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ABSTRACT

Concavity of the output process with respect to buffer size is established in a series of -/M/1/B queues with
loss at the first node. Similarly, one shows concavity of the throughput with respect to the number of servers
and the buffer sizes in a node belonging to a series of -/M/s/B queues.
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1. Introduction

This paper is concerned with a model of a production line that has received much attention in the liter-
ature. Consider K -/M/1/N queues in series and denote the collection by {-/M/1/B;}X,. For convenience,
the numbering of the nodes is in the reverse order of service. This notation means that queue 7 has one
server with i.i.d. exponential service times and waiting room of size B;. Let the service rate in node ¢ be
denoted by p; and consider a deterministic sequence of arrivals (a,). An arriving job that finds buffer K
full is lost. The server in node i idles whenever node i — 1 is full. This discipline is called “communication
blocking”. Assume that the system is initially empty and denote by (D°(t));>0 the departure process from
the first node.

The aim of this paper is to show that (D°(t)) is stochastically concave with respect to each buffer size.
Denote by (D*(t)) (respectively (D?(t))) the departure process from the first node when one (respectively 2)
space(s) have been added to the buffer of the kth node ¥ = 1,..., K. The three corresponding networks will
be denoted by N, A1 and A? respectively. Note that the dependence on k is suppressed in this notation.
We show that

2DY(1)2,:D°(t) + D*(t). (1)
(Recall that X>,,Y if P{X > 2} > P{Y >z} forall z €R.)

To our knowledge, only the simple case where K = 1, with a Poisson arrival process, and when the system
is stationary, has been treated analytically. Our proofs rely on straightforward sample path arguments.
Further extensions of the results are discussed in Remark 2.1. -

Similar arguments have been used to establish various monotonicity results (cf. [3]). In particular,
monotonicity properties for the model examined here are studied in [2]. Second order properties of networks
have important algorithmic implications for problems of optimal allocation (see, e.g., [1]).

2. The main result

The proof of the result consists in constructing the three processes corresponding to the three different
systems referred to above, such that (1) holds almost surely.

Recall that the virtual service process of an exponential server with rate p is a Poisson process with
rate . When the queue is non-empty, a customer departs at each point of the virtual service process.

For network A° and for i = 1,2 the following quantities are defined.

S04 The nth service time in the virtual service process at node i.
N?(t): The number of jobs in the ithe queue at time t.

We will consider the network at the discrete time instants
(Ta)n = {(Sg’i)n}l’=1,2 U (an)n, Tn =0.
Also, we will find useful to set
X3() =D°(1),

k
X(t) =D°(t) + Y _NP(t), k=1,..,K.
i=1

Similar processes are defined for networks A’ and A2,
Queueing processes in networks N'' and A'? are constructed by setting

S =gl =8li=6I"  n=12. k=12 (2)



2 1 0 — ’
a; =a, = a, = G, n=12,.... 3)

It is assumed that networks A'! and N2 start empty at time 0.
Use will be made of the following lemma. It can be proved by straightforward induction.

Lemma 2.1: In the construction of (2) and (3) one has, for ¢t > 0,

X > x> x2(t), as, i=0,...,K.

The validity of (1) is a corollary of the following.
Theorem 2.1: In the construction of (2) and (3) one has, for t > 0,

X3ty - X}(@) < X}(@) - X2(t), as, i=0,1,...,K.

Proof: Set A%(t) = X2(t) — X}(t) and A}(t) = X} (t) — X?(t), and assume that the additional buffers
are at the kth queue, k = 1,..., K. It will shown that

AXT) < ANTY), k=1,2,...as. (4)

This is trivially true for / = 0 and assume it holds for I = 1,...,n. For some m > 0 we distinguish between
the following cases.

(1) Tn41 = Sk, Inequalities (4) can be violated at T, 4 only for i = 0. One must then have A2(T},) =
A)T,) and NZ(T,) > 0, N}(T,) = 0. But this implies that A%(T},) > Al(T,), a contradiction.

(i1) Tngr = SL,, 1 # k+ 1. Inequalities (4) can be violated at Ty,4; only for i = I — 1. Then,
necessarily, A?_ (T,) = A}, (Th). If N2,(T) > 0 and N! ,(T,) = 0, then one has AXT,) > ANT,), a
contradiction. If N2 ,(T) < Bi_; and N | (T,) = Bi_j, then one concludes that A? ,(T) > A}_,(Th),
again a contradiction.

(#it) Tny1 = SEF! (= am if k = K). Inequalities (4) can be violated at T}, ;3 only for i = k and if
A}(Tn) = AL(Tn). The possibility NZ,,(T,) > 0 and N},,(Tn) = 0 leads to a contradiction as in the case
above, and if N}(T,) < B + 1 and N}(T,) = B + 1, then one obtains the contradiction A?_,(T,,) >
Al_1(Ty), since N)(Ty) < By.

(%) Tat1 = am. Inequalities (4) can be violated at Tp43 only for i = K and if AL(T) = AL(Ty),
NZ(T,) < Bk +1, and N (Tn) = Bk + 1. This implies a contradiction as in the case above. ‘

We have proved that inequalities (4) hold for I = n + 1.

a

Remark 2.1. Similarly, one shows concavity of the output process with respect to the number of
servers and the buffer sizes in a node belonging to a series of -/M/s/B queues. Other types of blocking are
also possible (e.g., manufacturing blocking).

Remark 2.2. Our technique fails when Bernoulli feedback is added to the series of {-/M/1/B;}K
queues.
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