
ISR develops, applies and teaches advanced methodologies of design and analysis to solve complex, hierarchical,
heterogeneous and dynamic problems of engineering technology and systems for industry and government.

ISR is a permanent institute of the University of Maryland, within the Glenn L. Martin Institute of Technol-
ogy/A. James Clark School of Engineering. It is a National Science Foundation Engineering Research Center.

Web site http://www.isr.umd.edu

I R
INSTITUTE FOR SYSTEMS RESEARCH

TECHNICAL RESEARCH REPORT

Requirements Engineering and the Semantic Web, Part II.
Representaion, Management, and Validation of Requirements
and System-Level Architectures

by Mayank V., Kositsyna N., Austin M.

TR 2004-14

ISR Technical Report

Requirements Engineering

and the Semantic Web: Part II.

Representation, Management, and Validation of

Requirements and System-Level Architectures

By Vimal Mayank1, Natalya Kositsyna2 and Mark Austin3

Last updated : February 12, 2004.

1Graduate Research Assistant, Master of Science in Systems Engineering (MSSE) Program, Institute for Systems Research, University of
Maryland, College Park, MD 20742, USA.

2Faculty Research Assistant, Institute for Systems Research, College Park, MD 20742, USA.
3Associate Professor, Department of Civil and Environmental Engineering, and Institute for Systems Research, University of Maryland,

College Park, MD 20742, USA.

0

Contents

1 Introduction 1
1.1 Problem Statement 1
1.2 Scope and Objectives 5
1.3 The Semantic Web 7

1.3.1 Technologies in the Semantic Web Layer Cake 7
1.3.2 The URI and Unicode Layer 7
1.3.3 The eXtensible Markup Language (XML) Layer 7
1.3.4 The Resource Description Framework (RDF) Layer 9
1.3.5 Ontologies 11
1.3.6 Logic (and Rules) 13
1.3.7 Digital Signatures 13
1.3.8 Proof, Trust, and Beyond 13

1.4 Organization of this Report 14
1.5 Acknowledgments 15

2 Representation and Management of Requirements 16
2.1 Organization of Requirements 16
2.2 Requirements Allocation and Flowdown 16
2.3 Graph Representation of Requirements 17
2.4 Requirement Template Structure 19
2.5 XML and RDF Representation of Requirements 20
2.6 Requirement Traceability and Controlled Visualization . 22
2.7 RDQL Approach to Retrieve Nodes and Links 24

3 Synthesis of System-Level Architectures from Reusable Component-Specifications 26
3.1 Component- and Interface-Based Design 28
3.2 Libraries of Reusable Component-Specifications 29
3.3 RDF-Based Storage of Object Connectivity 29
3.4 Leaf Requirements Validation Against the Component-Specification 31

4 Development of a Home Theater System 33
4.1 Problem Statement 33
4.2 System Structure 33
4.3 System Requirements 35
4.4 Requirement Template Structure 36
4.5 Requirements Traceability and Controlled Visualization . 39
4.6 Merging Two Requirement Trees 40
4.7 Collapsing Requirement Tree with Duplications 40
4.8 Components Library 40
4.9 Low-Level Validation of Requirements 42

1

5 Ontology-Enabled Validation of System Architectures 45
5.1 Model Checking Procedure 47
5.2 Class Relationships in Port-Jack Ontology 47
5.3 Equivalent DAML Representation of the Ontology 48
5.4 Conversion of DAML Representation to Jess Facts 50
5.5 Addition of Rules and Execution of Rete Algorithm 52

6 Conclusions and Future Work 54
6.1 Conclusions 54
6.2 Future Work 54

Appendices 61
Appendix A. XML Representation of the Home Theater System 61
Appendix B. RDF Representation of the Requirements Structure 64
Appendix C. Requirements Property XML File 66
Appendix D. DAML Representation of the Cable-Port Ontology 69
Appendix E. Jess Assertions and the Rules for the Cable-Port Ontology 70

2

Chapter 1

Introduction

1.1 Problem Statement

Modern-day system designs are undergoing a series of radical transformations to meet performance,

quality, and cost constraints. To keep the complexity of technical concerns in check, system-level design method-

ologies are striving to orthogonalize concerns (i.e., achieve separation of various aspects of design to allow more

efficient exploration of the space of potential design alternatives), improve economics through reuse at all levels of

abstraction, and employ formal design representations that enable early detection of errors and multi-disciplinary

design rule checking. Whereas engineering systems have been traditionally viewed in terms of the operations they

support, nowadays there is also a rapidly evolving trend toward to team-development of large-scale information-

dominated systems. These so-called Information-Centric engineering systems exploit commercial-off-the-shelf

(COTs) components, communications technology, and have superior performance and reliability.

Methodologies for Team-Enabled Systems Engineering.A methodology is simply the implementation of a

specific process. As indicated in Figure 1.1, methodologiesfor the team development of system-level architectures

need to support the following activities:

1. Partitioning the design problem into several levels of abstraction and viewpoints suitable for concurrent devel-

opment by design teams. These teams may be geographically dispersed and mobile.

2. Coordinated communication among design teams.

3. Integration of the design team efforts into a working system.

4. Evaluation mechanisms that provide a designer with a critical feedback on the feasibility of system architecture,

and make suggestions for design concept enhancement.

Throughout the development process, teams need to maintaina shared view of the project objectives, and at the

same time, focus on specific tasks. It is the responsibility of the systems engineer to gather and integrate subsystems

and to ensure ensure that every project engineer is working from a consistent set of project assumptions. This

requires an awareness of the set of interfaces and facilities the system will be exposed to.

Systems engineering methodologies are also the confluence of top-down and bottom-up approaches to

system development. Top-down development (decomposition) is concerned with the elicitation of requirements

1

Team 1 Team 2 Team N

Problem
Design

Working
System

Abstractions
Viewpoints

team efforts.....
Systems integration of

Separation of concerns
for team development.
Coordination of activities.

Validation and Verification

Figure 1.1: Key concerns in team development of systems (Source: Discussion with David Everett, NASA God-
dard)

and the generation of system architectures – this pathway isshown along the left-hand side of Figure 1.2. Bottom-

up design (composition), in contrast, starts with low-level modules and subsystems and tries to combine them

into higher-level entities. At this stage of development a key design decision is: should we custom build new

components or buy/reuse them? The benefits of reuse include reduced development costs, improved quality (be-

cause components have already been tested), and shortened time-to-market. This so-called “systems integration”

problem has become key and perhaps the most profitable engineering practice.

Over time engineers have learned that in order for the development of systems of ever-increasing size and

complexity to remain tractable, methodologies need to be adjusted so that problems can be formulated in a formal

way, but at higher levels of abstraction. In software engineering circles, the pathway from low-level machine lan-

guages to high-level programming languages is well known. In systems engineering circles, the Unified Modeling

Language (UML) [54] now plays a central role in object-oriented systems development procedures. High-level

visual modeling languages, such as UML, have features whosepurpose is to help an engineer organize thoughts

and ideas on the basic building blocks of the systems design.Looking ahead, abstraction of multiple disciplines

to properly annotated information representations and reuse of previous work at all levels of development will be

essential. While these trends are well known in the softwarearena, there remains a strong need for a counter-

part capability that will support the requirements representation, synthesis, and integration of real world physical

systems composed of hardware and software.

Present-Day Systems Engineering Tools.Due to the wide variety and complexity of present-day systems en-

gineering processes, it is completely unrealistic to expect that one tool will support all development processes.

Hence, systems engineers create heterogeneous software platforms by stitching together software tools designed

for specific purposes. At this time, there are predominantlythree kinds of tools available to systems engineers:

1. Diagramming. Examples include Visio [4] or Rational Rose [47]. These tools provide systems engineers with

the means to draw various UML diagrams such as the system structure and behavior diagrams.

2. Requirements Management.Examples include SLATE [1] and DOORS [15]. These tools document the

2

Figure 1.2: Top-down decomposition and bottom-up synthesis coupled to reuse of objects/sub-systems

requirements, provide configuration management and traceability between various levels of requirements,

and enable a limited scope of verification.

3. Simulation, Optimization, and Trade-Off. Examples include tools such as CPLEX [27], MATLAB [41] and

Arena [3]. These tools provide the mathematical capabilityneeded to evaluate system objectives, simulate

system behavior and provide an optimal design solutions from system design alternatives.

The four essential elements of these tools are models, languages, ordered step-by-step procedures for defining

tasks, and guidance for completing the methods [37]. From a software development and economic perspective,

the pool of potential customers can be maximized by creatingsystem development tools that are process neutral

(i.e., they do not enforce a particular approach to system development). However, from a systems development

perspective, tools that enforce a particular style of development help to keep a designer on track.

Requirements Management Systems.Present-day requirements management tools provide the best support for

top-down development where the focus is on requirements representation, traceability, allocation of requirements

to system abstraction blocks, and recently, step-by-step execution of system models. (At this time, computational

support for the bottom-up synthesis of specific applications from components is poor.)

Most of today’s requirements management tools represent individual requirements as textual descriptions

with no underlying semantics. Groups of initial requirements are organized into tree hierarchies (e.g., functional

requirements, interface requirements). However, when requirements are organized into layers for team develop-

ment, graph structures are needed to describe the comply anddefine relationships. Computational support for the

validation and verification of requirements is still immature – although some tools do have a provision for defining

how a particular requirement will be tested against relevant attributes, it is not enough. Current tools are incapable

of analyzing requirements for completeness or consistency. Search mechanisms are limited to keywords, which

3

��

Subsystem 2 Subsystem 3Subsystem 1

EPA

Specification 1 Specification 2 Specification 3

Systems Integration
Test Req.EPA Test

Working System

and Test.

Team 1 Team 2

Requirements
Project

..... Team 3

Req 3 / Spec. 3Req 2 / Spec. 2Req 1 / Spec. 1

Figure 1.3: Team Development of Engineering Systems

can be limiting for custom jargon in multidisciplinary and multilingual projects.

A requirements management systems can be implemented as a monolithic system. But as soon as the

need to leverage or reuse the requirements across projects,companies, and industries is found, a monolithic system

approach is no longer viable. Figure 1.3 shows, for example,a hypothetical situation where high-level project

requirements are organized for team development, and, project requirements are imported from external sources

(in this case the EPA). It is important to note that in nearly all cases, the details regulations specified by external

sources will be beyond the control of the company. Hence, thechaotic system of systems is a more appropriate

model because every project, company, and “regulations authority” will operate based on personal needs and

desires. Thus, an open standard is needed which will allow the various systems to share a common data structure

and build customized tools to meet the personal needs.

Ontology-Based Computing. A central theme of this work is that advances in information-centric system en-

gineering will occur together with those in ontology-basedcomputing. With technologies for the latter in place,

we envision development of web-centric, graphically driven, computational platforms dedicated to system-level

planning, analysis, design and verification of complex multidisciplinary engineering systems. These environments

will employ semantic descriptions of application domains,and use ontologies to enable communication (or map-

pings) among multiple disciplines (e.g., to the engineering team members, to marketing, to management and to

4

−− What is the architecture of the integrated system?

System−Level Architecture and Performance Assesment

Back−end support for system−level architecture and performance assessment.

Domain 1

Domain 2

Domain−specific descriptions (e.g, UML, block diagrams)

of system content.

V
is

u
al

iz
at

io
n

 M
ap

p
in

g
s

Integrated view of system architecture

with realtime rule checking.

Invalid Parameters

Mappings

Technical

−− Is the system layout consistent with standards/design code requirements?

−− Are two design alternatives logically equivalent?

−− Can the system structure be simplified?

−− Which system operations can operate concurrently?

−− What will the system do?

−− Can the system work?

Figure 1.4: Looking Ahead – Integration of Application-Specific Viewpoints of Engineering Systems, with back-
end support for System-Level Architecture and PerformanceAssessment

customers). They will provide support for the integration of application-specific viewpoints of engineering sys-

tems, with backend support for system-level architecture and performance assessment. See Figure 1.4. Present-day

systems engineering methodologies and tools are not designed to handle projects in this way.

1.2 Scope and Objectives

This report is the second in a series on “Requirements Engineering and the Semantic Web.” In Part

1, Selberg et al. [48] identify an opportunity for using technologies in the Semantic Web Layer Cake to mitigate

limitations in present-day systems engineering tools. A prototype XML/RDF traceability browser is presented. The

objectives for this study are to explore further the application of RDF, ontologies and logic for the representation,

management, and validation of requirements and system-level architectures. Accordingly, the plan of work for this

report is as follows:

1. Representation and management of requirements. See Chapter 2.

2. Representation and synthesis of system-level architectures from reusable component-specifications. See Chap-

ter 3.

5

specifications.
Product

Product
specifications.

Product
specifications.

www.panasonic.com

www.jbl.com

www.sony.com

Partially assembled system

External Description of
Product Specifications

Textual description of requirements.
Graphical description of relationship
among requirements.

Power

Plasma Screen Display

Figure 1.5: Synthesis of System Architectures Enabled by Product Descriptions on Web. Here we show a simplified
architecture for the home theater system developed in Chapter 4.

3. Ontology-enabled validation of system architectures. SeeChapter 5.

This project is motivated, in part, by the need to develop methodologies and tools for the synthesis, management,

and visualization of system-level architecture likely to be found in the NASA Global Precipitation Measurement

(GPM) project [22]. Briefly, NASA’s GPM project is “one of thenext generation of systematic measurement

missions that will measure global precipitation, a key climate factor, with improved temporal resolution and spatial

coverage.” The implementation of NASA GPM is a multi-national effort that will require the launch and operation

of at least seven satellites and the participation of at least five countries. The system design and implementation

will occur through 2018.

As a first step, we are prototyping our ideas and techniques ona simpler problem – representation and

bottom-up synthesis of components in a home theater system.We envision development of a design environment

where customers can formulate detailed requirements for the home theater system that they want to purchase, and

then download descriptions of electronic components over the web. Detailed descriptions of flat panel displays

might be available at www.panasonc.com, amplifiers at www.sony.com, and so forth. See Figure 1.5. The speci-

fications attached to each electronic component will be usedin a number of ways. At a basic level, statements of

component performance can be directly compared to customerrequirements. But component specifications also

include information on requirements for the system to work.The design environment should be able to detect

incompatibilities in interface requirements and make appropriate suggestions for resolving conflicts. At even a

higher-level of abstraction, component specifications include suggestions for system assembly (e.g., system archi-

tectures that the manufacturer believes are good). Hence, the design environment should make suggestions to the

designer on how components might best be configured for optimal operation.

6

1.3 The Semantic Web

In his original vision for the World Wide Web, Tim Berners-Lee described two key objectives: (1)

To make the Web a collaborative medium; and (2) To make the Webunderstandable and, thus, processable by

machines.

During the past decade the first part of this vision has come topass – today’s Web provides a medium for

presentation of data/content to humans. Machines are used primarily to retrieve and render information. Humans

are expected to interpret and understand the meaning of the content. Automating anything on the Web (e.g.,

information retrieval; synthesis) is difficult because interpretation in one form or another is required in order for

the Web content to be useful. Current information retrievaltechnologies are incapable of exploiting the semantic

knowledge within documents and, hence, cannot give preciseanswers to precise questions. (Indeed, since web

documents are not designed to be understood by machines, theonly real form of search is full-text searching.)

The Semantic Web [6, 24] is an extension of the current web. Itaims to give information a well-defined

meaning, thereby creating a pathway for machine-to-machine communication and automated services based on

descriptions of semantics [20]. Realization of this goal will require mechanisms (i.e., markup languages) that

will enable the introduction, coordination, and sharing ofthe formal semantics of data, as well as an ability to

reason and draw conclusions (i.e., inference) from semantic data obtained by following hyperlinks to definitions

of problem domains (i.e., so-called ontologies).

1.3.1 Technologies in the Semantic Web Layer Cake

During a talk at the XML World 2000 Conference in Boston, Massachusetts, the World Wide Web

Consortium (W3C) head Tim Berners-Lee presented the Semantic Web Layer Cake diagram (see Figure 1.6) to

describe the infrastructure that will support this vision [5].

1.3.2 The URI and Unicode Layer

The bottom layer of this cake is constructed of Universal Resource Identifiers (URI) [56] and Unicode

[55]. URIs are a generalized mechanism for specifying a unique address for an item. They provide the basis for

linking information on the Internet. Unicode is the 16-bit extension of ASCII text – it assigns a unique platform-

independent and language-independentnumber to every character, thereby allowing any language to be represented

on any platform.

1.3.3 The eXtensible Markup Language (XML) Layer

The eXtensible Markup Language (XML) [7] provides the fundamental layer for representation and

management of data on the Web. The technology itself has two aspects. It is an open standard which describes

how to declare and use simple tree-based data structures within a plain text file. XML is not a markup language,

but a meta-language (or set of rules) for defining domain- or industry-specific markup languages. A case in

point is the Mathematical Language Specification (MathML) [40]. MathML is an XML application for describing

mathematical notation and capturing both its structure andcontent. A second example is the scalable vector

7

Universal Resource
Identifiers

Unicode

XML - Structured documents
Namespaces + XML-Schema

Resource Description
Framework + Schema

Ontology Support

Logic

Proof

D
ig

it
al

 S
ig

n
at

u
re

Trust

Self
-describing
Document

Data

Data

Rules

Semantic Web Layers

Technical Maturity

Well Known

Evolving

Figure 1.6: Technical Maturity of the Semantic Web Layer Cake

graphics (SVG) markup language [51], which defines two-dimensional vector graphics in a compact text format.

Hence, on a more conceptual plane, XML is a strategy for information management.

XML is defined only at the syntax level. A well-formed XML document defines a tree of nested sets

of open and close tags, each of which can include several attribute-value pairs. The rules of “well-formedness,”

which are the nuts and bolts part of XML, provide enough information that generic code modules, called parsers,

can be developed to read, write, and manipulate the XML files.An example of such a parser is the open source

Xerces parser [61]. The parsers can be built into other applications, such as Microsoft Word or Adobe Illustrator

[2, 60], giving them the power to work with XML files. The “well-formed” criteria guarantees that the parser can

read the XML file, but from the application’s point of view, itdoes not give any confidence that the data in the

XML file will be complete or consistent. To solve this problem, the basic form constraint can be extended through

the use of Document Type Definitions (DTDs) or Schema. Both ofthese technologies are ways of specifying the

rules and structure to which the XML document must also conform. For example, XHTML, an XML compliant

variant of HTML, is defined by both the XML definition and the XHTML DTD [62].

On the conceptual level, XML asks that content and form (or presentation) be separated. The real

beauty in representing data/information in XML is that we can filter or sort the data or re-purpose it for different

devices using the Extensible Stylesheet Language Transformation (XSLT). For example, a single XML file can be

presented to the web and paper through two different style sheets. This saves duplication of work and reduces the

risk of error.

Example. XML Model of an Individual Requirement. In an effort to classify requirements for reuse across

projects, and attach semantics to requirements, the concept of requirements boilerplates has been proposed by Hull

et al. [26]. For example, an instance of the template:

8

The<specification> of <object> shall not exceed<value> <units>

represented in XML might look like:

- <Requirement ID="REQ.3.2">
<Name Value="Thickness of TV" />
<Rationale Value="Comes from Wall mountable display scree n" />
<Verification Value="Demonstration" />
<Comment Value="Component Level Requirement" />
<REVISION Value="Mon Jun 16 14:00:55 EDT 2003" />
<MAPPED_TO Value="TV" />
<Template NO="1" OBJECT="TV" SPECIFICATION="Thickness" SPECLINK="tv1.xml"

VALUE1="6" UNITS="inches" />
<Description Value="Thickness of the TV shall not exceed 6 i nches" />
</Requirement>

Here, the XML representation supports the following requirements attributes: (1) Unique identifier; (2) A descrip-

tive name of the requirement; (3) Rationale; (4) Verification Strategy; (5) Comment; (6) Creation/last modified

date; (7) Description of the Requirement (Text), and (8) Template attribute/value pairs on which the requirement

is based. The requirement attributes and their values can bestored in an XML file (e.g.,ReqDoc.xml).

Requirements processing can proceed in a number of directions. One possibility is to generate require-

ments documentation directly from the XML markup by applying an appropriate XSLT [63] transformation. Al-

ternatively, a Java parser, such as Xerces [61], can be written to extract the value of the attributes and display them

in the graphical user interface.

Limitations of XML . While XML provides support for the portable encoding of data, it is limited to information

that can organized within hierarchical relationships. A common engineering task is the synthesis of information

from multiple data sources. This can be problematic for XML as a synthesized object may or may not fit into a

hierarchal model. Suppose, for example, that within one domain a line is defined by two points, and in a second

domain, a point is defined by the intersection of two lines. These definitions and the resulting tree models are

illustrated in Figure 1.7. Merging these models results in acircular reference – the resultant tree model is therefore

infinite. XML can not directly support the merger of these twomodels. A graph, however, can. Thus, we introduce

the Resource Description Framework.

1.3.4 The Resource Description Framework (RDF) Layer

The Resource Description Framework (RDF) is a graph-based (assertional) data model for describing

the relationships between objects and classes in a general but simple way. For the Semantic Web, the primary use

of RDF will be to encode metadata – for example, information such as the title, author, and subject – about Web

resources in a schema that is sharable and understandable. Due to RDF’s incremental extensibility, the hope is that

software agents processing metadata will be able to trace the origins of schema they are unfamiliar with to known

schema and, thus, will be able to perform actions on metadatathey weren’t originally designed to process.

From an implementation standpoint, the capabilities of RDFand XML are complementary. RDF defines

a graph-based object model for metadata, and API support forgraph operations (e.g., union, intersection). XML

API’s provide no such capability. On the other hand, RDF onlysuperficially addresses many encoding issues

for transportation – for these aspects, RDF employs XML as the serialization syntax. More specifically, as with

9

Two points define a line.

line

point point

The intersection of two lines defines a point.

point

line line

Figure 1.7: Definitions of a Line and Point in Tree Model Form [48]

HTML, XML has linking capabilities. The links, via URIs, form the basis for building the graphs. Thus, RDF

can be built upon (or serialized in) XML. XML is the bones, RDFis the sinew which ties them together to build a

skeleton.

RDF Assertions. At its core, RDF is a model for making assertions (or statements) about objects. An assertion

is the smallest expression of useful information. The Resource Description Framework (RDF) captures assertions

made in simple sentences by connecting a subject to an objectand a verb. In practical terms, English statements

are transformed into RDF triples consisting of a subject (this is the entity the statement is about), a predicate (this

is the named attribute, or property, of the subject) and an object (the value of the named attribute). Subjects are

denoted by a URI. Each property will have a specific meaning and may define its permitted values, the types of

resources it can describe, and its relationship with other properties. Objects are denoted by a “string” or URI.

The latter can be web resources such as documents, other Web pages or, more generally, any resource that can be

referenced using a URI (e.g., an application program or service program).

Example. RDF Model of an Individual Requirement. In the graphical representation of RDF statements,

subjects and objects are nodes in a directed graph. Predicates are labels for the directed arcs in the graphs.

Figure 1.8 shows two RDF models for an individual requirement. Their serialization in XML is as follows:

<rdf:RDF
xmlns:rdf=’http://www.w3.org/1999/02/22-rdf-syntax- ns#’
xmlns:vcard=’http://www.w3.org/2001/vcard-rdf/3.0#’

>

<rdf:Description rdf:about=’http://somewhere/REQ3.2’ >
<vcard:N> REQ3.2 </vcard:N>

</rdf:Description>

<rdf:Description rdf:about=’http://somewhere/REQ3.2’ >
<vcard:Source rdf:resource=’http://somewhereElse/Req Doc.xml’/>

</rdf:Description>

10

vcard:N

PredicateSubject Object

Requirement represented by a label

PredicateSubject Object

REQ3.2http://somewhere/REQ3.2

http://somewhere/REQ3.2

Requirement template stored in an XML file ReqDoc.xml

http://somewhereElse/ReqDoc.xml
vcard:Source

Figure 1.8: RDF Models of an Individual Requirement. In the node and arc diagram, ovals can represent both
a subject and object. Rectangular boxes always represent objects. The direction of the arrow is always from the
subject to the object of the statement.

The first block of code defines the XML namespaces and shorthand prefixes that can be used in the RDF statements.

In both representations of the requirement, the subject of the statement is located at URI

http://somewhere/REQ3.2

In the upper model, the predicatevcard:N refers to a name. The object is simply a label corresponding to the

name of the requirement. The statement should be read “http://somewhere/REQ3.2 has the label REQ3.2.”

In the lower model, the predicatevcard:Source refers to a source file. The object is a URI for the

XML file containing a complete description of the requirement, that is,

http://somewhereElse/ReqDoc.xml

The statement should be read “http://somewhere/REQ3.2 hasthe source file http://somewhereElse/ReqDoc.xml.”

Limitations of RDF. A key limitation of RDF is poorly defined semantics. RDF has nosense of vocabulary. It

does not provide any notion of scope within which a specified vocabulary can be constrained. Any node within a

connected RDF graph is reachable by any other node. To support automated reasoning, agreement on a uniform,

well defined, vocabulary is needed.

1.3.5 Ontologies

According to James Hendler, a leading researcher of the Semantic Web, an ontology is “a set of knowl-

edge terms, including the vocabulary, the semantic interconnections, and some simple rules of inference and logic

for some particular topic [23, 24].” Ontologies are needed to facilitate communication among people, among

machines, and between humans and machines.

So what does an ontology look like? It’s a question the Internet community is still struggling with.

Some envision “ a few large, complex, consistent ontologies.” Others see “a great number of small ontological

components consisting largely of pointers to each other [24].” In either case, ontologies help to bridge the gap

11

between symbols and things. Generally, symbol-to-thing relationships are one to many. As pointed out by Maedle

[39], for example, the term “Jaguar” can refer to “the animal” and “the car.” In computer science circles, “Jaguar”

also refers to an emerging operating system.

ThingSymbol

Concept

stands for

refers toevokes

Figure 1.9: Ontology Framework: The Meaning Triangle

Symbol-to-thing relationships need to be defined indirectly, and within the framework of a relevant concept. To

determine what a particular symbol “stands for,” we need to traverse the upper pathway in Figure 1.9. Starting at

the left-hand side, an interpreter processes the symbol, which invokes a specific concept, which, in turn, refers to a

specific thing.

For our purposes, ontologies are needed to facilitate communication among people, among machines,

and between humans and machines. To provide a formal conceptualization within a particular domain, an ontology

needs to accomplish three things:

1. Provides a semantic representation of each entity and its relationships to other entities;

2. Provides constraints and rules that permit reasoning within the ontology;

3. Describes behavior associated with stated or inferred facts.

This goal requires new languages to define problem domains and a means for authors to make statements about the

problem domain.

DAML+OIL. DAML is an acronym for DARPA Agent Markup Language [11]. DAML+OIL is an seman-

tic/ontology language that ties information on a web page tomachine readable semantics (ontology). An ontology

consists of a set of axioms that assert resources are instances of DAML+OIL classes. which can describe the

structure of a domain using the formal rigor of a very expressive description logic (DL). DAML+OIL classes can

be names (URIs) or expressions (a variety of constructors are provided for building class expressions). Thus, from

an implementation standpoint, a DAML+OIL ontology is a web page containing: (1) An optional daml:Ontology

instance; (2) A set of classes; (3) A set of properties of the classes, and (4) A set of restrictions (constraints) relating

the classes and properties of the classes [18].

Infrastructure for Ontology-Based Computing. Simply introducing languages is not enough. We need an

ontology-based computing infrastructure that includes: ontology development tools, content creation systems,

12

storage and retrieval systems, ontology reasoning and mediation, and lastly, integration of reasoning with real-

world applications! For preliminary work on development ofontology tools, see references [21, 32, 33, 50].

Ontologies that will enable application interoperabilityby resolving semantic clashes between application domains

and standards/design codes are currently in development [9, 34].

For this vision to become practical, ontology-based technology must be scalable. This means that issues

associated with the “expressiveness of description logic”must be balanced against “tractability of computation.”

While the syntax of first-order logic is designed to make it easy to say “things about objects,” predicting the solu-

tion time for evaluation of statements written in standard first-order logic is often impossible. Description logics

(DLs), on the other hand, emphasize “categories, their definitions, and relations,” and are designed specifically

for tractability of inference [4]. Description logics ensure that subsumption testing (inference) can be solved in

polynomial time with respect to the size of the problem description.

1.3.6 Logic (and Rules)

From this point on, and as indicated in Figure 1.6, we’re discussing parts of the Semantic Web that are

still being explored and prototyped. While it’s nice to havesystems that understand basic semantic and ontological

concepts (subclass, inverse, etc.), it would be even betterif we could create logical statements (rules) that allow

the computer to make inferences and deductions. Reasoning with respect to deployed ontologies will enhance

“intelligent agents” allowing them to determine, for example, if a set of facts is consistent with respect to an

ontology, to identify individuals that are implicitly members of given class, and so forth.

1.3.7 Digital Signatures

Digital signatures are based on work in mathematics and cryptography, and provide proof that a certain

person wrote (or agrees with) a document or statement.

1.3.8 Proof, Trust, and Beyond

Because the Semantic Web is an open and distributed system, in principle, anybody can say anything

about anybody. To deal with the inevitable situation of unreliable and contradictory statements (data and infor-

mation) on the Semantic Web, there needs to be a mechanism where we can verify that the original source does

make a particular statement (proof) and that source is trustworthy (trust). At this point, notions of proof and trust

have yet to be formalized, and a theory that integrates them into inference engines of the Semantic Web have yet

to be developed. However, these advances in technology willoccur, simply because they are a prerequisite to the

building of real commercial applications.

The ability to “prove things” on the Semantic Web stems directly from its support for logical reasoning.

When this system is operational, different people all around the World will write logic statements. Then, machines

will follow these Semantic “links” to begin to prove facts. Swartz and Hendler [52] point out that while it is very

difficult to create these proofs (it could require followingthousands, or perhaps millions of the links in the Semantic

Web), it’s very easy to check them. In this way, we begin to build a Web of information processors. Some of them

could merely provide data for others to use. Others would be smarter, and could use this data to build rules. The

13

Figure 1.10: Architecture of Paladin integrated with Ontology-Based Rule Checking. For more details, see refer-
ence [36]

smartest would be heuristic engines, powering “intelligent agents” which follow all these rules and statements to

draw conclusions, and place their results back on the Web as proofs as well as data or query answers like those

shown in the introduction [38].

Looking ahead, the desired goal for the the Semantic Web is armys of software agents which know about

logic, and with the support of the ontology, can then use RDF to navigate the sea of XML documents and perform

logical reasoning tasks on behalf of a user. Each agent will probably have a very limited scope. Perhaps an agent

knows how to find available times at the doctor’s office for an appointment. A second agent may know how to find

available times in your personal schedule. A third agent mayknow how to ask the other two for available times

and find a common one. A fourth agent may know how to tell agents5 and 6 to add the appointment the doctor’s

schedule and your personal calendar. The key to the inference services is not in a very complex agent, but an army

of simple agents who can use the Semantic Web infrastructureto communicate.

1.4 Organization of this Report

This report is divided into six chapters. Chapter 2 covers issues associated with the representation and

management of requirements. It provides a formal frameworkto specify the XML/RDF schema and template

14

structure to store the requirements. With this formal representation, approach for controlled visualization of re-

quirements hierarchy-using RDQL is outlined.

Chapter 3 deals with the representation and synthesis of system-level architectures from reusable component-

specification pairs. Procedures for the bottom-up assemblyand synthesis of system-level architectures from

reusable component specification are developed. An RDF model is developed to store the connectivity information

among the objects. Object specifications are translated to an XML schema. The former can be checked against

requirements. Associated issues include support for multiple viewpoints of the system architecture, merging of

sub-systems, and so forth. We formulate an XML schema that will store the visual properties of an object.

Chapter 4 contains a working example of a home theater system. Its main purpose is to illustrate all the

concepts outlined in Chapters 2 and 3.

Chapter 5 investigates the application of “ontologies and reasoning” to the solution of engineering prob-

lems. We want to understand the extent to which relationships and constraints in ontology-based descriptions of

problem domains can influence and improve system-level design procedures. A Port-Jack ontology is developed

for the home theater system. Class relationships and the domain restriction between the Port and Jack specify what

kind of connections are permitted. This fact base is translated to Jess input, and rules are added on the basis of the

instances created in GUI.

1.5 Acknowledgments

This work was supported in part by the National Science Foundation’s Combined Research and Curricu-

lum Development Program (NSF CRCD), an educational grant from the Global Precipitation Measurement Project

at the NASA Goddard Space Flight Center, and the Lockheed Martin Corporation. We particularly wish to thank

David Everett and Tom Philips at NASA Goddard for their inputto the systems engineering and software devel-

opment phases of this project. The views expressed in this report are those of the writers and are not necessarily

those of the sponsors.

15

Chapter 2

Representation and Management of
Requirements

The basic building block of object-oriented system development is assessment of customer needs in the

form of goals and scenarios, followed by their conversion into high-level requirements. Requirements define what

the stakeholders - owners, users, and customers - expect from a new system. Satisfying the needs of all stakeholders

may be far from trivial - their demands of the system may be many, and in some cases, conflicting in nature. So in

order to achieve a proper system design it becomes absolutely essential to have a formal structural framework in

place to manage and enforce project requirements that are consistent and unambiguous.

2.1 Organization of Requirements

Requirements are organized so that they can easily support separation of concerns and top-down decom-

position in system development. For many present-day developments, these organizational concerns translate into

documents containing hierarchies of stakeholder requirements dictating the needs of the overall system (e.g., func-

tional requirements, interface requirements). Often, these high-level requirements are termed Level 0 requirements,

or sometimes, the mission statements of the system.

A common practice in systems engineering circles is population of requirements engineering databases

through the parsing and import of textual (requirements) documents, such as those prepared in Microsoft Word.

While many systems engineers find this pathway of requirements preparation convenient, the resulting require-

ments are largely abstract in nature, lack semantics, and may not be quantifiable. It is therefore the job of the

systems engineer to break down these higher-level requirements into lower-level requirements suitable for quanti-

tative evaluation.

2.2 Requirements Allocation and Flowdown

Allocation involves the breaking of a single attribute value into parts, and assigning values to subordinate

values. For example, overall system budget is a constrainedresource that is divided and allocated to components

making up the system structure. Thus, as shown in the lower half of Figure 2.1, requirements allocation is the

16

Stakeholder
Requirements

System
Requirements

Subsystem
Requirements

Component
Requirements

Component
Test

Subsystem
Test

System
Test

Test
Stakeholder

Allocate requirements
to components.

Flowdown of
Requirements

Verify the system

Validate the system

Validate the system

Figure 2.1: Flowdown of Requirements in the V-Model of System Development (Adapted from Hull et al. [26])

process of allocating a set of unique requirements to one or more subsystems or components.

Higher-level requirements are made more granular by refining and breaking them down at various levels.

The goal of this “flowdown process” is to successively define the complying requirements until a state is reached

where a particular requirement can be assigned to a single component. Typically, different teams/persons are

responsible for various layers of requirements. So once allthe requirements mapped to a particular component are

identified, a team can be assigned to design that particular component.

2.3 Graph Representation of Requirements

Present-day systems engineering tools such as SLATE graphically represent the complying and defining

requirements in a tree structure with respect to the requirement of interest. This model works well if requirements

comply/define from a single source. In practice, however, asrequirements are classified and broken down into more

granular components, they trace across the same level. Thishappens because requirements are tightly interdepen-

dent with each other across the same level of abstraction. Asa result, within the same level, one requirement may

comply or define the other requirements. A partial requirement document with requirements arranged in layers is

shown in Figure 2.2.

Figure 2.3 shows the tree structure of a complying requirement relationship modeled in SLATE [1]. In

this particular example, provided by the GPM Project Group at NASA Goddard, there are repetitions of the node

GPM Microwave Imager under the Sampling Requirement. This happens because of the inherent limitation of

trees in representing complex requirements structures and, in part, because systems engineers like to work with

data/information organized into tree structures – for example, a tree structure naturally occurs when paragraphs,

requirements, and so forth are extracted from a Word document. Even if initial requirements are written in a

tree structure format, relationships among requirements (i.e., links) are progressively modified as the requirements

17

Layer 1

Layer 3

Layer 2

E

E

E

C

C

C

into a graph.
the tree representation

Compaction of

Requirements are organized into layers

for team development.

E

C

F
lo

w
do

w
n

E

Figure 2.2: Many-to-Many Relationships in Layers of Requirements. On the right-hand side we show extraction
and visualization of requirements as a tree, followed by compaction back in to a graph format.

Figure 2.3: Tree Representation of Requirements in SLATE (Source: Dave Everett, NASA Goddard)

18

evolve. This renders the underlying structure of the requirements document as a graph instead of a tree. Hence,

from this point on partial tree structure views of the requirements document are likely to require duplication of the

leaf nodes.

2.4 Requirement Template Structure

As pointed out by Hull et al. [26], in writing a requirements document, two aspects have to be carefully balanced:

1. The need to make the requirements document readable;

2. The need to make the set of requirements processable.

While requirements written in a text editor can be readable and can be easily imported into many systems-

engineering tools, a fundamental limitation is lack of semantics associated with each requirement. In an effort

to mitigate the latter limitation, and enable classification and reuse of requirements across several projects, the

concept of boilerplates has been proposed by Hull et al. [26].

In this project, we interpret the concept of boilerplates astemplates. Templates provide users with

placeholders to provide input on the values of requirementsattributes. As a first step, templates are provided for

the requirements relevant in the context of the system structure diagram. Furthermore, we assume that almost all

the requirements can be written in a primitive format i.e,

<attribute, relation, and value>.

For example, a weight requirement on a particular componentmay state that the mass of the component shall not

exceed 10 lbs. This in essence translates to

<Mass <= 10>

By gathering the values from the placeholders consistent requirement statements can be generated automatically.

Template Definitions

There is another clear advantage of using the templates in the system structure context. As we will soon

see, we can use this information to support the bottom-up system development. The following templates have been

specified with respect to the system structure:

1. The<specification> of <object> shall not exceed<value> <units>

2. The<specification> of <object> shall be less than<value> <units>

3. The<specification> of <object> shall be at least<value> <units>

4. The<specification> of <object> shall be greater than<value> <units>

5. The<specification> of <object> shall lie within<lesser value> and<higher value> units

19

6. The<specification> of <object> shall be<value (numeric)> <units>

7. The<specification> of <object> shall be<value (alphanumeric)> <units>

8. The<originating port> of <object> shall connect to<destination port> at the other end.

Since it is not possible to represent the entire requirements document (for example behavior requirements, or

the higher-level requirements that are abstract and often non-quantifiable) within the framework of these eight

templates, template 0 is reserved for the representation of“all other” requirements. Requirements at the lowest

level in the hierarchy (leaf requirements) are mapped to individual components in the system structure. These

requirements are in turn grouped on the basis of the components to which they are mapped, and assigned to either

teams or to sub-contractors for the final design of the component. Most of these requirements are checked against

the existing component specifications (possibly among a pool of available choices for that component to promote

reuse), before the designer comes up with a final component that matches the requirements mapped to it.

Templates add semantics to the individual requirements andin turn can be processed to check the spec-

ifications of the components against them. This results in considerable time savings and increases in productivity.

Unfortunately, the practice of checking requirements against component specification is still manual. As systems

grow more complex, the number of checks to be performed can quickly become unmanageable. In Chapter 4, we

develop a complete working example that has a graphical userinterface and automated checking of requirements

written in a template format.

2.5 XML and RDF Representation of Requirements

Depending upon various projects needs, requirements have different attributes associated with them. For

example, some of the attributes might be verification method, description of requirement, creator, priority and ra-

tional, and so forth. These attributes are customizable depending on the particular vision of documenting a set of

requirements. The extensible markup language (XML) can be used to store the attributes and their value. Require-

ments processing can proceed in a number of directions. One possibility is to generate requirements documentation

directly from the XML markup by applying an appropriate XSLT[63] transformation. Alternatively, a Java parser,

such as Xerces [61], can be written to extract the value of theattributes and display them in the graphical user

interface.

Representation of System Requirements

In our prototype software implementation, and as shown in Figure 2.4, the system requirements document

is a composition of three separate files:

1. Visual properties of the requirements that include the way they are drawn on the Paladin GUI screen is stored

in an XML document. Detail of the associated XML schema is similar to the XML representation of the

system structure and discussed in detail in Section 3.2.

2. Properties of the individual requirements are encoded in another XML schema as discussed next.

20

Figure 2.4: Internal Representation of Requirements

3. The connectivity information among various requirement objects are stored in a RDF file, discussed in Section

2.7.

XML Tag Set for Representation of Requirements

To start with we consider the following attributes of a particular requirement:

1. Unique identifier

2. A descriptive name of the requirement

3. Rationale

4. Verification Strategy

5. Comment

6. Creation/last modified date

7. Description of the Requirement (Text), and

8. Template on which the requirement is based (As defined in Section 2.4)

Example 1.Based on the above information, a sample requirement encoding in XML might be as follows:

<Requirement ID="REQ.2.1">
<Name Value="Display Requirement" />
<Rationale Value="Need to watch movies on large screen" />
<Verification Value="Demonstration" />

21

<Comment Value="Detailed agreement between the customer a nd builder" />
<REVISION Value="Mon Jun 16 14:00:55 EDT 2003" />
<MAPPED_TO Value="TV" />
<Template NO="0" />
<Description Value="The Home Theater shall have a large dis play screen" />

</Requirement>

Because this requirement is a higher-level abstract requirement, we use the generic template 0 for its encoding in

XML.

Example 2.A lower-level requirement.

- <Requirement ID="REQ.3.2">
<Name Value="Thickness of TV" />
<Rationale Value="Comes from Wall mountable display scree n" />
<Verification Value="Demonstration" />
<Comment Value="Component Level Requirement" />
<REVISION Value="Mon Jun 16 14:00:55 EDT 2003" />
<MAPPED_TO Value="TV" />
<Template NO="1" OBJECT="TV" SPECIFICATION="Thickness" SPECLINK="tv1.xml"

VALUE1="6" UNITS="inches" />
<Description Value="Thickness of the TV shall not exceed 6 i nches" />
</Requirement>

2.6 Requirement Traceability and Controlled Visualization

“In the requirement engineering context, traceability is about understanding how high-level requirements

- objectives, goals, aims, aspirations, expectations, needs - are transformed into low-level requirements. It is

therefore primarily concerned with the relationships between layers of information” [23].

Requirement traceability is the process of defining and identifying relationships among pairs of require-

ments connected to each other at higher and lower levels. A requirement at the higher level is termed the “defining

requirement” for a requirement it points to at the lower level. Conversely, the lower-level requirement is called the

complying requirement. In Figure 2.6, for example, REQ.3.5is the complying requirement of REQ.2.1 and the

defining requirement for REQ.4.10. Requirements can complyand define within same level as explained in the

Figure 2.2.

For requirements documents containing hundreds of requirements, often crossing across levels, com-

prehension of the entire document becomes very difficult. Present-day systems engineering tools, like SLATE,

address the problem through representation of requirements in tree hierarchies. See Figure 2.3. While the un-

derlying requirements structure is a graph, visualizationof “parts of the requirements” structure as a tree leads to

duplication of leaf nodes. Also, there is no mechanism by which the end user can specify the direction from a

particular requirement node and the number of levels of interest.

Selective Visualization

In this work, we propose the concept of a selective visualization of either the requirements document

or the system architecture. By means of selective visualization we will provide user with the option of selecting

22

Layer 1

Layer 3

Layer 2

E

C

C

Requirements are organized into layers

for team development.

A B

D

E

A B

D

Result.

Display all "complying" and

within one step of C.
"defining" requirements

Select Node C.

Query

Figure 2.5: Extraction and Visualization of “Complying” and “Defining” Requirements in a Requirements Neigh-
borhood

Figure 2.6: Extraction and Visualization of “Complying” and “Defining” Requirements in the Neighborhood of
Requirement 2.1.

23

a particular node in the requirement document or the system structure, and ask the question if he/she want to see

the complying or defining or both type of requirements emanating from that particular node. This procedure is

summarized in Figure 2.6. Furthermore, an option of specifying the number of levels is provided to account for

the fact that requirement hierarchies can be very deep and nested. This selective visualization provides a particular

local viewpoint of the document. Users are provided the flexibility to make any changes, including addition

and deletion of links, which could be merged with overall document to reflect the changes. The implementation

approach to selective visualization is presented in Section 2.7. A working example and a screenshot of this feature

is illustrated in Chapter 4.

2.7 RDQL Approach to Retrieve Nodes and Links

RDQL [46] is a query language designed for RDF in Jena [29] models. A meta-model specified in

RDF consists of nodes (which could be either literals or resources) and directed edges. RDQL provides a way of

specifying a graph pattern that is matched against the graphto yield a set of matches.

Figure 2.7: Equivalent RDF Model of the Requirements Document

In this framework we have requirements (nodes in the RDF meta-model) that are connected by the directed edges

specifying the relationship of complying and defining requirements. The originating node of the link specifies a

defining requirement and the terminating node defines a complying requirement.

The upper half of Figure 2.6 shows a graph of requirements organized into four layers. Complying and

defining relationships are interleaved among the requirements. We want to see a controlled visualization of the

24

complying and defining requirements with respect to REQ.2.1. Expected results are shown for the required query

at the bottom. The equivalent RDF model for the entire requirement document is illustrated in Figure 2.7.

RDQL works by executing the string queries, which are passedto a query engine. The query engine

looks at the structure of the query and pattern of the query ismatched against all the triplets in the RDF file on

which the query is running. It returns an iterator of the result set which can be inspected to retrieve the desired

result.

Query for Complying requirements One Level Down:

Query string to see the complying requirement is as follows:

String queryString = "SELECT ?X "+

"WHERE(<http://somewhere/"+currentElement+">,

<http://www.w3.org/2001/vcard-rdf/3.0#Given>, ?X)";

The Current element is the REQ.2.1 from which we want to see the complying requirements. ?X represents a

clause which returns the resources satisfying the given property.

Query for Defining requirements One Level Up:

Query string to see the defining requirement is as follows:

String queryStringLevelUp = "SELECT ?X "+

"WHERE(?X, <http://www.w3.org/2001/vcard-rdf/3.0#Giv en>,

<http://somewhere/"+currentElement+">)";

Query for both Complying and Defining Requirements around One Level:

Query string to see both complying and defining requirementsaround one level is obtained by a combination of

above two queries executed together.

For multiple level queries can be recursively executed on all the obtained results till it reaches the number

of level or a leaf requirement, whichever occurs earlier. For a complete working example and screenshots of this

utility please refer to Chapter 5.

25

Chapter 3

Synthesis of System-Level Architectures
from Reusable Component-Specifications

As already mentioned in Chapter 1, the bottom-up synthesis of engineering systems from reusable com-

ponents is a key enabler of enhanced business productivity (i.e., through improved adaptability to change; shorter

time-to-market with fewer errors) and return on investment(ROI).

Decomposition. Composition

Library of Reusable Components.

Object Specification

= Reusable component.

= Custom−built component.

Buy vs build?

System Design

Testing/Verification

Deliverable product

System Design

Requirements

Figure 3.1: Flowdown of Requirements into a System-Level Design. Top-down design is guided by interface
constraints in a component-specification database.

As the size and complexity of systems grow, problems associated with system synthesis and the satisfaction of

functional and non-functional requirements become significant. A tenet of our work is that these challenges can be

kept in check through the use of design methodologies that are based on formal models of requirements (specific

26

details are covered in Chapter 2), formal models of system architectures, and automated design evaluation pro-

cedures. Computational platforms need to expose key limitations in resources and system capability (as defined

in the requirements), hide inessential details of implementation, and expose interdependencies among disciplines.

Figure 3.1 shows that as high-level requirements are decomposed into lower-level requirements, and models of

system behavior and system structure are defined, designerswould like to “look down into the product library”

to see what standards are available, and so forth. Moreover,for unaltered components to be useful across many

contexts, system architectures must be sufficiently decoupled so that they can be easily pulled apart, reconfigured,

and maintained. Every component should be open to extension, but closed to modification.

The key research question is “How do we describe reusable components and their capabilities so that

reuse actually delivers on its promise?” During the past twodecades, numerous initiatives for reuse of soft-

ware/assets have been proposed, and then they have failed [17, 44]. The causes of early failure are now evident –

organizing software/assets for reuse is hard; components/assets were too diverse in their mission; interfaces and

their behavior were poorly defined. Then in the mid 1990s, reuse initiatives gathered momentum as the need for

commercial-off-the-shelf (COTs) software/assets grew. Most recently, the drive for system/software reuse has been

motivated by new mediums of product distribution – “if it exists, then you can find it on the Web!”

Our starting point assumes system architectures are definedby collections of components and connec-

tions. Components have well-defined interfaces and functionality. Connections describe the permissible interac-

tions among components. Figure 3.2 shows, for example, a simple system structure composed of two nodes and

one edge.

A B

a b

a b

B
ba

A

Simple System AssemblySmall collection of modules and connectors.

Synthesis

Rules for System Assembly

Figure 3.2: System Architectures: Collections of Modules,Connections, and Rules for System Assembly

Our research goal is to understand how properties and functionality associated with the modules and connections

can be used to construct rules that can guide/improve the synthesis of architectural designs and discipline-specific

architecture diagrams. This quest leads to handful of interesting questions. How, for example, should we iden-

tify invalid parameters and/or connections? On what matching condition we should ascertain that two objects in

different system architecture are one and the same thing?

In this study we take a preliminary step toward dealing with these issues. System objects, which have the

same label (e.g., identifying name) in two different systemviews are considered as the same system objects and

therefore merged together. An RDF approach to merging subsystems works really well here.

27

3.1 Component- and Interface-Based Design

We define a component as an independently deliverable piece of functionality providing access to its

services through interfaces [8]. To achieve system-level application assembly from components, we need:

1. A clear separation of component specification from its design and implementation. This principle allows

for orthogonalization of design concerns (e.g., separation of models of behavior from models of system

structure).

2. An interface-based design approach.System components are defined by encapsulated behavior accessible

through well-defined interfaces. Interfaces define the services that can be provided by the component, and

the rules under which these services can be provided.

3. Formally recorded component semantics.Informal descriptions of component behavior can be provided

by way of operation signatures and informal text. However, detailed descriptions of operational semantics

require formal, verifiable descriptions using pre- and post-conditions attached to each operation.

4. A rigorously recorded refinement process.This process records the history of development for the compo-

nent, and includes information to assure quality and aspects of the designer’s rationale.

These practices are supported by the principles of orthogonalization of concerns, effective use of languages for

system modeling, and formal models for system verification.

Interface-Based Design.Interface-based design is a methodology that employs component interfaces as the key

design abstraction, separates system interfaces from the internal details of implementation for virtual components

(VCs), and shows how the interfaces at various levels of abstraction relate to each other.

Interfaces can be defined through port definitions (a port is simply a connection point into a virtual

component), interface behavior (a description of allowable activity/transactions through a port), attributes (i.e.,

data attributes; flow of control) and transactions and messages.

Pre−conditions

Post−conditions

Object

Contract

Interface

Figure 3.3: Role of Pre- and Post-Conditions in Contract forObject Usage (Source: Newton A.R., ”Notes on
Interface-Based Design,” EECS, UC Berkeley)

An interface specification precisely defines what a client ofthat interface/component can expect in terms of: (1)

Supplied operations (e.g., minimum and maximum levels of component functionality); (2) Types of signal, data

28

and information flows, and (3) Operational pre- and post-conditions. Together the pre- and post-conditions and

satisfaction of the input requirements constitute a contract.

3.2 Libraries of Reusable Component-Specifications

A classical problem in the bottom up development of system architecture is identification of suitable

components in the components library. As components becomemore complex and encompasses more features,

the number and the type of specifications attached to a particular component can quickly grow – see, for example,

Figure 3.4.

In the pre-Web days component specifications were reproduced as printed media (e.g., portable document

format) and distributed through traditional mail. With theemergence of web, the same “printed media” can be

put online at supplier/vendor websites, and downloaded andprinted by the consumer. Any further processing is

still manual, mainly because the portable document format in which the component specifications are stored lack

semantic descriptions of the particular component. So it’sthe job of the systems engineer/designer to ensure that a

component meets all the requirements mapped to that particular component. Currently, specifications are matched

against requirements one by one. This can be a Herculean task. Consider, for example, a component having 20

specifications attached to it. And suppose there are 50 components from different vendors that might be suitable

for the the systems architecture. There are 20 leaf requirements mapped directly to this component, which it must

satisfy. So, in the worst case, determining the complete setof components that could be reused would require

20,000 cases to be checked. In practice, engineers often take the easy way out and make their selection from a

much smaller set (e.g., 5 instead of 50). The result will be a system design that is likely to be suboptimal.

Schema to Store the Component-Specification.If portable document format for storing the component specifi-

cation does not entail any semantics associated with it, then what form is right? With the advent of the Semantic

Web, one of the possible answers lies in the design of an XML schema specification for each component – and, of

course, specifications for components would be available for download over the Web.

In this work we propose a very simple XML schema for storing individual attributes, such as one given

below:

<Size Value="32" Units="inches" />

This attribute states that the size of a particular component is 32 inches. Java-XML parser can be written to extract

this information from specifications. More discussion and amore complete example will be illustrated in Chapter

4, where we develop the Home Theater System.

3.3 RDF-Based Storage of Object Connectivity

The Resource Description Framework (RDF) defines a standardfor specifying relationships between

objects and classes in a general and simple way. An RDF statement contains triplets viz. subject, predicate and

object. Within the semantic web layer cake, the RDF layer lies above the XML layer. It provides semantics to the

29

Input Output

Specification

Object

−− Cost.

Interface

−− Reliability

−− Clip Art Rendering (.. SVG)

−− I/O Transformation (... ports, types).

Graphical Abstraction

−− List of sub−system objects.

−− Class diagram (...UML)

Simplfied Structure

−− Production functions

−− Attributes

−− Performance

−− Finite State Machine (.. UML)

−− Activity Diagram (.. UML)

Simplfied Behavior

−− Postconditions (.. rules)

−− Ports, types,

−− Output (specification)

−− Ports, types,

−− Input (requirements)

−− Preconditions (... rules)

Operation

Usage

Figure 3.4: Elements of Object (or Component)-Specification Pair

encoded metadata and resolves the circular references, which is an inherent problem of the hierarchical structure

of XML [24].

Generally speaking, a UML diagram drawn in the Paladin user interface consists of nodes and edges. Not

only can RDF represent these topological relationships in anatural way, but APIs exist for parsing RDF documents

and computing graph operations, such as intersection and union.

RDF Schema to Store a Node and an Edge.Let’s return to the simply system assembly shown on the right-hand

side of Figure 3.2. The RDF schema to store the connectivity properties is as follows:

<rdf:RDF
xmlns:rdf=’http://www.w3.org/1999/02/22-rdf-syntax- ns#’
xmlns:vcard=’http://www.w3.org/2001/vcard-rdf/3.0#’
>

<rdf:Description rdf:about=’http://somewhere/A’>
<vcard:N>A</vcard:N>
<vcard:Given rdf:resource=’http://somewhere/B’/>

</rdf:Description>

<rdf:Description rdf:about=’http://somewhere/B’>
<vcard:N>B</vcard:N>

30

</rdf:Description>
</rdf:RDF>

The first block of code defines XML namespaces that are utilized by the RDF statements (namespaces take care of

name conflicts and enable shorthand notations for URIs).

xmlns:rdf=’http://www.w3.org/1999/02/22-rdf-syntax- ns#’
xmlns:vcard=’http://www.w3.org/2001/vcard-rdf/3.0#’

Thexmlns:rdf namespace is the default RDF schema recommended by W3C. Thexmlns:vcard is a simple

RDF schema for properties about a person. The latter comes prepackaged with the vocabulary of the RDF API.

For simple RDF modelsvcard schema can be utilized but as the model gets more complex, oneneeds to write

his own schema and the associated RDF API for the purpose.

The second and third blocks of RDF code contain statements about two objects A and B in the system

structure. Their labels are stored throughvcard:N property, and the connection between the A and B is stored

by vcard:Given property. Again, these two choices are made among a list of available properties in the vcard

schema, which closely resembles the purpose for which it is used.

Representation of the system structure in RDF requires three triplets having the format (subject, predicate,

object) [12]:

1. (http://somewhere/A http://www.w3.org/vcard-rdf/3. 0#N "A")

2. (http://somewhere/A http://www.w3.org/vcard-rdf/3. 0#Given

http://somewhere/B)

3. (http://somewhere/B http://www.w3.org/vcard-rdf/3. 0#N "B")

The equivalent RDF graph representation is shown in Figure 3.5.

3.4 Leaf Requirements Validation Against the Component-Specification

Requirements validation is all about checking a particularrequirement to see if we are defining the

right requirement and whether it is achievable by the means of current technologies. There are two aspects to

requirements validation:

1. Formatting Concerns. By consistent format we mean that the requirement is quantifiable and has a logical

meaning. As explained earlier, current systems engineering tools do not support such a methodology. This

problem can be solved, in part, with the use of requirements templates.

2. Performance Concerns.Once the proper requirement is in place, the next question iswhether satisfaction of

the requirement can be achieved by means available processes, COTs components, and custom components.

At this time, procedures to assess “performance concerns” are largely manual. However, once suitable component-

specification library schema files have been designed, and databases have been populated, it should be a relatively

straightforward matter to write computer programs that cansystematically check requirements against the available

component specifications.

31

Figure 3.5: RDF Graph of the Data Model for a system having twonodes and one edge.

32

Chapter 4

Development of a Home Theater System

4.1 Problem Statement

Our long-term research and development objective is methodologies and tools for the combined top-down

decomposition and bottom-up synthesis and evaluation of systems that are likely to be deployed in NASA’s Global

Precipitation Measurement (NASA GPM) Project. As a first step, we are trying to understand the role Semantic

Web technologies can play in modeling requirements and system-level architectures, and develop prototype tools

that will complement present-day commercial systems engineering tools.

In this chapter, we take up the example of a home-theater system, and explore bottom-up synthesis and

evaluation processes for a problem domain familiar to the lay person. We view diagrams of system architectures

as a language, in the sense that the architecture elements (e.g., nodes, edges and attachments) are connected and

arranged under certain rules. The visualization process will be regarded as a translation (or visual mappings)

from textual languages (i.e., XML/RDF markup) into two- andthree-dimensional visual languages composed of

graphical objects, connection relationships, and geometric relationships. The generation of aesthetically pleasing

diagrams from XML/RDF markup currently lies outside the scope of work.

4.2 System Structure

The system structure of a home theater system is illustratedin Figure 4.1. The GUI portrays the essential

components assembly, completed with port and cable specification. A system object such as TV is portrayed as a

port panel consisting of several audio and video ports. Other details, such as the TV screen, are abstracted from the

system-level representation. Cables connect two ports. Inour prototype implementation, users have the freedom to

use any cable to connect a pair of ports. The equivalent XML representation for the system structure can be found

in Appendix A.

Storing Visual Properties of System Objects (XML).Every system object drawn in the graphical user interface

has visual properties like dimension, color, associated hyperlinks, ID and so forth. An XML schema, such as the

one outlined below, is proposed to store the properties of the system objects.

<?xml version="1.0" encoding="UTF-8" ?>
<Project>

33

Figure 4.1: Graphical User Interface for Port Model of Home Theatre System (Source: Graphical User Interface
developed by Natasha Kositsyna)

<Graph start="true">
<Object ID="4337267591854790877" shape="PORT_PANEL" ty pe="47">

<Dimension>44 24 162 129</Dimension>
</Object>
<Object ID="7733796259543882762" shape="CABLE" type="4 6">

<Dimension>156 70 374 70</Dimension>
<Link fromID="5897562330078363886" toID="-93017186249 5999138" />
</Object>

</Graph>
</Project>

Every object has a unique ID reference, a type, such as CABLE or PORT PANEL, and a graphical dimension. For

the objects such as a cable of type edge, a LINK reference stores the ID’s of the connecting system objects. To

facilitate the import and export of the system structure diagrams from Paladin [36], information on visual properties

is stored in a file database. A Java parser constructs a DOM (Document Object Model) tree in program memory,

and exports and imports the XML document into the file system.We anticipate that over time, expanded capability

will occur in the form of new objects being added to the GUI andnew tags being added to the XML file/database.

34

4.3 System Requirements

Even a simple system such as a home theater can have large number of requirements. For the purposes

of illustration, in this section we specify a small subset ofrequirements organized into a three-layer hierarchy, as

shown in Figure 4.2.

Figure 4.2: Requirements Document Structure

Customer needs lie at the top of the hierarchy (Level 1). Requirements become more specific as they flow down

to the next higher-levels. The decomposition of requirements continues until they can be assigned to individual

components. In practice, when this lowest level of requirements is attained, a design team is assigned responsibly

for designing the particular component to be compliant withthe low-level requirements.

Level 1 Requirements- Preliminary Agreement between Customer and Builder

REQ.1.1: I need to assemble a good home theater system from th e market.

REQ.1.2: The total cost must be less than or equal to USD 8000.

Level 2 Requirements- Detailed Agreement between customer and Builder

REQ.2.1: The home theater shall have a large display screen.

REQ.2.2: The display should be able to be mounted on the wall.

REQ.2.3: The system shall have a high fidelity audio system.

REQ.2.4: All components will be bought from the market.

REQ.2.5: Components of the systems shall be connected to eac h other.

35

As mentioned earlier, the level 2 requirements are more refined than those at level 1. Part of the refinement process

is the establishment of complying and defining requirementsrelationships. As illustrated in Figure 4.2, REQ.1.1 is

a defining requirement for all level two requirements. This is because, as a group, the level 2 requirements define

what is “good” for the customer (i.e., see REQ.2.1 thru REQ.2.3 and REQ.2.5). REQ.1.1 is also a defining require-

ment for REQ.2.4 – users want to assemble the system from electronic components available in the commercial

market (REQ.2.4). The cost requirement (REQ.1.2) is a defining requirement for REQ.2.1 thru REQ.2.3 because

a user is constrained by budget considerations, and cannot simply buy whatever is best in the market. As men-

tioned in Section 2.3, requirements can comply and define at the same level, REQ.2.1 thru REQ.2.3 are complying

requirement of REQ.2.4 because the components need to be bought from the market. For example, in the era of

mono aural audio signals, a high-fidelity system can’t mean asurround sound system because such systems were

unavailable in the market.

Level 3 Requirements- Component Requirements

REQ.3.1: Size of the TV shall be at least 32 inches.

REQ.3.2: Thickness of the TV shall not be greater than 6 inche s.

REQ.3.3: Cost of the TV shall be less than 5000 USD.

REQ.3.4: Cost of the Amplifier shall be less than 600 USD.

REQ.3.5: Output of the speaker shall lie within 200 watts and 350 watts.

REQ.3.6: The AudioOut Port of TV shall connect to AudioIn por t of Amplifier.

REQ.3.7: The AudioOut Port of VCR shall connect to AudioIn Po rt of Amplifier.

REQ.3.8: The AudioOut Port of DVD shall connect to AudioIn Po rt of Amplifier.

REQ.3.9: The VideoOut Port of VCR shall connect to VideoIn Po rt of TV.

REQ.3.10: The AudioOut Port of Amplifier shall connect to Au dioIn Port of Speakers.

Relationships among requirements at this level can be reasoned with in a similar way to those at level 2. For

example, REQ.3.6 thru REQ.3.10 are the complying interfacerequirement of REQ.2.5. A point worth noting is

that relationships between requirements are sometimes subjective – whether or not the relationship exists depends

on the perspective of the engineer designing the system. To complicate matters, these links and relationships may

change as the system design evolves.

The complete RDF representation of the three-layer requirement hierarchy can be found in Appendix-B.

4.4 Requirement Template Structure

As discussed in Section 2.4, templates provide a formal structure for representing quantifiable component-

level requirements. Figure 4.3 shows, for example, a screendump of the input process for REQ.3.1, which says

“Size of TV shall be at least 32 inches.” Notice that REQ.3.1 has template type 3. Other requirements attributes

like Name, Rationale, Description and Revision are also illustrated.

User input is translated into a requirement XML property file. For complete details, the interested reader

is referred to Appendix-C. The fragment of code:

36

Figure 4.3: Requirement Template Input Dialog

<?xml version="1.0" encoding="UTF-8" ?>
- <Project file="HomeTheater.xml">

- <Requirement ID="REQ.1.1">
<Name Value="Overall System Requirement" />
<Rationale Value="System Objective" />
<Verification Value="Experimental" />
<Comment Value="Preliminary Agreement between customer a nd builder" />
<REVISION Value="Mon Jun 16 14:00:55 EDT 2003" />
<MAPPED_TO Value="Home Theater Amplifier" />
<Template NO="0" />
<Description Value="I need to assemble a good home theater s ystem from the market" />
</Requirement>

---- requirements removed

- <Requirement ID="REQ.3.1">
<Name Value="Size Requirement on TV" />
<Rationale Value="User definition of Large Display" />
<Verification Value="Demonstration" />
<Comment Value="Component Level Requirement" />
<REVISION Value="Mon Jun 16 14:00:55 EDT 2003" />

37

Figure 4.4: Complying Requirements (1-Level) with respectto REQ.2.3

Figure 4.5: Defining Requirements (1-Level) with respect toREQ.2.3

38

<MAPPED_TO Value="TV" />
<Template NO="3" OBJECT="TV" SPECIFICATION="Size" SPECL INK="tv1.xml"

VALUE1="32" UNITS="inches" />
<Description Value="Size of the TV shall be at least 32 inche s" />
</Requirement>

shows the details of two requirements represented in XML. The first template is for generic requirements that

will not be evaluated quantitatively. The second requirement has template type 3. Appropriate components are

specified as attributes of the template tag.

4.5 Requirements Traceability and Controlled Visualization

The heart of Figure 4.2 is a complex requirements structure,with requirements linking to each other

within and across levels. Present-day systems engineeringtools have the capability of showing the complying

requirements relationships, or the defining requirements relationships, but not both simultaneously. As a result,

system engineers are not given a complete picture of the complying and defining requirements surrounding a

particular requirement.

Figure 4.6: Complying and Defining Requirements (1-Level) with respect to REQ.2.3

Paladin mitigates this problem by allowing systems engineers to specify and visualize requirements in both the

complying and defining directions simultaneously. As a casein point, Figures 4.4 and 4.5 show the complying

and defining requirements associated with REQ.2.3, respectively. Figure 4.6 is a screenshot of both the complying

and defining requirements. For simplicity, and to illustrate the process, in this example the number of levels of

39

traceability is set to 1 (see the traceability options dialog box). Visualization of complying/defining requirements

across multiple levels of traceability (e.g., 2, 3 and 4....) may make sense for very large graphs of requirements

organized into multiple layers.

4.6 Merging Two Requirement Trees

Requirement trees or system structure diagrams consist of nodes and edges. In team-based development,

discipline specific graphs and trees of requirements may be developed by separate groups. To obtain a complete

description of the requirements (and system architecture)these discipline specific viewpoints need to be stitched

together. Paladin supports the merging of graphs represented in an RDF format.

As a case in point, Figure 4.7 represents two hypothetical requirements hierarchies obtained from two

different sources. Now suppose that the hierarchies need tobe merged together on the basis of common objects.

The result of the merge operation is shown in Figure 4.8.

4.7 Collapsing Requirement Tree with Duplications

In Section 2.3 we specified the underlying graph structure ofrequirements, which when represented as

a tree, yields duplicate nodes, as shown in Figure 2.4. For large-scale engineering projects, the printed tree of

requirements may cover all four wall of a moderate sized room. Identifying and reasoning with duplicate nodes in

an appropriate manner may be, at best, a cumbersome and errorprone process.

A key benefit in using RDF for the representation of nodes and edges of requirements is that a collapse

operation can be performed on trees. This operation removesduplicate duplicate nodes from the tree structure,

thereby revealing the underlying requirements graph structure.

For example, Figure 4.9 shows a requirements tree containing two duplicates of REQ 2.2 and three

duplicates of REQ 3.1. Figure 4.10 shows the graph structureafter the collapsing operation. Looking ahead, we

anticipate that this functionality will be especially useful in larger project contexts, such as NASA-GPM.

4.8 Components Library

The components specifications are stored in an XML database comprising of individual components and

their associated specifications list. Component level requirements (Level 3 in this case) are checked against the

specifications to validate the usability of a particular component in the system structure.

A very simple schema for storing the specification of a particular TV is shown as below:

<?xml version="1.0" encoding="UTF-8" ?>
<!-- Specification of the TV -->
<Object Name="TV">

<Size Value="27" Unit="inches" />
<Brand Value="Sony" />
<Cost Value="1400" Units="USD" />

40

Figure 4.7: Two Different Requirement Hierarchies Prior toMerging Operation

41

Figure 4.8: Requirements Graph after the Merging Operation

<Type Value="Plasma" />
<Mass Value="50" Unit="lbs" />
<Thickness Value="5" Unit="inches" />

</Object>

This small example is by no means the complete specification.Rather, it only serves the purpose of illustrating the

schema. As outlined in the earlier, these schema files will bestored on the vendor web sites and will be downloaded

on the fly. The vendor web sites might also contain ontologiesof relevant properties and relations for the particular

problem domain. Together, the component-specification andontologies can be utilized by reasoning engines to

provide guidance and answers for requirements validation.

4.9 Low-Level Validation of Requirements

When we see the above specification file and compare this particular instance of a TV with the specified

requirements, we see that this TV clears the requirements onthe cost and thickness, but fails against the screen

size. When we invoke the toolkit command to check the requirement against the specification file, we get a dialog

similar to the following, allowing users to take either of the two actions:

1. The user can relax the requirement on the Size for the TV.

2. The user can choose another instance of the TV from the database, which might satisfy all the component level

requirements as specified above.

42

Figure 4.9: Requirements Tree Prior to Collapsing Operation

Figure 4.10: Requirements Graph After Collapsing Operation

43

Figure 4.11: Error Dialog thrown during Leaf Requirement Validation against Object Specification

44

Chapter 5

Ontology-Enabled Validation of System
Architectures

This chapter reports on a preliminary investigation into the application of “ontologies and reasoning” for

the validation and verification of system-level architectures. The key concern for design purposes is “how do we

ensure the system model is error (or defect) free?” And then,once a failure has been detected “how do we identify

and fix the underlying cause of the failure?” Ideally, we would like validation and verification procedures to be an

integral part of the team-based system development process, rather than a postscript to development.

Our long-term research objective is to fully understand theextent to which relationships and constraints

in ontology-based descriptions of problem domains, working together with description logic reasoning engines,

can influence and improve system-level design procedures, particularly in the early stages of development where

errors may have a significant long-term impact, but if detected early are cheap to correct. A tenet of our work is

that theories of ontologies lead to improved conceptual models – that is, they help to ensure system-level designs

are faithful representations of both the “stakeholder needs” and the capabilities of the participating application

domain(s). For this pathway of thinking to work, system-level models need to possess several attributes [49]:

1. Accuracy.The system-level model needs to accurately represent the semantics of the participating application

domains, as perceived by the project stakeholders.

2. Completeness.The system-level model should completely represent the relevant semantics of the problem

domain, as perceived by the project stakeholders.

3. Conflict-free. The semantics used in various parts of the system-level model and/or various application

domains should not contradict one another.

4. No redundancy. To reduce the likelihood of conflicts arising if and when the model is updated, the model

should not contain redundant semantics.

Because a unified theory for system validation does not existat this time, present-day procedures for system

validation/testing tend to focus on small snippets of the system model functionality, and are achieved in several

ways: (1) consistency checking, (2) connectivity analysis, and (3) model analysis on a global basis, based upon

graph-theoretic techniques. Irrespective of the approach, there are two challenges that must be addressed in the

45

Figure 5.1: Overall Schema for Ontology-Enabled Model Checking

design of suitable validation procedures. First, problem formulations need to abstract from the system-level model

all of the details not relevant to the assertions that will betested. This strategy of selective abstraction serves

the dual purpose of helping to keep the validation model computationally tractable, and, simplifying the task of

identifying faults (conflicts or incompatibilities) in thedesign. The second major challenge is design of test suites

(or sets of rules) that will have sufficient coverage to determine whether the system-level design contains faults.

As a starting point to this avenue of research, in this chapter we develop a Port-Jack ontology for the

home theater system. Class relationships and the domain restriction between the Port and Jack specify what kind

of connections are permitted. The fact base is translated toJess input, and rules are added on the basis of the

instances created in the Paladin GUI [36]. The result is a rules-based system that uses rules to reach conclusions

from a set of premises about connectivity relationships in the home theatre system.

46

5.1 Model Checking Procedure

The model checking procedure begins with the formulation ofa Port-Jack ontology that will describe

allowable constraining relationships in the port and jack connectivity. Allowable types of connections are expressed

in the form of domain restrictions. We start with an Ontologyhaving only an audio cable and the associated ports.

Figure 5.1 illustrates two parallel paths of development, namely Ontology development and its integration

with the Paladin GUI to achieve model checking. On the right-hand side, classes and the constraining relationships

in the form of domain restrictions are defined. DAMLJessKB facilitates reading DAML+OIL pages, interpreting

the information as per the DAML+OIL language, and allowing the user to reason over that domain of information

[12, 35]. The DAMLJessKB software [13, 14] employs the SPRACRDF API to read in the DAML+OIL file

as a collection of RDF triples. The RDF triples form the fact base of the Jess input file. Jess [30] is a rule

engine and scripting environment written in the Java language that can be used to write applications that have the

capacity to reason using knowledge supplied in the form of declarative rules. Jess employs the Rete algorithm

[19] to process rules, a very efficient mechanism for solvingdifficult many-to-many matching problems. On

the left-hand side of Figure 5.1, the component assembly is defined in Paladin. The Paladin GUI generates the

instances of classes defined in the ontology along with the connectivity between the ports and the jacks in form

of constraints as specified by the user. To conclude that the system architecture is consistent with the ontology

definitions/restrictions, constraints defined by the user and the ontology need to be consistent (i.e., simultaneously

true). At this point, only the right-hand side of Figure 5.1 has been fully implemented. To demonstrate that the

method will work, we simulate the rules and facts that would be generated by nodes in the GUI.

5.2 Class Relationships in Port-Jack Ontology

DAML+OIL (DARPA Agent Markup Language) and the OWL (Web Ontology Language) [59] are two

different syntaxes that one can use to create an ontology. DAML+OIL is built on the top of RDF; but it has much

richer semantics and schema than RDF.

Figure 5.2: Class Relationship in the Port-Jack Ontology

For the purposes of illustration, we consider a simple example having only one cable and associated ports, and its

definition stored in the ontology. The cable is a typical Audio cable containing two jacks, namely “Audio Out”

jack and “Audio In” jack. The corresponding ports are the “Audio Out” Ports and the “Audio In” Ports. The cable

47

definition includes information on the types of allowable port and jack connections, and what type of jacks a cable

can have at its two ends.

Figure 5.2 illustrates the corresponding class definitionsand the relations between the instances as defined

in the Ontology. The convertsto relationship signifies the fact that an audio cable has twodifferent types of audio

ports at two ends. As we will soon see, relationships of this type can be enforced through the use of rules in a logic

engine.

At this point, a few remarks on the complexity of ontology development are appropriate. The number of

blocks of DAML code needed to represent an ontology increases with the number of leaf nodes in the ontology.

The size of the DAML blocks, measured in terms of lines of code, increases with increasing numbers of constraints

among the classes. One complicating factor in the implementation is that Ontologies are not unique; indeed, an

underlying feature of the Semantic Web, which we will need tolearn how to deal with, is that the structure of

the various classes and the relationships that emerge can bestrongly influenced by the perspectives of the creator.

While one developer might think to make a certain thing an attribute of the class, another might implement the same

concept it a different class. The details of ontology implementation propagate to the details of implementation for

the rule checking procedures.

5.3 Equivalent DAML Representation of the Ontology

Once the class and various relationships are in place, we need to create an equivalent DAML representa-

tion. There are two ways to generate this transformation:

1. The DAML representation can be hard coded in a text file by writing the classes and their relationships

manually.

2. We can use graphically-driven software for ontology-basedcomputing that reads in the classes and their

relationships, and then generates the DAML or other representation as needed.

The first approach is not very intuitive, and often results inontology definitions that are not completely consistent.

Hence, we will follow the second approach here. The tool we have used for defining the Ontology is Protg [45]

developed in Stanford University with a plugin to generate the DAML file from SRI [13]. Figures 5.3 and 5.4

provide snapshots of the tool being used to define the class AudioOutJack and the slot convertsto. A slot in Protg

maps to domain restriction in DAML. For a description and examples of domain restriction, slots, and the subclass

relationship, the interested reader is referred to [14].

The Ontology created using this software can be exported in the HTML format, which can be browsed

in a web browser such as Netscape [35]. See Figure 5.5. This feature facilitates documentation of the Ontology, as

the class relationships and the properties associated withare stored in the HTML format suitable for browsing.

The DAML plugin used along with Protg generates the DAML file for the Port-Jack Ontology – the

complete details are located in Appendix D. A small snippet of the generated DAML code is as follows:

1 <daml_oil:Class rdf:ID="AudioOutJack">

48

Figure 5.3: A Screenshot of Protg GUI Illustrating Class Properties of AudioInJack

Figure 5.4: A Screenshot of Protege GUI Illustrating Slot Properties of convertsto

49

Figure 5.5: Screenshot of the Exported Ontology Documentation in HTML

2 <rdfs:subClassOf>
3 <daml_oil:Restriction>
4 <daml_oil:toClass rdf:resource="#AudioInJack"/>
5 <daml_oil:onProperty rdf:resource="#converts_to"/>
6 </daml_oil:Restriction>
7 </rdfs:subClassOf>
8 <rdfs:subClassOf rdf:resource="#Jack"/>
9 </daml_oil:Class>

Line 1 specifies that AudioOutJack belongs to the class schema of damloil. Lines 2-7 specify that the covertsto

property of an instance of AudioOutJack should have an instance of AudioInJack as a value. Line 8 enforces the

subclass relationship between the AudioOutJack and the Jack – subclass means that an instance of AudioOutJack

is also an instance of a Jack. An equivalent graphical representation for this snippet of code, as obtained from the

W3C RDF Validation service [58] is illustrated in Figure 5.6.

Appendix D contains similar fragments of code for the classes AudioInJack, Port, AudioInPort and

AudioOutPort, and the object properties covertsto and connectsto.

5.4 Conversion of DAML Representation to Jess Facts

The Paladin graphical user interface is used to create a diagram of the system structure. Graphical

elements in the system structure diagram correspond to instances of the classes defined in the Port-Jack Ontology.

50

Figure 5.6: Equivalent RDF Graph of the Port-Jack Ontology

51

With this connection in place, the next step is to validate that a particular cable and port connection is consistent

with relationships defined in the Port-Jack Ontology. For this pathway of processing to work, we need a rule engine

such as Jess [30] to convert the Ontology definitions and relations into a series of assertions or known facts. This is

achieved by using the DAMLJessKB [12] converter developed at Drexel University. DAMLJessKB defines a set of

Java API’s and packages, which takes the DAML representation of the ontology as input. It streams the underlying

DAML model into a series of triples and converts it into Jess assertions.

The DAML representation for the Port-Jack ontology is converted into 33 Jess facts (facts are represented

as RDF triplets prefixed by the PropertyValue key), which we then assert to be true. For example, the fragment of

code:

assert((PropertyValue http://www.w3.org/1999/02/22-r df-syntax-ns#type
http://www.isr.umd.edu/˜vmayank/SimpleOntology.daml #Port
http://www.daml.org/2001/03/daml+oil#Class))

asserts that Port is a class. (This fact is added to Jess’s working memory). The complete list of Jess facts may be

found in Appendix E.

5.5 Addition of Rules and Execution of Rete Algorithm

At this time, the automatic generation of instances of Port-Jack classes from the component assembly in

Paladin – why? pressures to graduate on time – has not been implemented. Hence, we will systematically generate

sample rules that would be generated from the Jess Java API, when connected to Paladin. For the Port-Jack

ontology, there are three pairs of outcome for correct/incorrect configuration:

Rule 1. This rule will be fired when the cable has correct jacks at its two ends. The output generated by this rule

is: Cable jacks are consistent with ontology definition .

Rule 2. This rule will be fired when the cable does not have correct jacks at its two ends as per the Ontology

definition. The output generated by this rule is:Cable jacks not consistent with ontology

definition .

Rule 3. This rule will be fired when Jack A is properly Connected to Port A as per the Ontology definition.

The output generated by this rule is:Jack A consistent with Port A as per ontology

definition .

Rule 4. This rule will be fired when Jack A is not properly Connected toPort A per the Ontology definition.

The error message is as follows:Jack A not consistent with Port A as per ontology

definition. If you are sure that cable is compatible with the port try reversing

the cable .

Rule 5. This rule will be fired when Jack B is properly Connected to Port B as per the Ontology definition.

The output generated by this rule is:Jack B consistent with Port B as per ontology

definition .

52

Rule 6. This rule will be fired when Jack B is not properly Connected toPort B as per the Ontology definition.

The error message is as follows:Jack B not consistent with Port B as per ontology

definition. If you are sure that cable is compatible with the port try reversing

the cable .

When the implementation is complete, Jack and Port instances will be generated programmatically from the GUI

as per the user input and fed into this defrule construct of Jess. Execution of the Rete algorithm will result in an

assertion that the provided set of facts (generated from thecable configurations) are consistent with the ontology

definitions. An error message will be printed for each inconsistency in the design, thereby providing the designer

with a means to bridge the gap between designer intent and a manufacturer’s specification for system/object usage.

Suppose, for example, that instances of Jack A and Jack B havebeen generated programmatically (i.e.,

without the direct role of Paladin). The Jess implementation of Rule 1 is as follows:

(defrule allowed-jack-config
(PropertyValue
http://www.daml.org/2001/03/daml+oil#toClass
?anon
http://www.isr.umd.edu/˜vmayank/SimpleOntology.daml #AudioOutJack)

(PropertyValue
http://www.daml.org/2001/03/daml+oil#onProperty
?anon
http://www.isr.umd.edu/˜vmayank/SimpleOntology.daml #converts_to)

(PropertyValue
http://www.w3.org/2000/01/rdf-schema#subClassOf
http://www.isr.umd.edu/˜vmayank/SimpleOntology.daml #AudioInJack
?anon)

(PropertyValue
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
?anon
http://www.daml.org/2001/03/daml+oil#Restriction)
=>
(printout t "Cable jacks are consistent with ontology defin ition" crlf)

) ;; end defrule construct

The variablesAudioOutJack andAudioInJack in facts 1 and 3 correspond to the types of Jack A and Jack

B, respectively. The reasoning procedure works as follows:if triplets 1 through 4 are present in the Jess fact base,

then this rule will be fired and output generated.

53

Chapter 6

Conclusions and Future Work

6.1 Conclusions

Driven by economic and time-to-market concerns, the development of large and complex multi-disciplinary

systems is moving a toward a bottom-up development paradigm. With vendors specializing in particular products,

this approach emphasizes reuse of product and outsourcing wherever possible. In this study we have employed

RDF and XML technologies to create a computing infrastructure that can query the system database and analyze

the connectivity relationships among system objects. We have taken some preliminary steps toward the use of

graph operations that can answer problems associated with controlled visualization of requirements and discipline

specific system viewpoints. Finally, a primitive step has been taken toward the assessment of ontology-based

computing for validation of properties in a systems architecture.

Looking ahead, we see overall system development as a confluence of top-down and bottom-up strategies,

organized for team-based activities, and revamped to take advantage of Semantic Web and agent technologies. An

agent-based approach to computing offers the promise of enabling distributed system development processes that

are more scalable, flexible, extensible and interoperable than state-of-the-art procedures today. We anticipate

that when production-level systems of the type described inChapters 4 and 5 are common place, content for the

right hand side of Figure 5.1 will come from manufacturers who will make ontologies for their product lines

available for download over the Web. Ontologies will contain specifications for system/object usage (represented

as propositions in a finite logic). At the time of system architecture validation, these ontologies will be downloaded

and imported into system-level design environments. Appropriate logic calculations (theorem provers) will reveal

inconsistencies between the intent of designers and manufacturers and features of the actual system design.

6.2 Future Work

This work opens up a whole new domain of opportunities for newmethodologies and tools for systems

engineering. The related research issues include:

1. AP233 [42, 43] is an emerging standard for systems engineering data exchange among vendor tools such

as SLATE, DOORS, Rational Requisite PRO, and CORE [1, 10, 15]. Once AP233 is fully developed and

adapted by various vendors, it is our plan to update our XML encoding for requirements representation and

54

traceability so that it is AP233 compliant. Then, we will be able to import data from other tools and represent

and manipulate it in our GUI.

2. In this project we have used RDF and XML to formulate an information representation for graphs of require-

ments. The scope of our work has been restricted to requirements that follow a fixed storage format. It

is clear, however, that in team-based development, requirements will emanate from multiple sources and

be very heterogeneous, in terms of storage format, organization. Hence, there is a need for research and

development that will advance the ability of various document types to be annotated with RDF descriptions

of their semantic content. This capability will create a pathway toward elicitation, representation, synthesis,

and management of heterogeneous requirement types.

3. As the Semantic Web drives the storage of component specifications onto web, there will be a pressing need

for a specification builder GUI that will elicit the necessary data, and export it to a standardized component

specification schema formulated and agreed upon by the product vendors.

4. We have demonstrated in this work that a simple Jack and Port ontology can enable the analysis of connec-

tivity relationships in a system architecture. Ideally, wewould like to extend this capability to families of

ontologies who, collectively, provide complete coverage of concepts relating to the system capability and

system development process. Reasoning procedures should be capable of working at the level of individual

sub-systems/modules and across collections of heterogeneous entities.

One assumption that makes the Jack-Port ontology example unrealistically simple is hard coding of the

design activity (i.e., Port and Jack connectivity) contextinto the Jess rule base. In our opinion, future imple-

mentations should move toward a capability for context-aware computing; that is, a computing environment

that employs knowledge and reasoning to understand the local context – concepts, relationships and attributes

– of design situations, and then shares and reasons with information to and from other system types.

It seems that context-aware computing can be implemented asa set of progressively complex layers. First,

simplified notions of context can be attached to objects (e.g., jacks and ports). A much more challenging

problem is determination of appropriate context, with appropriation and reasoning) in the assembly of the

system structure. Such an environment would make use of application- and context-specific ontologies

covering various types of design spaces (e.g., port-model design; electro-mechanical spacecraft design).

5. After the requirements are elicited (correctly) from the use cases and scenarios, the next major step is to gen-

erate and evaluate system architecture alternatives and conduct trade-off and optimization studies. A limited

capability for importing various components manually fromthe components library is already in place.

There is a strong need for frameworks that will allow the userto analyze an entire database of components,

and provide the designer with the critical feedback on the design margins based on the imported components

specification. These framework should be integrated with the optimization tools, such as CPLEX, thereby

allowing users to generate and graphically display families of noninferior design solutions and/or tradeoff

surfaces among performance attributes.

6. Our present work is based solely on the representation of requirements, system structure and mapping between

them. Still missing is a framework for building and exporting the system behavior diagram (such as state

55

charts, functional flow block diagram) along with associated semantics. This tool might also be integrated

with simulation tools such as Arena and finite state automatato carry out simulations and verification of the

system.

7. Validation procedures should also be extended so that they can handle a complete range of connectivity

concerns enabled by the port model in Chapter 4. In Chapter 5,we have validated connectivity based on

labels alone. A useful extension of capability would be toward validation of physical flows – signals, forces,

energy – where compatibility of physical units is a prerequisite to connectivity.

8. Last but not the least, visualization of systems architecture needs to be polished, as the diagrams should look

aesthetically pleasant. An integration of graph drawing algorithms [16, 25, 53] with possibly import of

packages from existing sources [28, 31, 57] could be integrated into the tool to provide the automatic graph

layout as per the specified algorithm

56

Bibliography

[1] SLATE. See http://www.eds.com/products/plm/teamcenter/slate/. 2003.

[2] Adobe Illustrator. See http://www.adobe.com/products/illustrator/main.html. 2002.

[3] ARENA Simulation. See http://www.arenasimulation.com/. 2003.

[4] Baader F., Calvanese D., McGuinness D., Nardi D., Patel-Schneider P.The Description Logic Handbook.

Cambridge University Press, February 2003.

[5] Berners-Lee, T. XML and the Web. Keynote address at the XML World 2000 Conference.

[6] Berners-Lee T., Hendler J., Lassa O. The Semantic Web.Scientific American, pages 35–43, May 2001.

[7] Bray T., Paoli J., Sperger-McQueen S., editors.. Extensible Markup Language (XML) 1.0, W3C Recommen-

dation, February 1998. See http://www.w3.org/TR/REC-xml.

[8] Brown A.W. Large-Scale Component-Based Development. Addison-Wesley, 2000.

[9] Ciocoiu M., Gruninger M., Nau D.S. Ontologies for Integrating Engineering Applications.Journal of Com-

puting and Information Science in Engineering, 1(1):12–22, 2001.

[10] CORE. See http://www.vitechcorp.com/productline.html. 2003.

[11] DARPA Agent Markup Language (DAML). See http://www.daml.org. 2003.

[12] DAMLJessKB. See http://edge.mcs.drexel.edu/assemblies/software/damljesskb/damljesskb.html. 2003.

[13] DAML+OIL Plugin for Protg 2000. See http://www.ai.sri.com/daml/DAML+OIL-plugin/index.htm. 2003.

[14] DAML+OIL Walk Through. See http://www.daml.org/2001/03/daml+oil-walkthru.html. 2003.

[15] Dynamic Object Oriented Requirements System (DOORS).See http://www.telelogic.com/products/doorsers/doors/.

2003.

[16] Eades P, Tamassia R. Algorithms for Drawing Graphs: An Annotated Bibliography. Technical Report

Technical Report CS-89-09, Department of Computer Science, Brown University, Providence, R.I., February

1989.

[17] Easili V., and McGarry F. et al. The Software Engineering Laboratory – An Operational Experience Factory.

In Proceedings of the Fourteenth International Conference onSoftware Engineering, Melbourne, Australia,

May 1992.

57

[18] Fensel D., van Harmelen F., Horrocks I., McGuinness D.,Patel-Schneider P. OIL: An Ontology Infrastructure

for the Semantic Web.IEEE Intelligent Systems, pages 38–45, March/April 2001.

[19] Forgy C.L. Rete: A Fast Algorithm for the Many Pattern/Many Object Pattern Match Problem.Artificial

Intelligence, 19:17–37, 1982.

[20] Geroimenko V., and Chen C. (Eds).Visualizing the Semantic Web: XML-based Internet and Information

Visualization. Springer, 2003.

[21] Golbeck J., Grove M., Parsia B., Kalyanpur A., and Hendler J. New Tools for the Semantic Web. InProceed-

ings of 13th International Conference on Knowledge Engineering and Knowledge Management EKAW02,

Siguenza, Spain, October 2002.

[22] Global Precipitation Measurement Project. See http://gpm.gsfc.nasa.gov/index.html. 2003.

[23] Gruniger M., and Lee J. Ontology Applications and Design. Communications of the ACM, 45(2):39–41,

February 2002.

[24] Hendler J. Agents and the Semantic Web.IEEE Intelligent Systems, pages 30–37, March/April 2001. Avail-

able on April 4, 2002 from http://www.computer.org/intelligent.

[25] Herman I. Graph Visualization and Navigation in Information Visualization: A Survey.IEEE Transactions

on Visualization and Computer Graphics, 6(1):24–43, January-March 2000.

[26] Hull M.E.C., Jackson K., and Dick A.J.J.Requirements Engineering, Practitioner Series. Springer, New

York, USA, 2002.

[27] ILOG CPLEX. See http://www.cplex.com. 2003.

[28] ILOG Views Component Suite. See http://www.ilog.com/products/views/graphlayout/. 2003.

[29] Jena - A Java API for RDF. See http://www.hpl.hp.com/semweb/. 2003.

[30] Jess – The Expert System Shell for the Java Platform. Seehttp://herzberg.ca.sandia.gov/jess/. 2003.

[31] Jgraph. See http://jgraph.sourceforge.net. 2003.

[32] Kalyanpur A., Golbeck J., Grove M., and Hendler J. An RDFEditor and Portal for the Semantic Web. July

2002.

[33] Kalyanpur A., Parsia B., Hendler J., Golbeck J. SMORE - Semantic Markup, Ontology, and RDF Editor,

2003. Maryland Information and Network Dynamics (MIND) Lab, University of Maryland, College Park.

For details, see http://www.mindswap.org.

[34] Kiliccote H., Garrett J.H. Standards Usage Language (SUL). Journal of Computing in Civil Engineering,

15(2):118–128, 2001.

[35] Kopena J., and Regli W.C. DAMLJessKB: A Tool for Reasoning with the Semantic Web.IEEE Intelligent

Systems, 2003.

58

[36] Kositsyna N., Mayank V., and Austin M. Paladin SoftwareToolset.Institute for Systems Research, 2003. For

more information, see http://www.isr.umd.edu/paladin/.

[37] Kronlof K. Method Integration : Concepts and Case Studies. John-Wiley and Sons, 1993.

[38] Lu S., Dong M., and Fotouhi, F. The Semantic Web: Opportunities and Challenges for Next-Generation Web

Applications.Information Research, 7(4), 2002. Available at: http://InformationR.net/ir/7-4/paper134.html.

[39] Maedche A.Ontology Learning for the Semantic Web. Kluwer Academic Publishers, 2002.

[40] 2002. MathML. Referenced on April 6, 2002. See hhttp://www.w3.org/Math.

[41] 2002. Matlab. Referenced on April 5, 2002. http://www.mathworks.com.

[42] Muller D. Requirements Engineering Knowledge Management based on STEP AP233. 2003.

[43] Oliver D. AP233 - INCOSE Status Report.INCOSE INSIGHT, 5(3), October 2002.

[44] Paulk M., Curtis M., Chrissis M., and Weber C. Capability Maturity Model for Software: Version 1.1.

Technical report, Pittsburgh, PA, February 1993.

[45] The Protg Ontology Editor and Knowledge Acquisition System. See http://protege.stanford.edu. 2003.

[46] RDF Data Query Language (RDQL). See http://www.hpl.hp.com/semweb/rdql.htm. 2003.

[47] Rational Rose. See http://www.rational.com/products/rose/. 2003.

[48] Selberg S. A., Austin M.A. Requirements Engineering and the Semantic Web.ISR Technical Report 2003-20,

2003. See http://techreports.isr.umd.edu/TechReports/ISR/2003/TR2003-20/TR2003-20.phtml.

[49] Shanks G., Tansley E., Weber R. Using Ontology to Validate Conceptual Models.Communications of the

ACM, 46(10):85–89, 2003.

[50] Sirin E., Hendler J., Parsia B. Semi-automatic Composition of Web Services using Semantic Descriptions,

2002. Accepted to ”Web Services: Modeling, Architecture and Infrastructure” Workshop in conjunction with

ICEIS2003.

[51] 2002. Scalar Vector Graphics (SVG). Referenced on April 5, 2002. See

http://www.w3.org/Graphics/SVG/Overview.html.

[52] Swartz A., and Hendler J. The Semantic Web: A Network of Content for the Digital City, 2002. Available at

http://blogspace.com/rdf/SwartzHendler.

[53] Tamassaia R., Battista G., and Batini C. Automatic Graph Drawing and Readability of Diagrams.IEEE

Transactions on Systems, Machines and Cybernetics, pages 61–79, January 1988.

[54] Unified Modeling Language (UML). See http://www.omg.org/uml. 2003.

[55] Unicode. Referenced on April 4, 2002. See http://www.unicode.org. 2002.

[56] URI. Referenced on April 4, 2002. See http://www.isi.edu/in-notes/rfc239c.txt. 2002.

59

[57] Drawing Graphs with VGJ. Department of Computer Science and Software Engineering, 2003. See

http://www.eng.auburn.edu/department/cse/research/graphdrawing/graphdrawing.html.

[58] W3C RDF Validation Service. See http://www.w3.org/RDF/Validator. 2003.

[59] Web Ontology Language (OWL). See http://www.w3.org/TR/owl-ref/. 2003.

[60] Microsoft Word, Referenced on April 5, 2002. See http://www.microsoft.com/office/word. 2002.

[61] Xerces. Referenced on April 4, 2002. See http://xml.apache.org. 2002.

[62] XHTML. Referenced on April 5, 2002. See http://www.w3.org/MarkUp. 2002.

[63] XSLT. Referenced on April 5, 2002. See http://www.w3.org/Style/XSL. 2002.

60

Appendices

Appendix A. XML Representation of the Home Theater System

This data file represents the schema for storing the visual properties of the objects/requirements created

in the Paladin toolkit. Some of this visual information is needed to redraw the component on the screen – namely,

its dimension, type of the object, its ID, and separate graphs in a particular view. All of this information is stored

in a hierarchy of corresponding tags inside the object.

<?xml version="1.0" encoding="UTF-8" ?>
- <Project>
- <Graph start="true">

- <Object ID="4337267591854790877" shape="PORT_PANEL" t ype="47">
<Dimension>44 24 162 129</Dimension>
</Object>

- <Object ID="7733796259543882762" shape="CABLE" type=" 46">
<Dimension>156 70 374 70</Dimension>
<Link fromID="5897562330078363886" toID="-93017186249 5999138" />
</Object>

- <Object ID="-4227801706294106407" shape="CABLE" type= "46">
<Dimension>257 211 131 126</Dimension>
<Link fromID="-2400144836664991188" toID="-3570893981 45097484" />
</Object>

- <Object ID="-212117402712482581" shape="CABLE" type=" 46">
<Dimension>342 277 462 277</Dimension>
<Link fromID="-3941780722503364518" toID="-3492806288 84105229" />
</Object>

- <Object ID="6823559814550310809" shape="CABLE" type=" 46">
<Dimension>213 282 171 349</Dimension>
<Link fromID="9127970985135915536" toID="504050845200 7293263" />
</Object>

- <Object ID="-5116623924643214452" shape="PORT_PANEL" type="47">
<Dimension>458 246 556 313</Dimension>
</Object>

- <Object ID="6425550699874130311" shape="CABLE" type=" 46">
<Dimension>419 103 321 212</Dimension>
<Link fromID="-8041419687310972460" toID="86745203452 13607480" />
</Object>

- <Object ID="9179454190841196613" shape="CABLE" type=" 46">
<Dimension>100 126 100 348</Dimension>
<Link fromID="7619911316542097551" toID="194547184261 9664061" />
</Object>

- <Object ID="-5505813272925557232" shape="PORT_PANEL" type="47">
<Dimension>212 213 346 327</Dimension>
</Object>

- <Object ID="-3941780722503364518" shape="PORT" type=" 48">
<Dimension>332 267 352 287</Dimension>
<Link toID="-5505813272925557232" />
</Object>

- <Object ID="-349280628884105229" shape="PORT" type="4 8">
<Dimension>452 267 472 287</Dimension>
<Link toID="-5116623924643214452" />
</Object>

- <Object ID="5040508452007293263" shape="PORT" type="4 8">
<Dimension>161 339 181 359</Dimension>
<Link toID="-6056953104219719173" />
</Object>

61

- <Object ID="9127970985135915536" shape="PORT" type="4 8">
<Dimension>203 272 223 292</Dimension>
<Link toID="-5505813272925557232" />
</Object>

- <Object ID="-8631530153037221977" shape="PORT" type=" 48">
<Dimension>272 317 292 337</Dimension>
<Link toID="-5505813272925557232" />
</Object>

- <Object ID="1945471842619664061" shape="PORT" type="4 8">
<Dimension>90 338 110 358</Dimension>
<Link toID="-6056953104219719173" />
</Object>

- <Object ID="-930171862495999138" shape="PORT" type="4 8">
<Dimension>364 60 384 80</Dimension>
<Link toID="-6397728818364024033" />
</Object>

- <Object ID="-8041419687310972460" shape="PORT" type=" 48">
<Dimension>409 93 429 113</Dimension>
<Link toID="-6397728818364024033" />
</Object>

- <Object ID="-2400144836664991188" shape="PORT" type=" 48">
<Dimension>247 201 267 221</Dimension>
<Link toID="-5505813272925557232" />
</Object>

- <Object ID="8674520345213607480" shape="PORT" type="4 8">
<Dimension>311 202 331 222</Dimension>
<Link toID="-5505813272925557232" />
</Object>

- <Object ID="-357089398145097484" shape="PORT" type="4 8">
<Dimension>121 116 141 136</Dimension>
<Link toID="4337267591854790877" />
</Object>

- <Object ID="7619911316542097551" shape="PORT" type="4 8">
<Text>A</Text>
<Dimension>90 116 110 136</Dimension>
<Link toID="4337267591854790877" />
</Object>

- <Object ID="5897562330078363886" shape="PORT" type="4 8">
<Dimension>146 60 166 80</Dimension>
<Link toID="4337267591854790877" />
</Object>

- <Object ID="5888226028590857221" shape="LABEL" type=" 40">
<Text>TV</Text>
<Dimension>91 46 111 68</Dimension>
<Link toID="4337267591854790877" />
</Object>

- <Object ID="-3464995602672494238" shape="LABEL" type= "40">
<Text>Home<nl>Theater<nl>Amp</Text>
<Dimension>260 254 308 308</Dimension>
<Link toID="-5505813272925557232" />
</Object>

- <Object ID="5766306240200143317" shape="LABEL" type=" 40">
<Text>DVD</Text>
<Dimension>97 364 128 386</Dimension>
<Link toID="-6056953104219719173" />
</Object>

- <Object ID="-1125144154021993343" shape="LABEL" type= "40">
<Text>Speaker 2</Text>
<Dimension>482 268 544 290</Dimension>
<Link toID="-5116623924643214452" />
</Object>

- <Object ID="-2548812202442281956" shape="LABEL" type= "40">
<Text>Audio Out</Text>
<Dimension>352 289 411 311</Dimension>
<Link toID="-3941780722503364518" />
</Object>

- <Object ID="-8080414068675241044" shape="LABEL" type= "40">

62

<Text>Audio In</Text>
<Dimension>404 242 454 264</Dimension>
<Link toID="-349280628884105229" />
</Object>

- <Object ID="5307719630104561260" shape="LABEL" type=" 40">
<Text>Speaker 1</Text>
<Dimension>264 436 326 458</Dimension>
<Link toID="-7075534318685230158" />
</Object>

- <Object ID="-7072323418332330746" shape="LABEL" type= "40">
<Text>Video In</Text>
<Dimension>32 135 82 157</Dimension>
<Link toID="7619911316542097551" />
</Object>

- <Object ID="1702425072755131235" shape="LABEL" type=" 40">
<Text>Audio In</Text>
<Dimension>157 247 207 269</Dimension>
<Link toID="9127970985135915536" />
</Object>

- <Object ID="-8447650783263509459" shape="LABEL" type= "40">
<Text>Audio Out</Text>
<Dimension>170 120 229 142</Dimension>
<Link toID="-357089398145097484" />
</Object>

- <Object ID="-566334250751855220" shape="CABLE" type=" 46">
<Dimension>282 327 282 420</Dimension>
<Link fromID="-8631530153037221977" toID="-8831546525 121722840" />
</Object>

- <Object ID="-8831546525121722840" shape="PORT" type=" 48">
<Dimension>272 410 292 430</Dimension>
<Link toID="-7075534318685230158" />
</Object>

- <Object ID="-6397728818364024033" shape="PORT_PANEL" type="47">
<Dimension>373 45 522 105</Dimension>
</Object>

- <Object ID="-6056953104219719173" shape="PORT_PANEL" type="47">
<Dimension>55 347 205 393</Dimension>
</Object>

- <Object ID="-3960374134036905440" shape="LABEL" type= "40">
<Text>Audio Out</Text>
<Dimension>120 305 179 327</Dimension>
<Link toID="5040508452007293263" />
</Object>

- <Object ID="4268930084446139984" shape="LABEL" type=" 40">
<Text>Video Out</Text>
<Dimension>32 305 91 327</Dimension>
<Link toID="1945471842619664061" />
</Object>

- <Object ID="7722487328336319391" shape="LABEL" type=" 40">
<Text>Audio In</Text>
<Dimension>239 169 289 191</Dimension>
<Link toID="-2400144836664991188" />
</Object>

- <Object ID="-4131231084681303988" shape="LABEL" type= "40">
<Text>Video In</Text>
<Dimension>173 37 223 59</Dimension>
<Link toID="5897562330078363886" />
</Object>

- <Object ID="-8708940313658193746" shape="LABEL" type= "40">
<Text>Video Out</Text>
<Dimension>305 81 364 103</Dimension>
<Link toID="-930171862495999138" />
</Object>

- <Object ID="-1380059460790430106" shape="LABEL" type= "40">

63

<Text>Audio In</Text>
<Dimension>350 200 400 222</Dimension>
<Link toID="8674520345213607480" />
</Object>

- <Object ID="600277411624340355" shape="LABEL" type="4 0">
<Text>VCR</Text>
<Dimension>445 65 476 87</Dimension>
<Link toID="-6397728818364024033" />
</Object>

- <Object ID="-5640294704235571447" shape="LABEL" type= "40">
<Text>Audio Out</Text>
<Dimension>428 120 487 142</Dimension>
<Link toID="-8041419687310972460" />
</Object>

- <Object ID="-7075534318685230158" shape="PORT_PANEL" type="47">
<Dimension>251 417 344 476</Dimension>
</Object>

- <Object ID="2386762432953440281" shape="LABEL" type=" 40">
<Text>Audio Out</Text>
<Dimension>302 332 361 354</Dimension>
<Link toID="-8631530153037221977" />
</Object>

- <Object ID="648612592363060694" shape="LABEL" type="4 0">
<Text>Audio In</Text>
<Dimension>302 386 352 408</Dimension>
<Link toID="-8831546525121722840" />
</Object>
</Graph>
</Project>

Appendix B. RDF Representation of the Requirements Structure

This data file outlines a schema to store the connectivity information of the requirement objects created

in the Paladin toolkit in the RDF. All requirements correspond to a resource, which have their ID’s as the Name

attribute, and connectivity to other requirement objects are specified through the VCARD:Given property.

<rdf:RDF
xmlns:rdf=’http://www.w3.org/1999/02/22-rdf-syntax- ns#’
xmlns:vcard=’http://www.w3.org/2001/vcard-rdf/3.0#’

>

<rdf:Description rdf:about=’http://somewhere/REQ.3.1 ’>
<vcard:N>REQ.3.1</vcard:N>

</rdf:Description>

<rdf:Description rdf:about=’http://somewhere/REQ.3.5 ’>
<vcard:N>REQ.3.5</vcard:N>

</rdf:Description>

<rdf:Description rdf:about=’http://somewhere/REQ.3.9 ’>
<vcard:N>REQ.3.9</vcard:N>

</rdf:Description>

<rdf:Description rdf:about=’http://somewhere/REQ.2.5 ’>
<vcard:N>REQ.2.5</vcard:N>
<vcard:Given rdf:resource=’http://somewhere/REQ.3.6’ />
<vcard:Given rdf:resource=’http://somewhere/REQ.3.7’ />
<vcard:Given rdf:resource=’http://somewhere/REQ.3.8’ />
<vcard:Given rdf:resource=’http://somewhere/REQ.3.9’ />
<vcard:Given rdf:resource=’http://somewhere/REQ.3.10 ’/>

</rdf:Description>

<rdf:Description rdf:about=’http://somewhere/REQ.3.6 ’>

64

<vcard:N>REQ.3.6</vcard:N>
</rdf:Description>

<rdf:Description rdf:about=’http://somewhere/REQ.2.2 ’>
<vcard:N>REQ.2.2</vcard:N>
<vcard:Given rdf:resource=’http://somewhere/REQ.3.2’ />
<vcard:Given rdf:resource=’http://somewhere/REQ.3.3’ />

</rdf:Description>

<rdf:Description rdf:about=’http://somewhere/REQ.3.1 0’>
<vcard:N>REQ.3.10</vcard:N>

</rdf:Description>

<rdf:Description rdf:about=’http://somewhere/REQ.3.3 ’>
<vcard:N>REQ.3.3</vcard:N>
<vcard:Given rdf:resource=’http://somewhere/REQ.3.2’ />

</rdf:Description>

<rdf:Description rdf:about=’http://somewhere/REQ.1.1 ’>
<vcard:N>REQ.1.1</vcard:N>
<vcard:Given rdf:resource=’http://somewhere/REQ.2.1’ />
<vcard:Given rdf:resource=’http://somewhere/REQ.2.2’ />
<vcard:Given rdf:resource=’http://somewhere/REQ.2.5’ />
<vcard:Given rdf:resource=’http://somewhere/REQ.2.3’ />
<vcard:Given rdf:resource=’http://somewhere/REQ.2.4’ />

</rdf:Description>

<rdf:Description rdf:about=’http://somewhere/REQ.2.1 ’>
<vcard:N>REQ.2.1</vcard:N>
<vcard:Given rdf:resource=’http://somewhere/REQ.3.1’ />
<vcard:Given rdf:resource=’http://somewhere/REQ.3.2’ />
<vcard:Given rdf:resource=’http://somewhere/REQ.3.3’ />

</rdf:Description>

<rdf:Description rdf:about=’http://somewhere/REQ.2.4 ’>
<vcard:N>REQ.2.4</vcard:N>
<vcard:Given rdf:resource=’http://somewhere/REQ.2.3’ />
<vcard:Given rdf:resource=’http://somewhere/REQ.2.2’ />
<vcard:Given rdf:resource=’http://somewhere/REQ.2.1’ />

</rdf:Description>

<rdf:Description rdf:about=’http://somewhere/REQ.3.7 ’>
<vcard:N>REQ.3.7</vcard:N>

</rdf:Description>
<rdf:Description rdf:about=’http://somewhere/REQ.3.2 ’>

<vcard:N>REQ.3.2</vcard:N>
</rdf:Description>

<rdf:Description rdf:about=’http://somewhere/REQ.1.2 ’>
<vcard:N>REQ.1.2</vcard:N>
<vcard:Given rdf:resource=’http://somewhere/REQ.2.1’ />
<vcard:Given rdf:resource=’http://somewhere/REQ.2.2’ />
<vcard:Given rdf:resource=’http://somewhere/REQ.2.3’ />
<vcard:Given rdf:resource=’http://somewhere/REQ.2.4’ />

</rdf:Description>

<rdf:Description rdf:about=’http://somewhere/REQ.3.4 ’>
<vcard:N>REQ.3.4</vcard:N>
<vcard:Given rdf:resource=’http://somewhere/REQ.3.5’ />

</rdf:Description>

<rdf:Description rdf:about=’http://somewhere/REQ.2.3 ’>
<vcard:N>REQ.2.3</vcard:N>
<vcard:Given rdf:resource=’http://somewhere/REQ.3.4’ />
<vcard:Given rdf:resource=’http://somewhere/REQ.3.5’ />

</rdf:Description>

<rdf:Description rdf:about=’http://somewhere/REQ.3.8 ’>

65

<vcard:N>REQ.3.8</vcard:N>
</rdf:Description>

</rdf:RDF>

Appendix C. Reqpuirements Property XML File

The following XML schema stores the properties of the individual requirements.

<?xml version="1.0" encoding="UTF-8" ?>
- <Project file="HomeTheater.xml">

- <Requirement ID="REQ.1.1">
<Name Value="Overall System Requirement" />
<Rationale Value="System Objective" />
<Verification Value="Experimental" />
<Comment Value="Preliminary Agreement between customer a nd builder" />
<REVISION Value="Mon Jun 16 14:00:55 EDT 2003" />
<MAPPED_TO Value="Home Theater Amplifier" />
<Template NO="0" />
<Description Value="I need to assemble a good home theater s ystem from the market" />
</Requirement>

- <Requirement ID="REQ.1.2">
<Name Value="Overall Cost Requirement" />
<Rationale Value="Cost limit to be imposed on the component s" />
<Verification Value="Analytical" />
<Comment Value="Preliminary agreement between customer a nd builder" />
<REVISION Value="Mon Jun 16 14:00:55 EDT 2003" />
<MAPPED_TO Value="Home Theater Amplifier" />
<Template NO="0" />
<Description Value="The total cost must be less than or equa l to 8000 USD" />
</Requirement>

- <Requirement ID="REQ.2.1">
<Name Value="Display Requirement" />
<Rationale Value="Need to watch movies on large screen" />
<Verification Value="Demonstration" />
<Comment Value="Detailed agreement beween the customer an d builder" />
<REVISION Value="Mon Jun 16 14:00:55 EDT 2003" />
<MAPPED_TO Value="TV" />
<Template NO="0" />
<Description Value="The Home Theater shall have a large dis play screen" />
</Requirement>

- <Requirement ID="REQ.2.2">
<Name Value="Wall mountability" />
<Rationale Value="Space saving need" />
<Verification Value="Experimental" />
<Comment Value="Detailed agreement between the cutomer an d builder" />
<REVISION Value="Mon Jun 16 14:00:55 EDT 2003" />
<MAPPED_TO Value="TV" />
<Template NO="0" />
<Description Value="The display should be able to be mounte d on the wall" />
</Requirement>

- <Requirement ID="REQ.2.3">
<Name Value="High fidelity sound" />
<Rationale Value="Theater experience needs surround soun d capabilities" />
<Verification Value="Demonstration" />
<Comment Value="Detailed agreement between the customer a nd the builder" />
<REVISION Value="Mon Jun 16 14:00:55 EDT 2003" />
<MAPPED_TO Value="Speaker" />
<Template NO="0" />
<Description Value="The system shall have a high fidelity a udio system" />
</Requirement>

66

- <Requirement ID="REQ.2.4">
<Name Value="COTS Requirement" />
<Rationale Value="User should be able to go to market and buy components" />
<Verification Value="Experimental" />
<Comment Value="Detailed agreement between the customer a nd the builder" />
<REVISION Value="Mon Jun 16 14:00:55 EDT 2003" />
<MAPPED_TO Value="Home Theater Amplifier" />
<Template NO="0" />
<Description Value="All components will be bought from the market" />
</Requirement>

- <Requirement ID="REQ.2.5">
<Name Value="Connectivity Requirement" />
<Rationale Value="If user buys something from the market he should be

able to connect things together" />
<Verification Value="Demonstration" />
<Comment Value="Detailed agreement between the customer a nd the builder" />
<REVISION Value="Mon Jun 16 14:00:55 EDT 2003" />
<MAPPED_TO Value="Home Theater Amplifier" />
<Template NO="0" />
<Description Value="Components of the system shall be conn ected to each other" />
</Requirement>

- <Requirement ID="REQ.3.1">
<Name Value="Size Requirement on TV" />
<Rationale Value="User definition of Large Display" />
<Verification Value="Demonstration" />
<Comment Value="Component Level Requirement" />
<REVISION Value="Mon Jun 16 14:00:55 EDT 2003" />
<MAPPED_TO Value="TV" />
<Template NO="3" OBJECT="TV" SPECIFICATION="Size" SPECL INK="tv1.xml"

VALUE1="32" UNITS="inches" />
<Description Value="Size of the TV shall be atleast 32 inche s" />
</Requirement>

- <Requirement ID="REQ.3.2">
<Name Value="Thickness of TV" />
<Rationale Value="Comes from Wall mountable display scree n" />
<Verification Value="Demonstration" />
<Comment Value="Component Level Requirement" />
<REVISION Value="Mon Jun 16 14:00:55 EDT 2003" />
<MAPPED_TO Value="TV" />
<Template NO="1" OBJECT="TV" SPECIFICATION="Thickness" SPECLINK="tv1.xml"

VALUE1="6" UNITS="inches" />
<Description Value="Thickness of the TV shall not exceed 6 i nches" />
</Requirement>

- <Requirement ID="REQ.3.2">
<Name Value="Cost of TV" />
<Rationale Value="Splitting of overall Cost of the System" />
<Verification Value="Analytical" />
<Comment Value="Component Level Requirement" />
<REVISION Value="Mon Jun 16 14:00:55 EDT 2003" />
<MAPPED_TO Value="TV" />
<Template NO="2" OBJECT="TV" SPECIFICATION="Cost" SPECL INK="tv1.xml"

VALUE1="5000" UNITS="USD" />
<Description Value="Cost of the TV shall be less than 5000 US D" />
</Requirement>

- <Requirement ID="REQ.3.4">
<Name Value="Cost of the amplifier" />
<Rationale Value="Splitting of overall cost of the system" />
<Verification Value="Analytical" />
<Comment Value="Component Level Requirement" />
<REVISION Value="Mon Jun 16 14:00:55 EDT 2003" />
<MAPPED_TO Value="Amplifier" />
<Template NO="0" />
<Description Value="Cost of the Amplifier shall be less tha n 600 USD" />

67

</Requirement>

- <Requirement ID="REQ.3.5">
<Name Value="Output of the speakers" />
<Rationale Value="Definition of high fidelity sound syste m" />
<Verification Value="Demonstration" />
<Comment Value="Component Level Requirement" />
<REVISION Value="Mon Jun 16 14:00:55 EDT 2003" />
<MAPPED_TO Value="Speaker" />
<Template NO="5" OBJECT="Speaker" SPECIFICATION="Outpu t" SPECLINK="speaker1.xml"

VALUE1="200" VALUE2="350" UNIS="WATTS" />
<Description Value="Output of the Speaker shall lie within 200 watts and 350 watts" />
</Requirement>

- <Requirement ID="REQ.3.6">
<Name Value="Audio Connectivity of TV" />
<Rationale Value="Sending sound output to the amplifier" / >
<Verification Value="Demonstration" />
<Comment Value="Component Level Requirement" />
<REVISION Value="Mon Jun 16 14:00:55 EDT 2003" />
<MAPPED_TO Value="n/a" />
<Template NO="8" PORT1="AudioOut" OBJECT1="TV" PORT2="A udioIn" OBJECT2="Amplifier" />
<Description Value="The AudioOut port of TV shall connect t o AudioIn Port of Amplifier" />
</Requirement>

- <Requirement ID="REQ.3.7">
<Name Value="Audio Connectivity of VCR" />
<Rationale Value="Sending sound output to the amplifier" / >
<Verification Value="Demonstration" />
<Comment Value="Component Level Requirement" />
<REVISION Value="Mon Jun 16 14:00:55 EDT 2003" />
<MAPPED_TO Value="n/a" />
<Template NO="8" PORT1="AudioOut" OBJECT1="VCR" PORT2=" AudioIn" OBJECT2="Amplifier" />
<Description Value="The AudioOut port of VCR shall connect to AudioIn Port of Amplifier" />
</Requirement>

- <Requirement ID="REQ.3.8">
<Name Value="Audio Connectivity of DVD Player" />
<Rationale Value="Sending sound output to the amplifier" / >
<Verification Value="Demonstration" />
<Comment Value="Component Level Requirement" />
<REVISION Value="Mon Jun 16 14:00:55 EDT 2003" />
<MAPPED_TO Value="n/a" />
<Template NO="8" PORT1="AudioOut" OBJECT1="DVD" PORT2=" AudioIn" OBJECT2="Amplifier" />
<Description Value="The AudioOut port of DVD shall connect to AudioIn Port of Amplifier" />
</Requirement>

- <Requirement ID="REQ.3.9">
<Name Value="Video Connectivity of VCR" />
<Rationale Value="Sending Video Feed to Television" />
<Verification Value="Demonstration" />
<Comment Value="Component Level Requirement" />
<REVISION Value="Mon Jun 16 14:00:55 EDT 2003" />
<MAPPED_TO Value="n/a" />
<Template NO="8" PORT1="VideoOut" OBJECT1="VCR" PORT2=" VideoIn" OBJECT2="TV" />
<Description Value="The VideoOut port of VCR shall connect to VideoIn Port of TV" />
</Requirement>

- <Requirement ID="REQ.3.10">
<Name Value="Audio Connectivity of Amplifier" />
<Rationale Value="Sending sound output to the speakers" />
<Verification Value="Demonstration" />
<Comment Value="Component Level Requirement" />
<REVISION Value="Mon Jun 16 14:00:55 EDT 2003" />
<MAPPED_TO Value="n/a" />
<Template NO="8" PORT1="AudioOut" OBJECT1="Amplifier" P ORT2="AudioIn" OBJECT2="Speaker" />
<Description Value="The AudioOut port of Amplifier shall c onnect

to AudioIn Port of Speaker" />

68

</Requirement>
</Project>

Appendix D. DAML Representation of the Cable-Port Ontology

This is the Ontology exported by the Protg environment usinga DAML plugin. This ontology contains

information about a simple cable, its end jacks and the associated ports. It defines domain restriction on the allowed

Jack and Ports connection through properties convertsto and connectsto.

<rdf:RDF
xmlns:rdf ="http://www.w3.org/1999/02/22-rdf-syntax- ns#"
xmlns:daml_oil ="http://www.daml.org/2001/03/daml+oi l#"
xmlns:ontology="http://www.isr.umd.edu/˜vmayank#"
xmlns:rdfs ="http://www.w3.org/2000/01/rdf-schema#"
xmlns ="http://www.isr.umd.edu/˜vmayank/ontology#"
>

<daml_oil:Class rdf:ID="Port">
</daml_oil:Class>

<daml_oil:Class rdf:ID="AudioOutJack">
<rdfs:subClassOf>

<daml_oil:Restriction>
<daml_oil:toClass rdf:resource="#AudioInJack"/>
<daml_oil:onProperty rdf:resource="#converts_to"/>

</daml_oil:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf rdf:resource="#Jack"/>

</daml_oil:Class>

<daml_oil:ObjectProperty rdf:ID="converts_to">
<daml_oil:domain rdf:resource="#Jack"/>
<daml_oil:range rdf:resource="#Jack"/>

</daml_oil:ObjectProperty>

<daml_oil:Class rdf:ID="Jack">
</daml_oil:Class>

<daml_oil:Class rdf:ID="AudioInPort">
<rdfs:subClassOf>

<daml_oil:Restriction>
<daml_oil:toClass rdf:resource="#AudioInJack"/>
<daml_oil:onProperty rdf:resource="#connects_to"/>

</daml_oil:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf rdf:resource="#Port"/>

</daml_oil:Class>

<daml_oil:ObjectProperty rdf:ID="connects_to">
<daml_oil:range rdf:resource="#Jack"/>
<daml_oil:domain rdf:resource="#Port"/>

</daml_oil:ObjectProperty>

<daml_oil:Class rdf:ID="AudioOutPort">
<rdfs:subClassOf>

<daml_oil:Restriction>
<daml_oil:toClass rdf:resource="#AudioOutJack"/>
<daml_oil:onProperty rdf:resource="#connects_to"/>

</daml_oil:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf rdf:resource="#Port"/>

</daml_oil:Class>

<daml_oil:Ontology rdf:ID="">
</daml_oil:Ontology>

69

<daml_oil:Class rdf:ID="AudioInJack">
<rdfs:subClassOf>

<daml_oil:Restriction>
<daml_oil:toClass rdf:resource="#AudioOutJack"/>
<daml_oil:onProperty rdf:resource="#converts_to"/>

</daml_oil:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf rdf:resource="#Jack"/>

</daml_oil:Class>

</rdf:RDF>

Appendix E. Jess Assertions and the Rules for the Cable-Port Ontology

Here is the complete Jess input file, which has been generatedthrough the use of the DAMLJessKB

plugin to covert the Ontology into a set of facts (collectionof RDF triplets prefixed by the PropertyValue key), and

a set of rules, generated from the instances created in the GUI.

When Rete algorithm is run on the provided set of facts, it checks the cable configuration and comes out

with an assertion whether the cable jacks and associated ports are consistent as per the ontology definitions or not,

and produces an output informing the results.

;; === ===
;; ************** Define Initial Facts ****************
;; === ===

(deffacts iniial-condition-from-ontology

(PropertyValue http://www.w3.org/1999/02/22-rdf-synt ax-ns#type
http://www.isr.umd.edu/˜vmayank/SimpleOntology.daml #Port
http://www.daml.org/2001/03/daml+oil#Class)

(PropertyValue http://www.w3.org/1999/02/22-rdf-synt ax-ns#type
http://www.isr.umd.edu/˜vmayank/SimpleOntology.daml #AudioOutJack
http://www.daml.org/2001/03/daml+oil#Class)

(PropertyValue http://www.w3.org/1999/02/22-rdf-synt ax-ns#type
http://www.isr.umd.edu/˜vmayank/SimpleOntology.daml #anon2
http://www.daml.org/2001/03/daml+oil#Restriction)

(PropertyValue http://www.daml.org/2001/03/daml+oil# toClass
http://www.isr.umd.edu/˜vmayank/SimpleOntology.daml #anon2
http://www.isr.umd.edu/˜vmayank/SimpleOntology.daml #AudioInJack)

(PropertyValue http://www.daml.org/2001/03/daml+oil# onProperty
http://www.isr.umd.edu/˜vmayank/SimpleOntology.daml #anon2
http://www.isr.umd.edu/˜vmayank/SimpleOntology.daml #converts_to)

(PropertyValue
http://www.w3.org/2000/01/rdf-schema#subClassOf
http://www.isr.umd.edu/˜vmayank/SimpleOntology.daml #AudioOutJack
http://www.isr.umd.edu/˜vmayank/SimpleOntology.daml #anon2)

(PropertyValue
http://www.w3.org/2000/01/rdf-schema#subClassOf
http://www.isr.umd.edu/˜vmayank/SimpleOntology.daml #AudioOutJack
http://www.isr.umd.edu/˜vmayank/SimpleOntology.daml #Jack)

(PropertyValue
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.isr.umd.edu/˜vmayank/SimpleOntology.daml #converts_to
http://www.daml.org/2001/03/daml+oil#ObjectProperty)

70

(PropertyValue http://www.daml.org/2001/03/daml+oil# domain
http://www.isr.umd.edu/˜vmayank/SimpleOntology.daml #converts_to
http://www.isr.umd.edu/˜vmayank/SimpleOntology.daml #Jack)

(PropertyValue http://www.daml.org/2001/03/daml+oil# range
http://www.isr.umd.edu/˜vmayank/SimpleOntology.daml #converts_to
http://www.isr.umd.edu/˜vmayank/SimpleOntology.daml #Jack)

(PropertyValue
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.isr.umd.edu/˜vmayank/SimpleOntology.daml #Jack
http://www.daml.org/2001/03/daml+oil#Class)

(PropertyValue
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.isr.umd.edu/˜vmayank/SimpleOntology.daml #AudioInPort
http://www.daml.org/2001/03/daml+oil#Class)

(PropertyValue
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.isr.umd.edu/˜vmayank/SimpleOntology.daml #anon11
http://www.daml.org/2001/03/daml+oil#Restriction)

(PropertyValue http://www.daml.org/2001/03/daml+oil# toClass
http://www.isr.umd.edu/˜vmayank/SimpleOntology.daml #anon11
http://www.isr.umd.edu/˜vmayank/SimpleOntology.daml #AudioInJack)

(PropertyValue http://www.daml.org/2001/03/daml+oil# onProperty
http://www.isr.umd.edu/˜vmayank/SimpleOntology.daml #anon11
http://www.isr.umd.edu/˜vmayank/SimpleOntology.daml #connects_to)

(PropertyValue
http://www.w3.org/2000/01/rdf-schema#subClassOf
http://www.isr.umd.edu/˜vmayank/SimpleOntology.daml #AudioInPort
http://www.isr.umd.edu/˜vmayank/SimpleOntology.daml #anon11)

(PropertyValue
http://www.w3.org/2000/01/rdf-schema#subClassOf
http://www.isr.umd.edu/˜vmayank/SimpleOntology.daml #AudioInPort
http://www.isr.umd.edu/˜vmayank/SimpleOntology.daml #Port)

(PropertyValue
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.isr.umd.edu/˜vmayank/SimpleOntology.daml #connects_to
http://www.daml.org/2001/03/daml+oil#ObjectProperty)

(PropertyValue http://www.daml.org/2001/03/daml+oil# range
http://www.isr.umd.edu/˜vmayank/SimpleOntology.daml #connects_to
http://www.isr.umd.edu/˜vmayank/SimpleOntology.daml #Jack)

(PropertyValue http://www.daml.org/2001/03/daml+oil# domain
http://www.isr.umd.edu/˜vmayank/SimpleOntology.daml #connects_to
http://www.isr.umd.edu/˜vmayank/SimpleOntology.daml #Port)

(PropertyValue
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.isr.umd.edu/˜vmayank/SimpleOntology.daml #AudioOutPort
http://www.daml.org/2001/03/daml+oil#Class)

(PropertyValue
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.isr.umd.edu/˜vmayank/SimpleOntology.daml #anon19
http://www.daml.org/2001/03/daml+oil#Restriction)

(PropertyValue http://www.daml.org/2001/03/daml+oil# toClass
http://www.isr.umd.edu/˜vmayank/SimpleOntology.daml #anon19
http://www.isr.umd.edu/˜vmayank/SimpleOntology.daml #AudioOutJack)

71

(PropertyValue http://www.daml.org/2001/03/daml+oil# onProperty
http://www.isr.umd.edu/˜vmayank/SimpleOntology.daml #anon19
http://www.isr.umd.edu/˜vmayank/SimpleOntology.daml #connects_to)

(PropertyValue
http://www.w3.org/2000/01/rdf-schema#subClassOf
http://www.isr.umd.edu/˜vmayank/SimpleOntology.daml #AudioOutPort
http://www.isr.umd.edu/˜vmayank/SimpleOntology.daml #anon19)

(PropertyValue
http://www.w3.org/2000/01/rdf-schema#subClassOf
http://www.isr.umd.edu/˜vmayank/SimpleOntology.daml #AudioOutPort
http://www.isr.umd.edu/˜vmayank/SimpleOntology.daml #Port)

(PropertyValue
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.isr.umd.edu/˜vmayank/SimpleOntology.daml #AudioInJack
http://www.daml.org/2001/03/daml+oil#Class)

(PropertyValue
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.isr.umd.edu/˜vmayank/SimpleOntology.daml #anon24
http://www.daml.org/2001/03/daml+oil#Restriction)

(PropertyValue http://www.daml.org/2001/03/daml+oil# toClass
http://www.isr.umd.edu/˜vmayank/SimpleOntology.daml #anon24
http://www.isr.umd.edu/˜vmayank/SimpleOntology.daml #AudioOutJack)

(PropertyValue http://www.daml.org/2001/03/daml+oil# onProperty
http://www.isr.umd.edu/˜vmayank/SimpleOntology.daml #anon24
http://www.isr.umd.edu/˜vmayank/SimpleOntology.daml #converts_to)

(PropertyValue
http://www.w3.org/2000/01/rdf-schema#subClassOf
http://www.isr.umd.edu/˜vmayank/SimpleOntology.daml #AudioInJack
http://www.isr.umd.edu/˜vmayank/SimpleOntology.daml #anon24)

(PropertyValue
http://www.w3.org/2000/01/rdf-schema#subClassOf
http://www.isr.umd.edu/˜vmayank/SimpleOntology.daml #AudioInJack
http://www.isr.umd.edu/˜vmayank/SimpleOntology.daml #Jack)

(PropertyValue
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.isr.umd.edu/˜vmayank/SimpleOntology.daml
http://www.daml.org/2001/03/daml+oil#Ontology)
)

;; === ===
;; ************* Reset the known facts ****************
;; === ===
(reset)

;; === ===
;; Rule 1: This rule if fired accounts for the fact
;; that the cable has correct jacks at its two ends and
;; produces such an output
;; === ===
(defrule allowed-jack-config
(PropertyValue
http://www.daml.org/2001/03/daml+oil#toClass
?anon
;; === ===
;; This Jack A instance is generated programmatically
;; using the Java API
;; =========+======================================= ===
http://www.isr.umd.edu/˜vmayank/SimpleOntology.daml #AudioOutJack)

72

(PropertyValue
http://www.daml.org/2001/03/daml+oil#onProperty
?anon
http://www.isr.umd.edu/˜vmayank/SimpleOntology.daml #converts_to)

(PropertyValue
http://www.w3.org/2000/01/rdf-schema#subClassOf
;; === ===
;; This Jack B instance is generated programmatically
;; using the Java API
;; =========+======================================= ===
http://www.isr.umd.edu/˜vmayank/SimpleOntology.daml #AudioInJack
?anon)

(PropertyValue
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
?anon
http://www.daml.org/2001/03/daml+oil#Restriction)
=>
(printout t "Cable jacks are consistent with ontology defin ition" crlf)

) ;; end defrule construct

;; === ===
;; Rule 2: This rule if fired accounts for the fact
;; that the cable does not have correct jacks at its
;; two ends as per the Ontology definition and produces
;; such an Output
;; === ===
(defrule not-allowed-jack-config
(not (and
(PropertyValue
http://www.daml.org/2001/03/daml+oil#toClass
?anon
;; === ===
;; This Jack A instance is generated programmatically
;; using the Java API
;; =========+======================================= ===
http://www.isr.umd.edu/˜vmayank/SimpleOntology.daml #AudioOutJack)

(PropertyValue
http://www.daml.org/2001/03/daml+oil#onProperty
?anon
http://www.isr.umd.edu/˜vmayank/SimpleOntology.daml #converts_to)

(PropertyValue
http://www.w3.org/2000/01/rdf-schema#subClassOf
;; === ===
;; This Jack B instance is generated programmatically
;; using the Java API
;; =========+======================================= ===
http://www.isr.umd.edu/˜vmayank/SimpleOntology.daml #AudioInJack
?anon)

(PropertyValue
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
?anon
http://www.daml.org/2001/03/daml+oil#Restriction)
))
=>
(printout t "Cable jacks not consistent with ontology defin ition" crlf)
) ; end defrule construct

;; === ===
;; Rule 3: This rule if fired accounts for the fact
;; that the Jack A is properly Connected to Port A as
;; per the Ontology definition

73

;; === ===
(defrule allowed-jacka-porta-config
(PropertyValue
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
?anon
http://www.daml.org/2001/03/daml+oil#Restriction)

(PropertyValue
http://www.daml.org/2001/03/daml+oil#toClass
?anon
;; === ===
;; This Jack A instance is generated programmatically
;; using the Java API
;; =========+======================================= ===
http://www.isr.umd.edu/˜vmayank/SimpleOntology.daml #AudioOutJack)

(PropertyValue
http://www.daml.org/2001/03/daml+oil#onProperty
?anon
http://www.isr.umd.edu/˜vmayank/SimpleOntology.daml #connects_to)

(PropertyValue
http://www.w3.org/2000/01/rdf-schema#subClassOf
;; === ===
;; This Port A instance is generated programmatically
;; using the Java API
;; =========+======================================= ===
http://www.isr.umd.edu/˜vmayank/SimpleOntology.daml #AudioOutPort
?anon)
=>
(printout t "Jack A consistent with Port A as per ontology def inition" crlf)
) ;; end defrule construct

;; === ===
;; Rule 4: This rule if fired accounts for the fact
;; that the Jack A is not properly Connected to Port A
;; as per the Ontology definition and produces the
;; error message
;; === ===
(defrule not-allowed-jacka-porta-config
(not (and
(PropertyValue
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
?anon
http://www.daml.org/2001/03/daml+oil#Restriction)

(PropertyValue
http://www.daml.org/2001/03/daml+oil#toClass
?anon
;; === ===
;; This Jack A instance is generated programmatically
;; using the Java API
;; =========+======================================= ===
http://www.isr.umd.edu/˜vmayank/SimpleOntology.daml #AudioOutJack)

(PropertyValue
http://www.daml.org/2001/03/daml+oil#onProperty
?anon
http://www.isr.umd.edu/˜vmayank/SimpleOntology.daml #connects_to)

(PropertyValue
http://www.w3.org/2000/01/rdf-schema#subClassOf
;; === ===
;; This Port A instance is generated programmatically
;; using the Java API
;; =========+======================================= ===
http://www.isr.umd.edu/˜vmayank/SimpleOntology.daml #AudioOutPort
?anon)

74

))
=>
(printout t crlf "Jack A not consistent with Port A as per onto logy definition" crlf)
(printout t "If you are sure that cable is compatible with the port try reversing the cable" crlf)
) ;; end defrule construct

;; === ===
;; Rule 5: This rule if fired accounts for the fact
;; that the Jack B is properly Connected to Port B as
;; per the Ontology definition and produces a message
;; === ===
(defrule allowed-jackb-portb-config
(PropertyValue
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
?anon
http://www.daml.org/2001/03/daml+oil#Restriction)

(PropertyValue
http://www.daml.org/2001/03/daml+oil#toClass
?anon
;; === ===
;; This Jack B instance is generated programmatically
;; using the Java API
;; =========+======================================= ===
http://www.isr.umd.edu/˜vmayank/SimpleOntology.daml #AudioInJack)

(PropertyValue
http://www.daml.org/2001/03/daml+oil#onProperty
?anon
http://www.isr.umd.edu/˜vmayank/SimpleOntology.daml #connects_to)

(PropertyValue
http://www.w3.org/2000/01/rdf-schema#subClassOf
;; === ===
;; This Port B instance is generated programmatically
;; using the Java API
;; =========+======================================= ===
http://www.isr.umd.edu/˜vmayank/SimpleOntology.daml #AudioInPort
?anon)
=>
(printout t "Jack B consistent with Port B as per ontology def inition" crlf)
) ;; end defrule construct

;; === ===
;; Rule 6: This rule if fired accounts for the fact
;; that the Jack B is not properly Connected to Port B
;; as per the Ontology definition and produces an error
;; message
;; === ===
(defrule not-allowed-jackb-portb-config
(not (and
(PropertyValue
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
?anon
http://www.daml.org/2001/03/daml+oil#Restriction)

(PropertyValue
http://www.daml.org/2001/03/daml+oil#toClass
?anon
;; === ===
;; This Jack B instance is generated programmatically
;; using the Java API
;; =========+======================================= ===
http://www.isr.umd.edu/˜vmayank/SimpleOntology.daml #AudioInJack)

(PropertyValue
http://www.daml.org/2001/03/daml+oil#onProperty
?anon

75

http://www.isr.umd.edu/˜vmayank/SimpleOntology.daml #connects_to)

(PropertyValue
http://www.w3.org/2000/01/rdf-schema#subClassOf
;; === ===
;; This Port B instance is generated programmatically
;; using the Java API
;; =========+======================================= ===
http://www.isr.umd.edu/˜vmayank/SimpleOntology.daml #AudioInPort
?anon)
))
=>
(printout t crlf "Jack B not consistent with Port B as per onto logy definition" crlf)
(printout t "If you are sure that cable is compatible with the port try reversing the cable" crlf)
) ;; end defrule construct

;; run the Rete on the above facts and rules

(run)

76

