TecHNIcAL RESEARCH REPORT

Requirements Engineering and the Semantic Web, Part |1.
Representaion, Management, and Validation of Requirements
and System-Level Architectures

by Mayank V., Kositsyna N., Austin M.

TR 2004-14

INR

INSTITUTE FOR SYSTEMS RESEARCH

ISR develops, applies and teaches advanced methodologies of design and analysis to solve complex, hierarchical,
heterogeneous and dynamic problems of engineering technology and systems for industry and government.

ISR is a permanent institute of the University of Maryland, within the Glenn L. Martin Institute of Technol-
ogy/A. James Clark School of Engineering. It is a National Science Foundation Engineering Research Center.

Web site http://www.isr.umd.edu

ISR Technical Report

Requirements Engineering

and the Semantic Web: Part II.

Representation, Management, and Validation of

Requirements and System-Level Architectures

By Vimal Mayank!, Natalya Kositsyna? and Mark Austin3

Last updated : February 12, 2004.

1Graduate Research Assistant, Master of Science in Systagiedering (MSSE) Program, Institute for Systems Reseéafalversity of
Maryland, College Park, MD 20742, USA.

2Faculty Research Assistant, Institute for Systems Relse@ailege Park, MD 20742, USA.

3Associate Professor, Department of Civil and EnvironmeBtaineering, and Institute for Systems Research, Urilyec$ Maryland,
College Park, MD 20742, USA.

Contents

Introduction

1.1 ProblemStatement

1.2 ScopeandObjectives L e e

1.3 TheSemanticWeb e
1.3.1 Technologiesin the Semantic Web LayerCake
1.3.2 TheURland UnicodeLayer i i e
1.3.3 The eXtensible Markup Language (XML) Layer
1.3.4 The Resource Description Framework (RDF) Layer.
1.3.5 Ontologies e e e
1.3.6 Logic(@andRules). e e e
1.3.7 Digital Signatures e e e
1.3.8 Proof, Trust,andBeyond L

1.4 OrganizationofthisReport e

1.5 Acknowledgments e e

Representation and Management of Requirements

2.1 Organization of Requirements e e e
2.2 Requirements Allocationand Flowdown 0
2.3 Graph Representation of Requirements
2.4 Requirement Template Structure L e e
2.5 XML and RDF Representation of Requirements
2.6 Requirement Traceability and Controlled Visualizatio
2.7 RDQL Approachto Retrieve NodesandLinks

Synthesis of System-Level Architectures from Reusable @mponent-Specifications

3.1 Component-and Interface-BasedDesign c . e
3.2 Libraries of Reusable Component-Specifications
3.3 RDF-Based Storage of Object Connectivityc. .. o
3.4 Leaf Requirements Validation Against the ComponergeSjgation

Development of a Home Theater System

4.1 Problem Statement e

4.2 System STrUCtUre e e e e

4.3 SystemRequirements e e

4.4 Requirement Template Structure L e

4.5 Requirements Traceability and Controlled Visual@mati
4.6 Merging Two Requirement TreeS o v i i i e et e i e

4.7 Collapsing Requirement Tree with Duplications
4.8 ComponentsLibrary e e

4.9 Low-Level Validation of Requirements

5 Ontology-Enabled Validation of System Architectures
5.1 Model Checking Procedure e e
5.2 Class Relationships in Port-Jack Ontology oo o o oo oo oo
5.3 Equivalent DAML Representation of the Ontology
5.4 Conversion of DAML Representation to Jess Facts
5.5 Addition of Rules and Execution of Rete Algorithm

6 Conclusions and Future Work
6.1 Conclusions
6.2 Future Work

Appendices
Appendix A. XML Representation of the Home Theater System
Appendix B. RDF Representation of the Requirements Structure
Appendix C. Requirements Property XML File
Appendix D. DAML Representation of the Cable-Port Ontology
Appendix E. Jess Assertions and the Rules for the Cable-Port Ontology

45
47
47
48
50
52

54
54
54

61
61
64
66
69
70

Chapter 1

Introduction

1.1 Problem Statement

Modern-day system designs are undergoing a series of tadacesformations to meet performance,
quality, and cost constraints. To keep the complexity ofitézal concerns in check, system-level design method-
ologies are striving to orthogonalize concerns (i.e., @ghiseparation of various aspects of design to allow more
efficient exploration of the space of potential design alitives), improve economics through reuse at all levels of
abstraction, and employ formal design representatiorietible early detection of errors and multi-disciplinary
design rule checking. Whereas engineering systems havefaekitionally viewed in terms of the operations they
support, nowadays there is also a rapidly evolving trendatdvio team-development of large-scale information-
dominated systems. These so-called Information-Centigéneering systems exploit commercial-off-the-shelf
(CQOTs) components, communications technology, and hawergw performance and reliability.

Methodologies for Team-Enabled Systems EngineeringA methodology is simply the implementation of a
specific process. As indicated in Figure 1.1, methodoldgiethe team development of system-level architectures
need to support the following activities:

1. Partitioning the design problem into several levels of @usion and viewpoints suitable for concurrent devel-
opment by design teams. These teams may be geographicgreéd and mobile.

2. Coordinated communication among design teams.
3. Integration of the design team efforts into a working system
4. Evaluation mechanisms that provide a designer with a atiteedback on the feasibility of system architecture,

and make suggestions for design concept enhancement.

Throughout the development process, teams need to mamtdiared view of the project objectives, and at the
same time, focus on specific tasks. Itis the responsibifitf@systems engineer to gather and integrate subsystems
and to ensure ensure that every project engineer is workarg & consistent set of project assumptions. This
requires an awareness of the set of interfaces and fagilfieesystem will be exposed to.

Systems engineering methodologies are also the confluériop-down and bottom-up approaches to
system development. Top-down development (decompogigoroncerned with the elicitation of requirements

Design [Separation of concerns
Problem - for team development.
\ | Coordination of activities.
‘ —
Team 1 Team 2 - - - Team N --— A.bstrac't lons
Viewpoints

\ | / i
Working \ Systems integration of
System team efforts.....

\[Validation and Verification

Figure 1.1: Key concerns in team development of systemsr¢8oiscussion with David Everett, NASA God-
dard)

and the generation of system architectures — this pathwahoewn along the left-hand side of Figure 1.2. Bottom-
up design (composition), in contrast, starts with low-law@dules and subsystems and tries to combine them
into higher-level entities. At this stage of developmentegy Kesign decision is: should we custom build new
components or buy/reuse them? The benefits of reuse inchadeed development costs, improved quality (be-
cause components have already been tested), and shoiterettmarket. This so-called “systems integration”
problem has become key and perhaps the most profitable enigig@ractice.

Over time engineers have learned that in order for the dpwedmt of systems of ever-increasing size and
complexity to remain tractable, methodologies need to lpeséet so that problems can be formulated in a formal
way, but at higher levels of abstraction. In software engjiiimgy circles, the pathway from low-level machine lan-
guages to high-level programming languages is well knowisyktems engineering circles, the Unified Modeling
Language (UML) [54] now plays a central role in object-otahsystems development procedures. High-level
visual modeling languages, such as UML, have features whog®se is to help an engineer organize thoughts
and ideas on the basic building blocks of the systems desigoking ahead, abstraction of multiple disciplines
to properly annotated information representations ande@tf previous work at all levels of development will be
essential. While these trends are well known in the softaaeda, there remains a strong need for a counter-
part capability that will support the requirements repnéaton, synthesis, and integration of real world physical
systems composed of hardware and software.

Present-Day Systems Engineering ToolsDue to the wide variety and complexity of present-day system-
gineering processes, it is completely unrealistic to ekt one tool will support all development processes.
Hence, systems engineers create heterogeneous softatftemk by stitching together software tools designed
for specific purposes. At this time, there are predominahtige kinds of tools available to systems engineers:

1. Diagramming. Examples include Visio [4] or Rational Rose [47]. Theses$qmiovide systems engineers with
the means to draw various UML diagrams such as the systeotteutand behavior diagrams.

2. Requirements Management.Examples include SLATE [1] and DOORS [15]. These tools doeanthe

Requirements O O Deliverable Product
Testing/Verification

(20 @O0 T
System Design | Q O O O| |Q O Q O| System Design

Decompositon Composition |

|

|

|

Buy vs. Build? |

A O Custom-build Component
Object L3
Specification O Reusable Component

Figure 1.2: Top-down decomposition and bottom-up synthesiipled to reuse of objects/sub-systems

requirements, provide configuration management and toéitgdetween various levels of requirements,
and enable a limited scope of verification.

3. Simulation, Optimization, and Trade-Off. Examples include tools such as CPLEX [27], MATLAB [41] and
Arena [3]. These tools provide the mathematical capahil@gded to evaluate system objectives, simulate
system behavior and provide an optimal design solutiorma Bgstem design alternatives.

The four essential elements of these tools are models, émyeg ordered step-by-step procedures for defining
tasks, and guidance for completing the methods [37]. Frowftavare development and economic perspective,
the pool of potential customers can be maximized by creatystem development tools that are process neutral
(i.e., they do not enforce a particular approach to systeveldpment). However, from a systems development
perspective, tools that enforce a particular style of dgwelent help to keep a designer on track.

Requirements Management Systemsresent-day requirements management tools provide thauygsort for
top-down development where the focus is on requirementsseptation, traceability, allocation of requirements
to system abstraction blocks, and recently, step-by-stepution of system models. (At this time, computational
support for the bottom-up synthesis of specific applicaimom components is poor.)

Most of today’s requirements management tools represdividtual requirements as textual descriptions
with no underlying semantics. Groups of initial requirensegre organized into tree hierarchies (e.g., functional
requirements, interface requirements). However, wheuiregpents are organized into layers for team develop-
ment, graph structures are needed to describe the complgedime relationships. Computational support for the
validation and verification of requirements is still immiag- although some tools do have a provision for defining
how a particular requirement will be tested against releattributes, it is not enough. Current tools are incapable
of analyzing requirements for completeness or consisteSenrch mechanisms are limited to keywords, which

Project
Requirements

COEE 0O

Req 1/ Spec. 1

'

1
I
I
I
I
! | Req 2/ Spec. 2
| I
| I
| I
| I
I
.| Subsystem1 |1
I
| |
| I
| I
| I
| I
| |
| |
1

'

I

: Req 3/ Spec. 3

I

I

:
Subsystem 2 :

:

I

I

I

I

I

I

'

I
| |
I

I
I

I
I

I
I

I
I

I
I
! Subsystem 3 :

I
I

I
I

|
I

|
I

|
|

|
|

|
| |

'

Specification 1

'

Specification 2

'

Specification 3

EPA Test Test Req.

Systems Integration
and Test.

'

Working System

Figure 1.3: Team Development of Engineering Systems

can be limiting for custom jargon in multidisciplinary anditiilingual projects.

A requirements management systems can be implemented asdditimo system. But as soon as the
need to leverage or reuse the requirements across prajeatpanies, and industries is found, a monolithic system
approach is no longer viable. Figure 1.3 shows, for exangleypothetical situation where high-level project
requirements are organized for team development, andeqir@quirements are imported from external sources
(in this case the EPA). It is important to note that in nealyases, the details regulations specified by external
sources will be beyond the control of the company. Hencecliamtic system of systems is a more appropriate
model because every project, company, and “regulatiortsoaty” will operate based on personal needs and
desires. Thus, an open standard is needed which will allewdhious systems to share a common data structure
and build customized tools to meet the personal needs.

Ontology-Based Computing. A central theme of this work is that advances in informati@mtric system en-
gineering will occur together with those in ontology-basedputing. With technologies for the latter in place,
we envision development of web-centric, graphically dniveomputational platforms dedicated to system-level
planning, analysis, design and verification of complex iidtiplinary engineering systems. These environments
will employ semantic descriptions of application domaisg use ontologies to enable communication (or map-
pings) among multiple disciplines (e.g., to the enginegtegam members, to marketing, to management and to

Domain 2

Invalid Parameters

Domain 1

Visualization Mappings

l« Technical
Mappings Integrated view of system architecture
with realtime rule checking.

Domain-specific descriptions (e.g, UML, block diagrams)
of system content.

'

System—Level Architecture and Performance Assesment

—— What is the architecture of the integrated system?

—— Can the system work?

—— What will the system do?

—— Which system operations can operate concurrently?

—— Can the system structure be simplified?

—— Are two design alternatives logically equivalent?

—— Is the system layout consistent with standards/design code requirements?

Back-end support for system—level architecture and performance assessment.

Figure 1.4: Looking Ahead — Integration of Application-8gie Viewpoints of Engineering Systems, with back-
end support for System-Level Architecture and Performassessment

customers). They will provide support for the integratidrapplication-specific viewpoints of engineering sys-
tems, with backend support for system-level architectacegerformance assessment. See Figure 1.4. Present-day
systems engineering methodologies and tools are not dasigrhandle projects in this way.

1.2 Scope and Objectives

This report is the second in a series on “Requirements Eagimgand the Semantic Web.” In Part
1, Selberg et al. [48] identify an opportunity for using teologies in the Semantic Web Layer Cake to mitigate
limitations in present-day systems engineering tools. diqiype XML/RDF traceability browser is presented. The
objectives for this study are to explore further the appitcaof RDF, ontologies and logic for the representation,
management, and validation of requirements and systeehdeshitectures. Accordingly, the plan of work for this
report is as follows:

1. Representation and management of requirements. See €Bapte

2. Representation and synthesis of system-level archiesfrom reusable component-specifications. See Chap-
ter 3.

Partially assembled syste

~— Power

WWW.panasonic.com

Product
specifications.

www.jbl.com 4
. ’ 4

Product . /
specifications. /

~—_——— /

Plasma Screen Display
WWW.S0Ny.com J/
.
Product /
specifications. .| Textual description of requirements.
— Graphical description of relationship

External Description of among requirements.
Product Specifications

e

Figure 1.5: Synthesis of System Architectures Enabled byt Descriptions on Web. Here we show a simplified
architecture for the home theater system developed in €hdpt

3. Ontology-enabled validation of system architectures. Saapter 5.

This project is motivated, in part, by the need to develophm@blogies and tools for the synthesis, management,
and visualization of system-level architecture likely tofound in the NASA Global Precipitation Measurement
(GPM) project [22]. Briefly, NASA's GPM project is “one of theext generation of systematic measurement
missions that will measure global precipitation, a key dliefactor, with improved temporal resolution and spatial
coverage.” The implementation of NASA GPM is a multi-natibeffort that will require the launch and operation
of at least seven satellites and the participation of at liéges countries. The system design and implementation
will occur through 2018.

As a first step, we are prototyping our ideas and techniquessimpler problem — representation and
bottom-up synthesis of components in a home theater sysdmenvision development of a design environment
where customers can formulate detailed requirements éohdime theater system that they want to purchase, and
then download descriptions of electronic components dwemteb. Detailed descriptions of flat panel displays
might be available at www.panasonc.com, amplifiers at wamysom, and so forth. See Figure 1.5. The speci-
fications attached to each electronic component will be isachumber of ways. At a basic level, statements of
component performance can be directly compared to custoeneirements. But component specifications also
include information on requirements for the system to wofke design environment should be able to detect
incompatibilities in interface requirements and make appate suggestions for resolving conflicts. At even a
higher-level of abstraction, component specificationkithe suggestions for system assembly (e.g., system archi-
tectures that the manufacturer believes are good). Helmeelgsign environment should make suggestions to the
designer on how components might best be configured for aptperation.

1.3 The Semantic Web

In his original vision for the World Wide Web, Tim Berners# @escribed two key objectives: (1)
To make the Web a collaborative medium; and (2) To make the Wvelerstandable and, thus, processable by
machines.

During the past decade the first part of this vision has conpass — today’s Web provides a medium for
presentation of data/content to humans. Machines are usadny to retrieve and render information. Humans
are expected to interpret and understand the meaning ofathierd. Automating anything on the Web (e.g.,
information retrieval; synthesis) is difficult becauseeimiretation in one form or another is required in order for
the Web content to be useful. Current information retri¢gahnologies are incapable of exploiting the semantic
knowledge within documents and, hence, cannot give preciseers to precise questions. (Indeed, since web
documents are not designed to be understood by machinasltheeal form of search is full-text searching.)

The Semantic Web [6, 24] is an extension of the current wedinis to give information a well-defined
meaning, thereby creating a pathway for machine-to-ma&cbimmunication and automated services based on
descriptions of semantics [20]. Realization of this godl vaquire mechanisms (i.e., markup languages) that
will enable the introduction, coordination, and sharingtod formal semantics of data, as well as an ability to
reason and draw conclusions (i.e., inference) from semaiatia obtained by following hyperlinks to definitions
of problem domains (i.e., so-called ontologies).

1.3.1 Technologies in the Semantic Web Layer Cake

During a talk at the XML World 2000 Conference in Boston, Madwsetts, the World Wide Web
Consortium (W3C) head Tim Berners-Lee presented the Sémakeb Layer Cake diagram (see Figure 1.6) to
describe the infrastructure that will support this visiéh [

1.3.2 The URI and Unicode Layer

The bottom layer of this cake is constructed of UniversaldRese Identifiers (URI) [56] and Unicode
[55]. URIs are a generalized mechanism for specifying awmiaddress for an item. They provide the basis for
linking information on the Internet. Unicode is the 16-bitension of ASCII text — it assigns a unique platform-
independent and language-independentnumber to evegatbgithereby allowing any language to be represented
on any platform.

1.3.3 The eXtensible Markup Language (XML) Layer

The eXtensible Markup Language (XML) [7] provides the fumdatal layer for representation and
management of data on the Web. The technology itself has $wecés. It is an open standard which describes
how to declare and use simple tree-based data structutteis aiplain text file. XML is not a markup language,
but a meta-language (or set of rules) for defining domain-ndustry-specific markup languages. A case in
point is the Mathematical Language Specification (MathMAQ][MathML is an XML application for describing
mathematical notation and capturing both its structure @mdent. A second example is the scalable vector

Semantic Web Layers

Evolving

Self Ontology Support

Digital Signature

-describing|
BRIl Resource Description

Framework + Schema

XML - Structured documents

Namespaces + XML-Schema Well Known

niversal I .
Universal Besou ce Unicode
Identifiers

Technical Maturity

Figure 1.6: Technical Maturity of the Semantic Web Layer €ak

graphics (SVG) markup language [51], which defines two-disienal vector graphics in a compact text format.
Hence, on a more conceptual plane, XML is a strategy for médron management.

XML is defined only at the syntax level. A well-formed XML dozent defines a tree of nested sets
of open and close tags, each of which can include severdiw#rvalue pairs. The rules of “well-formedness,”
which are the nuts and bolts part of XML, provide enough infation that generic code modules, called parsers,
can be developed to read, write, and manipulate the XML fifasexample of such a parser is the open source
Xerces parser [61]. The parsers can be built into other egipdins, such as Microsoft Word or Adobe lllustrator
[2, 60], giving them the power to work with XML files. The “weflbrmed” criteria guarantees that the parser can
read the XML file, but from the application’s point of view,dbes not give any confidence that the data in the
XML file will be complete or consistent. To solve this problgtime basic form constraint can be extended through
the use of Document Type Definitions (DTDs) or Schema. Bottine$e technologies are ways of specifying the
rules and structure to which the XML document must also confd=or example, XHTML, an XML compliant
variant of HTML, is defined by both the XML definition and the XNIL DTD [62].

On the conceptual level, XML asks that content and form (@sentation) be separated. The real
beauty in representing data/information in XML is that wa diter or sort the data or re-purpose it for different
devices using the Extensible Stylesheet Language Tranatan (XSLT). For example, a single XML file can be
presented to the web and paper through two different stydetsh This saves duplication of work and reduces the
risk of error.

Example. XML Model of an Individual Requirement. In an effort to classify requirements for reuse across
projects, and attach semantics to requirements, the cootemuirements boilerplates has been proposed by Hull
et al. [26]. For example, an instance of the template:

The <specification- of <object> shall not exceeévalue> <units>

represented in XML might look like:

- <Requirement ID="REQ.3.2">
<Name Value="Thickness of TV" />
<Rationale Value="Comes from Wall mountable display scree n" />
<Verification Value="Demonstration" />
<Comment Value="Component Level Requirement" />
<REVISION Value="Mon Jun 16 14:00:55 EDT 2003" />
<MAPPED_TO Value="TV" />

<Template NO="1" OBJECT="TV" SPECIFICATION="Thickness" SPECLINK="tvl.xml"
VALUE1="6" UNITS="inches" />
<Description Value="Thickness of the TV shall not exceed 6 i nches" />

</Requirement>

Here, the XML representation supports the following reguients attributes: (1) Unique identifier; (2) A descrip-
tive name of the requirement; (3) Rationale; (4) Verificatitrategy; (5) Comment; (6) Creation/last modified
date; (7) Description of the Requirement (Text), and (8) plte attribute/value pairs on which the requirement
is based. The requirement attributes and their values catobed in an XML file (e.g.RegDoc.xml).

Requirements processing can proceed in a number of dinscti®ne possibility is to generate require-
ments documentation directly from the XML markup by applyan appropriate XSLT [63] transformation. Al-
ternatively, a Java parser, such as Xerces [61], can beewtittextract the value of the attributes and display them
in the graphical user interface.

Limitations of XML . While XML provides support for the portable encoding ofajat is limited to information
that can organized within hierarchical relationships. Anoeon engineering task is the synthesis of information
from multiple data sources. This can be problematic for XMLaasynthesized object may or may not fit into a
hierarchal model. Suppose, for example, that within onealora line is defined by two points, and in a second
domain, a point is defined by the intersection of two lines.eSehdefinitions and the resulting tree models are
illustrated in Figure 1.7. Merging these models resultsdireular reference — the resultant tree model is therefore
infinite. XML can not directly support the merger of these twodels. A graph, however, can. Thus, we introduce
the Resource Description Framework.

1.3.4 The Resource Description Framework (RDF) Layer

The Resource Description Framework (RDF) is a graph-basgsk(tional) data model for describing
the relationships between objects and classes in a gengrsihiiple way. For the Semantic Web, the primary use
of RDF will be to encode metadata — for example, informatiechsas the title, author, and subject — about Web
resources in a schema that is sharable and understandaigléo RDF’s incremental extensibility, the hope is that
software agents processing metadata will be able to tracertbins of schema they are unfamiliar with to known
schema and, thus, will be able to perform actions on metdldeyaveren’t originally designed to process.

From an implementation standpoint, the capabilities of RIDE XML are complementary. RDF defines
a graph-based object model for metadata, and API suppogtrémh operations (e.g., union, intersection). XML
API's provide no such capability. On the other hand, RDF muperficially addresses many encoding issues
for transportation — for these aspects, RDF employs XML asstrialization syntax. More specifically, as with

Two points define a line. The intersection of two lines defines a point.

line point

N N

point point line line
Figure 1.7: Definitions of a Line and Point in Tree Model Fod8]

HTML, XML has linking capabilities. The links, via URIs, for the basis for building the graphs. Thus, RDF
can be built upon (or serialized in) XML. XML is the bones, RBRhe sinew which ties them together to build a
skeleton.

RDF Assertions. At its core, RDF is a model for making assertions (or statds)eabout objects. An assertion

is the smallest expression of useful information. The ResoDescription Framework (RDF) captures assertions
made in simple sentences by connecting a subject to an abjdch verb. In practical terms, English statements
are transformed into RDF triples consisting of a subjeds [ghthe entity the statement is about), a predicate (this
is the named attribute, or property, of the subject) and gacblfthe value of the named attribute). Subjects are
denoted by a URI. Each property will have a specific meanirtgraay define its permitted values, the types of
resources it can describe, and its relationship with othepgrties. Objects are denoted by a “string” or URI.
The latter can be web resources such as documents, otheralyeb pr, more generally, any resource that can be
referenced using a URI (e.g., an application program oliceprogram).

Example. RDF Model of an Individual Requirement. In the graphical representation of RDF statements,
subjects and objects are nodes in a directed graph. Presl@ag labels for the directed arcs in the graphs.

Figure 1.8 shows two RDF models for an individual requirem&heir serialization in XML is as follows:

<rdf:RDF
xmins:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax- ns#'
xmins:vcard="http://www.w3.0rg/2001/vcard-rdf/3.0#

>

<rdf:Description rdf:about="http://somewhere/REQ3.2’ >
<vcard:N> REQ3.2 </vcard:N>
</rdf:Description>

<rdf:Description rdf:about="http://somewhere/REQ3.2’ >

<vcard:Source rdf:resource="http://somewhereElse/Req Doc.xml'/>
</rdf:Description>

10

Requirement represented by a label

vcard:N
http://somewhere/REQ3.2 REQ3.2

Subject Predicate Object

Requirement template stored in an XML file RegDoc.xml

vcard:Source
http://somewhere/REQ3.2 http://somewhereElse/ReqDoc.xml

Subject Predicate Object

Figure 1.8: RDF Models of an Individual Requirement. In tleel@ and arc diagram, ovals can represent both
a subject and object. Rectangular boxes always represgtebThe direction of the arrow is always from the
subject to the object of the statement.

The first block of code defines the XML namespaces and shatthrafixes that can be used in the RDF statements.
In both representations of the requirement, the subjedteo$tatement is located at URI

http://somewhere/REQ3.2

In the upper model, the predicateard:N refers to a name. The object is simply a label correspondiriiye
name of the requirement. The statement should be read//bttmewhere/REQ3.2 has the label REQ3.2.”

In the lower model, the predicateard:Source refers to a source file. The object is a URI for the
XML file containing a complete description of the requireméimat is,

http://somewhereElse/ReqDoc.xml

The statement should be read “http://somewhere/REQ3.thkeaurce file http://somewhereElse/RegDoc.xml.”

Limitations of RDF. A key limitation of RDF is poorly defined semantics. RDF hassease of vocabulary. It
does not provide any notion of scope within which a specifigchbulary can be constrained. Any node within a
connected RDF graph is reachable by any other node. To sugmtomated reasoning, agreement on a uniform,
well defined, vocabulary is needed.

1.3.5 Ontologies

According to James Hendler, a leading researcher of the it@Valeb, an ontology is “a set of knowl-
edge terms, including the vocabulary, the semantic intereotions, and some simple rules of inference and logic
for some particular topic [23, 24].” Ontologies are neededacilitate communication among people, among
machines, and between humans and machines.

So what does an ontology look like? It's a question the Irderommunity is still struggling with.
Some envision “ a few large, complex, consistent ontologi€thers see “a great number of small ontological
components consisting largely of pointers to each othel"[24 either case, ontologies help to bridge the gap

11

between symbols and things. Generally, symbol-to-thifagimships are one to many. As pointed out by Maedle
[39], for example, the term “Jaguar” can refer to “the anihaald “the car.” In computer science circles, “Jaguar”
also refers to an emerging operating system.

Concept
evok7(\rifers to
Symbol M» Thing

Figure 1.9: Ontology Framework: The Meaning Triangle

Symbol-to-thing relationships need to be defined indiyeethd within the framework of a relevant concept. To
determine what a particular symbol “stands for,” we needdwerse the upper pathway in Figure 1.9. Starting at
the left-hand side, an interpreter processes the symbdathvitivokes a specific concept, which, in turn, refers to a
specific thing.

For our purposes, ontologies are needed to facilitate camwation among people, among machines,
and between humans and machines. To provide a formal caratigattion within a particular domain, an ontology
needs to accomplish three things:

1. Provides a semantic representation of each entity andétsmeships to other entities;
2. Provides constraints and rules that permit reasoning mvitié ontology;

3. Describes behavior associated with stated or inferred.fact

This goal requires new languages to define problem domatha areans for authors to make statements about the
problem domain.

DAML+OIL. DAML is an acronym for DARPA Agent Markup Language [11]. DAMDIL is an seman-
tic/ontology language that ties information on a web pagaachine readable semantics (ontology). An ontology
consists of a set of axioms that assert resources are iestaid AML+OIL classes. which can describe the
structure of a domain using the formal rigor of a very expresdescription logic (DL). DAML+OIL classes can
be names (URIS) or expressions (a variety of constructerpravided for building class expressions). Thus, from
an implementation standpoint, a DAML+OIL ontology is a wedgp containing: (1) An optional daml:Ontology
instance; (2) A set of classes; (3) A set of properties of thgses, and (4) A set of restrictions (constraints) raiatin
the classes and properties of the classes [18].

Infrastructure for Ontology-Based Computing. Simply introducing languages is not enough. We need an
ontology-based computing infrastructure that includestology development tools, content creation systems,

12

storage and retrieval systems, ontology reasoning andatiedli and lastly, integration of reasoning with real-
world applications! For preliminary work on developmentaftology tools, see references [21, 32, 33, 50].
Ontologies that will enable application interoperabibtyresolving semantic clashes between application domains
and standards/design codes are currently in developme3d[9

For this vision to become practical, ontology-based tetdmomust be scalable. This means that issues
associated with the “expressiveness of description logiast be balanced against “tractability of computation.”
While the syntax of first-order logic is designed to make &yeto say “things about objects,” predicting the solu-
tion time for evaluation of statements written in standarst-forder logic is often impossible. Description logics
(DLs), on the other hand, emphasize “categories, their itiefiis, and relations,” and are designed specifically
for tractability of inference [4]. Description logics ensuthat subsumption testing (inference) can be solved in
polynomial time with respect to the size of the problem dipsion.

1.3.6 Logic (and Rules)

From this point on, and as indicated in Figure 1.6, we'reusing parts of the Semantic Web that are
still being explored and prototyped. While it's nice to haystems that understand basic semantic and ontological
concepts (subclass, inverse, etc.), it would be even hiétier could create logical statements (rules) that allow
the computer to make inferences and deductions. Reasornihgegpect to deployed ontologies will enhance
“intelligent agents” allowing them to determine, for exdmpf a set of facts is consistent with respect to an
ontology, to identify individuals that are implicitly merats of given class, and so forth.

1.3.7 Digital Signatures

Digital signatures are based on work in mathematics andegyaphy, and provide proof that a certain
person wrote (or agrees with) a document or statement.

1.3.8 Proof, Trust, and Beyond

Because the Semantic Web is an open and distributed systgminciple, anybody can say anything
about anybody. To deal with the inevitable situation of lintde and contradictory statements (data and infor-
mation) on the Semantic Web, there needs to be a mechanisne wieecan verify that the original source does
make a particular statement (proof) and that source iswnrgty (trust). At this point, notions of proof and trust
have yet to be formalized, and a theory that integrates tmonnference engines of the Semantic Web have yet
to be developed. However, these advances in technologyudllr, simply because they are a prerequisite to the
building of real commercial applications.

The ability to “prove things” on the Semantic Web stems diyeftom its support for logical reasoning.
When this system is operational, different people all adoine World will write logic statements. Then, machines
will follow these Semantic “links” to begin to prove factsw&rtz and Hendler [52] point out that while it is very
difficult to create these proofs (it could require followitgpusands, or perhaps millions of the links in the Semantic
Web), it's very easy to check them. In this way, we begin tddoaiWeb of information processors. Some of them
could merely provide data for others to use. Others wouldmater, and could use this data to build rules. The

13

Paladin

Requirement _
Component System Representation ysLem
Assembly ® crucnre [MePpedio g Behavior
Management

Validation of
System
Architecture

Requirernent Walidation
against Component

Specification
Requirement Merging Two Reguirement Collapsing
Template Requirerment Traceability & Requirement
Structure Trees Controlled Hisrarchy
Visualization with Duplicates
into a
raph

Figure 1.10: Architecture of Paladin integrated with Oatyl-Based Rule Checking. For more details, see refer-
ence [36]

smartest would be heuristic engines, powering “intelliggents” which follow all these rules and statements to
draw conclusions, and place their results back on the Weliaadpas well as data or query answers like those
shown in the introduction [38].

Looking ahead, the desired goal for the the Semantic Weliggof software agents which know about
logic, and with the support of the ontology, can then use Rbatvigate the sea of XML documents and perform
logical reasoning tasks on behalf of a user. Each agent vabably have a very limited scope. Perhaps an agent
knows how to find available times at the doctor’s office for pp@ntment. A second agent may know how to find
available times in your personal schedule. A third agent krayw how to ask the other two for available times
and find a common one. A fourth agent may know how to tell agemtsd 6 to add the appointment the doctor’s
schedule and your personal calendar. The key to the infermateices is not in a very complex agent, but an army
of simple agents who can use the Semantic Web infrastrutduw@mmunicate.

1.4 Organization of this Report

This report is divided into six chapters. Chapter 2 covessas associated with the representation and
management of requirements. It provides a formal frameworépecify the XML/RDF schema and template

14

structure to store the requirements. With this formal repngation, approach for controlled visualization of re-
quirements hierarchy-using RDQL is outlined.

Chapter 3 deals with the representation and synthesis@aylevel architectures from reusable component-
specification pairs. Procedures for the bottom-up assembdy synthesis of system-level architectures from
reusable component specification are developed. An RDF hisodeveloped to store the connectivity information
among the objects. Object specifications are translated ML schema. The former can be checked against
requirements. Associated issues include support for pieltiiewpoints of the system architecture, merging of
sub-systems, and so forth. We formulate an XML schema tHbstwre the visual properties of an object.

Chapter 4 contains a working example of a home theater sydtemmain purpose is to illustrate all the
concepts outlined in Chapters 2 and 3.

Chapter 5 investigates the application of “ontologies aaboning” to the solution of engineering prob-
lems. We want to understand the extent to which relatiorsshifg constraints in ontology-based descriptions of
problem domains can influence and improve system-levegdgsiocedures. A Port-Jack ontology is developed
for the home theater system. Class relationships and thaidoestriction between the Port and Jack specify what
kind of connections are permitted. This fact base is traedln Jess input, and rules are added on the basis of the
instances created in GUI.

1.5 Acknowledgments

This work was supported in part by the National Science Fatiod’s Combined Research and Curricu-
lum Development Program (NSF CRCD), an educational grant the Global Precipitation Measurement Project
at the NASA Goddard Space Flight Center, and the Lockheedifv@porporation. We particularly wish to thank
David Everett and Tom Philips at NASA Goddard for their inputhe systems engineering and software devel-
opment phases of this project. The views expressed in th@trare those of the writers and are not necessarily
those of the sponsors.

15

Chapter 2

Representation and Management of
Requirements

The basic building block of object-oriented system develept is assessment of customer needs in the
form of goals and scenarios, followed by their conversida high-level requirements. Requirements define what
the stakeholders - owners, users, and customers - expetafnew system. Satisfying the needs of all stakeholders
may be far from trivial - their demands of the system may beypand in some cases, conflicting in nature. So in
order to achieve a proper system design it becomes abgoasgséntial to have a formal structural framework in
place to manage and enforce project requirements that asistent and unambiguous.

2.1 Organization of Requirements

Requirements are organized so that they can easily suggatation of concerns and top-down decom-
position in system development. For many present-day dpwetnts, these organizational concerns translate into
documents containing hierarchies of stakeholder requ@rgsdictating the needs of the overall system (e.g., func-
tional requirements, interface requirements). Ofterseltegh-level requirements are termed Level 0 requirements

or sometimes, the mission statements of the system.

A common practice in systems engineering circles is pofmuiaif requirements engineering databases
through the parsing and import of textual (requirementgudeents, such as those prepared in Microsoft Word.
While many systems engineers find this pathway of requirésngmreparation convenient, the resulting require-
ments are largely abstract in nature, lack semantics, arydnobe quantifiable. It is therefore the job of the
systems engineer to break down these higher-level regaimeninto lower-level requirements suitable for quanti-

tative evaluation.
2.2 Requirements Allocation and Flowdown

Allocation involves the breaking of a single attribute \@loto parts, and assigning values to subordinate
values. For example, overall system budget is a constragssirce that is divided and allocated to components
making up the system structure. Thus, as shown in the lowéoh&igure 2.1, requirements allocation is the

16

Validate the system

Stakeholder - | Stakeholder

Requirements Test

Verify the system
System | System

Requirements Validate the system Test

Subsystem ~af§—P» | Subsystem

Requirements Test
FIOWd_own of Component Component
Requirements Requirements

Test
/

Allocate requirements
to components.

Figure 2.1: Flowdown of Requirements in the V-Model of Systeevelopment (Adapted from Hull et al. [26])

process of allocating a set of unique requirements to oneooe subsystems or components.

Higher-level requirements are made more granular by refiaimd breaking them down at various levels.
The goal of this “flowdown process” is to successively deftredomplying requirements until a state is reached
where a particular requirement can be assigned to a singhpaoent. Typically, different teams/persons are
responsible for various layers of requirements. So ondbaltequirements mapped to a particular component are
identified, a team can be assigned to design that particataponent.

2.3 Graph Representation of Requirements

Present-day systems engineering tools such as SLATE gwphiepresent the complying and defining
requirements in a tree structure with respect to the remdre of interest. This model works well if requirements
comply/define from a single source. In practice, howevergsirements are classified and broken down into more
granular components, they trace across the same levelh@pfgens because requirements are tightly interdepen-
dent with each other across the same level of abstractioa.r&sult, within the same level, one requirement may
comply or define the other requirements. A partial requineindecument with requirements arranged in layers is
shown in Figure 2.2.

Figure 2.3 shows the tree structure of a complying requirgmedationship modeled in SLATE [1]. In
this particular example, provided by the GPM Project GrouNASA Goddard, there are repetitions of the node
GPM Microwave Imager under the Sampling Requirement. Thigpens because of the inherent limitation of
trees in representing complex requirements structuresianmhrt, because systems engineers like to work with
data/information organized into tree structures — for exama tree structure naturally occurs when paragraphs,
requirements, and so forth are extracted from a Word doctiméwen if initial requirements are written in a
tree structure format, relationships among requiremeets inks) are progressively modified as the requirements

17

Flowdown

_

Compaction of
the tree representatiol

\» into a graph.

Requirements are organized into layers

for team development.

Figure 2.2: Many-to-Many Relationships in Layers of Requients. On the right-hand side we show extraction
and visualization of requirements as a tree, followed bymaction back in to a graph format.

Fiepeuerl: Fesguirenznl Flusbos i, de|

e shs e

Figure 2.3: Tree Representation of Requirements in SLATdEI(&:: Dave Everett, NASA Goddard)

18

evolve. This renders the underlying structure of the remménts document as a graph instead of a tree. Hence,
from this point on partial tree structure views of the regments document are likely to require duplication of the
leaf nodes.

2.4 Requirement Template Structure

As pointed out by Hull et al. [26], in writing a requirementsadiment, two aspects have to be carefully balanced:

1. The need to make the requirements document readable;

2. The need to make the set of requirements processable.
While requirements written in a text editor can be readableé ean be easily imported into many systems-
engineering tools, a fundamental limitation is lack of satita associated with each requirement. In an effort

to mitigate the latter limitation, and enable classificatand reuse of requirements across several projects, the
concept of boilerplates has been proposed by Hull et al. [26]

In this project, we interpret the concept of boilerplategeaaplates. Templates provide users with
placeholders to provide input on the values of requirematttibutes. As a first step, templates are provided for
the requirements relevant in the context of the systemtstrecliagram. Furthermore, we assume that almost all
the requirements can be written in a primitive format i.e,

<attribute, relation, and value>.

For example, a weight requirement on a particular compomeytstate that the mass of the component shall not
exceed 10 Ibs. This in essence translates to

<Mass <= 10>

By gathering the values from the placeholders consisteptirement statements can be generated automatically.
Template Definitions

There is another clear advantage of using the templateg isytstem structure context. As we will soon
see, we can use this information to support the bottom-upsydevelopment. The following templates have been
specified with respect to the system structure:

1. The <specification- of <object> shall not exceee value> <units>

2. The <specification- of <object> shall be less tharvalue> <units>

3. The <specification- of <object> shall be at least:value> <units>

4. The <specification- of <object> shall be greater thaivalue> <units>

5. The <specification- of <object> shall lie within <lesser value and<higher value- units

19

6. The <specification- of <object> shall be<value (numeric)} <units>
7. The <specification- of <object> shall be<value (alphanumeric) <units>

8. The <originating port- of <object> shall connect tecdestination port at the other end.

Since it is not possible to represent the entire requiresnégatument (for example behavior requirements, or
the higher-level requirements that are abstract and oftenguantifiable) within the framework of these eight
templates, template O is reserved for the representatidallobther” requirements. Requirements at the lowest
level in the hierarchy (leaf requirements) are mapped tividdal components in the system structure. These
requirements are in turn grouped on the basis of the competewhich they are mapped, and assigned to either
teams or to sub-contractors for the final design of the corapbrMost of these requirements are checked against
the existing component specifications (possibly among & gfcavailable choices for that component to promote
reuse), before the designer comes up with a final componatnirtatches the requirements mapped to it.

Templates add semantics to the individual requirementsrahdn can be processed to check the spec-
ifications of the components against them. This results isicterable time savings and increases in productivity.
Unfortunately, the practice of checking requirements egfaiomponent specification is still manual. As systems
grow more complex, the number of checks to be performed carkigubecome unmanageable. In Chapter 4, we
develop a complete working example that has a graphicalinteface and automated checking of requirements
written in a template format.

2.5 XML and RDF Representation of Requirements

Depending upon various projects needs, requirements liteedt attributes associated with them. For
example, some of the attributes might be verification metdedcription of requirement, creator, priority and ra-
tional, and so forth. These attributes are customizablemiipg on the particular vision of documenting a set of
requirements. The extensible markup language (XML) carsled to store the attributes and their value. Require-
ments processing can proceed in a number of directions. @ssility is to generate requirements documentation
directly from the XML markup by applying an appropriate XS]6B] transformation. Alternatively, a Java parser,
such as Xerces [61], can be written to extract the value ofttréutes and display them in the graphical user
interface.

Representation of System Requirements

In our prototype software implementation, and as shownguifé 2.4, the system requirements document
is a composition of three separate files:

1. Visual properties of the requirements that include the viay tare drawn on the Paladin GUI screen is stored
in an XML document. Detail of the associated XML schema isilsinto the XML representation of the
system structure and discussed in detail in Section 3.2.

2. Properties of the individual requirements are encoded atrean XML schema as discussed next.

20

» 0
+ =
5
_ Connectivity
Prg::?;r?les Properties of between
: Requirament various
of Requirement reguirament
ahjects
L J

Figure 2.4: Internal Representation of Requirements

3. The connectivity information among various requiremenéots are stored in a RDF file, discussed in Section
2.7.

XML Tag Set for Representation of Requirements

To start with we consider the following attributes of a pautar requirement:

1. Unique identifier

2. A descriptive name of the requirement

3. Rationale

4. \ferification Strategy

5. Comment

6. Creation/last modified date

7. Description of the Requirement (Text), and
8

. Template on which the requirement is based (As defined in@e2t4)

Example 1.Based on the above information, a sample requirement emgadXML might be as follows:

<Requirement ID="REQ.2.1">
<Name Value="Display Requirement" />
<Rationale Value="Need to watch movies on large screen" />
<Verification Value="Demonstration" />

21

<Comment Value="Detailed agreement between the customer a nd builder" />

<REVISION Value="Mon Jun 16 14:00:55 EDT 2003" />

<MAPPED_TO Value="TV" />

<Template NO="0" />

<Description Value="The Home Theater shall have a large dis play screen" />
</Requirement>

Because this requirement is a higher-level abstract remgnt, we use the generic template O for its encoding in
XML.

Example 2. A lower-level requirement.

- <Requirement ID="REQ.3.2">
<Name Value="Thickness of TV" />
<Rationale Value="Comes from Wall mountable display scree n" />
<Verification Value="Demonstration" />
<Comment Value="Component Level Requirement" />
<REVISION Value="Mon Jun 16 14:00:55 EDT 2003" />
<MAPPED_TO Value="TV" />

<Template NO="1" OBJECT="TV" SPECIFICATION="Thickness" SPECLINK="tvl.xml"
VALUE1="6" UNITS="inches" />
<Description Value="Thickness of the TV shall not exceed 6 i nches" />

</Requirement>
2.6 Requirement Traceability and Controlled Visualization

“In the requirement engineering context, traceabilitylisat understanding how high-level requirements
- objectives, goals, aims, aspirations, expectationsgseeare transformed into low-level requirements. It is
therefore primarily concerned with the relationships teswlayers of information” [23].

Requirement traceability is the process of defining andtifigéng relationships among pairs of require-
ments connected to each other at higher and lower levelsqéinement at the higher level is termed the “defining
requirement” for a requirement it points to at the lower le@onversely, the lower-level requirement is called the
complying requirement. In Figure 2.6, for example, REQi8.8he complying requirement of REQ.2.1 and the
defining requirement for REQ.4.10. Requirements can coraptydefine within same level as explained in the
Figure 2.2.

For requirements documents containing hundreds of remeinés, often crossing across levels, com-
prehension of the entire document becomes very difficules@&nt-day systems engineering tools, like SLATE,
address the problem through representation of requiremeritee hierarchies. See Figure 2.3. While the un-
derlying requirements structure is a graph, visualizatibtparts of the requirements” structure as a tree leads to
duplication of leaf nodes. Also, there is no mechanism byctvlihe end user can specify the direction from a
particular requirement node and the number of levels of éste

Selective Visualization

In this work, we propose the concept of a selective visuaitineof either the requirements document
or the system architecture. By means of selective visuidizave will provide user with the option of selecting

22

Display all "complying" and
"defining" requirements
within one step of C.

Result.

Requirements are organized into layers
for team development.

Figure 2.5: Extraction and Visualization of “Complying”é&fDefining” Requirements in a Requirements Neigh-
borhood

Query: For REQ.2.1 show
171 Cne Level Complying Requirement
2 One Level Defining Reguirement
3 One Level both Complying and Defining Reguirement

REG 1 1 | | REQ12 | | REQ.2.1 | | REGA 1 |

REQ.21 REQ.35 | REQ.2T |—--| REQ.3S |

REGQ22 REG .22

Figure 2.6: Extraction and Visualization of “Complying”@fiDefining” Requirements in the Neighborhood of
Requirement 2.1.

23

a particular node in the requirement document or the systaratsre, and ask the question if he/she want to see
the complying or defining or both type of requirements emagarom that particular node. This procedure is
summarized in Figure 2.6. Furthermore, an option of spawfthe number of levels is provided to account for
the fact that requirement hierarchies can be very deep astddeT his selective visualization provides a particular
local viewpoint of the document. Users are provided the figigf to make any changes, including addition
and deletion of links, which could be merged with overall diment to reflect the changes. The implementation
approach to selective visualization is presented in Se&id. A working example and a screenshot of this feature
is illustrated in Chapter 4.

2.7 RDQL Approach to Retrieve Nodes and Links

RDQL [46] is a query language designed for RDF in Jena [29] eled A meta-model specified in
RDF consists of nodes (which could be either literals or ueses) and directed edges. RDQL provides a way of
specifying a graph pattern that is matched against the goayield a set of matches.

voard:M veardM
REQ.11 http SzomewchereMREQ 1 1 httpx FzomewhereREQT 2 REQ.1 .2

Iy A
oy e
L 3T
gy 4%

weardM ' woard: Given weard: M
REQ.21 = Http: Sfzomesehere/REQ 2.1 o httgx FzomewhereREQ.2 .2 REQ.2.2

I g e
Ca?—d' G'l?g;-} \Jc’éiﬁ ot

weared M —
REG.3A hitp: ffzomewchereMREQ 3.1 hitg: fisomeswhereREQ.3 5 REQ3S

weared i
http: ffzomevwehere/REQ.4.10 REGQ.4.10

Figure 2.7: Equivalent RDF Model of the Requirements Doauime

In this framework we have requirements (nodes in the RDF mm&tdel) that are connected by the directed edges
specifying the relationship of complying and defining requients. The originating node of the link specifies a
defining requirement and the terminating node defines a gantptequirement.

The upper half of Figure 2.6 shows a graph of requirementarozed into four layers. Complying and
defining relationships are interleaved among the requingsné/Ne want to see a controlled visualization of the

24

complying and defining requirements with respect to REQ Bxbected results are shown for the required query
at the bottom. The equivalent RDF model for the entire resnént document is illustrated in Figure 2.7.

RDQL works by executing the string queries, which are passexiquery engine. The query engine
looks at the structure of the query and pattern of the quenyatched against all the triplets in the RDF file on
which the query is running. It returns an iterator of the teset which can be inspected to retrieve the desired
result.

Query for Complying requirements One Level Down:

Query string to see the complying requirement is as follows:

String queryString = "SELECT ?X "+
"WHERE(<http://[somewhere/"+currentElement+">,
<http://www.w3.0rg/2001/vcard-rdf/3.0#Given>, ?X)";

The Current element is the REQ.2.1 from which we want to seecttimplying requirements. ?X represents a
clause which returns the resources satisfying the givepgrte.

Query for Defining requirements One Level Up:

Query string to see the defining requirement is as follows:

String queryStringLevelUp = "SELECT ?X "+
"WHERE(?X, <http://www.w3.0rg/2001/vcard-rdf/3.0#Giv en>,
<http://somewhere/"+currentElement+">)";

Query for both Complying and Defining Requirements around Ore Level:

Query string to see both complying and defining requiremardand one level is obtained by a combination of
above two queries executed together.

For multiple level queries can be recursively executed bihalobtained results till it reaches the number
of level or a leaf requirement, whichever occurs earlier. &oomplete working example and screenshots of this
utility please refer to Chapter 5.

25

Chapter 3

Synthesis of System-Level Architectures
from Reusable Component-Specifications

As already mentioned in Chapter 1, the bottom-up synthésiagineering systems from reusable com-
ponents is a key enabler of enhanced business produciigtytbrough improved adaptability to change; shorter
time-to-market with fewer errors) and return on investm(&al).

Requirements Q Q Deliverable product

Testing/Verification

Joo
MeNe OO ¢
i O O

System Demgn O

Decomposmon. Composmon

Y

. Buy vs build?
\ O = Reusable component.

Object Specification O = Custom—built component.

Library of Reusable Components.

Figure 3.1: Flowdown of Requirements into a System-Levedi@® Top-down design is guided by interface
constraints in a component-specification database.

As the size and complexity of systems grow, problems astastiaith system synthesis and the satisfaction of
functional and non-functional requirements become sicgnifi. A tenet of our work is that these challenges can be
kept in check through the use of design methodologies tleabased on formal models of requirements (specific

26

details are covered in Chapter 2), formal models of systeshitactures, and automated design evaluation pro-
cedures. Computational platforms need to expose key limits in resources and system capability (as defined
in the requirements), hide inessential details of impletaigon, and expose interdependencies among disciplines.
Figure 3.1 shows that as high-level requirements are degsetpinto lower-level requirements, and models of
system behavior and system structure are defined, desigoeitd like to “look down into the product library”

to see what standards are available, and so forth. Morefmrannaltered components to be useful across many
contexts, system architectures must be sufficiently ddedwgp that they can be easily pulled apart, reconfigured,
and maintained. Every component should be open to extersibclosed to modification.

The key research question is “How do we describe reusablgponents and their capabilities so that
reuse actually delivers on its promise?” During the past ti®oades, numerous initiatives for reuse of soft-
ware/assets have been proposed, and then they have faflet¥1l The causes of early failure are now evident —
organizing software/assets for reuse is hard; comporassesis were too diverse in their mission; interfaces and
their behavior were poorly defined. Then in the mid 1990ssednitiatives gathered momentum as the need for
commercial-off-the-shelf (COTSs) software/assets grewstecently, the drive for system/software reuse has been
motivated by new mediums of product distribution — “if it stg, then you can find it on the Web!”

Our starting point assumes system architectures are ddfinedllections of components and connec-
tions. Components have well-defined interfaces and funality. Connections describe the permissible interac-
tions among components. Figure 3.2 shows, for example, plsisystem structure composed of two nodes and

one edge.
N Rules for System Assembly
a b
a b ——»= Synthesis —® | A A b B
A
Small collection of modules and connectors. Simple System Assembl

Figure 3.2: System Architectures: Collections of Moduf@snnections, and Rules for System Assembly

Our research goal is to understand how properties and amadity associated with the modules and connections
can be used to construct rules that can guide/improve thbesis of architectural designs and discipline-specific
architecture diagrams. This quest leads to handful ofésterg questions. How, for example, should we iden-

tify invalid parameters and/or connections? On what matglkibndition we should ascertain that two objects in

different system architecture are one and the same thing?

In this study we take a preliminary step toward dealing whkse issues. System objects, which have the
same label (e.g., identifying name) in two different systéaws are considered as the same system objects and
therefore merged together. An RDF approach to merging stdasys works really well here.

27

3.1 Component- and Interface-Based Design

We define a component as an independently deliverable pieltectionality providing access to its
services through interfaces [8]. To achieve system-lguglieation assembly from components, we need:

1. A clear separation of component specification from its dégn and implementation. This principle allows

for orthogonalization of design concerns (e.g., sepanadiomodels of behavior from models of system
structure).

2. An interface-based design approachSystem components are defined by encapsulated behaviasddee
through well-defined interfaces. Interfaces define theisesvthat can be provided by the component, and
the rules under which these services can be provided.

3. Formally recorded component semantics.Informal descriptions of component behavior can be pravide
by way of operation signatures and informal text. Howevetatled descriptions of operational semantics
require formal, verifiable descriptions using pre- and jmastditions attached to each operation.

4. A rigorously recorded refinement processThis process records the history of development for the @amp
nent, and includes information to assure quality and aspd¢he designer’s rationale.

These practices are supported by the principles of orthalgmtion of concerns, effective use of languages for
system modeling, and formal models for system verification.

Interface-Based Design.interface-based design is a methodology that employs coerganterfaces as the key
design abstraction, separates system interfaces fromtifyal details of implementation for virtual components
(VCs), and shows how the interfaces at various levels ofatisvn relate to each other.

Interfaces can be defined through port definitions (a porinply a connection point into a virtual
component), interface behavior (a description of allowadidtivity/transactions through a port), attributes (i.e.
data attributes; flow of control) and transactions and ngessa

Interface

Contract —¢

Pre—conditions

Post—conditions

Figure 3.3: Role of Pre- and Post-Conditions in ContractGbject Usage (Source: Newton A.R., "Notes on
Interface-Based Design,” EECS, UC Berkeley)

An interface specification precisely defines what a clierthat interface/component can expect in terms of: (1)
Supplied operations (e.g., minimum and maximum levels ofifponent functionality); (2) Types of signal, data

28

and information flows, and (3) Operational pre- and posta@mns. Together the pre- and post-conditions and
satisfaction of the input requirements constitute a cattra

3.2 Libraries of Reusable Component-Specifications

A classical problem in the bottom up development of systechitacture is identification of suitable
components in the components library. As components beeonare complex and encompasses more features,
the number and the type of specifications attached to a pkticomponent can quickly grow — see, for example,
Figure 3.4.

In the pre-Web days component specifications were reprathsprinted media (e.g., portable document
format) and distributed through traditional mail. With temergence of web, the same “printed media” can be
put online at supplier/vendor websites, and downloadedpaimtied by the consumer. Any further processing is
still manual, mainly because the portable document formattiich the component specifications are stored lack
semantic descriptions of the particular component. S¢higgob of the systems engineer/designer to ensure that a
component meets all the requirements mapped to that partimemponent. Currently, specifications are matched
against requirements one by one. This can be a Herculean @asisider, for example, a component having 20
specifications attached to it. And suppose there are 50 coemie from different vendors that might be suitable
for the the systems architecture. There are 20 leaf reqeiné&symapped directly to this component, which it must
satisfy. So, in the worst case, determining the complet®@sebmponents that could be reused would require
20,000 cases to be checked. In practice, engineers ofterthakeasy way out and make their selection from a
much smaller set (e.g., 5 instead of 50). The result will bgstéesn design that is likely to be suboptimal.

Schema to Store the Component-Specificatiorf portable document format for storing the component dpeci
cation does not entail any semantics associated with i, Wieat form is right? With the advent of the Semantic
Web, one of the possible answers lies in the design of an XN specification for each component — and, of
course, specifications for components would be availalslddanload over the Web.

In this work we propose a very simple XML schema for storingividual attributes, such as one given
below:

<Size Value="32" Units="inches" />
This attribute states that the size of a particular compbise3®? inches. Java-XML parser can be written to extract

this information from specifications. More discussion andae complete example will be illustrated in Chapter
4, where we develop the Home Theater System.

3.3 RDF-Based Storage of Object Connectivity

The Resource Description Framework (RDF) defines a starfdarspecifying relationships between
objects and classes in a general and simple way. An RDF staterontains triplets viz. subject, predicate and
object. Within the semantic web layer cake, the RDF layerdieove the XML layer. It provides semantics to the

29

Input Object |:—> Output
] —
f : Specification
Interface i._._. 4

Usage
—— Cost.
—— Reliability

Operation

—— Preconditions (... rules)
—— Input (requirements)
— Ports, types,
—— Output (specification)
—— Ports, types,
—— Postconditions (.. rules)
Simplfied Behavior
—— Activity Diagram (.. UML)

—— Performance
—— Attributes
—— Production functions
Simplfied Structure
—— Class diagram (...UML)
—— List of sub—system objects.
Graphical Abstraction
——1/O Transformation (... ports,
—— Clip Art Rendering (.. SVG)

—— Finite State Machine (.. UML)

types).

Figure 3.4: Elements of Object (or Component)-Sp

ecificelfair

encoded metadata and resolves the circular referencesh vghén inherent problem of the hierarchical structure

of XML [24].

Generally speaking, a UML diagram drawn in the Paladin ugerfiace consists of nodes and edges. Not
only can RDF represent these topological relationshipsiataral way, but APIs exist for parsing RDF documents

and computing graph operations, such as intersection and.un

RDF Schema to Store a Node and an Edge.et’s return to the simply syste

m assembly shown on the figimid

side of Figure 3.2. The RDF schema to store the connectivitpgrties is as follows:

<rdf:RDF
xmins:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-

xmins:vcard="http://www.w3.0rg/2001/vcard-rdf/3.0#'
>

<rdf:Description rdf:about="http://somewhere/A’>
<vcard:N>A</vcard:N>
<vcard:Given rdf:resource='http://somewhere/B’/>
</rdf:Description>

<rdf:Description rdf:about="http://somewhere/B’>
<vcard:N>B</vcard:N>

30

ns#'

</rdf:Description>
</rdf:RDF>

The first block of code defines XML namespaces that are utilizethe RDF statements (namespaces take care of
name conflicts and enable shorthand notations for URIS).

xmins:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax- ns#’
xmins:vcard="http://www.w3.0rg/2001/vcard-rdf/3.0#'

Thexmins:rdf namespace is the default RDF schema recommended by W3@nTlhs:vcard is a simple
RDF schema for properties about a person. The latter conegmgkaged with the vocabulary of the RDF API.
For simple RDF modelgcard schema can be utilized but as the model gets more complexjerts to write
his own schema and the associated RDF API for the purpose.

The second and third blocks of RDF code contain statemeiotst évo objects A and B in the system
structure. Their labels are stored througtard:N property, and the connection between the A and B is stored
by vcard:Given property. Again, these two choices are made among a listafadole properties in the vcard
schema, which closely resembles the purpose for which geslu

Representation of the system structure in RDF requires thipgets having the format (subject, predicate,
object) [12]:

1. (http://somewhere/A http://lwww.w3.org/vcard-rdf/3. O#N "A")

2. (http://[somewhere/A http://www.w3.org/vcard-rdf/3. 0#Given
http://somewhere/B)

3. (http://somewhere/B http://www.w3.org/vcard-rdf/3. 0#N "B")

The equivalent RDF graph representation is shown in Figuse 3
3.4 Leaf Requirements Validation Against the Component-Sgcification

Requirements validation is all about checking a particatguirement to see if we are defining the
right requirement and whether it is achievable by the medmaiment technologies. There are two aspects to
requirements validation:

1. Formatting Concerns. By consistent format we mean that the requirement is quabl#iand has a logical
meaning. As explained earlier, current systems engingéoiols do not support such a methodology. This
problem can be solved, in part, with the use of requirememtptates.

2. Performance ConcernsOnce the proper requirement is in place, the next questistéther satisfaction of
the requirement can be achieved by means available pra;&¥9&s components, and custom components.

At this time, procedures to assess “performance concerasagyely manual. However, once suitable component-
specification library schema files have been designed, amathases have been populated, it should be a relatively
straightforward matter to write computer programs thatsyetematically check requirements against the available
component specifications.

31

hittp:ifarwrw. w3 orgf200 Liveard-
rdf#EN

httpaffs me}m_j,&:// A

USAL g PI-PIRdA TO0T
[Ba0Em s g

httpeffwrwrwr w3 orgf 200 1 fveard-

rolf#EN
hittp:iis Dm;\;;m E

Figure 3.5: RDF Graph of the Data Model for a system havingriates and one edge.

32

Chapter 4

Development of a Home Theater System

4.1 Problem Statement

Our long-term research and development objective is melbgdes and tools for the combined top-down
decomposition and bottom-up synthesis and evaluationstérsys that are likely to be deployed in NASA's Global
Precipitation Measurement (NASA GPM) Project. As a firspst@e are trying to understand the role Semantic
Web technologies can play in modeling requirements aneésytvel architectures, and develop prototype tools
that will complement present-day commercial systems ergging tools.

In this chapter, we take up the example of a home-theategraystnd explore bottom-up synthesis and
evaluation processes for a problem domain familiar to thieokrson. We view diagrams of system architectures
as a language, in the sense that the architecture elememtsn@des, edges and attachments) are connected and
arranged under certain rules. The visualization proceisbeiregarded as a translation (or visual mappings)
from textual languages (i.e., XML/RDF markup) into two- ahdee-dimensional visual languages composed of
graphical objects, connection relationships, and geaocwetiationships. The generation of aesthetically plegasin
diagrams from XML/RDF markup currently lies outside theseof work.

4.2 System Structure

The system structure of a home theater system is illustiatédjure 4.1. The GUI portrays the essential
components assembly, completed with port and cable sps@ific A system object such as TV is portrayed as a
port panel consisting of several audio and video ports. tatils, such as the TV screen, are abstracted from the
system-level representation. Cables connect two portsuiprototype implementation, users have the freedom to
use any cable to connect a pair of ports. The equivalent XNdkagentation for the system structure can be found
in Appendix A.

Storing Visual Properties of System Objects (XML).Every system object drawn in the graphical user interface
has visual properties like dimension, color, associatgoeHinks, ID and so forth. An XML schema, such as the
one outlined below, is proposed to store the propertieseéyistem objects.

<?xml version="1.0" encoding="UTF-8" ?>
<Project>

33

=10]]

File Graph ‘iew Project

[Acthity | Class | Objects | UseCase | Statechart | Parts

In.uﬂlul || om||\.nmmn| video out | Cable | Port Panel |

[tocikit utilJack@ed o a|
) toolkit util Jackg@n28
[toalkitutil Jack@es3
) toolkit util JackeT 2
) toolkitutil Jack@zes
[toolkit util Jack@en3
Y toolkit util Jack@ass
[toolktutil. Jackea 7 Video In
Y toolkit.util ObjectLab
D toolkit il ObjectLak:
[toolkit util ObjectLak
[tooikit util ObjectLab
[toolkit util ObjectLabi

3 toolkit uti |.0hject|.ab.§
0

Wideo In

Wideo Out

Audio Out Audio Out

Audio In

Audio In

fudio In Audio In

[toalkitutl ObjectLab{ Speaker 2

) toolkit.util ObjectLab .
) toolkit util. Obje ctlab é
) toolkit util ObjectLabl.
[} toolkitutil ObjectLab g
[toolkit util ObjectLak
) tocikit util ObjectLab
[} toolkit util ObjectLak
[tooikituti ObjectLaby
[toolkitutil ObjectLaby{
[toolkitutil ObjectLabl
) toolkitutil ObjectLak g
D toolidt i ObjectLabll

i
[toolkit util ObjectLab(-
4 »

Audio Out

Wideo Out Audio Out

Audio Out

fudioIn

G

Speaker 1

.

[4]

Figure 4.1: Graphical User Interface for Port Model of Honfedtre System (Source: Graphical User Interface
developed by Natasha Kositsyna)

<Graph start="true">
<Object ID="4337267591854790877" shape="PORT_PANEL" ty pe="47">
<Dimension>44 24 162 129</Dimension>
</Object>
<Object ID="7733796259543882762" shape="CABLE" type="4 6">
<Dimension>156 70 374 70</Dimension>
<Link fromID="5897562330078363886" tolD="-93017186249 5999138" />
</Object>
</Graph>
</Project>

Every object has a unique ID reference, a type, such as CABIFEDRT_.PANEL, and a graphical dimension. For

the objects such as a cable of type edge, a LINK referencesstbe ID’s of the connecting system objects. To
facilitate the import and export of the system structurgdians from Paladin [36], information on visual properties
is stored in a file database. A Java parser constructs a DOMufDent Object Model) tree in program memory,
and exports and imports the XML document into the file systéfm.anticipate that over time, expanded capability
will occur in the form of new objects being added to the GUI aed tags being added to the XML file/database.

34

4.3 System Requirements

Even a simple system such as a home theater can have largenofmbquirements. For the purposes
of illustration, in this section we specify a small subsetatfuirements organized into a three-layer hierarchy, as
shown in Figure 4.2.

File Graph View Project

i Requirements

| Requirement " Lmk” System Object

[toolkit util Requirermnd—
D toolkit.util. RegLinkiay
) toolkit.util RegLinker
[toolkit util ReqLinké:
D toolkit.util ReqlLink:
D toolkit.util Reqlinké:
D toalkit.util RegLinkés:
D toolkit.util ReqlLinki:
D toolkit.util. ReqLinkais
[toolkit util RegLink
[toalkit util ReqLink
[toalkit util ReqLink
[} toolkit.util RegLink
) toolkit.util RegLink
) toolkit.util. RegLink
[toolkit util ReqLinke

rea.32j{reas3| [ReazsplrREC S |Fe@as] [rec.ss] [RE.aig]

(4]

|

Figure 4.2: Requirements Document Structure

Customer needs lie at the top of the hierarchy (Level 1). Rements become more specific as they flow down
to the next higher-levels. The decomposition of requireimienntinues until they can be assigned to individual
components. In practice, when this lowest level of requéetsis attained, a design team is assigned responsibly
for designing the particular component to be compliant withlow-level requirements.

Level 1 Requirements- Preliminary Agreement between Customer and Builder

REQ.1.1: | need to assemble a good home theater system from th e market.
REQ.1.2: The total cost must be less than or equal to USD 8000.

Level 2 Requirements- Detailed Agreement between customer and Builder

REQ.2.1: The home theater shall have a large display screen.

REQ.2.2: The display should be able to be mounted on the wall.

REQ.2.3: The system shall have a high fidelity audio system.

REQ.2.4: All components will be bought from the market.

REQ.2.5: Components of the systems shall be connected to eac h other.

35

As mentioned earlier, the level 2 requirements are moregeéfinan those at level 1. Part of the refinement process
is the establishment of complying and defining requiremesi&gionships. As illustrated in Figure 4.2, REQ.1.1is

a defining requirement for all level two requirements. Thibécause, as a group, the level 2 requirements define
what is “good” for the customer (i.e., see REQ.2.1 thru RERahd REQ.2.5). REQ.1.1 is also a defining require-
ment for REQ.2.4 — users want to assemble the system frortr@ac components available in the commercial
market (REQ.2.4). The cost requirement (REQ.1.2) is a defirequirement for REQ.2.1 thru REQ.2.3 because
a user is constrained by budget considerations, and caimplysbuy whatever is best in the market. As men-
tioned in Section 2.3, requirements can comply and defirteeagdame level, REQ.2.1 thru REQ.2.3 are complying
requirement of REQ.2.4 because the components need to lghtdoom the market. For example, in the era of
mono aural audio signals, a high-fidelity system can't meaareound sound system because such systems were
unavailable in the market.

Level 3 Requirements- Component Requirements

REQ.3.1: Size of the TV shall be at least 32 inches.

REQ.3.2: Thickness of the TV shall not be greater than 6 inche S.
REQ.3.3: Cost of the TV shall be less than 5000 USD.

REQ.3.4: Cost of the Amplifier shall be less than 600 USD.

REQ.3.5: Output of the speaker shall lie within 200 watts and 350 watts.

REQ.3.6: The AudioOut Port of TV shall connect to Audioln por t of Amplifier.
REQ.3.7: The AudioOut Port of VCR shall connect to Audioln Po rt of Amplifier.
REQ.3.8: The AudioOut Port of DVD shall connect to Audioln Po rt of Amplifier.
REQ.3.9: The VideoOut Port of VCR shall connect to Videoln Po rt of TV.

REQ.3.10: The AudioOut Port of Amplifier shall connect to Au dioln Port of Speakers.

Relationships among requirements at this level can be nedswith in a similar way to those at level 2. For
example, REQ.3.6 thru REQ.3.10 are the complying interfagairement of REQ.2.5. A point worth noting is
that relationships between requirements are sometimgscsivie — whether or not the relationship exists depends
on the perspective of the engineer designing the systemoifplicate matters, these links and relationships may
change as the system design evolves.

The complete RDF representation of the three-layer remugre hierarchy can be found in Appendix-B.
4.4 Requirement Template Structure

As discussed in Section 2.4, templates provide a formatstre for representing quantifiable component-
level requirements. Figure 4.3 shows, for example, a sduwap of the input process for REQ.3.1, which says
“Size of TV shall be at least 32 inches.” Notice that REQ.3% template type 3. Other requirements attributes
like Name, Rationale, Description and Revision are alssitated.

User input is translated into a requirement XML property. fifer complete details, the interested reader
is referred to Appendix-C. The fragment of code:

36

& Teollé I

File Graph View Project

Requirements |

| Requirement || Link H System Object ‘

[tonlkit util Requirem{ =
) toolkit.util Reguirems
[toalkit.util ReqLinka
[toolkit util ReqLinka
) toalkitutil RegLinke
[toalkit.util ReqLinka
D toolkit.util. Reguiremd
) toolkitutil ReqLinkey
[toalkit.util RegLinka)
[toolkit.util RegLinke

) toolkit util RegLinke)

[toalkit.util RegLinka
[tonlkit.util RegLinkg)
) toolkit.util RegLinki

[toalkit.util RegLink

[toalkit.util ReqLinka
[toolkit.util RegLink
) toalkit.util RegLink
[toalkit.util RegLink
[toolkit.util RegLink
) toalkit.util RegLink
[toalkit.util RegLink
[toolkit util. RegLinkgy
) toalkit.util RegLinkey
[toalkit.util RegLink@
[toolkit util ReqLinkg:
) toalkit.util RegLink
[toalkit.util RegLink
[toolkitutil RegLinki
[} taolkitutil RegLinkay

Specification

Object

v
Operand [snal be st least

WMalue

RMIONALE reen reguirement|
MAPPED_TO [Tv |
TEMPLATE [z | Malue
DESCFH_PTION a3t least 32 inches|

13339 072009 [|

Gl
ik

MAME

hnches |

REVISION

[

[4]

]
[toalkit.util RegLink@ = | - 2
(mE -IIE Graph1

[c:ity Documentsthesis.xmiis opened

Figure 4.3: Requirement Template Input Dialog

<?xml version="1.0" encoding="UTF-8" ?>
- <Project file="HomeTheater.xml">

- <Requirement ID="REQ.1.1">
<Name Value="Overall System Requirement" />
<Rationale Value="System Objective" />
<Verification Value="Experimental" />
<Comment Value="Preliminary Agreement between customer a
<REVISION Value="Mon Jun 16 14:00:55 EDT 2003" />
<MAPPED_TO Value="Home Theater Amplifier" />
<Template NO="0" />
<Description Value="l need to assemble a good home theater s
</Requirement>

---- requirements removed

- <Requirement ID="REQ.3.1">
<Name Value="Size Requirement on TV" />
<Rationale Value="User definition of Large Display" />
<Verification Value="Demonstration" />
<Comment Value="Component Level Requirement" />
<REVISION Value="Mon Jun 16 14:00:55 EDT 2003" />

37

nd builder" />

ystem from the market" />

£ Toolkit _ .

File GFaph" View Praject -

Actrity

|;Ihiti'ﬁl 'S;i'éib‘_ ” F.“maﬁﬂété'-’” .F.n:rls' H-JmnH Swimlane ‘

[toolkit util RegLinkg] =]
D toolkit.util. RegLinkig
D toolkit.util. RegLlinkiay:
[toolkitutil Requirern
D toolkit.util. RegLinkigy:
[toolkitutil Requirerng:
D toolkit.util. ReglinkiEy:
[toolkit util Requirermg:
Grapha

[toalkit Ltil Requirem
D toolkit.util. RegLinkigy
D toolkit.util. Reglinkig
[} toolkit util Reguirermd=|

[T T

=1

Humber of fevels.

1

Direction

DOWN/OUT

i

L ¥

| 0K | | ‘Cancel |

| I

Figure 4.4: Complying Requirements (1-Level) with respged®EQ.2.3

& Toollit
File Graph View iject-'

[Actwvity |

u foolkt ufil Fequirermi o

[toolkit util RegLinkg@t |
D toolkit.util. ReqLinkas
D toolkit.util. ReqLinki
D toolkit.util. RegLinka
D toolkit.util. RegLinki
D toolkit.util. RegLinkaEs
D toolkit.util. RegLink
D toolkit.util. RegLinka
[toolkit util ReqLinke)
[toalkit util ReqLinke
[toolkit util. RegLinke
[toolkit util. RegLinke
[toolkit util RegLinke
[toalkit util Requirerms:
Graph2

|' _rnﬁial_.'Si'éfE-"||_ F'i‘riﬂl‘é-‘ﬁte;ﬂ k‘ H.lmn" S’;.f.rimla' || Dé.cisnuh- t;pntr"l Flow H Ohject Flow. || Ln‘aui_‘ﬁj”_

Figure 4.5: Defining Requirements (1-Level) with resped®EQ.2.3

38

<MAPPED_TO Value="TV" />

<Template NO="3" OBJECT="TV" SPECIFICATION="Size" SPECL INK="tvl.xml"
VALUE1="32" UNITS="inches" />

<Description Value="Size of the TV shall be at least 32 inche s" />

</Requirement>

shows the details of two requirements represented in XMle fiilst template is for generic requirements that
will not be evaluated quantitatively. The second requinenteas template type 3. Appropriate components are
specified as attributes of the template tag.

4.5 Requirements Traceability and Controlled Visualizaton

The heart of Figure 4.2 is a complex requirements structuith, requirements linking to each other
within and across levels. Present-day systems enginetralg have the capability of showing the complying
requirements relationships, or the defining requiremezitgionships, but not both simultaneously. As a result,
system engineers are not given a complete picture of the lgamgpand defining requirements surrounding a
particular requirement.

toalkitutil ReqLinki |
[toolkit util RegLinke
D toolkit.util. RegLinkis
[toolkitutit Reguirerm
D toolkit.util. RegLinki
[toolkit util Requirerng
D toolkit.util. RegLinki
[y toolkit util Requirerm
Graph3

[y toolkit util Requirerm
[} toolkit util. RegLinke) Number of levels.
[} toalkit util RegLinke 1]

D toolkit.utilL. Reguirems Direction

0 toolkitutl ReaLink@) | | \BOTH

B Coramt | oraun2 | raphs | orapn e

]

Figure 4.6: Complying and Defining Requirements (1-Levethwespect to REQ.2.3

Paladin mitigates this problem by allowing systems engmée specify and visualize requirements in both the
complying and defining directions simultaneously. As a dageoint, Figures 4.4 and 4.5 show the complying

and defining requirements associated with REQ.2.3, reispbctFigure 4.6 is a screenshot of both the complying
and defining requirements. For simplicity, and to illustrétie process, in this example the number of levels of

39

traceability is set to 1 (see the traceability options didbox). Visualization of complying/defining requirements
across multiple levels of traceability (e.g., 2, 3 and may make sense for very large graphs of requirements
organized into multiple layers.

4.6 Merging Two Requirement Trees

Requirement trees or system structure diagrams consistdgfsand edges. In team-based development,
discipline specific graphs and trees of requirements mayekeldped by separate groups. To obtain a complete
description of the requirements (and system architecthe=e discipline specific viewpoints need to be stitched
together. Paladin supports the merging of graphs repredémain RDF format.

As a case in point, Figure 4.7 represents two hypotheticplirements hierarchies obtained from two
different sources. Now suppose that the hierarchies nebd toerged together on the basis of common objects.
The result of the merge operation is shown in Figure 4.8.

4.7 Collapsing Requirement Tree with Duplications

In Section 2.3 we specified the underlying graph structuregfiirements, which when represented as
a tree, yields duplicate nodes, as shown in Figure 2.4. Fgedlacale engineering projects, the printed tree of
requirements may cover all four wall of a moderate sized rddentifying and reasoning with duplicate nodes in
an appropriate manner may be, at best, a cumbersome angermerprocess.

A key benefit in using RDF for the representation of nodes alye of requirements is that a collapse
operation can be performed on trees. This operation rentwelicate duplicate nodes from the tree structure,
thereby revealing the underlying requirements graph strac

For example, Figure 4.9 shows a requirements tree contpimio duplicates of REQ 2.2 and three
duplicates of REQ 3.1. Figure 4.10 shows the graph struectitee the collapsing operation. Looking ahead, we
anticipate that this functionality will be especially uskifh larger project contexts, such as NASA-GPM.

4.8 Components Library

The components specifications are stored in an XML datalmserising of individual components and
their associated specifications list. Component levelirements (Level 3 in this case) are checked against the
specifications to validate the usability of a particular pamment in the system structure.

A very simple schema for storing the specification of a palécTV is shown as below:

<?xml version="1.0" encoding="UTF-8" ?>
<l-- Specification of the TV -->
<Object Name="TV">

<Size Value="27" Unit="inches" />

<Brand Value="Sony" />

<Cost Value="1400" Units="USD" />

40

[y toolkit util RegLink
[toolkit util RegLinkd

[toolkit util. Requirermn
[} toolkit util Requirem
[toolkit util Requirem
[} toalkit util RegLinka
[y toolkit util RegLinkg
Graph2

) toalkit util Requiremé
[y toolkit util Reguirermi.
D toolkit.util. Reguiremg:
[toolkit util Reguirerid:
Y toalkit util RegLink
D toolkit.util. RegLinkigy. |

4]

| ¥]

Figure 4.7: Two Different Requirement Hierarchies PrioMerging Operation

41

| Requirement H LmkH System phje'cti‘
ect |

Grapht
[toolkit util Reguiram
[toolkitutil Reguirern
[tolkit util Reguirem
D toolkitutil RegLinka

3 tanlkit.util.ReqLink@‘%

-

Graph2 e
[toolkitutil Requirems. |
[toolkitutil Reguirem
[toolkitutil. Reguirerng
[y toolkitutil. Reguirerm
[oo kit util RegLink)
D toolkitutil RegLink

e D

ﬂContents of twographs.zml are merged-

Figure 4.8: Requirements Graph after the Merging Operation

<Type Value="Plasma" />
<Mass Value="50" Unit="Ibs" />

<Thickness Value="5" Unit="inches" />
</Object>

This small example is by no means the complete specificaRather, it only serves the purpose of illustrating the
schema. As outlined in the earlier, these schema files witded on the vendor web sites and will be downloaded
on the fly. The vendor web sites might also contain ontologi@slevant properties and relations for the particular

problem domain. Together, the component-specificationamtdlogies can be utilized by reasoning engines to
provide guidance and answers for requirements validation.

4.9 Low-Level Validation of Requirements

When we see the above specification file and compare thicplatinstance of a TV with the specified
requirements, we see that this TV clears the requirementsenost and thickness, but fails against the screen

size. When we invoke the toolkit command to check the requérg against the specification file, we get a dialog
similar to the following, allowing users to take either oéttwo actions:

1. The user can relax the requirement on the Size for the TV.

2. The user can choose another instance of the TV from the daabvdich might satisfy all the component level
requirements as specified above.

42

L Toolkit
File Graph View Project

/ Requirements |

—

[Rosmenon | L] system ot
Al

ect
Graphi
[y toolkit util Requirerms
[tonlkit util Reguirems
[toolkit util Reguirarms
[toolkit util Requirems
[toolkit util RegLinke
[toolkit util. RegLinka
D toolkitutil RegLinkay
[y toolkit util. Reguirernd:
[toolkitutil. Reguirerng

D toolkit.util Reguiremg: REG3
[toolkitutil. Reguirarng
D toolkit.util RegLinkigy 7 |2
£l I

1]

| Requirements |

act
Graphi
[toolkit.util Requiremg
[toolkit util Reguirems
[toolkit util Reguiremms
[toolkit.util. Requirerns
[toolkit util RegLinke
[toolkit util RegLinkéa
D toolkit.util. RegLin ki
[y toolkitutiLRequirerns
[toolkitutil. Reguirerng
D toolkit.util. Requirems
[toolkitutil. Reguirarng

Figure 4.10: Requirements Graph After Collapsing Openatio

43

Reguirerment REG.3.1|failed against Size for TV

OK

Figure 4.11: Error Dialog thrown during Leaf Requiremenlidi@tion against Object Specification

44

Chapter 5

Ontology-Enabled Validation of System
Architectures

This chapter reports on a preliminary investigation in@alpplication of “ontologies and reasoning” for
the validation and verification of system-level architeets The key concern for design purposes is “how do we
ensure the system model is error (or defect) free?” And tbeoe a failure has been detected “how do we identify
and fix the underlying cause of the failure?” Ideally, we weblike validation and verification procedures to be an
integral part of the team-based system development proehksr than a postscript to development.

Our long-term research objective is to fully understandektent to which relationships and constraints
in ontology-based descriptions of problem domains, waykogether with description logic reasoning engines,
can influence and improve system-level design proceduagtcplarly in the early stages of development where
errors may have a significant long-term impact, but if deteéaarly are cheap to correct. A tenet of our work is
that theories of ontologies lead to improved conceptualetsod that is, they help to ensure system-level designs
are faithful representations of both the “stakeholder seatid the capabilities of the participating application
domain(s). For this pathway of thinking to work, systemelanodels need to possess several attributes [49]:

1. Accuracy. The system-level model needs to accurately represent thargies of the participating application
domains, as perceived by the project stakeholders.

2. Completeness.The system-level model should completely represent thevaet semantics of the problem

domain, as perceived by the project stakeholders.

3. Conflict-free. The semantics used in various parts of the system-level haua¥dor various application

domains should not contradict one another.

4. No redundancy. To reduce the likelihood of conflicts arising if and when thedal is updated, the model
should not contain redundant semantics.

Because a unified theory for system validation does not etishis time, present-day procedures for system
validation/testing tend to focus on small snippets of th&tesym model functionality, and are achieved in several
ways: (1) consistency checking, (2) connectivity analyaiad (3) model analysis on a global basis, based upon
graph-theoretic techniques. Irrespective of the approthere are two challenges that must be addressed in the

45

Component
Assemblyin
Faladin

Generate
Instances of
Port and Jack
Classes

DAMLJesskE

Generation of
Rules
(Asking
Cuestions)

_reation of
Fort-dack
DOntology using
Frotege editor

SR Plugin

COnversion
from Protege
format to DAML

Jess Fact Base

Feasibility of System
Architecutre’?

Confirmed

Figure 5.1: Overall Schema for Ontology-Enabled Model Giveg

design of suitable validation procedures. First, problermiulations need to abstract from the system-level model
all of the details not relevant to the assertions that willtésted. This strategy of selective abstraction serves
the dual purpose of helping to keep the validation model agatnally tractable, and, simplifying the task of
identifying faults (conflicts or incompatibilities) in thaesign. The second major challenge is design of test suites
(or sets of rules) that will have sufficient coverage to datae whether the system-level design contains faults.

As a starting point to this avenue of research, in this chhapéedevelop a Port-Jack ontology for the
home theater system. Class relationships and the domadiitties between the Port and Jack specify what kind
of connections are permitted. The fact base is translatdede input, and rules are added on the basis of the
instances created in the Paladin GUI [36]. The result is esrblased system that uses rules to reach conclusions

from a set of premises about connectivity relationships@ttome theatre system.

46

DAMLesskE

5.1 Model Checking Procedure

The model checking procedure begins with the formulatioa &ort-Jack ontology that will describe
allowable constraining relationships in the port and jemkrectivity. Allowable types of connections are expressed
in the form of domain restrictions. We start with an Ontoldgying only an audio cable and the associated ports.

Figure 5.1 illustrates two parallel paths of developmeamaly Ontology development and its integration
with the Paladin GUI to achieve model checking. On the rigdtd side, classes and the constraining relationships
in the form of domain restrictions are defined. DAMLJessKEilfeates reading DAML+OIL pages, interpreting
the information as per the DAML+OIL language, and allowihg tiser to reason over that domain of information
[12, 35]. The DAMLJessKB software [13, 14] employs the SPRRDF API to read in the DAML+OIL file
as a collection of RDF triples. The RDF triples form the faasé of the Jess input file. Jess [30] is a rule
engine and scripting environment written in the Java lagguhat can be used to write applications that have the
capacity to reason using knowledge supplied in the form ofadative rules. Jess employs the Rete algorithm
[19] to process rules, a very efficient mechanism for solhdifficult many-to-many matching problems. On
the left-hand side of Figure 5.1, the component assemblgfined in Paladin. The Paladin GUI generates the
instances of classes defined in the ontology along with tm@ectivity between the ports and the jacks in form
of constraints as specified by the user. To conclude thatysters architecture is consistent with the ontology
definitions/restrictions, constraints defined by the useértae ontology need to be consistent (i.e., simultaneously
true). At this point, only the right-hand side of Figure 5dstbeen fully implemented. To demonstrate that the
method will work, we simulate the rules and facts that wowddybnerated by nodes in the GUI.

5.2 Class Relationships in Port-Jack Ontology

DAML+OIL (DARPA Agent Markup Language) and the OWL (Web Olagy Language) [59] are two
different syntaxes that one can use to create an ontologiMIDOIL is built on the top of RDF; but it has much
richer semantics and schema than RDF.

connects_to

AudinInPort AudinCutPort —cormects_to— AudinCutfack [-converts to Audiolnlack

connects_to

Figure 5.2: Class Relationship in the Port-Jack Ontology

For the purposes of illustration, we consider a simple exarhaving only one cable and associated ports, and its
definition stored in the ontology. The cable is a typical Audable containing two jacks, namely “Audio Out”
jack and “Audio In” jack. The corresponding ports are the #dauOut” Ports and the “Audio In” Ports. The cable

47

definition includes information on the types of allowablet@nd jack connections, and what type of jacks a cable
can have at its two ends.

Figure 5.2 illustrates the corresponding class definiteortsthe relations between the instances as defined
in the Ontology. The convert® relationship signifies the fact that an audio cable hasdifferent types of audio
ports at two ends. As we will soon see, relationships of tpe tan be enforced through the use of rules in a logic
engine.

At this point, a few remarks on the complexity of ontology d®pment are appropriate. The number of
blocks of DAML code needed to represent an ontology incieasth the number of leaf nodes in the ontology.
The size of the DAML blocks, measured in terms of lines of ¢canlereases with increasing numbers of constraints
among the classes. One complicating factor in the impleatiemtis that Ontologies are not unique; indeed, an
underlying feature of the Semantic Web, which we will needetirn how to deal with, is that the structure of
the various classes and the relationships that emerge cstroogly influenced by the perspectives of the creator.
While one developer might think to make a certain thing atibatte of the class, another mightimplement the same
concept it a different class. The details of ontology impdetation propagate to the details of implementation for
the rule checking procedures.

5.3 Equivalent DAML Representation of the Ontology

Once the class and various relationships are in place, wettnegeate an equivalent DAML representa-
tion. There are two ways to generate this transformation:

1. The DAML representation can be hard coded in a text file byimgithe classes and their relationships
manually.

2. We can use graphically-driven software for ontology-baseahputing that reads in the classes and their
relationships, and then generates the DAML or other reptaten as needed.

The first approach is not very intuitive, and often resultsnitology definitions that are not completely consistent.
Hence, we will follow the second approach here. The tool weshesed for defining the Ontology is Protg [45]
developed in Stanford University with a plugin to gener&ie DAML file from SRI [13]. Figures 5.3 and 5.4
provide snapshots of the tool being used to define the clado®utJack and the slot convetts A slotin Protg
maps to domain restriction in DAML. For a description andrapées of domain restriction, slots, and the subclass
relationship, the interested reader is referred to [14].

The Ontology created using this software can be exporteldeHiTML format, which can be browsed
in a web browser such as Netscape [35]. See Figure 5.5. Tdtisréefacilitates documentation of the Ontology, as
the class relationships and the properties associatechvéthtored in the HTML format suitable for browsing.

The DAML plugin used along with Protg generates the DAML fitg the Port-Jack Ontology — the
complete details are located in Appendix D. A small snipgi¢he generated DAML code is as follows:

1 <daml_oil:Class rdf:ID="AudioOutJack">

48

¥ SimpleOntology Protégé-2000 (£:\Program Files\Protoge-2000 \cxamples \SimpleOntology pprd) m i x|
Project Window Help
MEFIEY
[(T1) Classes
Relationship | Super "7 [elx]
@-(TSWGA | Name: comment
o (T):8YSTEM-CLASS A :
@ (C))3MLSchema:anyType : “‘“”'“'“Ja“‘ J | ‘
(S Ontology —
? C;)dan]\;tnl:\ Thina | damiProperties ’?"m’?" xj‘ml =
(€1 Audipinlack |l e [mpe | Other Facets
©Audm0u".iack | [8] connects_to Instance multiple clagses={Port}
@ ©Port | {8 corverts_to Instance multiple classes={Jack}
(T AudioinPort | [5] Mame String single
(&) AuginOutPort | I8]:pocumenTATION String mutiple
e DEEEECE VEE
onPiapery | e | walug
“| lconverts _to ftoClass udioOutlack
| eonnects_to toClass ludiolnPort
L= e V[E] 3] (x| sumciemre [V[E]¥] -
[C)dack : onfroperty | hasClassa tipe] valug
: Logicaldefinition W"amﬁu;ug
e walue |

Figure 5.3: A Screenshot of Protg GUI lllustrating Classgemnies of AudiolnJack

T SimpleOniology Protégé-Z000

(G:\Program Files\Protege-2000 \cxamples\SimpleOntology ppry)

Project Window Help

o=@ =%
G [s[lsiots

g

vielx

cleval

comment
cannected_by
connects_to
converts_to
eguivalentTo
hasClasst
importe

inwerseOf

label
Ingicaldefinition
oanProperty
QualifiedRestiction
restriction
sameClasshs
samePropertyAs
TransitiveProperty
UnambiguausPraperty
UnigueProperty
walue

wersioninfo
ANNOTATED-INSTANCE
ANMOTATION-TEXT

14
8 2) o o) o) e o) i o e

Classes

[T} Jack

[] Transitive

S/ converts to (type=ObjectProperty)

Name.

[eix]

comment

‘cunvens_lu

rangeType

(o]

Allowed Classes

{C) Jack

EquivalentTo

] Unambiguous

EEEE

[This attribute refers to the fact that cable has two
iacks atits ends. AJack atone end corverts to
other jack atthe other end|

Template Values

[¥l Unigue

SamePropertyis -

Ve

InverseOf

S]]

Figure 5.4: A Screenshot of Protege GUI lllustrating Slaig@rties of convertto

49

©CoO~NOOULAWN

Line 1 specifies that AudioOutJack belongs to the class satedfrdamloil. Lines 2-7 specify that the coverts
property of an instance of AudioOutJack should have anmest@f AudiolnJack as a value. Line 8 enforces the
subclass relationship between the AudioOutJack and the-Jagbclass means that an instance of AudioOutJack
is also an instance of a Jack. An equivalent graphical reptation for this snippet of code, as obtained from the

QO OO Q [fierCivindows/Deskion: Thesishack il

| & BEL

[% Protege-2000 Class Tack bocumentat .. |

Project: Sinple Ontology

Class Jack

Concrete Class Extends

daml oil Thing

Direct Instances:
None

Direct Subclasses:
1. AvdicInTack
2. AudioQutTack

Template Slots

Slot name | Documentation Type

Allowed

Values/Classes

Cardinality | Default

converts_io Instance

Jack

0:1000

connacts_to Instance

Port

0:1000

Own Slots

Slot name | Documentation

Type

Value

Cardinality

QuakfiedReastriciion

Tnstance

logicaldefinition

Instance

sameClassds

Instance

equivalentTo

Tnstance

rastriction

Tnstance

Retum to class hierarchy

Iv

1]

Figure 5.5: Screenshot of the Exported Ontology Documimtat HTML

<rdfs:subClassOf>

<daml_oil:Restriction>
<daml_oil:toClass

rdf:resource="#AudiolnJack"/>

<daml_oil:onProperty rdf:resource="#converts_to"/>

</daml_oil:Restriction>

</rdfs:subClassOf>
<rdfs:subClassOf rdf:resource="#Jack"/>
</daml_oil:Class>

W3C RDF Validation service [58] is illustrated in Figure 5.6

AudioOutPort, and the object properties covaasnd connect$o.

5.4 Conversion of DAML Representation to Jess Facts

50

Appendix D contains similar fragments of code for the clasdediolnJack, Port, AudiolnPort and

The Paladin graphical user interface is used to create aafiagf the system structure. Graphical
elements in the system structure diagram correspond @noss of the classes defined in the Port-Jack Ontology.

http/ e der umd. e dd-rmayanty
SunpleCntology. daml#AudioCutlack

JCIESE[OgNE RIS
LTV D00Z/E 30 Ca St Y

bty faraner daml org/2001/03/
damoili#Class

httpd e deramd. e didrmayanky
SipleOntology daml#lack

genid ARPA43632

SR 00U
JEOTO0R/Z0 e A o

http Ao isrumd. edwi~vwmayants
SimpleCntology daml#Audiolnlack

hittp:fhananer daml org/2001/037
damioil#Restriction

http e ist umd. eduformayants
BimpleOntolo gy damlfeonverts_to

Figure 5.6: Equivalent RDF Graph of the Port-Jack Ontology

51

With this connection in place, the next step is to validatd thparticular cable and port connection is consistent
with relationships defined in the Port-Jack Ontology. F& flathway of processing to work, we need a rule engine
such as Jess [30] to convert the Ontology definitions antioakinto a series of assertions or known facts. This is
achieved by using the DAMLJessKB [12] converter developdaraxel University. DAMLJessKB defines a set of
Java API's and packages, which takes the DAML represemtafithe ontology as input. It streams the underlying
DAML model into a series of triples and converts it into Jesseations.

The DAML representation for the Port-Jack ontology is cateetinto 33 Jess facts (facts are represented
as RDF triplets prefixed by the PropertyValue key), which hentassert to be true. For example, the fragment of
code:

assert((PropertyValue http://www.w3.0rg/1999/02/22-r df-syntax-ns#type
http://www.isr.umd.edu/"vmayank/SimpleOntology.daml #Port
http://www.daml.org/2001/03/daml+oil#Class))

asserts that Port is a class. (This fact is added to Jessisnganemory). The complete list of Jess facts may be
found in Appendix E.

5.5 Addition of Rules and Execution of Rete Algorithm

At this time, the automatic generation of instances of Badk classes from the component assembly in
Paladin —why? pressures to graduate on time — has not beémieipted. Hence, we will systematically generate
sample rules that would be generated from the Jess Java Al wonnected to Paladin. For the Port-Jack
ontology, there are three pairs of outcome for correctfirez configuration:

Rule 1. This rule will be fired when the cable has correct jacks awitsénds. The output generated by this rule
is: Cable jacks are consistent with ontology definition

Rule 2. This rule will be fired when the cable does not have corredtgat its two ends as per the Ontology
definition. The output generated by this rule@able jacks not consistent with ontology
definition

Rule 3. This rule will be fired when Jack A is properly Connected totPom@s per the Ontology definition.
The output generated by this rule idack A consistent with Port A as per ontology
definition

Rule 4. This rule will be fired when Jack A is not properly ConnectedPtirt A per the Ontology definition.
The error message is as followdack A not consistent with Port A as per ontology
definition. If you are sure that cable is compatible with the port try reversing
the cable

Rule 5. This rule will be fired when Jack B is properly Connected totBas per the Ontology definition.
The output generated by this rule idack B consistent with Port B as per ontology
definition

52

Rule 6. This rule will be fired when Jack B is not properly Connecte®tut B as per the Ontology definition.
The error message is as followdack B not consistent with Port B as per ontology
definition. If you are sure that cable is compatible with the port try reversing
the cable

When the implementation is complete, Jack and Port instawdkebe generated programmatically from the GUI
as per the user input and fed into this defrule construct s.JExecution of the Rete algorithm will result in an
assertion that the provided set of facts (generated fronsdbte configurations) are consistent with the ontology
definitions. An error message will be printed for each inéstescy in the design, thereby providing the designer
with a means to bridge the gap between designer intent andhafatdurer’s specification for system/object usage.

Suppose, for example, that instances of Jack A and Jack Bidemregenerated programmatically (i.e.,
without the direct role of Paladin). The Jess implementatibRule 1 is as follows:

(defrule allowed-jack-config

(PropertyValue

http://www.daml.org/2001/03/daml+oil#toClass

?anon

http://www.isr.umd.edu/"vmayank/SimpleOntology.daml #AudioOutJack)

(PropertyValue

http://www.daml.org/2001/03/daml+oil#onProperty

?anon

http://www.isr.umd.edu/"vmayank/SimpleOntology.daml #converts_to)

(PropertyValue

http://www.w3.0rg/2000/01/rdf-schema#subClassOf
http://www.isr.umd.edu/"vmayank/SimpleOntology.daml #AudiolnJack
?anon)

(PropertyValue

http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type

?anon

http://www.daml.org/2001/03/daml+oil#Restriction)

=

(printout t "Cable jacks are consistent with ontology defin ition" crlf)

) ;; end defrule construct

The variableAudioOutJack andAudiolnJack in facts 1 and 3 correspond to the types of Jack A and Jack
B, respectively. The reasoning procedure works as folldftsplets 1 through 4 are present in the Jess fact base,
then this rule will be fired and output generated.

53

Chapter 6

Conclusions and Future Work

6.1 Conclusions

Driven by economic and time-to-market concerns, the dgwatnt of large and complex multi-disciplinary
systems is moving a toward a bottom-up development paradigith vendors specializing in particular products,
this approach emphasizes reuse of product and outsourtiagewer possible. In this study we have employed
RDF and XML technologies to create a computing infrastriecthat can query the system database and analyze
the connectivity relationships among system objects. We aken some preliminary steps toward the use of
graph operations that can answer problems associated evittoded visualization of requirements and discipline
specific system viewpoints. Finally, a primitive step hasrbé&ken toward the assessment of ontology-based
computing for validation of properties in a systems ardttitee.

Looking ahead, we see overall system development as a coofleétop-down and bottom-up strategies,
organized for team-based activities, and revamped to tdkernaage of Semantic Web and agent technologies. An
agent-based approach to computing offers the promise tfliegadistributed system development processes that
are more scalable, flexible, extensible and interoperdtaa state-of-the-art procedures today. We anticipate
that when production-level systems of the type describechapters 4 and 5 are common place, content for the
right hand side of Figure 5.1 will come from manufacturersowtill make ontologies for their product lines
available for download over the Web. Ontologies will contspecifications for system/object usage (represented
as propositions in a finite logic). At the time of system atettiure validation, these ontologies will be downloaded
and imported into system-level design environments. Appate logic calculations (theorem provers) will reveal
inconsistencies between the intent of designers and metonéais and features of the actual system design.

6.2 Future Work

This work opens up a whole new domain of opportunities for nethodologies and tools for systems
engineering. The related research issues include:

1. AP233 [42, 43] is an emerging standard for systems engimgelata exchange among vendor tools such
as SLATE, DOORS, Rational Requisite PRO, and CORE [1, 1Q, @sice AP233 is fully developed and
adapted by various vendors, it is our plan to update our XMtoeimg for requirements representation and

54

traceability so that itis AP233 compliant. Then, we will b@eato import data from other tools and represent
and manipulate it in our GUI.

2. In this project we have used RDF and XML to formulate an infation representation for graphs of require-
ments. The scope of our work has been restricted to requiresntieat follow a fixed storage format. It
is clear, however, that in team-based development, rageinés will emanate from multiple sources and
be very heterogeneous, in terms of storage format, orgémizaHence, there is a need for research and
development that will advance the ability of various docuafrtgpes to be annotated with RDF descriptions
of their semantic content. This capability will create ahvedy toward elicitation, representation, synthesis,
and management of heterogeneous requirement types.

3. As the Semantic Web drives the storage of component spdimfisaonto web, there will be a pressing need
for a specification builder GUI that will elicit the necesgdata, and export it to a standardized component
specification schema formulated and agreed upon by the gredndors.

4. We have demonstrated in this work that a simple Jack and Ptotagy can enable the analysis of connec-
tivity relationships in a system architecture. Ideally, weuld like to extend this capability to families of
ontologies who, collectively, provide complete coverafjeancepts relating to the system capability and
system development process. Reasoning procedures shaéphble of working at the level of individual
sub-systems/modules and across collections of heterogsmeatities.

One assumption that makes the Jack-Port ontology exampéalistically simple is hard coding of the
design activity (i.e., Port and Jack connectivity) contatad the Jess rule base. In our opinion, future imple-
mentations should move toward a capability for contextrawamputing; that is, a computing environment
that employs knowledge and reasoning to understand thidoegext — concepts, relationships and attributes
— of design situations, and then shares and reasons withmaf@mn to and from other system types.

It seems that context-aware computing can be implementadsasof progressively complex layers. First,
simplified notions of context can be attached to objects,(fagks and ports). A much more challenging
problem is determination of appropriate context, with appiation and reasoning) in the assembly of the
system structure. Such an environment would make use ofcafiph- and context-specific ontologies
covering various types of design spaces (e.g., port-maseid; electro-mechanical spacecraft design).

5. After the requirements are elicited (correctly) from the gases and scenarios, the next major step is to gen-
erate and evaluate system architecture alternatives amtlicbtrade-off and optimization studies. A limited
capability for importing various components manually fréine components library is already in place.
There is a strong need for frameworks that will allow the usexnalyze an entire database of components,
and provide the designer with the critical feedback on treégemargins based on the imported components
specification. These framework should be integrated wighajptimization tools, such as CPLEX, thereby
allowing users to generate and graphically display famitie noninferior design solutions and/or tradeoff
surfaces among performance attributes.

6. Our present work is based solely on the representation afregents, system structure and mapping between
them. Still missing is a framework for building and expogtithe system behavior diagram (such as state

55

charts, functional flow block diagram) along with assoaagemantics. This tool might also be integrated
with simulation tools such as Arena and finite state autort@atarry out simulations and verification of the
system.

7. Validation procedures should also be extended so that theyhandle a complete range of connectivity
concerns enabled by the port model in Chapter 4. In Chaptee®ave validated connectivity based on
labels alone. A useful extension of capability would be tawaalidation of physical flows — signals, forces,
energy — where compatibility of physical units is a prersgaito connectivity.

8. Last but not the least, visualization of systems architecheeds to be polished, as the diagrams should look
aesthetically pleasant. An integration of graph drawirgpdathms [16, 25, 53] with possibly import of
packages from existing sources [28, 31, 57] could be intedriato the tool to provide the automatic graph
layout as per the specified algorithm

56

Bibliography

[1] SLATE. See http://www.eds.com/products/plm/teantegilate/. 2003.
[2] Adobe lllustrator. See http://www.adobe.com/produidtistrator/main.html. 2002.
[3] ARENA Simulation. See http://www.arenasimulatiomuo 2003.

[4] Baader F., Calvanese D., McGuinness D., Nardi D., Patdlneider P.The Description Logic Handbook
Cambridge University Press, February 2003.

[5] Berners-Lee, T. XML and the Web. Keynote address at thd XMbrld 2000 Conference.
[6] Berners-Lee T., Hendler J., Lassa O. The Semantic \8ekentific Americajpages 35-43, May 2001.

[7] Bray T., Paoli J., Sperger-McQueen S., editors.. Bxit#adlarkup Language (XML) 1.0, W3C Recommen-
dation, February 1998. See http://www.w3.0rg/TR/REC-xml

[8] Brown A.W. Large-Scale Component-Based DevelopmAdtison-Wesley, 2000.

[9] Ciocoiu M., Gruninger M., Nau D.S. Ontologies for Integing Engineering Applicationslournal of Com-
puting and Information Science in Engineerjigl):12-22, 2001.

[10] CORE. See http://www.vitechcorp.com/productlirienh 2003.

[11] DARPA Agent Markup Language (DAML). See http://wwwrdborg. 2003.

[12] DAMLJessKB. See http://edge.mcs.drexel.edu/assesiboftware/damljesskb/damljesskb.html. 2003.
[13] DAML+OIL Plugin for Protg 2000. See http://www.ai.ssom/daml/DAML+OIL-plugin/index.htm. 2003.
[14] DAML+OIL Walk Through. See http://www.daml.org/20@B/daml+oil-walkthru.html. 2003.

[15] Dynamic Object Oriented Requirements System (DOORB&®. http://www.telelogic.com/products/doorsers/doors
2003.

[16] Eades P, Tamassia R. Algorithms for Drawing Graphs: Amdtated Bibliography. Technical Report
Technical Report CS-89-09, Department of Computer ScigBraavn University, Providence, R.I., February
1989.

[17] Easili V., and McGarry F. et al. The Software Enginegriraboratory — An Operational Experience Factory.
In Proceedings of the Fourteenth International Conferencé&oftware EngineeringVielbourne, Australia,
May 1992.

57

[18] Fensel D., van Harmelen F., Horrocks I., McGuinnes$Tatel-Schneider P. OIL: An Ontology Infrastructure
for the Semantic Web EEE Intelligent Systempages 38—-45, March/April 2001.

[19] Forgy C.L. Rete: A Fast Algorithm for the Many PatterrdV Object Pattern Match Problemartificial
Intelligence 19:17-37, 1982.

[20] Geroimenko V., and Chen C. (EdsVYisualizing the Semantic Web: XML-based Internet and médion
Visualization Springer, 2003.

[21] Golbeck J., Grove M., Parsia B., Kalyanpur A., and Hendl New Tools for the Semantic Web.Pmceed-
ings of 13th International Conference on Knowledge Engingeand Knowledge Management EKAWO02
Siguenza, Spain, October 2002.

[22] Global Precipitation Measurement Project. See Hgpm.gsfc.nasa.gov/index.html. 2003.

[23] Gruniger M., and Lee J. Ontology Applications and DesigCommunications of the ACMI5(2):39-41,
February 2002.

[24] Hendler J. Agents and the Semantic WHBEE Intelligent Systempages 30-37, March/April 2001. Avail-
able on April 4, 2002 from http://www.computer.org/inigént.

[25] Herman |. Graph Visualization and Navigation in Infation Visualization: A SurveylEEE Transactions
on Visualization and Computer Graphj&{1):24—43, January-March 2000.

[26] Hull M.E.C., Jackson K., and Dick A.J.Requirements Engineering, Practitioner Seriedpringer, New
York, USA, 2002.

[27] ILOG CPLEX. See http://www.cplex.com. 2003.

[28] ILOG Views Component Suite. See http://www.ilog.cmoducts/views/graphlayout/. 2003.

[29] Jena - A Java API for RDF. See http://www.hpl.hp.comigeb/. 2003.

[30] Jess — The Expert System Shell for the Java Platformh8p#/herzberg.ca.sandia.gov/jess/. 2003.
[31] Jgraph. See http://jgraph.sourceforge.net. 2003.

[32] Kalyanpur A., Golbeck J., Grove M., and Hendler J. An RBditor and Portal for the Semantic Web. July
2002.

[33] Kalyanpur A., Parsia B., Hendler J., Golbeck J. SMOREem@ntic Markup, Ontology, and RDF Editor,
2003. Maryland Information and Network Dynamics (MIND) Labniversity of Maryland, College Park.
For details, see http://www.mindswap.org.

[34] Kiliccote H., Garrett J.H. Standards Usage Languadd {S Journal of Computing in Civil Engineering
15(2):118-128, 2001.

[35] Kopena J., and Regli W.C. DAMLJessKB: A Tool for Reasanwith the Semantic WelEEE Intelligent
Systems2003.

58

[36] Kositsyna N., Mayank V., and Austin M. Paladin Softwdmmlset.Institute for Systems Reseas@003. For
more information, see http://www.isr.umd.edu/paladin/.

[37] Kronlof K. Method Integration : Concepts and Case Studikshn-Wiley and Sons, 1993.

[38] Lu S., Dong M., and Fotouhi, F. The Semantic Web: Opputies and Challenges for Next-Generation Web
Applications.Information Researcgtv(4), 2002. Available at: http://InformationR.net/if7paperl34.html.

[39] Maedche A.Ontology Learning for the Semantic Wdkluwer Academic Publishers, 2002.
[40] 2002. MathML. Referenced on April 6, 2002. See hhttpviv.w3.org/Math.

[41] 2002. Matlab. Referenced on April 5, 2002. http://wwathworks.com.

[42] Muller D. Requirements Engineering Knowledge Managatbased on STEP AP233. 2003.
[43] Oliver D. AP233 - INCOSE Status RepotNCOSE INSIGHT5(3), October 2002.

[44] Paulk M., Curtis M., Chrissis M., and Weber C. CapapilMaturity Model for Software: Version 1.1.
Technical report, Pittsburgh, PA, February 1993.

[45] The Protg Ontology Editor and Knowledge Acquisitiors®&m. See http://protege.stanford.edu. 2003.
[46] RDF Data Query Language (RDQL). See http://www.hplclm/semweb/rdgl.htm. 2003.
[47] Rational Rose. See http://lwww.rational.com/prodiroise/. 2003.

[48] SelbergS. A., Austin M.A. Requirements Engineerind ttre Semantic WeBSR Technical Report 2003-20
2003. See http://itechreports.isr.umd.edu/TechRep®R£2003/TR2003-20/TR2003-20.phtml.

[49] Shanks G., Tansley E., Weber R. Using Ontology to Vaédaonceptual ModelsCommunications of the
ACM, 46(10):85-89, 2003.

[50] Sirin E., Hendler J., Parsia B. Semi-automatic Comgimsiof Web Services using Semantic Descriptions,
2002. Accepted to "Web Services: Modeling, Architecturd arfrastructure” Workshop in conjunction with
ICEIS2003.

[51] 2002. Scalar Vector Graphics (SVG). Referenced on IAprb, 2002. See
http://www.w3.0rg/Graphics/SVG/Overview.html.

[52] Swartz A., and Hendler J. The Semantic Web: A Network oftént for the Digital City, 2002. Available at
http://blogspace.com/rdf/SwartzHendler.

[53] Tamassaia R., Battista G., and Batini C. Automatic Gr&pawing and Readability of DiagramdEEE
Transactions on Systems, Machines and Cyberngtagges 6179, January 1988.

[54] Unified Modeling Language (UML). See http://www.omggtuml. 2003.
[55] Unicode. Referenced on April 4, 2002. See http://wwnicode.org. 2002.

[56] URI. Referenced on April 4, 2002. See http://www.iduén-notes/rfc239c.txt. 2002.

59

[57] Drawing Graphs with VGJ. Department of Computer Science and Software Enginee2003.

http://www.eng.auburn.edu/department/cse/reseamabiigirawing/graptdrawing.html.
[58] W3C RDF Validation Service. See http://www.w3.org/RWMalidator. 2003.
[59] Web Ontology Language (OWL). See http://www.w3.org/dwl-ref/. 2003.
[60] Microsoft Word, Referenced on April 5, 2002. See httpaw.microsoft.com/office/word. 2002.
[61] Xerces. Referenced on April 4, 2002. See http://xnadye.org. 2002.
[62] XHTML. Referenced on April 5, 2002. See http://www.wBy/MarkUp. 2002.

[63] XSLT. Referenced on April 5, 2002. See http://lwww.wg/i&Style/XSL. 2002.

60

See

Appendices
Appendix A. XML Representation of the Home Theater System

This data file represents the schema for storing the visaggsties of the objects/requirements created
in the Paladin toolkit. Some of this visual information iseded to redraw the component on the screen — namely,
its dimension, type of the object, its ID, and separate gsapla particular view. All of this information is stored
in a hierarchy of corresponding tags inside the object.

<?xml version="1.0" encoding="UTF-8" ?>
<Project>
<Graph start="true">

<Object 1D="4337267591854790877" shape="PORT_PANEL" t ype="47">
<Dimension>44 24 162 129</Dimension>

</Object>

<Object ID="7733796259543882762" shape="CABLE" type=" 46">
<Dimension>156 70 374 70</Dimension>

<Link fromID="5897562330078363886" tolD="-93017186249 5999138" />
</Object>

<Object 1D="-4227801706294106407" shape="CABLE" type= "46">

<Dimension>257 211 131 126</Dimension>

<Link fromID="-2400144836664991188" tolD="-3570893981
</Object>

<Object 1D="-212117402712482581" shape="CABLE" type="
<Dimension>342 277 462 277</Dimension>

<Link fromID="-3941780722503364518" tolD="-3492806288
</Object>

45097484" />

46">

84105229" />

<Object 1D="6823559814550310809" shape="CABLE" type=" 46">
<Dimension>213 282 171 349</Dimension>

<Link fromID="9127970985135915536" tolD="504050845200 7293263" />
</Object>

<Object ID="-5116623924643214452" shape="PORT_PANEL" type="47">
<Dimension>458 246 556 313</Dimension>

</Object>

<Object 1D="6425550699874130311" shape="CABLE" type=" 46">

<Dimension>419 103 321 212</Dimension>

<Link fromID="-8041419687310972460" tolD="86745203452
</Object>

<Object 1D="9179454190841196613" shape="CABLE" type="
<Dimension>100 126 100 348</Dimension>

<Link fromID="7619911316542097551" tolD="194547184261
</Object>

<Object ID="-5505813272925557232" shape="PORT_PANEL"

<Dimension>212 213 346 327</Dimension>
</Object>

<Object 1D="-3941780722503364518" shape="PORT" type="
<Dimension>332 267 352 287</Dimension>

<Link tolD="-5505813272925557232" />

</Object>

<Object 1D="-349280628884105229" shape="PORT" type="4
<Dimension>452 267 472 287</Dimension>

<Link tolD="-5116623924643214452" />

</Object>

<Object ID="5040508452007293263" shape="PORT" type="4
<Dimension>161 339 181 359</Dimension>

<Link tolD="-6056953104219719173" />

</Object>

61

13607480" />
46">

9664061" />

type="47">

48">

8">

<Object 1D="9127970985135915536" shape="PORT" type="4
<Dimension>203 272 223 292</Dimension>

<Link tolD="-5505813272925557232" />

</Object>

<Object 1D="-8631530153037221977" shape="PORT" type="
<Dimension>272 317 292 337</Dimension>

<Link tolD="-5505813272925557232" />

</Object>

<Object 1D="1945471842619664061" shape="PORT" type="4
<Dimension>90 338 110 358</Dimension>

<Link tolD="-6056953104219719173" />

</Object>

<Object 1D="-930171862495999138" shape="PORT" type="4
<Dimension>364 60 384 80</Dimension>

<Link tolD="-6397728818364024033" />

</Object>

<Object 1D="-8041419687310972460" shape="PORT" type="
<Dimension>409 93 429 113</Dimension>

<Link tolD="-6397728818364024033" />

</Object>

<Object 1D="-2400144836664991188" shape="PORT" type="
<Dimension>247 201 267 221</Dimension>

<Link tolD="-5505813272925557232" />

</Object>

<Object 1D="8674520345213607480" shape="PORT" type="4
<Dimension>311 202 331 222</Dimension>

<Link tolD="-5505813272925557232" />

</Object>

<Object 1D="-357089398145097484" shape="PORT" type="4
<Dimension>121 116 141 136</Dimension>

<Link tolD="4337267591854790877" />

</Object>

<Object I1D="7619911316542097551" shape="PORT" type="4
<Text>A</Text>

<Dimension>90 116 110 136</Dimension>

<Link tolD="4337267591854790877" />

</Object>

<Object I1D="5897562330078363886" shape="PORT" type="4
<Dimension>146 60 166 80</Dimension>

<Link tolD="4337267591854790877" />

</Object>

<Object 1D="5888226028590857221" shape="LABEL" type="
<Text>TV</Text>

<Dimension>91 46 111 68</Dimension>

<Link tolD="4337267591854790877" />

</Object>

<Object 1D="-3464995602672494238" shape="LABEL" type=
<Text>Home<nl>Theater<nl>Amp</Text>

<Dimension>260 254 308 308</Dimension>

<Link tolD="-5505813272925557232" />

</Object>

<Object ID="5766306240200143317" shape="LABEL" type="
<Text>DVD</Text>

<Dimension>97 364 128 386</Dimension>

<Link tolD="-6056953104219719173" />

</Object>

<Object 1D="-1125144154021993343" shape="LABEL" type=
<Text>Speaker 2</Text>

<Dimension>482 268 544 290</Dimension>

<Link tolD="-5116623924643214452" />

</Object>

<Object 1D="-2548812202442281956" shape="LABEL" type=
<Text>Audio Out</Text>

<Dimension>352 289 411 311</Dimension>

<Link tolD="-3941780722503364518" />

</Object>

<Object 1D="-8080414068675241044" shape="LABEL" type=

62

8">

48">

8">

8">

48">

48">

8">

8">

8">

8">

40">

"40">

40">

"40">

"40">

"40">

<Text>Audio In</Text>

<Dimension>404 242 454 264</Dimension>

<Link tolD="-349280628884105229" />

</Object>

<Object 1D="5307719630104561260" shape="LABEL" type="
<Text>Speaker 1</Text>

<Dimension>264 436 326 458</Dimension>

<Link tolD="-7075534318685230158" />

</Object>

<Object I1D="-7072323418332330746" shape="LABEL" type=
<Text>Video In</Text>

<Dimension>32 135 82 157</Dimension>

<Link tolD="7619911316542097551" />

</Object>

<Object 1D="1702425072755131235" shape="LABEL" type="
<Text>Audio In</Text>

<Dimension>157 247 207 269</Dimension>

<Link tolD="9127970985135915536" />

</Object>

<Object 1D="-8447650783263509459" shape="LABEL" type=
<Text>Audio Out</Text>

<Dimension>170 120 229 142</Dimension>

<Link tolD="-357089398145097484" />

</Object>

<Object ID="-566334250751855220" shape="CABLE" type="
<Dimension>282 327 282 420</Dimension>

<Link fromID="-8631530153037221977" tolD="-8831546525
</Object>

<Object 1D="-8831546525121722840" shape="PORT" type="
<Dimension>272 410 292 430</Dimension>

<Link tolD="-7075534318685230158" />

</Object>

<Object ID="-6397728818364024033" shape="PORT_PANEL"

<Dimension>373 45 522 105</Dimension>
</Object>

<Object ID="-6056953104219719173" shape="PORT_PANEL"

<Dimension>55 347 205 393</Dimension>
</Object>

<Object 1D="-3960374134036905440" shape="LABEL" type=
<Text>Audio Out</Text>

<Dimension>120 305 179 327</Dimension>

<Link tolD="5040508452007293263" />

</Object>

<Object 1D="4268930084446139984" shape="LABEL" type="
<Text>Video Out</Text>

<Dimension>32 305 91 327</Dimension>

<Link tolD="1945471842619664061" />

</Object>

<Object ID="7722487328336319391" shape="LABEL" type="
<Text>Audio In</Text>

<Dimension>239 169 289 191</Dimension>

<Link tolD="-2400144836664991188" />

</Object>

<Object 1D="-4131231084681303988" shape="LABEL" type=
<Text>Video In</Text>

<Dimension>173 37 223 59</Dimension>

<Link tolD="5897562330078363886" />

</Object>

<Object 1D="-8708940313658193746" shape="LABEL" type=
<Text>Video Out</Text>

<Dimension>305 81 364 103</Dimension>

<Link tolD="-930171862495999138" />

</Object>

<Object 1D="-1380059460790430106" shape="LABEL" type=

63

40">

"40">

40">

"40">

46">

121722840"

48">

type="47">

type="47">

"40">

40">

40">

"40">

"40">

"40">

/>

<Text>Audio In</Text>
<Dimension>350 200 400 222</Dimension>
<Link tolD="8674520345213607480" />
</Object>
- <Object ID="600277411624340355" shape="LABEL" type="4 0">
<Text>VCR</Text>
<Dimension>445 65 476 87</Dimension>
<Link tolD="-6397728818364024033" />
</Object>
- <Object ID="-5640294704235571447" shape="LABEL" type= "40">
<Text>Audio Out</Text>
<Dimension>428 120 487 142</Dimension>
<Link tolD="-8041419687310972460" />

</Object>

- <Object ID="-7075534318685230158" shape="PORT_PANEL" type="47">
<Dimension>251 417 344 476</Dimension>
</Object>

- <Object ID="2386762432953440281" shape="LABEL" type=" 40">

<Text>Audio Out</Text>
<Dimension>302 332 361 354</Dimension>
<Link tolD="-8631530153037221977" />
</Object>

- <Object ID="648612592363060694" shape="LABEL" type="4 o>
<Text>Audio In</Text>
<Dimension>302 386 352 408</Dimension>
<Link tolD="-8831546525121722840" />
</Object>
</Graph>
</Project>

Appendix B. RDF Representation of the Requirements Structure

This data file outlines a schema to store the connectivitgrmétion of the requirement objects created
in the Paladin toolkit in the RDF. All requirements corresgdo a resource, which have their ID’s as the Name
attribute, and connectivity to other requirement objeotsspecified through the VCARD:Given property.

<rdf:RDF
xmins:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax- ns#’
xmins:vcard="http://www.w3.0rg/2001/vcard-rdf/3.0#
>

<rdf:Description rdf:about="http://somewhere/REQ.3.1 >
<vcard:N>REQ.3.1</vcard:N>
</rdf:Description>

<rdf:Description rdf:about="http://somewhere/REQ.3.5 >
<vcard:N>REQ.3.5</vcard:N>
</rdf:Description>

<rdf:Description rdf:about="http://somewhere/REQ.3.9 >
<vcard:N>REQ.3.9</vcard:N>
</rdf:Description>

<rdf:Description rdf:about="http://somewhere/REQ.2.5 >
<vcard:N>REQ.2.5</vcard:N>
<vcard:Given rdf:resource="http://somewhere/REQ.3.6’ />
<vcard:Given rdf:resource="http://somewhere/REQ.3.7’ />
<vcard:Given rdf:resource="http://somewhere/REQ.3.8’ />
<vcard:Given rdf:resource="http://somewhere/REQ.3.9’ />
<vcard:Given rdf:resource="http://somewhere/REQ.3.10 >

</rdf:Description>

<rdf:Description rdf:about="http://somewhere/REQ.3.6 >

64

<vcard:N>REQ.3.6</vcard:N>
</rdf:Description>

<rdf:Description rdf:about="http://somewhere/REQ.2.2
<vcard:N>REQ.2.2</vcard:N>
<vcard:Given rdf:resource="http://somewhere/REQ.3.2’
<vcard:Given rdf:resource="http://somewhere/REQ.3.3’
</rdf:Description>

<rdf:Description rdf:about="http://somewhere/REQ.3.1
<vcard:N>REQ.3.10</vcard:N>
</rdf:Description>

<rdf:Description rdf:about="http://somewhere/REQ.3.3
<vcard:N>REQ.3.3</vcard:N>
<vcard:Given rdf:resource="http://somewhere/REQ.3.2’
</rdf:Description>

<rdf:Description rdf:about="http://somewhere/REQ.1.1
<vcard:N>REQ.1.1</vcard:N>
<vcard:Given rdf:resource="http://somewhere/REQ.2.1’
<vcard:Given rdf:resource="http://somewhere/REQ.2.2’
<vcard:Given rdf:resource="http://somewhere/REQ.2.5’
<vcard:Given rdf:resource="http://somewhere/REQ.2.3’
<vcard:Given rdf:resource="http://somewhere/REQ.2.4’

</rdf:Description>

<rdf:Description rdf:about="http://somewhere/REQ.2.1
<vcard:N>REQ.2.1</vcard:N>
<vcard:Given rdf:resource="http://somewhere/REQ.3.1’
<vcard:Given rdf:resource="http://somewhere/REQ.3.2’
<vcard:Given rdf:resource="http://somewhere/REQ.3.3’
</rdf:Description>

<rdf:Description rdf:about="http://somewhere/REQ.2.4
<vcard:N>REQ.2.4</vcard:N>
<vcard:Given rdf:resource="http://somewhere/REQ.2.3’
<vcard:Given rdf:resource="http://somewhere/REQ.2.2’
<vcard:Given rdf:resource="http://somewhere/REQ.2.1’
</rdf:Description>

<rdf:Description rdf:about="http://somewhere/REQ.3.7
<vcard:N>REQ.3.7</vcard:N>

</rdf:Description>

<rdf:Description rdf:about="http://somewhere/REQ.3.2
<vcard:N>REQ.3.2</vcard:N>

</rdf:Description>

<rdf:Description rdf:about="http://somewhere/REQ.1.2
<vcard:N>REQ.1.2</vcard:N>
<vcard:Given rdf:resource="http://somewhere/REQ.2.1’
<vcard:Given rdf:resource="http://somewhere/REQ.2.2’
<vcard:Given rdf:resource="http://somewhere/REQ.2.3’
<vcard:Given rdf:resource="http://somewhere/REQ.2.4’
</rdf:Description>

<rdf:Description rdf:about="http://somewhere/REQ.3.4
<vcard:N>REQ.3.4</vcard:N>
<vcard:Given rdf:resource="http://somewhere/REQ.3.5’
</rdf:Description>

<rdf:Description rdf:about="http://somewhere/REQ.2.3
<vcard:N>REQ.2.3</vcard:N>
<vcard:Given rdf:resource="http://somewhere/REQ.3.4’
<vcard:Given rdf:resource="http://somewhere/REQ.3.5’
</rdf:Description>

<rdf:Description rdf:about="http://somewhere/REQ.3.8

65

/>
/>

0>

/>

/>
/>
/>
/>
/>

/>
/>
/>

/>
/>
/>

/>
/>
/>
/>

/>

/>
/>

<vcard:N>REQ.3.8</vcard:N>
</rdf:Description>
</rdf:RDF>

Appendix C. Regpuirements Property XML File

The following XML schema stores the properties of the indiidl requirements.

<?xml version="1.0" encoding="UTF-8" ?>
- <Project file="HomeTheater.xml">

- <Requirement ID="REQ.1.1">
<Name Value="Overall System Requirement" />
<Rationale Value="System Objective" />
<Verification Value="Experimental" />
<Comment Value="Preliminary Agreement between customer a nd builder" />
<REVISION Value="Mon Jun 16 14:00:55 EDT 2003" />
<MAPPED_TO Value="Home Theater Amplifier" />
<Template NO="0" />
<Description Value="| need to assemble a good home theater s ystem from the market" />
</Requirement>

- <Requirement ID="REQ.1.2">
<Name Value="Overall Cost Requirement" />

<Rationale Value="Cost limit to be imposed on the component s" />
<Verification Value="Analytical" />
<Comment Value="Preliminary agreement between customer a nd builder" />

<REVISION Value="Mon Jun 16 14:00:55 EDT 2003" />

<MAPPED_TO Value="Home Theater Amplifier" />

<Template NO="0" />

<Description Value="The total cost must be less than or equa | to 8000 USD" />
</Requirement>

- <Requirement ID="REQ.2.1">
<Name Value="Display Requirement" />
<Rationale Value="Need to watch movies on large screen" />
<Verification Value="Demonstration" />
<Comment Value="Detailed agreement beween the customer an d builder" />
<REVISION Value="Mon Jun 16 14:00:55 EDT 2003" />
<MAPPED_TO Value="TV" />
<Template NO="0" />
<Description Value="The Home Theater shall have a large dis play screen" />
</Requirement>

- <Requirement ID="REQ.2.2">
<Name Value="Wall mountability" />
<Rationale Value="Space saving need" />
<Verification Value="Experimental" />
<Comment Value="Detailed agreement between the cutomer an d builder" />
<REVISION Value="Mon Jun 16 14:00:55 EDT 2003" />
<MAPPED_TO Value="TV" />
<Template NO="0" />
<Description Value="The display should be able to be mounte d on the wall" />
</Requirement>

- <Requirement ID="REQ.2.3">
<Name Value="High fidelity sound" />

<Rationale Value="Theater experience needs surround soun d capabilities" />
<Verification Value="Demonstration" />
<Comment Value="Detailed agreement between the customer a nd the builder" />

<REVISION Value="Mon Jun 16 14:00:55 EDT 2003" />

<MAPPED_TO Value="Speaker" />

<Template NO="0" />

<Description Value="The system shall have a high fidelity a udio system" />
</Requirement>

66

- <Requirement ID="REQ.2.4">

<Name Value="COTS Requirement" />

<Rationale Value="User should be able to go to market and buy
<Verification Value="Experimental" />

<Comment Value="Detailed agreement between the customer a
<REVISION Value="Mon Jun 16 14:00:55 EDT 2003" />
<MAPPED_TO Value="Home Theater Amplifier" />

<Template NO="0" />

<Description Value="All components will be bought from the
</Requirement>

- <Requirement ID="REQ.2.5">

<Name Value="Connectivity Requirement" />

<Rationale Value="If user buys something from the market he
able to connect things together" />

<Verification Value="Demonstration" />

<Comment Value="Detailed agreement between the customer a

<REVISION Value="Mon Jun 16 14:00:55 EDT 2003" />

<MAPPED_TO Value="Home Theater Amplifier* />

<Template NO="0" />

<Description Value="Components of the system shall be conn

</Requirement>

- <Requirement ID="REQ.3.1">

<Name Value="Size Requirement on TV" />

<Rationale Value="User definition of Large Display" />

<Verification Value="Demonstration" />

<Comment Value="Component Level Requirement" />

<REVISION Value="Mon Jun 16 14:00:55 EDT 2003" />

<MAPPED_TO Value="TV" />

<Template NO="3" OBJECT="TV" SPECIFICATION="Size" SPECL
VALUE1="32" UNITS="inches" />

<Description Value="Size of the TV shall be atleast 32 inche

</Requirement>

- <Requirement ID="REQ.3.2">

<Name Value="Thickness of TV" />

<Rationale Value="Comes from Wall mountable display scree

<Verification Value="Demonstration" />

<Comment Value="Component Level Requirement" />

<REVISION Value="Mon Jun 16 14:00:55 EDT 2003" />

<MAPPED_TO Value="TV" />

<Template NO="1" OBJECT="TV" SPECIFICATION="Thickness"
VALUE1="6" UNITS="inches" />

<Description Value="Thickness of the TV shall not exceed 6 i

</Requirement>

- <Requirement ID="REQ.3.2">

<Name Value="Cost of TV" />

<Rationale Value="Splitting of overall Cost of the System"

<Verification Value="Analytical" />

<Comment Value="Component Level Requirement" />

<REVISION Value="Mon Jun 16 14:00:55 EDT 2003" />

<MAPPED_TO Value="TV" />

<Template NO="2" OBJECT="TV" SPECIFICATION="Cost" SPECL
VALUE1="5000" UNITS="USD" />

<Description Value="Cost of the TV shall be less than 5000 US

</Requirement>

- <Requirement ID="REQ.3.4">

<Name Value="Cost of the amplifier" />

<Rationale Value="Splitting of overall cost of the system"
<Verification Value="Analytical" />

<Comment Value="Component Level Requirement" />
<REVISION Value="Mon Jun 16 14:00:55 EDT 2003" />
<MAPPED_TO Value="Amplifier" />

<Template NO="0" />

<Description Value="Cost of the Amplifier shall be less tha

67

components" />

nd the builder" />

market" />

should be

nd the builder" />

ected to each other" />

INK="tv1.xml"

s" />

n" />

SPECLINK="tv1.xml"

nches" />

/>

INK="tvl.xml"

D" />

/>

n 600 USD" />

</Requirement>

- <Requirement ID="REQ.3.5">
<Name Value="Output of the speakers" />
<Rationale Value="Definition of high fidelity sound syste m" />
<Verification Value="Demonstration" />
<Comment Value="Component Level Requirement" />
<REVISION Value="Mon Jun 16 14:00:55 EDT 2003" />
<MAPPED_TO Value="Speaker" />
<Template NO="5" OBJECT="Speaker" SPECIFICATION="Outpu t" SPECLINK="speakerl.xml"
VALUE1="200" VALUE2="350" UNIS="WATTS" />
<Description Value="Output of the Speaker shall lie within 200 watts and 350 watts" />
</Requirement>

- <Requirement ID="REQ.3.6">
<Name Value="Audio Connectivity of TV" />
<Rationale Value="Sending sound output to the amplifier" / >
<Verification Value="Demonstration" />
<Comment Value="Component Level Requirement" />
<REVISION Value="Mon Jun 16 14:00:55 EDT 2003" />
<MAPPED_TO Value="n/a" />
<Template NO="8" PORT1="AudioOut" OBJECT1="TV" PORT2="A udioln" OBJECT2="Amplifier" />
<Description Value="The AudioOut port of TV shall connect t 0 Audioln Port of Amplifier" />
</Requirement>

- <Requirement ID="REQ.3.7">
<Name Value="Audio Connectivity of VCR" />
<Rationale Value="Sending sound output to the amplifier" / >
<Verification Value="Demonstration" />
<Comment Value="Component Level Requirement" />
<REVISION Value="Mon Jun 16 14:00:55 EDT 2003" />
<MAPPED_TO Value="n/a" />
<Template NO="8" PORT1="AudioOut" OBJECT1="VCR" PORT2=" Audioln" OBJECT2="Amplifier" />
<Description Value="The AudioOut port of VCR shall connect to Audioln Port of Amplifier" />
</Requirement>

- <Requirement ID="REQ.3.8">
<Name Value="Audio Connectivity of DVD Player" />
<Rationale Value="Sending sound output to the amplifier" / >
<Verification Value="Demonstration" />
<Comment Value="Component Level Requirement" />
<REVISION Value="Mon Jun 16 14:00:55 EDT 2003" />
<MAPPED_TO Value="n/a" />
<Template NO="8" PORT1="AudioOut" OBJECT1="DVD" PORT2=" Audioln" OBJECT2="Amplifier" />
<Description Value="The AudioOut port of DVD shall connect to Audioln Port of Amplifier" />
</Requirement>

- <Requirement ID="REQ.3.9">
<Name Value="Video Connectivity of VCR" />
<Rationale Value="Sending Video Feed to Television" />
<Verification Value="Demonstration" />
<Comment Value="Component Level Requirement" />
<REVISION Value="Mon Jun 16 14:00:55 EDT 2003" />
<MAPPED_TO Value="n/a" />
<Template NO="8" PORT1="VideoOut" OBJECT1="VCR" PORT2=" Videoln" OBJECT2="TV" />
<Description Value="The VideoOut port of VCR shall connect to Videoln Port of TV" />
</Requirement>

- <Requirement ID="REQ.3.10">
<Name Value="Audio Connectivity of Amplifier" />
<Rationale Value="Sending sound output to the speakers" />
<Verification Value="Demonstration" />
<Comment Value="Component Level Requirement" />
<REVISION Value="Mon Jun 16 14:00:55 EDT 2003" />
<MAPPED_TO Value="n/a" />
<Template NO="8" PORT1="AudioOut" OBJECT1="Amplifier" P ORT2="Audioln" OBJECT2="Speaker" />
<Description Value="The AudioOut port of Amplifier shall c onnect
to Audioln Port of Speaker" />

68

</Requirement>
</Project>

Appendix D. DAML Representation of the Cable-Port Ontology

This is the Ontology exported by the Protg environment usidAML plugin. This ontology contains
information about a simple cable, its end jacks and the &ssatports. It defines domain restriction on the allowed
Jack and Ports connection through properties conyerasid connectfo.

<rdf:RDF
xmins:rdf ="http://www.w3.0rg/1999/02/22-rdf-syntax- ns#"
xmins:daml_oil ="http://www.daml.org/2001/03/daml+oi I#"

xmins:ontology="http://www.isr.umd.edu/"vmayank#"
xmins:rdfs ="http://www.w3.0rg/2000/01/rdf-schema#"
xmins ="http://www.isr.umd.edu/"vmayank/ontology#"
>

<daml_oil:Class rdf:ID="Port">
</daml_oil:Class>

<daml_oil:Class rdf:ID="AudioOutJack">
<rdfs:subClassOf>
<daml_oil:Restriction>
<daml_oil:toClass rdf:resource="#AudiolnJack"/>
<daml_oil:onProperty rdf:resource="#converts_to"/>
</daml_oil:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf rdf:resource="#Jack"/>
</daml_oil:Class>

<daml_oil:ObjectProperty rdf:ID="converts_to">
<daml_oil:domain rdf:resource="#Jack"/>
<daml_oil:range rdf:resource="#Jack"/>

</daml_oil:ObjectProperty>

<daml_oil:Class rdf:ID="Jack">
</daml_oil:Class>

<daml_oil:Class rdf:ID="AudiolnPort">
<rdfs:subClassOf>
<daml_oil:Restriction>
<daml_oil:toClass rdf:resource="#AudiolnJack"/>
<daml_oil:onProperty rdf:resource="#connects_to"/>
</daml_oil:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf rdf:resource="#Port"/>
</daml_oil:Class>

<daml_oil:ObjectProperty rdf:ID="connects_to">
<daml_oil:range rdf:resource="#Jack"/>
<daml_oil:domain rdf:resource="#Port"/>

</daml_oil:ObjectProperty>

<daml_oil:Class rdf:ID="AudioOutPort">
<rdfs:subClassOf>
<daml_oil:Restriction>
<daml_oil:toClass rdf:resource="#AudioOutJack"/>
<daml_oil:onProperty rdf:resource="#connects_to"/>
</daml_oil:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf rdf:resource="#Port"/>
</daml_oil:Class>

<daml_oil:Ontology rdf:ID="">
</daml_oil:Ontology>

69

<daml_oil:Class rdf:ID="AudiolnJack">
<rdfs:subClassOf>
<daml_oil:Restriction>
<daml_oil:toClass rdf:resource="#AudioOutJack"/>
<daml_oil:onProperty rdf:resource="#converts_to"/>
</daml_oil:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf rdf:resource="#Jack"/>
</daml_oil:Class>

</rdf:RDF>

Appendix E. Jess Assertions and the Rules for the Cable-Port Ontology

Here is the complete Jess input file, which has been genettateaggh the use of the DAMLJessKB
plugin to covert the Ontology into a set of facts (collectafrRDF triplets prefixed by the PropertyValue key), and

a set of rules, generated from the instances created in the GU

When Rete algorithm is run on the provided set of facts, ickbehe cable configuration and comes out

with an assertion whether the cable jacks and associatéslgm@rconsistent as per the ontology definitions or not,

and produces an output informing the results.

 kkkkkkkkkkkkkk Deflne Inltlal FaCtS kkkkkkkkkkkkkkkk

(deffacts iniial-condition-from-ontology

(PropertyValue http://www.w3.0rg/1999/02/22-rdf-synt
http://www.isr.umd.edu/"vmayank/SimpleOntology.daml
http://www.daml.org/2001/03/daml+oil#Class)

(PropertyValue http://www.w3.0rg/1999/02/22-rdf-synt
http://www.isr.umd.edu/"vmayank/SimpleOntology.daml
http://www.daml.org/2001/03/daml+oil#Class)

(PropertyValue http://www.w3.0rg/1999/02/22-rdf-synt
http://www.isr.umd.edu/"vmayank/SimpleOntology.daml
http://www.daml.org/2001/03/daml+oil#Restriction)

(PropertyValue http://www.daml.org/2001/03/daml+oil#
http://www.isr.umd.edu/"vmayank/SimpleOntology.daml
http://www.isr.umd.edu/"vmayank/SimpleOntology.daml

(PropertyValue http://www.daml.org/2001/03/daml+oil#
http://www.isr.umd.edu/"vmayank/SimpleOntology.daml
http://www.isr.umd.edu/"vmayank/SimpleOntology.daml

(PropertyValue
http://www.w3.0rg/2000/01/rdf-schema#subClassOf
http://www.isr.umd.edu/"vmayank/SimpleOntology.daml
http://www.isr.umd.edu/"vmayank/SimpleOntology.dami

(PropertyValue
http://www.w3.0rg/2000/01/rdf-schema#subClassOf
http://www.isr.umd.edu/"vmayank/SimpleOntology.daml
http://www.isr.umd.edu/"vmayank/SimpleOntology.daml

(PropertyValue
http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type
http://www.isr.umd.edu/"vmayank/SimpleOntology.daml
http://www.daml.org/2001/03/daml+oil#ObjectProperty

70

ax-ns#type
#Port

ax-nst#type
#AudioOutJack

ax-nst#type
#anon2

toClass
#anon2
#AudiolnJack)

onProperty
#anon2
#converts_to)

#AudioOutJack
#anon2)

#AudioOutJack
#Jack)

#converts_to

)

(PropertyValue http://www.daml.org/2001/03/daml+oil#
http://www.isr.umd.edu/"vmayank/SimpleOntology.dami
http://www.isr.umd.edu/"vmayank/SimpleOntology.daml

(PropertyValue http://www.daml.org/2001/03/daml+oil#
http://www.isr.umd.edu/"vmayank/SimpleOntology.daml
http://www.isr.umd.edu/"vmayank/SimpleOntology.daml

(PropertyValue
http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type
http://www.isr.umd.edu/"vmayank/SimpleOntology.dami
http://www.daml.org/2001/03/daml+oil#Class)

(PropertyValue
http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type
http://www.isr.umd.edu/"vmayank/SimpleOntology.dami
http://www.daml.org/2001/03/daml+oil#Class)

(PropertyValue
http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type
http://www.isr.umd.edu/"vmayank/SimpleOntology.dami
http://www.daml.org/2001/03/daml+oil#Restriction)

(PropertyValue http://www.daml.org/2001/03/daml+oil#
http://www.isr.umd.edu/"vmayank/SimpleOntology.daml
http://www.isr.umd.edu/"vmayank/SimpleOntology.daml

(PropertyValue http://www.daml.org/2001/03/daml+oil#
http://www.isr.umd.edu/"vmayank/SimpleOntology.daml
http://www.isr.umd.edu/"vmayank/SimpleOntology.dami

(PropertyValue
http://www.w3.0rg/2000/01/rdf-schema#subClassOf
http://www.isr.umd.edu/"vmayank/SimpleOntology.dami
http://www.isr.umd.edu/"vmayank/SimpleOntology.daml

(PropertyValue
http://www.w3.0rg/2000/01/rdf-schema#subClassOf
http://www.isr.umd.edu/"vmayank/SimpleOntology.daml
http://www.isr.umd.edu/"vmayank/SimpleOntology.daml

(PropertyValue
http://www.w3.0rg/1999/02/22-rdf-syntax-nst#type
http://www.isr.umd.edu/"vmayank/SimpleOntology.dami
http://www.daml.org/2001/03/daml+oil#ObjectProperty

(PropertyValue http://www.daml.org/2001/03/daml+oil#
http://www.isr.umd.edu/"vmayank/SimpleOntology.dami
http://www.isr.umd.edu/"vmayank/SimpleOntology.daml

(PropertyValue http://www.daml.org/2001/03/daml+oil#
http://www.isr.umd.edu/"vmayank/SimpleOntology.daml
http://www.isr.umd.edu/"vmayank/SimpleOntology.dami

(PropertyValue
http://www.w3.0rg/1999/02/22-rdf-syntax-nst#type
http://www.isr.umd.edu/"vmayank/SimpleOntology.dami
http://www.daml.org/2001/03/daml+oil#Class)

(PropertyValue
http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type
http://www.isr.umd.edu/"vmayank/SimpleOntology.dami
http://www.daml.org/2001/03/daml+oil#Restriction)

(PropertyValue http://www.daml.org/2001/03/daml+oil#
http://www.isr.umd.edu/"vmayank/SimpleOntology.dami
http://www.isr.umd.edu/"vmayank/SimpleOntology.dami

71

domain
#converts_to
#Jack)

range
#converts_to
#Jack)

#Jack

#AudiolnPort

#anonll

toClass
#anonll
#AudiolnJack)

onProperty
#anonll
#connects_to)

#AudiolnPort
#anonll)

#AudiolnPort
#Port)

#connects_to

)

range
#connects_to
#Jack)

domain

#connects_to
#Port)

#AudioOutPort

#anonl9

toClass
#anonl9
#AudioOutJack)

(PropertyValue http://www.daml.org/2001/03/daml+oil#
http://www.isr.umd.edu/"vmayank/SimpleOntology.dami
http://www.isr.umd.edu/"vmayank/SimpleOntology.daml

(PropertyValue
http://www.w3.0rg/2000/01/rdf-schema#subClassOf
http://www.isr.umd.edu/"vmayank/SimpleOntology.dami
http://www.isr.umd.edu/"vmayank/SimpleOntology.daml

(PropertyValue
http://www.w3.0rg/2000/01/rdf-schema#subClassOf
http://www.isr.umd.edu/"vmayank/SimpleOntology.dami
http://www.isr.umd.edu/"vmayank/SimpleOntology.daml

(PropertyValue
http://www.w3.0rg/1999/02/22-rdf-syntax-nst#type
http://www.isr.umd.edu/"vmayank/SimpleOntology.daml
http://www.daml.org/2001/03/daml+oil#Class)

(PropertyValue
http://www.w3.0rg/1999/02/22-rdf-syntax-nst#type
http://www.isr.umd.edu/"vmayank/SimpleOntology.daml
http://www.daml.org/2001/03/daml+oil#Restriction)

(PropertyValue http://www.daml.org/2001/03/daml+oil#
http://www.isr.umd.edu/"vmayank/SimpleOntology.daml
http://www.isr.umd.edu/"vmayank/SimpleOntology.dami

(PropertyValue http://www.daml.org/2001/03/daml+oil#
http://www.isr.umd.edu/"vmayank/SimpleOntology.daml
http://www.isr.umd.edu/"vmayank/SimpleOntology.daml

(PropertyValue
http://www.w3.0rg/2000/01/rdf-schema#subClassOf
http://www.isr.umd.edu/"vmayank/SimpleOntology.daml
http://www.isr.umd.edu/"vmayank/SimpleOntology.daml

(PropertyValue
http://www.w3.0rg/2000/01/rdf-schema#subClassOf
http://www.isr.umd.edu/"vmayank/SimpleOntology.daml
http://www.isr.umd.edu/"vmayank/SimpleOntology.dami

(PropertyValue
http://www.w3.0rg/1999/02/22-rdf-syntax-nst#type
http://www.isr.umd.edu/"vmayank/SimpleOntology.daml
http://www.daml.org/2001/03/daml+oil#Ontology)

)

” Fhkkkkkkkkkk Raget the Known facts sk

’(’reset)

;; Rule 1: This rule if fired accounts for the fact

;; that the cable has correct jacks at its two ends and

;; produces such an output

(defrule allowed-jack-config

(PropertyValue
http://www.daml.org/2001/03/daml+oil#toClass
?anon

;7 This Jack A instance is generated programmatically

;; using the Java API

+.

http://www.isr.umd.edu/"vmayank/SimpleOntology.dami

onProperty
#anonl19
#connects_to)

#AudioOutPort
#anonl9)

#AudioOutPort
#Port)

#AudiolnJack

#anon24

toClass
#anon24
#AudioOutJack)

onProperty
#anon24
#converts_to)

#AudiolnJack
#anon24)

#AudiolnJack
#Jack)

#AudioOutJack)

(PropertyValue
http://www.daml.org/2001/03/daml+oil#onProperty
?anon
http://www.isr.umd.edu/"vmayank/SimpleOntology.dami

(PropertyValue
http://www.w3.0rg/2000/01/rdf-schema#subClassOf

;7 This Jack B instance is generated programmatically
;; using the Java API

+.

http://www.isr.umd.edu/"vmayank/SimpleOntology.dami
?anon)

(PropertyValue
http://www.w3.0rg/1999/02/22-rdf-syntax-nst#type

?anon

http://www.daml.org/2001/03/daml+oil#Restriction)

==

(printout t "Cable jacks are consistent with ontology defin

) ;; end defrule construct

;; Rule 2: This rule if fired accounts for the fact

;; that the cable does not have correct jacks at its

;; two ends as per the Ontology definition and produces
;; such an Output

(defrule not-allowed-jack-config

(not (and

(PropertyValue
http://www.daml.org/2001/03/daml+oil#toClass
?anon

;; This Jack A instance is generated programmatically
;; using the Java API

" +
http://www.isr.umd.edu/"vmayank/SimpleOntology.daml

(PropertyValue
http://www.daml.org/2001/03/daml+oil#onProperty
?anon
http://www.isr.umd.edu/"vmayank/SimpleOntology.dami

(PropertyValue
http://www.w3.0rg/2000/01/rdf-schema#subClassOf

;; This Jack B instance is generated programmatically
;; using the Java API

+.

http://www.isr.umd.edu/"vmayank/SimpleOntology.daml
?anon)

(PropertyValue
http://www.w3.0rg/1999/02/22-rdf-syntax-nst#type
?anon
http://www.daml.org/2001/03/daml+oil#Restriction)

)
=>

(printout t "Cable jacks not consistent with ontology defin
) ; end defrule construct

; Rule 3: This rule if fired accounts for the fact
;; that the Jack A is properly Connected to Port A as
;; per the Ontology definition

73

#converts_to)

#AudiolnJack

#AudioOutJack)

ition"

#converts_to)

#AudiolnJack

ition"

crlf)

crlf)

(defrule allowed-jacka-porta-config
(PropertyValue
http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type
?anon
http://www.daml.org/2001/03/daml+oil#Restriction)

(PropertyValue
http://www.daml.org/2001/03/daml+oil#toClass
?anon

;7 This Jack A instance is generated programmatically

;; using the Java API

” -+ ===
http://www.isr.umd.edu/"vmayank/SimpleOntology.dami #AudioOutJack)

(PropertyValue

http://www.daml.org/2001/03/daml+oil#onProperty

?anon

http://www.isr.umd.edu/"vmayank/SimpleOntology.daml #connects_to)

(PropertyValue
http://www.w3.0rg/2000/01/rdf-schema#subClassOf

;7 This Port A instance is generated programmatically
;; using the Java API

” -+ ===
http://www.isr.umd.edu/"vmayank/SimpleOntology.dami #AudioOutPort
?anon)

==

(printout t "Jack A consistent with Port A as per ontology def inition"

) ;; end defrule construct

;; Rule 4: This rule if fired accounts for the fact

;; that the Jack A is not properly Connected to Port A
;; as per the Ontology definition and produces the

;; error message

(defrule not-allowed-jacka-porta-config

(not (and

(PropertyValue
http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type
?anon
http://www.daml.org/2001/03/daml+oil#Restriction)

(PropertyValue
http://www.daml.org/2001/03/daml+oil#toClass
?anon

;7 This Jack A instance is generated programmatically
;; using the Java API
- +

http://www.isr.umd.edu/"vmayank/SimpleOntology.dami #AudioOutJack)

(PropertyValue

http://www.daml.org/2001/03/daml+oil#onProperty

?anon

http://www.isr.umd.edu/"vmayank/SimpleOntology.daml #connects_to)

(PropertyValue
http://www.w3.0rg/2000/01/rdf-schema#subClassOf

;; This Port A instance is generated programmatically

;; using the Java API

” -+ ===
http://www.isr.umd.edu/"vmayank/SimpleOntology.dami #AudioOutPort
?anon)

74

crlf)

)

=
(printout t crif "Jack A not consistent with Port A as per onto logy definition" crlf)
(printout t "If you are sure that cable is compatible with the port try reversing the cable"

) ;; end defrule construct

;; Rule 5: This rule if fired accounts for the fact
;; that the Jack B is properly Connected to Port B as
;; per the Ontology definition and produces a message

(defrule allowed-jackb-portb-config
(PropertyValue
http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type
?anon
http://www.daml.org/2001/03/daml+oil#Restriction)

(PropertyValue
http://www.daml.org/2001/03/damli+oil#toClass
?anon

;; This Jack B instance is generated programmatically

;; using the Java API

’; + ===
http://www.isr.umd.edu/"vmayank/SimpleOntology.daml #AudiolnJack)

(PropertyValue

http://www.daml.org/2001/03/daml+oil#onProperty

?anon

http://www.isr.umd.edu/"vmayank/SimpleOntology.daml #connects_to)

(PropertyValue
http://www.w3.0rg/2000/01/rdf-schema#subClassOf

;; This Port B instance is generated programmatically

;; using the Java API

” -+ ===
http://www.isr.umd.edu/"vmayank/SimpleOntology.dami #AudiolnPort
?anon)

=

(printout t "Jack B consistent with Port B as per ontology def inition"

) ;; end defrule construct

;; Rule 6: This rule if fired accounts for the fact

;; that the Jack B is not properly Connected to Port B
;; as per the Ontology definition and produces an error
;; message

(defrule not-allowed-jackb-portb-config

(not (and

(PropertyValue
http://www.w3.0rg/1999/02/22-rdf-syntax-nst#type
?anon
http://www.daml.org/2001/03/daml+oil#Restriction)

(PropertyValue
http://www.daml.org/2001/03/damli+oil#toClass
?anon

;; This Jack B instance is generated programmatically

;; using the Java API

’; + ===
http://www.isr.umd.edu/"vmayank/SimpleOntology.daml #AudiolnJack)

(PropertyValue
http://www.daml.org/2001/03/daml+oil#onProperty
?anon

75

crlf)

crlf)

http://www.isr.umd.edu/"vmayank/SimpleOntology.dami #connects_to)

(PropertyValue
http://www.w3.0rg/2000/01/rdf-schema#subClassOf

;; This Port B instance is generated programmatically
;; using the Java API

1 + ===
http://www.isr.umd.edu/"vmayank/SimpleOntology.daml #AudiolnPort

?anon)

)

=>

(printout t crif "Jack B not consistent with Port B as per onto logy definition" crlf)

(printout t "If you are sure that cable is compatible with the port try reversing the cable"

) ;; end defrule construct
;; run the Rete on the above facts and rules

(run)

76

crlf)

