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Abstract

The problem of finding minimum weight spanning subgraphs with a given connectivity
requirement is considered. The problem is NP-hard when the connectivity requirement
is greater than one. Polynomial time approximation algorithms for various weighted and
unweighted connectivity problems are given.

The following results are presented:

1. For the unweighted k-edge-connectivity problem an approximation algorithm that
achieves a performance ratio of 1.85 i1s described. This 1s the first polynomial-time
algorithm that achieves a constant less than 2, for all £.

2. For the weighted k-vertex-connectivity problem, a constant factor approximation al-
gorithm is given assuming that the edge-weights satisfy the triangle inequality. This
is the first constant factor approximation algorithm for this problem.

3. For the case of biconnectivity, with no assumptions about the weights of the edges,
an algorithm that achieves a factor asymptotically approaching 2 is described. This
matches the previous best bound for the corresponding edge connectivity problem.

1 Introduction

Connectivity is fundamental to the study of graphs and graph algorithms. Recently, many ap-
proximation algorithms for finding subgraphs that meet given connectivity requirements have
been developed [1, 11, 14, 15, 19, 21, 22]. These results provide practical approximation algo-
rithms for NP-hard network design problems, via an increased understanding of connectivity
properties.

In this paper we focus on uniform k-connectivity problems. The term connectivity refers to
both edge and vertex connectivities, unless specified. The input is an integer k, a k-connected
graph G = (V, F') and a weight function w on the edges of G. The goal is to find a minimum-
weight k-connected subgraph of . The problem is known to be NP-hard [12] even when
the weights are all identical (i.e., the unweighted case). We present improved approximation
algorithms for unweighted and weighted connectivity problems.

The practical motivation to study this problem is the following. Let G denote all feasible
links of a proposed communications network. An edge e = (a,b) denotes the feasibility of
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adding a link from site a to site b, and its weight, w(e), represents the cost of constructing
it. A minimum spanning tree in  is the smallest connected subgraph, i.e., the cheapest
network that will allow the sites to communicate. Such a network is highly susceptible to
failures, since it cannot survive the failure of even a single link or site. For more reliable
communication, one desires spanning subgraphs of higher connectivities. A network of edge-
connectivity (vertex-connectivity) k continues to allow communication between functioning
sites even after as many as k — 1 links (sites) have failed. The problem of finding low-cost
fault-tolerant networks naturally leads to the minimum-weight k-connected spanning subgraph
problem. Further applications and the importance of this problem are discussed by Grotschel,
Monma and Stoer [16].

1.1 Our results

Unweighted Connectivity Results:

For this problem the previous best approximation factor was 2. This follows from the
following two facts. Any minimal k-connected subgraph contains at most k(n — k) edges [2].
In any k-connected graph, the degree of each vertex is at least k, thus implying a lower bound
of kn/2 on the number of edges in any optimal solution. Efficient algorithms for finding k-
connected subgraphs with at most k(n — 1) edges were given by Nagamochi and Ibaraki [20]
and Cheriyan, Kao and Thurimella [3].

We observe that such approximation algorithms do not exploit any structural properties
of an optimal solution, other than the trivial lower bound on the degree of each vertex. Since
these algorithms provide an absolute upper bound on the number of edges, there is no way to
improve their approximation factors. Any algorithm which obtains a solution that is provably
better than 2 must exploit the structure of the problem and prove better lower bounds on an
optimal solution. Previously, algorithms that obtained factors less than 2 were known only
for the case k = 2; Khuller and Vishkin [19] gave an approximation algorithm that achieved
a factor of 1.5 for the edge-connectivity case, and 1.66 for the vertex connectivity case. The
vertex connectivity bound was subsequently improved to 1.5 by Garg, Santosh and Singla [13].
By combining the biconnectivity algorithm [19], and the sparse certificate algorithm [3] one
can easily obtain a factor of 2— 1/k for the k-edge-connectivity problem, but this approaches 2
as k increases. Recently, Karger [17] has given an algorithm with a factor of 1 4+ O(\/logn/k)
using randomized rounding of the fractional solution obtained from the corresponding linear
program, together with the idea of finding maximal forests. This algorithm is useful when
k> logn.

In this paper we provide the first approximation algorithm which breaks the barrier of 2
for the unweighted k-edge-connectivity problem (for all k). We give an algorithm and a lower
bounding method that yields an approximation ratio of about 1.85 for the k-edge-connectivity
problem. At a high level, the structure of our algorithm is based on the method of [3], but
it uses depth first search to obtain a better solution in each phase. Qur algorithm is quite
straight-forward, but proving a performance ratio of less than 2 for the algorithm requires a
subtle analysis of the structure of any optimal solution.

Weighted Connectivity Results:

Here each edge of the input graph & has a nonnegative weight. For the k-edge-connected
subgraph problem, an approximation factor of 2 was achieved by Khuller and Vishkin [19].
Approximation algorithms with constant performance ratios (for all k) are not known for the



k-vertex-connected subgraph problem. The best known algorithm to find a k-vertex-connected
subgraph is due to Ravi and Williamson [21] that achieves a factor of 2H (k), where H (k) is
the kth Harmonic number (H(k)=1+1...4 7).

Frederickson and JaJ4 [8] considered the problem of computing a minimum-weight bicon-
nected spanning subgraph. They gave an approximation algorithm for a more general graph
augmentation problem and used it to obtain a 3-approximation algorithm for the biconnectiv-
ity problem. For &k = 2, Ravi and Williamson’s algorithm also achieves a ratio of 3. In this
paper, we present an approximation algorithm for the minimum-weight biconnected subgraph
problem with a performance ratio of 2+ 1/n.

Not much more is known about the k-vertex-connectivity problem for the special case when
the weights satisfy the triangle inequality. For k = 2, it is easy to show that the TSP algorithm
of “doubling” the minimum spanning tree has a performance guarantee of 2. Frederickson and
JaJa [9] proved that Christofides’ algorithm [4] (for the TSP problem) has a performance
guarantee of 1.5 for the minimum-weight biconnectivity problem as well. The analysis for the
biconnectivity algorithm is more complicated since the relationship between the weight of a
minimum-weight matching and the weight of an optimal biconnected subgraph is not obvious.

In this paper we give an algorithm for the k-vertex-connectivity problem when the edges
satisfy the triangle inequality. The performance guarantee is at most 2 4 2(k — 1)/n, which is
less than 4 for all k£ and asymptotically tends to 2 for fixed k, as n tends to infinity.

2 Preliminaries

A graph is said to be k-vertex-connected (or simply k-connected) if the deletion of up to k — 1
vertices does not disconnect the remaining vertices of the graph. Analogously, a graph is k-
edge-connected if the deletion of up to k — 1 edges does not disconnect the graph. A set of
paths between vertices u and v is said to be openly disjoint if they do not share any internal
vertices. This definition is extended to the case when v is replaced by a set of vertices as
follows: a set of k paths between u and a set of vertices R with |R| = k is openly disjoint if
the paths are all vertex-disjoint (except for sharing the end-point u), and each of the paths
starts at w and ends at a distinct vertex of R. If w € R then we find k — 1 openly disjoint paths
from u to the vertices in R — u. We say u and v are k-edge-connected, if there exist k edge-
disjoint paths between them. The same definition can be extended to vertex connectivity by
replacing “edge-disjoint” with “openly disjoint.” Note that k-edge-connectivity can be viewed
as a binary relation between vertices. It is a transitive relation because, if a graph G contains
k edge-disjoint paths between w and v, and k edge-disjoint paths between v and w, then it
implies that G has k edge-disjoint paths between u and w.

3 Unweighted k-Edge-Connectivity

In the edge connectivity version of the connectivity problem, the input is an integer £ and an
undirected graph G = (V, V) with edge connectivity at least k. The problem is to compute a k-
edge-connected spanning subgraph of GG using the minimum number of edges. Since the degree
of any vertex must be at least &k in a k-connected graph, any solution to the above problem
must have at least [kn/2] edges. Any minimally k-edge-connected graph has at most k(n — k)
edges [2], and this provides a 2-approximation algorithm. Khuller and Vishkin [19] provided the



first approximation algorithm for £ = 2 with a performance ratio less than 2. Their algorithm
is based on depth-first search and has a performance guarantee of 3/2. A simple generalization
of their algorithm has a performance guarantee of 2 — 1/k for all k. In this section we provide
the first algorithm for unweighted k-edge-connectivity with an approximation factor strictly
less than 2 for all values of k. The structure of our algorithm is similar to the one used
by Cheriyan, Kao and Thurimella [3], where the connectivity of the solution is increased in
stages. The main idea behind the algorithm for finding a sparse k-edge-connected subgraph
is to repeatedly find and delete a maximal spanning forest from the graph . After this is
repeated k times, the deleted edges form a k-edge-connected spanning subgraph of G' [3, 20].

3.1 The algorithm

We first describe our algorithm for even values of k. The algorithm works in phases. It starts
with an empty subgraph . In each phase the edge connectivity of S is increased by 2. In k/2
phases the connectivity of ' is k& and the algorithm outputs 5.

We now describe the procedure that we use to augment the connectivity of S by 2 in any
phase. At the beginning of phase ¢, 5 is 2¢ — 2 connected. At the end of phase 7, it will be
2¢ connected. We first add a depth-first maximal spanning forest F; of G — 5 to 5. This
increases the connectivity of 5 to 2¢ — 1. Note that each tree of F; is implicitly rooted. Since
we added a depth-first forest to 5, all remaining edges of G — S are back edges with respect
to F;. We then scan the edges of the depth-first forest F; in post-order. Fach time we find an
edge (u,v) € F; such that u and v can be separated by the removal of 2¢ — 1 edges in 5 (recall
that 9 includes F}), we add to S a highest-going back edge e from G — S which also crosses
(u,v). Assume that u is the parent of v in F;. This back edge e goes from some descendant of
v (could be v itself) to a vertex with the lowest dfs number, when there is a choice of edges. It
is easy to identify such an edge during the execution of depth-first-search (similar information
is maintained during the computation of biconnected components in a graph [5]). This step
ensures that v and v are 2¢-edge-connected in S. Therefore after all edges of F; have been
scanned, S is 2¢-edge-connected. We will show that the algorithm outputs a subgraph S whose
cardinality is at most a factor (3 4+ In2)/2 ~ 1.85 more than the cardinality of an optimal
solution.

If k is odd, we can use the above procedure to first find a (k — 1)-edge-connected subgraph
S of G and then finally augment 5 to k-connectivity by the addition of any maximal spanning
forest of G — 5.

3.2 Proof of correctness

We first show that the addition of a maximal spanning forest at the beginning of each phase
of the algorithm increases the connectivity by 1. We then show that adding back edges as
we do in our algorithm increases the connectivity by 1 more. The following lemma is easily
established from the sparse certificate proofs of [3, 20]. We provide its proof for the sake of
completeness.

Lemma 3.1 Let G = (V, E) be a graph which is at least A-edge-connected. Let S be a (A —1)-
edge-connected spanning subgraph of G, and let F be a mazximal spanning forest in G—5. Then
S U F is A-edge-connected.



Proof. Suppose there exist vertices u and » which are not A-edge-connected in S U F. We are
given the fact that S is (A — 1)-edge-connected and therefore any set of edges separating u and
v must have at least A — 1 edges. Let (' be a set of A — 1 edges separating u and » in S U F.
Clearly C' C 5 because otherwise C'N S would be a set of edges with size strictly smaller than
A — 1, separating u and v in 5. Also G is A-edge-connected and therefore there is some edge
{z,y} in G — 5 which crosses C'. Therefore z and y are in the same connected component of
G — 5 and hence in the same tree of F'. At least one edge in the path from z to y in this tree
must cross the cut C'. This implies that C' cannot be a separating set in 5 U F, which is a
contradiction. 0

Lemma 3.2 Let G = (V, E) be a graph which is at least A-edge-connected. Let S be a (A —2)-
edge-connected spanning subgraph of G that is augmented to (A — 1)-edge-connectivity by the
addition of a maximal spanning forest F'. Then any cut C' with A—1 edges that separates S UF
must separate some two vertices x and y that are in the same tree of F.

Proof. Suppose there exists a cut C' with A — 1 edges that separates S U F', but does not
separate any vertices within the same tree, i.e., vertices of each tree of F' are in the same
component when the edges of C' are deleted from S U F. Since F is a maximal spanning forest,
the components of G — 5 and F are the same. Therefore ' is a separator for GG, which is a
contradiction because |C'| = A — 1 but ¢ is A-edge-connected. 0

Lemma 3.3 Let G = (V, E) be a graph which is at least A-edge-connected. Let S be a (A —2)-
edge-connected spanning subgraph of G that is augmented to (A — 1)-edge-connectivity by the
addition of a maximal spanning forest F. If S U F is augmented with an edge set B from

E —{S U F} such that each pair of adjacent vertices in F' cannot be separated by A — 1 edges
m SUFUB. Then S U F U B is A-edge-connected.

Proof. Consider any tree T in F. Any pair of adjacent vertices in T are A-edge-connected in
S U F U B. Since edge connectivity is transitive, all vertices of T" are in the same A-connected
component of S U F U B, 1i. e., no two vertices of T may be separated by the removal of fewer
than A edges. By Lemma 3.2, any A — 1 edge-separator of S U F' must separate two vertices
in the same tree of F. But we have shown that vertices within the same tree of F' cannot be
separated by the removal of A — 1 edges and therefore S U F'U B is A-edge-connected. 0

Theorem 3.4 The algorithm outlined earlier correctly outputs a k-edge-connected spanning

subgraph of G.

Proof.  The proof proceeds by induction on the number of phases of the algorithm. The
induction hypothesis is that when the algorithm completes phase i, 5 is 2i-edge-connected.
Suppose the algorithm is entering phase ¢ of the algorithm. By the induction hypothesis, 5 is
2¢ — 2-edge-connected (which is trivially true for the base case, ¢ = 1). The algorithm first adds
a depth-first maximal spanning forest F; to 5. By Lemma 3.1 this augments the connectivity
of 5 to 2¢ — 1. The algorithm then ensures that all adjacent vertices of F; are 2:-connected by
adding back edges crossing the corresponding cuts, where necessary. Therefore by Lemma 3.2,
S becomes 2:-edge-connected, thus proving the induction step. Since the algorithm runs in
k/2 phases, the solution S that it outputs is k-edge-connected. If k is odd, after |k/2] phases,
a maximal spanning forest of G — 5 is added to S thus making it k-edge-connected. 0



3.3 Performance analysis

We now analyze that the performance guarantee of the algorithm. Consider phase ¢ of the
algorithm. It adds a depth-first maximal spanning forest F; and then a set of back edges B;
to 5. Let f; = |F;] and b; = |B;|. Let OP7(G) be an optimal k-edge-connected spanning
subgraph of GG. The following is a trivial lower bound on OP7 (G).

Lemma 3.5 |OP7(G)| > [kn/2].

We now prove the following lower bound on the cardinality of the optimal solution which
lets us obtain a better factor than 2 for our algorithm.

Lemma 3.6 |OP7(G)| > (k — 2i + 2)b;.

Proof. Consider phase ¢ of the algorithm. Let e = (z,y) be a tree edge in F;, where x is the
parent of y. We first observe that whenever we add an edge in B; to cross a cut corresponding
to e, then the connectivity of 2 and y at the beginning of phase i is exactly 2¢ — 2 (at that
point 5 does not contain F;). Otherwise using a proof analogous to that of Lemma 3.1, it can
be shown that the connectivity between z and y is at least 2¢ after the addition of F; to 5.

Consider a cut €' with 27 — 1 edges in S'U F; separating @ and y. Let the removal of C' from
S'U F; break ¢ into two components X and X with z € X and y € X. Observe that only one
edge of F; can cross this cut — this is because 5 is 2¢ — 2 connected, and if two or more edges
of F; cross this cut, the size of this cut would be at least 2¢. In fact, the edge in F; crossing €
is exactly the edge (z,y). Let P. be the set of edges in G’ — 5 that cross C'. In other words, P.
is the set of edges in ¢ — S that connect vertices in X to vertices in X.

We first observe some simple properties about P.. In the following discussion, we consider
a vertex to be both a descendant of itself and an ancestor of itself.

Lemma 3.7 The set P. consists of all the edges of G — 5 that connect descendants of y to
ancestors of x.

Proof. We know that 2 € X and y € X. If some descendant z of y (in F}), belongs to X then
there are at least two edges of F; in cut C' (one is the edge (2, y) and the other is some edge on
the path from y to z). Thus all descendants of y are in X. Similarly all vertices in the tree of
y in F; that are not descendants of y must be in X. Also, the vertices of any other tree T in F;
are entirely contained in either X or in X. Therefore X is exactly the vertices of the sub-tree
rooted at y together with the vertices of some of the other depth first spanning trees of F;. All
edges in G — S from X to X are exactly the back edges, and the single tree edge (z,y) out of
the sub-tree rooted at y and these edges clearly go to (not necessarily proper) ancestors of z.
d

By the definition of P,., every k-edge-connected spanning subgraph, and in particular
OPT(G), must have at least k — (2¢ — 2) edges from P.. We will show that our selection
of back edges to add to B; using the highest-going back-edge rule ensures that the sets P. for
all e € B; are all disjoint (i.e., form a 1-packing of cuts). Once we show the disjointness of
the cuts corresponding to B;, we complete the proof of Lemma 3.6, because OP7 () must
contain at least k — (27 — 2) edges from each of these cuts.

We now prove that the cuts are disjoint. Consider two back edges ¢ and ' in B; that were
added when the algorithm examined the tree edges e = (u,v) and ¢ = (x,y) respectively.



Suppose e is processed before €’. Recall that the algorithm processes the edges of F; in post-
order. Since F; is a depth-first spanning forest, G — {5 U F;} contains only back edges and
therefore, P, N P! is empty if the tree edges are located such that none is an ancestor of the
other. Suppose that tree-edge ¢ = (z,y) lies on the path from v to the root of v’s tree in Fj.
If (2,y) is on the path from v to the root of v’s tree (see Fig. 1), then we note that ¢ does not
reach higher than y in the tree. Otherwise, the edge ¢ will be sufficient to ensure that vertices
x and y cannot be separated by 2i — 1 edges, because there are 2 paths between z and y in
F; U{(} and at least 2¢ — 2 in S. Since { was chosen as an edge which goes highest in the tree,
there can be no edges that cross (u,v) which also cross (z,y). In other words, in this case also

P. N P!is empty. This proves Lemma 3.6. O
/ Root
x
l Yy
U
l
v

Figure 1: Structure of back edges.

Theorem 3.8 The performance guarantee of the edge-connectivity algorithm outlined earlier
is at most (3 +1n2)/2 < 1.85.

Proof.  We prove the result for even k (the proof for odd k requires minor changes, and is
omitted). The algorithm adds f; + b; edges during each phase. Since F; and B; are forests,
fi < mn and b; < n. We combine the lower bounds from Lemmas 3.5 and 3.6 to obtain the
performance ratio of the algorithm as follows.

S+ ) 3kn/4+ S b
|OPT(G)| — max{kn/2, max;{(k —2i+2)b;}}
k/4
3 1
37" ; =20+ 2

IN



3 1 1
< 4=
= 2+2;k/2—i—|—1
< 3, 2 1.85
= 272 '

d
Remark: For small values of k this actually yields better factors. For example, the ratio is
1.66 for k = 3, 1.75 for k = 4, and 1.733 for k = 5.

4 Weighted Vertex Connectivity

Recently, Ravi and Williamson [21] gave an algorithm that finds an approximation to a
minimum-weight k-vertex-connected subgraph. Their algorithm works for all k, and its per-
formance ratio is 3 for the biconnectivity problem (k = 2). Their algorithm uses techniques of
linear programming and it constructs the solution in stages, augmenting the connectivity by
1 in each stage. The performance guarantee for general k is 2H (k), where H(k) = Y% 1/iis
the kth Harmonic number.

On a related problem in directed graphs, Frank and Tardos [7] extended a technique dis-
covered by Edmonds [6] and showed that the following problem can be solved in polynomial
time. The input is a directed graph D with nonnegative weights on the edges, a root vertex
r and an integer A. The problem is to find a minimum-weight directed subgraph H of D,
such that for each vertex » there are A openly disjoint paths from r to v in the subgraph H.
Gabow [10] introduced techniques for representing crossing set families based on separators,
and showed that this representation scheme can be used to speed up several algorithms. His
algorithm for solving the above problem of Frank and Tardos runs in O(A*n?m) time, where
D has n vertices and m edges.

4.1 Basic technique

We give an algorithm for undirected graphs that uses the algorithm of Frank and Tardos [7]
as a subroutine. The algorithm finds an approximately minimum-weight subgraph that has
A openly disjoint paths to a set of “root” vertices. This algorithm is used by all our vertex
connectivity algorithms.

The input is an integer A, a A-vertex-connected undirected graph G = (V, F), a nonneg-
ative weight function w defined on the edges, and a set R of A vertices. The output is an
approximately minimum-weight subgraph of G in which there are A openly disjoint paths from
any vertex v to R. Observe that v could be in R, in which case we find A — 1 paths from » to
the remaining vertices in R.

The algorithm UNDIRECTED-FT(G, A, R) is as follows. First create the directed version
D of G in the most natural way: for each undirected edge in GG create anti-parallel directed
edges in D, each having the same weight as the corresponding undirected edge. Augment D
by adding a new vertex r and add A new directed edges of weight 0 from r to each vertex in R.
Use the algorithm of Frank and Tardos on this graph with r as the root and find a minimum
weight subgraph H with A openly disjoint paths between r and any vertex of D. Let S C F
be those edges in G such that at least one of its copies is in H. Since S was obtained from H,
for any vertex v in (G, there are A openly disjoint paths between v and R in 5.



Proposition 4.1 There are A openly disjoint paths in S between any vertex in G — R and R.
There are X — 1 openly disjoint paths in S between any vertex v € R and R — {v}.

Lemma 4.2 The weight of S is at most twice the weight of a minimum-weight A-vertez-
connected spanning subgraph of G.

Proof. Let T be a minimum-weight A-vertex-connected spanning subgraph of G. We observe
that the directed version of T' obtained as above by taking two anti-parallel directed edges
instead of each undirected edge of T (with the same weight) is a subgraph of D, and along
with the zero-weight edges from r to the vertices of R has A openly disjoint paths from r to
each vertex of GG. Since the algorithm of Frank and Tardos returns a minimum-weight solution,
the weight of the solution that it returns, w(5), can be no heavier than 2w(7'). 0

We can also prove the following interesting theorem that $'is at least [A/2]-vertex-connected.
No assumptions about triangle inequality are required for this theorem. In other words, one
can obtain a subgraph with half the required connectivity, paying at most twice the optimal
cost (of twice the connectivity). A similar result (with a slightly better approximation ratio)
can be derived from the work of Ravi and Williamson [21] by running their algorithm for A/2
phases.

Theorem 4.3 The vertex connectivity of S is at least [A/2].

Proof. We give a proof by contradiction. Assume that the graph contains a vertex cut €' with
|C| < [A/2], 1. e., the removal of C breaks GG into components Cq,Cy,...,Cy, where { > 2.
Let C; be a component such that |C; N R| < [A/2]; clearly, such a component must exist. If
C; contains a vertex v ¢ R, then there are at most |A/2] + [A/2] — 1 paths from v to vertices
in R (the paths either must go to the vertices in C; N R or must go through the vertices in C').
Clearly, this is a contradiction to the assumption that there were A openly disjoint paths from
vto R. If C; N R = Cy, then there are at most |C;| — 1 + [A/2] — 1 paths from vertices in R
to any vertex in C;. Since C; < |A/2], we conclude that there are at most [A/2] + [A/2] — 2
paths from R to any vertex in ;. This is a contradiction to the assumption that there are
A — 1 openly disjoint paths from a vertex v € R to the remaining vertices in K. O

4.2 Weighted biconnectivity

We now describe a 2-approximation algorithm for weighted biconnectivity (k = 2).

Let e = (2,y) be a minimum-weight edge in (. Set R = {z,y} and call the procedure
UNDIRECTED-FT(G, 2, R). This returns a subgraph S of . The biconnectivity algorithm
now returns S U {e} as the solution. Since S was obtained by calling UNDIRECTED-FT, by
Proposition 4.1, for any vertex v in G — {x, y}, there are two openly disjoint paths starting at
v, one ending at  and the other ending at y.

Lemma 4.4 The graph S U {e} is biconnected.

Proof. We give a proof by contradiction. Suppose S U {e} contains a cut vertex a. Let the
deletion of @ from S break the graph into components Cy,...,Cy. Since z and y are adjacent
they will be in @ U C; (for some ). Consider a vertex v € C; for some j # ¢. There cannot be
two openly disjoint paths from » to 2 and y respectively, since both paths must go through a.
But by Proposition 4.1 such paths must exist, which is a contradiction. O



Theorem 4.5 The total weight of S U{e} is at most 2+ 1/n times a minimum-weight bicon-
nected spanning subgraph of G.

Proof. Let OPT((G) be a minimum-weight biconnected spanning subgraph of G. Since any
biconnected graph on n vertices contains at least n edges, a minimum weight edge of GG is at

most w(OPT(G))/n. By Lemma 4.2, the weight of S is at most 2w(OPT(G)). 0

4.3 Weighted k-vertex-connectivity

In this section we consider the weighted k-vertex-connectivity problem, when the edge weights
satisfy triangle inequality. We describe an algorithm that finds a k-vertex-connected subgraph
whose weight is within a factor 2+4+2(k—1)/n of a minimum-weight k-vertex-connected subgraph
in G. Previously, an algorithm achieving a factor of 1.5 for the case k& = 2 was given by
Frederickson and JaJa [9].

Many algorithms for graphs satisfying triangle inequality are based on simple ideas for
shortcutting. For example, taking two copies of a minimum spanning tree and then shortcutting
it suitably yields a 2-approximation for 2-connectivity. One may wonder whether such a simple
algorithm exists for the k-connectivity problem under triangle inequality. We first observe that
the following straightforward algorithm does not yield a good approximation ratio. Take a TSP
tour obtained as described above. Connect each vertex of the tour to the k/2 vertices that
come before (and after) it on the tour. Such a graph is indeed k-connected, but there are
instances in which its weight is Q(k?) times the weight of a minimum spanning tree and the
performance ratio of the algorithm is Q(k).

Our algorithm first finds a subset R of k vertices, such that the complete graph induced
on R is relatively “light”. It then calls UNDIRECTED-FT(G, k, R) to obtain a subgraph S of
G. The algorithm returns S U K as its output, where Kp is the complete subgraph on R.

We now show how to find the subset R of k vertices, such that the complete graph induced
on the vertices in R is “light”.

Let S(7) be the “star” graph formed by vertex i together with the edges toits k — 1 closest
neighbors. Let j be a vertex with the weight of S(j) being minimum over all vertices of G.
Select R to be the vertices of S(j),i. e., R consists of vertex j and its k — 1 nearest neighbors.
Let K be the complete graph on the vertices of R.

Lemma 4.6 The weight of Kg, the complete graph on the vertices in R is at most 2(k—1)/n
times the weight of OPT(G), a minimum weight k vertex-connected subgraph of G'.

Proof.  Let N(¢) be the subgraph of OPT () formed by vertex i together with its & — 1
closest neighbors in OP7 () (observe that each vertex in OP7 () has at least k neighbors).
Clearly, for any 4, w(S5(7)) < w(N(z)). Also since each edge is counted at most twice,

n

> w(N (@) < 20(OPT(G)).

Thus
w(5(7)) = minw(S5(¢)) < Ew((’)PT(G)).
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This is an upper bound on the weight of the star-graph centered at vertex j. For any pair of
vertices u, v € 5(7), by triangle inequality, we know that w(u,v) < w(u,j)+ w(j,v). Thus

wKp)=>_ > wuv)< > > wlu,j)+wv, )= (k- Dw(S()).

uERvER u<Y uERvER u<Y

Thus the weight of Kp is at most 2(k — 1)/n times w(OP7(G)). 0
Lemma 4.7 The graph induced by the edges of S U Kg is k-vertex-connected.

Proof. We give a proof by contradiction. Assume that the graph contains a vertex cut €' with
|C| < k, i.e., the removal of C' breaks GG into components Cy,Cs,...,Cy, where { > 2. Since
any two vertices in R are adjacent, all vertices of R belong to C' U C; (for some 7). Consider
a vertex v € (; for some j # <. By Proposition 4.1 there must be k openly disjoint paths
between v and K. But clearly there cannot be k openly disjoint paths from v to the nodes in
R since these paths can only go through nodes in ', which is a contradiction. O

Theorem 4.8 The total weight of S U Kg is at most (24 2(k — 1)/n)w(OPT(G)).

Proof. By Lemma 4.2, the weight of 5 is at most 2w(OP7(G)), and by Lemma 4.6, the
weight of Kp is at most 2(k — 1)/n - w(OPT(G)). 0

Remark: We note that Kr can be replaced by any subgraph Sgr of G that has the property
that there are k openly disjoint paths between every pair of vertices in R. If the weight of S
is within a factor of o times w(OP7T(g)), then the above proofs can be modified to show that
SrU S is k-connected and its weight is at most a 4 2 times w(OP7(g)).

5 Conclusions

We conclude with some open problems related to the topic of obtaining approximation algo-
rithms for the k-connected spanning subgraph problem.

1. Can we obtain an approximation factor better than 2 for the unweighted k-vertex-
connected spanning subgraph problem? For the edge connectivity case we establish
a 1.85 factor in this paper. Can this be improved further?

2. Can we obtain an approximation factor of 2 for the weighted k-vertex-connectivity prob-
lem even when the edge weights do not satisfy triangle inequality? For the edge connec-
tivity case, a factor 2 approximation is known [19]. Can this be improved further?

Acknowledgements: We thank Randeep Bhatia, Hal Gabow, Kazuo Iwano, Michal Penn,
Ramki Thurimella and Neal Young for useful discussions related to the problems and techniques
discussed in this paper.
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