

ABSTRACT

Title of Thesis: Profile Based Topology Control and Routing in Wireless

Optical Networks

Degree candidate: Abhishek Kashyap

Degree and year: Master of Science, 2004

Thesis directed by: Professor Mark Shayman

Department of Electrical and Computer Engineering

The problem of topology control and routing of bandwidth-guaranteed flows over

wireless optical backbone networks is addressed. The input is a potential topology

and a traffic profile. The constraints are that of limited interfaces at each node

and the limited link bandwidth, and the objective is to maximize the throughput.

The problem turns out to be NP-Hard.

A new framework for integrated topology control and routing is proposed. A

simple heuristic is proposed, and efficient rollout algorithms are proposed which

enhance the heuristic. The routing problem is formulated as a multi-commodity

flow problem, and is used to enhance the rollout algorithms to achieve a higher

throughput.

Another set of heuristics is proposed which use matching theory and multi-

commodity flow formulation of routing to achieve the desired results. We enhance

the heuristics to provide fairness to the ingress-egress pairs in terms of how much

traffic we route for each of them.

Profile Based Topology Control and Routing in Wireless

Optical Networks

by

Abhishek Kashyap

Thesis submitted to the Faculty of the Graduate School of the

University of Maryland, College Park in partial fulfillment

of the requirements for the degree of

Master of Science

2004

Advisory Committee:

Professor Mark Shayman, Chair

Professor Samir Khuller

Professor Sennur Ulukus

c© Copyright by

Abhishek Kashyap

2004

DEDICATION

I dedicate this thesis to my family for their love and support.

ii

ACKNOWLEDGMENTS

I am grateful to my advisor, Prof. Mark Shayman for his advice, support and

encouragement in both academic and personal matters. I thank Prof. Samir

Khuller for his advice and guidance on this work. I thank Prof. Mark Shayman,

Prof. Samir Khuller and Prof. Sennur Ulukus for agreeing to serve on the thesis

examination committee. My special thanks go to Mehdi Kalantari, Kwangil Lee,

Tuna Guven and Fangting Sun for their valuable suggestions and feedback.

iii

TABLE OF CONTENTS

List of Tables vii

List of Figures ix

1 Introduction 1

1.1 Motivation . 1

1.2 Related Work . 3

1.3 Proposed Heuristics . 4

1.4 Contribution . 5

1.5 Thesis Organization . 6

2 Network Model and Problem Statement 7

2.1 Network Model . 7

2.2 Problem Statement . 8

3 Rollout Algorithms 10

3.1 Integrated Topology Control and Routing Framework 10

3.1.1 Issues in Integrated Topology Control and Routing 14

3.2 Rollout Algorithms for Topology Control and Routing 17

iv

3.2.1 Basic Rollout Algorithm . 17

3.2.2 Rollout Algorithms for Topology Control and Routing . . . 18

3.2.2.1 Base Heuristic . 19

3.2.2.2 Index Rollout Algorithm 20

3.2.2.3 Route Rollout Algorithm 21

3.2.2.4 Sequential Rollout Algorithm 22

3.2.2.5 Integrated Rollout Algorithm 23

3.3 Computational Complexity . 24

3.4 Simulation Results and Analysis . 26

3.4.1 Simulation Set 1 . 26

3.4.2 Simulation Set 2 . 30

3.4.2.1 Comparison under Different Traffic Load Conditions 34

3.5 Online Routing and Admission Control 35

3.5.1 Simulation Results and Analysis 35

4 Extension of Rollout Algorithms 39

4.1 Routing as Multi-commodity Flow Problem 39

4.2 Extended Rollout Algorithms . 41

4.3 Simulation Results and Discussion 41

4.3.1 Simulation Set 1 . 42

4.3.2 Simulation Set 2 . 43

4.4 Comparison with Single Path Rollout Algorithms 44

v

5 Heuristics using Matching Theory 46

5.1 Matching Theory . 46

5.2 Application of Matching Theory to Topology Control 47

5.2.1 Giving Initial Weight to Edges 48

5.2.2 Mapping to Maximum Weight Matching 49

5.2.2.1 Perfect Matching using Maximum Weight Match-

ing Algorithm . 53

5.2.3 Topology Change Strategy 54

5.3 Incorporating Fairness . 55

5.3.1 Extended Multi-commodity Flow Formulation 56

5.4 Computational Complexity . 57

5.5 Simulation Results and Discussion 58

5.5.1 Simulation Set 1 . 58

5.5.2 Simulation Set 2 . 61

6 Conclusion 65

Bibliography 65

vi

LIST OF TABLES

3.1 Aggregate Results for Simulation Set 1 29

3.2 Aggregate Results for Simulation Set 2 33

3.3 Average Bandwidth Guarantees . 37

3.4 Average Throughput . 38

4.1 Average Throughput for Rollout Algorithms 42

4.2 Average Throughput for Rollout Algorithms with Traffic Splitting . 42

4.3 Average Throughput for Rollout Algorithms 43

4.4 Average Throughput for Rollout Algorithms with Traffic Splitting . 43

5.1 Average Throughput for the Extended Rollout Algorithms 60

5.2 Average Throughput for Matching Heuristics 60

5.3 Average Throughput for Matching Heuristics without Sequential

Topology Change . 61

5.4 Average Minimum Routed for Fairness schemes 61

5.5 Average Throughput for Matching Heuristics 63

5.6 Average Throughput for Matching Heuristics without Sequential

Topology Change . 64

vii

5.7 Average Throughput for the Extended Rollout Algorithms 64

viii

LIST OF FIGURES

3.1 Potential Topology . 12

3.2 Topology after routing t38 . 12

3.3 Topology after routing t38, t18, t45 13

3.4 Topology after routing t38, t18, t45, t37 13

3.5 Potential Topology . 15

3.6 Path for t12 . 15

3.7 Paths for t34, t56, t78 . 15

3.8 Topology Generation by using different shortest paths for a demand:

(a) Example network, (b) Path for t12, and (c) Paths for t12 and t34. 16

3.9 Throughput for Simulation Set 1 28

3.10 Rejects for Simulation Set 1 . 28

3.11 Throughput for Simulation Set 2 32

3.12 Rejects for Simulation Set 2 . 32

3.13 Throughput at different traffic loads 34

5.1 Potential Topology, ∆ = 2 . 50

5.2 Modified graph from potential topology 50

ix

5.3 Vertices are connected . 51

5.4 Vertices are not connected . 51

5.5 Connection between vertices undecidable 51

5.6 Result of Matching Algorithm . 52

5.7 Final Topology . 53

x

Chapter 1

Introduction

1.1 Motivation

World wide internet services, data communications, multimedia, virtual naviga-

tion and tele-medicine are demanding greatly increased bandwidth on wireless

networks. Over the last few years, a number of approaches have been taken to

meet the explosive traffic growth. They include efficient signal coding and mod-

ulation schemes, spatial processing using microwave phased array antennas, and

the transfer to higher radio frequency for the carrier [1]. More recently, free-space

optics is attracting great attention as an alternative to radio and wireline networks

because of its attractive characteristics. Free-space optics technology is expected

to deliver unprecedented bandwidth, massive carrier reuse, ultra-low inter-channel

interference, low power consumption, and cost savings where electrical wires and

optical fibers are too expensive to deploy and maintain. A key distinguishing fea-

ture of wireless optical networks is that the links are point-to-point rather than

broadcast. Also, it has wide applicability from long range satellite to indoor wire-

1

less communications [1]. Therefore, wireless communication network design using

free-space optics has become an important issue.

A suitable use of wireless optical links is in the backbone of hierarchical mobile

ad-hoc networks (MANETs). Hierarchical MANETs have been proposed as a

scalable extension to ad-hoc networks [12]. A hierarchical MANET consists of

mobile devices (nodes) being divided into clusters. Each cluster has a cluster-

head, and the cluster-heads form a backbone network. Within a cluster, each node

can contact other nodes using RF links. For a node to contact another node in

a different cluster, it needs to use the backbone network. Considering the large

bandwidth requirements for the backbone links, and the need to provide Quality

of Service (QoS) and traffic engineering for the traffic on the backbone links, more

reliable and higher bandwidth links are required. Wireline links being too time-

consuming and expensive to deploy, wireless optical links seem suitable at the

backbone level of a hierarchical MANET.

The importance of providing QoS and traffic engineering to incoming traffic

has become very important. Thus, backbone network design needs to incorporate

QoS demands of the traffic flows. QoS requirements for delay and packet loss

can be converted into bandwidth requirements [11]. Thus, it suffices to work with

bandwidth guarantees. The network ingress/egress nodes are normally known, and

the traffic profile (which is the aggregate demand between ingress-egress pairs in

our case) can be measured over previous operation of the network or can be had

from service level agreements (SLAs). This information can be used to provide

2

bandwidth guarantees to individual ingress/egress pairs, and for different traffic

classes in the case of an MPLS network. The bandwidth reservations and routes

calculated can be used for routing and admission control when the network is

formed. Specifying explicit paths and bandwidth reservations on those paths al-

lows the service providers to do traffic engineering on the incoming traffic. This

protects the network from potential flooding by the ingress-egress pairs (which re-

quire more bandwidth at run-time than mentioned in the SLAs) by blocking their

calls when they exceed the reserved bandwidth. A detailed description of this

routing framework for wireline networks with fixed topology can be found in [3].

1.2 Related Work

Considerable amount of work has been done on topology control in wireless RF

networks and wireline optical networks. We explain the differences between the

existing work and our problem here.

The problem of topology control for wireless optical networks is different from

that in wireless RF (radio frequency) networks since the links are point-to-point

as opposed to broadcast. In wireless optical networks, each node has a limited

number of transceivers, and hence can establish links with only a limited number

of nodes within its transmission range. Thus, topology control is concerned with

determining the neighbors with which to establish the limited number of possible

links. In wireless networks, most research for topology control so far has focused on

3

RF networks (see e.g., [13, 14, 19, 20, 21, 22, 23]). In RF-wireless networks with

isotropic antennas, topology control is closely related to power control. Power

is controlled to reduce the transmission range to conserve power and decrease

interference while providing adequate connectivity.

There are important differences between topology control for reconfigurable

wireline optical networks and topology control for wireless optical networks. In

the wireline case, transmission range (lightpath length) is not a major issue. Fur-

thermore, if the optical layer has sufficient resources so the routing and wavelength

assignment problem is always solvable, then whenever a source and destination

both have available interfaces, a direct connection (one logical hop) can be es-

tablished. In contrast, in the wireless case, unless the destination is within the

transmission range of the source, a multihop connection is required. For these

reasons, the many published results on logical topology design for wireline optical

networks, [15, 16, 17, 18], are not directly applicable to free-space optical networks.

There has been recent work on topology control in wireless optical networks

([4], [5]): [5] does not take traffic into consideration while forming a network,

while [4] considers only ring topologies.

1.3 Proposed Heuristics

The problem addressed is finding a topology and bandwidth reservations for a

given potential topology (nodes and their potential neighbors (potential links))

4

and a given traffic profile. The total bandwidth reservations we are able to provide

is called throughput here.

A new framework is proposed which solves the topology control and routing

problems simultaneously while maximizing the throughput. A heuristic is pro-

posed, and rollout algorithms are proposed which are guaranteed to work better

than the heuristic. An extension of the rollout algorithms is proposed which al-

lows the splitting of aggregate traffic between an ingress-egress pair as a commodity

(routing problem is formulated as a multi-commodity flow problem).

Another heuristic is proposed which uses matching theory to come up with

an initial topology based on link weights calculated using the traffic profile. The

routing problem is then solved as a multi-commodity flow problem, and topology

is sequentially changed so as to improve the throughput. An extension is proposed

which tries to provide fairness to the traffic routed (or bandwidth reserved on the

links) between different ingress-egress pairs.

1.4 Contribution

This work addresses the problem of topology design and routing of bandwidth-

guaranteed flows in wireless optical networks taking traffic engineering into con-

sideration. The area of research is new in itself, and there are no current algorithms

to address this problem for a general network ([4] proposes some algorithms which

only consider ring topologies). We prove the problem to be NP-Hard, and propose

5

some heuristics for finding sub-optimal solutions to the problem in a reasonable

amount of time. The search space of the solution very large, thus making it in-

feasible to find optimal solutions even for small networks. Thus, the algorithms

provided are expected to be useful for solving the problem addressed. The al-

gorithms and the multi-commodity flow formulation of routing are extended to

incorporate fairness for the traffic routed.

1.5 Thesis Organization

Chapter 2 gives the network model and provides a formal description of the problem

along with the proof of NP-Hardness. Chapter 3 explains the rollout algorithms

and the corresponding framework, along with simulation results and discussion.

Chapter 4 discusses an extension to the rollout algorithms in which we allow the

routing problem to be modelled as a multi-commodity flow problem. Chapter

5 discusses a matching theory based approach for solving the problem. It also

proposes an extension which provides fairness to the traffic. Comparison results

are presented at the end of Chapters 4 and 5. Chapter 6 concludes the thesis.

6

Chapter 2

Network Model and Problem Statement

2.1 Network Model

The network is modelled as a graph G = (V, E), where V is the set of nodes

and E the set of links between them (we call the links in the potential topology

as the potential links). We consider wireless backbone networks in which each

wireless node is equipped with point-to-point wireless optical interfaces. The term

‘node’ implicitly means “backbone node”. Each node has the capability to perform

routing. We assume that it does not move very frequently. We also assume that

wireless links can be set up in any direction with all the nodes within transmission

range, and take optical beam obscuration into consideration-i.e., some nodes within

the transmission range may not be able to connect. Since the transmission distance

is related to the power level of the node, the power level and thus the transmission

range of each node can be different. The wireless links are unidirectional. If there

is a pair of unidirectional links between two nodes, the link capacities may differ.

The number of transmitters and receivers at each node is limited (which we call

7

an interface constraint), thereby restricting the number of nodes to which it can

connect.

We have a traffic profile, which consists of the aggregate traffic demands be-

tween the sources and destinations. The traffic demand from node x to node y can

be different from the traffic demand from node y to node x.

2.2 Problem Statement

Given a graph G = (V, E), the problem addressed is to form a subgraph G′ =

(V, E ′), such that the interface constraints are satisfied for all nodes in the set V

(i.e., the degree of each node is bounded by the number of available interfaces),

and the throughput is maximized considering the traffic profile. The algorithm

forms this subgraph, which we call topology control and comes up with routes and

bandwidth reservations for the ingress-egress pairs given in the traffic profile. The

server should recompute the topology, routes and bandwidth reservations whenever

either the traffic profile or the (backbone) node locations change significantly. We

do not anticipate that this would be done more often than hourly. The nodes then

use this information to perform routing and traffic engineering on incoming flows.

Theorem 1 Given a graph G = (V, E) and a traffic profile consisting of traffic

demands between different vertices of G, the problem of finding a degree constrained

subgraph G′ = (V, E ′) and routes for the traffic demands such that the total demand

routed is maximized is NP-Hard.

8

Proof: Consider a small amount of traffic between each pair of nodes in the net-

work (small enough not to violate any link bandwidth constraints). The problem

of maximizing the throughput reduces to finding a connected subgraph (satisfying

the degree constraints) here. We can remove the extra edges and the problem

reduces to finding a degree-constrained spanning tree, which is a known NP-Hard

problem. A special case is where we have a degree constraint of 1 incoming and

1 outgoing edge on each node. In this case, the problem reduces to finding a

hamiltonian cycle, which is known to be NP-Complete [7].

We also consider providing fairness to the ingress-egress pairs in terms of how

much reservations we provide for each of them, in addition to maximizing the

throughput.

9

Chapter 3

Rollout Algorithms

3.1 Integrated Topology Control and Routing Framework

We propose a framework for finding the topology, routes and bandwidth reserva-

tions in an integrated way, so as to maximize the throughput while satisfying the

interface and bandwidth constraints. Given a potential topology and traffic profile,

we follow the following steps:

1. A demand is chosen based on some criteria and a locally optimal path

(satisfying the interface constraints and bandwidth constraints) is computed

for the demand. If none exists, the demand is rejected.

2. If the path includes potential links, then those links are marked as actual

links.

3. The capacity of each link on the path in the existing topology is updated

(decreased) to incorporate the bandwidth allocated to the demand routed.

4. The topology is updated by eliminating all the potential links that lead

to the violation of interface constraints i.e., at all the nodes for which the

10

number of actual incoming (outgoing) links equals the number of interfaces,

the incoming (outgoing) potential links incident on (going out of) those

nodes are eliminated.

5. Steps 1, 2, 3 and 4 are repeated until all demands are either provisioned or

rejected. This way, a topology is created from the potential topology and

all the routes are computed for the demands given in the traffic profile (the

ones we are able to route, the others are rejected).

Let us explain this approach of integrated topology control and routing with an

example. In this example, we assume that each node has two interfaces available

for establishing bidirectional links. The traffic profile is sorted in the order of

decreasing demands, and demands are selected in that order. The link capacity of

each link is assumed to be 10 units. We use constrained shortest-path routing for

path selection, with the constraints being the limited interfaces and bandwidth.

The weight of each link is assumed to be 1. Let the traffic demands be: t38 =

6, t18 = 5, t45 = 3, t37 = 2. We compute the shortest path for the first demand (first

entry of the traffic matrix (profile)) t38 using the topology as shown in Figure 3.1.

The shortest path for the traffic demand t38 is 3 − 5 − 8. Figure 3.2 shows the

potential topology after converting the potential links along the path 3 − 5− 8 to

actual links and allocating the bandwidth for the demand. In Figure 3.2, the actual

links are represented by thick lines and the potential links are represented by thin

lines. As the number of available interfaces per node is two and node 5 uses those

11

Figure 3.1: Potential Topology

Figure 3.2: Topology after routing t38

interfaces for links with node 3 and node 8, there are no more interfaces available

for node 5 to establish a link with other nodes. Thus, the potential link between

node 4 and 5 is eliminated, as can be seen by comparing Figures 3.1 and 3.2.

In the network of Figure 3.2, we find the shortest path 1 − 6 − 7 − 8 for the

demand t18 and the shortest path 4 − 3 − 5 for t45. Figure 3.3 shows the updated

topology which reflects the routing of these demands. Now we compute the shortest

12

Figure 3.3: Topology after routing t38, t18, t45

Figure 3.4: Topology after routing t38, t18, t45, t37

13

path for the demand t37 using the modified network, as shown in Figure 3.3. There

are two paths available for t37: 3 − 5 − 8 − 7 and 3 − 4 − 2 − 1 − 6 − 7. Since the

available bandwidth along the path 3−5−8−7 is 1, which is less than the demand,

the path cannot be selected even though it is the shortest path in the network. So,

the shortest path for the demand t37 is computed as 3− 4− 2− 1− 6− 7, and the

network topology updated to get the final topology as shown in Figure 3.4.

3.1.1 Issues in Integrated Topology Control and Routing

The purpose of this integrated approach is to maximize the network throughput

while routing demands sequentially. There are two key issues related to it. Let us

consider them with the help of two example networks (potential topologies) shown

in Figures 3.5 and 3.8. In these examples, the number of available interfaces at

each node is two, and the links are assumed to be bidirectional for simplicity.

Given the traffic matrix {t12, t34, t56, t78}, all demands being the same, consider

the path provisioning and topology design for the network in Figure 3.5. When we

provision a path for t12 first (shown by thick lines), we get the topology (thin lines

indicate eliminated links) as shown in Figure 3.6 resulting in only one demand

being provisioned. If we consider the other traffic demands first, then this demand

cannot be provisioned but the other three demands can be provisioned, as shown

in Figure 3.7. Thus, the topology of Figure 3.7 resulting from choosing the last

three traffic demands before the first one gives a better throughput.

14

Figure 3.5: Potential Topology

Figure 3.6: Path for t12

Figure 3.7: Paths for t34, t56, t78

15

Figure 3.8: Topology Generation by using different shortest paths for a demand:

(a) Example network, (b) Path for t12, and (c) Paths for t12 and t34.

Let us consider another example with potential topology as in Figure 3.8(a).

We consider path provisioning for the sorted traffic demands {t12, t34}. There are

two paths available for the demand t12. If we choose a path for t12 as shown

in Figure 3.8(b), then we cannot provide a path for t34 because of the interface

constraint at an intermediate node. However, when we choose the other path as

shown in Figure 3.8(c), both the traffic demands can be provisioned.

The above examples illustrate the importance of the two factors that affect the

network throughput in our integrated algorithm: The sequence in which we route

the demands given in the traffic matrix, and the selection of paths for routing the

demands. These two factors affect the selection of links whose bandwidth will be

used by the routed demand, and selection of links to be deleted due to interface

constraints. So, these factors affect the future path computations and the output

topology.

16

3.2 Rollout Algorithms for Topology Control and Routing

As mentioned in the section 3.1.1, the throughput of the network formed by our

topology control and routing framework depends on the order in which the traffic

demands are considered for link formation and routing, and the selection of the

path for each demand. We start with reasonable heuristics for demand ordering

and path selection and use the rollout technique, [8] to improve the heuristics to

obtain potentially near-optimal solutions.

3.2.1 Basic Rollout Algorithm

Rollout is a general method for obtaining an improved policy for a Markov decision

process starting with a base heuristic policy [8]. The rollout policy is a one step

look-ahead policy, with the optimal cost-to-go approximated by the cost-to-go

of the base policy. We use the specialization of rollout to discrete multistage

deterministic optimization problems. Consider the problem of maximizing G(u)

over a finite set of feasible solutions U. Suppose each solution u consists of N

components u = (u1, .., uN). We can think of the process of solving this problem as

a multistage decision problem in which we choose one component of the solution at

a time. Suppose that we have a heuristic algorithm, the so-called “base heuristic”,

that given a partial solution (u1, .., un), (n < N), extends it to a complete solution

(u1, .., uN). Let H(u1, .., un) = G(u1, .., uN). In other words, the value of H on the

partial solution is the value of G on the full solution resulting from application of

17

the base heuristic. The rollout algorithm R takes a partial solution (u1, .., un−1)

and extends it by one component to R(u1, .., un−1) = (u1, .., un) where un is chosen

to maximize H(u1, .., un). Thus, the rollout algorithm considers all admissible

choices for the next component of the solution and chooses the one that leads to

the largest value of the objective function if the remaining components are selected

according to the base heuristic. It can be shown that under reasonable conditions,

the rollout algorithm will produce a solution whose value is at least as great as the

solution produced by the base heuristic. Note that the heuristic may be a greedy

algorithm, but the rollout algorithms are not greedy as they make a decision based

on the final expected value of the objective function, and not the increment to

the value of the objective function at that decision step. The rollout algorithm

typically achieves a substantial performance improvement over the base heuristic

at the expense of extra computation that is equal to the computation time of the

base heuristic times a factor that increases polynomially with the problem size.

3.2.2 Rollout Algorithms for Topology Control and Routing

In this section, we propose four different rollout algorithms: index rollout, route

rollout, sequential rollout and integrated rollout. We start by explaining the base

heuristic.

18

3.2.2.1 Base Heuristic

The base heuristic works as follows: Suppose that a partial topology has been ob-

tained by choosing routes for n demands (t1, .., tn) from the traffic matrix (demands

indexed by source-destination pair IDs). The base heuristic routes the remaining

demands in decreasing order of magnitude. (Routing demands in decreasing order

of magnitude is known to be a useful heuristic for reconfigurable wireline optical

networks [16, 18]). For each demand, it chooses a route using constrained short-

est path first (CSPF), with constraints being that of interfaces and bandwidth.

Thus, tn+1 is the largest remaining demand. The route chosen for this demand

is a shortest unidirectional path in the partial topology satisfying the constraints.

This means that every actual link in the path must have sufficient residual band-

width for the demand; every potential link in the path must have an available

transmitter at its head node and an available receiver at its tail node. If there is

no feasible path, then the ‘null’ route is assigned–i.e., the demand is blocked. If

there is a feasible path, the heuristic updates the topology by deleting the poten-

tial links which violate the interface constraints and decreasing the bandwidth of

the links on that path (see Section 3.1 for description of this framework). Once

tn+1 has been routed, the base heuristic routes the next largest demand tn+2 in the

same way using the partial topology existing after tn+1 has been routed. The base

heuristic algorithm continues in this way until all demands have been routed (or

assigned null routes).

19

3.2.2.2 Index Rollout Algorithm

The example in Figures 3.5, 3.6 and 3.7 shows that the order in which traffic

demands are routed plays an important role in determining the throughput of the

resulting topology. Index rollout seeks to optimize this order. The index rollout

algorithm works as follows: In the first step, the rollout algorithm uses CSPF to

route the demand t1 determined by the requirement that it maximize the total

network throughput when the base heuristic is used to complete the topology

starting with t1. The base heuristic orders the remaining demands in decreasing

order of magnitude, and routes them sequentially. For each demand, it chooses

a route using constrained shortest path first (CSPF). The route chosen for each

demand is a shortest unidirectional path in the partial topology satisfying the

interface and bandwidth constraints. If there is no feasible path, then the ‘null’

route is assigned-i.e., the demand is blocked. After routing each demand, the base

heuristic temporarily updates the topology to eliminate the links which violate the

interface constraints, and decrease the residual bandwidth of the links on the path

on which this demand is routed.

Now, suppose that the demands (t1, .., tn−1) have been routed in this order by

the rollout algorithm. In the next step, the rollout algorithm uses CSPF to route

the remaining demand tn determined by the requirement that it maximize the

total network throughput when the base heuristic is used to complete the topology

starting with (t1, .., tn). In other words, routing tn next minimizes the sum of the

20

remaining demands that are blocked. After routing each demand, the index rollout

updates the topology to eliminate the links that violate the interface constraints,

and decrease the residual bandwidth of the links on the path on which this demand

is routed.

3.2.2.3 Route Rollout Algorithm

The example in Figure 3.8 shows that the choice of path for each traffic demand

plays an important role in determining the throughput of the resulting topology.

Route rollout seeks to optimize the selection of path for each demand when the

demands are considered in a fixed order. We consider the demands in decreasing

order of magnitude. (Additional algorithms may be obtained by using different

criteria to order the traffic demands; see Section 3.2.2.4 below.) Let (t1, .., tN) be

the ordered sequence of demands. The base heuristic works as follows: Suppose

that a partial topology has been obtained by choosing routes (p1, .., pn) for the first

n demands (t1, .., tn). The base heuristic routes the remaining demands (tn+1, .., tN)

sequentially using CSPF. The route rollout algorithm works as follows: Fix an

integer K > 1. In the first step, the rollout algorithm considers at most K feasible

shortest paths as candidates for the route p1 for the demand t1. For each potential

choice of p1 it uses the base heuristic to complete the topology by routing the

remaining traffic demands. The rollout algorithm then selects for p1 the candidate

that results in the maximum total network throughput. Now, suppose that the

demands (t1, .., tn−1) have been given routes (p1, .., pn−1) by the rollout algorithm.

21

In the next step, the rollout algorithm considers at most K feasible shortest paths

as candidates for the route pn for the demand tn. For each potential choice of pn it

uses the base heuristic to complete the topology by routing the remaining traffic

demands. The rollout algorithm then selects for pn the candidate that results in

the maximum total network throughput, and finalizes the links on this path along

with updating the topology (according to the framework of Section 3.1). Note

that if there is only one feasible shortest path for a traffic demand, the routing

decision made by the rollout algorithm coincides with the decision made by the

base heuristic. It might appear desirable to consider all feasible shortest paths

as candidates for pn. However, this is not possible since the problem of finding

all such paths requires exponential time. Consequently, we limit the number of

paths considered to K, where the upper bound K is chosen small enough to allow

reasonable computation time given the size of the network.

3.2.2.4 Sequential Rollout Algorithm

Thus far, we have considered rollout algorithms either for the sequence of traffic

demands or for path selection. Another possibility is to apply rollout in order to

optimize both the sequence of traffic demands and the route path selection. This

can be achieved by applying rollout algorithms sequentially. It means that we

first apply the index rollout algorithm in order to optimize the sequence of traffic

demands as explained in 3.2.2.2. Then we apply the route rollout algorithm de-

scribed in 3.2.2.3 in order to optimize the path selections for the sequence of traffic

22

demands determined by the index rollout. The difference between the sequential

rollout and route rollout algorithm is that the sequential rollout uses the sequence

of traffic demands determined by index rollout while route rollout sequences the

traffic demands in order of decreasing magnitude.

3.2.2.5 Integrated Rollout Algorithm

Instead of first choosing the sequence of traffic demands and then choosing the

paths for the traffic demands, an alternative is to make those decisions at the

same time. We call this the integrated rollout algorithm. In integrated rollout,

each component of a solution is a pair (tk, pk) consisting of a traffic demand and

its path. Thus, the algorithm seeks to optimize the sequence ((t1, p1), .., (tN , pN)).

The base heuristic takes a partial solution ((t1, p1), .., (tn, pn)) and extends it to a

complete solution by choosing the remaining traffic demands (tn+1, .., tN) in order

of decreasing magnitude and choosing paths (pn+1, .., pN) (some of which may be

null) for these traffic demands sequentially using CSPF. The integrated rollout

algorithm works as follows: In the first step it considers all pairs (t1, p1) where

t1 is any of the traffic demands and p1 is any one of a maximum of K feasible

shortest paths for t1. It selects the pair (t1, p1) that gives the maximum total

network throughput when the base heuristic is used to extend it to a full topology.

Now, if the rollout algorithm has produced the sequence ((t1, p1), .., (tn−1, pn−1)),

it considers pairs (tn, pn) where tn is a remaining demand and pn is any one of

a maximum of K feasible shortest paths for tn. It selects the pair (tn, pn) that

23

maximizes the total network throughput when the base heuristic is used to extend

((t1, p1), .., (tn, pn)) to a full solution. After each decision step, the topology is

updated according to the framework of Section 3.1.

At the first step, the throughput for rollouts is at least as large as that for

heuristic as we form the whole topology according to the heuristic. The method of

choosing the routes makes sure that the rollout algorithms work at least as good

as the heuristic, as at each decision step, they always have the choice of going

according to the heuristic which gives the throughput which was calculated at the

previous step. Thus, the rollouts perform at least as well as the heuristic in terms

of the throughput (the objective function).

3.3 Computational Complexity

Let the number of nodes in the network be N and the number of aggregate demands

in the traffic matrix be M. We use a modified version of Dijkstra’s shortest path

algorithm, [9] as a heuristic for finding the shortest paths. It is modified to take care

of the interface and bandwidth constraints while finding a shortest path. As the

topology at any intermediate state of the algorithms is not expected to be sparse,

so the process of finding a shortest path takes O(N2) time. The heuristic we use for

sorting is sorting by decreasing order of traffic demands, which takes O(MlogM)

time for sorting M aggregate flows. This time is insignificant compared to the

time taken by other components of the algorithms, so it does not show up in the

24

time complexity of any of our algorithms. The time complexity of the heuristic

algorithm is O(MN2), as shortest paths are computed M number of times. If

the set of source/destination nodes is fixed, then so is the number of aggregate

demands. In this case, the complexity becomes O(N2).

The time complexity of the route rollout algorithm is O(M2N2), as K is fixed.

This complexity is due to the fact that at each decision step, O(M) shortest paths

are computed, and there are M decision steps in the algorithm. In the case of

fixed M, the complexity is O(N2). The time complexity for the index rollout

algorithm is O(M3N2). At each decision step in the algorithm, O(M2) shortest

paths are computed, and there are M decision steps in the algorithm resulting in

the above complexity. This also reduces to O(N2) for fixed M. The complexity for

the integrated rollout is also the same as the time is scaled by K which is a constant.

The time complexity for the sequential rollout is the sum of the complexity for the

index and route rollout algorithms i.e., O(M2N2 + M3N2) which is the same as

O(M3N2). As in the previous cases, this also reduces to O(N2) for fixed M.

In the case where each node in the network can be a source or a destination, M

scales as N2 and the complexity of the heuristic algorithm becomes O(N4), while

the route rollout algorithm takes O(N6), and the other three rollout algorithms

take O(N8) time.

25

3.4 Simulation Results and Analysis

The simulations were done with two types of network data. The first set of simu-

lations was done with a fixed number of sources and destinations in the network.

The second set of simulations was done assuming any node can be a source or a

destination node.

3.4.1 Simulation Set 1

The network was assumed to have the following parameters:

• Number of nodes in the network = 50. This represents a reasonably sized

backbone network.

• Nodes are uniformly distributed, with each node having an average of 7.5

potential neighbors.

• Number of receive interfaces at each node = 3.

• Number of transmit interfaces at each node = 3.

• The transmission range of all nodes is assumed to be the same.

• Capacity of each link = 100 in each direction.

• Number of nodes capable of being a source/destination = 12.

• Number of source-destination pairs = 125, selected from among the nodes

which can be sources or destinations. In this case, nearly all possible source-

destination pairs are a part of the traffic matrix.

• Aggregate traffic between each pair: Uniformly distributed between 1 and

26

40 units.

• Number of Shortest Paths considered in Route Rollout, Sequential Rollout

and Integrated Rollout, K = 4.

• Weight of each link for constrained shortest path computation = 1, thus

making the shortest path as the constrained min-hop path.

The simulation was run 10 times and in each simulation, the network topology

was formed starting with these parameters. The throughput (bandwidth reserva-

tions) and number of rejects (the demands which we could not route) were noted.

Figure 3.9 shows the throughput for 5 of the 10 simulations, and Figure 3.10 shows

the number of rejects for those 5 simulations. The simulations shown in these fig-

ures have been selected to show the general trend and the variation encountered

in the results. Note that rejects and throughput are not directly related to each

other–i.e., it is possible (but unlikely) to simultaneously achieve higher throughput

and higher rate of rejection since the size of the demands is not constant.

As can be seen from the figures, all the four rollout algorithms work much better

than the heuristic. The integrated rollout normally works the best among these,

followed by the sequential rollout, index rollout, and route rollout, in that order.

There are some exceptions to the general trend, as can be seen from simulations

4 and 5. In simulation 4, the index and sequential rollouts work better than

the integrated rollout and in simulation 5, the route rollout works better than the

index and sequential rollouts. As all the policies are suboptimal, none of the rollout

27

Figure 3.9: Throughput for Simulation Set 1

Figure 3.10: Rejects for Simulation Set 1

28

Table 3.1: Aggregate Results for Simulation Set 1

Policy Throughput Rejects

Heuristic 85.13% 20.72%

Route Rollout 92.18% 10.64%

Index Rollout 94.49% 7.12%

Sequential Rollout 94.51% 7.04%

Integrated Rollout 95.16% 6.24%

policies is guaranteed to perform better than the others as the decision at any stage

of the algorithms is not optimal. This explains the results seen in simulations 4 and

5. Table 3.1 gives the average rejects over 125 aggregate demands (as a percentage

of total demands) and the average throughput (as a percentage of total requested

demand) over all simulations of this set.

As can be seen from Table 3.1, comparing with the heuristic in terms of through-

put, the route rollout performs nearly 8.3% better, the index rollout performs 11%

better, the sequential rollout performs 11% better and the integrated rollout per-

forms 11.8% better. In terms of the number of rejects, the route rollout performs

nearly 48.6% better, the index rollout performs 65.6% better, the sequential roll-

out performs 66% better and the integrated rollout performs 69.9% better than

29

the heuristic. So, generally the integrated rollout is expected to perform the best

among these rollouts. Another observation from the results is that the index selec-

tion is more critical than the selection of routes from among multiple routes. This

can be inferred from the fact that the index and sequential rollouts work much

better than the route rollout while the integrated rollout does not work that much

better than the index and sequential rollouts. This conclusion is further strength-

ened by the observation that index and sequential rollouts perform either the same

or sequential rollout does slightly better than the index rollout; there is not a big

margin between them, as can be seen from Table 3.1.

Regarding the connectivity of the network, the optimization of the throughput

ensures with high probability that the source and destination nodes are all con-

nected. If certain other nodes are not essential as transit nodes, it is possible that

these nodes may be disconnected.

3.4.2 Simulation Set 2

This simulation set is for the case where all the nodes can be sources/destinations,

and the network is more heavily loaded than in simulation set 1. The network was

assumed to have the following parameters different from the simulation set 1:

• Number of nodes in the network = 20. This represents a reasonably sized

backbone network.

• Nodes are uniformly distributed, with each node having an average of 6.5

30

potential neighbors.

• Any node can be a source or a destination.

• Number of source-destination pairs in the traffic matrix: between 135 and

170, selected uniformly from among all possible source-destination pairs (380

of them).

• Aggregate traffic between each pair: Uniformly distributed between 1 and

30 units.

Relative to the size of the network, the total demand is very large compared to

the network in simulation set 1. The demand for simulation set 1 is around 2500

units for a network of size 50, while it is around 2000 units for a network of size

20 here.

The simulation was run 10 times and in each simulation, the network topology

was formed starting with these parameters. Figure 3.11 shows the throughput for

5 of the 10 simulations, and Figure 3.11 shows the number of rejects for those 5

simulations. The simulations shown in these figures have been selected to show

the general trend and the variation encountered in the results.

As can be seen from the figures, all four of the rollout algorithms work much

better than the heuristic. The integrated rollout normally works the best among

these, followed by the sequential and index rollouts, which work the same most of

the time, followed by the route rollout. As in simulation set 1, there are instances

when the index and sequential rollout work better than the integrated rollout.

31

Figure 3.11: Throughput for Simulation Set 2

Figure 3.12: Rejects for Simulation Set 2

32

Table 3.2: Aggregate Results for Simulation Set 2

Policy Throughput Rejects

Heuristic 79.87% 30.56%

Route Rollout 86.59% 21.16%

Index Rollout 89.86% 14.44%

Sequential Rollout 90.25% 13.43%

Integrated Rollout 92.12% 10.61%

Table 3.2 gives the average rejects (as a percentage of total requested aggregate

flows) and the average throughput (as a percentage of total requested demand)

over all simulations of this set.

As can be seen from the table, comparing with the heuristic in terms of through-

put, the route rollout performs nearly 8.4% better, the index rollout performs

12.5% better, the sequential rollout performs 13% better and the integrated roll-

out performs 15.3% better. In terms of the number of rejects, the route rollout

performs nearly 30.8% better, the index rollout performs nearly 52.7% better, se-

quential rollout performs 56.1% better and the integrated rollout performs 65.3%

better than the heuristic. In this case also, the network was connected for each

simulation as the traffic matrix was comprehensive in terms of the nodes it covered.

33

Figure 3.13: Throughput at different traffic loads

3.4.2.1 Comparison under Different Traffic Load Conditions

As has been proven, the rollout algorithms are guaranteed to work better than

the heuristic. Changing the network parameters effectively changes the amount of

load on the links. So, the algorithms were compared on the network of simulation

set 2 under different traffic load conditions:

1. Traffic conditions of section 3.4.2.

2. 160 profile entries, each uniformly distributed between 1 and 40 units of

traffic.

3. 160 profile entries, each uniformly distributed between 1 and 50 units of

traffic.

34

Figure 3.13 shows the throughput for the algorithms under these conditions.

As can be seen, the relative performance of the algorithms is similar under different

traffic loads.

3.5 Online Routing and Admission Control

The topology is set-up, and the bandwidth reservation information and the route

for each ingress-egress pair is given to the ingress node for that pair. Whenever

a call (new request of traffic between an ingress-egress pair) arrives, the ingress

router checks to see if there is enough bandwidth left from the bandwidth reserved

for this pair. If there is bandwidth left, then the flow is routed through the path

stored from the offline phase. We may have additional unreserved bandwidth on

some links in the network (the bandwidth left unreserved), so in the case of reserved

bandwidth being exhausted for an ingress-egress pair, the unreserved bandwidth

is used (on a first-come-first-serve basis). If the call cannot be routed using the

reserved bandwidth or the extra unreserved bandwidth, it is blocked.

3.5.1 Simulation Results and Analysis

We model the traffic as a collection of individual flows with Poisson arrival times

with rate λi, exponential holding times (with mean Ti) and constant bit rate traffic

(Ri) for each flow. The mean of the aggregate traffic demand for each ingress-egress

pair (i) can be computed as λiTiRi. We generate the traffic profile using these mean

35

aggregate demands for each pair. The network was assumed to have the following

parameters:

• Number of nodes in the network = 50.

• Nodes are uniformly distributed, with each node having an average of 7.5

potential neighbors.

• Number of receive interfaces at each node = 3.

• Number of transmit interfaces at each node = 3.

• The transmission range of all nodes is assumed to be the same.

• Capacity of each link = 100 in each direction.

• Number of nodes capable of being a source/destination = 12.

• Number of source-destination pairs = 100, selected from among the nodes

which can be sources or destinations.

• Poisson Rate (λi): Uniformly distributed between 10 and 20 per unit time.

• Mean of Holding Time (Ti): Uniformly distributed between 1 and 2 units of

time.

• Bit Rate of individual calls = 1 unit (same for all).

• Number of Shortest Paths considered in Route Rollout, Sequential Rollout

and Integrated Rollout, K = 4.

• Weight of each link for constrained shortest path computation = 1, thus

making the shortest path as the constrained min-hop path.

36

Table 3.3: Average Bandwidth Guarantees

Heuristic Route Rollout Index Rollout Integrated Rollout

0.8782 0.9326 0.9582 0.9597

The simulation was run 10 times and in each simulation, the network topology

was formed starting with these parameters. Table 3.1 shows the average fractional

throughput (bandwidth guarantees/total demand) for the heuristic and the rollout

algorithms.

As can be seen from Table 3.3, comparing with the heuristic in terms of through-

put, the route rollout performs nearly 6.2% better, the index rollout performs 9.1%

better and the integrated rollout performs 9.3% better. So, generally the integrated

rollout is expected to perform the best among these rollouts. Another observation

from the results is that the index selection is more critical than the selection of

routes from among multiple routes. This can be inferred from the fact that the

index rollout works much better than the route rollout while the integrated rollout

does not work that much better than the index rollout.

The network was setup and Poisson traffic with exponential holding times and

CBR rate (the parameters being the same as provided to offline phase) was gener-

ated and the network was run for 30 units of time for each of the 10 simulations.

In each simulation, the traffic for evaluating the heuristic was the same as that for

the rollout. Table 3.4 gives the average throughput (which is the same as call ac-

37

Table 3.4: Average Throughput

Heuristic Route Rollout Index Rollout Integrated Rollout

0.7729 0.8232 0.8520 0.8542

ceptance rate as traffic is CBR with same rate for all pairs) for each of the policies.

As can be seen, the relative performance is similar to the bandwidth guarantees

we could achieve in the offline phase.

38

Chapter 4

Extension of Rollout Algorithms

In the framework we proposed in Chapter 3, the whole aggregate demand between

an ingress-egress pair is routed through a single path accommodating the whole

demand, or it is not routed at all. If we allow the splitting of a demand over

multiple paths and try to route as much as possible (rather than routing whole

or zero), we expect to get a better throughput. In this chapter, we give a linear

formulation of the problem of routing the traffic profile over a fixed topology, and

describe how we can use that along with the rollout algorithms. We provide some

simulation results at the end of this chapter.

4.1 Routing as Multi-commodity Flow Problem

We set up the problem of routing a given traffic profile over a computed topology

for maximizing the throughput as a linear multi-commodity flow problem [3]. We

treat each aggregate demand (profile entry) as a commodity which we can split

among multiple paths. Let there be M commodities (the value of each commodity

39

is profile(i)), N nodes and L links in the network. We add a dummy link (infinite

cost, infinite capacity) between the source and destination of each commodity to

achieve feasibility (thus, there are M such links). Let xi(l) be the amount of

commodity i routed through link l. Let cost(l) represent the cost of each link,

which is 1 for an actual link for our objective of maximizing the throughput.

Let the set of incoming and outgoing links at node j be denoted by inj and outj

respectively. Let sourcei and desti represent the source and destination of profile i.

Equation 4.1 achieves the objective of maximizing the throughput as the algorithm

tries to route on the actual links due to large cost of the dummy links. Along with

maximizing the throughput, the objective function also minimizes the weighted

hop count (the number of links used for each path) for the value of throughput

it achieves. Equation 4.2 represents the bandwidth constraints. Equations 4.3

and 4.4 represent the flow conservation laws at transit nodes and source nodes for

each commodity respectively. The traffic that goes over the dummy links is the

traffic that is not routed in the actual network.

minimize

L+M∑

l=1

(cost(l)

M∑

i=1

xi(l)) (4.1)

M∑

i=1

xi(l) ≤ capacity(l) ∀l ∈ {1, .., L} (4.2)

40

∑

l∈inj

xi(l) =
∑

l∈outj

xi(l) ∀j ∈ {1, .., N} − {sourcei, desti}, ∀i ∈ {1, .., M} (4.3)

∑

l∈outj

xi(l) −
∑

l∈inj

xi(l) = profile(i), j = sourcei, ∀i ∈ {1, .., M} (4.4)

4.2 Extended Rollout Algorithms

We can extend the heuristic and all the rollout algorithms to include the multi-

commodity flow formulation as described. We calculate the topology and band-

width reservations as we did before, but we no longer use the bandwidth reserva-

tions calculated. Instead, we fix the topology we get at the end of the rollout (or

heuristic) algorithms and solve the multi-commodity flow problem for the traffic

profile over that topology. This gives the routes and bandwidth reservations. This

is guaranteed to give a throughput at least as high as the throughput we get at

the end of the rollout algorithms (i.e., without splitting the traffic).

4.3 Simulation Results and Discussion

The network model is kept the same as in Section 3.4, but the traffic demands

have been increased to allow for potential improvement in throughput.

41

Table 4.1: Average Throughput for Rollout Algorithms

Heuristic Route Rollout Index Rollout Integrated Rollout

0.7867 0.8457 0.8690 0.8932

Table 4.2: Average Throughput for Rollout Algorithms with Traffic Splitting

Heuristic Route Rollout Index Rollout Integrated Rollout

0.8935 0.9222 0.9247 0.9400

4.3.1 Simulation Set 1

We have the same network model as the 50 node network of Section 3.4.1. The

traffic is now uniformly distributed between 10 and 40 units, with 10 nodes capable

of being a source or destination and there are 90 source-destination pairs among

them.

Tables 4.1 and 4.2 show the average fractional throughput for the rollout algo-

rithms and their heuristic for the case where we do not split the traffic and the case

where we split the traffic as a commodity respectively. As can be seen, splitting

the traffic increases the throughput considerably: 13.6% for the heuristic, 9% for

the route rollout, 6.4% for the index rollout and 5.2% for the integrated rollout.

We do not show the results for sequential rollout as it does not improve much on

index rollout.

42

Table 4.3: Average Throughput for Rollout Algorithms

Heuristic Route Rollout Index Rollout Integrated Rollout

0.5748 0.6313 0.6732 0.6892

Table 4.4: Average Throughput for Rollout Algorithms with Traffic Splitting

Heuristic Route Rollout Index Rollout Integrated Rollout

0.7090 0.7223 0.7335 0.7550

4.3.2 Simulation Set 2

For the 20 node network of Section 3.4.2, the traffic is now uniformly distributed

between 1 and 40 units, with 160 source-destination pairs.

Tables 4.3 and 4.4 show the average fractional throughput for the rollout algo-

rithms and their heuristic for the case where we do not split the traffic and the case

where we split the traffic as a commodity respectively. As can be seen, splitting

the traffic increases the throughput considerably: 23.3% for the heuristic, 14.4%

for the route rollout, 9% for the index rollout and 9.5% for the integrated rollout.

We do not show the results for sequential rollout as it does not improve much on

index rollout.

There are two primary reasons for the improvement in throughput:

1. The multi-commodity flow algorithm finds the routes and bandwidth reser-

43

vations to maximize the throughput over the same topology that is estab-

lished after running the rollout algorithms. So, it is guaranteed to work at

least as well as the corresponding rollout algorithm.

2. The rollout algorithms (and heuristic) either routes the whole aggregate

demand of an ingress-egress pair or do not route it at all, which is not the

case when we solve the multi-commodity flow problem and allow the traffic

to split.

4.4 Comparison with Single Path Rollout Algorithms

There are advantages and disadvantages of splitting the traffic. If we do not allow

splitting the traffic, and use a single path per ingress-egress pair, then the ingress

router has to store less routing information per pair (instead, it is for a single path

per ingress-egress pair), and the bandwidth reservation information does not have

to be stored for each link for each ingress-egress pair, as is the case in which we

split the traffic between different paths. Also, the decision of selecting a route is

much easier the case of single path per ingress-egress pair with same bandwidth

reservation on all the links of that path.

Splitting the traffic has the advantage that it results in higher throughput

in terms of the total bandwidth reserved. Also, the network is not tolerant to

link/node failure in the case of having reservations on only one path per ingress-

egress pair. So, having bandwidth reservations on multiple paths makes the net-

44

work more tolerant to link/node failures.

45

Chapter 5

Heuristics using Matching Theory

We propose some heuristics for topology control and routing which use matching

theory, [10] and the formulation of routing as a multi-commodity flow problem.

We provide an extension to the algorithms to incorporate fairness in the topology

control and routing decisions, where fairness is measured in terms of the fraction of

traffic demand reserved for each traffic profile entry. We then present the simulation

results to compare these heuristics with the rollout algorithms.

5.1 Matching Theory

Given an undirected graph G = (V, E), a matching is a subgraph G′ = (V, E ′)

such that degree(v) <= 1 ∀ v ∈ V and E ′ ⊂ E. The vertices having a degree of 1

in G′ are called to be matched. We describe different types of matchings based on

the constraints they satisfy.

• Maximum Cardinality Matching : Given an undirected graph G = (V, E), a

maximum cardinality matching G′ = (V, E ′) is one in which the number of

46

matched vertices is maximum among all possible matchings (i.e., the number

of edges is maximum).

• Maximum Weight Matching : Given a graph G = (V, E), with edge weights

w(e) ∀ e ∈ E, a maximum weight matching is one which gives a matching

(G′) with sum of weights of all edges in G′ the maximum among all possible

matchings.

• Perfect Matching : Given an undirected graph G = (V, E), a perfect matching

G′ = (V, E ′) is a matching satisfying the condition degree(v) = 1 ∀ v ∈ V

i.e., all vertices in G′ are matched.

5.2 Application of Matching Theory to Topology Control

The basic algorithm is outlined below and explained in the following sections.

1. Weight the links in the initial graph (potential topology) to favor the links

which are expected to have a higher traffic flow.

2. Map the graph to one which can be given as an input to a maximum weight

matching problem and solve the matching problem to get a maximum weight

subgraph which satisfies the interface constraints.

3. Solve the multi-commodity flow problem over this topology.

4. Modify the topology sequentially, solving the multi-commodity flow prob-

lem each time, and finally, keep the topology which gives the maximum

throughput.

47

5.2.1 Giving Initial Weight to Edges

We propose three strategies of weighting the edges:

1. Uniform Weighted Matching (UWM): The way we map the problem to

maximum weight matching problem, if we give the same weight to all the

links in the network, the output topology will have the maximum number

of links while satisfying the degree constraints (as we try to maximize the

weight during matching algorithm, so same weight to all edges would result

in maximizing the number of edges).

2. Traffic Weighted Matching (TWM): As our objective is maximizing the

throughput, so it is better to give extra weight to edges which are expected

to carry more traffic. We explain this strategy below:

• Give a weight of 1 to all edges.

• Find K shortest paths (maximum) of same length for each traffic profile

(over the potential topology).

• Each time a link comes in a path, add to its weight profile(i)/numberSP ,

where profile(i) is the value of the profile entry, and numberSP the

number of shortest paths we found for that profile entry.

3. Flow Weighted Matching (FWM): Another possibility is to give weights

according to the number of paths a link comes on irrespective of the amount

of traffic. In this case, we add 1 to the weight of a link in step 3 above.

48

We work with shortest paths as the multi-commodity flow formulation will

prefer shorter paths for a commodity because it minimizes the cost function of

Equation 4.1 (to maximize the throughput).

5.2.2 Mapping to Maximum Weight Matching

Given a graph G = (V, E) (which corresponds to the potential network) with edge

weights as explained in section 5.2.1, we form a graph G′ = (V ′, E ′) and give it as

an input to the maximum weight matching problem. Let the number of transmit

and receive interfaces (i.e., input and output degree constraints) at each vertex be

∆. Figure 5.1 shows an example potential topology with ∆ = 2. The steps of the

mapping are explained below.

• For each vertex, we form 2∆ vertices in graph G′ (∆ of them correspond to

the transmit interfaces, and ∆ to receive interfaces).

• For each edge between two vertices in G, we form two vertices in G′ (we call

these edge vertices), and add an edge between them (of weight 0), as well

as between one of them and the transmit interface vertices (all ∆ of them)

of the vertex it was going out of (with weight equal to the weight of the

corresponding edge in G). Also add edges between the other vertex (in G′)

of this edge (from G) and the receive interface vertices of the vertex it was

incident on (with weight equal to the weight of the corresponding edge in

G). The resulting graph for this example is shown in Figure 5.2 (the edges

49

Figure 5.1: Potential Topology, ∆ = 2

Figure 5.2: Modified graph from potential topology

shown without weights have a weight of 1 here). T, R and E refer to the

vertices corresponding to transmit interfaces, receive interfaces and edges in

G respectively.

• Add a clique with 2∆N vertices to the graph G′, with each edge in the clique

having weight 0. Add zero weight edges between each of these vertices and

each of the vertices in G′ which correspond to the transmit and receive

interfaces of the vertices in graph G.

• Sum the weight of all the edges in G′ and add a weight more than that to the

weight of all edges in G′. We do this to make sure we get perfect matching

using a maximum weight matching algorithm (we explain this in detail in

Section 5.2.2.1).

50

Figure 5.3: Vertices are connected

Figure 5.4: Vertices are not connected

We solve the maximum weight matching problem on G′, and deduce the result-

ing topology based on the result we get. We show the rules for mapping from the

output of matching to the graph representing the topology: Figure 5.3 shows the

scenario (a subgraph from the output of matching algorithm) when two vertices

will have an edge between them in the final topology. Figure 5.4 shows the case

when two vertices which had an edge between them in G will not have the edge in

the resulting topology (as they are not connected to the edge vertices correspond-

ing to the edge between them). We detect such subgraphs in the output graph

from matching algorithm (the output graph will be composed of such subgraphs

only), and use these rules to make the resulting topology.

We added a clique to the graph G′ to avoid the scenario in which we cannot

deduce the topology from the result of the matching algorithm. Figure 5.5 shows

Figure 5.5: Connection between vertices undecidable

51

Figure 5.6: Result of Matching Algorithm

the case when this has happened between two vertices. In this case, one of the

vertices connects to the edge vertex in G′, while the other vertex does not con-

nect with the corresponding edge vertex. This can be avoided by having perfect

matching (matching in which all vertices have a match), and for achieving that we

add a clique of size 2∆N and connect each of them to all the vertices in G′ which

correspond to transmit and receive interfaces of vertices in G. A perfect matching

would result in the output to be as in Figure 5.4 by connecting the unmatched ver-

tices (corresponding to transmit and receive interfaces in G) to the dummy edges,

and connecting the edge vertices together. By adding 2∆N dummy vertices, we

accommodate the worst case in which all the vertices will be disconnected in the

final topology.

Figure 5.6 shows the output (minus the clique vertices and corresponding edges)

of the matching algorithm and Figure 5.7 shows the final topology we deduce from

the output of matching (shown in Figure 5.6) for the example network of Figure

5.1.

52

Figure 5.7: Final Topology

5.2.2.1 Perfect Matching using Maximum Weight Matching Algorithm

Given a graph G = (V, E), for which a perfect matching G′ = (V, E ′) exists, we

want to get a perfect matching using a maximum weight matching algorithm. The

way we form the input to the matching algorithm, a perfect matching always exists

and its weight is the maximum among all possible matchings (as the extra edges

we add have a weight 0). We want to make sure that among the matchings of

maximum weight, the output is a perfect matching. We do that by summing the

weights of all the edges, and adding that to the weight of all edges. The reason for

doing this is the following:

Let the maximum weight matching have the weight w, and there be a couple of

unmatched vertices. So, in the worst case, matching those vertices and changing

the matching of other vertices so as to get a perfect matching can lead to the

reduction of the net weight by w. If we make sure the weight of this new edge is

more than w, then the weight of this new matching will be more than the matching

we got before. This new matching will have more edges than the previous matching

as it is a perfect matching. So, we sum the weights of all edges in the graph, and

add a weight more than that sum to the weights of all the edges. This makes sure

53

that the situation of Figure 5.5 does not arise, as it would rather match the two

vertices corresponding to edges with each other and the dummy vertices to the

vertices corresponding to the transmitter and receiver to get higher weight and

a perfect matching. Thus, we get a maximum weight perfect matching, and the

weight of the output topology (concluded from the output of matching algorithm)

would still be the same as we added the same weight to all edges.

5.2.3 Topology Change Strategy

We solve the multi-commodity flow problem (as explained in Section 4.1) on the

topology we get from the algorithm explained in section 5.2.2. We sequentially

change this topology and solve the multi-commodity flow problem on the resulting

topologies to get an improvement in the throughput. The algorithm for changing

the topology is as explained below:

1. Make a list of the profile entries for which we could route less than x%

of the demand (where x is chosen by the user depending on the current

throughput levels, network size and processing power of the computing unit

- we keep it fixed for our simulations), in decreasing order of demands.

2. For the first entry in this list, find (maximum) K shortest paths each in

the potential topology and the current topology. Form the first path which

is present in the potential topology, but not in the existing topology by

deleting the least loaded links (with traffic as given by the result of multi-

54

commodity flow problem) at each of the interface-starved nodes in the cur-

rent topology on this path. If all the paths are the same then repeat this

step for the next entry in the list.

3. Solve the multi-commodity flow problem for this changed topology. If the

throughput is more than the throughput in the current topology then change

the current topology to this topology and update the list by deleting the

entries for which we have routed more than x% on this topology. If the

throughput is less than before, then let the current topology remain the

same and start with step 2 for the next entry in the list.

We keep the topology we have at the end of this procedure.

5.3 Incorporating Fairness

In all the algorithms we have seen so far, we do not consider fairness, i.e., trying

to route at least a certain fraction of each profile entry while maximizing the

throughput. We address this problem by making changes to the multi-commodity

flow formulation. We use two different weighting strategies for comparison:

• Fairness1 : Use Traffic Weighted Matching.

• Fairness2 : Use Flow Weighted Matching. This strategy is expected to be

more fair than Fairness1 as it weights the links according to the number of

flows expected to pass through it rather than to the amount of traffic.

55

5.3.1 Extended Multi-commodity Flow Formulation

The primary change from the formulation explained before is the addition of the

fairness constraint of Equation 5.1. Here, we sum the outgoing and incoming flows

only over the actual links (and not over the (infinite capacity, infinite cost) links we

added between the source and destination, as the traffic flowing over them is what

we could not route). We also change the flow conservation law at intermediate

nodes (as in Equation 4.3) to include only the actual links adjacent to those nodes

(Equation 5.2). Here, ainj denotes the actual incoming links at node j, and aoutj

denotes the actual outgoing links at j. This is done to make sure the traffic for a

profile entry is not routed through the extra links between some nodes other than

the source and destination of this profile entry (otherwise that will happen as the

algorithm tries to force the condition of Equation 5.1).

∑

l∈aoutj

xi(l) −
∑

l∈ainj

xi(l) ≥ y ∗ profile(i), j = sourcei, ∀i ∈ {1, .., M} (5.1)

∑

l∈ainj

xi(l) =
∑

l∈aoutj

xi(l), ∀j ∈ {1, .., N}−{sourcei, desti}, ∀i ∈ {1, .., M} (5.2)

This formulation will give an infeasible result if it is not able to route at least

y% of each profile entry. We follow the following procedure to get the reservations

for the topology we get from the matching algorithm:

• Start at y = 0.95 and solve the changed multi-commodity flow problem.

• If it returns a feasible result, keep the current topology and these reservations

56

and exit. Else, decrease y by 0.05, and solve the extended multi-commodity

flow problem again.

If we get the answer at y = 0, then the answer is the same as what we get in

the algorithm explained in Section 5.2 (without sequential topology change).

5.4 Computational Complexity

Let the number of nodes in the network be N, and the number of flows be M. The

computational complexity of the proposed algorithms is explained by breaking

them into the following steps:

1. Weighting: It calculates shortest paths (takes O(N2) time for each path

calculation) for O(M) flows. So, this takes O(MN2).

2. Maximum Weight Matching: There are N vertices, O(N2) edges in the

original graph G. In the graph G′ (input to matching), we create O(N +N2)

vertices from the vertices and edges of graph G, and add O(N) vertices

which form a clique. So, number of vertices in G′ is N ′ = O(N2). In

G′, there are O(N2) edges between the vertices corresponding to edges and

vertices in G. There are O(N2) edges in the clique which we add. There are

edges between all vertices of the clique (O(N) vertices) and all O(N) vertices

which correspond to vertices in G. So, number of edges in G′, E ′ = O(N2).

Maximum weight matching takes O(E ′N ′logN ′) time and thus matching

takes O(N4logN) time.

57

3. Multi-commodity flow algorithm is a linear program, so it takes O(n0.5),

where n is the number of variables, which is O(MN2) (one variable for each

commodity and each link) in our case. So, it takes O(M0.5N) time.

4. In sequential topology change, we find shortest paths for all profile entries

(worst case) and run the multi-commodity flow algorithm those many times,

so it takes O(MN2 + M1.5N) time for this step.

The maximum order of M is O(N2), and so the maximum weight matching

step determines the order of the proposed algorithms. Thus, the algorithms take

O(N4logN) time, with N being the number of nodes in the network. This com-

plexity is much lower than that for route rollout (O(N6)) and index and integrated

rollout algorithms (O(N8)). The heuristic used by these rollout algorithms takes

O(N4) time.

5.5 Simulation Results and Discussion

5.5.1 Simulation Set 1

The network used for simulations was assumed to have the following parameters:

• Number of nodes in the network = 20.

• Nodes are uniformly distributed, with each node having an average of 6.5

potential neighbors.

• Number of receive interfaces at each node = 3.

58

• Number of transmit interfaces at each node = 3.

• The transmission range of all nodes is assumed to be the same.

• Capacity of each link = 100 in each direction.

• Number of source-destination pairs = 160, chosen randomly.

• Aggregate traffic between each pair: Uniformly distributed between 1 and

40 units.

• Threshold, x, for including a profile in the sequential topology change list =

0.2.

• Number of shortest paths considered in Route Rollout and Integrated Rollout

= 4.

• Number of shortest paths considered for initial weighting and sequential

topology change, K = 3.

• Weight of each link for constrained shortest path computation = 1, thus

making the shortest path as the constrained min-hop path.

The simulation was run on a different random network and random profile 10

times and in each simulation, the network topology was formed starting with these

parameters. The matching algorithm used was an implementation of H. Gabow’s

N-cubed weighted matching algorithm [24].

Table 5.1 shows the average throughput for the extended rollout algorithms

(same as in Table 4.4). Table 5.2 shows the average throughput for the matching

algorithms. As we can see, the algorithm with Traffic Weighted Matching (TWM)

59

Table 5.1: Average Throughput for the Extended Rollout Algorithms

Heuristic Route Rollout Index Rollout Integrated Rollout

0.7090 0.7223 0.7335 0.7550

Table 5.2: Average Throughput for Matching Heuristics

UWM FWM TWM Fairness1 Fairness2

0.7178 0.7606 0.7720 0.7080 0.6719

works the best, followed by Flow Weighted Matching (FWM), Uniform Weighted

Matching (UWM) and the fairness schemes. Traffic Weighted Matching works

8.88% better than the heuristic for rollout and 2.25% better than the integrated

rollout. Thus, the best matching algorithm works better than the extended rollout

algorithms, and has a lower time complexity.

Table 5.3 shows the average throughput we get in the proposed algorithms with-

out using the sequential topology change strategy. As can be seen by comparing

Tables 5.2 and 5.3, the improvement in throughput is the maximum in Uniform

Weighted Matching followed by Flow Weighted Matching and Traffic Weighted

Matching. This, along with the results of Table 5.2, shows that Traffic Weighted

Matching works the best among these three strategies.

60

Table 5.3: Average Throughput for Matching Heuristics without Sequential Topol-

ogy Change

UWM FWM TWM

0.6650 0.7294 0.7535

Table 5.4: Average Minimum Routed for Fairness schemes

Fairness1 Fairness2

0.425 0.53

The metric we use to evaluate fairness is the minimum of the fraction of the

demand routed for each profile entry. Table 5.4 shows the average of this parameter

over the simulations. Fairness2 is more fair (0.53) than Fairness1 (0.425) as

expected, though at the cost of throughput, as can be seen from Table 5.2. This

metric turns out to be zero for all other algorithms proposed here.

5.5.2 Simulation Set 2

The network used for simulations was assumed to have the following parameters:

• Number of nodes in the network = 50.

• Nodes are uniformly distributed, with each node having an average of 7.5

potential neighbors.

61

• Number of receive interfaces at each node = 3.

• Number of transmit interfaces at each node = 3.

• The transmission range of all nodes is assumed to be the same.

• Capacity of each link = 100 in each direction.

• Number of nodes capable of being a source/destination = 12.

• Number of source-destination pairs = 90.

• Aggregate traffic between each pair: Uniformly distributed between 10 and

40 units.

• Threshold, x, for including a profile in the sequential topology change list =

20%.

• Number of shortest paths considered in Route Rollout and Integrated Rollout

= 4.

• Number of shortest paths considered for initial weighting and sequential

topology change, K = 3.

• Weight of each link for constrained shortest path computation = 1, thus

making the shortest path as the constrained min-hop path.

The simulation was run on a different random network and random profile 10

times and in each simulation, the network topology was formed starting with these

parameters. The matching algorithm used was an implementation of H. Gabow’s

N-cubed weighted matching algorithm [24].

62

Table 5.5: Average Throughput for Matching Heuristics

UWM FWM TWM

0.9045 0.8749 0.8797

Table 5.5 shows the average throughput for the matching algorithms. As we can

see, the algorithm with Uniform Weighted Matching (UWM) works the best, fol-

lowed by Traffic Weighted Matching (TWM) and Fair Weighted Matching (FWM).

Table 5.7 shows the average throughput for the extended rollout algorithms (same

as in Table 4.2). As can be seen, all the extended rollout algorithms (along with

the extended heuristic) work better than the matching-based algorithms in this

kind of network. Thus, for a network with less number of ingress-egress pairs com-

pared to the size of the network, extended rollout algorithms work better than the

heuristics based on matching theory.

Table 5.6 shows the average throughput we get in the proposed algorithms with-

out using the sequential topology change strategy. As can be seen by comparing

Tables 5.5 and 5.6, the improvement in throughput is the maximum in Uniform

Weighted Matching followed by Flow Weighted Matching and Traffic Weighted

Matching.

63

Table 5.6: Average Throughput for Matching Heuristics without Sequential Topol-

ogy Change

UWM FWM TWM

0.8436 0.8698 0.8742

Table 5.7: Average Throughput for the Extended Rollout Algorithms

Heuristic Route Rollout Index Rollout Integrated Rollout

0.8935 0.9222 0.9247 0.9400

64

Chapter 6

Conclusion

The problem of profile based topology control and routing of bandwidth-guaranteed

flows for maximizing throughput is addressed. The problem is proved to be NP-

Hard. A framework which integrates topology control and routing decision is

proposed, and efficient rollout algorithms are proposed to achieve good results.

The routing problem is formulated as a multi-commodity flow problem, and the

rollout algorithms extended to achieve better throughput.

This work also proposes a new set of heuristics which use matching theory

to solve the problem. The matching theory heuristics are shown to work bet-

ter than the extended rollout algorithms in a network in which all nodes can be

ingress/egress, and worse in the case where only a few are ingress/egress nodes.

The matching theory algorithm has a much lower time complexity than the roll-

out algorithms. The matching theory based heuristics and the multi-commodity

flow algorithm are extended to achieve fairness among the different ingress-egress

pairs.

65

BIBLIOGRAPHY

[1] N. A. Riza, “Reconfigurable Optical Wireless”, LEOS ’99 IEEE , vol.1 , pp.70-

71, 8-11 Nov. 1999.

[2] Z. Yaqoob, N. A. Riza, “Smart Free-Space Optical Interconnects and Com-

munication Links using Agile WDM Transmitters”, 2001 Digest of the LEOS

Summer Topical Meetings , 30 July-1 Aug. 2001.

[3] S. Suri, M. Waldvogel, D. Bauer, P. R. Warkhede, “Profile-Based Routing

and Traffic Engineering”, Computer Communications, vol. 24(4), pp. 351-365,

March 2003.

[4] A. Desai, “Dynamic Topology Control of Free Space Optical Networks”, M.S.

Thesis, Department of Electrical Engineering, University of Maryland, 2003.

[5] P. C. Gurumohan, J. Hui, “Topology Design for Free Space Optical Networks”,

Proc. ICCCN 2003.

[6] Abhishek Kashyap, Kwangil Lee, Mark Shayman, “Rollout Algorithms for

Integrated Topology Control and Routing in Wireless Optical Backbone Net-

66

works”, Technical Report, Institute for Systems Research, University of Mary-

land, 2003.

[7] M. Garey and D. Johnson, “Computers and Intractability: A Guide to the

theory of NP-Completeness”, Freeman and Company, 1979.

[8] D. P. Bertsekas, “Dynamic Programming and Optimal Control”, vol. 1,

Athena Scientific, 2000.

[9] Edsger W. Dijkstra, “A note on two problems in connection with graphs”,

Numerische Mathematik, vol. 1, pp. 269-271, 1959.

[10] L. Lovász and M. D. Plummer, “Matching Theory”, North-Holland, 1986.

[11] R. Guerin, H. Ahmadi, M. Naghshineh, “Equivalent Bandwidth and its ap-

plication to bandwidth allocation in high-speed networks”, IEEE Journal on

Selected Areas in Communications, vol. 9(7), pp. 968-981, September 1991.

[12] K. Xu, X. Hong, Mario Gerla, “An Ad hoc Network with Mobile Backbones”,

Proc. IEEE ICC 2002.

[13] R. Ramanathan and R. Rosales-Hain, “Topology Control of Multihop Wireless

Networks using Transmit Power Adjustment”, IEEE Infocom 2000, vol. 2, pp.

404-413, 26-30 March 2000.

67

[14] Z. Huang, C-C. Shen, C. Srisathapornphat and C. Jaikaeo, “Topology Control

for Ad Hoc Networks with Directional Antennas”, ICCCN 2002, pp. 16-21,

Miami, Florida, October 2002.

[15] D. Banerjee, B. Mukherjee, “Wavelength-routed Optical Networks: Linear

Formulation, Resource Budgeting Tradeoffs and a Reconfiguration Study”,

IEEE/ACM Trans. Networking, vol. 8, pp. 598-607, Oct. 2000.

[16] K. H. Liu, C. Liu, J. L. Pastor, A. Roy, J. Y. Wei, “Performance and Testbed

Study of Topology Reconfiguration in IP over WDM”, IEEE Transactions on

Communications, in press, 2002.

[17] E. Leonardi, M. Mellia, M. A. Marsan, “Algorithms for the Logical Topology

Design in WDM All-Optical Networks”, Optical Networks Magazine, pp. 35-

46, Jan. 2000.

[18] R. Ramaswami, K. N. Sivarajan, “Design of Logical Topologies for

Wavelength-Routed optical Networks”, IEEE JSAC, pp. 840-851, Jun. 1996.

[19] L. Li, J. Halpern, P. Bahl, Y-M. Wang and R. Wattenhofer, “Analysis of

a cone-based distributed topology control algorithm for wireless multi-hop

networks”, ACM Symposium on Principles of Distributed Computing, 2001.

[20] V. Rodoplu and T. Meng, “Minimum Energy Mobile Wireless Networks”,

IEEE International Conference on Communication, vol. 3, pp. 1633-1639, 7-

11 June 1998.

68

[21] R. Wattenhofer, L. Li, P. Bahl and Y-M. Wang, “Distributed Topology Con-

trol for Wireless Ad-hoc Networks”, IEEE Infocom 2001, pp. 1388-1397.

[22] S. Ruhrup, C. Schindelhauer, K. Volbert and M. Grunewald, “Performance of

Distributed Algorithms for Topology Control in Wireless Networks”, Interna-

tional Parallel and Distributed Processing Symposium, 2003.

[23] L. Bao and J. J. Garcia-Luna-Aceves, “Topology Management in Ad Hoc

Networks”, ACM Mobihoc, pp. 129-140, Annapolis, Maryland, June 2003.

[24] H. Gabow, “Implementation of Algorithms for Maximum Matching on Non-

bipartite Graphs”, Ph.D. thesis, Stanford University, 1973.

69

