
Data Reduction Techniques for Sensor NetworksAntonios Deligiannakis�University of Marylandadeli@cs.umd.edu Yannis KotidisAT&T Labs-Researchkotidis@research.att.com Nick RoussopoulosUniversity of Marylandnick@cs.umd.eduJuly 16, 2003AbstractWe are inevitably moving into a realm where small and inexpensive wireless devices wouldbe seamlessly embedded in the physical world and form a wireless sensor network in order toperform complex monitoring and computational tasks. Such networks pose new challenges indata processing and dissemination due to the con
ict between (i) the abundance of informationthat can be collected and processed in a distributed fashion among thousands of nodes and (ii)the limited resources (bandwidth, energy) that such devices possess. In this paper we proposea new data reduction technique that exploits the correlation and redundancy among multiplemeasurements on the same sensor and achieves high degree of data reduction while managingto capture even the smallest details of the recorded measurements. The key to our techniqueis the base signal, a series of values extracted from the real measurements, used for encodingpiece-wise linear correlations among the collected data values. We provide e�cient algorithmsfor extracting the base signal features from the data and for encoding the measurements usingthese features. Our experiments demonstrate that our method by far outperforms standardapproximation techniques like Wavelets, Histograms and the Discrete Cosine Transform, on avariety of error metrics and for real datasets from di�erent domains.1 IntroductionTechnological advances in the development of low-power embedded communication devices havemade possible scenarios in which thousands of sensor nodes could be seamlessly embedded in the�Work partially performed while author was visiting AT&T-Labs Research1



physical world and form a wireless sensor network. These sensors would monitor various quantitiessuch as temperature, pressure, humidity, movement, noise levels, chemicals, etc, that would then beperiodically transmitted to a base-station1 for further processing and analysis. Applications of suchnetworks span a large variety of domains from collaborative environments to military commandand control systems and even home networks.Large-scale sensor networks require tight data handling and data dissemination techniques.Transmitting a full-resolution data feed from each sensor back to the base-station, is often pro-hibitive due to (i) limited bandwidth that may not be su�cient to sustain a continuous feed fromall sensors and (ii) increased power consumption due to wireless multi-hop communication.In order to minimize the volume of data transmitted, we can apply two well known ideas:aggregation and approximation. Aggregation works by summarizing the measured information inthe form of simple statistics like average, maximum, minimum etc that are then transmitted tothe base-station over regular intervals. Aggregation is an e�ective mean to reduce the volumeof data, but can be rather crude for applications that need detailed historical information, e.g.military surveillance. When data feeds exhibit a large degree of redundancy, approximation is aless intrusive form of data reduction in which the underlying data feed is replaced by an approximatesignal tailored to the application needs. The tradeo� is then between the size of the approximatesignal and its precision compared to the real-time information monitored by the sensor.In this paper we present a new data reduction algorithm for the dissemination of approximatemeasurements over sensor networks. Our techniques build on the observation that the values ofthe collected measurements exhibit similar patterns over time, or that di�erent measurements arenaturally correlated, as is the case between pressure and humidity. At the core of our approximationlies the notion of a base signal, a set of values from the collected measurements that captureprominent features of the data. Following the construction of the base signal, the collected data ispartitioned into intervals that can be e�ciently approximated as linear projections of some part ofthe base signal. As we will show in this paper, our techniques provide:� Increased accuracy when compared to other approximation techniques for the same reductionfactor.1A base-station may represent any node of the network with increased storage, battery and processing capabilities.2



� Adaptability to di�erent error metrics: Our algorithms can be adapted with only minor modi�-cations, which do not alter their time complexity, to minimize di�erent error metrics, such as thesum squared error, sum squared relative error, and maximum error of the approximation.Our contributions are summarized as follows:1. We introduce a new approximation scheme that encodes piece-wise correlations among the datavalues. Such correlations are often linear in nature and can be easily captured by standard tech-niques like linear regression. We exploit correlations both within the values of a single measurement(ex: periodicity, self-similarity) as well as among values of di�erent quantities (ex: pressure andhumidity).2. We introduce the concept of the base signal that is analogous to a carrier-wave in radio-frequencytransmissions and is used for encoding the measurements. We explore the technical challenges of (i)constructing the base signal, (ii) approximating the recorded measurements by exploring piece-wisecorrelations amongst them and the base signal, and (iii) dynamically updating the base signal tocapture new data trends in subsequent transmissions.3. We provide an e�cient algorithm (Self-Based Regression or SBR) that answers all questionsabove, while balancing the cost of transmitting new (or updated) base signal values with the gainsof using them for approximating the data values. For a dataset containing n measurements toapproximate, the SBR algorithm takes O(n1:5) time and requires linear space, while its runningtime scales linearly to the size of both the transmitted data and the base signal.4. We provide an extensive experimental study of our framework using real datasets from di�erentapplication domains and make direct comparisons against previously studied approximation tech-niques like the Wavelet and Discrete Cosine transforms and Histograms. In all datasets our methodachieves substantially lower approximation errors for the same data reduction factor.5. We have adapted ideas from the Singular Value Decomposition and the Discrete Cosine transformfor constructing alternative base signals. Our experiments demonstrate that the base signal featuresselected by SBR outperform these techniques. Furthermore, we show that SBR makes near-optimalchoices when selecting the number of features to include in the base signal.The rest of the paper is organized as follows. Section 2 presents related work. In Section 33



we state our problem and sketch the basics of our techniques, while in Section 4 we describe ourframework in more details. Section 5 contains our experiments, while Section 6 contains concludingremarks and future directions.2 Related WorkIn recent years there has been a 
urry of research in the area of sensor networks. Some of themost important issues addressed include network self-con�guration [4], data discovery [9, 12] andin-network query processing [14, 10, 30, 17].The bene�ts of in-network data aggregation are investigated in [14, 17, 30]. The main idea isto build an aggregation tree which the results will follow. Non-leaf nodes of the tree aggregate thevalues of their children before transmitting the aggregate result to their parents. In [17] additionalissues are also addressed, such as determining when a node becomes active2 and designing queryprocessing techniques for aggregates with di�erent characteristics.Sensor nodes are small devices that \measure" their environment and communicate streams oflow-level values to a base station for further processing and archiving. These streams are then usedto construct a higher-level model of the environment. This process makes historical data equallyimportant to current values [8]. In this paper we propose approximation as a less intrusive datareduction method that is more suited for applications in which a long-term historical record ofmeasurements from each sensor is required.Recently, there has been increasing interest in studying the general principles over continuousqueries in data streams [6, 13, 20, 28, 31]. Olston et. al in [21, 2] study the tradeo� between precisionand performance when querying replicated, cached data. In [3] the users register continuous querieswith strict precision constraints at a central stream processor, which, in turn installs �lters at theremote data sources. These �lters adapt to changes in the streams to minimize update rates. Anonline algorithm for minimizing the update cost while the query can be answered within an errorbound is presented in [26]. The authors of [25] study a probabilistic query evaluation method thatplaces appropriate con�dence in the query answer to quantify the uncertainty of the recorded datavalues.2An active node can receive, process and transmit data. At this mode the sensor drains signi�cantly more energythan when it is idle. 4



Approximate processing techniques have been widely studied. Histograms (e.g. [22, 24]) havebeen extensively used by query optimizers to estimate the selectivity of queries, and recently intools for providing fast approximate answers to queries. Wavelets are a mathematical tool for thehierarchical decomposition of functions, with applications in image and signal processing. Morerecently, Wavelets have been applied successfully in answering range-sum aggregate queries overdata cubes [29], in selectivity estimation [19] and in approximate query processing [5]. The DiscreteCosine Transform (DCT) [1] constitutes the basis of the mpeg encoding algorithm and has alsobeen used to construct compressed multi-dimensional histograms [16]. Linear regression has beenrecently used in [7] for on-line multidimensional analysis of data streams.3 Preliminaries3.1 Characteristics of Sensor NetworksRecent technological advances have made possible the development of low-cost sensor nodes withheavily integrated sensing, processing and communication capabilities. Networked together in anad-hoc fashion, hundreds of such nodes can be used for a variety of monitoring applications suchas military surveillance, equipment monitoring or medical sensing.Information about the environment is gathered using a series of sensing elements connected toan analog-to-digital converter. Examples include microphones for acoustic sensing, accelerometers,temperature sensors etc. Once enough data is collected, it is processed locally and periodicallyforwarded to a base station, using a multi-hop routing protocol [27].The processing subsystem on the nodes depends on the nature of the application. Applicationssuch as military reconnaissance that require signi�cant processing to be performed at the nodesuse sensor nodes with signi�cant processing power. As an example, an improved model of thecommonly used StrongARM 1100 processor (�AMPS [27] and HiDRA nodes) reaches a frequencyof 400 MHz and can support up to 64 MB of memory.As the processing and storage capabilities of sensor nodes tend to follow Moore's Law theircommunication and power subsystems become the major bottleneck of their design. For example,over the last years, the energy capacity of the batteries used in such nodes has exhibited a mere5



2-3% annual growth.3 The main source of energy consumption in a node is the data transmissionprocess. There are several reasons for this:1. The energy drain during transmission is much larger than the consumption during processing [9].As an example, on a Berkeley MICA Mote sending one bit of data costs as much energy as 1,000CPU instructions [18].2. Transmission ranges between nodes are fairly short. The transmitted data may thus require totraverse multiple hops to reach the base station. This retransmission process at each intermediatenode is very costly.3. Nodes often use broadcast protocols over radio frequencies [17]. Due to the high density of nodes,transmitted messages are not only received by the intended node, but by all nodes in the vicinityof the sender, thus increasing the overall power consumption.Even on applications where battery lifetime is not a concern (ex: military surveillance sensingnodes attached to moving vehicles with practically in�nite power supply) available bandwidth maynot sustain a continuous feed of measurements for all sensors deployed in the terrain. The designof data reduction protocols that e�ectively reduce the amount of data transmitted in the networkis thus essential when the goal is to meet the application's bandwidth constraints or to increase thenetwork's lifetime.3.2 Data Model and ProcessingIn order not to deplete their power supply (and to conserve bandwidth), the sensors do not contin-uously transmit every new measurement they take but rather wait till enough data is collected andthen forward it to the base station [27]. This form of batch processing allows them to power-downtheir radio transmitter and prolong their lifetime in a way analogous to [17].Within a sensor, the recorded data is depicted in a two dimensional array where each row istores sampled values of a distinct quantity. Informally, each row i is a time series ~Yi of samplesfrom quantity i collected by the sensor. The array has N rows, N being the number of recordedquantities and M columns, where M depends on the available memory.43http://nesl.ee.ucla.edu/courses/ee202a/2002f/lectures/L07.ppt4We here assume that all quantities are sampled with the same frequency. This simpli�es notation, however, ourframework also applies when each quantity is recorded on a di�erent schedule.6
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Figure 1: Transfer of approximate data values and of the base signal from each sensor to the basestationAs more measurements are obtained, the sensor's memory bu�ers become full. At this point thelatest NxM values are processed and each row i (of length M) is approximated by a much smallerset of Bi values, i.e. Bi � M . The resulting \compressed" representation, of total size equal toB =PNi=1Bi, is then transmitted to the base station. The base station maintains the data in thiscompact representation by appending the latest \chunk" to a log �le. A separate �le exists for eachsensor that is in contact with the base station. The entire process is illustrated in Figure 1.Each sensor allocates a small amount of memory of size Mbase for what we call the base sig-nal. This is a compact ordered collection of values of prominent features that we extract fromthe recorded values and are used as a base reference in the approximate representation that istransmitted to the base station (details will be given in the next section). The data values thatthe sensor transmits to the base station are encoded using the in-memory values of the base signalat the time of the transmission. The base signal may be updated at each transmission to ensurethat it will be able to capture newly observed data features and that the obtained approximationwill be of good quality. When such updates occur they are transmitted along with the data valuesand appended in a special log �le that is unique for each sensor. This allows the base station toreconstruct (approximately) the series ~Yi at any given point in the past.3.3 Our Optimization ProblemWe can think of the base signal as a dictionary of features used to describe the data values. Thericher the pool of features we store in the base signal the better the approximation. On the other7



Con�guration ParametersN Number of input signalsM Measurements per input signalInput ParametersTotalBand Total bandwidth per transmissionMbase Bu�er size for base signal valuesDerived/Calculated Parametersn = N � M Size of in-memory dataW = pn Size of each base intervalB Compressed Data SizemaxIns Maximum number of base intervalsinserted in current transmissionIns Number of base intervals actuallyinserted in the current transmissionTable 1: Con�guration, input and derived parameters of our algorithmshand, these features have to be (i) kept in the memory of the sensor to be used as a reference bythe reduction algorithm and (ii) sent to the base station in order for it to be able to reconstructthe values. Thus, for a target bandwidth constraint (number of values that can be transmitted)the more insert and update operations on the base signal that we perform, the less bandwidththat is left available for approximating the data values. Moreover, the time to perform the dataapproximation increases, in our algorithms, linearly with the size of the base signal.In the next section we present an e�cient algorithm that decides (i) how large the base signalneeds to be at each transmission (ii) what new features to be included in it (iii) which older featuresare not relevant any more and (iv) how to best approximate the data measurements using thesefeatures. The only user input needed by the algorithm is the target bandwidth constraint and themaximum bu�er size of the base signal values.4 The SBR Data Reduction FrameworkWe now describe our framework in more detail. We start with a motivational example that demon-strates the intuition behind our techniques. Subsection 4.2 presents the primitive operations re-quired by our framework while the SBR algorithm is presented in subsection 4.3. Table 1 containsa brief description of the parameters used in our algorithms.8
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Figure 2: Example of two Figure 3: XY scatter plot ofcorrelated signals (Stock Market) Industrial (X axis) vs Insurance (Y axis)4.1 Motivational ExampleMany real signals are correlated. We expect this to be particularly true for measurements takenby a sensor, especially if they are physical quantities like temperature, dew-point, pressure etc.The same is often true in other domains. For example, in Figure 2 we plot the average Industrialand Insurance indexes from the New York stock market for 128 consecutive days.5 Both signalsshow similar trends, i.e. they go up and down together. Figure 3 depicts a XY scatter plot ofthe same values. This is created by pairing values of the Industrial (X-coordinate) and Insurance(Y-coordinate) indexes, of the same day, and plotting these points in a two-dimensional plane. Thestrong correlation among these values makes most points lie on a straight line. This observationmotivates our work. Assuming that the Industrial index (call it ~X) is given to us in a time-seriesof 128 values, we can approximate the other time-series (Insurance: ~Y ) as:~Y 0 = a � ~X + bThe coe�cients a and b are determined by the condition that the sum of the square residuals,or equivalently the L2 error norm jj ~Y 0 � ~Y jj2, is minimized. This is nothing more than standardlinear regression. However, unlike previous methods, we will not attempt to approximate eachtime-series independently using regression. In Figure 2 we see that the series themselves are notlinear, i.e. they would be poorly approximated with a linear model. Instead, we will use regression5Data at http://www.marketdata.nasdaq.com/mr4b.html9



to approximate piece-wise correlations of each series to a base signal that we will choose accordingly.In the example of Figure 3 the base signal can be the Industrial index ( ~X) and the approximationof the Insurance index will be just two values (a, b). In practice the base signal may be muchsmaller than the complete time series, since it only needs to contain the \important" trends of thetarget signal ~Y . For instance, in case ~Y is periodic, a sample of the period would su�ce. Ouralgorithm breaks the latest measurements obtained by the sensor into small intervals (of varyingsizes) and looks for intervals of the same length in the base signal that are linearly correlated. Atthe same time, the base signal values are evaluated and may get updated with features from thenewly collected measurements when necessary.4.2 Primitives of our ImplementationPiece-wise Approximation of MeasurementsWe here assume that the base signal ~X is given to us. We will approximate the latest N �Mmeasurements in ~Y1; : : : ; ~YN using B � 4�N values. We later describe how to construct the basesignal.To simplify notation, we model the collected data as a single series ~Y that is simply the concate-nation of the N series ~Yi. Our technique relies on breaking ~Y into B=4 intervals and \mapping"each one to an interval of the base signal of equal length.6 The algorithm works recursively. Itstarts with a single interval for each row of the collected data. In each iteration, the interval withthe largest error in the approximation is selected and divided in two halves, until the \budget" ofB=4 intervals is exhausted. An interval I is a data structure with six entries:� start, length: these de�ne the scope of the interval; i.e. I represents values of Y [i], with i in[start; start+ length).� shift: it de�nes the part of the base signal that is used to approximate the values of I; theinterval I is mapped to segment [shift; shift+ length) in ~X.� a, b, err: the �rst two are the regression parameters, while err is the sum squared error (sse) ofthe approximation.Subroutine Regression() shown in Algorithm 1 lies in the core of our method. This function6This mapping requires 4 values per interval, thus the division by 4.10



Algorithm 1 Regression SubroutineRequire: ~X , ~Y , start x, start y, length1: fCompute Regression Parametersg2: sum x = P0�i<lengthX[i+ start x]3: sum y = P0�i<length Y [i+ start y]4: sum xy = P0�i<lengthX[i + start x]Y [i+ start y]5: sum x2 = P0�i<lengthX[i+ start x]26: a = length�sum x y�sum x�sum ylength�sum x2�sum x�sum x7: b = sum y�a�sum xlengthfCompute sse of approximate signal ~Y 0 = a ~X + bgfin range [start y; start y + length)g8: err =Plength�1i=0 (Y [i+ start y]� (aX [i+ start x] + b))29: return (a,b,err)Algorithm 2 BestMap SubroutineRequire: ~X , ~Y , Interval I, W1: I:shift = �12: Perform standard linear regression on I and set the values of I:a, I:b and I:err3: if I:length � 2�W then4: fShift I over ~X and �nd segment for whichg5: fregression error is minimizedg6: for shift in 0::length( ~X)� I:length� 1 do7: (a,b,err) = Regression( ~X, ~Y , shift, I:start, I:length)8: if err is minimum error so far then9: Update values of I:a, I:b, I:err and I:shift10: end if11: end for12: end ifpairs a segment of the base signal between values [start x; start x + length) with values of Ybetween [start y; start y+ length), as in Figure 3, and computes the regression parameters a, b aswell as the (sse) error of the approximation ~Y 0 = a ~X + b in this range. Each value Y [i] with indexi in [start y; start y + length) is approximated as aX[start x+ i� start y] + b.It should be noted that the Regression() subroutine calculates the optimal a,b values thatminimize the sum squared error of the approximation. If the desired error metric is di�erent,then the formulas need to be appropriately modi�ed. In the Appendix we present the necessarymodi�cations for two interesting optimization problems: minimizing the sum squared relative error,and minimizing the maximum absolute error of the approximation. The modi�ed algorithms runin O(length) time and require O(1) and O(length) space, respectively.Subroutine BestMap() of Algorithm 2 looks for the best way to approximate an interval I.11



It shifts I over ~X and calculates the regression parameters and the approximation error for theshift parameter that produces the smallest error. This algorithm contains two deviations fromour previous discussion. First, it also considers approximating each interval I using standardlinear regression, and uses a negative value for the I:shift parameter to denote this. Second, itperforms the shifting process over the base signal only for intervals with a maximum length of2 �W , where W is a parameter that denotes the length of the intervals that constitute the basesignal.7 The last modi�cation is performed both to reduce the time complexity of the algorithmto O(I:length +W �Mbase), and because of the reduced likelihood that large intervals will beaccurately mapped to multiple consecutive intervals of the base signal.The core approximation algorithm GetIntervals() is given in Algorithm 3. The approximationobtained is returned as a list of B=4 intervals in i list. This list is maintained sorted (priority queue)based on the sse of each interval. ~X is the current base signal. The complete algorithm runs inO(NMlog(BN ) + B �Mbase �W ) time. The logarithmic factor in the above formula is producedbecause the size of the intervals in the algorithm is repeatedly halved.For each interval in i list a record with four values (I:start, I:shift, I:a, I:b) is transmitted tothe base station. The base station will sort the intervals based on I:start and, thus, there is noneed to transmit their length. It is interesting to note that the GetIntervals() algorithm decidesdynamically how many intervals it will use to approximate each of the N rows of the collected data,allocating more intervals to signals that are harder to approximate accurately.Selecting Data Features for Inclusion in the Base SignalWe focus on the time when the sensor's memory is �lled with NxM values, as depicted in Figure 1.We assume that the bu�er allocated to the base signal is of size Mbase. This bu�er is organized asa list of intervals (called base intervals) of the same length W . For simplicity, we assume that bothM and Mbase are multiples of W . We note here that in Algorithm 3 the base signal is presentedas a series of Mbase values, which is simply the concatenation of the base intervals in the bu�ers.The GetBase() algorithm (Algorithm 4) lies in the core of the initialization and update pro-cedure of the base signal. The algorithm receives as inputs the N signals, each of size M , thesize W of each base interval, and the maximum number of intervals maxIns that can be inserted7This will become more clear later in our discussion. 12



Algorithm 3 GetIntervals AlgorithmRequire: ~X , ~Y1,. . . , ~YN , B, W1: i list = ()2: ~Y = concat( ~Y1; : : : ; ~YN ) fVirtual assignmentg3: fCreate an interval for each row ~Yi (M values each)g4: for i in 1..N do5: (I:start, I:length) = ((i-1) � M , M)6: BestMap( ~X , ~Y , I, W )7: i list.push(I);8: end for9: num intervals = N10: while num intervals++ < B / 4 do11: fi list is sorted on decreasing order of I:errg12: I = i list.pop()13: fBreak I in 2 piecesg14: (Ileft:start, Ileft:length) = (I:start, I:length=2)15: BestMap( ~X , ~Y , Ileft, W )16: (Iright:start, Iright:length) =(I:start+I:length=2, I:length=2)17: BestMap( ~X , ~Y , Iright, W )18: i list.push(Ileft)19: i list.push(Iright)20: end while21: return i listin our base signal, where maxIns = minfMbase;T otalBandgW . Each input signal ~Yi is broken into MWnon-overlapping intervals of size W . This provides a \dictionary" of N�MW candidate base intervals(CBIs). The algorithm will choose maxIns CBIs out of this dictionary to be inserted into a can-didate update base signal. We will describe in subsection 4.3 how to determine how many of theseCBIs will ultimately be inserted into the base signal.Each CBI Candi can be used to approximate any other CBI Candj, which is in-fact part of some~Yk, using regression. We consider such an approximation to be bene�cial, only if the error of theapproximation is smaller than the error of approximating Candj using standard linear regression.In Algorithm 4 we denote the latter error as LinearErr(Candj). The bene�t of using Candi toapproximate Candj is the reduction in error that we get compared to LinearErr(Candj).The CBIs are stored in an unordered list Q. At each step of the algorithm, the CBI in Q withthe largest bene�t is selected for inclusion in the candidate update base signal stored in base list.After each selection, the bene�ts of the remaining CBIs in Q have to be properly updated. As wementioned, the bene�t of using Candi to approximate Candj is originally equal to the reduction13



Algorithm 4 GetBase() AlgorithmRequire: ~Y1; : : : ; ~YN , W , M , maxIns1: Create K = N�MW CBIs of width W2: For each CBI Candi, set its bene�t to 03: Maintain unsorted list Q with CBIs4: Maintain list base list with selected stored intervals5: LinearErr(Candj) is the error of approximating Candj using standard linear regression6: for i in 1..K do7: for j in 1..K do8: fCalculate error of approximating the j-thg9: fCBI by using as base the i-th CBIg10: error=Regression(Candi,Candj ,0,0,W )11: if err � LinearErr(Candj) then12: Candi:benefit+=LinearErr(Candj)-error13: end if14: end for15: Q.insert(Candi)16: end for17: for i in 1..maxIns do18: C = Q.popBestInterval()19: base list.insert(C)20: for j in 1..jQj do21: adjust(Q[j].bene�t, C)22: end for23: end for24: return base listin error that we get compared to LinearErr(Candj). However, at an intermediate step of thealgorithm, some CBIs have already been selected for inclusion in the candidate update base signal.By using these stored CBIs, many of the remaining CBIs can now be better approximated than byusing standard linear regression. Thus, the bene�t of using Candi to approximate Candj has to beadjusted, to depict the reduction in error that we get when compared to the best approximationfor Candj that we have so far, by using the current candidate update base signal.An example is presented in Figure 4. In this small example we consider just 3 CBIs, out ofwhich we need to pick which two to select. In the left part of the �gure, we present the bene�ts ofeach of the 3 CBIs. The �rst CBI has the largest total bene�t, and is thus selected. In the rightpart of the �gure, the adjusted bene�ts of the remaining CBIs are presented. Notice that now, thethird CBI will be selected, even though initially it had a lower bene�t than the second CBI.In the GetBase() algorithm, for each of the K = N�MW CBIs, we �rst estimate its bene�t for14



Approximated CBI TotalCBI 1 2 3 Bene�t1 1 0.95 0.50 2.452 0.8 1 0.55 2.353 0.6 0.65 1 2.25 Approximated CBI TotalCBI 2 3 Bene�t2 0.05 0.05 0.103 0 0.5 0.50Initial Bene�ts of CBIs Adjusted Bene�ts of Non-Stored CBIsFigure 4: Example of the GetBase() Algorithmapproximating all the other CBIs. Each such approximation requires O(W ) time, thus resulting ina total complexity of O(N2M2W ). Then, for each of themaxIns selected CBIs, detecting the one withthe largest bene�t requires O(K) time (we do not sort the CBIs). After each selection, adjustingthe bene�ts of the remaining CBIs requires time O(K2). Thus, the overall running time complexityof the algorithm is O(N2M2W +maxIns� N2M2W 2 ), while its space requirements is O(N2M2W 2 ).For n = N �M being the size of the data, a value of W = pn used by the SBR algorithm(described in the next subsection) results in a running time of O(n1:5) for GetBase() and space ofO(n), since maxIns�W � TotalBand � n. In case of severe memory constraints, we can easilymodify the GetBase() algorithm to only store for each CBI the smallest error of approximating itusing at each step the current base signal. The only modi�cation will be to replace Lines 20-22of the GetBase() algorithm with a double for-loop similar to the one of Lines 6-16, and alter thecalculation of each CBI's bene�t to take into account the error of the best approximation that wehave for each CBI so far. This modi�ed algorithm requires O(pn) space and has a running timeof O(maxIns� n1:5).4.3 The SBR AlgorithmWe now present the Self-Based Regression (SBR) algorithm, which performs the approximation ofthe data values. The algorithm receives as input the latest n = N �M data values, a bandwidthconstraint TotalBand (number of values to transmit, including any base signal values), the maxi-mum size of the base signal Mbase and the current base signal ~X of size j ~X j �Mbase.8 From theseparameters the user/application has to provide only TotalBand and Mbase. The SBR algorithmmust then make the following decisions:1. Decide how many, and which base intervals to insert into the base signal. Recall that any such8At the �rst transmission the current base signal will be empty.15



Algorithm 5 SBR AlgorithmRequire: ~X; ~Y1; : : : ; ~YN , M , TotalBand, Mbase1: maxIns = minfMbase;TotalBandgW2: W = pN �M3: base list = GetBase( ~Y1; : : : ; ~YN ;W;M;maxIns)4: fErrors[i] is the approximation error after insertingg5: fthe �rst i CBIs of base list in the base signalg6: Initialize Errors[i] = UNDEFINED 8i 2 [0::maxIns]7: Ins = Search( ~X; ~Y1; : : : ; ~YN ;W;M; TotalBand; base list;Errors; 0;maxIns)8: Form ~Xnew by appending the Ins �rst intervals of the base list to ~X9: B = TotalBand� Ins� (W + 1)10: GetIntervals( ~Xnew; ~Y1; : : : ; ~YN ; B;W )11: if j ~Xnewj > Mbase then12: Evict Repl = j ~Xnewj�MbaseW intervals of ~Xnew that also belonged to ~X using a LFU replacement policy13: Replace evicted intervals with the last Repl intervals of ~Xnew14: end if15: ~X = ~Xnew16: Transmit the inserted base intervals, their o�sets in the base signal and the regression intervalsAlgorithm 6 CalculateError SubRoutineRequire: ~X; ~Y1; : : : ; ~YN ; B;W;Errors; pos1: if Errors[pos] == UNDEFINED then2: list' = GetIntervals( ~X; ~Y1; : : : ; ~YN ; B � pos�W;W )3: Errors[pos] = sum of errors in list'4: end ifbase intervals need to be transmitted to the base station.2. If the above procedure causes the size of the base signal to exceedMbase, then some base intervalsneed to be evicted from the base signal, in order to keep its maximum size at Mbase.3. Decide how to best approximate the data values given the updated base signal.We here have to emphasize that it is not always desirable to insert a large number of baseintervals into the base signal. Since any inserted base interval needs to be communicated to thebase station, the larger the number of such intervals, the smaller the number of intervals that can beused to approximate the N signals by the GetIntervals() algorithm, since the overall bandwidthconsumption is upper-bounded by the TotalBand parameter.The SBR algorithm is presented in Algorithm 5. It initially calls the GetBase() subroutine toselect a set of maxIns = minfMbase;T otalBandgW CBIs. It then performs a binary search on this list,to determine the number of CBIs that will ultimately be inserted into the base signal. This searchterminates when the algorithm determines a number of intervals Ins, such that the error of the16



Algorithm 7 Search SubRoutineRequire: ~X; ~Y1; : : : ; ~YN ;W;B; base list; Errors; start; end1: if end == start then2: return start3: end if4: middle = (start + end) / 25: CalculateError( ~X; ~Y1; : : : ; ~YN ; B;W;middle)6: CalculateError( ~X; ~Y1; : : : ; ~YN ; B;W; start)7: if Errors[middle] > Errors[start] then8: CalculateError( ~X; ~Y1; : : : ; ~YN ; B;W; end)9: if Errors[end] > Errors[start] then10: return Search( ~X; ~Y1; : : : ; ~YN ;W;M;B; base list; Errors; start;middle)11: else12: return Search( ~X; ~Y1; : : : ; ~YN ;W;M;B; base list; Errors;middle; end)13: end if14: else15: CalculateError( ~X; ~Y1; : : : ; ~YN ; B;W;middle+ 1)16: if Errors[middle + 1] < Errors[middle] then17: return Search( ~X; ~Y1; : : : ; ~YN ;W;M;B; base list; Errors;middle+ 1; end)18: else19: return Search( ~X; ~Y1; : : : ; ~YN ;W;M;B; base list; Errors; start;middle)20: end if21: end ifapproximation when inserting the �rst Ins intervals of the aforementioned list in the base signalis lower than inserting either the �rst Ins� 1 intervals, or the �rst Ins+ 1 intervals into the basesignal. This is achieved through the call to function Search() at Line 7, which is presented inAlgorithm 7. The approximation of the N signals is then performed by using the concatenation ofthe previous base signal with these Ins intervals. After this step, if the size of the base signal nowexceeds Mbase, then enough base intervals of the old base signal are evicted from the base signalusing a Least Frequently Used (LFU) replacement policy. Any newly inserted base interval willthus either occupy an empty position of the base signal, or replace another base interval. Eachtransmission includes exactly TotalBand values:1. The Ins newly inserted base intervals, and their position in the base signal in which they wereultimately inserted (Ins� (W + 1) values in total).2. TotalBand�Ins�(W+1)4 intervals of four values each (start, shift plus the two regression parameters).The running time complexity of the SBR algorithm is O(n1:5+(nlog(TotalBandN )+TotalBand�pn�Mbase)� log(maxIns)), where maxIns = minfMbase;T otalBandgpn . Thus the entire algorithm hasa modest O(n1:5) dependency on the data size, while its running time scales linearly with the size17



of the transmitted data TotalBand and the (maximum) size of the base signal Mbase.5 ExperimentsIn this section, we provide a thorough analysis of our techniques. In subsection 5.1 we describe thedatasets we used. In subsection 5.2 we compare the SBR algorithm against standard approximationtechniques (Wavelets, DCT, Histograms). Finally, in subsection 5.3 we compare the GetBase() al-gorithm against alternative base-signal constructions, while in subsection 5.4 we present an analysisof the SBR algorithm.5.1 Dataset DescriptionFor the experiments we used the following real datasets:� Phone Call Data: Includes the number of long distance calls originating from 15 states (AZ,CA, CO, CT, FL, GA, IL, IN, MD, MN, MO, NJ, NY, TX, WA). For each state we provide thenumber of calls per minute for a period of 19 days (data from AT&T's network).� Weather Data: Includes the air temperature, dewpoint temperature, wind speed, wind peak,solar irradiance and relative humidity weather measurements for the station in the university ofWashington, and for year 2002 (http://www-k12.atmos.washington.edu/k12/grayskies).� Stock Data: Includes information on all trades performed in a minute basis over April 3 andApril 4 of year 2000. The approximated measure in our experiments is the trade value of thestock.5.2 Comparison to Alternative Techniques5.2.1 Experimental SetupFor this experiment we used all three datasets described in Section 5.1. From the Stock data,we extracted the trade values of the following ten (N=10) stocks: Microsoft, Oracle, Intel, Dell,Yahoo, Nokia, Cisco, WorldCom, Ariba and Legato Systems. For each stock we created a randomsample of 20480 of its trade values, and then split each sample in ten �les of 2048 values each. The�rst of these ten �les of each stock was used for the initial creation of our base signal, while the18



Compression Weather Data Stock DataRatio SBR Wavelets DCT Histograms SBR Wavelets DCT Histograms5% 1.160 2.187 35.835 27.692 0.089 0.123 0.232 0.28310% 0.403 0.824 20.169 11.294 0.033 0.056 0.208 0.23315% 0.209 0.514 14.328 5.432 0.017 0.034 0.192 0.21420% 0.118 0.356 10.774 3.009 0.009 0.022 0.179 0.19925% 0.069 0.258 8.975 1.507 0.006 0.015 0.166 0.18230% 0.043 0.191 6.526 0.995 0.003 0.011 0.153 0.169Table 2: Average SSE Error Varying the Compression for Weather and Stock Datasetsremaining �les were used to simulate nine update operations. For the Weather dataset, we selectedthe �rst 40960 records and then split the data measurements of each signal into ten �les of 4096values each. For the Phone Call dataset, the aggregates for each state (N=15) were broken intoten �les of 2560 values each.In our experiments we compared the accuracy of SBR against the approximations obtained byusing the Wavelet decomposition [5, 29], equi-depth Histograms [23] and the DCT. The Fouriertransform was also considered, but produced consistently larger errors than DCT and is thusomitted. For a fair comparison we set the space used by all methods to the exact same amount.For all methods we considered both treating each bunch of updates as a group of N series~Yi, each of length M , and, alternatively, concatenating the signals into a single series Y of lengthN �M . For Wavelets, we found out that this produced in most cases signi�cantly more accurateresults than by dividing the space equally among the N signals (by a factor of 5 in many cases)because some signals needed more wavelet coe�cients than others to be approximated well. ForWavelets, we also considered a 2-dimensional decomposition of the N �M values, which producedworse results than the 1-dimensional decomposition. In the tables we present the best resultsachieved by each method.5.2.2 Comparison Varying the Compression RatioWe varied the compression ratio (size of the transmitted data TotalBand over the data size n)from 5% to 30%. In this experiment we set Mbase to 2048 values for the Phone Call and the Stocksdatasets and to 3456 values for the Weather dataset. In Tables 2 and 3 we present the results.In all datasets SBR produces signi�cantly more accurate results than the other approximations.The di�erence is larger for the Phone Call dataset which contained the largest values. As the size19



Compression Average SSE Error Total Sum Squared Relative ErrorRatio SBR Wavelets DCT Histograms SBR Wavelets DCT Histograms5% 9,631 29,938 15,714 165,241 922 38,477 9,019 139,52810% 5,071 12,349 10,173 45,610 503 19,186 3,002 62,33715% 3,192 7,998 6,767 23,311 325 12,885 1,400 36,81220% 2,170 5,821 5,661 15,581 222 10,954 1,192 34,82025% 1,527 4,468 4,791 11,340 158 6,915 823 33,23730% 1,091 3,537 4,157 8,689 116 3,865 721 30,010Table 3: Errors Varying the Compression Ratio for Phone Datasetof transmitted data increases, the error in our method decreases more sharply, and is up to 4.4times smaller than the error of Wavelets. The DCT and the Histogram approximations producedmuch larger errors is most cases.We repeated the experiment for the Phone Call dataset, computing this time the sum-squaredrelative error. The results are also shown in Table 3. The modi�ed Regression() algorithm ispresented in the Appendix. Depending on the compression ratio, our method was up to 49 timesbetter than Wavelets, 9.8 times better than DCT and 258 times better than Histograms. Wenotice here that for this comparison we used straight-forward Wavelets that are optimal only underthe sum-squared-error. Garofalakis and Gibbons in [11] describe novel algorithms for minimizing,among other metrics, the relative error of a Wavelet-based approximation. Except for cases of veryskewed datasets, they observe a reduction of the mean relative error up to 3 times over regularWavelets. These improvements were seen for very coarse approximations (i.e. for a compressionratio of 5% or less) where our method already has an advantage of 42-1 over regular Wavelets. Formore space, their techniques are a lot closer to regular Wavelets.5.2.3 Mixing The DatasetsAt this experiment we tried mixing data from di�erent datasets, to reduce the amount of correlationamong the approximated signals. We thus created a dataset that contains phone call data from threestates (AZ, CA and FL), three types of meteorological measurements (air temperature, pressureand solar irradiance), and data from three stocks (Microsoft, Intel and Oracle). For each of thesedata series we created ten �les of 2048 values each. We then varied the compression ratio of allalgorithms from 5% to 30% and set Mbase to 2048 values. In Table 4 we present the average sumsquared and total sum squared relative errors for all methods. The improvements of the SBR20



Compression Average SSE Error Total Sum Squared Relative ErrorRatio SBR Wavelets DCT Histograms SBR Wavelets DCT Histograms5% 2,900 8,094 12,677 199,150 113 20,974 29,625 182,02710% 918 3,020 7,146 46,805 37 11,054 8,653 43,70115% 364 1,582 4,757 23,711 17 5,481 4,825 26,06820% 139 894 3,814 14,157 9 5,310 3,339 14,78025% 46 516 3,120 10,486 5 5,172 6,115 11,11830% 11 297 2,680 6,894 3 5,109 1,579 9,591Table 4: Errors for Varying Compression Ratios for the Mixed DatasetError over GetBase()Dataset GetBaseSVD() Linear Regression GetBaseDCT()Weather 10.55 4.47 6.44Phone 1.13 1.32 1.19Stock 2.08 2.77 2.99Table 5: Comparison to Alternative Base Signalsalgorithm were even larger in this case. The SBR algorithm produced up to 27 times smalleraverage sum squared errors than the closest competitor, while the improvement reached up to 1034times for the total sum squared relative error.5.3 Alternative Base Signal ConstructionsIn the Appendix we present two alternative algorithms to GetBase(). The �rst, denoted asGetBaseSVD(), is based on the Singular Value Decomposition. The second algorithm, GetBaseDCT(),uses the basis of the Discrete Cosine Transform (DCT), which is a collection of cosine functions.Finally, a third alternative for SBR, is to do standard linear regression without using a speciallyconstructed base signal. For the later case, no bandwidth is lost for sending base signal valuesand we do not need the I:shift pointer. Thus we can send exactly TotalBand/3 intervals for abandwidth limit TotalBand. Similarly, the DCT-base consists of cosine functions and its valuesare constructed on the 
y and are thus neither stored in memory, nor are they transmitted to thebase station.In Table 5 we compare the approximations obtained by using the base signals computed inalgorithm GetBase() with the base signal from the alternative constructions. We need to emphasizehere that for this experiment we modi�ed the BestMap() function not to use linear regression asan alternative to using the base signal (so that the di�erences among GetBase(), GetBaseSVD(),21



TransmissionDataset 1 2 3 4 5 6 7 8 9 10Weather 7 6 0 3 1 4 0 1 1 1Phone 8 6 0 1 0 0 2 0 0 0Stock 6 0 0 2 1 2 0 1 0 0Table 6: Number of Inserted Base Intervals per Transmission
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Figure 5: Average Running Time vs TotalBandGetBaseDCT() and linear regression are not di�used). Using the BestMap() function as presentedin Section 4.2 would thus further improve the results of our method. The compression ratio wasset to 10%. We notice that GetBase() performs a lot better in the Weather dataset, up to 10 timesbetter than the alternative algorithms. For the Phone Call and the Stock data the di�erences aresmaller but still signi�cant.5.4 Analysis of SBRWe now analyze several characteristics of the SBR algorithm, including its running time, the numberof base intervals it selects for inclusion in the base signal and the quality of its decisions.In Figure 5 we plot the average time of each transmission operation for the Stock dataset, whenthe size of the transmitted data is varied from 5% to 30% of the data size, and for an experimentalsetup similar to the one of Section 5.2.2. Since we have not yet ported our code to the StrongARMplatform, we executed this experiment on a Irix machine using a 300MHz processor. As expected(see Section 4.3) the running time scales linearly with the size of the transmitted data. Notice thatSBR is signi�cantly faster when greater reduction is obtained. For many practical applications, weexpect to use a compression ratio of 10% or less.The SBR algorithm dynamically decides the number of base signal values to use for an upperbound Mbase. We now compare SBR against a straight-forward implementation that populates all22
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Figure 6: SSE error vs base signal sizethe available space for the base signal. In Figure 6 we plot the error of only the initial transmissionas the size of the base signal is varied, manually, from 1 to 30 intervals for the Phone, Stockand Weather datasets. For this initial transmission we populated the entire space of the basesignal using the GetBase() algorithm. For each dataset we also show the selection that the SBRalgorithm made, when deciding how many base intervals to populate. For presentation purposesthe errors for each dataset have been divided by the error of the approximation when using justone interval. We set the size of each stock, phone and weather data �le to 3072, 2048 and 5120values, correspondingly, in order for all datasets to have exactly the same size, and the TotalBandvalue to 5012, which results to a compression ratio of about 16%.The �xed value of the compression ratio implies that an increase in the size of the base signalresults in a decrease in the number of intervals used to approximate the data values in order tokeep the total space constant. After some point, the bene�t of storing more intervals for the basesignal is outweighted by the increase in the error that we get due to the reduced number of intervalsused for the approximation. It is interesting to see that the optimal case occurs for a base size ofbetween 7 (for the Weather dataset) and 9 base intervals (for the Stock dataset), which correspondto just 2.9% to 3.75% of the data size at the �rst transmission. The SBR algorithm made theoptimal choice for the Phone and Weather datasets and produced a near-optimal solution for theStock dataset (it selected to insert 6 base intervals, instead of 9). We remind that the Mbase basesignal values need to be kept in the memory of the sensor in order to perform the approximation.Our results suggest that a very small fraction of memory needs to be sacri�ced for these values.For the same data setup, we report in Table 6 the number of inserted base intervals during the 1023



transmissions. As we can see, most base intervals are inserted during the �rst two transmissions.We notice that there are many transmissions on which no new base intervals are inserted, andthat the di�erent datasets seem to contain a widely di�erent number of features, with the Weatherdataset containing the most features, and the Stock dataset containing the fewest.6 ConclusionsWe presented a new data reduction technique designed for data disseminated over sensor networks.Our method splits the recorded series into intervals of variable length and then encodes each of themusing an arti�cially constructed base signal. The values of the base signal are extracted from thereal measurements and maintained dynamically as data changes. In our experiments we used realdatasets from a variety of �elds (weather, stock and phone call data). Using the sum-squared errorand the sum-squared relative error of the approximation, our method signi�cantly outperformed inaccuracy approximations obtained by using Wavelets, DCT and Histograms.A key to our method is the use of the base signal for encoding piece-wise linear correlationsamong the data values. We emphasize here that our method does not only apply to linear datasets;in fact none of the data we used are linear in nature. Linearity is exploited when encoding thecorrelations of the data values and the base signal. An interesting question is to what extent non-linear encodings over the base signal values would bene�t the approximations obtained withoutsacri�cing complexity. We plan to investigate this path in the future.References[1] N. Ahmed, T. Natarakan, and K.R. Rao. Discrete cosine transform. In IEEE Trans. onComputers, C-23, 1974.[2] B. T. Loo C. Olston and J. Widom. Adaptive Precision Setting for Cached ApproximateValue. In ACM SIGMOD, 2001.[3] J. Jiang C. Olston and J. Widom. Adaptive Filters for Continuous Queries over DistributedData Streams. In ACM SIGMOD Conference, pages 563{574, 2003.24
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[28] S. D. Viglas and J. F. Naughton. Rate-based Query Optimization for Streaming InformationSources. In ACM SIGMOD Conference, pages 37{48, 2002.[29] J.S Vitter and M. Wang. Approximate Computation of Multidimensional Aggregates of SparseData Using Wavelets. In Proceedings of ACM SIGMOD, 1999.[30] Y. Yao and J. Gehrke. The Cougar Approach to In-Network Query Processing in SensorNetworks. SIGMOD Record, 31(3):9{18, 2002.[31] S. B. Zdonik, M. Stonebraker, M. Cherniack, U. Cetintemel, M. Balazinska, and H. Balakrish-nan. The Aurora and Medusa Projects. IEEE Data Engineering Bulletin, 2003.AppendixAlternative Base Signal ConstructionsWe here present the two alternative algorithms for obtaining a base-signal from the data in moredetails.Construction Using SVDSVD involves computing the eigenvectors and eigenvalues of a given N � n matrix R. It can beproven that any real matrix can be written as:R = U � �� V twhere U is a column-orthonormal N � r matrix, r is the rank of matrix R, � is a diagonal r � rmatrix of the eigenvalues �i of R and V is a column-orthonormal n � r matrix. By de�nitionU t � U = V t � V = I, where I is the identity matrix. It can be shown that the columns of V arethe eigenvectors of matrix Rt �R. Similarly, the eigenvalues of Rt �R are the squares of �is i.e.Rt �R = V � �2 � V tFor R=A (our collected measurements), Rt � R captures the similarities among the columnsof A (each collected sample). SVD can be used for approximating Rt �R by keeping the �rst few27



eigenvectors (columns of matrix V ). Informally, each eigenvector captures linear trends among therows of A (the ~Yis), see [15] for an application of this observation in a di�erent context.We here propose the use of SVD as a competitor to the GetBase() algorithm for generating abase signal from the data. We sketch the new algorithm (GetBaseSVD()) bellow.1. For each row of A, list all non-overlapping intervals of length W . This gives us MW intervalsper row and n = N�MW intervals overall.2. Build an n�W matrix R whose rows are the intervals of the previous step.3. Compute the SVD of R = U � �� V t. Return the �rst Store columns of V .By de�nition, V is an r�W matrix (r=rank(R)) of the eigenvectors of Rt�R. The eigenvectorsare ordered from left to right in V . The �rst column of V contains the eigenvector (of lengthW ) thatcorresponds to the largest eigenvalue of Rt �R. The algorithm returns the top-Store eigenvectorsof total size Store�W . These constitute the base signal from GetBaseSVD().Construction Using DCTThe base signal can be constructed from the basis-vectors of standard mathematical transforms.As an example we present a base signal construction, motivated by the Discrete Cosine Transform(DCT). Assuming we are to use base intervals, each of length W , we enumerate all frequencies fsuch that 0 � f � W . For each frequency f , we de�ne a base interval with values cos( (2i+1)�2W f),where 0 � i < W . We call this algorithm GetBaseDCT(). We notice we do not need to store theseintervals implicitly as they can be computed on the 
y.Handling Other Error MetricsWe now present the necessary modi�cations to the Regression algorithm of Section 4.2 when thedesired error metric involves minimizing the sum squared relative errors, or the maximum absoluteerror of the approximation.The Regression algorithm approximates the value Y [i+ start y] as a�X[i+ start x] + b. The
28



relative error induced by this approximation is:jY [i+ start y]� a�X[i + start x]� bjmaxfc; jY [i+ start y]jgThe c value serves as a sanity bound, and helps avoid very large relative error values when theY [i + start y] value is either zero, or close to zero. The Regression algorithm that minimizes thesum squared relative error of the approximation is presented in Algorithm 8.Algorithm 8 Regression Subroutine that Minimizes the Sum of the Squared Relative ErrorsRequire: ~X , ~Y , start x, start y, length, sanity1: fCompute Regression Parametersg2: sum x=P0�i<length X[i+start x]maxfsanity;jY [i+start y]jg3: sum y=P0�i<length Y [i+start y]maxfsanity;jY [i+start y]jg4: sum xy=P0�i<length X[i+start x]Y [i+start y]maxfsanity;jY [i+start y]jg5: sum x2=P0�i<length X[i+start x]2maxfsanity;jY [i+start y]jg6: sum z=P0�i<length 1maxfsanity;jY [i+start y]jg7: a= sum z�sum x y�sum x�sum ysum z�sum x2�sum x�sum x8: b= sum y�a�sum xsum zfCompute sum squared relative error of signalgf ~Y 0 = a ~X + b in range [start y : : : start y + length)g9: err = Plength�1i=0 (Y [i+start y]�(a�X[i+start x]+b)maxfsanity;jY [i+start y]jg )210: return (a,b,err)Calculating the a,b parameters that minimize the maximum absolute error of the approximationis somewhat harder to accomplish. The solution is based on the well known Chebyshev approxima-tion problem, which can be solved with a randomized linear programming algorithm in O(length)randomized expected time and O(length) space.
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