaL,iCq

b
L,j

〉
= −

〈
qaR,iCq

b
R,j

〉
∼ µ2∆ εabZεijZ (3.1)

where the ∆ is the superconducting gap and ε the Levi-Civita tensor. The quark

fields q are labeled by color indices i and j that run from 1 to 3, flavor indices a and b

that run over {up, down, and strange}, and chiral labels L and R that represent the

left- and right-handed parts of the spinor. We can treat the two chiral components
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independently when the quark chemical potential µ is much larger than the quark

masses. That CFL is the preferred ground state may be motivated heuristically by

noticing that it allows the largest conceivable number of Cooper pairs to form, and

pairing tends to deform the Fermi surface and save energy.

Because of its non-singlet color structure, this symmetry breaking pattern obvi-

ously is not gauge invariant. There are equivalent gauge-invariant order parameters[42],

but it is typically simplest and most convenient to discuss the problem with the

clearer language afforded by glazing over this subtlety. One concern may be that

these colored quark pairs violate confinement, but the size of these pairs is smaller

than the confinement scale (roughly 1 fm), which we know from the high densities

(and thus small inter-particle spacing) where CFL may exist.

The condensate in (3.1) also assumes perfect SU(3) flavor symmetry. For

asymptotically high densities, the quark masses are negligible and this assumed

symmetry is justified and is enhanced to SU(3)L × SU(3)R. As we lower the den-

sity, however, at some point the strange quark mass ms will make non-negligible

corrections to the behavior of the system. The quark masses act as explicit SU(3)F-

breaking terms. We will discuss how to incorporate such explicit flavor breaking

below.

This CFL condensate breaks the overall SU(3)L×SU(3)R×SU(3)C×U(1)B×

U(1)A symmetry to SU(3)C+L+R × Z2 × Z2. The two Z2 symmetries are rem-

nants of the two initial U(1) symmetries (the exact baryon and approximate axial

symmetries) and correspond to sending {qL, qR} → {−qL,∓qR}. The remaining

SU(3)C+L+R (sometimes written SU(3)CFL) is a common diagonal to the three orig-
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inal SU(3) groups.

As in any symmetry-broken phase, the low-energy dynamics of a CFL con-

densate are described by Goldstone modes. The modes resulting from the pairing

in (3.1) resemble the familiar pseudoscalar mesons which arise from the breaking of

chiral symmetry in the vacuum.

The number of Goldstone modes is set by the number of broken generators. In

this case there are (3×8+1+1)−8 = 18 broken generators. Eight of these are eaten

by gluons, which pick up a mass gµ, where g is the strong coupling constant[45].

This is one hallmark of color superconductivity.

The condensate also breaks the electromagnetic U(1)EM contained in SU(3)L+R.

However, a linear combination of one diagonal generator of the SU(3)C gauge group

with the U(1)EM generator still annihilates the condensate. This leads to a remnant

U(1)Q gauge symmetry, which we will refer to as electromagnetism for simplicity.

In fact, the difference between U(1)EM and U(1)Q is small when the electromagnetic

fine structure constant α (≈ 1/137) is small[46] compared to g2/4π (which is roughly

.2 in these circumstances).

The ten uneaten generators are the physical Goldstone modes and together

compose the light degrees of freedom in the CFL phase. Two of these modes are

associated with the generic superfluidity associated with breaking U(1)B and U(1)A.

The other eight modes for a multiplet under the remaining SU(3)CFL symmetry,

just as the eight familiar mesons transform under the approximate SU(3)F flavor

symmetry of Gell-Mann. The EFT that describes these modes is therefore strikingly

similar to familiar chiral perturbation theory (χPT) used to describe low-energy
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QCD vacuum-meson dynamics[47, 48, 49].

At asymptotically high density, where the flavor symmetry is exact, the Gold-

stone modes are exactly massless. However, when the quark masses are taken into

account, the smallness of the explicit breaking will correspond to these modes’ light-

ness, just as the pion’s light mass is explained by isospin breaking. In fact, the

analogy with breaking Gell-Mann’s SU(3)F flavor symmetry is used in naming the

degrees of freedom these Goldstone modes encode. So, very often “kaon”, “pion”,

and “eta” correspond not to the familiar in vacuo mesons but to the Goldstone

modes that arise in the CFL phase unless explicitly mentioned—typically context

is enough to distinguish these two uses.

The explicit flavor breaking has two effects. The first is that, as mentioned

above, the Goldstone modes get small masses. Interestingly, the mass hierarchy is

mixed up compared to the familiar vacuum mesons. For example, the chiral singlet,

analogous to the η′ and associated with U(1)B breaking, is lightest. The lightest

modes in the chiral singlet are the neutral kaons and charged kaons (which are

almost degenerate) and the pions and eta are heavier. This mass hierarchy will be

made explicit once we have the effective Lagrangian.

The second explicit effect of the flavor breaking is a fictitious chemical potential

term that enters the time-like derivatives. This chemical potential may be thought

of as a correction to the ultra-relativistic limit, so that energies of order of the Fermi

momentum kF are corrected to kF−m2
q/2kF, where m2

q represents some combination

of the relevant quark masses. As this correction becomes appreciable (i.e. as the

density is lowered) the mesons have their mass-squared reduced, until the mass-
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squared of the lightest meson (the neutral kaon) reaches zero and becomes negative.

To resolve this instability, the neutral kaons condense and form a superfluid. Once

the neutral kaons condense, the phase is called kaon-condensed CFL, or CFL+K0.

Through interactions, the K0 condensate prevents the other Goldstone modes

from condensing. As we will see, the condensation of K0 over K+ is only favored by

small effects like isospin breaking and electromagnetism. Therefore, generically it is

only through interactions that K+ is prevented from condensing—if one could remove

the K0 condensate, it would create a place for K+to condense. With our knowledge

from Chapter 2 we know that these ingredients are enough to create vortons. There

are various subtleties, though, that complicate the analysis compared to that simple

case. For example, K+ is charged, and the vorton core will be electromagnetically

superconducting and can carry electromagnetic charge. As we will see, the gauging

of this field causes significant complication.

3.1.1 The CFL+K0 Effective Lagrangian

Let us now formalize the description of the CFL and CFL+K0 phases.

The EFT for these Goldstone modes can be written in terms of a chiral mul-

tiplet Σ which transforms under SU(3)L × SU(3)R as Σ → gLΣgR, where gL,R

are group elements of the indicated SU(3). The eight Goldstone modes are the

fluctuations about the expectation value of Σ, Σ0. The modes πa parameter-

ize Σ by Σ = exp(iπaλa/f)Σ0, where λa are the eight generators of SU(3) with

tr
[
λaλb

]
= 2δab and f is analogous to the pion decay constant.
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The lowest-order effective Lagrangian density required to capture both the

CFL and CFL+K0 phases is

Leff =
f 2

4
tr
[
∇0Σ† · ∇0Σ− v2DiΣ

† ·DiΣ
]
− 1

4
FµνF

µν

+ 2A det [M] tr
[
M−1Σ + h.c.

]
(3.2)

where the derivatives are

DµΣ = ∂µΣ− iAµ [Q,Σ] and ∇0 = D0Σ + i

[
MM†

2kF

,Σ

]
, (3.3)

kF is the Fermi momentum (which we will often simply take to be the chemical

potential µ), Aµ is the electromagnetic potential, Q = e
3

diag [2,−1,−1] is the quark

charge matrix under the U(1)Q symmetry, Fµν is the associated field strength tensor,

and M = diag [mu,md,ms] ≈ diag [2, 5, 95] MeV is the quark mass matrix.

One interesting aspect of this Lagrangian is the O (M2) mass term. This term

differs from the usual term in χPT, which is linear in M. This can be thought about

in a heuristic manner that drives to the heart of the matter. A single mass insertion

transforms a left-handed quark into a right-handed quark, and vice-versa. However,

the condensate in (3.1) preserves left- and right-handed quark number modulo 2;

single mass insertions would disrupt this property. Indeed, at low densities the usual

chiral condensate 〈 q̄RqL 〉 will become non-negligible and allow the two chiralities to

mix.

The mass term in effective Lagrangian given in (3.2) is not the only possible

O (M2) term, but all other possible terms are suppressed by powers of ∆/µ according

to the power scheme given in Reference [50].
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There are two other differences between this effective Lagrangian and the

canonical χPT Lagrangian. First, the theory has a preferred frame and differentiates

between space and time derivatives. The second is the modification of the time

derivatives with the commutator term. This term is a result of demanding gauge

invariance while integrating out the gluons, but may also be thought of as the first-

order correction to the ultra-relativistic approximation, E = p + m2/2p. Gauge

invariance fixes the coefficient of this correction. Since these commutator terms

modify the time derivative, we can think about their effect in exactly the same way

we think about chemical potentials.

Typically when we construct an effective theory there are constants in the

effective Lagrangian that are simply unknown and incalculable, and that must be

fit. In contrast, the constants in the effective Lagrangian in (3.2) can be calculated

at asymptotically high density where the additional terms in the effective theory are

guaranteed to be very small and QCD is calculable. This matching yields

f 2 =
21− 8 ln 2

18

µ2

2π2
, , v2 =

1

3
, and A =

3

4π2
∆2, (3.4)

and the details of this calculation can be found in References [45, 47].

The equations of motion for the gauge potentials are

∂µF
µ0 = −f

2

4
tr
[
i∇0Σ† · [Q,Σ] + h.c.

]
∂µF

µi = −f
2

4
tr
[
iDiΣ† · [Q,Σ] + h.c.

]
.

(3.5)

It is straightforward to read off the expressions for the electrical charge and current.

We note that there is a subtlety: a field that has no time dependence still carries

charge. In fact, the time-dependence of the fields is not a gauge-invariant concept:
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only time-variation, chemical potential, and electromagnetic gauge potential taken

together are gauge invariant.

When the chemical potentials are small compared to µ, they do not affect the

expectation value of Σ, and we can read off the masses as an expansion around

Σ0 = 1. This describes the CFL phase. Let us examine these masses now.

First, define

mab =

√
4A

f 2
mc (ma +mb) (3.6)

where c is the quark flavor not specified by a and b. This is the form of explicit,

kF-independent meson masses that the O (M2) mass term provides. Also define

µab =
m2
a −m2

b

2kF

, (3.7)

the fictitious chemical potential arising from the MM†/2kF commutators. Note that

all of these chemical potentials vanish as kF → ∞. Finally, note the symmetry

mab = mba and antisymmetry µab = −µba. With this notation in hand the masses

of the mesons are

mπ± = mud ± µud, mK± = mus ± µus, and mK0,0̄ = mds ± µds, (3.8)

At asymptotic densities all the µab vanish and the meson pairs are degenerate, but

non-negligible quark masses favor one of each pair over the other. The neutral pion

and eta mesons have masses of a similar form, but as they lie on the diagonal when

other fields vanish they commute with the MM† matrix in the covariant timelike

derivative and thus are never split or enticed to condense, regardless of the size of

the chemical potential term.
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Note that compared to chiral perturbation theory the mass hierarchy at asymp-

totic density is inverted: mK0,0̄ < mK± < mπ± . This ordering is easy to see by simply

examining how each depends on the greatest quark mass, ms, in (3.6). Even though

the chemical potential for the charged kaons µsu is slightly greater than the chem-

ical potential for the neutral kaons, the neutral kaons start out with a lower mass

and will get to zero mass, and thus will condense, first. This small isospin-breaking

effect is compounded by the fact that the K+ meson is charged and for the system

to remain neutral any charged particle must come along with a charge-balancing

electron (or positron) which may cost a significant amount of energy—the Fermi

energy. There are some loopholes which may favor K+, including the effect of fluc-

tuations of the gauge field, which can actually lower mK+ [51]. We will ignore these

loopholes and assume that K0 condenses.

With all of the other fields vanishing, the vacuum expectation value of the K0

condensate is given by[50]

cos

(∣∣K0
∣∣√2

f

)
=
m2
sd

µ2
sd

. (3.9)

If the right-hand side is more than 1, then the neutral kaons do not condense.

Because µsd vanishes at asymptotically high densities we know that above some

density the K0 condensate cannot exist. At lower densities the the K0 condensate

is a neutral superfluid. A similar relation would hold for the K+ condensate if the

K0 were for some reason prevented from condensing. We therefore expect that the

K+ could condense in a K0 vortex.

One consideration for these superconducting strings is the effect of the explicit
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breaking of the phases associated with K0 and K+ by weak interactions. This

breaking amounts to tipping the canonical Mexican-hat potential used to describe

Goldstone modes. The result is that the phase that wraps around vortices does not

wrap homogeneously—instead it barely changes throughout most of the wrapping

and then quickly changes through almost the entirety of 2π. This domain-wall

like feature must terminate on the vortex, so one can imagine it as a membrane

stretched across the middle of a vorton. As such, vortons in CFL+K0 are sometimes

called “drum vortons”[52]. However, the thickness of the domain wall is so much

larger than radii or the vortons we will find, that the “fast” change by 2π is not

noticeable[53]. Moreover, the effect arises from weak interactions, so it already

provides only a small correction to vorton behavior. For these reasons, we henceforth

ignore this effect.

3.2 Unshielded Vortons

Because CFL+K0 superfluid condensate breaks K0 number, it supports global

vortices. Vorticity manifests itself as a phase that wraps around the center of the

vortex. In order for the field to remain single-valued, it must vanish at the vortex’s

core. Thus, at the core of the K0 vortices, the interactions that might otherwise

prevent the K+ from condensing disappear.

In contrast to some familiar superfluid EFTs (for example, superfluid 4He),

the EFT for the CFL+K0 mesons is valid to short enough scales that the core of K0

vortices is within the regime of validity. Thus, it is sensible to discuss the possibility
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of a K+ superconducting core for K0 vortices. Upon the formation of a charged

condensate, the vortices will be superconducting; superconducting wires may have

an overall electrical charge and carry current.

Since the pions are much heavier than the kaons, we will assume that they

play no role in vorton behavior and simply turn them off. We will keep all of the

“electromagnetic” U(1)Q dynamics, and keep all the nonlinear inter-meson interac-

tions. Previous studies of CFL vortons similarly ignored the pions, but also ignored

the U(1)Q dynamics and linearized effective Lagrangian.

Our strategy for discussing vortons is the following: since we are interested

in equilibrium properties, any valid field configuration must minimize not just the

action, but the Lagrangian. Attempting to capture the full toroidal geometry is quite

difficult, so instead we will separate space into three regions. The first region is the

space within the torus of radius R and thickness R, where we treat the vorton simply

as a straight superconducting string length 2πR. The second is the space outside

of the sphere of radius 2R, where the gradients in the K0 condensate are negligible

but the electromagnetic effects are not. The third space between these two surfaces,

the apple-core shaped region, which we will neglect for simplicity; this uncontrolled

approximation should make the vortons configurations we find smaller than true

configurations, so that the aspect ratios we find should be considered pessimistic. A

cross-section is shown in Figure 3.1; rotating that slice about the vertical axis gives

the three spatial regions. Since we are interested in configurations where it is easy

to distinguish a toroidal vorton from a configuration that looks more like a bialy or

red blood cell, we require the radius to be much larger than the core of the vortex,
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Figure 3.1: The three regions we consider: the inner torus (orange in color), the

apple-core shape (blue), and the region outside the sphere (green). The radius R

should be significantly larger than the string thickness δ. Figure reproduced from

Reference [1].

whose radius is characterized by the string thickness δ. Since we will require R� δ

anyway, we are justified in neglecting the terms arising from the curvature of the

vortex by treating the inner torus as simply a straight vortex of length 2πR.

Let us first consider an infinite, straight K0 vortex. If z is the direction along

the vortex, the K0 field generically takes the form

K0 = K0(r)eiwθ (3.10)

where φ is the axial coordinate, r the axial distance, and w the vorticity, in direct

analogy to (1.5). As was argued there, K0(r) ought vanish at r = 0. Additionally,

infinitely far away the vortex should not matter and the field should take the value
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given by (3.9). Thus, we know that K0(r) has the limits

K0(0) = 0 and K0(∞) =
f√
2

arccos

(
m2
sd

µ2
sd

)
. (3.11)

In the straight vortex case, we will think of the z-direction as straight; in the case

of the vorton we will think of it as it as tangential to the vortex core.

To describe a charge- and current-carrying K+ condensate at the center of the

vortex we take

K+ = K+(r)ei(ωt−kz) (3.12)

where the frequency ω contributes to the charge density, t is time, and k is the

wavenumber along the z−direction which contributes to the current. All that is

known on general grounds about the function K+(r) is that it should be flat at

r = 0 (as cusps there should be energetically costly) and should diminish relatively

quickly with the radial coordinate (due to interactions with K0).

As in the cold-atom case, the phase of the core species along the vortex, in

this case K+, will provide an angular momentum barrier. Because K+ is charged

and the phase k contributes to an electrical current, this barrier simply reflects the

fact that two antiparallel currents (those on opposite sides of the vorton) repel.

Before extremizing the Lagrangian, we must decide which quantities should be

held constant—which quantities we will consider conserved. The electric charge of a

vorton can only change by the conversion of a charged kaon into a neutral kaon (and

the absorption of an electron, and the emission of a neutrino). This weak process

should proceed slowly, as the volume of K+ is smaller than the surrounding electron

clouds (as we will discover). Eventually, this process will reach equilibrium; the final
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state will be vortons with no electric charge (and thus, we will find, no vorton at

all). We will concern ourselves with timescales much shorter than this equilibration

process, so that we can consider the electric charge to be conserved.

The angular momentum may similarly be changed, either by the emission of

a kaon or a photon. Again, we consider timescales much shorter than that so that

we can consider the angular momentum to be constant. The estimation of these

timescales we leave for future work. There is one more fixed quantity: the winding

number of the K+ field along the vorton.

The quantization of k was already discussed in Sec. 2.2 and first for CFL+K0

vortons in Reference [52]. However, neither discussion considered full gauge-covariant

derivatives. The effects are somewhat subtle. The time-dependent phase of the K+

field in (3.12) can be changed by U(1)Q gauge transformations, and is thus is not

an observable. In contrast, the z-dependent phase is quantized

k =
N

R
(3.13)

and the winding number N remains a physical observable, since it cannot be changed

by periodic gauge transformations (that is, group transformations continuously con-

nected to the identity).

Given a loop of superconducting wire, the quantization of the fluxoid connects

N to the magnetic flux ΦB that threads the superconducting loop and the current

density jz at the loop’s center by [54]

2πN = eΦB −
∮
dz

jz(r = 0)
f2v2

2e
tr
[
|[Q,Σ]|2

] . (3.14)

In most familiar condensed matter systems, the superconducting sample is large
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compared to the London penetration length 1/mγ so the current that flows through

the center of the loop is exponentially small. Then the integral term in (3.14) is

negligible and it then appears as though the magnetic flux itself is quantized. While

qualitatively the flux and fluxoid are different entities, quantitatively they are very

similar in this “thick-wire” case. Cosmic strings, on the other hand, are typically

analyzed in the “thin” wire approximation[7], where the current might penetrate

deep into the wire and erase any evidence of the quantization of magnetic flux.

In our case, we will find that the penetration length might be comparable to the

thickness of the wire; the vortex not obviously in the “thick” or “thin” wire regime.

Thus, for us the distinction between the fluxoid and the flux is quite significant.

Next, even though in principle Az and N/R (or more properly ΦB and N) are

independent physical observables, they do not enter calculations separately. Instead

they appear in just such a combination so that they always give the current density

jz; this can be traced to the fact that the contributions of Az and N/R both originate

in the U(1)Q covariant derivative Dz = ∂z + Az. This poses a puzzle, because

although N is conserved, it does not determine the current, and we cannot deduce

how the current should change as the radius of the vorton changes. In fact, the

Lagrangian enjoys a discrete symmetry—if we increase N by 1 and the magnetic

flux by 2π/e, the resulting vorton will have the same current, and so the Lagrangian

will not differ for these two different vortons.

In the ungauged case the dependence of the current density j on the vorton

radius R is quite straightforward: j ∼ k ∼ N/R. This scaling was, in fact, used to

argue for the stability of the ungauged vorton in Section 2.2. However, the gauge
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invariance could conceivably cause trouble—could it be that the gauge field could

arrange itself in such a way that it cancels the R−1 behavior of j? As will be made

explicit in (3.43), a stabilizing effect of this sort survives through the conservation

of angular momentum.

We have argued that in order to describe a vorton, we should specify both N

and the magnetic flux — these quantities together give the current. If we specify

both the current and the charge, we can compute the angular momentum, and

only through the angular momentum do these quantities enter the calculation of

the size of a vorton. Instead of specifying both N and ΦB, we will therefore just

specify the angular momentum. Thus, when we specify the angular momentum, we

are actually discussing a whole class of vortons whose magnetic flux and winding

number conspire to give the specified value of the angular momentum. While vortons

supporting different amounts of magnetic flux and winding number are in principle

physically distinct objects, the stability and equilibrium properties of vortons related

by having the same angular momentum must be the same.

Therefore, when we minimize the Lagrangian, we should aim to keep the charge

and angular momentum fixed. The simplest way to accomplish this conceptually is

to use Lagrange multipliers. We define

F = νQ+ ΩJ − Leff (3.15)

and recognize that extremizing F extremizes Leff and therefore solves the equations

of motion while guaranteeing that the field configuration has the required conserved

quantities. We will need to eliminate the Lagrange multipliers ν and Ω in favor of
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their respective conserved quantities, charge Q and angular momentum J .

The functional F is a global quantity. As discussed earlier, we should compute

F by integrating over all space. We approximate this integral by separating the

whole space into the torus, the apple-core (which we neglect), and the region outside

of the sphere, as shown in Figure 3.1. This allows us to break up F into two parts:

F = Fr>2R + 2πR F⊥ (3.16)

where

F⊥ =

∫ R

0

d2r νQ+ ΩJ − L (3.17)

and where Q and J are the charge and angular momentum densities, respectively,

and Fr>2R is the contribution to F from outside of the sphere of radius 2R. We will

compute F⊥ by simply taking the fields to be those of an infinite straight vortex,

which becomes exact in the limit R � δ. We will make a variational ansatz which

will make computation of Fr>2R simple, as it will have no charge density in this

region and the angular momentum will only be carried in the electromagnetic fields.

In Section 3.3 we will remedy some of the violence of the approximations made in

calculating F outside of the torus of radius R by solving for the electromagnetic

fields and surrounding electrons numerically.

To progress any further, we must compute F . In Section 3.2.1 we compute

F⊥, and in Section 3.2.2 we compute Fr>2R.
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3.2.1 Straight Superconducting Vortices

As discussed above, a straight, infinitely-long K0 vortex implies that the K0

field takes the form

K0 = K0(r)eiwθ (3.18)

where w is the vorticity, θ the axial coordinate, with the boundary conditions

K0(0) = 0 and K0(∞) =
f√
2

arccos

(
m2

K0

µ2
sd

)
. (3.19)

For definiteness, and upon energetic grounds, we will consider only w = 1. Since

this vortex can have a K+ condensate at its core, without loss of generality we can

let K+ take the form

K+ = K+(r)ei(ωt−kz) (3.20)

where ω and k are part of the gauge-covariant quantities that enable the K+ field

to carry charge and current, with boundary conditions

K+(∞) = 0 and ∂rK
+(0) = 0. (3.21)

These charges and currents source electromagnetic fields.

Motivated by axial symmetry, we can pick a gauge where two of the gauge

potentials vanish, Aφ = Ar = 0. The four coupled, nonlinear equations for K0(r),

K+(r), A0(r) and Az(r) of motion follow simply from (3.2). Unfortunately, even in

the case of an infinite straight vortex they are not solvable analytically. Instead, we

will assume a simple ansatz which captures the overall behavior of the kaons. We

will not pick an ansatz for the gauge fields but instead will solve their equations of

motion.
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The simplest ansatz that has all of the radial behavior we expect for the kaon

fields is

K0(r) =
∣∣K0
∣∣ θ(r − δ), and K+(r) =

∣∣K+
∣∣ θ(δ − r), (3.22)

where δ is the string thickness. We treat both
∣∣K+

∣∣ and δ as variational parameters,

but fix
∣∣K0
∣∣ to be its expectation value given by (3.9). Obviously, these step func-

tions are a drastic over-simplification and do not solve the equations of motion; the

real radial profiles should be continuous and differentiable, and should overlap one

another. However, these profiles allow us to solve analytically the electromagnetic

equations of motion and understand how the size of the condensates are affected by

the electromagnetic fields. They therefore allow us to develop good intuition for how

the solutions behave and to drive to the heart of the conceptual difficulties gauge

invariance brings.

Treating
∣∣K+

∣∣ and δ as variational parameters means that our ansatz has

fixed square profiles, but electromagnetic effects can change the vortex width and

the photon mass (which we will see depends on the charged condensate). When

we solve the equations of motion for the gauge field, it is convenient to use only

gauge-invariant quantities. These combinations are

ω̃(r) = ω − eA0(r)− µsu and k̃(r) = k + eAz(r). (3.23)

Alone, the time dependence ω, the size of the gauge field A0, and the quantity

µsu are meaningless: explicit time dependence and the chemical potential may be

absorbed into an overall shift in A0; only grouped into ω̃ do they take on a gauge-

invariant meaning. An analogous statement may be made about k and Az. In the
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static solution we are looking for we may assume that the gauge fields are time

independent. Then, in Coulomb gauge and with the ansätze in (3.18), (3.20) and

(3.22), the gauge field equations of motion (3.5) reduce to

∇2ω̃ = ω̃m2
γ θ(δ − r) and ∇2k̃ = k̃v2m2

γ θ(δ − r), (3.24)

where

m2
γ = f 2e2 sin2

(∣∣K+
∣∣√2/f

)
(3.25)

is the mass of the photon inside the vortex core (outside of the vortex core the

photon is massless). We also see that the photon mass has a maximal possible value

fe, which is an effect that is missed in the linearized theory. The charge and current

densities may be read off directly from the right side of these equations.

The electromagnetic field equations of motion, by gauge invariance, are homo-

geneous equations of ω̃ and k̃ respectively. In contrast, when electromagnetism is

sourced by spin-half fermions, the equations of motion are not homogeneous—the

electric charge is proportional to the fermion number alone. Instead, we find that a

nonzero K+ field only carries charge if the gauge field is nonzero. This implies that

if the charge density vanishes at the wire’s core there cannot be electric charge any-

where. This is apparent in the explicit solutions to (3.24). An analogous statement

holds for current density.

This situation is very peculiar, and stands in contrast to typical electrostatic

or magnetostatic problems, where we can set up a charge or current and ask about

the fields. Instead we need to solve the gauge equations of motion, and only then

do we know what the charge distribution is!
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Luckily, we can solve these exactly. The solutions are

ω̃(r) =


ω̃0 I0(mγr) r < δ

ω̃0

(
I0(mγδ) +mγδI1(mγδ) log

(
r
δ

))
r > δ

(3.26)

k̃(r) =


k̃0 I0(vmγr) r < δ

k̃0

(
I0(vmγδ) + vmγδI1(vmγδ) log

(
r
δ

))
r > δ

(3.27)

where I0 and I1 are the 0th and 1st modified Bessel function and ω̃0 ≡ ω̃(r = 0) and

k̃0 ≡ k̃(r = 0). The values of ω̃0 and k̃0 determine the charge per unit length and

total current flowing through the vortex core. In fact, we can relate ω̃0 and k̃0 to

the charge per unit length Q⊥ and the total current I via Gauss’ and Ampere’s law

respectively. One finds

Q⊥ = +
2π

e
ω̃0 mγδI1( mγδ) = ω̃0 mγδf1(mγδ), (3.28)

I = −2π

e
k̃0vmγδI1(vmγδ) = −k̃0vmγδf1(vmγδ) (3.29)

The apparent difference in sign between the charge and current is due to the differ-

ence in sign of the gauge fields when defining ω̃ and k̃.

We show the dimensionless function f1 in (3.28) and (3.29), but as other

dimensionless functions arise, we will not give their explicit expressions. However,

they are collected for convenience in Appendix A.

We can now compute the Lagrangian per unit length L⊥ of such a supercon-

ducting vortex. We use an infrared cutoff equal to the radius of the inner toroidal

region to compute

L⊥ =

∫ R

0

d2r⊥ Leff = ω̃2
0mγδf3(mγδ)− k̃2

0vmγδf3(vmγδ) + f4 + Af5.
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The dependence of L⊥ on K+ is hidden inside the photon mass, and the K0 gradients

are inside f4. The quantity L⊥ is a function of the variables {
∣∣K+

∣∣ , δ, R, ω̃0, k̃0}.

Extremizing L⊥ would yield a variational approximation to the equations of

motion for an infinite superconducting vortex. There are two qualitatively different

solutions: either the vortex is superconducting, and sin(
√

2
∣∣K+

∣∣ /f) 6= 0 or the K+

condensate is quenched and sin(
√

2
∣∣K+

∣∣ /f) vanishes. The first breaks the U(1)Q

symmetry and the photon gets a mass, as described; the second does not. Due

to the compact nature of the fields, there are two quenched solutions:
√

2
∣∣K+

∣∣ /f
vanishes or is π. The first corresponds to Σ = 1 and is the quenched solution one

finds with a linearized theory, the second corresponds to Σ = diag(−1, 1,−1). In

both cases, Σ is diagonal and thus commutes with Q, so from (3.5) it is easy to see

that the photon mass must vanish. Despite the presence of this unusual solution,

the familiar behavior of current and charge on the value of the condensate remains:

a larger charge per unit length tends to push the condensate toward ±π
2
, a larger

current tends to push the condensate toward the nearest quenched solution.

If we were primarily concerned with straight vortices, we could get the equa-

tions of motion for
∣∣K+

∣∣ and eliminate ω̃0 and k̃0 in favor ofQ⊥ and I (or equivalently,

the linear momentum per unit length), which are fixed for such objects. However,

for a circular loop whose radius R can change, the total current is not fixed, so to

use this calculation of L⊥ to inform us about vortons, we need to compute the rest

of the contributions to F⊥.

The charge per unit length was already computed when we solved the equations

of motion for the gauge field, and is given in (3.28). The angular momentum per
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unit length requires additional calculation. The total momentum density for the

field configuration is

T 0i =
f 2

4
tr
[
vDiΣ† · ∇0Σ + h.c.

]
+ (E×B)i . (3.30)

We are interested in the momentum that flows along the vortex. With our ansätze,

we find

T 0z = ω̃0k̃0vf
2 sin2

(∣∣K+
∣∣√2

f

)
×


(I0(mγr)I0(mγvr) + I1(mγr)I1(mγvr)) r < δ

δ2

r2 I1(mγδ)I1(mγvδ) r > δ,

(3.31)

The contribution from outside of the vortex is provided entirely by the electromag-

netic Poynting vector. The total angular momentum per unit length is given by

J ⊥ =

∫ R

0

d2r⊥

√
R2 + r2

⊥ + 2Rr⊥ cosφ T 0z

≈
∫ R

0

d2r⊥ R T 0z = Rmγδk̃0ω̃0f2, (3.32)

where we have inserted the lever-arm from the vorton’s center to the vortex’s center,

R, to approximate the angular momentum per unit length. Corrections due to

different portions of the vortex being different distances from the vorton’s center

are negligible in the limit R� δ. One may worry about whether this simplification

significantly changes the angular momentum; numerical verification allays this fear—

one way to understand this is that the angular momentum density falls off like r−2

and so very little is carried near the edges of the torus.

Through the results in (3.28), (3.30), and (3.32) we have completely specified

F⊥. We now compute Fr>2R.
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3.2.2 Far Fields

In the region far from the vorton (outside of the sphere of radius 2R), the main

contribution to F and the conserved quantities comes from the electromagnetic fields.

For simplicity, we will approximate the fields in this region by the leading

pieces of their multipole expansions. Since the vorton can carry charge, we will keep

the electric monopole term; since it can carry current, we will keep the magnetic

dipole term. The fields are

Eout =
Q

4πr2
r̂ (3.33)

Bout =
1

4πr3
(3(m · r̂)r̂−m) (3.34)

Q = 2πRQ⊥ is the total vorton charge, and m = πR2 I ẑ is the magnetic moment

of the vorton, assuming it lies in the xy-plane.

Their contribution to the total Lagrangian outside of the sphere is

Lout =

∫
r>2R

d3r Leff =

∫
r>2R

d3r
E2
out −B2

out

2
=

1

2

∫ ∞
2R

dr r2 dΩ
(
E2
out −B2

out

)
=

Q2

16πR
− m2

96πR3
= (2πR δmγ)

(
ω̃2

0 f7 − vk̃2
0 f8

)
. (3.35)

Further contributions from multipole terms will be down by at least factors of 4,

which correspond to the factor of 2 in front of the cutoff rmin = 2R as well as

geometrical factors. These contributions will change the dimensionless numbers in

f7 and f8 but will not change the qualitative dependence.

If we are to numerically minimize F with respect to our variational parame-

ters, the sign difference between the electric and magnetic contributions will pose

a problem. This sign difference will resolve itself when we eliminate the Lagrange
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multipliers, and both contributions will enter F with the same sign.

The static electromagnetic fields also carry angular momentum, as the Poynt-

ing vector curls around the vorton’s axis of symmetry. This angular momentum

is

Jout =

∫
r>2R

d3r r× S =

∫ ∞
2R

r2dr dΩ r×
(
−Qm sin θ

(4π)2r5
φ̂

)
=

Qm

12πR

= (2πR)Rmγδk̃0ω̃0 f6, (3.36)

which is arranged to be easily added to the contribution to the angular momentum

from 2πRJ⊥. This completes the calculation of Fr>2R.

3.2.3 Stability

Having computed all contributions to F , we gather the results from (3.28),

(3.30), (3.32), (3.35) and (3.36). Substituting these into (3.16) via (3.17), we find

F = ν (2πRω̃0mγδf1(mγδ)) + Ω(2πR2mγδk̃0ω̃0)(f2 + f6)− 2πR (f4 + Af5)

− 2πRδmγω̃
2
0 (f3(mγδ) + f7) + 2πRδmγvk̃

2
0 (f3(vmγδ) + f8) (3.37)

We now eliminate the Lagrange multipliers by minimizing F with respect to ω̃0 and

k̃0. These minimizations yield

Ω = −2k̃0v

ω̃0R

f3(vmγδ) + f8

f2 + f6

(3.38)

ν = 2ω̃0

(
f3(mγδ) + f7

f1

+
k̃2

0v

ω̃2
0

f3(vmγδ) + f8

f1

)
(3.39)

which we can plug back into (3.37) so that

F = 2πRmγδ
[
ω̃2 (f3(mγδ) + f7) + k̃2 (f3(vmγδ) + f8))

]
− 2πR (f4 +Af5). (3.40)
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Having eliminated the Lagrange multipliers from F , we can trade ω̃0 and k̃0

for the conserved quantities. The quantities are given by

Q = 2πR Q⊥ = 4π2Rω̃0mγδI1(mγδ), (3.41)

J = 2πR J ⊥ + Jout = 2πR2mγδω̃0k̃0(f2 + f6). (3.42)

It is straightforward to eliminate ω̃0 in favor of Q and k̃0 in favor of J/ω̃0.

Note that k̃0 ∼ J/ω̃0R
2 ∼ J/QR so that the scaling of k̃0 as R−1, which in

the ungauged case was used to argue for stabilization, is apparent. This is critically

important, or vortons would not wind up with a stable equilibrium radius. Also

note that whenever the angular momentum enters F , it will always be divided by

Q, so that the angular momentum barrier is reduced for a vorton that carries a lot

of charge. Making this trade for the conserved quantities gives

F =
Q2

R

f3(mγδ) + f7

8π3δmγI1(mγδ)
+

J2

Q2R

8π3δmγ (f3(vmγδ) + f8) I1(mγδ)

(f2 + f6)2
− 2πR(f4 + Af5).

(3.43)

We can see the explicit R dependence, and it follows the general pattern of (2.15).

We know, therefore, that certainly there is a minimum R0, and that the contribu-

tions to this quantity can indeed be thought of as separated into a tension and a

barrier against collapse composed of electrostatic repulsion and an angular momen-

tum barrier.

Eliminating ω̃0 and k̃0 from F make it a function of {Q, J, w,
∣∣K+

∣∣ , δ, R}. Only

one consideration remains: because of the way we artificially separated space into

three regions and discarded the apple-core region, F has extra unphysical sensitivity

to R: if we compute F when there is no vorton (ie. Q, J, w,
∣∣K+

∣∣ , and δ all vanish)
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it still depends on R. We therefore subtract this artifact off and understand that

what me mean by F hereafter is this repaired quantity that gives no preference to

any R when there is no vorton at all.

For any given fixed “atomic number” Z = Q/e and J (and w = 1), we minimize

F numerically with respect to
∣∣K+

∣∣, R and δ simultaneously. It is a good sanity

check to take this F and taking the limit e→ 0, so that electromagnetism is totally

removed, to see if we schematically recover a familiar expression or if anything goes

wrong. Because f2, f3, f6, f7, and f8 all are proportional to e−2, nothing goes wrong

as long as we think of Z as being a real physical quantity—the number of condensed

particles.

3.2.4 Realistic Numbers

To get a feel for CFL+K0 vortons we should plug in some realistic quantities

for the parameters that are vorton-independent, like kF and ∆, and then explore

different J and Z that have reasonable R0/δ.

For specificity we pick a gap ∆ = 66 MeV and a chemical potential µ =

450 MeV. However, a wide range of reasonable parameters which still have K0

condensation have qualitatively similar results. We show the numerical results of

such a minimization as a function of Z and J in Figure 3.2. In order to avoid

drawing faulty conclusions, we do not plot anything if the resulting equilibrium

radius is smaller than the string thickness. That is, if R0/δ < 1, that region is

whited out in the plots.
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(a) Photon mass (b) Electromagnetic current

(c) Aspect ratio R0/δ (d) Aspect ratio with rescaled J

Figure 3.2: Various equilibrium quantities as a function of Z and J for the EFT

parameters ∆ = 66 MeV and µ = 450 MeV. These figures are directly reproduced

from Reference [1].
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Figure 3.2a shows the condensate’s slight variation in the region where R/δ >

1: mγ/fe changes from 0.428 only in the third decimal. Figure 3.2b shows the

electrical current when the vorton is at its equilibrium radius. Figure 3.2c shows

the aspect ratio R0/δ of a vorton at equilibrium radius, the current I respectively, as

functions of the parameters Z and J . We only plot Z, J > 0, since they always enter

into F quadratically. We do not show the string thickness δ because its variation is

also slight: for this choice of ∆ and µ and the shown Z and J , δ varies between 25

and 29 fermi and its behavior adds no qualitative insight for the other graphs. The

breakdown scale for the effective theory 1/∆ ≈ 4 fm, is significantly smaller than

the thickness of the core δ ≈ 27 fm, as suggested. This justifies the use of the EFT

to describe these vortons.

We can verify that the current decreases with Q (and R) and increases with J .

For a fixed Z, the current increases with angular momentum. For a fixed angular

momentum, the current goes down with both the radius and the charge, so that in

principle the scaling I ∼ R−1 is maintained, but with a Z-dependent coefficient.

In the first three figures, we see that these J affect the equilibrium radius only

slightly, if at all. However, this is an artifact of the fact that k̃0 ∼ J/QR: at such

large Qs, one needs a sizable J to overcome its suppression by Q keep any angular

momentum barrier. That is, the effectiveness of the angular momentum depends on

the per-unit-charge quantity and not the absolute quantity. The equilibrium radius

is plotted with the J axis rescaled to be J/Z in Figure 3.2d for the same gap and

chemical potential. In this rescaled view, one can more easily see sustaining effect

of the angular momentum barrier.
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From this choice of gap and chemical potential we learn a lesson which carries

over to other parameter choices: to get a configuration where R� δ requires large

(order 104 or larger) Z and J/Z. Moreover, even the largest vortons shown in

Figure 3.2d have radii which are much smaller than the thickness of the possible

domain wall mentioned at the end of Section 3.1.1, meaning it doesn’t contribute

significantly to F , providing an a posteriori justification of our ignoring the domain

wall to begin with. The region where vortons are too small, which in the other

figures was a region defined by a fixed Z, in this figure corresponds to a region

defined by a hyperbola that is essentially too small to see.

3.2.5 Potential Improvements

Vortons for a specific choice of gap and density were characterized in Sec-

tion 3.2.4 by a variational calculation that made a number of important approxima-

tions.

The first is the obvious issue of geometry—but as argued the gradients that

become relevant when R0 isn’t much larger than δ should help make vortons larger.

The second is that the step-function ansätze for the kaon fields in (3.22) is a dramatic

oversimplification. This can be remedied with some simpler variational functions,

but as argued in Section 2.2, the region where the two species overlap should quickly

saturate in importance in the calculation of F⊥. While the expectation is that

a better variational function should yield smaller vortons, this saturation should

limit the size of this effect. Finally, we only considered the leading term in the
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multipole expansion for the electromagnetic fields in the r > 2R region. However,

the higher multipoles should be small—the electric dipole is obviously zero, so in

both electric and magnetic fields both corrections start at the quadrupole. Is there

any approximation we made which, when removed, could dramatically shrink the

size of the vortons we considered?

The answer is yes, and it is the subject of Section 3.3: we have assumed that

vortons are electrically unshielded. That is, we assumed that one side of the vorton

repels the other with the full Coulomb force while electrons (or positrons, depending

on the sign of Z) should surround the vorton to maintain charge neutrality. We will

see that while this is not a fatal correction to the assertion that vortons are supported

by the CFL+K0 phase, the same vorton charge and angular momentum will have a

notably smaller aspect ratio.

3.3 Vortonium

In the previous section we discussed electromagnetically bare vortons. How-

ever, we found that for recognizably-toroidal vortons we needed large electric charges

(Z ∼ 104). In order for there to be a bulk filled with vortons, however, there can-

not be an overall electric charge—the charge must be neutralized. We therefore

must study the mechanism by which a charged vorton neutralizes its environment—

electrons (or positrons, depending on the vorton’s charge’s sign). These electrons

will not only shield the long-distance monopole field neutralizing the bulk, but will

also get into the space within the vorton, shielding one side from the other. By this
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mechanism we can see that if there are vortons, they are surrounded by an electron

cloud, and we should really study the size of this vortonic “nucleus” surrounded by

electrons—a system we name “vortonium”.

To understand how to treat the electrons, we should get a grasp on roughly

how dense they should be. One method for characterizing the behavior of a large

number of electrons is the Thomas-Fermi approximation[55, 56]. In the typical non-

relativistic Thomas-Fermi approximation, the radius of an atom is roughly a0/Z
1/3,

so that the electron number density should be roughly

Z electrons

Volume = (a0/Z1/3)3
=
Z2

a3
0

. (3.44)

or an interparticle spacing of a0/Z
2/3, which corresponds to a Fermi momentum

of almost 200 MeV when Z = 105. Thus, the nonrelativistic approximation is

totally inapplicable here; indeed, we should use the corresponding ultrarelativistic

approximation, and expect that it should be quite good.

In the previous section we strove to ensure that we had an qualitative analytical

understanding of how the various variational parameters entered into the expression

of F . If we wish to incorporate the shielding of electrons via the ultrarelativistic

Thomas-Fermi approximation, this will no longer be possible. Faithful incorporation

of the shielding requires that electrons get between the two sides of the vorton,

meaning that the artificial separation of the geometry discussed in Section 3.2 into

the far region r > 2R, the apple-core region, and the torus needs to be reconsidered.

Keeping these divisions as they are presents a problem: the electromagnetic effects

in all three regions may be dramatically modified and are certain to be related.
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Instead, we will consider a different geometric division but for simplicity and

to be able to reuse as much of the results from the previous work as possible, we will

only alter the geometric separation for the electric fields. For the electric fields, we

will consider the torus of radius R and thickness δ (instead of thickness R). That

is, we will minimize

Fvortonium = Fvorton − Ffar E − Fnear E + FTF (3.45)

where Fvorton is the repaired quantity described below (3.43), Ffar E is electric con-

tribution in the r > 2R region, Fnear E the electric contribution between the torus

of thickness δ and the torus of thickness R, and FTF is the contribution which we

will find numerically by solving the ultrarelativistic Thomas-Fermi equations for a

toroidal charge of radius R, thickness δ, and charge eZ.

We will not recompute the electromagnetic contributions to the angular mo-

mentum or other electric-field-dependent quantities, because this would add signif-

icant complication, to the extent that we would be better off starting from scratch

and solving the problem with an entirely numeric approach.

This is a totally uncontrolled approximation, but is obviously an improvement

over the previous one and allows us to include the desired shielding effects.

Both Ffar E and Fnear E are easy to compute. The former is given by

Ffar E =

∫ ∞
2R

d3r
1

2

(
Q

4πr2

)2

=
(eZ)2

16πR
(3.46)

and the latter by

Fnear E = 2πR

∫ R

δ

d2r⊥
1

2

(
λ

2πr

)2

=
(eZ)2

8πR
log

(
R

δ

)
. (3.47)

68



We now must compute FTF.

3.3.1 Shielding by Electrons

The Thomas-Fermi approximation formalizes the idea that we can treat the

local number density of electrons n instead of each electron individually by letting

n =
1

3π2
k3

F (3.48)

where kF is the Fermi momentum. Gauss’ law

∇2ϕ = en (3.49)

allows us to compute the electric potential given a distribution of electrons with

local density n.

Finally, the requirement that the system is in equilibrium enforces the fact

that we should not be able to save any energy by moving an electron from one point

to another. That is, the equilibrium condition is

d (kF − eϕ) = 0 (3.50)

where we have approximated the energy
√
k2 +m2 ≈ kF, the ultrarelativistic ap-

proximation. This is equivalent to saying that kF and eϕ differ only by a constant:

kF − eϕ = −eϕ∞ (3.51)

where ϕ∞ is the electric potential infinitely far away.

We can combine these three equations and eliminate n and kF in favor of ϕ

only,

∇2ϕ =
16

3
α2 (ϕ− ϕ∞)3 . (3.52)
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This equation appears more complex than it truly is: because ϕ∞ is a constant,

∇2ϕ∞ is zero and may be subtracted from the left-hand-side to yield an equation

homogeneous in (ϕ−ϕ∞). We can then absorb ϕ∞ into ϕ as a very simple change of

variables. Alternatively, we could have set ϕ∞ to zero at the start, which amounts

to a partial choice of gauge. Either way, the equation we actually need to solve is

not (3.52) but the simpler

∇2ϕ =
16

3
α2ϕ3, (3.53)

the ultrarelativistic Thomas-Fermi equation.

Solving (3.53) would provide us with a complete, self-consistent description of

the electric potential under the assumptions described above, in the sense that the

potential both directs electrons to their equilibrium positions and accounts for the

electrons being in those positions to begin with. It does leave out some features

of a first-principles solution: electron interaction energy (which was assumed to be

negligible in (3.48)) and density gradients. Both of these effects are small compared

to the Fermi momentum at these large densities, so we should not be concerned that

they will make a noticeable difference. Equation (3.53) also describes the crusts of

strange stars and quark-nugget models of dark matter[57, 58, 59, 60, 61]. In these

situations though, the sources providing the attractive electrical field are either

very large, and thus can be considered locally flat, or are quite small and can be

considered spherical; our situation necessitates toroidal geometry.

Perhaps unsurprisingly, the toroidal nature of the problem is particularly well

adapted to toroidal coordinates, which are reviewed in Appendix B. In this orthog-
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onal system, the axial coordinate and the coordinate u are both naturally compact,

but the coordinate v, which characterizes how close a point is to the reference circle,

is not: it runs over the interval [0,∞). In order to solve (3.53) numerically, we must

therefore cut v off.

As v gets larger, one gets closer to the reference circle, so it is natural to cut

v off in such a way that implements the artificial separation of space we already

discussed—separating the superconducting torus of radius R and thickness δ where∣∣K+
∣∣ is condensed and the insulating region at

vmax = arcsinh

√(
R

δ

)2

− 1 (3.54)

in a toroidal system with a reference circle of radius

a =
√
R2 − δ2. (3.55)

This artificial cutoff physically excludes electrons from the condensed region, and

thus creates a pressure that shrinks δ. Numerically we find that these changes are

roughly 10% and thus ignoring them are good enough for our purposes here.

This gives us a finite region in toroidal coordinates in which we need to solve

(3.53) numerically. In order to get a nontrivial solution (ie. ϕ 6= 0), we must specify

the boundary conditions. Intimately connected with the boundary conditions are

issues of symmetry.

We can use the axial symmetry to enforce independence of the solution on the

axial coordinate, reducing the problem by a dimension. We henceforth suppress all

discussion of the axial coordinate. The physical problem is also symmetric across

the xy-plane, which allows us to study only the region z > 0. The fact that the
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solution is symmetric under reflections across the xy-plane and that it should be

smooth gives the boundary conditions

∂uϕ
∣∣∣
u=0

= 0 and ∂uϕ
∣∣∣
u=π

= 0 (3.56)

while the fact that we expect no cusps along the z-axis from axial symmetry leads

us to the boundary condition

∂vϕ
∣∣∣
v=0

= 0. (3.57)

With only these three conditions the solutions will automatically fulfill the require-

ments of these symmetries.

The fourth boundary of the uv-grid is at vmax, where we require the electric

field to be that of a wire with circular cross section πδ2 and linear charge density

Ze/2πR. This amounts to enforcing

∂vϕ
∣∣∣
v=vmax

= 2

(
Ze

2πR

)
coth vmax. (3.58)

All four boundary conditions for the electric potential ϕ are Neumann condi-

tions, as expected by gauge symmetry. In order to help the numerical procedure

converge we also pick a gauge,

ϕ (u = 0, v = 0) = ϕ∞ = 0. (3.59)

These conditions all together pose a totally well-formed mathematical ques-

tion. However, we have not enforced an important physical motivation for consid-

ering the effect of electrons in the first place—overall charge neutrality! How does

the solution to this equation with only those boundary conditions know that there
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should be enough electrons in the system in order to kill the monopole field? It is

not obvious that this neutrality condition has been implemented.

Surprisingly, toroidal coordinates implement this condition automatically. It

is easy to show that the radial spherical coordinate is given by

r2 = a2 cosh v + cosu

cosh v − cosu
(3.60)

so that large r2 corresponds to small u2 + v2, so that the sphere r =∞ corresponds

to the point (u, v) = (0, 0).

The multipole expansion for the electric potential is

ϕ(r) = ϕ∞ −
Qtotal

4π

1

r
− d · r̂

4π

1

r2
+ · · · (3.61)

which translates into toroidal coordinates simply

ϕ(u, v) = ϕ∞ −
Qtotal

4π

√
u2 + v2

2a
− d · r̂

4π

u2 + v2

4a2
+ · · · . (3.62)

when r is large and the arrangement of charges can be totally encapsulated by a net

charge Qtotal and a dipole moment d. The dipole moment d must vanish by parity

and axial symmetries, while the quadrupole will be nonzero.

Because we have already demanded the solution obey the boundary conditions

∂uϕ (u = 0, v) = 0 and ∂vϕ (u, v = 0) = 0, we have guaranteed that infinitely far

away at the point (u, v) = (0, 0) the potential ϕ is flat in both directions—precisely

what we need to ensure that the total charge vanishes! That is, charge neutrality

is accidentally implemented by the other symmetry conditions in these coordinates.

This is a happy surprise, and makes attaining charge-neutral combinations of vortons

and electrons easier than one might otherwise expect.
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Because the physical system of interest has a number of additional scales (R,

δ) compared to the typical spherical situation (where one only has Z and me), there

is no simple rescaling we can perform to get a universal-up-to-rescaling solution that

solves the Thomas-Fermi equation. There is a rescaling that can reduce the number

of independent variables from 3 (Z, R, and δ) to 2, but for clarity it is simpler to

simply think of fixing all three separately. Therefore, for each Z we will numerically

solve (3.53) for a large number of radii and string thicknesses, and use the solution

to compute FTF.

To solve (3.53) we imagine a fictitious time dimension t and any starting field

configuration ϕ(t = 0) and evolve it according to

∇2ϕ− 16

3
α2ϕ3 =

csch v

(r2 − δ2)3/2

dϕ

dt
(3.63)

so that as ϕ(t) reaches a temporal fixed point it solves the Thomas-Fermi equation.

The coefficient in front of the time derivative is chosen to reduce some numerical

instabilities.

To generate numerical solutions we first pick Z, R, and δ, so that we can

calculate vmax and the boundary condition there. We then discretize the coordinates

u and v onto a 32×32 grid and start with a simple interpolated polynomial that

satisfies the boundary conditions at the wire that we evolve forward in fictitious
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time. We iterated this procedure for

R ∈ {80, 100, 120, 140, · · · 800} fm

Z ∈ {250, 500, 750} ∪ {1250, 2500, 3750, 5000, · · · 50000} (3.64)

δ ∈ {1, 2, 3, 4, · · · 35} fm.

Figure 3.3: The three kinds of equipotentials—toruses (green), biconcave disks (or-

ange), and oblate spheres (blue and red). Figure reproduced from Reference [2].

The resulting electric potentials are easy to understand qualitatively, and typ-

ical solution has three kinds of equipotentials, as shown in Figure 3.3. Very close to

the wire, the equipotentials are toruses. Farther away, they are biconcave disks—

they look more like a bialy or red blood cell. Farther yet they look like oblate

spheres, and extremely far away those spheres lose their oblateness and become

rounder and rounder.
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Having propounded on the importance and accidental ease of producing so-

lutions which produce objects that are overall charge-neutral, we can check the

numerical procedure by calculating the number of electrons from the electric po-

tential and comparing it to charge of the vorton. The number of electrons is given

by ∫
outside

2π dA∇2ϕ(u, v) (3.65)

where the 2π comes from the axial integration and the area differential and gradient

live in the uv-plane. We performed this check for all of the calculated gauge config-

urations. The number of electrons matched the vortonic charge Z (modulo a sign)

to within 1.8% every time; only 2% of the examples differed by more than 1%; only

25% by more than 0.5%. We verified that for a handful of specific examples, the

results of this check can be improved by using a finer grid.

Using the generated electric potentials we can compute the corresponding con-

tribution to F . The gauge field contributes

FTF (Z,R, δ) =

∫
2π dA

1

2
(−∇ϕ)2 . (3.66)

Note that the total F will depend on K+ but also on the parameters of the EFT,

µ, ∆, and M, and must be recalculated if those parameters change, while FTF is

independent of these choices and so may be calculated once for all choices and reused

over and over again. With FTF evaluated at the points given by (3.64) we can make

an interpolating function that works anywhere in the range defined by the extremes

of those variable ranges.
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3.3.2 Results

With this interpolating function of FTF we can simply minimize Fvortonium

given in (3.45). For ease of comparison with the unshielded vortons discussed in

Section 3.2, we pick the same EFT parameters ∆ = 66 MeV and µ = 450 MeV. The

results of this minimization are shown in Figure 3.4.

It is clear from Figure 3.4a that the condensate again saturates at roughly half

its possible maximum, slightly increased from the unshielded case. In Figure 3.4b

we see that now the string thickness varies much more than in the unshielded case:

in the plotted region it changes by a factor of two, whereas in the unshielded case

it changed by only 4 fermi across the whole plotted range.

Comparing Figure 3.2c to Figure 3.4c, it is apparent that the electric shielding

makes a major difference in the aspect ratio R0/δ. This change results both from

the changing string thickness and the changing radius R0. Not only are the vortons

smaller, but they also grow more slowly as a function of Z.

This slower growth is expected, as illustrated by a simple argument. At lead-

ing order, the electrons should simply cancel the electromagnetic effects entirely.

This would give a charge-independent radius. However, the cancellation is made

imperfect by Pauli blocking—the electrons cannot all go and sit exactly where they

are needed. Thus, there should be some remnant electromagnetic effects that makes

the vorton get bigger with Z. However, as its radius gets bigger, more electrons can

shield it effectively, meaning that it will grow more slowly than one might otherwise

expect.
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(a) Photon mass (b) String thickness

(c) Aspect ratio R0/δ (d) Vortonium vs. vorton radius

Figure 3.4: Various equilibrium quantities as a function of Z and J for the EFT pa-

rameters as in Fig. 3.2. All but Fig. 3.4b are directly reproduced from Reference [2].
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The shielded equilibrium radius is compared to the unshielded equilibrium

radius in Figure 3.4d. It is interesting that in the region of small Z and small J

there is a region where shielded vortons are actually larger than unshielded vortons.

This peculiar effect might be interpreted as the electron degeneracy helping keep

the vorton open, picking up the slack of the shielded far-field electrostatic terms.

However, it is important to note that in this region the aspect ratio of the shielded

vortons is relatively small. Moreover, if the degeneracy pressure is large enough

to accomplish this feat, it seems reasonable to expect that the fictitious pressure

created by excluding the electrons from the vorton core could be non-negligible.

In order to verify whether this is an artifact of our uncontrolled approximation

or a true physical effect, a fully numerical calculation of F is required—leaving ϕ,

K+, and K0 all dynamical. The complication of simultaneously solving the Thomas-

Fermi equation (3.53) and all of the equations of motion is far beyond the scope of

this work. With such a framework for solving these equations all at once it would

be easy to incorporate fully three-dimensional geometry, magnetic and curvature

effects, and the circulation of K0 around and through the vorton as well.

3.4 Summary and Possible Future Directions

In this chapter we have discussed the vortons supported by the CFL+K0 phase

of dense quark matter. Gauging and charge play extremely important roles in the

dynamics of these vortons, and add significant complication compared to the “warm-

up” BEC vortons discussed in Chapter 2. In particular, shielding of electrons makes
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a dramatic difference and must be incorporated into the description of these charged

vortons, these two things making up vortonium.

There are many directions one might pursue with regards to these objects.

One was discussed at the end of Section 3.3.2: a fully numerical formulation of the

problem would give accurate mean-field field profiles and would skirt a variety of

problems introduced by attempting to keep some of the calculation analytic.

It is easy to imagine that if there are many vortons in the CFL+K0 bulk, they

might radically alter the phase’s transport properties. To understand how these

change one needs to understand vortonium-vortonium interactions. One might also

imagine all sorts of vortonic “chemistry”; in this high-density environment, one

might be able to study the Periodic Table out to atomic numbers beyond 104.

Perhaps the most pressing concern should be trying to develop an estimate

of how many vortons there are in the first place. If in a neutron-star-core sized

volume there are but a few vortons, they will almost certainly have no observable

consequences. In order to understand if pursuing the other lines of inquiry are

worthwhile, we need a very rough estimate. This is a difficult proposition, because

the Kibble-Zurek mechanism described in Section 2.4.1 is a dynamical process that

requires fast thermal quenching, and it is unclear if the timescales on which neutron

stars cool will be good enough to lock topological properties into the condensates;

as the other production mechanism required an experimenter, it seems unlikely that

it will be applicable in the CFL+K0 context.
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Part 2

Nuclear Condensation in Helium

White Dwarfs
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Introduction

There is a large separation of scales between typical atomic phenomena, which

have a natural length scale of the Bohr radius a0 ∼ .5Å = 5 · 10−11m, and typical

nuclear phenomena, which occur on the QCD confinement scale 1fm= 10−15m. The-

orists who study matter at Bohr-radius inter-nucleus spacings are primarily consid-

ered atomic or condensed matter physicists (or even chemists), and typically post in

the physics.atom-ph or cond-mat sections of the arXiv, while those who study phe-

nomena with fermi-scale interparticle spacings are thought of as nuclear physicists

and typically post in nucl-th. While this is simply a sociological observation, it is

indicative of a vast, under-studied, density regime. It seems unlikely that at densi-

ties with interparticle spacings that lie in the four-and-a-half orders of magnitude

between these two scales nothing interesting happens.

Moreover, there is plenty of room, so to speak, for densities where the typical

inter-nucleus spacing is much greater than the size of the nucleus itself but much

smaller than the Bohr radius. Such a regime not only has tremendous theoretical

appeal but also has real-world applications in astrophysics and more down-to-Earth

high-density conditions such as inertial confinement experiments or diamond anvil

cells.

In this Part we will discuss the behavior of helium atoms compressed to den-

sities where the average inter-nucleus spacing ` is smaller than the Bohr radius a0.

At these densities it is no longer possible to associate any particular electron with

any particular nucleus; instead we must consider the helium nuclei to be a totally

ionized plasma in an environment of degenerate electrons, where the nuclei and elec-
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trons interact electromagnetically. These densities are expected to exist in the core

of helium white dwarfs (HeWDs).

The zero-temperature ground state at such densities is expected to be a nuclear

Coulomb crystal[62, 63, 64], where the nuclei themselves lock themselves into a

lattice via mutual electromagnetic repulsion, while at high temperatures one expects

a plasma. Typical models of HeWDs assume that this plasma cools and cools until

it reaches the crystallization temperature and freezes (for one such example see

Reference [65]).

It was recently noticed that if the density is high enough, this is not the correct

phase transition sequence to go from hot plasma to cold lattice—instead the plasma

cools until the helium nuclei condense and this condensate then cools until it freezes;

this extra step may have observable consequences[66, 67, 68]. The density beyond

which this intermediate condensed phase exists grows with the mass of the ions,

as we will motivate with some simple scaling arguments in Chap. 4; carbon-oxygen

white dwarfs do not get dense enough to trigger the condensation of carbon nuclei,

but it is possible that helium white dwarfs may get dense enough to trigger the

condensation of helium nuclei.

This phase is quite different from the other two expected phases—we will show

that it has a previously-unnoticed gapless quasiparticle which, unlike plasmons, will

not get Boltzmann-suppressed at low temperatures. This degree of freedom causes

the specific heat to drop precipitously—where it might previously be dominated by

the helium plasma, the condensed ions have a low enough specific heat that it is the

degenerate electrons that dominate.
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This extra phase may help explain a peculiarity in the observation of HeWDs

recently pointed out in Reference [69]. In order to understand this peculiarity, it is

helpful to know a little bit of background knowledge about white dwarfs.

White dwarfs are stars that have finished fusing but are not heavy enough to

collapse and then explode as a supernova but instead are held up by their electron

degeneracy pressure. Most white dwarfs are primarily made of carbon or oxygen,

which are fusion-chain end products if the core temperature is not hot enough to

burn oxygen into silicon. These white dwarfs are called carbon-oxygen white dwarfs

(COWDs). Helium white dwarfs, on the other hand, result from stars that do not

get hot enough to trigger the triple-alpha process that creates produces carbon-12.

Stars that are hotter burn their fuel faster and go through their life cycle more

quickly, and heavier stars typically have hotter cores. Thus, the production rate of

COWDs is much greater than that of HeWDs if we normalize against the number of

stars that are destined to become each type, simply because a star that will be light

enough to not burn helium will also burn more slowly. In fact, the amount of time

it takes a single star to evolve into a HeWD via the normal white dwarf lifecycle is

longer than the current age of the universe[70].

It has been known for more than 40 years, however, that HeWDs can evolve in

binary partners[71, 72, 73, 74], and modern calculations can model HeWD generation

in more extreme situations, such as partners to neutron stars[75] or with brown

dwarf or heavy planetary partners[76]. A binary partner can pull off the hydrogen

atmosphere of a heavy star that has already produced a lot of helium—if it pulls

off enough hydrogen the helium core that remains will not have sufficient mass to
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ignite fusion of helium into carbon, so that the star is bound to cool into a helium

white dwarf. By this mechanism helium white dwarfs can be produced much faster

than they would if they followed the same sequence a typical carbon-oxygen white

dwarf does.

Because their evolution is relatively complicated and can only have happened,

as of yet, in a binary pair, we expect very few HeWDs compared to the number of

COWDs. However, Reference [69] gives a detailed population of the globular cluster

NGC 6397, which is the second-closest such cluster to the sun, and shows that not

only are there fewer HeWDs, but there are almost no very dim, cool HeWDs. That

is, even though the Hubble Space Telescope sees many dim, cool carbon-oxygen

white dwarfs above magnitude 24 in the R625 channel, it sees too few helium white

dwarfs in that channel; indeed, it sees just a few that dim while many more were

expected.

This puzzling dearth of HeWDs can be explained in a few ways. First, it

may be that NGC 6397 happens to be a particularly HeWD-sparse globular cluster.

Second, it may be that the production, and thus population, of HeWDs is not what

is expected. These first two explanations are at their root astrophysical in nature.

Finally, it may be the evolution of HeWDs is peculiar, and that once they get cool

enough they suddenly and unexpectedly cool very quickly, so that the reason there

are so few dim specimens is that the dim ones have cooled beyond the sensitivity of

our telescopes. This would be an explanation from nuclear physics.

In this Part we will keep this third possibility in mind. Specifically, we will

focus on whether the unusual phase of condensed nuclei might provide a cooling
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mechanism, which would explain the difference between HeWDs and COWDs.

In Chapter 4 we will discuss the simple scaling arguments that suggest that

such a condensed phase really exists at astrophysical densities for helium (but not

carbon-oxygen) white dwarfs, while in Chapter 5 we will discuss the effective field

theory (EFT) that characterizes this phase and investigate its spectrum, uncovering

a previously-unknown gapless quasiparticle[77]. In Chapter 6 we will perform some

simple calculations investigating the potential observational signatures of this phase.

In particular, we will show that the specific heat of the condensed phase is much

smaller than either the plasma or lattice phase that the condensed phase replaces

at some temperatures, and that the annihilation of the new quasiparticles into neu-

trinos is only competitive with surface photoemission if the critical temperature at

which the condensate vanishes is high enough. In Chapter 7, we will investigate the

critical temperature and demonstrate that, barring a few caveats, it seems unlikely

that the critical temperature is, in fact, high enough; the neutrino emission process

is likely uncompetitive.
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Chapter 4

Motivation

Reference [66] first pointed out, using very simple arguments, the possibility of

helium nuclei condensing at astrophysical densities. Let us review these arguments

here.

A good guide is that crystals melt when the typical thermal fluctuations are

greater than the potential barrier that localizes the crystal sites. In the case of

interest, at low temperature the helium nuclei are locked into place by their mutual

Coulomb interaction. If we assume that the nearest-neighbor interaction dominates,

then the potential energy EC is of the size

EC =
Z2α

`
(4.1)

where the atomic number Z is 2 for helium, α ≈ 1/137 is the electromagnetic fine

structure constant, and ` is the spacing between the helium nuclei. The interparticle

spacing is related to the number density n by

n

(
4π

3
`3

)
= 1; (4.2)

by charge neutrality we expect to find that the electron number density ne to be Zn.

The thermal energy ET in the plasma, on the other hand, can simply be

estimated by the free Bose gas result,

ET = T (4.3)
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where we have adopted units where Boltzmann’s constant kB is set to 1.

Combining (4.1) and (4.3) we can estimate the temperature at which the

crystal melts from thermal fluctuations. We define the ratio Γ to be the ratio

Γ =
EC
ET

∣∣∣∣
T=Tmelt

(4.4)

when the crystal melts.

Monte Carlo techniques show that Γ is around 180. References [78, 79] found

that the crystal melts when Γ ≈ 180; Reference [80] found Γ = 168 ± 4; Refer-

ence [81] that Γ is 178 for body-centered-cubic crystals and 192 for face-centered

cubic crystals, respectively. Using Γ = 180, one can resolve (4.4) for Tmelt, to find

Tmelt =
Z2α

Γa0

(a0

`

)
≈
(a0

`

)
1750 Z2 K, (4.5)

which is (a0/`) 7000K for Z = 2. This is the temperature at which were there

no condensed phase the nuclear crystal would melt into a plasma. Note that this

temperature scales like `−1. We should compare this temperature to the temperature

at which the helium nuclei condenses.

One way to estimate the condensation temperature is to compare the thermal

de Broglie wavelength to the interparticle spacing. The thermal wavelength is

λT =

√
2π

MT
(4.6)

where M is the ion mass; for 4He M ≈ 3.7GeV. When the thermal wavelength

is of the same scale as the interparticle spacing, one expects the wavefunctions of

neighboring nuclei to overlap enough to behave coherently. Equating λT and ` gives
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a condensation temperature

TC =
2π

M`2
. (4.7)

The primary lesson from this scaling argument is the dependence on the mass and

interparticle spacing; the 2π is by far less certain. In fact, a free Bose gas condenses

at[82]

TBose =

(
3

(4πζ (3/2))

)2/3
2π

M`2
≈ 1.27

M`2
, (4.8)

while some estimates[68] and more serious calculations[83] suggest

TC =
2π

3

2π

M`2
≈ 13.2

M`2
. (4.9)

It is generally expected[84] that repulsive interactions should raise the critical tem-

perature compared to the free Bose gas. We will therefore normalize the critical

temperature to TBose:

TC = CTBose. (4.10)

We will investigate the quantity C in Chapter 7; what is important to note is that

this argument produces a temperature that scales like (M`2)−1.

Below the melting temperature (or equivalently, the freezing temperature) we

expect a crystal; below the condensation temperature we expect the nuclei to con-

dense. It is clear from the analytic expressions of those two transition temperatures—

the crystal melting temperature Tmelt in (4.5) and the nuclear condensation temper-

ature TC in (4.9)—that when either Z or M is increased, the lowest density where

the nuclei might condense is pushed deeper into the high-density regime. These

temperatures are equal when the interparticle spacing becomes

`max =
4π2Γ

3MZ2α
, (4.11)
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(a) Helium (b) Carbon

Figure 4.1: Below the melting temperature (blue) the nuclei form a crystal; below

the condensation temperature given by (4.9) (maroon), but above the melting tem-

perature the nuclei could condense. Above the condensation temperature the nuclei

are a plasma.

at smaller interparticle spacings (higher densities), the condensation temperature is

larger than the freezing temperature, and a bulk of cooling nuclei has a temperature

regime where it is cold enough to condense but not cold enough to freeze.

This is the reason that we focus on helium white dwarfs: for helium (Z = 2,

M ≈ 3.7GeV) `max is about a0/12 while for carbon (Z = 6, M ≈ 11.18GeV)

`max is roughly a0/330; these correspond to mass densities 1.9 · 104g/cm3 and 1.2 ·

109g/cm3, respectively. Figure 4.1 shows these temperatures for helium and carbon

as a function of mass density ρ.

If instead of using TC in (4.9) we instead use the more pessimistic condensation

temperature in (4.7) the intersection point for helium becomes `max ≈ a0/26; for

carbon a0/700—mass densities of 1.7 · 105g/cm3 and 1.1 · 1010g/cm3, respectively.
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Helium white dwarf central mass densities are typically between 1 · 105g/cm3

and 1 · 106g/cm3[85, 86]. While models of the most extreme far-from-equilibrium

super-Chandrasekar-mass supernova-progenitor carbon-oxygen white dwarfs require

central densities around 109g/cm3[87] very few of these stars have ever been ob-

served; almost all COWDs have densities around 106g/cm3—well below the densities

that allow nuclear condensation. It therefore seems certain that if nuclear conden-

sation has any observable astrophysical signatures, one should consider primarily

HeWDs.

The argument to focus on helium has one glaring omission: deuterium! Deu-

terium is not only lighter but also has a smaller charge—both factors lower the

density at which condensation can occur. In fact, deuterium condensation has been

considered elsewhere[88, 89, 90, 91] and brown dwarfs are expected to contain a layer

of dense deuterium[92]. Deuterium is slightly more complicated—it is spin-1, and

therefore admits a number of interesting phases[93] that helium does not, some of

which support topological defects. We gain simplicity by studying the spin-0 case.
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Chapter 5

Effective Field Theory & Spectrum

In order to understand whether the nuclear condensate has any observable ef-

fects we need a framework for performing calculations that encapsulate the dynamics

of such a phase well. Fortunately, we can apply the general ideas of effective field

theory (EFT) to characterize the low-energy excitations—and thus the dominant

aspects of the dynamics at low temperature.

The applicability of EFT methods is actually a little subtle in this regime,

because we are interested particularly in temperature regimes higher than the crys-

tallization temperature of the nuclei. That is: we expect a priori that at zero tem-

perature the condensed phase is unstable. However, the transition between crystal

and condensed phases should be first-order, meaning that the condensed phase is

only unstable globally, and there should be no local instability. Therefore we can ap-

ply zero-temperature EFT methods to deduce the properties of the condensed phase

as though it really survived to T = 0, and then to correct for finite-temperature ef-

fects. Thus, we will concern ourselves with the spectrum and other properties at

T = 0—finite-temperature considerations will be left for Chapter 7.

At the densities of interest the interparticle spacing ` is much more than the

size of a nucleus, meaning that the nuclei may be treated like point particles and

that we may ignore the effect of strong dynamics (as they are relatively short-range),
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but much less than a Bohr radius, meaning that the electrons will be degenerate.

The Lagrangian that describes nonrelativistic ions and electrons interacting electro-

magnetically is

L = ψ†
(
iD0 + µ+

D2

2M

)
ψ − 1

4
FµνF

µν + χ̄
(
iDµγ

µ + µeγ
0 +m

)
χ+ · · · , (5.1)

where ψ is the second-quantized ion field, χ the electron field, Fµν = ∂µAν − ∂νAµ

is the electromagnetic field strength tensor, and the gauge derivatives are

Dµψ = (∂µ − iZeAµ)ψ and Dµχ = (∂µ + ieAµ)χ (5.2)

where Z is the atomic number of the ions; Z = 2 for helium. The strong interactions

between the helium nuclei are omitted, because the nuclear force between nuclei

only becomes strong on length scales comparable to the size of a nucleus, and we

are interested in a regime where the nuclei are far apart compared to their size.

To extract the spectrum of this Lagrangian we simply need to diagonalize the

sector that is quadratic in the fields. Because the electrons are strongly degenerate a

sensible first step towards this goal is to integrate them out. Because the Lagrangian

is quadratic this may be done exactly, giving a fermion determinant in the partition

function,

Z =

∫
Dψ†DψDADχDχ̄eiSeverything

=

∫
Dψ†DψDA Det

[
iDµγ

µ + µeγ
0 +m

]
eiSeverything but electrons (5.3)

Then, using the identity

Det
[
Ô
]

= eTr[log Ô] (5.4)
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we can cast the fermion determinant back into the action as a trace-log,

Selectron = Tr
[
log
(
iDµγ

µ + µeγ
0 +m

)]
=

∫
d̄4p

(
tr
[
log
(
/p+ µeγ

0 +m
)]
− Zen (−p)A0(p)

+
1

2
Aµ (−p) Πµν(−p, p)Aν (p) +O

(
A3
))

(5.5)

where Tr indicates a complete functional trace, tr a trace only over Dirac indices,

d̄ = d/2π is convenient shorthand for the correctly-normalized momentum integrals,

Zn is the electron number density χ†χ, and Πµν is the polarization tensor which

encapsulates how the two-point function of the electromagnetic field is modified due

to the existence of the electrons.

The first term is O (A0) and describes particle-hole excitations—it gives the

free energy of the Fermi sphere. The second term, O (A1), will cancel against the

charge density of the helium ions for charge neutrality. The third term, O (A2),

describes how the degenerate electrons deform and respond to the electromagnetic

field, and will prove crucial in determining the correct spectrum. We will ignore all

higher order terms, since they do not effect the spectrum at tree level.

As discussed at length in Appendix C, when there is a privileged rest frame—

like the situation of interest, since chemical potentials break Lorentz symmetry—the

polarization tensor is made of two scalar functions of p0 and p2. One particularly

convenient encoding that automatically obeys constraints from the Ward-Takahashi

identity is

Πµν =

 Π −pip0

p2 Π

−pip0

p2 Π
pipjp

2
0

p4 Π + (pipj − δijp2) Π⊥

 . (5.6)
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It is also convenient for our purpose here to parameterize the helium field ψ

by

ψ = (v + h)eiφ (5.7)

where v is the vacuum expectation value, h is the radial excitation analogous to the

Higgs boson, and φ is the phase.

In order to proceed, we must fix a gauge. We use the Fadeev-Popov method,

and will pick a particular Rξ gauge. To extract the spectrum it is particularly

convenient to fix the gauge

Lspectrum = − 1

2ξ

(
∇ ·A− 2M

ev
∂0h− ξ

Zev2

M
φ

)2

. (5.8)

Taking ξ → ∞ we will find significant simplification and decoupling of fields from

one another.

It is worth pointing out, however, that this gauge fixing is a bit peculiar,

because the gauge-fixing condition explicitly depends on v, and so were we to com-

pute a finite-temperature effective potential (a gauge-dependent quantity) with this

choice, we would be computing it in a different gauge for each v. We will therefore

use the Coulomb gauge

LCoulomb = − 1

2ξ
(∇ ·A)2 (5.9)

followed by the ξ → 0 limit to perform finite-temperature calculations in Chapter 7.

The gauge-fixing in (5.8) was chosen to remove all mixing between φ and h

or A. Moreover, the ghosts introduced by this gauge-fixing are totally decoupled,

so we can completely ignore them when we determine the spectrum. With the

explicit form of the polarization tensor and gauge-fixing term, the Lagrangian up to
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quadratic order in the fields is

Lquad = 2µvh+ Ze(v2 − n)A0

− 1

2M
(∇h)2 + µh2 + 2ZevA0h−

v2

2M
(∇φ)2 − Z2e2v2

2M
A2

− 2M2

ξv2
(∂0h)2 − 2M

ξZev
(∇ ·A)∂0h−

1

2ξ
(∇ ·A)2 − ξZ2e2v4

2M2
φ2

− 1

4
FµνF

µν +
1

2
AµΠµνA

ν ; (5.10)

the first line represents the terms constant and linear in the fields Aµ, h, φ, the

last line is purely electromagnetic, and the other terms are all the other quadratic

pieces. Now we take the limit ξ → ∞, which eliminates the first three terms on the

third line. Examining the fourth term on that line we see that in that limit φ gets

an infinite mass, so that excitations of φ become impossible to excite: we can drop

them from consideration as well.

We also separate the electromagnetic field Aµ into three parts: the time-like

part A0 and two 3-vectors A‖, the longitudinal component, and A⊥, the transverse

component. These satisfy

A⊥i pi = 0 and A
‖
iA
⊥
i = 0. (5.11)

where p is the spatial momentum of any excitation.

With these simplifications the quadratic part of the Lagrangian is

Lquad = 2µvh+ Ze(v2 − n)A0 + h

[
µ+

∇2

2M

]
h+

1

2
A⊥i
[
−∂2

0 +∇2 −m2
A + Π⊥

]
A⊥i

+
1

2
A0

[
−∇2 + Π

]
A0 + A0

[
∂0∂i

(
−1 +

Π

∇2

)]
A
‖
i + 2ZevhA0,

+
1

2
A
‖
i

[
δij(−∂2

0 +∇2 −m2
A)− ∂i∂j

(
1− ∂2

0

∇4
Π

)]
A
‖
j (5.12)
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where we have defined the photon mass

m2
A =

Z2e2v2

M
=
Z24παv2

M
. (5.13)

To ensure charge neutrality one must, at zero temperature, pick 〈ψ 〉 = v =
√
n

and µ = 0. We will, until Chapter 7, simply set µ = 0. This choice implies that

single-photon-exchange contributes nothing to the energy, which is exactly what one

expects if the ion and electron charge densities cancel one another exactly. Instead,

only two-(or-more)-photon-exchange can contribute to the energy: the first photon

induces a charge density imbalance and the second communicates the interaction of

the resulting charge fluctuations. These loop effects are higher order in α and are

thus small.

We can now begin examining Lquad and determining its spectrum. First, note

that A⊥ is totally decoupled from all other fields at this order. It encodes the two

transverse photons with dispersion relation

p2
0 = p2 +m2

A − Π⊥(p0,p
2). (5.14)

Assuming that the magnetic effects of due to the electrons, such as Landau damping,

are unimportant so that Π⊥ is small, this simplifies to

p2
0 = p2 +m2

A, (5.15)

the dispersion relation of a massive scalar.

The rest of the remaining fields mix. Since this sector is quadratic we can

exactly integrate them out one by one. The choice of which fields to integrate out

is arbitrary and the physics must be independent of this choice.
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Let us integrate out A‖. Note that

(Aδij +B∂i∂j)
−1 =

1

A

(
δij −

B

A+B∇2
∂i∂j

)
(5.16)

and therefore we can integrate out A‖ easily. The result is

Lquad =
1

2
A⊥i
[
−∂2

0 +∇2 −m2
A + Π⊥

]
A⊥i

+ h

[
µ+

∇2

2M

]
h+

1

2
A0

[
m2
A

∇2 − Π

−∂2
0 −m2

A + Π
∂2

0

∇2

]
A0 + 2ZevhA0 (5.17)

Notice that the second line contains no time derivatives but for those that arose

from integrating out A‖; without the dynamical effects of A‖ it is not possible to

get a quasiparticle from the remaining h, A0 sector.

Finally, let us eliminate A0. Integrating it out yields

Lquad =h

[
µ+

∇2

2M
+ 2M

−∂2
0 −m2

A + Π∂2
0/∇2

−∇2 + Π

]
h

+
1

2
A⊥i
[
−∂2

0 +∇2 −m2
A + Π⊥

]
A⊥i . (5.18)

We have already discussed the excitations associated with the transverse photons

A⊥, so let us focus on the h sector of this Lagrangian. The propagator Gh(p0,p
2)

associated with h is

Gh

(
p0,p

2
)

=
p2/2M

p2
0 −

(
p2

2M

)2

− p2m2
A

p2+Π(p0,p2)

. (5.19)

The dispersion relation of the quasiparticle excitations of h can be found by finding

the poles of Gh(p0,p
2). The poles are the solutions to

p2
0 =

(
p2

2M

)2

+
p2m2

A

p2 + Π(p0,p2)
. (5.20)

but actually deducing the dispersion relation with a nontrivial Π(p0,p
2) is nontrivial

and will be the focus on the remainder of this chapter.

98



Before we pursue these dispersion relations it is helpful to perform some sanity

checks to see if (5.20) has correct limiting cases. First, notice that if the ions were

uncondensed, ie. mA = 0, this relation reduces to

p2
0 =

(
p2

2M

)2

, (5.21)

simply the dispersion relation for the nonrelativistic ions that we put in. Second,

notice that if the electrons were totally rigid and didn’t respond to electromagnetic

fields, the function Π(p0,p
2) would vanish, leaving us with

p2
0 =

(
p2

2M

)2

+m2
A, (5.22)

the gapped dispersion relation from the jellium model of Coulomb-interacting scalars

with a static charge-neutralizing background[94, 95]. Our more general expression

(5.20) passes these checks, which gives confidence in our procedure.

To progress any further we need explicit functions for the polarization tensor

function Π(p0,p
2). A simple comparison indicates that for our purposes it is okay

to use the zero-temperature polarization tensor: the smallest densities where a con-

densate might appear have a0/` ≈ 12 have Fermi energy around 0.5MeV, while the

typical temperature is 106K≈86eV, dramatically smaller: any finite-temperature

corrections should be suppressed.

The function Π(p0,p
2) is nonanalytic, and its behavior as p0 and p2 become

small depends therefore depends intricately on how they relate to one another as
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they become small. In particular there are three interesting limits of Π(p0,p
2):

lim
p2→ 0

Re Π(p0 = 0,p2) = m2
s

lim
p2→ 0

Im Π(p0 = 0,p2) = 0

(5.23)

lim
p2→ 0

Re Π(p0,p
2)→ −4αk3

F

3πµe

p2

p2
0

lim
p2→ 0

Im Π(p0,p
2) = 0

(5.24)

lim
p2→ 0

Re Π(p0 = xvFp,p
2) = m2

s

(
1− x

2
ln

∣∣∣∣1 + x

1− x

∣∣∣∣)
lim

p2→ 0
Im Π(p0 = xvFp,p

2) =
π

2
m2
s x θ(1− x)

(5.25)

which can be found in a large number of different references[96, 97, 98, 82].1 In

these relations θ is the usual Heaviside function,

µe =
√
k2

F +m2, vF =
kF

µe
, k3

F = 3π2ne = 3π2Zn,

m2
s =

4αµekF

π
, and p =

√
p2

(5.26)

are the electron chemical potential, Fermi velocity, and Fermi momentum, screening

mass, and magnitude of the spatial momentum, respectively, and ne = Zn is the

electron density; the non-relativistic analogues of the first two quantities are found

simply by replacing µe with the electron mass m. Let us discuss how each of these

limits fits into the implicit dispersion relation (5.20).

The first limit is useful for deducing the momentum-dependent static po-

tential between the excitations encoded in h. The polarization tensor keeps the

1 In Reference [4] there is a typo in the equation analogous to (5.24): it claims that these

expressions are the limit as p0, and not p2, vanishes. This would prevent us from making a

self-consistent approximation when finding the gapped mode.
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potential from being Coulomb; instead one gets a screened potential with Friedel

oscillations[82, 99, 100, 68, 101, 102, 103].

If the dispersion relation supports gapped quasiparticles then there should be

a solution wherein p0 remains finite while the spatial momentum p vanishes. Thus,

we can use the polarization tensor as in (5.24); using that limit in the dispersion

relation and taking p→ 0 one finds

p2
0 = m2

A +
4αZn

µe
= 4πZαn

(
Z

M
+

1

µe

)
=

4πZαn

mred

(5.27)

where the reduced mass m−1
red = Z/M+µ−1

e . That we found a finite p0 shows that the

approximation made is a self-consistent one: assuming p0 remains finite as p2 → 0

in the polarization tensor one can derive a p0 that solves the implicit dispersion

relation that indeed has that property.

This frequency differs from the electron plasma frequency

ωp =
4παne
m

(5.28)

in but one way—the electron mass should be changed to the reduced mass. This

change makes it seem clear that we should think of this mode, called the plasmon, as

the result of the electrons vibrating against the neutralizing ion background instead

of a rigid neutralizing background. Plugging in realistic numbers for helium,

p0 ≈ 500eV

(
1 +

m2

k2
F

)−1/4
a0

`
≈ 5.8 · 106K

(
1 +

m2

k2
F

)−1/4
a0

`
, (5.29)

which is ten time hotter than the typical temperature at which we might expect

condensation to occur (as in, for example Figure 4.1a). These degrees of freedom

should thus be strongly Boltzmann-suppressed at these temperatures.
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Figure 5.1: The left-hand side of (5.30). The function takes its maximum value of

≈ 0.212 at x ≈ 0.623 and vanishes at x ≈ 0.834; for all larger x the function is

negative. Unshown is the asymptote of −1/3 as x→ ∞.

In addition to gapped modes we can also look for gapless modes: modes which

have p0 proportional to p. For this search we use the limit of the polarization tensor

in (5.25), where we take p0 = xvFp with constant x and then take p → 0. In

this limit the (p2/2M)2 term may be neglected and the dispersion relation may be

massaged into the a constraint on the dimensionless constant x. One finds

x2

(
1− x

2
ln

∣∣∣∣1 + x

1− x

∣∣∣∣+ i
π

2
x θ(1− x)

)
=

m2
A

v2
Fm

2
s

. (5.30)

The real part of the left-hand side is plotted as a function of x in Figure 5.1. The

right-hand side is, numerically,

mA

vFms

= 0.8Z2/3

(
1 +

m2

k2
F

)1/4

α1/2

√
m

M

√
a0

`
≈ 0.0012

(
1 +

m2

k2
F

)1/4√
a0

`
, (5.31)

squared, and even a very large astrophysically possible density (and a0/`) will yield

quite a small quantity. We can therefore solve (5.30) and (5.20) by an expansion in

x. At leading order one finds x = mA/msvF and

p0 =
mA

ms

p− iπ m2
A

4vFm2
s

p. (5.32)
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Note that the imaginary part, which conveys how quickly the mode decays, is smaller

than the real part by a factor of x, so that it is reasonable to say that the quasiparticle

is long-lived. We identify the speed of this mode cH as

cH =
mA

mS

, (5.33)

which for realistic numbers is roughly 0.001c, or 300km/s. The attenuation is only

apparent using the full form of Π as in (5.25); if we had used simply the Thomas-

Fermi approximation Π = m2
s the mode would be truly stable. This makes it clear

that the imaginary part encodes the inelastic coupling to electron-hole pairs that the

polarization tensor incorporates. Note that this coupling actually becomes stronger

at high density, but is kept small by the ratio of the electron mass to ion mass

m/M , which totally overwhelms any enhancement that a0/` provides. It thus seems

clear that the gapless mode is long-lived because this mass mismatch keeps most of

the quasiparticle–particle-hole interactions elastic. The dispersion relation (5.32) is

valid for a wide temperature range, including those for realistic HeWD densities, as

discussed in Reference [4].

Note that cH doesn’t vanish as α → 0: this mode survives as electromag-

netism is dialed down. This leads us to conclude that the mode does not correspond

to the electrons and nuclei vibrating in opposite directions which would require elec-

tromagnetism to restore their imbalance, but that the mode is a density fluctuation.

This gapless quasiparticle was first pointed out in Reference [4]. Previous

analyses missed this quasiparticle because they omitted the off-diagonal terms in

(5.6) proportional to Π, violating the Ward-Takahashi identities and thus violating
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gauge invariance. However, its omission might not be unexpected—its existence

depends intricately on a number of factors. First, if either the electrons or nuclei

were not dynamical, the mode would not exist. Second, if the nuclei were not

condensed (ie. mA = 0) the mode would also disappear. This is comforting, because

it is well-known that an electron plasma has no gapless mode, but only a gapped

plasmon.

Our tree-level analysis has yielded two quasiparticles: the massive plasmon

and the gapless mode. Gaplessness at tree-level, though, is not guaranteed to sur-

vive quantum corrections. Indeed, typically gaplessness only survives if the mode

is protected by a symmetry that eliminates the possibility of developing a gap. It

isn’t clear that this mode is so privileged, and because even a small mass is qualita-

tively different from no mass we should try to understand whether it indeed remains

gapless.

The effective Lagrangian that results from integrating all the fields out except

for h and A⊥ (of which Lquad in (5.18) is a part) will be expressed in powers of those

two fields. However, this is not the most convenient effective Lagrangian, in the sense

that the propagator of the field h in (5.19) has nontrivial momentum-dependent

residues, which is obvious from the p2/2M factor in its numerator. Instead we can

work with the canonically-normalized field

H =

(
1√
2

√
− ∇

2

2M

)−1

h (5.34)
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which has the propagator

GH

(
p0,p

2
)

=
1

p2
0 −

(
p2

2M

)2

+
p2m2

A

p2+Π(p0,p2)

(5.35)

which in the gapless quasiparticle regime p0 = xvFp and p2 → 0 becomes

GH

(
p0,p

2
)

=
1

p2
0 − c2

Hp
2 + · · ·

. (5.36)

Expressed in terms of H, any interactions that h had must now carry derivatives.

That it is always derivatively coupled implies that H has the shift symmetry

H → H + δH (5.37)

where δH is a constant. Since no mass term for H can be written that is invariant

under this symmetry we know that no quantum effects can generate a mass for this

mode.

This argument—that the field is derivatively coupled, enjoys a shift symmetry,

and thus is exactly massless—is formalized for this system in Reference [4] but is

logically the same as a common argument that guarantees that Goldstone bosons

remain massless to all orders. The question then arises: is H a Goldstone mode?

At first it seems like this is impossible: H arose from the breaking a gauge

symmetry, the U(1) of electromagnetism and so it should be eaten by the photon,

as required by the Higgs mechanism. However, in non-relativistic theories the Higgs

mechanism is not so straightforward. With broken Lorentz invariance from the

chemical potential, whether the gapless modes are traded for massive gauge bosons

depends on whether that gauge force is screened or not[104, 105]. In particular, the

Higgs mechanism evades the Goldstone theorem by a loophole via the IR divergences
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intimately connected to the photons’ 1/r2 force. In this case, even though we have a

gauge symmetry this loophole is destroyed by the screening. This subtle exception-

to-the-exception is well-known to those who know it[104, 105, 107, 108, 109]. The

static potential generated by (5.23) falls off more quickly[68, 99, 101, 102] than the

required[105] 1/r3 to yield a Goldstone mode with a linear dispersion relation.

To summarize, degenerate electrons and condensed ions support three distinct

quasiparticles: the massive transverse photons with dispersion relation

p2
0 = p2 +m2

A, (5.38)

the familiar plasmon with dispersion relation

p2
0 =

4πZαn

mred

+

(
p2

2M

)(
1− mred

µe

)
, (5.39)

and the new, unusual, long-lived gapless mode with dispersion relation

p0 = cH

(
1− iπ cH

vF

)
p. (5.40)

Even though this mode is a density oscillation with a linear dispersion relation,

it is not the typical zero-sound that Fermi liquids support, but neither is it the

hydrodynamic first-sound. We call this particle the half-sound to remind us of its

unusual properties.
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Chapter 6

Potential Signatures

Now that we have a good understanding of the low-energy degrees of freedom

that the nuclear condensate supports, we can try to understand whether it has any

potentially astrophysically observable consequences.

The primary observable way that these degrees of freedom nuclear condensa-

tion supports might effect helium white dwarfs is by changing how they cool[66, 67,

68]. In particular, we will examine how the half-sound can help cool the star in two

different ways.

In order to appreciate the changes nuclear condensation effects, it is helpful

to understand the standard lore of white dwarfs cooling. Young, hot (T & 109K)

white dwarfs primarily cool by the decay into neutrinos of the massive plasmon

mode that exists even without the condensation of the nuclei[110, 111, 112]. These

neutrinos promptly escape the star, allowing the whole bulk radiate at once. The

cooling through neutrino emission is observable through the nonradial excitations

those stars exhibit[113, 114]. However, as the star cools plasmon excitations become

Boltzmann-suppressed, and the neutrino emission is essentially extinguished, so that

below roughly 109K the primary way energy is radiated is electromagnetic surface

radiation.

In Section 6.1, we will quantify the annihilation of half-sound quasiparticles
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into neutrinos. Because it is a gapless mode, the half-sound does not suffer Boltz-

mann suppression at any temperature, so one might expect this process to prolong

the period in which bulk neutrino cooling dominates. We will show that without a

very large condensation temperature TC (which translates to a large C by (4.10)),

the neutrino emission from half-sound annihilation is not competitive with photoe-

mission from the surface. Combined with the conclusions of Chapter 7, this makes

it seem unlikely that neutrino emission will be observable.

In Section 6.2, we will show that nuclear condensation changes the specific

heat dramatically. This change would help get interior heat to the surface faster,

meaning that they would cool much faster. Whether the change in HeWD cool-

ing curves would be noticeable remains unsettled, with simple calculations[67] and

models[115] indicating a notable difference and more detailed calculations[86] in-

dicating that a difference exists but will be difficult to establish observationally.

Previous calculations of the specific heat[66, 67, 68] did not account for the (then-

unknown) half-sound but merely noted that the condensed nuclei had a very low

specific heat, so that even the more detailed calculations should not be considered

definitive.

Moreover, as discussed in Reference [67], if the heat capacity of the crystalline

phase is much higher than the condensed phase, then when the star cools and the

core leaves the condensed phase in favor of the crystal phase, there will effectively

be a cessation of heat transport from the core to the surface, meaning that the stars

should become very dim, as the crust sheds the heat it has and comes into a new

equilibrium with the crystal. It is tempting to think that the post-crystallization
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period of dimness a HeWD would exhibit is an explanation of the dearth of HeWDs

discussed in the introduction to this Part, though it is unknown and beyond the

scope of this work to determine if this explanation can survive more detailed scrutiny.

6.1 Half-sound Annihilation

Let us focus on the annihilation of the half-sound into neutrinos. The half-

sound is described by the effective Lagrangian

LH =
1

2
H
[
−∂2

0 + c2
H∇2

]
H + · · · (6.1)

where we have exhibited only the quadratic piece explicitly, but there are many

interaction terms unshown.

Because H is gapless, it is kinematically impossible for it to decay into a

neutrino-antineutrino pair. Therefore, in contrast to the massive plasmon, the main

mechanism to get neutrino radiation from the half-sound is by the annihilation

process HH → νν̄.

Näıvely we can estimate the neutrino emissivity Q by simple arguments. The

leading contribution is given by the square of the Feynman diagram shown in Fig-

ure 6.1. Thus, we know that

Q ∼ G2
F

1

M2
T 11. (6.2)

There are two factors of the Fermi constant GF , as in any weak process. There

are two factors of the ion mass M in the denominator because H is derivatively

coupled, and as argued in Chapter 5, each H in a vertex brings
√
−∇2/2M , so

that the amplitude given by Figure 6.1 is proportional to M−1. Finally, T 11 makes
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Figure 6.1: The leading process by which two H quasiparticles (red dotted lines)

can decay into neutrinos (blue solid) is mediated by a Z-boson (black wavy line).

Reproduced from Reference [5].

up the rest of the required dimensions, since the temperature is the only remaining

dimensionful scale in the problem.

The mass suppression is a severe penalty, and is discouraging for the relevance

of quasiparticles annihilating into neutrinos. However, the simple reasoning that

gives us the scaling cannot tell us how Q depends on the dimensionless quantity cH .

Because the temperature and typical energy should be equal, on the one hand it

seems reasonable to think that T ∼ cHp, so that momentum integrals should have

their scale set by T/cH , which would provide an enormous enhancement: Q ∼ c−11
H .

On the other hand, the phase space for the decay should vanish as cH → 0, which

should reduce Q. On the gripping hand we need not argue a certain dependence on

cH : we can simply calculate the annihilation probability per unit volume and the

emissivity Q.

By a series of matching calculations we will derive the coupling between the
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half-sound and neutrinos, compute the annihilation probability, and show that Q

is enhanced by c−7
H , but that while this enhancement is still tremendous, it is not

enough to make neutrino emission competitive with photo emission.

6.1.1 Matching to the Standard Model

In this section we will deduce the coupling of the half-sound to neutrinos. The

half-sound H is a collective mode of both the degenerate electrons and the condensed

nuclei; both electrons and nuclei couple to the Z-boson. By understanding how

the nuclei couple to the Z-boson and using the coupling of the Z to neutrinos

supplied[118] by the Standard Model (SM),

LZνν̄ =
gW

cos θW

Zµ
1

2
ν̄γµ

(
1− γ5

2

)
ν, (6.3)

we can calculate the diagram in Figure 6.1; an effective HHνν̄ vertex. Here gW is

the weak coupling constant, θW is the Weinberg angle, ν represents the neutrino

fields and γ the usual Dirac matrices.

The SM also provides the coupling of the Z-boson to the quarks. The relevant

terms in the SM Lagrangian are[118]

LZq̄q =
gW

cos θW

Zµ

[
1

2
ūγµ

(
1− γ5

2

)
u− 2

3
sin2 θWūγ

µu

−1

2
d̄γµ

(
1− γ5

2

)
d+

1

3
sin2 θWd̄γ

µd

]
(6.4)

where the u and d fields represent the up and down quarks, respectively.

From this, we can immediately deduce the form of the Lagrangian that de-

scribes how the Z interacts with the nucleon isospin doublet N . By symmetry we
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know that the coupling is described by

LZN̄N =
gW

cos θW

Zµ N̄γ
µ

[
1

2
T 3 − sin2 θWQ− (gA + ∆s)γ5T

3 + · · ·

]
N (6.5)

where T 3 = τ 3/2 is the third component of weak isospin, Q the electric charge in

units of the fundamental charge, gA is the nucleon axial charge (roughly 1.26), ∆s

the strange axial charge (−0.16±0.15), and higher dimensional terms are not shown.

Importantly, because the vector current is conserved the corresponding cou-

pling (the piece without γ5) does not get renormalized, unlike the axial coupling.

Equivalently, one can note that the SM enjoys a spurious U(1) gauge symmetry,

where the spurious gauge fields are proportional to ZµT
3. The effective action when

we pass to nucleon degrees of freedom must also have this spurious symmetry, and

this restriction is enough to fix the coefficient on that term.

We can take the nonrelativistic limit of this Lagrangian, so that we can make

it compatible with the non-relativistic terms that we used for the nuclei in effective

Lagrangian while deriving the spectrum. It is easy to verify that this reduction

yields

LZNN̄ −−−−→
nonrel.

gW

cos θW

[
1

2
Z0N

† (T 3 − sin2 θWQ
)
N − (gA + ∆s)ZiN

†σiT 3N + · · ·

]
.

(6.6)

So that we see that Z couples to the isospin and electric charge, and to the spin of

the nucleons in an isospin-dependent way.

We can perform the same trick, this time passing from nucleon degrees of

freedom to helium-nuclei degrees of freedom. Helium is isospin-0, so the first term

will vanish. Moreover, the wavefunction of 4He is dominated by the total-spin-0

112



piece (between 85% and 90% is S = 0; see Reference [119]), so the spin-dependent

piece should be negligible and we can ignore the final terms. Thus, we expect the

dominant coupling of helium nuclei to the Z-boson to be encapsulated by

LZ4He4He = −2
gW sin2 θW

cos θW

Z0ψ
†ψ, (6.7)

where the 2 comes from the fact that the electric charge of the helium nucleus is

2 and the ψ, as in Chapter 5, represent the nuclei. This interaction again has no

unknown coefficient because it corresponds to part of a conserved current and is not

renormalized. Note the suppression of this interaction by the Weinberg angle. If

sin θW vanished, then the Z would not couple to an isoscalar source like 4He at all.

Finally, combining (5.7) and (5.34) we can eliminate ψ in favor of the half-

sound degree of freedom. The result is

LZHH = −gW sin2 θW

2M cos θW

Z0

(√
−∇2H

)2

. (6.8)

In principle H mixes linearly with Z, but this weak-sector mixing is negligible

and can be ignored for our purposes. One might be concerned that this linear

mixing allows a single H to decay directly into neutrino pairs, but this is prohibited

kinematically: an on-shell H carries a space-like four-momentum, while a pair of

on-shell massless neutrinos have either time-like or light-like four-momentum.

We can finally ascribe an amplitude to the diagram in Figure 6.1. This is facil-

itated by noting that the temperatures of interest, 106K or even the astrophysically

very high 109K correspond to 10−7 or 10−5GeV respectively. The typical momentum

in the Z propagator will be on the scale of the typical half-sound momentum T/cH .
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Even with the enhancement by cH the four-momentum in the propagator will be

negligible compared to the mass mZ ≈ 91GeV.

Simply integrating the Z-boson out, we find the coupling between half-sound

excitations and neutrinos,

LHHν̄ν =

(
2gW

cos θW

)2
sin2 θW

8MM2
Z

ν̄γ0

(
1− γ5

2

)
ν
(√
−∇2H

)2

=
2GF sin2 θW√

2M
ν̄γ0

(
1− γ5

2

)
ν
(√
−∇2H

)2

(6.9)

where we simply replaced (
gW

cos θW

)2

=
8GFM

2
Z√

2
, (6.10)

which we can take to be the definition of the Fermi coupling constant GF . The cou-

pling LHHν̄ν in (6.9) will indeed yield a decay rate that is proportional to (GF/M)2,

as advertised.

6.1.2 The Neutrino Emissivity Q

The energy carried away per unit volume per unit time in neutrinos, or the

neutrino emissivity, Q can be compute by integrating the distribution of half-sound

quasiparticles agains the probability that they annihilate. That is,

Q =

∫
d̄3k d̄3k′ n (k0)n (k′0) (k0 + k′0)Γ(k, k′) (6.11)

where we include the factor (k0 + k′0) so that we keep track of the energy emitted,

and not just the number of neutrino pairs. Here n is the Bose-Einstein distribution

that the half-sound obeys,

n (k0) =
1

ek0β − 1
(6.12)
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where we use the inverse temperature β = kB/T = 1/T , and Γ(k, k′) is the proba-

bility per unit time per unit volume that two half-sound quasiparticles annihilate.

We will first compute Γ(k, k′) and use it to compute Q.

To compute Γ(k, k′) we adopt a finite-volume regularization so that we will

imagine all processes happening in a cubic volume of linear size L in a time T ,

and we normalize all fields to the volume V = L3. With this prescription the field

operators are given by

H =
1√
V

∑
k

1√
2ωk

[
ake
−ikx + ak

†eikx
]

(6.13)

ν =
1√
V

∑
p,s

1√
2ωp

[
cpu

s
pe
−ipx + dp

†vspe
ipx
]

(6.14)

where a is a bosonic ladder operator, c and d are fermionic ladder operators, the

momenta k and p take values 2πz/L, where z is a triplet of integers, ωk and ωp are

the energies of an excitation of their respective fields with their labelled momenta,

and usp and vsp are the usual Dirac spinors of momentum p and spin s.

At finite volume we also should not integrate over all momenta, nor should we

use the normal Dirac delta function. Instead, we should freely substitute

δ4(p− p′)⇔ V T

(2π)4
δpp′ , δ3(p− p′)⇔ V

(2π)3
δpp′ and

∫
d̄3p⇔ 1

V

∑
p

. (6.15)

Up to an irrelevant phase the amplitude for two half-sound particles annihilating
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into a pair of neutrinos is

Astkk′pp′ = 2× ūspγ0

(
1− γ5

2

)
vtp′

2GF sin2 θW√
2M

kk′

×
(

1√
V

)4
1√

2ωk2ωk′2ωp2ωp′

× (2π)4δ4(p+ p′ − k − k′) (6.16)

where the first factor of 2 accounts for the two possible contractions of H with the

vertex, and the rest of the first line accounts for the neutrinos in the final state, and

the value of the vertex itself; the second line tracks the normalization; and the third

enforces the required kinematics.

Because neutrinos of any spin or momentum will escape the star, we sum over

all possible final states and compute

Γ(k, k′) =
1

T

∑
pp′st

∣∣Astkk′pp′∣∣2
=
∑
pp′

2G2
F sin4 θW

M2V 4T

(kk′)2

24ωkωk′ωpωp′
×
(
V Tδp+p′,k+k′

)2

× tr
[
(/p+mν)γ

0(1− γ5)(/p
′ −mν)γ

0(1− γ5)
]
. (6.17)

The fermionic trace is independent of the neutrino massmν and gives 8 (p0p
′
0 + p · p′).

Translating back to continuous language,

Γ(k, k′) =
G2
F sin4 θW

M2V 3

∫
Vd̄3p Vd̄3p′(2π)4δ4(p+ p′ − k − k′)(kk′)2(p0p

′
0 + p · p′)

ωkωk′ωpωp′
.

(6.18)

We evaluate this integral exactly in Appendix D. The result is

Γ(k, k′) =
G2
F sin4 θW

6πc2
HM

2V
kk′ |k + k′|2 θ

[
cH(k + k′)− |k + k′|

]
. (6.19)
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Two powers of cH find their way into the denominator because the normalization of

each half-sound carries an ω
−1/2
k = (ck)−1/2.

We can now integrate to find Q,

Q =
∑
kk′

n(k0)n(k′0)(k0 + k′0)Γ(k, k′) =
1

V

∫
Vd̄3k Vd̄3k′

cH(k + k′)Γ(k, k′)

(eβcHk − 1)(eβcHk′ − 1)
.

(6.20)

Since Γ is proportional to V −1, we can see that the emissivity is volume (and thus,

we expect, regularization) independent. This integral may also be simplified dra-

matically without approximation, but may be executed entirely with a simple ap-

proximation that relies on the smallness of cH . This program is carried out in

Appendix E. The result is

Q =
2048

99π5

(
π10 − 93555ζ(11)

) G2
F sin4 θW

M2c7
Hβ

11
. (6.21)

where ζ is the Riemann zeta function. We reemphasize that Q ∝ c−7
H is a nontrivial

enhancement that cannot be deduced from simple dimensional analyses. For a

complete accounting of the powers of cH , see Appendix E.

The Q we have computed represents how much power a bulk of nuclear-

condensed helium radiates into a single neutrino flavor per unit volume. Since there

are three light flavors that couple to the Z equally, we see that the total neutrino

emissivity is

Q =
2048

33π5

(
π10 − 93555ζ(11)

) G2
F sin4 θW

M2c7
Hβ

11
≈ 9.5

G2
F sin4 θW

M2c7
Hβ

11
. (6.22)
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6.1.3 Half-Sound and White Dwarf Cooling

Understand whether the annihilation of half-sound quasiparticles into neutrino

radiation is competitive with the other major radiative mechanism—photoemission

from the surface—is not exactly straightforward. The issue is that the the neutrino

emissivity is a per-unit-volume quantity while the photon emissivity is a per-unit-

area quantity. Thus, we need to compare the corresponding luminosities, and not the

production rates directly. Moreover, the photoemission depends on the temperature

of the surface while the neutrino emission depends on the temperature of the core

as well as the density (through its dependence on cH = mA/ms). Therefore, to get

a feel for the importance of the half-sound annihilation we need a stellar model that

can connect these parameters and allow us to compute the respective luminosities.

We will use the simplest stellar model which gives qualitatively correct answers

and is quantitatively reasonable but is incorrect in many details. Such a model con-

sists of a large isothermal, degenerate, and highly heat-conducting core surrounded

by a thin envelope of non-degenerate matter. It is well-known that if radiative heat

transport dominates over convection one can use a free gas equation of state for

the degenerate electrons and Kramer’s opacity law for the envelope to obtain the

relation[120, 121]

Lγ
L�

=

(
T

7 · 107K

)2(
M

M�

)
(6.23)

where Lγ and L� are the luminosities of the star and the sun, respectively, T is

the core temperature, and M and M� represent the masses of the star and the sun,

respectively. Such a model is called a Mestel model[120]. The photon luminosity is
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not the näıvely expected blackbody T 4 because to make a fair comparison with the

neutrino luminosity we re-express everything in terms of the core temperature; it

does indeed reflect a fourth-power dependence on the surface temperature.

Figure 6.2: Various luminosities for a HeWD with M = 0.406M�. The blue Lγ lines

are those from (6.23) and the linear extrapolation of the model in Reference [122]

(the extrapolated region is dashed). The yellow Lν line is to guide the eye: it

represents the neutrino luminosity for a star with physically-unrealistic constant

density so that it simply represents the T 11 behavior. The red LC stars are our results

if the critical temperature is fixed as in (4.10) by C=10, 100, or 1000 respectively.

This figure is reproduced from Reference [5].

For specificity we will consider a HeWD with M = 0.406M�, which allows

us to use results for the photoemission calculated in Reference [122]. In Figure 6.2

we show the simplest Mestel luminosity (6.23) and the luminosity curve from that

reference in blue; the dashed lines are linearly extrapolated from the temperature
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regime where Reference [122] provides computations. One can see that the two blue

curves are at least qualitatively similar, so that the Mestel luminosity dependence

T 2 is qualitatively affirmed by more detailed models.

With those electromagnetic luminosities in hand, we now need only to compute

the neutrino luminosities for the same star. This requires coarse knowledge of the

stellar structure; hydrostatic equilibrium implies

1

r2

d

dr

(
r2

ρ

dP

dr

)
= −4πGNρ (6.24)

where GN is Newton’s gravitational constant, P the pressure, ρ the mass density,

and r the distance from the star’s center. Since the degenerate electrons totally

dominate the pressure we can simply use their equation of state,

P =
1

24π2
kF

(
2k2

F − 3m2
)√

k2
F +m2 +

1

8π2
m4 arcsinh

kF

m
, (6.25)

which is derived in Appendix F, where kF should be thought of as representing the

local density ρ.

Solving (6.24) with P given by (6.25) gives a density profile for the star. Know-

ing the density at all radii in turn lets us compute Q everywhere. We should only

consider densities where we are in the regime of condensation for a given temper-

ature. Thus, we pick up a minimum and maximum radius, which are set by the

densities at which we form a Coulomb crystal or a classical plasma, respectively.

That is, relating the density to the interparticle spacing we know that only the radii

between rmin and rmax given by

TC

(
a0

`(rmax)

)
= T = Tmelt

(
a0

`(rmin)

)
(6.26)
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will radiate neutrinos. That the star is isothermal helped simplify this constraint;

without that fact we would need to consider temperature profiles as well.

We can finally calculate the luminosity by integrating the emissivity against

the density profile over the radii where we expect a nuclear condensate. Using

Lν =

∫ rmax

rmin

4πr2dr Q(r, T ) (6.27)

where we emphasize that Q depends on the radius, because cH depends on the den-

sity. Because the condensation temperature TC is uncertain and might potentially

be large we show luminosity curves for C =10, 100, and 1000 as red curves labelled

as LC in Figure 6.2. Those curves represent a competition between the sensitive

dependence of Q on the temperature and the fact that if the temperature is higher,

the rmax is smaller, and there is less volume where condensate exists: the precipitous

drops represent the temperatures where the there is no condensate at all.

The two important temperatures Tmelt and TC determine, as functions of den-

sity, where Q has support. This introduces uncertainties into the calculation. The

uncertainties in Tmelt are discussed around (4.5); it is safe to say assume that it is

no more than 10% uncertain. Since (6.22) and (5.33) imply

Q ∝ ρ−7/2, (6.28)

the region where there is possibly a transition to a crystalline core is at higher densi-

ties and is also suppressed volumetrically, we expect it to be relatively unimportant

whether we use the true rmin or 0.

The uncertainties introduced by an undetermined C, however, are much more

dramatic. Again, the dependence of Q on ρ means that regions further from the stel-
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lar core will radiate energy faster. Add to this effect that larger radii are enhanced

volumetrically, and it is clear that a good estimate of the critical temperature TC

(or the coefficient C) is extremely important. This importance is made clear by the

red curves in Figure 6.2: increase C by a factor of 10 and the neutrino luminosity

Lν increases by a factor of about 104. In Chapter 7 we will present evidence that

suggests C is of order 1, so that the neutrino emission is not competitive with the

photoemission.

As an academic exercise, we should nonetheless point out that in addition to

the uncertainties in C, each curve carries additional theoretical uncertainties. First,

we used the zero-temperature, low-momentum dispersion relation for the half-sound

quasiparticles, which certainly develops corrections when T & mA. Note that mA is

2.1 · 106K for a0/`=30 and 4.6 · 106K when a0/`=50. Moreover, we defined rmax to

be when T became TC (through the critical temperature’s density dependence); we

therefore know we cannot trust the dispersion relation in the outer regions that we

claimed made important contributions to the neutrino luminosity.

In general one expects finite temperature corrections to lower mA, which would

reduce cH , increasing the neutrino luminosity. If the transition from the condensed

phase to the plasma phase is first order mA will change discontinuously and then this

enhancement should be negligible. In contrast, if the transition is second order there

will be a region where mA is small, cH would become arbitrarily small in the region

where its temperature is near TC , offering a huge enhancement to the luminosity.

In Chapter 7 we will show that it seems likely that although C small, the phase

transition sequence is peculiar: evidence suggests that there is a first-order phase
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transition with T < TBose where the nuclei go from mostly-condensed (and thus a

large mA) to barely-condensed (and a small mA), followed by a second-order phase

transition at TBose where the nuclei go from barely-condensed to totally uncondensed.

If this is truly the case, whether or not neutrino emission is important should be

recomputed with finite-temperature effects taken into account, especially the region

where mA is small, as it implies that there could be a tremendous enhancement of

the neutrino emissivity Q.

6.2 Specific Heat

As discussed in the beginning of this chapter, one expects a bulk of nuclear

condensate to have a much smaller specific heat than the classical plasma or Coulomb

crystal, and such a small specific heat has potentially observable consequences that

may include the sudden dimming of stars that is a tempting explanation of the

dearth of observed HeWDs in NGC 6397.

In this section we compute the specific heat of the nuclear condensate at low

temperatures. The specific heat in the plasma phase, the crystalline phase, and the

nuclear condensate phase all have a contribution from the electron-hole excitations

in the degenerate electrons. That contribution, per ion, is

cev = Z1/3
(π

3

)2/3 µe
n2/3

T ≈ 0.19

√
1 +

m2

k2
F

(
`

a0

)(
T

106K

)
, (6.29)

which is quite small. In fact, it is so small that it may be considered sub-dominant

compared to the specific heat of the ions in the plasma phase

cplasma
v =

3

2
(6.30)
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and the specific heat of the lattice phonons in the crystalline phase, which is[123]

clattice
v =

16π4

5

(
T

θD

)3

=
16π4

15
√

3

1

Z3

(
M

m

)3/2 (a0

`

)−9/2
(

T

α2m

)3

(6.31)

≈ 1.5 · 108
(a0

`

)−9/2
(

T

106K

)3

(6.32)

as long as T � θD, where the Debye temperature θD is the same as what we call mA.

In contrast, the specific heat of the ions will dominate over the specific heat

of the half-sound, while at low temperatures the massive plasmon and transverse

photons are suppressed and may be ignored, so that the electron contribution to the

specific heat, cev will be an important contribution.

Let us compute the specific heat of a gas of free half-sound quasiparticles now.

The calculation is straightforward:

cHv =
1

n

dε

dT
=

1

n

d

dT

∫
d̄3p

cHp

ecHp/T − 1
=

1

n

2π2

15c3
H

T 3 (6.33)

using the dispersion relation p0 = cHp. We can massage this relation and eliminate

cH by (5.33), finding

cHv =
Zα3/2

π3/2
clattice
v ≈ 3.4 · 104

(a0

`

)−9/2
(

T

106K

)3

, (6.34)

Which is obviously smaller than clattice
v due to the factors of α.

The specific heats are shown in Figure 6.3 for a temperature 5 · 105. It is clear

that the effect of the condensation are dramatic even for the perhaps-unrealistically-

high temperature 1 · 106K, shown in Figure 6.3c, for the majority of astrophysically

relevant densities the specific heat of the half-sound is less than that of the elec-

trons; at even higher temperatures the half-sound contribution can become dom-
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(a) T = 1 · 105K (b) T = 5 · 105K

(c) T = 1 · 106K

Figure 6.3: The specific heat of a gas of half-sound quasiparticles (blue), degener-

ate electrons (black), and what the specific heat would be were the system in the

crystalline (dotted red) or classical plasma (dashed green) phases at sampling of

temperatures. The gray band denotes astrophysically relevant densities.
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inant. More important, though, is that Figure 6.3 makes it apparent just how

drastically the specific heat is reduced if the nuclei are condensed.

Although calculated without knowledge of the half-sound mode, References [66],

[68] and [67] calculate a numerically similar specific heat for the nuclear condensate.

As discussed in the beginning of this chapter, that the phase with small specific heat

is interposed between two phases with high specific heat has potentially observable

consequences: alterations to the cooling curve compared to a situation where there

is no condensate[67, 115, 86]. It is unclear whether this difference could be observed

with current telescopes.

? ? ?

This concludes the discussion of two potentially observable astrophysical signatures

that helium white dwarfs might exhibit if the nuclear condensate indeed exists: an

altered specific heat, which would change the low-temperature cooling curve, and a

neutrino emissivity, the relevance of which strongly depends on the thermodynam-

ics of the condensed phase–the condensation temperature, and transition type, in

particular. In the next Chapter we will investigate this phase’s thermodynamics

and present some puzzling results that suggest an unusual sequence of phase tran-

sitions between the totally condensed phase and the uncondensed phase, but that

nonetheless suggests the critical temperature TC is small so that the alteration of

the cooling curve by neutrino radiation is totally and utterly irrelevant.
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Chapter 7

Thermodynamics

Whether the half-sound annihilation into neutrino radiation is phenomenolog-

ically relevant is quite sensitive to to the critical condensation temperature TC, as

demonstrated by Figure 6.2. Higher condensation temperatures make this potential

channel more relevant.

As discussed in Chapter 4, this critical temperature is quite uncertain. Repul-

sive interactions are expected to raise[84] the critical temperature above TBose, the

condensation temperature of a free Bose gas, given in (4.8). Expressing the critical

temperature TC as

TC = CTBose, (7.1)

the scaling arguments given in that chapter suggest C = [4πζ(3/2)/3]2/3 ≈ 4.92,

while more detailed estimates[68] suggest C = [2π/3]5/3[2ζ(3/2)]2/3 = 10.3 which is

supported by calculations in Reference [83]. However the then-unknown half-sound

was not included in those calculations. In this chapter we develop an estimate

of TC that avoids this shortcoming, in an attempt to settle the question of the

observational relevance of the half-sound annihilation process. We will broadly

follow the discussion in Reference [6]; all of the figures in this chapter are modified

versions, to one degree or another, of the figures in that work.

We will compute the one-loop effective potential for the system, and try to
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use it to extract the critical temperature. Computing the effective potential involves

summing over all energies and integrating over all momenta. Unfortunately, in a

complete analysis of the system of degenerate electrons and nonrelativistic nuclei

that step would require an extremely difficult calculation that not only incorporates

the limits of the polarization tensor given in (5.23), (5.24), and (5.25) but the

complete structure, including the branch cuts (which yield Friedel oscillations). To

alleviate this calculational difficulty we will assume that the whole effect of the

electrons is simply the screening of the Coulomb force with screening mass ms, ie.

we let Π = m2
s.

It should be emphasized that this replacement is quite extreme: the elec-

trons respond instantaneously, while with the realistic polarization tensor the elec-

trons have inertia. The effect of this replacement on the spectrum is to change

the gap of the plasmon to simply m2
A, instead of m2

A + (4αZn)/µe as given in

(5.27), which we will show in Section 7.1. Due to this approximation our investiga-

tion applies to any nonrelativistic charged spin-0 bosons interacting via a screened

Coulomb (ie. a Yukawa) interaction. Interestingly, this simply-stated model is not

well-characterized in the literature.

7.1 Effective Potential

If the v that minimizes the effective potential is not zero at a given tempera-

ture, then we know that at that temperature the nuclei will be condensed and the

electromagnetic U(1) will be broken. Let us compute the effective potential now.
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It is well-known[124, 125, 126, 127, 128, 129] that the unitary parameterization

ψ = (v + h)eiφ (7.2)

that we used to deduce the spectrum in Chapter 5 surprisingly yields the incorrect

phase transition temperature, presenting what is known as the unitary-gauge puzzle.

To avoid confronting this difficulty we instead use the parameterization

ψ = v + hR + ihI (7.3)

where the R and I subscripts denote the real and imaginary pieces, respectively.

Moreover, as briefly mentioned in Chapter 5, the effective potential is a gauge-

dependent quantity[124]. The gauge fixing used there to eliminate as many linear

mixings as possible involved the condensate v. Because the whole point of studying

the effective potential is to examine the temperature dependence of v, it seems

inappropriate to compute the effective potential in a gauge that itself depends on

v: we would be computing it in different gauges at different values of v, possibly

introducing fictitious dependences.

Instead, we will fix the Coulomb gauge

LCoulomb = − 1

2ξ
(∇ ·A)2 (7.4)

followed by ξ → 0. The slight calculational inconvenience is worth the conceptual

clarity that we get from picking a v-independent gauge.

We use the Euclidean-space action and integrate out the electrons in a matter

directly analogous to Chapter 5. In momentum space the resulting action is, to
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quadratic order

Squadratic =

∫
d̄4p

(
hR(−p) hI(−p) A0(−p) A‖(−p)

)
× (7.5)

− p2

2M
+ µ ip0 Zev 0

−ip0 − p2

2M
+ µ 0 iZevp

2M

Zev 0 p2+Π
2

−p0

2p
(p2 + Π)

0 − iZevp
2M

−p0

2p
(p2 + Π) 1

2

(
−Z2e2v2

M
+ p2

0 −
p2

ξ
+

p2
0Π

p2

)





hR(p)

hI(p)

A0(p)

A‖(p)


,

where we have omitted the uncoupled A⊥ sector. The inverse of the big matrix

in (7.5) is the propagator; the propagator will have zeroes where that matrix has

vanishing eigenvalues. The eigenvalues themselves are p0 ± iEp where

E2
p =

p4 − 2Mp2µ− 2Mm2
Aµξ

p4 + 4m2
Ap

2ξ − 2Mm2
Aµξ

(
p2

2M

(
p2

2M
− µ

)
+

p2m2
A

p2 + Π

)
(7.6)

ξ→0−→
(

p2

2M
− µ

)2

+

(
p2

2M
− µ

)
2Mm2

A

p2 + Π
, (7.7)

which reproduces the familiar (5.20) for the tree-level µ = 0 (which is indeed the

value we used in Chapter 5).

The one-loop part of the effective potential V (1) can then be computed in the

usual fashion.

V (1) =
1

2
T
∑
p0

∫
d̄3p ln

(
p2

0 + E2
p

)
=

∫
d̄3p

1

2
Ep + T

∫
d̄3p ln

(
1− e−βEp

)
(7.8)

where β = 1/T . We show the formal manipulation giving the final result in Ap-

pendix G. This calculation required us to cleanly do the sum over p0 = 2πTj, with

integer j; this sum is only known if we pick Π = m2
s.

Note that the effective potential cleanly breaks into a temperature-independent

piece, which is simply the zero-point energy of the modes, and a temperature-
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dependent piece. The temperature-independent piece is simply the zero-temperature

one-loop correction effective potential, and is thus down compared to the tree-level

piece,

V (0) = −µv2, (7.9)

in the loop expansion, while the finite-temperature piece can be of arbitrary size

depending on the temperature T . Since it must be small compared to the V (0) we

ignore the temperature-independent piece of V (1).

7.2 Phase Diagram

The effective potential that sets the size of the condensate v is

V = V (0) + V (1) = −µv2 + T

∫
d̄3p ln

(
1− e−βEp

)
; (7.10)

the minimization of V with respect to v gives us the expectation value of the con-

densate at a fixed value of the chemical potential µ. However, in astrophysical

situations the density is fixed by the density of electrons, so instead of a fixed chem-

ical potential we would prefer to work with a fixed ion density n which neutralizes

the charge of the electrons. We can perform a Legendre transformation to trade µ

by n, to get the free energy F

F (v, n, T ) = V (v, T ) + µn (7.11)

in which case we must simultaneously solve the equations

dF

dµ
= 0 or n = −∂V

∂µ
= v2 +

∫
d̄3p

1

eβEp − 1

1

Ep

[
p2

2M
− µ+

Mm2
A

p2 +m2
s

]
, (7.12a)

dF

dv
= 0 or 0 =

∂V

∂v
= −µv + v

∫
d̄3p

1

eβEp − 1

1

Ep

(
p2

2M
− µ

)
4πZ2α

p2 +m2
s

(7.12b)
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where the first terms are the tree-level terms and the integral terms come from the

one-loop contribution. These relations reduce, in the absence of dynamical electrons

and screening (ie. if Π = m2
s = 0), to those first derived in Reference [130]. Note

that it is easy to pick out the tree-level relations

n = v2 and µ = 0, (7.13)

and that deriving the first requires us to keep µ general and not substitute the

tree-level values until after we have differentiated.

The relations in (7.12) have some subtle properties. In particular, the µ-

determining second equation can be resolved for µ, and indicates that µ cannot

possibly be negative if v is finite, so it is natural to expect that µ is positive. This

expectation is somewhat problematic, because at positive µ the quantity E2
p given

by (7.7) can take negative values, generating a complex 1-loop effective potential

contribution (and complex contributions to the equations (7.12) themselves).

This sounds absolutely disastrous, but is actually not so bad. Complex effec-

tive potentials are relatively common and signal an instability[132] that can often be

fixed by a resummation of higher loop effects[124]. However, even without resum-

ming, the one-loop potential can contain information about the thermodynamics of

the system under consideration[124], as happens in this model. Let us now extract

what we can from the equations in (7.12).

If the condensate vanishes then (7.12a) becomes

n =

∫
d̄3p

1

eβ( p2

2M
−µ) − 1

=
1

2π2
(2MT )3/2 ·

√
π

4
Li 3

2

(
eµ/T

)
(7.14)

where Li 3
2

is a standard polylogarithm function. That function has a branch cut for
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real arguments greater than one, which corresponds to the limit µ→ 0 from below,

at which point it cannot be consistent to claim v = 0 any longer. Taking that limit

gives

n =

(
MT

2π

)3/2

ζ (3/2) (7.15)

which when solved for the critical temperature T unsurprisingly matches TBose as

in (4.8). The temperature TBose is as small as possible while still admitting the

required limit; negative chemical potentials allow for v = 0 solutions at all higher

temperatures. The v = 0 uncondensed line is shown along the axis in Figure 7.1.

Figure 7.1: The phase diagrams assuming a0/` = 35 and µ� p2

2M
for only phonons

(blue dotted line), only plasmons (orange dotted line), both phonons and plasmons

(brown dot-dashed line),and the numerical solution (thick red line, which is dashed

where that assumption fails).

Without a strategy for handling the complex effective potential, this is as much

as we can say. All of the difficulties stem from finite µ, which can make E2
p finite.

However, if we can make the approximation

µ� p2

2M
(7.16)
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then E2
p becomes

E2
p =

(
p2

2M

)2

+
p2m2

A

p2 +m2
s

(7.17)

which is nonnegative and the difficulty disappears. We therefore make this assump-

tion, determining a posteriori the values of T and v for which it is justified, and

attempt to solve the equations in (7.12) numerically and to investigate various limits

analytically. Those equations simplify to

n− v2 =

∫
d̄3p

1

eβEp − 1

1

Ep

[
p2

2M
+

Mm2
A

p2 +m2
s

]
, (7.18a)

µ =

∫
d̄3p

1

eβEp − 1

1

Ep

(
p2

2M

)
4πZ2α

p2 +m2
s

, (7.18b)

So that we can then check the validity of the µ� p2/2M approximation by comput-

ing µ via the second equation and comparing to the typical p2/2M that contributes

to the integral in the first equation.

However, since we know that there are two different kinds of quasiparticles,

the plasmon and the half-sound phonon, we expect that for some temperatures and

densities the integral in (7.18a) should have two typical momenta that contribute:

one for each mode. One example of such a doubly-humped integrand is shown in

Figure 7.2.

The numerical solution of (7.18) for a0/` = 35 is shown as the thick red line

in Figure 7.1, dashed where the negligible µ approximation fails, as we will show.

That curve suggests that the condensation transition is first order. For temperatures

in below TBose and above roughly 8TBose there is but one solution, which should

therefore be globally stable. For intermediate temperatures, however, three solutions

exist, the almost-totally-condensed and totally-uncondensed are locally stable while

134



Figure 7.2: One potential integrand as a function of momentum. The thick red

line is the full numerical integrand, while the dotted blue and dotted orange lines

represent the half-sound and plasmon approximations, respectively.

the middle solution is unstable.

Of the two locally stable solutions only one can be the global ground state.

Which solution plays that role is decided by the free energy F : whichever has the

lower F will be globally stable. We will investigate global stability in Section 7.3,

and find evidence for a more complicated phase diagram than the numerical solution

neglecting µ suggests.

Let now us try to characterize the phonon and plasmon regimes separately.

The phonon region is given by

Ep ≈ cHp (7.19)
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which can be derived from (7.17) by letting

p2 � m2
s and

(
p2

2M

)2

� c2
Hp

2. (7.20)

With the phonon dispersion relation, one can calculate the required integrals in

(7.18). The results are

n = v2 +
Mms

12mA

T 2, (7.21a)

µ =
Z2π3

15

αm3
s

M

T 4

m5
A

. (7.21b)

The resulting relation between v and T is shown as a dotted blue line in Figure 7.1.

Figure 7.3: The numerically-computed phase diagram, with shaded regions where

various approximations break down. Blue regions represent phonon approximations

while orange regions represent plasmon approximations.

We can now check the various approximations that yielded these—the phonon—

results. Note that the required integrals are cut off by a Boltzmann factor exp(−cHp/T ),
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so that the momentum scale is set by T/cH . Using this value of p reduces both ap-

proximations in (7.20) to

T � mA (7.22)

The region where this approximation fails is shown in dark blue in Figure 7.3. The

requirement that µ be negligible so that E2
p is positive,

µ� p2

2M
translates, with p = T/cH , to

Z2π3

15
αms

T 2

m3
A

� 1. (7.23)

This region is the lighter blue region that covers most of where the numerical solution

is dashed in Figure 7.3. We can see from that figure that this requirement is the

more severe restriction for the validity of the phonon results.

The plasmon region is characterized by the approximations

m2
s � p2 (7.24a)(

p2

2M

)2

� m2
A (7.24b)

and the dispersion relation has a gap

E2
p =

(
p2

2M

)2

+m2
A, (7.25)

as expected. Here we see the violence that simply using Π = m2
s inflicts as the cost

for calculational tractability: the gap of this plasmon differs from the gap given by

the full polarization function in (5.27). Whereas with the full polarization tensor

the electrons also oscillate so that it is the reduced mass mred that sets the gap, if

they are totally rigid it is the ion mass. So, in this model the gap is much larger

than it is in the more realistic case.
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Using these approximations, the statistical factor in the integrals in (7.18) cut

the integral off via a factor

e−Ep/T ≈ e−
mA
T e
− p4

8M2mAT (7.26)

so that the typical momentum is set by p2 ≈
√

8mATM2 or equivalently

p2

2M
=
√

2mAT . (7.27)

Again those integrals may be done analytically, yielding

n = v2 +
Γ(5/4)

21/4π2
M3/2m

5/4
A T 1/4e−mA/T , (7.28a)

µ =
21/4Γ(3/4)

π
Z2α
√
M
T 3/4

m
1/4
A

e−mA/T . (7.28b)

The resulting relation between v2 and T is plotted as the dotted orange line in

Figure 7.1.

We can now check the assumptions that led to these—the plasmon—results.

The three approximations reduce to

m2
s � p2 ⇒ m4

s

8M2m2
A

� T, (7.29a)(
p2

2M

)2

� m2
A ⇒ T � 1

2
mA, (7.29b)

µ� p2

2M
⇒ Z2Γ(3/4)

21/4π

√
MT 1/4

m
3/4
A

α e−mA/T � 1. (7.29c)

The first of these restrictions breaks down for small T and small v2, and shaded

orange in the lower-left hand corner of Figure 7.3. The latter two of these break

down in similar regions, despite their wildly different appearances, because of the

dominating exponential suppression by mA/T in the last approximation. These are
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also shown shaded in orange, and invalidate much of the numerical curve far from

v2 = n.

It is now clear why we draw the numerical curve in Figure 7.1 dashed below

v2 ≈ 0.6: in those regions neglecting µ compared to p2/2M is a poor approximation

and we expect the complex nature of the effective potential to invalidate the calcula-

tions we have done, so that in that regime some resummation is required to extract

sensible results. In other words, our µ � p2/2M approximation that rendered the

effective potential nonnegative is a good approximation outside of the shaded curves

in Figure 7.3.

Finally, we can incorporate both humps into the calculation of the phase dia-

gram. That is, we can take both the phonon-regime and plasmon-regime one-loop

contribution to (7.18). Simply reading off the one-loop pieces from (7.21a) and

(7.28a) we arrive at the relation

n = v2 +
Mms

12mA

T 2 +
Γ(5/4)

21/4π2
M3/2m

5/4
A T 1/4e−mA/T (7.30)

which is valid (in the negligible-µ sense) as long as it remains outside of both the

phonon and plasmon breakdown regions in Figure 7.3. The curve specified by this

relationship is shown as the brown dot-dashed line in Figure 7.1. We see that this

curve reproduces the numerical solution for temperatures as high as roughly 4TBose,

whereas the phonon and plasmon curves only match the numerical answer as far as

1 or 2TBose.

By taking the ratio of the two one-loop contributions in (7.30) we can come up

with an idea of whether the effective potential is dominated by phonons or plasmons.
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That ratio is

one-loop phonon part

one-loop plasmon part
=

21/4π2

12 Γ(5/4)

msT
7/4

√
Mm

9/4
A

emA/T ; (7.31)

where that ratio is 1 is represented by dashed black curve in both Figure 7.1 and

Figure 7.3. As indicated on those plots, the phonon piece dominates in the condensed

region until T ≈ 5TBose, when the plasmons become dominant. There is also a small

region where the phonons dominate near the v2 = 0 axis (ie. where m2
A = 0), where

the denominator blows up.

The phase diagrams shown are all for the density set by astrophysically-sensible

a0/`=35. The dependence on this parameter is relatively mild. Since according to

(5.26) the screening mass ms scales like k
1/2
F , while kF itself scales like a0/`, changing

this parameter is relatively innocuous, although (7.31) shows that increasing that

density parameter tends to shrink the phonon-dominated region.

It therefore seems unlikely, simply from looking at the relevant temperatures

in Figure 7.1 and Figure 7.3 that the critical temperature could possibly be much

larger than roughly 11TBose in the most optimistic circumstances (looking simply

at the phonon curve), while a presumably more reliable estimate is roughly 8TBose

(from the numerical curve). Taking these phase diagrams seriously suggests that

there is a first-order transition and that optimistically C is of order 10, so the

neutrino emission from half-sound annihilation is dramatically uncompetitive with

the photoemission from the surface of a star, as shown in Figure 6.2.

To nail down the critical temperature of the transition, we should try to deduce

the temperature at which the free energies F of the condensed phase and uncon-
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densed phase are equal. We pursue this question in the next section, and come upon

a logical conundrum, and pose a conjecture which would resolve this problem.

7.3 Global Stability and a Conjecture

Up to now we have determined local minima of the free energy F . To determine

the global minimum, we must compare those minima’s free energies. We compute

the free energy from (7.11)

F (v, n, T ) = V (v, T ) + µn (7.32)

for the locally stable solutions to (7.12) at a given temperature and fixed density.

Since we know the condensate v for these solutions, we can think of F there as simply

a function of n and T , while if we wanted to know F for an out-of-equilibrium v

we would need the full v-dependent function. At a given temperature, whichever

locally stable solution has a lower free energy is the global ground state, and the

transition temperature is defined by the temperature at which the two local minima

switch roles: the global minimum becomes merely metastable and the metastable

state becomes the global minimum.

The standard expectation is that at TBose, the condensed phase must be the

global minimum, because for lower temperatures the uncondensed phase does not

exist. This means that the transition temperature should be TBose or higher, and

that the free energy of the uncondensed solution at TBose should be greater than the

free energy of the condensed phase. Let us check this expectation now.

It is simple to compute the free energy for the uncondensed phase, because
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right at TBose it has µ = 0. When in the uncondensed region, v and mA vanish, so

that Ep is simply p2/2M . The integral in (7.10) may be done exactly:

Fv=0 (n, TBose) = TBose

∫
d̄3p ln

(
1− e−p2/2MTBose

)
(7.33)

= −ζ(5/2)TBose

(
MTBose

2π

)3/2

≈ −0.33
1

M`5
. (7.34)

Since TBose is in the phonon-dominated regime, it we can compare this free energy

to the free energy in the phonon approximation. Using (7.21) we compute

Fphonon (n, T ) = µ
(
n− v2

)
+ T

∫
d̄3p ln

(
1− e−cHp/T

)
(7.35)

=
π3Z2

180

α

c4
Hm

2
A

T 6 − π2

90c3
H

T 4. (7.36)

We can evaluate this at TBose and plug in the v2 = n to estimate the free energy.

The result is

Fphonon (n, TBose) = − 31/6π7/3

5 21/3ζ8/3(3/2)Z5/2

1

Ml5

(m
M

)3/2
(

1− 31/6π4/3

2ζ4/3(3/2)Z5/6

√
m

M

)
,

= −0.04
(m
M

)3/2 1

M`5

(
1− 0.14

√
m

M

)
(7.37)

which is less negative than the uncondensed free energy by factors of the mass

ratio (m/M)3/2 ≈ 10−6, which makes the phonon free energy essentially negligible

compared to the uncondensed free energy.

That the free energy of the phonons at TBose is much less negative than the

free energy of the uncondensed phase at that temperature represents a tremendous

logical problem, and stands in stark contrast to the typical first order phase transi-

tion. It implies that at all temperatures where the uncondensed state can possibly

exist (ie. temperatures greater than TBose) it is the global minimum. Numerical

calculations performed with the µ = 0 dispersion relation confirm this result.
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Usually, by the time the temperature is as low as TBose, Fphonon will be more

negative than Fv=0. That is, the v 6= 0 minimum of the function F (v, n, T ) is

below the v = 0 minimum. While the extrema of the unresummed free energy are

physically meaningful, unfortunately we cannot know the full function F (v, n, T )

without a resummation that resolves the issue of complex effective potential.

In spite of this limitation it is obvious that as we change T continuously, there

is no way for a global minimum to simply vanish, as the v = 0 seems to: it must

first become a local minimum.

Put another way: at T = 0 the condensed phase is the global minimum,

and an uncondensed phase is impossible. Now, consider raising the temperature to

just below TBose. Again, the condensed phase is the only permissible phase: the

uncondensed phase suggested in Figure 7.1 is not even locally stable. Now raise

the temperature to TBose, and notice that just as the uncondensed phase becomes

physically possible (that is, becomes a local minimum) it also becomes the global

minimum—and a deep global minimum, at that. Surely no smooth function has

this behavior.

Instead the true phase diagram must be more complicated. The simplest con-

ceptually problem-free phase diagram is shown in Figure 7.5. By introducing a

barely-condensed phase below TBose, we introduce the logical possibility that the

phase transition is not the typical first-order transition. If the barely-condensed

phase develops at some low temperature and becomes the global minimum before

TBose, so that there is a first-order transition, then the fact that Fv=0 is the global

minimum compared to Fphonon at TBose poses no problem: that minimum began its
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(a) Condensed phase only (b) A barely-condensed phase develops

(c) First-order transition occurs (d) Second-order transition occurs at TBose:

totally uncondensed phase possible

(e) Condensed phase very shallow (f) Condensation impossible

Figure 7.4: The green curves represent slices of F (v, n, T ) at temperatures shown

in Figure 7.5 that could remove the logical conundrum that Fv=0(n, TBose) is much

more negative than Fphonon(n, TBose). The red points in these figures are the extrema

of F (v, n, T ) that compose the red curve in that phase diagram.
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Figure 7.5: A hypothetical problem-free phase diagram. Each vertical green line

corresponds to a temperature (and subfigure) in the phase transition sequence shown

in Figure 7.4, while each red dot corresponds to a local minimum or maximum (or

inflection point, in case b) on that F -as-a-function-of-v curve which one can extract

from the effective potential without resumming.

existence as a disfavored local minimum and the transition to the totally uncon-

densed phase can be second-order. An example of a free energy F (v, n, T ) that

accomplishes such a sequence is shown for illustrative purposes in Figure 7.4; the

subfigures there correspond to the temperatures indicated in Figure 7.5.

One might ask: rather than believe in this more complicated phase diagram,

might it be that the free energies we computed are simply misleading, and that a

proper resummed effective potential might alleviate this problem? We answer this

in the negative: even though the full effective potential is complex and thus requires

resumming if we wish to know it as a function of v, the extrema (that is, the red curve
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in Figure 7.5 and the red dots in Figure 7.4) should be valid without resumming[124].

The extra twist which allows the barely-condensed phase at T < TBose can occur in

regions where the calculations we performed are out of theoretical control (in the

shaded regions in Figure 7.3). Of course, the curve might make any complicated

shape in that region—we have simply shown the simplest such shape that resolves

the tension created by the fact that the uncondensed free energy is much lower than

condensed free energy. Because those calculations are under control, we seem forced

to believe in this unusual sequence of phase transitions.

? ? ?

To summarize, in this chapter we have investigated a model with totally rigid elec-

trons. That model is simply the realistic nuclear condensate phase but with a

polarization tensor Π = m2
s instead of the true, complicated, function, limits of

which are shown in (5.23), (5.24), and (5.25). The spectrum of this model supports

both plasmons and gapless phonons (like the half-sound in the realistic spectrum),

and has a simply calculated effective potential.

Extracting physical information from that effective potential required us to

approximate µ � p2/2M to eliminate complexities; the calculation is out of the-

oretical control in the shaded regions of Figure 7.3. This is actually fortunate,

because if the whole numerical curve were trustable, we would be unable to resolve

the seemingly-paradoxical fact that Fv=0 is a much deeper free energy well than

Fphonon (or, indeed, the numerical calculation of F ) at TBose. Put another way, if

we could do a totally-trustable calculation, we would not find a paradox in the first

146



place!

The resolution of this paradox seems to be that the phase transition from a

totally condensed phase to a totally uncondensed phase is quite unusual compared

to the standard condensation transition: instead of a single first order transition at

some temperature greater than TBose, the matter in this model cools, uncondensed,

all the way down to TBose, at which point there is a second-order transition to a phase

with a small condensate. As that substance continues to cool, at some temperature

less than TBose there is a first-order transition to a totally-condensed state.

If we took some totally condensed bulk and began heating it up, the totally

condensed phase would be metastable until T ≈ 8TBose (the highest temperature of

the numerical curve in Figure 7.1), but at any point this superheated condensate

could flash boil. That T ≈ 8TBose agrees nicely with the results in Figure 3 of Refer-

ence [83], despite the absence of screening (and therefore, necessarily, a gapless re-

gion in the dispersion relation) in the model examined there. This agreement makes

sense, because the high temperature regime is well into the plasmon-dominated

region, where the screening is irrelevant.
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Summary and Outlook

In this Part we have investigated what happens to matter at densities much

higher than atomic densities but simultaneously much lower than nuclear densities.

For large enough densities, we have argued that there should be a temperature

regime where the nuclear Coulomb crystal cannot yet exist yet the nuclei are close

enough together to form a Bose-Einstein condensate.

We demonstrated that this phase has, in addition to the familiar and expected

massive plasmon and transverse photons, a gapless mode, which we call the half-

sound. We showed that the specific heat of a gas of half-sound quasiparticles is very

low (so that for a large range of relevant temperatures, the dominant contribution

is provided by the electrons). The ease with which such a dramatic drop in the

specific heat is observable is an as-yet unsettled question[67, 86, 115].

We calculated the cross-section of two half-sound phonons annihilating into

neutrinos, and showed that this process will only be competitive with surface pho-

toemission if the critical condensation temperature was much, much larger than the

critical temperature of a free Bose gas. While investigating the critical temperature

of a similar model (with unrealistic, perfectly rigid electrons), we found that the

critical temperature would only be roughly 8TBose; if the critical temperatures of

the model with responsive electrons and rigid electrons are similar, then this means

the heat of a helium white dwarf lost to neutrino radiation is incredibly small.

It would be interesting to properly handle dynamic, responsive electrons with

a realistic polarization tensor (and not simply take Π = m2
s). The difficulty of such

a calculation is entirely in one step: computing the effective potential, where the full
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analytic structure of Π (p0,p
2), including the cuts (Friedel oscillations), is included.

In particular, it would be interesting to see if such a calculation automatically pro-

duced a phase diagram with an extra twist, so that the conundrum discussed in

Section 7.3 is resolved in the conjectured manner.

If there is indeed a barely-condensed phase at low temperatures, it would

be interesting to understand its quasiparticle spectrum, and to perform a reduction

analogous to that performed in Section 6.2. Since the neutrino emissivity in that case

scaled like c−7
H and cH ∝ mA ∝ v2, one might anticipate a tremendous enhancement

of neutrino emission at low temperatures instead of high temperatures. Whether

the scaling of the emissivity with cH carries over into the barely-condensed phase is

unknown.

While we discussed the metastability of the condensed phase for temperatures

less than roughly 8TBose, we did not estimate the timescale over which such a super-

heated condensate might release its energy. To fully characterize this violent boiling

and rapid change of the condensate v, one needs to know the potential barrier be-

tween the two states. That is, one needs to know the full function F (v, n, T ) and

not just its values at the locally stable values of v that fix the curve in Figure 7.1.

All of these potentially interesting calculations require an understanding of

the resummation needed to cure the effective potential of its complexities. Devel-

oping this resummation for the more realistic polarization tensor is an ambitious

undertaking—resolving the issues for merely the model with totally rigid electrons

seems quite difficult, yet much more approachable than the full (and more interest-

ing), and nonetheless interesting theoretically.
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Finally there are a few other interesting calculations that suggest themselves.

The first is to repeat these calculations for deuterium. Since it is spin-1, these

calculations should be slightly more difficult technically, but precisely the same

conceptually. Because it is lighter than helium and has half the atomic number, we

expect the condensed phase to happen at even lower densities than those in HeWDs:

perhaps it will be clear that the condensed phase is important to the dynamics of

brown dwarfs or inertial confinement experiments.

It may also be interesting to consider the role that contact interactions between

the helium nuclei, which we neglected, play for the dynamics of the half-sound. In

particular, it would be interesting to try to estimate the rate at which the helium

nuclei fuse. Such pycnonuclear fusion may be surprisingly enhanced by the screening

of the usual impediment to fusion: the Coulomb barrier. It may be worthwhile to

investigate how much faster fusion might occur with a shielded, short-range force in

lieu of long-range electromagnetism.

Much about this condensed phase remains unknown and is ripe for investigation.
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Appendix A

Dimensionless Functions for CFL+K0 Vortons

We here collect the dimensionless functions f that arise in Chapter 3.

f1(x) =
2π

e
I1(x) (A.1)

f2 = − 2πv

e2(1 + v)

(
I0(vmγδ)I1(mγδ) + I0(mγδ)I1(vmγδ)

+ (1 + v)mγδI1(mγδ)I1(vmγδ) log(R/δ)
)

(A.2)

f3(x) =
π

e2

(
I0(x)I1(x) + xI2

1 (x) log(R/δ)
)

(A.3)

f4 = πf 2

(
1−

(
msd

µsd

)2
)(

1

2

(
R2 − δ2

)
µsd − w2v2 log(R/δ)

)
(A.4)

f5 = 4πδ2

msmu +md(ms +mu)

√
1−

(
mγ

fe

)2


+ 4π(R2 − δ2)

(
mdms +mu(md +ms)

(
msd

µsd

))
(A.5)

f6 = −π
2vmγδ

3 e2
I1(mγδ)I1(vmγδ) (A.6)

f7 =
π2 mγδ

2 e2
I1(mγδ)

2 (A.7)

f8 =
π2 vmγδ

48 e2
I1(vmγδ)

2 (A.8)

The difference between f7 and f8, aside from the factors of v that are associated

with k̃0, is the dimensionless factor that arises from the fact that the magnetic field

is a dipole and not a monopole like the electric field.
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Appendix B

Toroidal Coordinates

The toroidal coordinates {u, v, φ} form an axially-symmetric orthogonal coor-

dinate system that are particularly natural for describing toroidal phenomena. They

are related to the usual Cartesian coordinates by

x

a
=

sinh v cosφ

cosh v − cosu
u = −2 Im

[
arccoth

√
x2 + y2 + iz

a

]
y

a
=

sinh v sinφ

cosh v − cosu
v = 2 Re

[
arccoth

√
x2 + y2 + iz

a

]
(B.1)

z

a
=

sinu

cosh v − cosu
φ = arctan

y

x

where a is the radius of the reference circle, the circle that is described by v = ∞

(or equivalently, z = 0 and x2 + y2 = a2), and should be thought of as completely

fixed.

We pick the fundamental domain so that the coordinates conventionally obey

u ∈ (−π, π], v ∈ [0,∞), and φ ∈ (−π, π]. (B.2)

The coordinate φ is the same as in familiar cylindrical coordinates, and specifies a

semi-infinite plane that terminates on the z-axis.

A surface of constant u is the sphere that contains the reference circle and is

centered at z = a cotu; such a sphere has radius a |cscu|.

A surface of constant v is a torus with

R = a coth v and δ = a csch v (B.3)
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where δ is the radius of the tube and R is the distance of the center of the tube to

the origin.

The relation (B.3) can be inverted so that a specific torus of radius R and

thickness δ is a surface of constant v in a coordinate system with

a2 = R2 − δ2, (B.4)

in which case the torus is the surface described by

vtorus = arcsinh
√

(R/δ)2 − 1. (B.5)

The Laplacian in these coordinates is

a2∇2 = csch v (cosh v − cosu)3 (B.6)

×
[
∂u

(
sinh v

cosh v − cosu
∂u

)
+ ∂v

(
sinh v

cosh v − cosu
∂v

)
+ ∂φ

(
csch v

cosh v − cosu
∂φ

)]
.

Perhaps surprisingly, Laplace’s equation is separable in spite of such a complicated

differential operator. Unfortunately, and perhaps unsurprisingly, the Helmholtz

equation is not separable, so that determining the electromagnetic fields of a charged,

current-carrying torus of finite size is an extremely difficult task to accomplish an-

alytically.
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Appendix C

The Polarization Tensor In Non-relativistic Situations

General arguments require that the polarization tensor Πµν satisfy the Ward-

Takahashi identity,

pµΠµν(p) = 0, (C.1)

in order to maintain gauge invariance.

A privileged frame (the rest frame of some bulk, say, relative to which a

chemical potential might be defined) can be specified by a four-vector nµ which

points in that frame’s time direction. If we work in that frame,

nµ = (1, 0, 0, 0). (C.2)

We can use nµ to build a projection operator Nµν ,

Nµν = gµν − nµnν (C.3)

that satisfies Nµνnν = 0 and Nν
αN

αµ = Nνµ.

We can then build two Lorentz scalars: a temporal part p0 = pµn
µ, and a

3-vector part −p2 = pµN
µνpν . The usual Lorentz scalar p2 = pµp

µ is simply the

sum p2
0 − p2.

Let us build the most general symmetric Lorentz-invariant tensor out of the

available ingredients: the tensor gµν , the 4-vectors pµ and nµ and the scalars p0 and
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p2. The most general form is

Πµν = Apµpν +B nµnν + C (pµnν + nµpν) +D gµν (C.4)

where A, B, C, and D are any function of p0 and p2.

For the polarization tensor we additionally have the Ward-Takahashi identity

pµΠµν = 0. This implies

0 = Ap2 pν +B p0 n
ν + C

(
p2 nν + p0 p

ν
)

+Dpν . (C.5)

Because this equality must hold for any independent nν and pν we can separate this

equality into two:

0 = Ap2 + C p0 +D (C.6)

0 = B p0 + C p2; (C.7)

these two constraints can be used to eliminate two of the four general functions A,

B, C, and D.

One particularly convenient way to use these constraints is to eliminate B and

D so that

Πµν = A
(
pµpν − p2gµν

)
+ C

(
pµnν + pνnµ − p2

p0

nµnν − p0g
µν

)
(C.8)

and to substitute

A =
p2

0

p4
Π + Π⊥ and C =

p0p
2

p4
Π− p0Π⊥ (C.9)

So that we can write

Πµν =

 Π pip0

p2 Π

pip0

p2 Π
pipjp2

0

p4 Π + (pipj − δijp2) Π⊥

 . (C.10)
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If we adopt the notational convention pi = pi (so that we think of any explicit

3-vector as living in a Euclidean space with a positive metric) then

Πµν =

 Π −pip0

p2 Π

−pip0

p2
Π

pipjp
2
0

p4 Π + (pipj − δijp2) Π⊥

 , (C.11)

as in (5.6).
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Appendix D

The Annihilation Probability Γ(k, k′)

While calculating the neutrino emissivity Q we needed to evaluate the annihi-

lation amplitude per unit volume per unit time Γ(k, k′), which in (6.18) is reduced

to

Γ(k, k′) =
G2
F sin4 θW

M2V 3

∫
Vd̄3p Vd̄3p′(2π)4δ4(p+ p′ − k − k′)(kk′)2(p0p

′
0 + p · p′)

ωkωk′ωpωp′
.

(D.1)

This appendix reproduces some notes verbatim that were created in preparation for

crafting Reference [5] which contain the evaluation of this integral.

It is straightforward to perform the integral over p′ using three of the four

δ-functions. Substituting the energy of the quasiparticles as ωk = cH |k| and the

energy of the neutrinos as the usual relativistic ωp = |p| gives

Γ(k, k′ =
G2
F sin4 θWkk

′

c2
HM

2V

∫
d3p

(2π)3
× (2π)δ (p+ |k + k′ − p| − cHk − cHk′)

×
[
1 +

p · (k + k′ − p)

p |k + k′ − p|

]
(D.2)

where for clarity we suppress any obvious absolute value delimiters. Interestingly,

this integral may be evaluated exactly.

Note that for the δ-function to have support, it must be the case that p ≤

cH(k + k′). The strategy for evaluating this integral will be to consider the relation
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of the p to the vector k + k′. Let us define an angle α by

cosα =
p · (k + k′)

p |k + k′|
. (D.3)

The δ-function implies

|k + k′ − p| = cH(k + k′)− p (D.4)

Squaring both sides allows us to rewrite the left-hand side as the square of the

magnitude of a vector, which we can break into constituent pieces. That is,

(k + k′)
2 − 2p · (k + k′) + p2 = c2

H(k + k′)2 + p2 − 2pcH(k + k′); (D.5)

solving for the cross-term on the LHS leads to

cosα0 =
|k + k′|2 + 2pcH(k + k′)− c2

H(k + k′)2

2p |k + k′|
. (D.6)

Here we denote the value of α that satisfies the δ-function α0. Since the range of

cosine is restricted, we can find additional constraints. Implementing −1 ≤ cosα0

means

|p| ≥ cH(k + k′)− |k + k′|
2

. (D.7)

Implementing cosα0 ≤ 1 requires

|p| (|k + k′| − cH(k + k′)) ≥ |k + k′|2 − c2
H(k + k′)2

2
. (D.8)

If the left-hand side is positive, then we conflict with the constraint that p ≤ cH(k+

k′), so we only consider the negative case. These two inequalities are summarized

by

0 ≤ cH(k + k′)− |k + k′|
2

≤ p ≤ cH(k + k′) + |k + k′|
2

. (D.9)
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The δ-function in the integral may be replaced, according to the usual rules

of δ-function manipulation, by

δ(cosα− cosα0)

∣∣∣∣p− cH(k + k′)

p |k + k′|

∣∣∣∣ . (D.10)

Using the identities

p · (k + k′ − p) = p |k + k′| cosα− p2 (D.11)

|k + k′ − p| =
√
|k + k′|2 + p2 − 2p |k + k′| cosα, (D.12)

and simplifying d3p = 2πp2dp d cosα, we can execute the angular integral with the

remaining δ-function. We are left with

Γ(k, k′) =
G2
F sin4 θWkk

′

c2
HM

2V
θ
[
cH(k + k′)− |k + k′|

] ∫ p2 dp

(2π)2

× 2πθ

[
p− cH(k + k′)− |k + k′|

2

]
θ

[
cH(k + k′) + |k + k′|

2
− p
]

×
|k + k′|2 −

(
cH(k + k′)− 2p

)2

2 |k + k′| p2
(D.13)

where the Heaviside θs implement the constraints in (D.9). This integral can be

done easily. The final answer is

Γ(k, k′) =
G2
F sin4 θW

6πc2
HM

2V
kk′ |k + k′|2 θ

[
cH(k + k′)− |k + k′|

]
. (D.14)
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Appendix E

Emissivity Integral

Herein we execute the integral in (E.1), which amounts to calculating the

neutrino emissivity Q. We wish to evaluate

Q =
1

V

∫
Vd̄3k Vd̄3k′

cH(k + k′)Γ(k, k′)

(eβcHk − 1)(eβcHk′ − 1)
, (E.1)

with Γ(k, k′) given by (D.14). This appendix reproduces some notes verbatim that

were created in preparation for crafting Reference [5] which contain the evaluation

of this integral, and the first clause of this sentence was taken verbatim from Ap-

pendix D.

Let cos η = k · k′/kk′. Then we have

Q =
G2
F sin4 θW

6πcHM2

∫
d3k

(2π)3

2πk′2dk′ d cos η

(2π)3

× (k + k′)kk′ (k2 + k′2 + 2kk′ cos η)

(eβcHk − 1)(eβcHk′ − 1)
(E.2)

× θ
[
cH(k + k′)−

√
k2 + k′2 + 2kk′ cos η

]
.

Note here that we have gained a power of c from the energy in the numerator.

Executing the angular integral leaves

Q =
G2
F sin4 θW

192π5cHM2

∫
dk dk′

(k + k′)k2k′2

(eβcHk − 1)(eβcHk′ − 1)

×
(
c4
H(k + k′)4 − (k − k′)4

)
× θ

[
c4
H(k + k′)4 − (k − k′)4

]
. (E.3)
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Changing variables to k± = (k ± k′)/2 transforms this expression into

Q =
G2
F sin4 θW

192π5cHM2
26

∫ ∞
0

dk+

∫ cHk+

−cHk+

dk−
(
c4
Hk

4
+ − k4

−
)

×
k+(k2

+ − k2
−)2

(eβcH(k++k−) − 1)(eβcH(k+−k−) − 1)
(E.4)

where we have put the constraint from the θ-function into the limits of integration

of k−.

We now must approximate. Since cH � 1, the bounds on k− imply k− � k+.

However, we cannot neglect terms where k− is compared to cHk+, as these quantities

are commensurate. Making this approximation we are left with

Q ≈ G2
F sin4 θW

3π5cHM2

∫ ∞
0

dk+

∫ cHk+

−cHk+

dk−
k5

+(c4
Hk

4
+ − k4

−)

(eβcHk+ − 1)2 . (E.5)

Performing the remaining integrals is simple. The result is

Q =
G2
F sin4 θW

3π5cHM2

∫ ∞
0

dk+

c5
Hk

10
+

(eβcHk+ − 1)2 =
2048

99π5

(
π10 − 93555ζ(11)

) G2
F sin4 θW

M2c7
Hβ

11

(E.6)

where ζ is the usual Riemann Zeta function. We emphasize dependence of the power

density Q on c, Q ∝ c−7. This nontrivial dependence arose from −11 powers of c

appearing with the temperature, −2 from the dispersion relation ωk = ck in the

normalization of the modes, +1 from the emitted energy, which is proportional to

c, and +5 from the phase space allotted to this decay. Evaluating the dimensionless

constant shows it to be of order 1:

2048

99π5

(
π10 − 93555ζ(11)

)
= 3.16459 . . . (E.7)
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Appendix F

Pressure of a Free Fermi Gas

The Fermi energy of a free, relativistic Fermi gas is

εF = 2

∫ kF

0

d̄3p
√
p2 +m2 =

1

8π2

(
kF

√
k2

F +m2(2k2
F +m2) +m4 arcsinh

kF

m

)
(F.1)

while the number density is simply

n = 2

∫ kF

0

d̄3p =
1

3π2
k3

F. (F.2)

The pressure is the derivative of the total energy with respect to volume, keeping

the total number of particles fixed.

P = −
(
dE

dV

)
N

= −
(
dV εF
dV

)
N

= −εF − V
(
dεF
dV

)
N

. (F.3)

Eliminating kF in εF in favor of V and N through (F.2) and n = N/V , executing

the derivative, and then re-substituting for n and then kF, one finds

P =
1

24π2
kF

(
2k2

F − 3m2
)√

k2
F +m2 +

1

8π2
m4 arcsinh

kF

m
. (F.4)
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Appendix G

Deriving the Useful Form of the 1-Loop Effective Potential

Here we show how to calculate the 1-loop effective potential given in (7.8). We

begin with the integral we wish to compute

V (1) =
1

2
T
∑
p0

∫
d̄3p ln

(
p2

0 + E2
p

)
(G.1)

where the sum is over p0 = 2πTj with integer j. We introduce a spurious offset δ

V (1) =
1

2
T
∑
p0

∫
d̄3p ln

(
p2

0 + E2
p + δ

) ∣∣∣
δ=0

(G.2)

which we may rewrite as an integral

V (1) =

∫ 0

dδ
d

dδ

1

2
T
∑
p0

∫
d̄3p ln

(
p2

0 + E2
p + δ

)
. (G.3)

Moving the derivative through the momentum integral yields

V (1) =

∫ 0

dδ
1

2
T
∑
p0

∫
d̄3p

1

p2
0 + E2

p + δ
. (G.4)

Now we perform the p0 sum, giving

V (1) =

∫ 0

dδ
1

2

∫
d̄3p

1

2
√
E2
p + δ

coth

(
1

2
β
√
E2
p + δ

)
. (G.5)

We may execute the δ integral:

V (1) = T

∫
d̄3p ln

(
2 sinh

(
1

2
βEp

))
. (G.6)

This may be separated cleanly into a temperature-independent piece and a temper-

ature dependent piece:

V (1) =

∫
d̄3p

1

2
Ep + T

∫
d̄3p ln

(
1− e−βEp

)
. (G.7)

164



Bibliography

[1] Paulo F. Bedaque, Evan Berkowitz, and Aleksey Cherman. Vortons in dense
quark matter. Phys. Rev. D, 84(2):023006, Jul 2011, nucl-th/1102.4795.

[2] Paulo F. Bedaque, Evan Berkowitz, Geoffrey Ji, and Nathan Ng. Electron
shielding of vortons in high-density quark matter. Phys. Rev. D, 85:043008,
Feb 2012, nucl-th/1112.1386.

[3] Paulo F. Bedaque, Evan Berkowitz, and Srimoyee Sen. Stable vortex loops
in two-species BECs. Journal of Physics B: Atomic, Molecular and Optical
Physics, 45(22):225301, 2012, cond-mat.quant-gas/1111.4507.

[4] Paulo F. Bedaque, Evan Berkowitz, and Aleksey Cherman. Nuclear conden-
sate and helium white dwarfs. The Astrophysical Journal, 749(1):5, 2012,
nucl-th/1111.1343.

[5] Paulo F. Bedaque, Evan Berkowitz, and Aleksey Cherman. Neutrino Emission
from Helium White Dwarfs with Condensed Cores. Submitted to Ap.J, 2012,
nucl-th/1203.0969.

[6] Paulo F. Bedaque, Evan Berkowitz, and Srimoyee Sen. Thermodynamics of
Nuclear Condensates and Phase Transitions in White Dwarfs. Submitted to
JHEP, 2012, astro-ph/1206.1059.

[7] Edward Witten. Superconducting Strings. Nucl.Phys., B249:557–592, 1985.

[8] R.L. Davis and E.P.S. Shellard. COSMIC VORTONS. Nucl.Phys., B323:209–
224, 1989.
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[50] P. F. Bedaque and T. Schäfer. High-density quark matter under stress. Nuclear
Physics A, 697(3-4):802 – 822, 2002, hep-ph/0105150v3.

[51] Paulo F. Bedaque. Charged kaon condensation in high density quark matter.
Phys. Lett., B524:137–143, 2002, nucl-th/0110049.

[52] Max A. Metlitski Kirk B. W. Buckley and Ariel R. Zhitnitsky. Drum vortons
in high density QCD. 2002, hep-ph/0212074v2.

[53] D.T. Son. Light Goldstone boson and domain walls in the K0 condensed phase
of high density quark matter. 2001, hep-ph/0108260.

[54] M. Tinkham. Introduction to superconductivity. Dover books on physics and
chemistry. Dover Publications, ISBN:9780486435039.

168

http://dx.doi.org/10.1146/annurev.nucl.51.101701.132449
http://arxiv.org/abs/hep-ph/0102047
http://dx.doi.org/10.1103/RevModPhys.80.1455
http://dx.doi.org/10.1103/RevModPhys.80.1455
http://arxiv.org/abs/0709.4635
http://arxiv.org/abs/hep-ph/0011333
http://dx.doi.org/10.1103/PhysRevD.65.054042
http://arxiv.org/abs/hep-ph/0107265
http://dx.doi.org/10.1016/S0550-3213(98)00668-3
http://dx.doi.org/10.1016/S0550-3213(98)00668-3
http://arxiv.org/abs/hep-ph/9804403
http://dx.doi.org/10.1103/PhysRevD.61.074012
http://arxiv.org/abs/hep-ph/9910491
http://dx.doi.org/10.1103/PhysRevD.64.094013
http://arxiv.org/abs/hep-ph/0105165
http://dx.doi.org/10.1103/PhysRevD.62.059902
http://arxiv.org/abs/hep-ph/0004095
http://dx.doi.org/10.1016/S0370-2693(00)00606-7
http://arxiv.org/abs/hep-ph/0002209
http://dx.doi.org/10.1016/S0370-2693(99)01032-1
http://arxiv.org/abs/hep-ph/9908227
http://dx.doi.org/10.1016/S0375-9474(01)01272-6
http://arxiv.org/abs/hep-ph/0105150v3
http://dx.doi.org/10.1016/S0370-2693(01)01387-9
http://arxiv.org/abs/nucl-th/0110049
http://arxiv.org/abs/hep-ph/0212074v2
http://arxiv.org/abs/hep-ph/0108260


[55] L. H. Thomas. The calculation of atomic fields. Mathematical Proceedings of
the Cambridge Philosophical Society, 23:542–548, 1927.

[56] E Fermi. Un methodo satistico par la determinazione di alcune proprietà
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