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Multiphase flow is a critical process in a wide range of applications, includ-

ing carbon sequestration, contaminant remediation, and groundwater management.

Typically, this process is modeled by a nonlinear system of partial differential equa-

tions derived by considering the mass conservation of each phase (e.g., oil, water),

along with constitutive laws for the relationship of phase velocity to phase pressure.

The problem becomes much more complex if the phases are allowed to contain mul-

tiple chemical species (also called components), as miscibility and phase transition

effects need to be taken into account. The main problem with phase transition stems

from the inconsistency of the primary variables such as phase pressure and phase sat-

uration, i.e. they become ill-defined when a phase appears or disappears. Recently,

a new approach for handling phase transition has been developed by formulating

the system as a nonlinear complementarity problem (NCP). Unlike the widely used



primary variable switching method (PVS), which requires a drastic reduction of the

time step size when a phase appears or disappears, this approach is more robust

and allows for larger time steps. One way to solve an NCP system is to reformu-

late the inequality constraints for the primary variables as a non-smooth equation

using a complementary function (C-function). Because of the non-smoothness of

the constraint equations, a semi-smooth Newton method needs to be developed.

Another feature of the NCP approach is that the set of primary variables in this

approach is fixed even when there is phase transition. Not only does this improve

the robustness of the nonlinear solver, it opens up the possibility to use multigrid

methods to solve the resulting linear system. The disadvantage of the complemen-

tarity approach, however, is that when a phase disappears, the linear system has the

structure of a saddle point problem and becomes indefinite, and current algebraic

multigrid (AMG) algorithms cannot be applied directly.

In this work, we aim to address computational issues related to modeling

multiphase flow in porous media. First, we develop and study efficient solution al-

gorithms for solving the algebraic systems of equations derived from a fully coupled

and time-implicit treatment of models of incompressible two-phase flow. We explore

the performance of several preconditioners based on algebraic multigrid (AMG) for

solving the linearized problem, including “black-box” AMG applied directly to the

system, a new version of constrained pressure residual multigrid (CPR-AMG) pre-

conditioning, and a new preconditioner derived using an approximate Schur com-

plement arising from the block factorization of the Jacobian. We show that the

new methods are the most robust with respect to problem character as determined



by varying effects of capillary pressures, and we show that the block factoriza-

tion preconditioner is both efficient and scales optimally with problem size. We

then generalize the block factorization method and incorporate it into a multigrid

framework which is based on the multigrid reduction technique to deal with linear

systems resulting from the NCP approach for modeling compositional multiphase

flow with phase transitions. We demonstrate the effectiveness and scalability of the

method through numerical results for a case of two-phase, two-component flow with

phase appearance/disappearance. Finally, we propose a new semi-smooth Newton

method which employs a smooth version of the Fischer-Burmeister function as the

C-function and evaluate its performance against the semi-smooth Newton method

for two C-functions: the minimum and the Fischer-Burmeister functions. We show

that the new method is robust and efficient for standard benchmark problems as

well as for realistic examples with highly heterogeneous media such as the SPE10

benchmark.
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Chapter 1: Introduction

This dissertation is concerned with various computational issues that arise in

modeling multiphase flow in porous media. In particular, we focus on developing

fast algorithms for solving the algebraic systems resulting from the discretization

of the fully coupled partial differential equations (PDEs) and constitutive laws that

describe multiphase flow. The main contribution of this work includes robust solvers

and preconditioners for complex models of multiphase, multicomponent flow that

take into account important physical processes such as capillary pressure, miscibility,

and phase transitions.

1.1 Overview of Multiphase Flow in Porous Media

Modeling multiphase flow in porous media is a subject of great complexity

with a long and rich history in the field of fluid mechanics. The earliest applications

of multiphase flow appear in soil science literature, in which an unsaturated flow

consisted of water and air occurs in the soil [77]. In the 1980s, interest in the topic

dramatically increased due to the rise in demand for flow simulation in petroleum

engineering. Natural oil reservoirs almost always contain connate water and they

sometimes contain free natural gas as well. Thus, engineers needed to understand

1



the simultaneous flow of water, oil, and gas through porous media to maximize

the amount of oil and gas extracted. More recently, the study of multiphase flows

has garnered interest from hydrologists whose work involves groundwater quality

management [4, 18]. More and more contaminants are being released into the envi-

ronment, posing a grave threat to underground water resources. These oily liquids,

coming from underground or near-surface storage facilities, land-fills at which chem-

ical wastes are dumped, industrial sites such as oil refineries or wood-treatment

plants, or illegal waste disposal, may enter the water-bearing rock formations as

separate, non-aqueous phases. Consequently, the ability to develop accurate mul-

tiphase flow models is critical to the design of sound remedial measures. Another

application in which multiphase flow has been used extensively recently is carbon

sequestration [30]. In order to slow down accumulation of greenhouse gases released

from burned fossil fuels, much research proposes capturing and storing carbon diox-

ide and other forms of carbon in underground aquifers and depleted oil fields. These

carbon products may be injected into a carbon sink either in their gaseous or liq-

uefied state, or as a mixture of both. In all of these applications, the inherent

complexity of the physics being modeled gives rise to highly nonlinear systems of

PDEs, whose difficulty is further enhanced by the irregularities in the geometry and

heterogeneity of the porous medium. Hence, numerical solution is the only effective

and feasible way to gain quantitative insights into the behavior of multiphase flow

in porous media.
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1.2 Numerical Methods for Modeling Multiphase Flow in Porous Me-

dia

The system of PDEs modeling multiphase flow in porous media can be numer-

ically approximated by a discretization process in space and time. For the spatial

component, the most popular methods for multiphase flow equations are finite el-

ement and finite volume methods. In this work, we implement a finite volume

method with two-point flux approximation. The resulting discrete nonlinear alge-

braic system is subsequently solved using a Newton-type method. We consider a

standard Newton’s method for the case of incompressible two-phase flow, and a fam-

ily of semi-smooth Newton methods for compositional two-phase flow with phase

transitions.

Each iteration of the nonlinear solve requires a linearization of the problem.

This process also entails finding solutions to a series of large linear systems. In

general, these systems, embedded with the strong physical coupling between the

variables in the original PDEs, are sparse, non-symmetric, and highly indefinite.

Since a large percentage of the computation in multiphase flow simulation is spent

on solving these linear systems, efficient solution methods are critical to obtaining

simulation results in a short amount of time. Scalability is also of the utmost

importance. As scientists constantly demand simulations for bigger problems with

ever-higher levels of details, designing algorithms that can take advantage of the

massive parallelism that emerging architectures provide remains one of the few viable

3



ways of moving forward.

1.2.1 Decoupled Approach

One way to reduce the complexity of the system of equations for multiphase

flow in porous media is the separation of different physical processes involved. For

example, in two-phase flow one can manipulate the conservation equation for each

phase to obtain two separate equations: one for pressure and one for saturation.

The pressure equation expresses the distribution of the pressure and it is usually

governed by a diffusion process. In contrast, the saturation equation models a

transport mechanism, having the characteristics of a mixed problem, i.e. advection-

diffusion. With this approach, instead of solving a big nonlinear system of PDEs,

one instead needs to solve two separate linear PDEs that complement each other,

that is the solution of one equation serves as the input for the other. For example,

given a distribution of the saturation, one can first solve the pressure equation to

get a new pressure field, which is then substituted into the saturation equation.

The saturation is subsequently obtained by solving the saturation equation with

the updated pressure field. This iterating process between the two equations is

repeated until convergence. The decoupling approach has the advantages that the

linear systems associated with each equation are smaller, and they are each derived

from a single physical process for which efficient solvers exist. Thus, for mildly

nonlinear problems in which the coupling between pressure and saturation is weak,

it could work well. However, when one takes into account important effects present in

4



multiphase flow, including capilarity, miscibility, and phase transitions, the coupling

between the variables becomes much stronger, and the decoupling approach loses

its effectiveness. By decomposing the fully coupled multiphase flow system into

its component parts, one also introduces splitting errors, and it may take many

iterations between the component equations (pressure and saturation equations in

the example above) to achieve a desired accuracy. In many cases, the process may

not converge at all. Thus, for more sophisticated models of multiphase flow, a fully

coupled approach is usually preferred.

1.2.2 Fully Coupled Approach

In a fully coupled approach, also called the simultaneous solution (SS) method

in the reservoir simulation community, the system governing multiphase flow is dis-

cretized, linearized and solved together as one big system. Due to the size of the

problem, Krylov subspace methods are a natural choice of solver. Yet, these meth-

ods, including generalized residual method (GMRES) [84] and biconjugate gradient

with stabilization (BiCGStab) [90], cannot be used as standalone solvers. To obtain

fast convergence, they need to be paired with robust and efficient preconditioners.

The challenge of the fully coupled solution strategy is then to develop precondition-

ers that are capable of capturing the complex physical processes embedded in the

discretized multiphase flow system, and resolving the strong coupling between the

variables such as pressure, saturation, and concentration at the same time. Given

a good preconditioner, this strategy is very efficient, as only one linear solve is re-

5



quired for each iteration of the nonlinear solve. Overall, the speed of the algorithm

depends on the rate of convergence of the nonlinear solver and the cost of the linear

solves.

1.3 The Problem with Phase Transitions

For compositional multiphase flow, handling phase transitions is a challenging

task. When formulating the set of governing equations, most common approaches

use the constraints for local equilibrium to eliminate some of the unknowns to get

a reduced set of primary variables. For example, in a two-phase flow involving gas

and liquid phases, using the constraint that the gas and liquid saturations sum to 1,

we can eliminate the gas saturation and choose the liquid saturation as a primary

variable. Problems arise when the liquid phase disappears. In such a situation, the

reduced set of equations consists of variables that are not well defined, i.e. liquid

saturation and liquid pressure are physically meaningless if there is no liquid phase

present. As a consequence, the corresponding linear systems become singular and

uniqueness of the solution is no longer guaranteed.

The classical and immensely popular way to overcome this problem is the pri-

mary variable switching (PVS) approach [51,98]. As the name suggests, the primary

variables may be switched depending on the conditions of the phases. For exam-

ple, in the regions where the gas phase turns into the liquid phase and disappears

completely, one uses the system of equations and variables associated with the liq-

uid phase even if the original system of equations and primary variables are those

6



associated with the gas phase. Despite its success in handling phase transitions,

the PVS approach has two main drawbacks: it exhibits irregular global convergence

behavior in the nonlinear solves, and it relies on inefficient serial algorithms such

as incomplete LU factorization (ILU) [83] for linear solves. A scalable solver such

as multigrid [86, 88], however, cannot be applied directly without extensive modi-

fication for PVS. Thus, our goal is to find a robust algorithm that can seamlessly

handle phase transitions that is also more readily adapted to multilevel solvers. Be-

sides PVS, other approaches have been developed to address phase transitions. For

example, one can introduce a set of so-called persistent primary variables that are

well defined across all the phases (see [18, 63, 65]). This approach is limited in the

sense that such persistent sets of primary variables may not exist for complicated

compositional multiphase flow problems. Another approach is the method of nega-

tive saturation in [1], in which the saturation of a phase is allowed to be negative

or greater than 1. Using this approach, one needs to use a post-processing step

to recover a meaningful value for the solution when phase transitions occur. Since

there are questions on how this can be done appropriately, this approach has not

been widely adopted. A more recent approach is to formulate the system governing

compositional two-phase flow with phase transitions as a nonlinear complementarity

problem (NCP) [16, 59, 63]. The NCP formulation utilizes the fact that the vari-

ables of interest, e.g. pressure, saturation, concentrations, etc., must satisfy certain

constraints to be physically meaningful when phase transitions occur. By explicitly

enforcing these constraints, the solution to an NCP also satisfies the phase transition

conditions. Due to its novelty and robustness in handling phase transitions, this is

7



the method we employ in this work.

1.4 Outline of Dissertation

The outline of this dissertation is as follows. Chapter 2 introduces the set of

equations modeling multiphase, multicomponent flow in porous media. We review

the existing approaches for dealing with phase transitions and solution strategies,

including the decoupled and fully coupled approaches. We then present a fully

implicit discretization using a finite volume method in space and the backward Euler

method in time for the fully coupled approach. The last section of this chapter gives

an overview of common preconditioning techniques for the linear systems resulting

from discretization of the equations modeling multiphase, multicomponent flow.

Chapters 3 and 4 focus on the development of efficient and scalable precondi-

tioners for solving the linear systems resulting from a fully implicit discretization of

incompressible two-phase flow, and compositional two-phase flow with phase tran-

sitions. A block factorization preconditioner is presented in chapter 3. In chapter 4,

we formulate the block factorization preconditioner as a multigrid reduction ap-

proach and extend it to solve the compositional multiphase flow system with phase

transitions. Chapter 5 deals with issues encountered in the nonlinear solve for the

NCP reformulation of compositional two-phase flow with phase transitions. We

develop a smoothing approach that is more efficient and robust in handling phase

transitions than the current semi-smooth Newton methods. Finally, we present some

concluding remarks in chapter 6.
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Chapter 2: Problem Statement and Survey of Existing Approaches

In the first part of this chapter, a system of partial differential equations

describing two-phase flow in a porous medium is derived. Before this derivation

can be accomplished, we provide definitions and conceptual terms that are used

in modeling flow in porous media. The subsequent sections are devoted to the

current development of quantitative models for incompressible two-phase flow and

compositional two-phase flow.

2.1 Conceptual Model of Flow in Porous Media

2.1.1 Definitions

A porous medium can be defined as any material consisting of two parts: the

solid frame, also called solid matrix, and the void space (or pore space), which can

be filled by one or more fluids (e.g. water, oil, gas, etc.). Many natural substances

ranging from geological formation (rocks, soils, sand, limestone, etc.) to biological

tissues (bones, wood, kidney) and man made materials (cements, ceramics) can be

considered porous media.

According to [11], a phase is a chemically consistent body of a single fluid
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(such as water), or several fluids completely miscible with each other (e.g. fresh

water and salt water). In a multiphase system the pore space is filled with fluids

that are immiscible with each other. A typical example is a system consisting of

water and oil. Since these two fluids form a distinct boundary between them, each

can be considered a separate phase, i.e. the water phase and the oil phase. There

may be only a single gaseous phase, however, as all gases are always completely

miscible, and the solid matrix of the porous medium can also be treated as a phase

called the solid phase.

A component, also defined in [11], is a part of a phase that is composed of a

single chemical species or a collection of species, depending on the physical process

that is being modeled. In the case of the fresh water and salt water mixture above,

the system consists of a single phase, i.e. water, and two components, i.e. fresh

water and salt water.

2.1.2 Continuum Approach

In modeling flow in porous media, it is critical that we consider different length

scales as they play an important role in dictating the behavior of the flow. At

the smallest scale of about 10−9m (the molecular scale), individual molecules of

different fluids can be identified, whereas at the microscopic scale (about 10−3m),

individual soil particles and the pore channels are visible. At largest scale, called

the macroscopic scale, different types of soils, sands, and rocks, can be differentiated

by the difference in their average grain sizes. While it would be ideal to be able

10



to simulate the flow down to the molecular level, such capability is still beyond the

reach of current computers and methods. To overcome this difficulty, the fluid is

assumed to exist as a continuum on the microscopic scale. Accordingly, quantities

such as mass density and velocity are considered continuous functions in space and

time. Under this hypothesis, the flow of fluids through the void space of a porous

medium can be described by the Navier-Stokes equations with appropriate boundary

conditions [29]. Although one can directly solve the Navier-Stokes equations for the

velocity of the fluids in a three-dimensional domain obtained from real rock images,

it is still a computationally challenging task for complex domains like that shown

in figure 2.11. Thus, this approach is only feasible for problems on the microscale

(about 10−3m). For applications considered in this work, including groundwater

remediation, reservoir simulation, and carbon sequestration, the domain of interest

usually ranges from hundreds of meters to kilometers, and direct simulation is not a

viable choice. Here, we are interested in simulating the flow on the macroscopic scale

and to do so, we need to bridge the gap between the microscopic and macroscopic

scales. The idea is to use a representative elementary volume (REV), defined on the

microscopic scale, which helps determine the values of physical quantities at a point

on the macroscopic scale through an averaging process. In this work, we employ an

averaging procedure introduced by [11].

Using the concept of REV, we can define the macroscopic quantities involved

1Reprinted from Journal of Petroleum Science and Engineering, Vol 159, N. Zamani, I. Bondino,

R. Kaufmann, and A. Skauge, Computation of polymer in-situ rheology using direct numerical

simulation, 92-102, Copyright (2017).

11



Figure 2.1: (a) µ-CT scan of a sand-pack, (b) generated tetrahedral mesh.

Type of material Porosity

Consolidated sandstones 0.1-0.3

Uniform spheres with minimal porosity packing 0.26

Uniform spheres with normal packing 0.35

Unconsolidated sands with normal packing 0.39-0.41

Soils with structure 0.45-0.55

Table 2.1: Porosity values for various types of medium

in modeling flow in porous media. In a porous medium, porosity φ characterizes how

much void space there is inside the medium, and it is defined as the ratio between

the void space and the total volume of a given REV. By definition, φ is between 0

and 1. Table 2.1 (from [36]) shows the porosity values for various media. The void

space inside the porous medium is filled with fluids that can exist in one or more

phases. The saturation of a phase α is defined as the ratio between the volume of
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that phase over the total volume of the pore space inside a given REV. Thus, by

definition, it is immediately clear that the saturation Sα must satisfy the constraint

∑
α

Sα = 1, 0 ≤ Sα ≤ 1. (2.1)

2.1.3 Heterogeneity and Anisotropy

A porous medium is said to be homogeneous with respect to a macroscopic

(averaged) quantity if that parameter value is constant throughout the domain.

Otherwise, if different regions inside the domain can have different parameter values,

the medium is called heterogeneous. For example, a region that has loose soil packing

on top of fine layers of sand is heterogeneous with respect to porosity. In addition

to variation with respect to location, macroscopic quantities of a porous medium

can also vary with direction. This property is called anisotropy.

2.2 General Form of Multiphase Flow Equations

In a system with M phases, the equation for conservation of mass for each

phase in a domain Ω ∈ R3 reads

∂(φραSα)

∂t
+∇ ·

(
ραqα

)
= zα. (2.2)

This equation states that the rate of change of the fluid mass in a control volume

V ∈ Ω must be equal to the net flow over the surface ∂V plus any source or sink

terms within V . Here, φ, Sα, ρα, qα, and zα are the saturation, mass density, Darcy

velocity, and forcing term of phase α, respectively.
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2.2.1 Constitutive Law

At the microscopic level, the flow takes place through the pore channels with

varying velocity. The flow is faster in the regions with smaller pores, while it is

slower in those with larger pores. On the macroscopic scale, however, we are only

interested in the macroscopic phase velocity (also called Darcy velocity), which is

defined to be the average volume of fluid flowing through a unit cross-sectional area

per unit time. By applying local averaging techniques (see [96]) or homogenization

in [55] to the Navier-Stokes equations, one can derive Darcy’s law, which was first

discovered by Henry Darcy in 1856. In multiphase flow, an extension of Darcy’s law

is assumed and the macroscopic phase velocities are expressed as

qα = −K krα
µα

(∇Pα − ραg). (2.3)

where K is a tensorial quantity specifying the absolute permeability of the porous

medium; krα, µα, and Pα are the relative permeability, viscosity, and pressure of

phase α, respectively; g is the gravity vector pointing in the direction of gravity

with the magnitude of gravitational acceleration constant g. Usually, the ratio

λα = krα/µα is called the mobility of phase α.

Since there is only a fixed void space for the fluids to flow through in a rigid

porous medium, the relative permeability terms krα serve as models to the fact that

the flow of one phase hinders the others in a multiphase system. These terms are

parametrized by the phase saturation and obey the constraint

0 ≤ krα(Sα) ≤ 1 (2.4)
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The phase pressures Pα are related through capillary pressure Pc, which is the

jump in the pressure moving from one fluid phase to another. Similar to relative

permeability, capillary pressure is parametrized by phase saturation.

Pβ = Pα − Pc(Sα), ∀β 6= α. (2.5)

Since capillary pressure and relative permeability dictate the nonlinearity of the

problem, we will revisit them in separate subsections below.

2.2.2 Relative Permeability and Capillary Pressure

As mentioned above, relative permeability models the fact that the phases ob-

struct each other in a multiphase system. It is one source of nonlinearity and should

be treated carefully. Relative permeability can either be computed by interpolation

from a table of measurements for real flow data, or it can be derived from analytical

formulation. In this work, the latter approach is taken since the aim is to develop

solvers and preconditioners for general multiphase flow. We use two common re-

lations for the relative permeability, the Brooks-Corey and Van Genuchten models

given below.

In the Brooks-Corey model [36], the relative permeabilities for a two-phase system

can be expressed in terms of saturation as

Sαe =
Sα − Srα

1−
∑

β Srβ
(2.6)

krw(Sw) = S3+2/λ
we (2.7)

krn(Sn) = S2
ne

(
1− (1− Sne)1+2/λ

)
(2.8)
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The relations for the Van Genuchten model [91] read

krw(Sw) =
√
Swe
(
1−

(
1− S1/m

we

)m)2
, (2.9)

krn(Sw) =
√

1− Swe
(
1− S1/m

we

)2m
. (2.10)

In the equations above, the subscripts w, n denote the wetting and non-wetting

phases, respectively, and Sαe and Sαr are the effective and residual saturations of

phase α, respectively. The values of parameters λ and m depend on the character-

istics of the porous media. Particular values for these parameters are listed in the

data for the numerical experiments in chapters 3 to 5. Figure 2.2 illustrates the

relative permeability curves for different parameters.

The performance of these conventional closed-form models, Brooks-Corey and

Van Genuchten, is dependent on the specific shape of the water retention curve for

a particular type of soil. The Van Genuchten model is known to more accurately

describes S-shaped retention curves characterizing finer-textured soils, whereas the

Brooks-Corey model is much better adapted for J-shaped retention curves charac-

terizing relatively coarse-textured soils (see [89]).

The residual saturation of a phase represents the irreducible portion of that

phase by pure displacement. For example, as the reservoir is drained, the wetting

phase saturation decreases and capillary pressure increases until the the latter be-

comes so strong that it prevents the wetting phase from escaping the pores. Thus,

the capillary pressure curves are extremely steep when the wetting phase saturation

approaches the residual saturation (near Swe = 0 in figure 2.3). It is this large

derivative of the capillary pressure function that will require special care in the nu-
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(a) Brooks-Corey model. (b) Van Genuchten model

Figure 2.2: Relative permeability curves for different parameters and residual

saturations Swr = Snr = 0.1.

merical solution and motivate the development of more robust preconditioners. It

is also important to note that even though the phase saturation cannot be reduced

below the residual saturation by displacement, it can be reduced by phase transition,

such as vaporization or condensation.

Besides relative permeability, another nonlinear effect that strongly affects

the flow behavior is capillary pressure. At the microscopic level, there exists a

discontinuity at the interface between the wetting and non-wetting phases, and the

height of the jump is the capillary pressure, i.e.

Pc = Pn − Pw. (2.11)

On the macroscopic scale, similar to the relative permeability, the averaged capil-

lary pressure is parametrized by saturation. Again, we use the capillary pressure -

saturation relations given by Brooks-Corey and Van Genuchten.
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Brooks-Corey capillary pressure curve [36]

Pc(Sw) = PrS
−1/λ
we . (2.12)

Van Genuchten capillary pressure curve [91]

Pc(Sw) = Pr(S
−1/m
we − 1)−1/n, (2.13)

m = 1− 1/n. (2.14)

The entry pressure Pr is the minimum pressure that must be applied for the nonwet-

ting phase to enter the largest pores of the porous medium. In the Van Genuchten

model, capillary pressure rises rapidly to the value of Pr for very small change in

the saturation near Swe = 1 (see figure 2.3b), while in the Brooks-Corey model, it is

bounded below by Pr (see figure 2.3a). The correct treatment of the entry pressure is

especially important since it strongly affects the infiltration rate of the non-wetting

phase. An example that shows the difference in the profile of the non-wetting phase

for different values of entry pressure is presented in section 5.5.1.

2.3 Incompressible Two-phase Flow

We consider a particular case of immiscible and isothermal two-phase flow

through a porous medium. There are numerous instances of such flow in nature.

For example, petroleum reservoirs are filled with oil and water. Oil is referred to as

the nonwetting phase, and water is the wetting phase. Alternatively, in groundwa-

ter management, one may consider a system of contaminated water (wetting phase)

that infiltrates a domain saturated with air (nonwetting phase). Due to the incom-
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(a) Brooks-Corey model. (b) Van Genuchten model.

Figure 2.3: Capillary pressure curves for different parameters with residual

saturations Swr = Snr = 0 and Pr = 3.

pressibility assumption, which states that the phase densities ρα are constant, the

system of conservation equations for multiphase flow in equation (2.2) reduces to

φρα
∂Sα
∂t

+ ρα∇ · qα = zα, α = w, n (2.15)

The subscripts w, n denote the wetting and nonwetting phases, respectively. Sub-

stituting the Darcy velocity in equation (2.3) into equation (2.15) and using the

constraint equation (2.1) as well as the relation between phase pressure through

capillary pressure in equation (2.5), we have the complete system of equations

φρw
∂Sw
∂t
− ρw∇ ·

(
Kλw(∇Pw − ρwg)

)
= zw, (2.16)

φρn
∂Sn
∂t
− ρn∇ ·

(
Kλn(∇Pn − ρng)

)
= zn, (2.17)

Pw = Pn − Pc (2.18)

Sw + Sn = 1. (2.19)

19



2.4 Decoupled Model for Incompressible Two-phase Flow

2.4.1 Pressure Equation

In this section, we derive the pressure equation used in simulation of two-phase

fluid flow. Dividing both sides of equations (2.16) and (2.17) by the density and

summing them together gives

φ
∂(Sw + Sn)

∂t
−∇ ·

(
λwK(∇Pw − ρwg) + λnK(∇Pn − ρng)

)
=

zw

ρw
+

zn

ρn
(2.20)

Because of the constraint Sw +Sn = 1, the derivative with respect to time vanishes.

Let us introduce the total velocity

q = qw + qn = −
(
λwK(∇Pw − ρwg) + λnK(∇Pn − ρng)

)
(2.21)

and total source term

ztot =
zw

ρw
+

zn

ρn
. (2.22)

Equation (2.20) then becomes an elliptic PDE of the form

∇ · q = ztot (2.23)

Further, let us introduce fractional flow quantity

fα =
λα
λ
, α = w, n (2.24)

where λ = λw + λn is the total mobility. Then, we can rewrite the total velocity as

follows

q = −Kλ
(
∇Pw + fn∇Pc(Sw)−G

)
(2.25)
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In the above equation, we have substituted Pn = Pw+Pc(Sw). The modified gravity

term G is defined as

G =
λwρw + λnρn

λ
g. (2.26)

Notice that the formulation for total velocity in equation (2.25) will have the form

of Darcy’s law in equation (2.3), if we can find a pressure P such that

∇P = ∇Pw + fn∇Pc(Sw) (2.27)

In this case equation (2.25) turns into

q = −Kλ
(
∇P −G

)
(2.28)

Following [23], one form of P is

P=Pw + πn (2.29)

with

πn(Sw) =

∫ Sw

S0

fn(ξ)
∂Pc
∂ξ

(ξ)dξ + π0. (2.30)

One can check that such P satisfying equations (2.29) and (2.30) also obeys equa-

tion (2.28). This pressure P is usually referred to as the global pressure.

2.4.2 Saturation Equation

As for the pressure equation, we start by deriving an equation for saturation

from one of the mass balance equations. It is common to use the equation for

saturation of the wetting phase, but there is no difference for the non-wetting phase,

φρw
∂Sw
∂t

+ ρw∇ · qw = zw. (2.31)
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Here, we want to express the Darcy’s phase velocity qw in terms of the global pressure

P and the total velocity q. Again, we have the Darcy’s velocities for the phases

qw = −λwK(∇Pw − ρwg), (2.32)

qn = −λnK(∇Pw +∇Pc − ρng). (2.33)

Dividing both sides by the mobility and taking the difference to eliminate ∇Pw, we

obtain

λnqw − λwqn = Kλwλn
(
∇Pc + (ρw − ρn)g

)
. (2.34)

Then, substituting qn = q − qw and simplifying gives

qw = fwq + λnfwK
(
∇Pc + (ρw − ρn)g

)
. (2.35)

2.4.3 Complete System of Equations

Putting all the equations together gives the following system of equations for

incompressible 2-phase flow

−∇ ·
(
Kλ(∇P −G)

)
= ztot, (2.36)

φ
∂Sw
∂t

+∇ · qw = zw/ρw, (2.37)

qw = fwq + λnfwK
(
∇Pc + (ρw − ρn)g

)
, (2.38)

λ = λw + λn, (2.39)

λw = krw/µw, λn = krn/µn. (2.40)
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For the pressure equation, we need to specify either the pressure on the boundary,

which leads to a Dirichlet boundary condition

P = Pd on ∂ΩD,

or the fluxes on the faces, which results in a Neumann boundary condition

q · n = Gn on ∂ΩN .

Similarly for the saturation equation, we have the following boundary conditions

• Dirichlet boundary condition, in which the saturation on the boundary is

given.

S = Sd on ∂ΩD.

• Neumann boundary condition, in which the fluxes on the boundary faces are

given.

qw · n = Gn on ∂ΩN .

2.5 Compositional Multiphase Flow

In the multiphase flow models presented in previous sections, we have not

taken into account the fact that in reality, the phases rarely consist of a single

component. On the contrary, each phase usually contains many different species of

fluids such as water, hydrogen, carbon dioxide, etc. To include these components,

more detailed models are needed. Before we begin to formulate these models, it is
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convenient to introduce some fractional quantities that are useful in analyzing the

composition of the flow.

Component volume fraction

Ck
α =

Volume of component k in phase α

Volume of phase α
. (2.41)

Mass fraction of a component

Xk
α =

Mass of component k in phase α

Mass of phase α
. (2.42)

Intrinsic mass density of a component

ρkα =
Mass of component k in phase α

Volume of component k in phase α
. (2.43)

These fractional quantities are related to each other by the equation

ραX
k
α = ρkαC

k
α. (2.44)

It is also obvious that we have the following constraints

N∑
k=1

Xk
α = 1,

N∑
k=1

Ck
α = 1. (2.45)

Then, the terms in the mass balance equations for an M-phase and N-component

system can be rewritten as

∂ξk

∂t
+∇ · ψk = zk,

ξk = φ

M∑
α=1

ραX
k
αSα,

ψk =
M∑
α=1

(
ραX

k
αqα +Dk

αρα∇Xk
α

)
,
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where ξk, ψk are the storage and flux terms of component k, respectively, and Dk
α is

the diffusion tensor of component k in phase α. Similar to the incompressible case,

the velocity qα is assumed to satisfy an extension of Darcy’s law for multiphase flow,

i.e.

qα = Kλα∇(Pα − ραg), α = 1, ...,M (2.46)

Equation (2.46) states that the total mass of a component k across all the phases

must be conserved, and the change in the mass of a component is attributed to the

flux through the boundary of a control volume and the mass exchange between the

phases due to diffusion.
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Chapter 3: Block Factorization Preconditioner for Immiscible Two-

phase Flow

3.1 Introduction

In this chapter, we focus on the iterative solution of linear systems arising in a

fully implicit cell-centered finite volume discretization of single component isother-

mal, incompressible two-phase flow model with capillary pressure. This fully implicit

time-stepping scheme is among the most robust for simulation of subsurface flow.

Moreover, it can serve as a basis for modeling more complex processes in which

the physical quantities are tightly coupled. This additional complexity could in-

clude adding more components, miscibility between components, thermal effects,

and phase transitions. The results included in this chapter also appear in [21].

The fully implicit discretization gives rise to a nonlinear system of equations

at each time step. We employ a variant of Newton’s method with an exact Jaco-

bian of the discretized equations to solve this system. For the linear system, we

use a preconditioned GMRES method [84]. There is a vast literature on differ-

ent approaches to precondition the Jacobian system. A very popular approach is

to use ILU for constructing the preconditioner. Though popular for their general
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applicability, ILU-based preconditioners are neither effective nor scalable in many

cases. Another approach is to consider decoupled preconditioners for the coupled

system [12]. This methodology is based on a direct solution of the decoupled pres-

sure system, followed by an iterative solution using ILU for the global system. This

formulation was refined in [93], where it was proposed to solve the pressure system

iteratively, giving rise to the decoupled IMPES preconditioner. The effect of the

decoupling is to weaken the coupling between pressure and saturation. Thus, it

is often used as a preprocessing step to produce a modified Jacobian system, for

which new preconditioners can be developed [33,87]. Another approach to break up

the coupled problem into a sequence of simpler problems include operator splitting

techniques, developed in [40,41,70]. With recent development of algebraic multigrid

(AMG) algorithms, the pressure block can be solved efficiently using AMG, result-

ing in the constrained pressure residual multigrid (CPR-AMG) approach. In recent

developments, AMG has also been applied to solve the coupled system with some

success [33, 87], although developing a general AMG algorithm for these types of

problems remains a topic of ongoing research [94]. Since the Jacobian matrix has

a block structure, one can also consider a block LU decomposition with an approx-

imate Schur complement, which has been successfully applied to other models of

fluid dynamics [68, 97]. Besides AMG-based methods, geometric multigrid has also

been applied successfully to solve these types of problems [9,10]. However, our focus

in this study is on AMG variants because of their general applicability.

In this work, we develop a new block preconditioner designed to respect the

coupling inherent in models of multiphase flow, and we report our experience with
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the performance and scalability of four different preconditioning strategies: (1) a

two-stage CPR-AMG method with correction for the pressure block, also known

as the combinative two-stage approach, (2) a CPR-AMG with corrections for both

the pressure and saturation blocks, known as the two-stage additive approach, (3)

the block factorization (BF) preconditioner, and (4) a direct AMG preconditioner

for the global system. An outline of the chapter is as follows. In section 3.2,

we present the mathematical formulation for two-phase flow in porous media and

discretization schemes. In section 3.3, we describe the new solution algorithms that

we have developed for the linearized system. Numerical results for the algorithms

are presented in section 3.4. We conclude with some remarks and discussion of

future research directions in section 3.5.

3.2 Problem Statement

As shown in section 2.4, one can use a decoupling approach for equations (2.16)

to (2.19) and derive separate equations for pressure and saturation from system.

The pressure equation is elliptic due to incompressibility; the saturation equation

is of advection-diffusion type. Depending on the applications and capillary pressure

models, the saturation equation can be diffusion-dominated, advection-dominated,

or even purely hyperbolic (in the absence of capillary pressure).

The pressure equation is solved implicitly, and depending on the time dis-

cretization strategies applied to the saturation equation, several methods have been

developed. In the case where the saturation equation is discretized using an explicit
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method (e.g., forward Euler), it is referred to as IMPES (implicit pressure explicit

saturation) [7]; for an implicit time discretization of the saturation equation, the

method is known as the sequential approach, which was first applied to the black-oil

model in [95].

The appeal of these methods lies in the sequential decoupling between pres-

sure and saturation variables. Each equation can be solved separately. In addition,

knowing the features of each equation (for example, direction of the flow or relative

sizes of diffusion and advection terms) facilitates the design of efficient precondi-

tioners, which is critical to achieving high performance. Both of these methods have

been successfully applied to many problems where the fully implicit method is dif-

ficult to implement or shown to be too costly. However, the solution obtained from

these approaches may lose accuracy due to poor convergence behavior if pressure

and saturation are strongly dependent, or if capillary pressure changes very quickly.

The lack of accuracy of these methods can be even more pronounced if more com-

plex processes such as miscibility, thermal, and phase transitions are included in the

model. For a more complete summary of the advantages and disadvantages of these

approaches, we refer to [61].

In this chapter, we take a different point of view and explore methods for

solving the fully coupled system stated in equations (2.16) to (2.19) which avoids

the limitations of the decoupling approach mentioned above. Substitution of equa-

tion (2.18) into equation (2.17) and using the constraint equation (2.19) yields a

system of two equations and two unknowns. Using one popular choice of primary

variables, the pressure in the wetting phase and saturation in the nonwetting phase,
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u = (Pw, Sn) [98], we obtain

−∂(φρwSn)

∂t
−∇ ·

(
ρw
krw(Sw)

µw
K(∇Pw − ρwg)

)
= zw, (3.1)

∂(φρnSn)

∂t
−∇ ·

(
ρn
krn(Sn)

µn
K(∇(Pw + Pc(Sn))− ρng)

)
= zn. (3.2)

This formulation also has the advantage that extending it to the case of compressible

flow and multi-component flow is quite straightforward. See also [16, 59] for use

of this model. In the fully coupled approach, we consider solving equations (3.1)

and (3.2) together as a big system fully implicitly. We use a cell-centered finite

volume method for spatial discretization and the backward Euler method for time

discretization, similar to an approach defined in [38]. This will serve as a base model

for adding more complexity in the future.

The finite volume method described below is known for its mass conserva-

tion property. In addition, it can deal with the case of discontinuous permeability

coefficients, and it is relatively straightforward to implement. Under appropriate

assumptions, this method also falls into the mixed finite element framework [69,81].

For simplicity, we consider a uniform partitioning of the domain Ω into equal sized

cells Ci, i.e., Ω =
⋃
i=1

Ci. Let γij denote the area of the face between cells Ci and Cj.

For each cell Ci, integration of the mass conservation equations and the divergence

theorem gives

∂

∂t

∫
Ci

ξα +
∑
j∈ηi

∫
γij

ψα · n =

∫
Ci

zα, (3.3)

where the storage ξα = φραSα and the flux ψα = ραqα terms are approximated
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using the mid-point rule which is second-order accurate:

ξ̄α =
1

VCi

∫
Ci

ξα, z̄α =
1

VCi

∫
Ci

zα. (3.4)

The surface integrals are discretized using two-point flux-approximation (TPFA);

dropping the phase subscript, this gives∫
γij

ψ · n = −γij
(
ρ
kr
µ
K
)
ij+1/2

(
ωi − ωj

)
, (3.5)

ωi =
Pi − ρij+1/2 gi

∆xij+1/2

. (3.6)

The quantities with subscript i, j are defined at the centers of cells i, j, respectively,

and the subscript ij + 1/2 signifies an appropriate averaging of properties at the

interface between cells i and j. The coefficients (ρkr/µ)ij+1/2 are approximated by

upwinding based on the direction of the velocity field, i.e.,

(
ρ
kr
µ

)
ij+1/2

=


(
ρ
kr
µ

)
i
, if v · n > 0(

ρ
kr
µ

)
j
, otherwise

(3.7)

and the absolute permeability tensor on the faces is computed using harmonic av-

eraging,

Kij+1/2 = (∆xi + ∆xj)
( KiKj

∆xiKj + ∆xjKi

)
. (3.8)

The TPFA finite volume scheme presented here is convergent only if the mesh is

K-orthogonal, i.e. each grid cell is a parallelepiped and

nijKnik = 0, ∀Ci ∈ Ω, nij 6= ±nik, (3.9)

where nij and nik are the normal vectors from cell Ci into neighboring cells Cj

and Ck, respectively. Orthogonal grid is a case of K-orthogonal grid in which the
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Figure 3.1: (left) simple orthogonal grid and (right) general K-orthogonal grid.

Images obtained from [44].

permeability tensor in equation (3.9) is diagonal, as opposed to a full tensor. The

difference between simple orthogonal grids and k-orthogonal grids is illustrated in

figure 3.1. We note that for simplicity, structured Cartesian grids are employed for

the test cases in section 3.4, but the method and our implementation can accommo-

date unstructured K-orthogonal grids (see figure 3.1). The backward Euler method

is used for discretization of the time domain. This method is unconditionally stable

and robust with respect to adaptive time-stepping schemes because it is fully im-

plicit and there is no CFL stability restriction of the time step. Application of the

backward Euler method gives a fully discrete system of nonlinear equations,

(ξ̄)n+1
i − (ξ̄)ni =− 4t

VCi

∑
j∈ηi

γij

(
ρ
kr
µ
K

)n+1

ij+1/2

(
ωn+1
i − ωn+1

j

)
−zn+1. (3.10)

3.3 Solution Algorithms

The system of nonlinear equations (3.10) which must be solved at each time

step, can be written generically as F (u) = 0 where F : Rn → Rn. We solve the

32



system using Newton’s method, which requires solution of a linear system at each

iteration k:

∂F

∂u

∣∣∣
u=uk

(uk+1 − uk) = −F (uk). (3.11)

In our case, the solution vector u consists of all the pressure and saturation unknowns

at all the cell centers. The Jacobian system resulting from the derivative ∂F/∂u is

often very difficult to solve using iterative methods, and preconditioning is critical

for rapid convergence of Krylov subspace methods such as GMRES. Next, we discuss

the linear system arising from Newton’s method and give a detailed description of

the solution algorithms we will use to solve this system.

3.3.1 Linear System

For the set of primary variables u = (Pw, Sn), assuming that each physical

variable is ordered lexicographpically from left to right and bottom to top in the

domain, then each nonlinear Newton iteration entails the solution of a discrete

version of a block linear system of the form−∇ · (λwK∇) − φ

∂t
−∇ · (qw)

−∇ · (λnK∇)
φ

∂t
+ qn · ∇+∇ · (λnP ′cK∇)


δPw
δSn

 = −

zw

zn

 , (3.12)

in which

qw = −λ′wK∇P̃w, (3.13)

qn = −λ′nK∇P̃n + λnK∇(P ′c) . (3.14)
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All the coefficients in equation (3.12) are evaluated at the linearization point P̃w, S̃n.

In a more concise form, the Jacobian matrix of the system has 2× 2 block structure

J =

App Aps

Asp Ass

 , (3.15)

and the linear system is Jc = q. The characteristics of the matrix have been dis-

cussed in numerous papers [10, 38, 57, 87]. We summarize important characteristics

of the operators here:

• J is nonsymmetric and indefinite

• The block App has the structure of a discrete purely elliptic problem for pres-

sure.

• The coupling block Aps has the structure of a discrete first-order hyperbolic

problem in the non-wetting phase saturation.

• The coupling block Asp has the structure of a discrete advection-free parabolic

problem in the wetting phase pressure.

• The block Ass has the structure of a discrete parabolic (advection-diffusion)

problem for saturation when capillary pressure is a non-constant function of

the saturation. When capillary pressure is zero or a constant, there is no

diffusion term and the block has the form of a hyperbolic problem.

• Under mild conditions, i.e. modest time-step size, the blocks App, Aps, Ass are

diagonally dominant.
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In this chapter, we present some numerical results that show how different models of

capillary pressure affect the algebraic properties of the (2,2)-block Ass in particular

and the global system in general, which consequently determines the success of AMG

solution algorithms. Our emphasis is on the development and use of preconditioning

operators denoted M ≈ J , for the purpose of solving preconditioned systems

JM−1ĉ = q, c = M−1ĉ. (3.16)

3.3.2 Two-stage Preconditioning with AMG

In the context of multiphase flow modeling, two-stage preconditioners first

appeared in [93], and since then they have been widely used in reservoir simulation

[57]. Following [38], we refer to this method as the constrained pressure residual

(CPR) approach. There are many variants of two-stage preconditioners. We discuss

two algorithms here: the two-stage combinative preconditioner - CPR-AMG(1), and

the two-stage additive preconditioner - CPR-AMG(2) [6].

Algorithm 1 Two-stage Combinative - CPR-AMG(1)

1. At each iteration k let the residual be rk = fk − Auk.

2. Solve δuk+1/2 = P−1
1 rk, compute intermediate solution uk+1/2 = uk + δuk+1/2.

3. Update the residual rk+1/2 = rk − Aδuk+1/2.

4. Solve for the pressure correction Appδp = Rprk+1/2.

5. Update the solution uk+1 = uk+1/2 +RT
p δp.
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Algorithm 2 Two-stage Additive - CPR-AMG(2)

1. At each iteration k let the residual be rk = fk − Auk.

2. Solve δuk+1/2 = P−1
1 rk, compute intermediate solution uk+1/2 = uk + δuk+1/2.

3. Update the residual rk+1/2 = rk − Aδuk+1/2.

4. Solve for the pressure correction Appδp = Rprk+1/2.

5. Solve for the saturation correction Assδs = Rsrk+1/2.

6. Update the solution uk+1 = uk+1/2 +RT
p δp +RT

s δs.

The matrices Rp, Rs denote the restriction of the global unknown vector to the

spaces associated with pressure and saturation respectively. That is, Rp ∈ Rn×2n

and for u =

p
s



Rpu = p, RT
p u =

p
0

 ; Rsu = s RT
s u =

0

s

 . (3.17)

Then, in matrix form, the action of the two-stage preconditioners can be expressed

as

δu = M−1
combr = (I −RT

pA
−1
pp Rp(A− P1))P−1

1 r, (3.18)

δu = M−1
addr = (I − (RT

pA
−1
pp Rp +RT

s A
−1
ss Rs)(A− P1))P−1

1 r. (3.19)

The preconditioner P1 in step 2 of both algorithms is taken to be the ILU(0) fac-

torization of A, i.e., the incomplete factorization with no fill applied to the global

matrix. For the correction solve, we use AMG with one V-cycle iteration. The
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combinative approach with AMG was presented in [58]. However, this method does

not work well in the presence of fast changing capillary pressure. We confirm this

observation in the next section. To deal with fast changing capillary pressure, we

employ an additive CPR-AMG approach, which involves one more AMG solve for

the correction of the saturation block. The intuition is that when the absolute value

of the derivative of capillary pressure |dPc/dSw| is large, the block Ass becomes

diffusion dominated, and AMG can handle it efficiently.

3.3.3 Block Factorization Preconditioners

Consider the following decomposition of the Jacobian,

J =

App Aps

Asp Ass

 =

I ApsA
−1
ss

0 I


S 0

0 Ass


 I 0

A−1
ss Asp I

 ,

where S is the Schur complement

S = App − ApsA−1
ss Asp. (3.20)

We could choose

M =

I ApsA
−1
ss

0 I


S 0

0 Ass

 =

S Aps

0 Ass

 (3.21)

as an upper-triangular block preconditioner; this incorporates the effects of the

coupling block Aps. This block is important as it contains the time derivative and

gravity terms (see equation (3.12)). If the time step is small, then the coefficients

on the diagonal of this block become large and it is important that this term be
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included in the preconditioner. We use an approximation of the Schur complement

in which Ass is replaced by its diagonal values:

S̃ = App − Aps diag (Ass)
−1Asp. (3.22)

The purpose of this is to keep the Schur complement sparse so that the action of its

inverse can be applied efficiently. This idea is the basis of the SIMPLE method used

in other models of fluid dynamics [68]. A similar approach has also been applied to

problems in single phase flow coupled with geomechanics in [97].

Algorithm 3 Block factorization preconditioner

1. At each iteration k let the residual be rk = fk − Auk.

2. Solve for the saturation Asssk+1 = Rsrk using AMG.

3. Compute the residual for pressure r = Rprk − Apssk+1.

4. Solve for the pressure S̃pk+1 = r using AMG.

An important advantage of this algorithm is that it does not rely on an ILU factor-

ization. In matrix form,

M−1
bf =

S̃−1 −S̃−1ApsA
−1
ss

0 A−1
ss

 . (3.23)

3.3.4 Algebraic Multigrid

Multigrid is a highly efficient and scalable method available for solving large

sparse linear systems [88,100]. Geometric multigrid uses a hierarchy of nested grids,

38



whose construction depends on the geometry of the problem and a priori knowledge

of the grids. AMG methods such as those developed in [86] have the advantage of

not requiring an explicit hierarchy of nested grids. AMG constructs coarse grids

based on the matrix values only, which makes it suitable for solving a wide range

of problems on complicated domains and unstructured grids. Despite its successful

application to scalar problems, using AMG for coupled systems is still relatively

limited. Some attempts to use AMG to solve fully coupled systems encountered

in modeling multiphase flow for reservoir simulation include [33, 87]. In this work,

BoomerAMG [52] from Hypre [48, 49] is used as a black-box AMG preconditioner

for performance comparison in section 3.4. We note that in our implementation of

the coupled system, the Jacobian matrix passed to BoomerAMG is ordered by grid

points, i.e.

J =


A11 . . . A1N

...
. . . . . .

AN1 . . . ANN

 , (3.24)

in which N is the number of grid points, and Aij are 2 × 2 matrices representing

the couplings between pressure and saturation at points i and j, and we use this

ordering for tests of AMG. This is called the “point” method in [87].

3.4 Numerical Results

To verify the correctness of the fully coupled approach, we implement the

sequential method for the decoupled model presented in section 2.4 and treat the
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solutions produced by this method as reference solutions for the test problems. In the

sequential method, we first solve the pressure equation (equation (2.36)) for pressure,

and then use this pressure field to advance the saturation using equation (2.37). To

verify the pressure solver (for the decoupled model), we examine the following test

problem

−∇ · (K∇P) = z on Ω = [0, 1]× [0, 1]

P = PD on ∂Ω.

with the parameters

K = 1, PD = 0,

z = 5π2 sin (πx) sin (2πy).

The exact solution reads

Pexact = sin (πx) sin (2πy).

Figure 3.2: Analytic solution (left) and numeric solution (right) for test problem
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Figure 3.3: Convergence rate for test problem, with mesh size h = 8, 16, 32, 64, 128.

As can be seen in figure 3.2, the analytic and numerical solutions are consistent

with each other, which indicates that our implementation of the pressure solver is

correct. This is further confirmed by a convergence test. Figure 3.3 shows that the

finite volume scheme with TPFA achieves the second-order accuracy as predicted

by theory, i.e. the L2 errors e = ||p̂ − pexact|| is proportional to h2 (h is the mesh

size).

For the saturation equation, we use the one-dimensional Buckley-Leverett

equation given by

∂Sw
∂t

+
∂

∂x

( Q
φA

f(Sw)
)

= 0,

where Sw is the saturation of the wetting phase, Q is the flux, A is the cross section

area, φ is the porosity, and f is the fractional flow. The Buckley-Leverett equation
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is a nonlinear hyperbolic equation with non-convex flux

f(Sw) =
S2
w

S2
w + (1− Sw)2

. (3.25)

For simplicity, we use unit flux Q = 1, unit cross-sectional area A = 1, and unit

porosity φ = 1. The initial condition is as follows

Sw(t = 0) =


1 for x ≤ 0.2

0 for x > 0.2

. (3.26)

For boundary conditions, we have Dirichlet boundary conditions Sw(x = 0) = 1 and

Sw(x = 1) = 0. The analytic and numerical solutions to this problem are plotted in

figure 3.4.

Figure 3.4: Solutions of the Buckley-Leverett equation for different time steps

using first order upwind scheme: t = 0.2 (blue), t = 0.4 (green), and t = 0.6 (red).

Similar to the pressure equation, we use finite volume with upwind stabilization

for spatial discretization. In this approach, the values of the flux f(S) on the faces

is evaluated using the cell-valued saturation based on the direction of the velocity

(see equation (3.7)). From figure 3.4, it is clear that the backward Euler scheme
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Figure 3.5: Numerical solutions with different mesh sizes at time t = 0.6s

Elements Time Steps L1 Error Rate L2 Error Rate

16 32 0.124 0.171

32 64 0.0779 0.67 0.135 0.35

64 128 0.0475 0.71 0.105 0.35

128 256 0.0283 0.75 0.082 0.36

256 512 0.0165 0.78 0.063 0.38

Table 3.1: Convergence rate for L1 and L2 error for the Buckley-Leverett equation.

with upwinding suffers from numerical diffusion, which smooths out the sharp front

observed in the analytic solution. However, as can be seen in figure 3.5, the numerical

solution approaches the analytic solution as the mesh resolution increases. We

compute the L1 and L2 errors and the convergence rate and report them in table 3.1.

Note that we exclude a fixed layer near the shock when computing the errors. In

this region, the convergence rate does not follow the same order as in the rest of

the domain [45]. The convergence rates in table 3.1 are comparable to those listed
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in [9]. While the Buckley-Leverett is a scalar hyperbolic PDE, it can be used as a

test problem for the fully coupled incompressible two-phase system in equations (3.1)

and (3.2) if the pressure gradient is constant. For this test problem, we note that

the fully coupled approach produces nearly identical profiles for the saturation as

presented in figure 3.5, and it also achieves similar convergence rates to those in

table 3.1, which indicates that our implementation of the fully coupled approach is

correct.

In this section, we perform numerical experiments for the four aforementioned

preconditioners: (1) the combinative two-stage approach CPR-AMG(1) (Algorithm

1), (2) the two-stage additive approach CPR-AMG(2) (algorithm 2), (3) the block

factorization (BF) preconditioner in equation (3.23), and (4) a direct AMG precon-

ditioner for the global system. All of them are implemented in Amanzi, a parallel

open-source multi-physics C++ code developed as a part of the Advanced Simula-

tion Capability for Environmental Management (ASCEM) project [5]. Amanzi uses

an object-oriented design that mirrors the hierarchy of processes being modeled to

provide both run-time flexibility and significant extensibility in adding new models

(process kernels). It also provides parallel distributed memory infrastructure for

unstructured and structured AMR meshes, advanced discretization techniques such

as the mimetic finite difference (MFD) method, and linear and nonlinear solvers.

Where possible, Amanzi leverages existing open-source libraries such as Trilinos [53]

and Hypre, rather than duplicating capability and effort. Although Amanzi was first

designed for simulation of subsurface flow and reactive transport, its modular frame-

work and concept of process kernels [35] allow new physics to be added relatively
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easily for other applications. The two-phase flow simulator that we developed for

this work is one such example. Amanzi works on a variety of platforms, from laptops

to supercomputers. It also leverages several popular packages for mesh infrastruc-

ture and solvers through a unified input file. Here, all of our experiments use a

classical AMG solver through BoomerAMG in Hypre. The ILU(0) method is from

Euclid, also a part of Hypre. ILU(0) is used sequentially for the two-dimensional

examples, and parallel ILU(0) (also from Euclid) is used for the three-dimensional

cases. GMRES is provided within Amanzi. The test cases are run on Edison, a Cray

system at the National Energy Research Scientific Computing Center (NERSC)1,

with a peak performance of 2.57 petaflops/sec, 133,824 compute cores, and 357

terabytes of memory. We run the two-dimensional test cases in serial, and the

three-dimensional SPE10 problem (see section 3.4.4) with 256 cores. Amanzi and

other libraries are compiled with OpenMPI 1.6.5 and gcc-4.9.2. The total time is

measured in seconds.

This section has three parts. In the first part, we show the results for a two-

dimensional oil-water model problem. Although the problem is small, it is difficult

to solve due to the heterogeneity of the permeability field. In the second part, we

report the results for a three-dimensional example. In the last part, we examine the

scalability of the three preconditioning strategies. Unless specified otherwise, we use

the benchmark problem SPE10 [28] for permeability data and porosity.

1A DOE Office of Science User Facility supported by the Office of Science of the U.S. Department

of Energy under Contract No. DE-AC02-05CH11231.
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3.4.1 Two-dimensional oil-water problem

The domain is a rectangle with dimensions 762 × 15.24 meters. The mesh is

100 × 20, which means that the problem is truly two-dimensional in the xz plane.

We inject pure water into the domain through the boundary at the lower left corner,

and oil and water exit the domain through the top right corner. These correspond

to the Sw = 1.0, λw∇Pw · n = −50 m3/day at the inlet, and Sw = 0.2, Pw = 0 at

the outlet. The simulation is run for 200 days with time step ∆t = 20 days.

For capillary pressure models, we employ a simple linear model and the Brooks-

Corey [20] model:

Linear model: Pc(Sw) = P0(1− S̄w), Brooks-Corey: Pc(Sw) = PdS̄
−1/λ
w , (3.27)

in which S̄w is the effective saturation, Pd is the entry pressure, and λ is related to

the pore-size distribution. For the Brooks-Corey model, the typical range of λ is

[0.2, 3.0] [9,36]. In general, λ is greater than 2 for narrow distributions of pore sizes,

and λ is less than 2 for wide distributions. For example, sandpacks with broader

distributions of particle sizes have λ ranging from 1.8 to 3.7 [20]. The Brooks-Corey

capillary pressure curves for various values of λ are plotted in figure 3.6. Other

parameters are listed in table 3.2 and example 1 of table 3.3.

For all of the simulations presented here, the convergence tolerance for New-

ton’s method is ||F (x)|| ≤ 10−6, and the linear tolerance for GMRES is ||Jδuk −

F (uk)|| ≤ 10−12||F (uk)||, which is the default in Amanzi. BoomerAMG is used as a

preconditioner. The number of V-cycle steps is set to 1. The coarsening strategy is
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Figure 3.6: Capillary pressure curves for Brooks-Corey model with entry pressure

Pd = 105 Pa.

the parallel Cleary-Luby-Jones-Plassman (CLJP) coarsening [32]. The interpolation

method is the classical interpolation defined in [80], and the smoother is the forward

hybrid Gauss-Seidel / successive over-relaxation (SOR) scheme.

In order to explore the effects of different models for capillary pressure on solver

performance, we use the four sets of parameters listed in table 3.3. In Example 1,

the parameters are chosen such that the L∞ norm of the derivative of capillary

pressure P ′c is large, leading to a diffusion-dominated case (see equation (3.12)).

In Example 2, the parameters are tuned to reduce the L∞ norm of P ′c, leading to

an advection-dominated case. Example 3 is a more extreme case of example 2,

in which P ′c is further decreased, leading to a strongly advection-dominated case.

Example 4 represents another diffusion-dominated case, and it is only used in the

scaling test in section 4.5. We also note the difference between the linear model
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Figure 3.7: Permeability field obtained from SPE10 model 1 data.

The x-direction is scaled down by 1/20 for visualization.

Initial wetting phase pressure 105 Pa

Initial nonwetting phase saturation 0.8

Residual wetting phase saturation 0.0

Nonwetting phase density 700 kg/m3

Wetting phase density 1000 kg/m3

Nonwetting phase viscosity 10.0 cP

Wetting phase viscosity 1 cP

Porosity 0.2

Table 3.2: Input data for the quarter-five spot problem.
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Parameters Ex 1 Ex 2 Ex 3 Ex 4

Linear entry pressure P0 105 104 103 106

Brooks-Corey entry pressure Pd 106 105 2× 104 106

Brooks-Corey λ 2.5 0.8 2.5 0.8

Table 3.3: Parameters for capillary pressure models

and the Brooks-Corey model for capillary pressure. The derivative P ′c for the linear

model is a constant value, which means that the character of the problem, i.e.

diffusion-dominated or advection-dominated, is the same everywhere for the whole

domain. In the Brooks-Corey model, P ′c depends on the saturation of the wetting

phase, and the problem can be diffusion-dominated in one part of the domain, and

advection-dominated in another part. This can cause further difficulties for AMG-

based solvers, whose optimal performance is sensitive to the characteristics of the

problem.

The performance of the three strategies is summarized in tables 3.4 to 3.6.

NI denotes the number of nonlinear iterations, LI the number of linear iterations,

LI/NI the average number of linear iterations per nonlinear iterations, and Time the

total time in seconds of the whole simulation. For the diffusion-dominated problem

for which the results are shown in table 3.4, AMG is the most efficient method,

about 25% more efficient than the block preconditioner in terms of both iteration

counts (linear iterations per Newton step) and total run time. Note that in this

example, the diffusion term in the (2,2)-block (Ass) is large and the block is close
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Methods/Models

Linear Brooks Corey

NI LI LI/NI Time NI LI LI/NI Time

AMG 32 368 11.5 27.2 36 470 13.1 37.24

CPR-AMG(1) 32 3695 115.5 324.15 36 5831 162 567.7

CPR-AMG(2) 32 899 28.1 103.94 36 1102 30.6 134.6

BF 32 524 16.4 33.17 36 599 16.6 46.2

Table 3.4: Performance of three preconditioning strategies for set of parameters in

the diffusion-dominated Example 1.

to a scalar elliptic problem. Hence, it is not surprising that AMG performs well in

this case. For the linear model, the block factorization approach still takes about

8 times fewer linear iterations, and it is about 10 times faster in total run time

than CPR-AMG(1). The reason for this discrepancy is that CPR-AMG(1) is a

two-stage preconditioner, and it requires an extra global solve using ILU. The block

factorization preconditioner does not rely on ILU, which helps improve the run time

significantly. CPR-AMG(2) also performs well in this case. Although it requires

one more AMG solve per Newton iteration than CPR-AMG(1), it still outperforms

CPR-AMG(1) in terms of both the number of linear iterations per Newton step and

the total run time. The same conclusion can be made for the Brooks-Corey model.

The results reported in table 3.5 reveal the lack of robustness of AMG when

applied to the coupled system. In contrast to the diffusion-dominated case, for
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Methods/Models

Linear Brooks Corey

NI LI LI/NI Time NI LI LI/NI Time

AMG 37 2575 69.6 138.8 - - - -

CPR-AMG(1) 37 1919 51.9 175.5 55 4851 88.2 605.7

CPR-AMG(2) 37 1222 33.0 157.1 55 3701 67.3 506.8

BF 37 684 18.5 51.7 55 1633 29.7 131.1

Table 3.5: Performance of three preconditioning strategies for set of parameters in

the advection-dominated Example 2.

Methods/Models

Linear Brooks Corey

NI LI LI/NI Time NI LI LI/NI Time

AMG - - - - - - - -

CPR-AMG(1) 43 1079 25.1 122.8 48 2173 45.3 247.6

CPR-AMG(2) 43 1442 35.5 169.8 48 4805 100.1 560.5

BF 43 1002 23.3 69.8 48 1829 38.1 121.8

Table 3.6: Performance of three preconditioning strategies for set of parameters in

the strongly advection-dominated Example 3.
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the linear model of capillary pressure, AMG requires the highest number of linear

iterations per Newton step for the advection-dominated case, and it even diverges for

the Brooks-Corey model. The block factorization preconditioner still shows good

performance, taking about half the number of iterations and running four times

faster than the next best method, which is CPR-AMG(2). CPR-AMG(1) is still the

least effective method in this case for both capillary pressure models.

For the strongly advection-dominated problem with parameters in example 3

(see table 3.6), AMG diverges for both the linear and Brooks-Corey capillary pres-

sure models. The performance of CPR-AMG(2) is also affected in this case, trailing

that of CPR-AMG(1). CPR-AMG(2) is still more robust than direct application of

AMG, however, since unlike AMG, this method still converges. The block factor-

ization preconditioner is again the most effective method, requiring fewer number of

iterations and about half the run time of CPR-AMG(1). This suggests that when

the diffusion term in the Ass block gets small, the coupling block Aps which has the

structure of a discrete first-order hyperbolic problem for the saturation, becomes

important and needs to be taken into account. The block factorization method does

exactly this. Moreover, it takes advantage of the effectiveness of AMG for scalar

problems. Recall that in the block factorization approach, AMG is applied to the

approximate Schur block S̃, and to the block Ass. S̃ has the form of a perturbed

elliptic problem, and therefore we believe it is similar in character to the original

pressure block App. Thus, AMG is a natural choice for approximating the action of

the inverse of S̃. Similarly, the block Ass is a discrete version of a advection-diffusion

problem, for which AMG should work well.
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Methods/Mesh sizes 202 402 802 1602

AMG 7 7 7 7

CPR-AMG(1) 15.1 25.9 49.4 95.2

CPR-AMG(2) 22.0 30.9 38.1 40.7

BF 19.9 21.0 21.1 21.1

Table 3.7: Iteration counts for diffusion-dominated case with gravity, time step

dt = 10 days.

3.4.2 Two-dimensional problem with gravity

In this example, we compare the performance of the different strategies for

a problem in which gravity plays a dominant role. The domain is a square box

of size 20 × 20 meters. The absolute permeability is a homogeneous field of 100

millidarcy. Water is injected into the domain through the boundary at the top left

corner, and the outlet is at the top right corner. The rate of injection is 5 m3/day.

For spatial discretization, we use uniform grids of size 20 × 20, 40 × 40, 80 × 80,

and 160×160 respectively. The initial conditions are the same as the heterogeneous

two-dimensional example above. The time steps are 10, 4, and 1 days, and the final

times are 20, 8, and 2 days respectively.

The diffusion-dominated case, shown in table 3.7, exhibits the same pattern as

in the previous example: the AMG preconditioner is the most efficient method, fol-

lowed by the block factorization method, CPR-AMG(2), and CPR-AMG(1). AMG
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Methods/Mesh sizes 202 402 802 1602

AMG - - - 17.3

CPR-AMG(1) 17.9 17.8 16.1 25.2

CPR-AMG(2) 30.3 29.8 22.7 30.2

BF 13.0 17.0 21.1 23.9

Table 3.8: Iteration counts for advection-dominated case with gravity, time step

dt = 4 days.

Methods/Mesh sizes 202 402 802 1602

AMG - - - -

CPR-AMG(1) 18.6 19.6 19.7 18.8

CPR-AMG(2) 31.5 34.6 36.6 36.3

BF 13.1 9.3 12.0 16.4

Table 3.9: Iteration counts for highly advection-dominated case with gravity,

time step dt = 1 day.
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and the block factorization method exhibit optimal performance with respect to

problem size. The number of iterations for CPR-AMG(2) also seems to reach a

plateau as the mesh size is refined. In contrast, the performance of CPR-AMG(1)

does not scale well with respect to mesh size for this case, taking about twice the

number of iterations for each level of mesh refinement.

The results for the advection-dominated case are shown in table 3.8. The

AMG method is not robust and only converges for the largest mesh size (for which it

takes the fewest iterations). The block factorization preconditioner is highly robust

and also appears to require iteration counts tending to a constant as the mesh is

refined. The performance of CPR-AMG(2) is consistent except for the 80 × 80

mesh. Although it requires more iterations than CPR-AMG(1), this method shows

promising scaling property, similar to the previous example, since the number of

iterations does not grow as the mesh is refined. CPR-AMG(1) performs quite well

for this case, but it still exhibits poor scalability as the number of iterations grow

quickly between 80× 80 and 160× 160.

In the strongly advection-dominated case, AMG diverges for all mesh sizes.

The new block factorization is the most efficient method in this case, requiring the

smallest number of iterations across all mesh sizes. Here, CPR-AMG(1) is more

efficient than CPR-AMG(2), requiring about half the number of iterations. Both

CPR-AMG(1) and CPR-AMG(2) show good scaling property in this case. The

scaling result for the block factorization method is not as clear as in the diffusion

and advection dominated cases, but we suspect that the mesh is not fine enough for

a consistent pattern to emerge.
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Besides varying the mesh size, we also experimented with changing the time

step size for a fixed mesh of 80 × 80 for the same problem. The final time for the

simulation is 8 days. The results are reported in table 3.10. Since AMG does not

converge in this experiment, we exclude it from the results. It is clear that as the

time step gets larger, Newton’s method takes more iterations to converge. For dt =

8 days, there is only one time step and it is the most difficult case. CPR-AMG(1)

number of iterations is not significantly affected by the time step except for the

largest time step size of 8 days. Meanwhile, CPR-AMG(2) number of iterations

decreases as the time step gets larger, but goes up again at dt = 8 days. The block

factorization method shows consistent increase in the number of iterations for larger

time steps. Overall, there is not much of a difference in terms of iteration counts

for these three methods, but it is worth noting that the block factorization method

is much faster than the others in terms of run time, as it does not require a global

ILU solve.

3.4.3 Behavior of Eigenvalues

It is often possible to obtain insight into the properties of preconditioning

operators from the eigenvalues of the preconditioned matrix JM−1. In particular,

recall a standard analysis of the convergence behavior of GMRES for solving the

preconditioned system (equation (3.16)) [83]. Assume the preconditioned matrix

is diagonalizable, JM−1 = V ΛV −1, where Λ is a diagonal matrix containing the

eigenvalues of the preconditioned matrix and the columns of V are the corresponding
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Methods/Time steps

dt = 1 day dt = 2 days dt = 4 days dt = 8 days

NI/TS LI/NI NI/TS LI/NI NI/TS LI/NI NI/TS LI/NI

CPR-AMG(1) 12.4 16.9 17 15.9 23 16.1 28 19.4

CPR-AMG(2) 12.4 29.0 17 24.0 23 22.7 28 27.2

BF 12.4 16.7 17 19.0 23 21.1 28 23.0

Table 3.10: Results for the advection-dominated case with gravity P0 = 104.

NI/TS is the number of Newton iteration per time step.

eigenvectors. If ck = M−1ĉk are the iterates obtained at the kth step of GMRES

iteration, with residual rk = q − Jck, then

‖rk‖2

‖r0‖2

≤ ‖V ‖2 ‖V −1‖2 min
pk(0)=1

max
λ∈σ(JM−1)

|pk(λ)|, (3.28)

where the minimum in equation (3.28) is over all polynomials of degree at most k

that have the value 1 at the origin, σ(JM−1) is the set of eigenvalues of JM−1,

and the norm is the vector Euclidian norm. Thus, a good preconditioner tends to

produce a preconditioned operator with a compressed spectrum whose entries are

not near the origin. In this section, we explore the behavior of the eigenvalues of

the preconditioned matrix with an eye toward understanding the effects of features

of the discrete problem such as discretization mesh size and qualitative features of

the model such as the relative weights of diffusion and advection and the degree of

coupling between the components.

Figure 3.8 gives a representative depiction of the eigenvalues of precondi-
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tioned operators for three of the preconditioners considered. These results are for

benchmark problems for which performance is considered in section 3.4.1, the two-

dimensional linear oil-water model discretized on a 100× 20 grid. The plots on the

left side of the figure show eigenvalues for the diffusion-dominated case (for which

solution performance is shown in table 3.4), and those on the right show eigenvalues

for the advection-dominated case (performance in table 3.5). 2

These displays indicate that the spectra for the preconditioned systems for the

CPR-AMG(2) and BF preconditioners are bounded away from the origin, whereas

for the CPR-AMG(1) preconditioner there are many small eigenvalues. Performance

of CPR-AMG(1) improves in the advection-dominated case, and the smallest asso-

ciated eigenvalues are somewhat further from the origin. In contrast, the latter

two preconditioners are largely unchanged in the advection-dominated case, where

they are still effective, and the associated eigenvalues are also contained in simi-

larly structured regions far from the origin. We believe the superior performance

of the BF preconditioner comes from its greater emphasis on the coupling between

pressure and saturation, derived from use of the approximate Schur complement

(equation (3.22)).

2These computations were done using the eig function in Matlab, and they use Matlab back-

slash to perform the actions of the inverses of A11, A22 and the modified Schur complement. This

contrasts with the solution algorithms tested, which approximate these operations using one AMG

V-cycle.

58



Diffusion-dominated
CPR-AMG(1)

Advection-dominated
CPR-AMG(1)

Diffusion-dominated
CPR-AMG(2)

Advection-dominated
CPR-AMG(2)

Diffusion-dominated
BF

Advection-dominated
BF

Figure 3.8: Eigenvalues of preconditioned systems for different strategies, applied

to the diffusion-dominated Example 1 (left) and advection-dominated Example 2

(right).
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Methods/Models

Linear Brooks Corey

NI LI LI/NI Time NI LI LI/NI Time

AMG 16 282 17.6 103.1 20 452 22.6 144.7

CPR-AMG(1) 16 2698 168.6 803.2 20 6069 303.45 1940.8

CPR-AMG(2) 16 712 44.5 299.5 20 1900 95.0 741.1

BF 16 355 22.2 133.6 20 752 37.6 231.1

Table 3.11: Performance in the 3D case for the set of parameters in example 1 of

table 3.3.

3.4.4 Three-dimensional Problem

We use a homogeneous permeability field of 100 millidarcy, and the grid is

stretched to induce anisotropy. The model dimensions are 25× 100× 6 meters and

the cell size is 0.5 × 1 × 0.05 meter. Thus, the mesh is 50 × 100 × 120, and the

problem has 1.2 million unknowns in total. Water is injected into the domain at

one bottom corner and the outlet is at the opposite corner. The injection rate is

0.75 m3/day. The parameters for the capillary pressure model is from example 1 of

table 3.3. The simulation is run for 100 days with time step ∆t = 20 days. Table 3.11

shows the performance results of the diffusion-dominated case for this 3D example,

which are consistent with those of the previous two-dimensional example. AMG

preconditioner shows the best results for both the iteration counts per Newton step

and the time it takes to complete the simulation for both capillary pressure models.
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CPR-AMG(2) does not perform quite as well as AMG, but it is much more efficient

than CPR-AMG(1) for both performance measures and capillary pressure models.

As in the two-dimensional case, the new block factorization method performs well,

requiring fewer than half the iterations than CPR-AMG(2) for both the linear and

Brooks-Corey models, and running in about one third the CPU time.

We also tested the three-dimensional SPE10 problem with the linear model of

capillary pressure for the different preconditioning strategies. Here, AMG diverges

even for the diffusion-dominated case (P0 = 106 Pa), even though it was the most

efficient method for the two-dimensional example. The block factorization method is

about four times faster than CPR-AMG(2) and five times faster than CPR-AMG(1)

in the diffusion dominated case. CPR-AMG(2) still outperforms CPR-AMG(1) both

in terms of iteration counts and run time, but the margin is smaller than for the two-

dimensional problem (table 3.12). In the advection-dominated case (P0 = 105 Pa),

unlike in the two-dimensional example, CPR-AMG(1) is more efficient than CPR-

AMG(2), requiring about 23% fewer number iterations and 45% run time. The block

factorization approach is still the most efficient method, taking fewer than half the

number of iterations and less than half the run time of CPR-AMG(1) (table 3.13).

We also note that the number of iterations for the block factorization method is very

consistent with respect to the characteristics of the problem, i.e. it does not change

significantly whether the problem is diffusion-dominated, advection-dominated, or

strongly advection-dominated.
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Methods/Models

Linear

NI LI LI/NI Time (s)

AMG - - - -

CPR-AMG(1) 17 2410 141.8 614.14

CPR-AMG(2) 17 1661 97.7 448.21

BF 17 490 28.8 121.71

Table 3.12: Performance for the three-dimensional SPE10 model,

diffusion-dominated case.

Methods/Models

Linear

NI LI LI/NI Time (s)

AMG - - - -

CPR-AMG(1) 18 1122 62.3 354.38

CPR-AMG(2) 18 1554 86.3 657.12

BF 18 474 26.3 157.24

Table 3.13: Performance for the three-dimensional SPE10 model,

advection-dominated case.
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Figure 3.9: Weak scaling for different strategies.

3.4.5 Scaling Results

To perform a scalability study, we run a test problem on a box of dimensions

20 × 20 × 20 meters. The initial mesh is 20 × 20 × 20 and is repeatedly refined in

the z-direction. The time step is fixed at ∆t = 20 days. The domain has constant

material properties. The parameters for the capillary pressure models are listed in

example 4 of table 3.3. Note that this set of parameters corresponds to a diffusion-

dominated problem. The results shown in figure 3.9. indicate that the performance

of the block factorization, CPR-AMG(2), and AMG methods is independent of the

mesh size. The number of linear iterations per Newton step does not grow as the

mesh is refined which is optimal multigrid performance. The block factorization

method’s performance is nearly identical to that of AMG for the linear model, and

still quite close for the Brooks-Corey model, compared to CPR-AMG(2). CPR-

AMG(1), however, does not scale as well as the other two methods. The linear

iteration counts for CPR-AMG(1) grows linearly as the mesh is refined.
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3.5 Conclusions

In this chapter, we showed the performance of our implementation of a fully

implicit parallel isothermal two-phase flow simulator along with four different pre-

conditioning strategies to solve the linear systems resulting from linearization of

the coupled equations, and we have tested the performance of these methods as

preconditioners for GMRES. We have also developed a new block factorization pre-

conditioner whose performance is robust and efficient across all benchmark prob-

lems studied. In contrast, although AMG preconditioning applied to the coupled

systems is the most efficient choice in some cases (both two-dimensional and three-

dimensional diffusion-dominated examples), it exhibits slow convergence and some-

times diverges for advection-dominated cases. The new block factorization precon-

ditioner achieves consistently low iteration counts across all the tests and varying

examples of capillary pressure, and it scales optimally with problem size. The

combinative CPR-AMG(1), though robust across all the tests, is the least efficient

method, with the exception of the near hyperbolic case where it is faster than CPR-

AMG(2). The additive CPR-AMG(2) method performs well in most cases except

the strongly advection-dominated case. It also scales optimally with problem size

for both advection-dominated and diffusion-dominated case.
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Chapter 4: Multigrid Reduction Method for Multiphase Flow in Porous

Media with Phase Transitions

4.1 Introduction

The previous chapter is concerned with the development of scalable precondi-

tioners for incompressible two-phase flow. This chapter focuses on the two-phase,

two-component model with phase transitions. One important effect of phase tran-

sitions is that the governing system of PDEs can become degenerate, making the

resulting linear systems indefinite. Again, Krylov subspace methods, such as the

generalized residual method (GMRES) [84], can be applied to solve these systems.

However, these methods by themselves generally converge slowly and they must be

appropriately preconditioned to accelerate convergence. The ILU factorization is a

popular approach as a preconditoner, due to its simplicity and robustness. However,

as simulations cover larger and larger domains and are deployed over high perfor-

mance parallel architectures, there is an apparent need for robust solvers that scale,

and the use of standard (single-level) ILU methods becomes less favorable.

Previously, most of the research has focused on finding new formulations which

can deal with phase transitions. Some approaches include primary variable switch-
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ing (PVS) [51, 98], negative saturation [1], and finding a set of persistent primary

variables [18,63,65]. Recently, a new approach has been developed for handling the

phase transitions by formulating the system of equations as a nonlinear complemen-

tarity problem (NCP) [16, 59, 62]. Unlike the PVS approach, the advantage of the

NCP approach is that the set of primary variables is consistent throughout the simu-

lation, and no primary variable switching is needed. Not only is this approach more

robust and efficient, it also presents an opportunity to use scalable linear solvers

such as algebraic multigrid (AMG).

In this chapter, we develop a new family of AMG preconditioners based on

multigrid reduction (MGR) for GMRES to solve the linear systems resulting from

the discretization of the continuous problem. The algorithms and results presented

here also appear in [22]. The MGR technique has been around for many years

[78, 79]. It can be considered as a generalization of the multi-stage preconditioner

in a standarfd multigrid framework. A closed form of the error propagator can be

derived for the MGR approach, and this enables us to study the effect of different

multigrid components on the convergence of the linear solver. In addition, the MGR

framework has been shown to be an efficient preconditioner for different types of

PDEs, such as models of reservoir simulation, and it has also been applied with

varying degree of success to the time dimension [47].

We consider a two-phase, two-component system with phase transitions as our

model problem. We describe this model in detail in section 4.2. Classical approaches

to simulate two-phase, two-component are well-posed if two primary variables are

chosen in advance. For example, one can choose one phase pressure and one phase
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saturation, or one phase pressure and one component concentration. This set of

variables remains fixed in the case of phase appearance/disappearance if one knows

in advance what phase will appear and disappear during the simulation. Then

a constrained pressure residual (CPR) preconditioning approach [38, 74, 93] can be

employed to obtain a semi-elliptic pressure equation. The pressure equation is solved

with a multi-level method, such as AMG or multiscale [37], and this is followed by

a relaxation step with ILU for the global linear system. Although this approach has

been shown to be very effective for some real world examples [37], it is not always

robust in cases with strong capillarity effects [21]. Due to the fact that the CPR

approach uses ILU in the smoothing step, it also may not scale as well as a block

factorization approach [21]. The goal of this chapter is to develop a new multigrid

algorithm that is both robust, efficient, and also general enough to accommodate

various formulations of compositional multiphase flow. In particular, we show that,

under appropriate assumptions, our multigrid reduction method is equivalent to the

CPR-AMG and block factorization approaches.

The rest of this chapter is organized as follows: In section 4.3, we describe the

fully implicit discretization. We briefly review the MGR framework in section 4.4

and explain our new MGR algorithm in section 4.5. In section 4.6, several numerical

tests are used to assess the robustness and scalability of the new algorithm. Some

concluding remarks as well as future work are presented in section 4.7.
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4.2 Problem Statement

4.2.1 Governing Equations

We consider a simplified two-phase two-component model with phase transi-

tions, similar to that presented in [19]. This model provides a simple example that

demonstrates the capability of the nonlinear complementarity constraint approach

to handle phase appearance and disappearance. The flow consists of gas and liquid

phases, and the components are hydrogen and water. We make the following simpli-

fications: (1) water does not vaporize so the gas phase contains only hydrogen, and

(2) the amount of hydrogen dissolved into the liquid phase is small. For a complete

set of assumptions, we refer to [18]. For the two components, the mass conservation

equations read

φ
∂(ρwl Sl)

∂t
+∇ · (ρwl ql − jhl ) = 0, (4.1)

φ
∂(ρhl Sl + ρhgSg)

∂t
+∇ · (ρhl ql + ρhgqg + jhl ) = 0, (4.2)

where the subscripts l, g denote the liquid and gas phases, and the superscripts

w, h denote the water and hydrogen components, respectively. The porosity of

the medium is denoted φ, Satα, qα are the saturation and velocity of phase α,

respectively; ρhl is the dissolved hydrogen mass concentration in the liquid phase;

and jhl is the diffusion flux of hydrogen in the liquid phase. The Darcy velocity qα

follows the Darcy-Muskat law

qα = −Kλα∇(Pα − ραg), α = l, g, (4.3)
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where K is the absolute permeability, λα, Pα, and ρα are the mobility, pressure, and

density of phase α, and g is the gravitational acceleration. The mobility λα of phase

α is defined as the ratio between the phase relative permeability krα and the phase

viscosity µα: λα = krα/µα. Using Fick’s law, the diffusion flux of hydrogen in liquid

jhl in equations (4.1) and (4.2) can be expressed as

jhl = −φSlDh
l ∇ρhl , (4.4)

where Dh
l is hydrogen molecular diffusion coefficient in liquid. Since we assume

incompressibility of the liquid phase, the mass density of the water component in

the liquid phase is constant, i.e. ρwl = ρstdw . To capture capillarity effects, the jump

in the pressure at the interface of the two phases is modeled by the relation

Pg = Pl + Pc(Sl). (4.5)

where Pc is the capillary pressure. Additionally, we have the constraints

Sl + Sg = 1. (4.6)

To close the model, we also need a set of equations for the thermodynamic equilib-

rium. Neglecting water vapor and assuming low solubility of hydrogen in the liquid

phase, Henry’s law can be used to connect the gas pressure Pg and the dissolved

hydrogen mass concentration in liquid ρhl :

ρhl = ChPg, (4.7)

where Ch = HMh = ρstdw Mh/Mw, H is the Henry’s law constant, and Mk, k ∈

{w, h} are the molar mass of the k-th component. Again, since we ignore water
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vapor in the gas phase, the ideal gas law reads

ρhg = ρg = CvPg, (4.8)

where Cv is a constant and Cv = Mh/(RT ); T is the temperature and R the ideal

gas constant.

4.2.2 Nonlinear Complementarity Problem

To handle phase transitions, we introduce the following nonlinear complemen-

tarity problem

ChPg − ρhl ≥ 0, 1− Sl ≥ 0, (1− Sl)(ChPg − ρhl ) = 0. (4.9)

Equivalently, we can rewrite the above equation using the min function as in [16,59]

min(1− Sl, ChPg − ρhl ) = 0. (4.10)

Although one can use other types of complementarity functions, the min function is

convenient because of its piecewise linearity with respect to the variable Sl and ρhl ,

which simplifies the computation of the Jacobian in each nonlinear iteration. When

the gas phase is not present, we have ChPg−ρhl > 0 since ρhl = 0, and equation (4.10)

reduces to 1− Sl = 0. When the gas phase appears, 1− Sl > 0 and the constraint

equation is governed by Henry’s law in equation (4.7).

4.2.3 Relative Permeability Curves

In this work, we use two different models for relative permeability terms.
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• Power law (Brooks-Corey type)

krl = S2
le, krg = (1− Sle)2, (4.11)

Sle =
Sl − Slr

1− Slr − Sgr
. (4.12)

• Van Genuchten law [91]

krl =
√
Sle

(
1−

(
1− S1/m

le

)m)2

, (4.13)

krg =
√

1− Sle
(

1− S1/m
le

)2m

, (4.14)

m = 1− 1

n
, (4.15)

where Sle is the effective liquid saturation, and Slr, Sgr ∈ [0, 1] are the residual

saturations of the liquid and gas phase, respectively. As we have mentioned in sec-

tion 2.2.2, the Van Genuchten model is better suited for fine-textured soils and dense

materials, whereas the Brooks-Corey model is more accurate for coarse-textured

soils. Since the goal of this chapter is to develop a preconditioner that works well

across a wide range of porous media with different soil characteristics, it is important

that we experiment with both of these models.

4.2.4 Capillary Pressure

We employ two models for capillary pressure

• Linear model

Pc = Pr(1− Sle). (4.16)
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• Van Genuchten model [91]

Pc = Pr

(
S
−1/m
le − 1

)1/n

. (4.17)

where Pr is the entry pressure. Notice that the function Pc(Sl) in the Van Genuchten

model is only defined for Sl ∈ [Slr, 1−Sgr] and P ′c is unbounded near Slr and 1−Sgr.

Thus, it is necessary to modify the model to limit the growth of P ′c and extend it

for Sl ∈ R, since the value of Sl can become larger than 1 − Sgr or less than Slr

during the nonlinear iteration. We used a regularization as presented in [62] with

parameter ε = 10−5.

• For Sl ∈ [Slr, 1− Sgr]

S̃ := Slr + (1− ε)(Sl − Slr) +
ε

2
(1− Sgr − Slr) (4.18)

P̃c(Sl) = Pc(S̃)− Pc
(
Slr +

ε

2
(1− Sgr − Slr)

)
(4.19)

• For Sl < Slr

P̃c(Sl) = P̃c(Slr) + P̃
′
c(Slr)(Sl − Sgr) (4.20)

• For Sl > 1− Sgr

P̃c(Sl) = P̃c(1− Sgr) + P̃
′
c(1− Sgr)(Sl − 1 + Sgr) (4.21)

In this regularization, for the saturation that is outside of the domain, capillary

pressure is computed by a linear extrapolation from the regularization points Slr +

O(ε) and 1 − Sgr − O(ε) with the slopes P ′c(Slr + O(ε)) and P ′c(1 − Sgr − O(ε)),

respectively.
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4.2.5 Primary Variables

There are many ways to choose a set of primary variables, depending on the

problem formulation and applications. In our model example, a convenient choice

is the liquid saturation, liquid pressure, and the concentration of hydrogen in the

liquid phase. We have our solution vector u = {Pl, Sl, ρhl }. Unlike in other methods

such as primary variable switching, in the NCP approach, the choice of primary

variable is fixed throughout the simulation. This is an important feature for success

of our multilevel algorithm discussed in section 4.5.

4.3 Solution Algorithm

Here, we consider solving the coupled system consisting of equations (4.1),

(4.2) and (4.9) fully implicitly. We use a cell-centered finite volume method for spa-

tial discretization, as it is a natural way to preserve the mass conservation property

of the balance equations (4.1) and (4.2). In addition, it can deal with the case of

discontinuous permeability coefficients, and it is relatively straightforward to imple-

ment. For the time domain, we again employ the backward Euler method to avoid

the CFL stability restriction of the time step.
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4.3.1 Semi-smooth Newton’s Method

We want to solve the system

R(u) =


H(u) = 0 (from the PDEs)

Θ(u) = min(F ,G) = 0 (from the constraints)

in which F and G are discrete functions of 1− Sl and CgPg − ρhl respectively, and

R(u) is the residual function. A straightforward approach for solving nonlinear

systems of equations is the Newton’s method, which requires solution of a linear

system at each iteration k:

∂R

∂u

∣∣∣
u=uk

δu = −R(uk). (4.22)

This method requires that the Jacobian ∂R/∂u is defined everywhere. In the case of

NCP formulation, the constraints Θ are only differentiable almost everywhere, and

we will need to consider a semi-smooth Newton’s method instead. The procedure for

the semi-smooth Newton’s method is similar to that for Newton’s method, except

that we replace the derivative Θ′ with a member of the subdifferential ∂Θ when the

function Θ is non-differentiable. Let F : Rn → Rn be a locally Lipschitz-continuous

function and DF be the set where F is differentiable; the B-subdifferential of F at

x is defined as the set

∂BF (x) := {G ∈ Rn×n : ∃ xk ∈ DF with xk → x,∇F (xk)→ G} .

Algorithm 4 shows the semi-smooth Newton’s method using the minimum function

as the complementarity function as described in [16]. It is also referred to as the

Newton-min algorithm. For our two-phase, two-component model, the active set Ak
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Algorithm 4 Newton-min algorithm

while k < max iter and res > ε do

(1) Define the index sets Ak and Ik:

Ak := {j : Fj(u
k) ≥ Gj(u

k)}, Ik := {j : Fj(u
k) < Gj(u

k)}

(2) Select an element Jk ∈ ∂Θ(uk) such that its jth row is equal to

F ′j(u
k) if j ∈ Ik, G′j(uk) if j ∈ Ak

(3) Solve the system

H ′(uk)4 uk = −H(uk)

Jk 4 uk = −Θ(uk)

(4) Update uk+1

uk+1 = uk +4uk

corresponds to the set of last rows where the gas phase is present. The general semi-

smooth Newton’s method converges locally superlinearly for semi-smooth functions,

and quadratically for strongly semi-smooth functions. Definitions of semi-smooth

and strongly semi-smooth are given in [72], and a complete treatment of the semi-

smooth Newton’s method with active set strategy is presented in [54].

The linear system resulting from taking the subdifferential ∂R/∂u is often very

difficult to solve using iterative methods, and preconditioning is critical for rapid

convergence of Krylov subspace methods such as GMRES. In the next section, we

discuss the linear system arising from the semi-smooth Newton’s method and give

a detailed description of the solution algorithms we will use to solve this system.
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4.3.2 Linear System

Assuming that each physical variable is ordered lexicographically, then each

nonlinear iteration entails the solution of a discrete version of a block linear system

of the form 
A11 A12 A13

A21 A22 A23

A31 A32 A33




u1

u2

u3

 =


f1

f2

f3

 , (4.23)

in which the matrices in the first two rows are the discretized version of the linearized

operators from the PDEs. Let δPl, δSl, δρ
h
l be the updates for pressure, saturation,

and hydrogen density at each nonlinear step. Using Taylor expansion and keeping

only the linear terms, we have

A11 = −∇ · (ρwl Kλl∇δPl),

A12 = φ
∂

∂t
(ρwl δSl)−∇ · (ρwl Kλ′l∇P̃lδSl) +∇ · (φDh

l ∇ρ̃hl δSl),

A13 = ∇ · (φSlDh
l ∇δρhl ),

A21 = φ
∂

∂t
(SgCgδPl)−∇ · (ρhlKλl∇δPl)−∇ · (ρhgKλg∇δPl)−∇ · (CgKλg∇PgδPl),

A22 = φ
∂

∂t
((ρhl − ρhg)δSl)−∇ · (ρhlKλ′l∇PlδSl)−∇ · (ρhgKλ′g∇PgδSl)

−∇ · (CgP ′cKλg∇PgδSl)−∇ · (ρhgKλg∇P ′cδSl)−∇ · (ρhgKλgP
′
c∇δSl)

−∇ · (φDh
l ∇ρhl δSl),

A23 = φ
∂

∂t
(S̃lδρ

h
l )−∇ · (φS̃lDh

l ∇δρhl ).

All the coefficients in the above equations are evaluated at the linearization point

{P̃l, S̃l, ρ̃hl }. From these operators, we can make some important observations:
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• The global matrix is non-symmetric and indefinite.

• The block A11 has the structure of a discrete purely elliptic problem for pres-

sure.

• The coupling block A12 has the structure of a discrete first-order hyperbolic

problem in the liquid phase saturation.

• The coupling block A21 has the structure of a discrete parabolic problem in

the wetting phase pressure.

• The block A22 has the structure of a discrete parabolic (convection-diffusion)

problem for saturation when capillary pressure is a non-constant function of

the saturation. When capillary pressure is zero or a constant, P ′c = 0 and

there is no diffusion term, the block has the form of a hyperbolic problem.

• The entries of the blocks with respect to the dissolved hydrogen mass density

A13, A23 are small with respect to the diagonal block A11, and only play a

significant role in the regions where the gas phase does not exist.

These observations will help us motivate the development of our new method in the

next section.

Besides the blocks associated with the PDEs, we also need to consider those

in the last row of the matrix in equation (4.23), which are derived from the discrete

version of the complementarity constraint (see equation (4.9)). When the gas phase

does not exist, we have

A31 = 0, A32 = −δSl, A33 = 0,
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and when the gas phase is present, these blocks become

A31 = ChδPl,

A32 = ChP
′
cδSl,

A33 = −δρhl .

In matrix form, the blocks A31, A32, and A33 are diagonal matrices, since the con-

straints are local. Again, because a phase can disappear, the block A33 is not

guaranteed to be nonsingular. In fact, when this happens, the rows corresponding

to the cells where a phase disappears have zero diagonal values. Thus, we can split

the last row into two separate sets: the set with zeros on the diagonal of A33 and

its complement. Rewriting the matrix A using this splitting we have:

A =





A11 A12 A13 A14

A21 A22 A23 A24

C31 C32 C33 0

C41 C42 0 0

. (4.24)

Let N be the number of elements in the mesh and M be the number of cells in

which the gas phase is present. Then, the size of the matrix A is 3N × 3N . The

blocks Aij, i = 1, 2, j = 1, 2 are of dimension of N × N . The pressure - hydrogen

mass concentration A13, A14 and saturation - hydrogen mass concentration A23, A24

coupling blocks have dimension N ×M and N × (N −M), respectively. The hy-

drogen mass concentration - pressure C31, C41 and hydrogen mass concentration -

saturation C32, C42 constraint blocks have dimension M × N and (N −M) × N ,

respectively. The block C33 is a diagonal matrix of size M × M which contains
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only non-zero diagonal values of A33. The zero block on the diagonal has the size

of (N − M) × (N − M). Since A has zeros on its diagonal, it is clear that we

cannot use classical AMG algorithms to solve this system. In the past, since much

of the focus was to find a formulation that can take into account all the complex

physics involved in simulating compositional multiphase flow with miscibility and

phase transitions, there has not been a lot of work in designing optimal precondi-

tioners for this type of linear system. Recently, there have been some development

of algebraic multigrid preconditioners such as two-stage preconditioning [87,94] and

block factorization [21] for immiscible two-phase flow. Yet, these methods have not

been applied successfully to the problems considered here. The most popular and

robust method is still the incomplete factorization (ILU) of the global matrix A

as a preconditioner for GMRES. In this work, we seek to develop a new algebraic

multigrid preconditioner based on multigrid reduction for the linear system arising

in the semi-smooth Newton’s method.

4.4 Multigrid Reduction

The idea of multigrid reduction (MGR) has been around for a long time,

tracing back to the work of Ries and Trottenberg [78, 79]. Recently, it has gained

more attention through the work on multigrid reduction in time by Falgout et al. [47].

In this section, we summarize the approach for the case of two-level reduction. For

a matrix A of size N ×N , we define a partition of the row indices of the matrix into

C-points and F-points. The C-points play a role analogous to the points on a coarse
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grid, and the F-points belong to the set that is the complement of the C-points. It

is important to note that this partitioning is different from the one usually used in

standard multigrid methods, in which the F-points correspond to the points on the

fine grid, i.e. the set of C-points is a subset of the set of F-points. In multigrid

reduction, the C-points and F-points belong to non-overlapping sets. Using such a

C-F splitting we have

A =

Aff Afc

Acf Acc

 =

 Iff 0

AcfA
−1
ff Icc


Aff 0

0 S


Iff A−1

ffAfc

0 Icc

 , (4.25)

where Icc and Iff are identity matrices and S = Acc − AcfA
−1
ffAfc is the Schur

complement.

We can define the ideal interpolation and restriction operators by

P =

−A−1
ffAfc

Icc

 , R =

(
−AcfA−1

ff Icc

)
. (4.26)

Additionally, define the injection operator as Q =

(
Iff 0

)T
. Then since Aff =

QTAQ and S = RAP , it is simple to derive that

A−1 = P (RAP )−1R +Q(QTAQ)−1QT ,

and

0 = I − A−1A = I − P (RAP )−1RA−Q(QTAQ)−1QTA (4.27)

= (I − P (RAP )−1RA)(I −Q(QTAQ)−1QTA) (4.28)

= (I −Q(QTAQ)−1QTA)(I − P (RAP )−1RA), (4.29)
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where the equivalence occurs since RAQ = QTAP = 0. This identity defines the

two-level multigrid method with the ideal Petrov-Galerkin coarse-grid operatorRAP

and the F-relaxation Q(QTAQ)−1QT . Equation (4.27) is the additive MGR identity

and equations (4.28) and (4.29) are multiplicative identities with pre-smoothing and

post-smoothing. However, constructing ideal interpolation and restriction operators

is impractical, and we need to approximate these operators. In practice, MGR

methods replace ideal restriction and prolongation with approximations R and P

respectively, where

P =

Wp

Icc,

 , R =

(
Wr Icc

)
. (4.30)

There are many ways to construct the restriction R and interpolation P operators.

Here, we have only experimented with two options

Wr = 0, Wp = −D−1
ffAfc, (4.31)

and

Wr = −AcfD−1
ff , Wp = −D−1

ffAfc, (4.32)

where Dff = diag(Aff ). The F-relaxation in equations (4.28) and (4.29) is also

generally replaced with a more efficient method and often extended to all unknowns,

not just F-points. We can solve with (block) Jacobi, (block) Gauss-Seidel, ILU, or

AMG.

The coarse grid operator Ac = RAP could also be considered as an approxi-

mation to the Schur complement. There are many proposed approximations to the

Schur complement, including several based on multigrid ideas [8, 27, 75, 76, 82, 92].

81



Physics-based approximations for the Schur complement are of interest in general

settings. There is a considerable literatures for saddle point problems [17,42,43,85].

Another interesting direction is based on the work on Block Factorized Sparse Ap-

proximate Inverse (Block FSAI) preconditioners in [50]. In the context of MGR, the

Block FSAI could be used to construct good approximation to the restriction and

interpolation operators.

In general, we define the MGR operator in either pre-smoothing or post-

smoothing form by

I −M−1
MGRA = (I − PM−1

c RA)(I −M−1
f A), (4.33)

I −M−1
MGRA = (I −M−1

f A)(I − PM−1
c RA), (4.34)

where M−1
c ≈ (RAP )−1 is the coarse grid correction and M−1

f is the smoother. The

two grid solve consists of an F-relaxation followed by a coarse-grid correction can

be presented as follows

Algorithm 5 MGR preconditioner with presmoothing

Let r = b and e0 = 0.

(1) Global Relaxation:

e1 ← e0 +M−1r, where M = blockdiag(A)

(2) F-Relaxation:

e2 ← e1 +QM−1
ff Q

T (r − Ae1) where Mff = blockdiag(Aff )

(3) Coarse Grid Correction:

e3 ← e2+PM−1
c RI(r−Ae2) whereM−1

c is approximated by a classical AMG method.
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The appeal of the MGR approach is that it provides a flexible framework for

choosing the coarse/fine grids, the interpolation and restriction operators, and the

solver for the coarse/fine grids. For example, if one chooses to extend the F-points to

all unknowns (rather than the complement of the C-points), Wp = 0, Wr = 0 for the

interpolation and restriction operators, and ILU0 and AMG for the F-relaxation and

coarse-grid solve, respectively, then the MGR method is equivalent to the CPR-AMG

approach. The block factorization method in [21] is another variant of the MGR

approach, which uses the C-points for the pressure and F-points for the saturation

unknowns and Wr = −AcfD−1
ff , Wp = 0. Another advantage of the MGR approach

is that it is an algebraic method and unlike geometric multigrid, it can be used as

a “black-box” solver for general geometries and grid types.

So far we only assume that a C-F splitting of the rows is given. How to choose

such a splitting is dependent on the problem and it is up to the user to make the

decision. However, as a general principle, it is usually a good idea to assign the

C-points to the variables associated with an elliptic equation, e.g. pressure, since

we want to solve the coarse grid using an efficient method such as standard AMG. In

the next section, we show how to choose an appropriate C-F splitting at each level

of reduction for our particular problem. We also note that unlike BoomerAMG,

which requires the matrix to be ordered by grid points (see section 3.3.4), our MGR

method is designed for systems of PDEs, and it works with matrices in block form

such as those in equations (4.23) and (4.24).
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4.5 MGR for the two-phase, two-component model

Again, we need to solve the linear system Au = f , in which the matrix A is

given in equation (4.24). The first step of multigrid reduction aims to eliminate the

third row, corresponding to the constraints in the cells where all the phases exist.

Thus, we have the following splitting:

A =





A11 A12 A13 A14 C

A21 A22 A23 A24 C

C31 C32 C33 0 F

C41 C42 0 0 C

(4.35)

Note that the last column indicates the C-F splitting we use for this case. The Schur

complement after the reduction step reads

S1 = RAP =


A11 A12 A14

A21 A22 A24

C41 C42 0

−

A13

A23

0

C−1
33

(
C31 C32 0

)
(4.36)

=


A11 − A13C

−1
33 C31 A12 − A13C

−1
33 C32 A14

A21 − A23C
−1
33 C31 A22 − A23C

−1
33 C32 A24

C41 C42 0

 . (4.37)

Again, the operators R and P come from equations (4.30) to (4.32). Note that

this reduction step is exact since C33 is a diagonal matrix. However, we have not

eliminated the zero diagonal values after the first reduction step. Next, we eliminate
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the saturation block with the following C-F splitting:

S1 =




S11 S12 A14 C

S21 S22 A24 F

C41 C42 0 C

(4.38)

The Schur complement (also the coarse grid) for the second level of multigrid re-

duction reads

S2 = RS1P =

S11 A14

C41 0

−
S12

C42

 S̃−1
22

(
S21 A24

)
(4.39)

=

S11 − S12S̃
−1
22 S21 A14 − S12S̃

−1
22 A24

C41 − C42S̃
−1
22 S21 −C42S̃

−1
22 A24

 , (4.40)

where S̃−1
22 is some approximation of S−1

22 to compute R and P from (equation (4.30)).

In the F-relaxation step, the action of the saturation block S−1
22 is achieved by one

V-cycle of AMG. In the equation above, the presence of the constraints in the matrix

S2 makes it non-elliptic, and therefore, we cannot solve it using AMG, although it no

longer has zeros on the diagonal. The final reduction step is employed to eliminate

these constraints by putting them as F-points:

S2 =


S2

11 S2
12 C

S2
21 S2

22 F
(4.41)

S3 = RS2P = S2
11 − S2

12(S̃2
22)−1S2

21 (4.42)

The Schur complement at the last level S3 can be solved using AMG. A schematic

representation of the multi-level reduction approach is illustrated in figure 4.1. At
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U1; U2; · · · ; UN−1; UN

R = [Wr

U1; U2; · · · ; UN−1; UN

P = [Wp

· · · · · ·

U1

I ] I ]T

Figure 4.1: Multigrid reduction V-cycle

each level, we reduce one or more variables until we obtain the variable associated

with the elliptic operator, which is the pressure variable in our case. This means

that in figure 4.1, U1 ≡ Pl.

4.6 Numerical Experiments

In this section, we perform numerical experiments to show the efficiency of

the multigrid reduction approach (herein referred as hypreMGR) in solving the

linear equations arising in various flow scenarios. We implement hypreMGR as

a separate solver and preconditioner in Hypre [48, 49]. For all AMG solve steps,

we use BoomerAMG [52], also included in Hypre. The two-phase, two-component

flow using the NCP approach is implemented in Amanzi, the computational engine

of teh Advanced Simulation Capability for Environmental Management (ASCEM)

project [5]. Even though Amanzi was first designed for simulation of subsurface flow

and reactive transport, its modular framework and concept of process kernels [35]

allow new physics to be added relatively easily for other applications. The simulator

employed in this work is one such example. Amanzi works on a variety of platforms,
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from laptops to supercomputers. It also leverages several popular packages for

mesh infrastructure and solvers through a unified input file. Again, due to the

presence of zeros on the diagonal of the generalized Jacobian matrix A, we cannot

use current AMG solvers such as Hypre’s BoomerAMG and Trillinos ML for our

problem. Even when we eliminate the zeros on the diagonal of A to obtain a smaller

system, using Hypre’s BoomerAMG and Trilinos ML for system as a preconditioner,

GMRES still fails to converge within 400 iterations. We also exclude ILUt variants

(also implemented in Euclid and Trillinos) as they are not robust for the problems

considered in this work. Thus, in all of our experiments we compare hypreMGR

with the incomplete factorization (ILU) method from Euclid, which is also a part

of Hypre. ILU(k) is used sequentially for all the examples. We experiment with

different levels of fill k and report the results for the minimum k that is sufficient

for GMRES to converge within 400 iterations throughout the simulation in each

test case. GMRES is provided within Amanzi. For simplicity, we employ structured

Cartesian grids for the test cases, but we can also use unstructured K-orthogonal

grids. For parallel results, the test cases are run on Syrah, a Cray system with

5,184 Intel Xeon E5-2670 cores at the Lawrence Livermore National Laboratory

Computing Center. Amanzi and other libraries are compiled with OpenMPI 1.6.5

and gcc-4.9.2. The total time is measured in seconds.

This section has four parts. In the first part, we show the results for an

unsaturated flow problem with no phase appearance/disappearance. In the second

part, we report the results for the saturated flow problem in which the gas phase

appears by injection and then disappears after the injection is stopped. These two
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test cases were originally presented in the MoMaS gas benchmark project [19]. The

third example includes a three-dimensional problem with parameters generally used

in reservoir simulation. In the last part, we examine the scalability of the multigrid

reduction approach.

Unless specified otherwise, for all of the simulations presented here, the con-

vergence tolerance for semi-smooth Newton’s method is ||F (x)|| ≤ 10−5, and the

linear tolerance for GMRES is ||Jδuk − F (uk)|| ≤ 10−12||F (uk)||, which is the de-

fault in Amanzi. For AMG solves, we use the default parameters in BoomerAMG.

The coarsening strategy is the parallel Cleary-Luby-Jones-Plassman (CLJP) coars-

ening [32]. The interpolation method is the classical interpolation defined in [80],

and the smoother is the forward hybrid Gauss-Seidel/SOR scheme. The number of

V-cycle steps is set to 1.

4.6.1 Unsaturated flow

This test shows a two-dimensional case in which the water and gas system is

initially out of equilibrium and then evolves towards equilibrium. There is no flow in

and out of the domain, and there is no phase appearance/disappearance. Figure 4.2

illustrates the porous domain, and the detailed set up of the experiment is as follows.

For boundary conditions, we impose no flow condition on the boundary of the whole

domain. Denoting ψw = ρwl Kλl∇Pl − jhl and ψh = ρhlKλl∇Pl + ρhgKλg∇Pg + jhl ,

we have ψk · ν = 0, k ∈ {w, h} on Γ. Initial conditions are uniformly constant on

each sub-domain Ω1 and Ω2:
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Ω1 Ω2Lx

Ly

L1

Figure 4.2: Porous domain Ω with two sub-domains Ω1 and Ω2.

• Pl = Pl,1 and Pg = Pg,1 on Ω1.

• Pl = Pl,2 = Pl,1 and Pg = Pg,2 6= Pg,1 on Ω2.

For capillary pressure, we use the Van Genuchten model with Pr = 2 × 106 Pa,

n = 1.54, Slr = 0.01, and Sgr = 0. The rest of the parameter values are shown

in tables 4.1 and 4.2. We run 5 time steps of size dT = 10 seconds. The results

are summarized in table 4.3. NS denotes the number of nonlinear iterations, LS

the number of linear iterations, and LS/NS the average number of linear iterations

per nonlinear iteration. In this experiment, because there is no phase disappear-

ance/appearance, the diagonal of the Jacobian does not have any zeros, and ILU(0)

can be used as a preconditioner. With respect to hypreMGR, we apply two levels of

reduction for this problem, one for the constraints with nonzero diagonal values and

one for the saturation block. The approximations for the restriction and interpola-

tion operators from equation (4.31) are used in this case. As the liquid saturation

does not go to zero, the effect of capillary pressure is small and that makes the

system more advection-dominated. Thus, we do not need use AMG to solve for

the saturation correction in the F-relaxation step. Here, we found that using three

Gauss-Seidel smoothing steps is sufficient except for the finest grid where AMG with

a two-level V(3,3)-cycle is used. For the coarse grid, a single AMG V(2,2)-cycle is
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L1 0.5 m

Lx 1 m

Ly 0.1 m

Pl,1 106 Pa

Pg,1 1.5× 106 Pa

Sl,1 96.2 %

Pl,2 106 Pa

Pg,2 2.5× 106 Pa

Sl,2 84.2 %

Table 4.1: Initial conditions

K 1× 10−16 m2

φ 0.3

Dh
l 3× 10−9 m2/s

µl 1× 10−9 Pa s

µg 9× 10−6 Pa s

H 7.65× 10−6 mol/Pa/m3

Mh 2× 10−3 kg/mol

Mw 1× 10−2 kg/mol

ρstdw 103 kg/m3

Table 4.2: Parameter Values

Mesh size

ILU(0) hypreMGR

Time (s) LS LS/NS Time (s) LS LS/NS

200× 10 11.5 555 50.5 10.8 445 40.5

400× 20 97.3 1283 98.7 42.2 458 35.2

800× 40 757.4 2479 190.7 180.3 557 42.8

1600× 80 5666 4321 332.4 801.8 569 43.8

Table 4.3: Performance of hypreMGR for different mesh sizes
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Figure 4.3: Core domain for the gas infiltration example.

applied for all the mesh sizes. Table 4.3 indicates that our new algorithm is more

efficient both in terms of run time and number of iterations. It also exhibits near

optimal scaling with respect to mesh size. hypreMGR is faster across all the meshes

both in terms of the run time and average number of linear iterations. For the mesh

size of 800× 40, hypreMGR is twice faster in terms of run time, and takes less than

a fifth of the number of iterations of ILU(0). For the largest mesh of 1600 × 80,

ILU(0) is very inefficient, and hypreMGR is about 7 times faster than ILU(0) in

terms of run time and number of iterations.

4.6.2 Saturated flow with phase appearance

This test is devoted to describing gas phase appearance produced by injecting

pure hydrogen in a two-dimensional homogeneous porous domain Ω, which was

initially 100% saturated by pure water. The domain is a rectangle of size 200m×20m

with three types of boundaries : Γin on the left side is the inflow boundary; Γout

on the right side is the outflow boundary; and Γimp at the top and bottom is the

impervious boundary (see figure 4.3). There is no source terms inside the boundary,

and the boundary conditions are as follows
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• No flux on Γimp

ψw · ν = 0 and ψh · ν = 0 (4.43)

• Injection of hydrogen on the inlet Γin

ψw · ν = 0 and ψh · ν = 5.57× 10−6 kg/m2/year (4.44)

• Fixed liquid saturation and pressure on the outlet

Pl = 106 Pa, Sl = 1, ρhl = 0 (4.45)

Initial conditions are uniform throughout the domain, corresponding to a stationary

state of saturated liquid and no hydrogen injection

Pl = 106 Pa, Sl = 1, ρhl = 0 (4.46)

The rest of the physical parameters are given in [19].

For the capillary pressure model, we experimented two scenarios: (1) power

laws for relative permeabilities as in equation (4.11) in conjunction with the linear

capillary pressure model, and (2) Van Genuchten for both relative permeabilities

and capillary pressure model. In the first case, the entry pressure is Pr = 2 × 106

Pa, and in the second case, we use Pr = 2 × 106 Pa, n = 1.49. In both cases,

the residual saturations are Sgr = 0 and Slr = 0.4. We run the simulation for

100 time steps of fixed size dT = 5000 years. Figure 4.4 shows the infiltration of

hydrogen after 5 × 105 years for the second scenario, and the performance of the

preconditioners is reported in table 4.4. As can be seen in figure 4.4, the left side of
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Figure 4.4: Gas infiltration after 100 time steps

Figure 4.5: Gas saturation and pressure profiles at the leftmost cell over time for

the saturated flow case.
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the core is infiltrated with hydrogen, while the right side is still fully saturated with

water. We also plot the gas saturation and the pressures in the first cell over time

in figure 4.5. Although we do not have the exact numbers for comparison, a visual

inspection indicates that our simulation results match well with those in [19,62,65].

Regarding the setup of hypreMGR in this case, we use three levels of reduction

with the restriction and interpolation operators in equation (4.32). For the first level

which we need to eliminate the constraints with non-zero diagonal values, a single

Jacobi iteration used for the F-relaxation. For the subsequent levels, we apply a

singe AMG V(1,1)-cycle for the Aff solve. The coarse grid correction is also solved

with one AMG V(2,2)-cycle. With regard to ILU(k), we experiment with different

levels of fill and find that ILU(0), ILU(1), etc. would fail to converge for some

time step, and ILU(5) is needed for convergence throughout the simulation. For

the nonlinear Van Genuchten model, the new approach requires about 34% fewer

number of iterations and about 17% less time than ILU(5) for mesh size of 200×10,

as shown in table 4.4. The advantage of this approach is much clearer as the problem

gets larger (see table 4.5). In this case, hypreMGR takes fewer than half the number

of iterations of ILU(5) and requires 40% less time. Even though the average number

of iterations does grow in the case of hypreMGR, it is much less than the rate of

ILU(5). Also, we suspect that the mesh may not be large enough for the method to

show mesh independence. Similarly, the new approach outperforms ILU(5) in both

number of iterations and run time for the linear model.
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Methods

Linear Van Genuchten

Time (s) LS LS/NS Time (s) LS LS/NS

ILU(5) 505 22595 28.9 522 24474 34.7

hypreMGR 485 16554 21.2 433 15234 21.6

Table 4.4: Performance of Euclid ILU v.s. hypreMGR for mesh size 200× 10

Methods

Linear Van Genuchten

Time (s) LS LS/NS Time (s) LS LS/NS

ILU(5) 3442 42835 60.3 3467 43949 64.6

hypreMGR 2291 20408 28.7 2096 19122 28.3

Table 4.5: Performance of Euclid ILU v.s. hypreMGR for mesh size 400× 20
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Mesh size

ILU(5) hypreMGR

Time (s) LS LS/NS Time (s) LS LS/NS

203 194.0 690 25.6 121.1 267 9.9

403 2715.1 1470 49.0 1381.2 397 13.2

Table 4.6: Performance of hypreMGR for different mesh sizes

4.6.3 Three-dimensional Case with Phase Transition

The domain is a box of dimensions 100m × 100m × 100m. We use a homo-

geneous permeability field of K = 10−14 m2, which is typical for fresh sandstone

(see [11]) that is prevalent in reservoir simulation. The domain is saturated with

water, and pure hydrogen is injected into the domain through the boundary of a

corner at the bottom. The outlet is set at the opposite corner. The injection rate is

3× 5.57 kg/m2/year . We run 1 time step of size dT = 1.825 days. For the relative

permeabilities and capillary pressure models, we use the Van Genuchten model with

the same parameters as the example presented in section 6.3. The results are shown

in table 4.6. Since this is a case with phase appearance/disappearance, we use the

same setup as in the second example (section 6.2) for hypreMGR. From table 4.6,

the new approach is about 40% faster in terms of run time, and takes fewer than

half the number of iterations of ILU(5) for the mesh size of 203. For the larger

mesh size of 403, it is twice faster in terms of run time, and it takes four times

fewer the number of iterations of ILU(5). The result indicates that the advantage of
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hypreMGR clearer as the problem gets larger. Although similar to the result in the

previous example, there is an increase in the number of iterations for hypreMGR

in the case of the larger mesh, but again the problem is not large enough for us to

see the mesh independence result. In fact, we show that this is exactly the case in

the next section. And even though the results are not presented here, we note that

hypreMGR also outperforms ILU(5) both in run time and number of iterations for

the linear model of capillary pressure.

4.6.4 Scaling Results

For the scalability study, we use the same problem setup as in the three-

dimensional example in section 6.3. The only difference is in the mesh size. For a

strong scaling study, we fix the mesh at 803 (about 1.5 million unknowns) and run

the simulation on 8 to 128 cores, each time doubling the number of cores. For weak

scaling, we start with a mesh of 403 and then refine the mesh in all directions up to

3203, so the largest problem has about 100 million unknowns. We run the problem

with 2, 16, 128, and 1024 cores, respectively. The initial time step is dT = 0.125

day, and the final time of the simulation is 10 days, except for the case of the largest

mesh, which we stop the simulation at 3 days, as we reach the memory limit of the

machine.

The results in figure 4.6 shows that hypreMGR achieves promising results,

scaling well up to 64 cores, although it is not quite optimal. From 64 to 128 cores,

however, there run time actually increases. This is due to the problem size on each
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Figure 4.6: Scaling results for MGR.

processor getting small (about 12,000 unknowns for 128 cores), and as a consequence,

the computation to communication ratio decreases, and that makes the method less

efficient. For weak scaling, the performance of hypreMGR is independent of the mesh

size. As the problem size gets larger (8 times for each refinement level), the number

of linear iterations per nonlinear iterations does not grow significantly, about 14,

19, and 12 percent for 16, 128, and 1024 cores, respectively. The average number

of linear iterations also seems to approach a limit, which demonstrates optimal

multigrid performance. Regarding run time, we measure both the setup phase and

the solve phase of the algorithm. Since the setup phase requires expensive matrix-

matrix multiplications, the total time needed to solve a linear system grows a little

faster than the number of iterations. Yet, hypreMGR still achieves near optimal

scalability. Figure 4.7 focuses on the time of the linear solve, splitting into the

setup and solution phases. It is clear that solve phase achieves optimal scalability

as the time needed to iterate to convergence stays nearly constant for mesh sizes

803, 1603, and 3203. In contrast, the setup phase, which includes constructing R and
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Figure 4.7: CPU time breakdown for linear solve.

P , computing the coarse grids using the matrix-matrix product RAP , and all the

AMG setup for the coarse grid as well as the F-relaxation, does not scale very well.

This is likely an implementation problem, and it can be improved in the future.

In terms of memory storage, like AMG methods, the MGR approach requires

the storage of the restriction, interpolation, and coarse grid operators at every level.

However, in addition to these operators, the MGR approach also needs to store

the Aff matrices at the levels which scalar AMG is used for the F-relaxation step.

When aggressive coarsening is performed in standard AMG methods, the size of the

coarse grid can be significantly reduced after the first level. With MGR, the size

of the matrix is reduced by at most a third, since the reduction is dictated by the

block structure of the system, rather than the heuristics used in AMG.
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4.7 Conclusion

We have presented a preconditioning strategy for solving the linear systems

that arise from the solution of multiphase multicomponent porous media flow with

phase transitions. To account for the phase transitions, the problem is formulated

as a nonlinear complementarity problem, and solved using the semi-smooth Newton

technique.

The proposed preconditioner is based on the multigrid reduction technique,

which generalizes traditional two-stage preconditioners in a natural multigrid frame-

work. In this work, we extend a previously developed two-grid strategy to a multi-

level reduction strategy that accounts for the transitions in the phases of the primary

variables. We have demonstrated the performance of the preconditioner on classic

benchmark problems presented in the literature, and show the parallel efficiency of

the linear solver on large-scale problems. The numerical results indicate optimal

scalability and robust performance of the MGR preconditioner, which is important

for real-field simulations.

We observed that depending on the properties of the capillary pressure model

used, a different solver could be used for the F-relaxation phase of the precondi-

tioner. When the model is convection-dominated, a simple relaxation scheme is

sufficient for F-relaxation. However, when the model is diffusion-dominated, relax-

ation alone is not sufficient, and a more robust solver is required for F-relaxation. In

our experiments, we used AMG for such problems. However, this may be excessive

and in some cases, inefficient. For applications with phase transitions, the fronts
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along which the transitions occur can be small compared to the entire domain. As

a result, using the same strategy for F-relaxation at these intermediate solves can

be inefficient since communication dominates computation at this point. Allowing

different strategies to be employed, as dictated by the physics, can be a more ef-

ficient strategy. For example, using a single-level relaxation strategy instead of a

multilevel (v-cycle) technique could be more appropriate. We are exploring this

idea, in addition to aggressive coarsening strategies to improve parallel efficiency.

Future applications of interest for the MGR solver include applications with

multiple phases, poromechanics, and applications with fractures and thermal prop-

erties. The MGR framework is general enough to handle these applications as a

“black-box” solver, and can also serve as a basis for building good physics-based

preconditioners. However, more work may be required to improve solver perfor-

mance for these complex applications. We are exploring new strategies for building

interpolation and restriction operators so that the final coarse grid system is a good

approximation to a pressure system (or has elliptic M-matrix properties) that is

amenable to solution by AMG. We are also considering incorporating structure in-

formation within a semi-structured framework to develop a robust solver that can

effectively handle grid anisotropy for complex geometries.
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Chapter 5: Semi-smooth Newton Methods for Compositional Two-

phase Flow in Porous Media with Phase Transitions

5.1 Introduction

In chapter 4, we explored an NCP formulation of a compositional two-phase

flow model and developed a new preconditioner for the linear systems arising in

solving problems with phase transitions. The robustness and scalability of this

preconditioner allows us to run complex simulations on larger domains for longer

time periods. These simulations, however, also reveal the lack of robustness and

efficiency of the semi-smooth Newton method (algorithm 4 in chapter 4) in resolving

phase transitions when it is applied to highly nonlinear problems with heterogeneous

media. Thus, the goal of this chapter is to develop a new method for the NCP

formulation that can overcome these limitations.

Phase transitions have posed a major challenge for multi-phase, multi-component

models since the 1980s. If not handled correctly, they can cause numerical oscil-

lations in solutions of these models, making such solutions physically inconsistent

and unusable. There have been many attempts to address the problems with phase

transitions and determine the correct local thermodynamic state for compositional
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multiphase flow. In general, most of these can be classified into two common classes

of methods: flash calculation [2, 25, 26, 34, 64, 101] and PVS [51, 98]. Flash calcula-

tion computes the local thermodynamic state from the overall mass of the individual

components. While this method is stable with regard to determining the thermody-

namic state, it tends to be inefficient because it requires solution of a large nonlinear

system of equations at each time step (in addition to solution of the linearized sys-

tems) to recover all the thermodynamic quantities of interest. The second class,

PVS, involves adapting the primary variables to the thermodynamic constraints lo-

cally. The idea is that whenever phase transitions occur, physical variables that are

physically inconsistent (indicated by negative saturation, for example) are switched

to well-defined quantities. The governing equations related to those variables are

also modified accordingly. Although this approach is locally more efficient than flash

calculations, it suffers from irregular convergence behavior in the nonlinear solve,

which is typically addressed by substantial reduction in time step size [31]. This fea-

ture is not desirable for simulations over a long period of time, usually encountered

in groundwater remediation or transport of nuclides in a nuclear waste repository. In

addition to flash calculations and PVS, there are other formulations to handle phase

transitions such as negative saturation [1], and introduction of persistent primary

variables [18,63,65].

Recently, a new approach has been developed for handling the phase transi-

tions by formulating the system of equations as a nonlinear complementarity prob-

lem (NCP) [16, 59, 62]. In contrast to PVS, NCP has the advantage that the set of

primary variables is consistent throughout the simulation, and no primary variable
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switching is needed. NCP requires a complementary function, referred to as a C-

function, employed to rewrite the inequality constraints for the thermodynamic state

as a non-smooth equation, which requires a semi-smooth Newton method [3,71,73] to

solve. Most of the previous work in multiphase flow using the NCP approach employs

the minimum function as the C-function due to its simplicity for implementation

and the fact that it is piecewise linear with respect to the arguments. Even though

the semi-smooth Newton method applied to the NCP using the minimum function

as a C-function is observed to have quadratic convergence for simple problems in

porous media (see [16]), it exhibits poor convergence and even diverges for many

problems considered in this chapter. An alternative to the minimum function is the

Fischer-Burmeister function, which has recently been employed as the C-function

for NCP formulation of incompressible two-phase flow in [99]. As we will show, this

choice of C-function can help mitigate the lack of robustness observed in using the

Newton-min algorithm for NCP formulation of compositional two-phase flow with

phase transitions. We then draw on this experience and develop a new method for

the nonlinear solve based on a smooth version of the Fischer-Burmeister function.

Our method can be considered a variant of the Jacobian smoothing method sum-

marized in [46]. Compared to the non-smooth approaches that use the minimum

and the Fischer-Burmeister functions, our new method is more robust and efficient

for problems with highly heterogeneous media, and it also scales optimally with

problem size.

We consider a two-phase, two-component system with phase transitions as our

model problem. We describe this model in detail in section 5.2, and in section 5.3,
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we describe the NCP formulation for it. We briefly review the semi-smooth Newton

framework and introduce our new algorithm in section 5.4. In section 5.5, several

numerical tests are presented that demonstrate the robustness and scalability of the

new algorithm. Some concluding remarks as well as future work are presented in

section 5.6.

5.2 Problem Statement

5.2.1 Governing Equations

Here, we consider the same simplified two-phase two-component model with

phase transitions presented in section 4.2. To make it easier to follow, we restate

the complete sytem of equations below. For each component, conservation of mass

leads to

φ
∂(ρwl Sl)

∂t
+∇ · (ρwl ql − jhl ) = 0, (5.1)

φ
∂(ρhl Sl + ρhgSg)

∂t
+∇ · (ρhl ql + ρhgqg + jhl ) = 0, (5.2)

where the subscripts l, g denote the liquid and gas phases, and the superscripts

w, h denote the water and hydrogen components, respectively. The porosity of the

medium is denoted φ, Sα, qα are the saturation and velocity of phase α, respectively;

ρhl is the dissolved hydrogen mass concentration in the liquid phase; and jhl is the

diffusion flux of hydrogen in the liquid phase. The Darcy velocity qα follows the

Darcy-Muskat law

qα = −Kλα∇(Pα − ραg), α = l, g, (5.3)
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where K is the absolute permeability, λα, Pα, and ρα are the mobility, pressure,

and density of phase α, and g is the gravitational acceleration. The mobility λα of

phase α is defined as the ratio between the phase relative permeability krα and the

phase viscosity µα: λα = krα/µα. Using Fick’s law, the diffusion flux of hydrogen in

liquid jhl in equations (5.1) and (5.2) can be expressed as

jhl = −φSlDh
l ∇ρhl , (5.4)

where Dh
l is the hydrogen molecular diffusion coefficient in liquid. Since we assume

incompressibility of the liquid phase, the mass density of the water component in

the liquid phase is constant, i.e. ρwl = ρstdw . To capture capillarity effects, the jump

in the pressure at the interface of the two phases is modeled by the relation

Pg = Pl + Pc(Sl) (5.5)

where Pc is the capillary pressure. Additionally, we have the constraints

Sl + Sg = 1. (5.6)

To close the model, we also need a set of equations for the thermodynamic equilib-

rium when the gas phase is present, i.e. how much hydrogen can dissolve into the

liquid phase at a certain pressure. Assuming low solubility of hydrogen in the liquid

phase, Henry’s law can be used to connect the gas pressure Pg and the dissolved

hydrogen mass concentration in liquid ρhl :

ρhl = ChPg, (5.7)

where Ch = HMh = ρstdw Mh/Mw, H is the Henry’s law constant, and M i, i ∈

{w, h}, is the molar mass of the i-th component. Since we neglect water vapor, we
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can apply the ideal gas law for the gas phase. This leads to the relation

ρhg = ρg = CvPg, (5.8)

where Cv is a constant and Cv = Mh/(RT ); T is the temperature and R the ideal

gas constant.

5.2.2 Relative Permeabilities and Capillary Pressure

In this chapter, we employ the nonlinear Van Genuchten [91] model for relative

permeabilities and capillary pressure:

krl =
√
Sle

(
1−

(
1− S1/m

le

)m)2

, krg =
√

1− Sle
(

1− S1/m
le

)2m

, (5.9)

Pc = Pr

(
S
−1/m
le − 1

)1/n

, (5.10)

Sle =
1− Sl

1− Slr − Sgr
, m = 1− 1

n
, (5.11)

where Pr is the entry pressure. Notice that the function Pc(Sl) in the Van Genuchten

model is only defined for Sl ∈ [Slr, 1−Sgr] and P ′c is unbounded near Slr and 1−Sgr.

Thus, it is necessary to modify the model to limit the growth of P ′c and extend it

for Sl ∈ R, since the value of Sl can become larger than 1 − Sgr or less than Slr

during the nonlinear iteration. We use a regularization as presented in [62] with

parameter ε = 10−5. In this regularization, the capillary pressure is computed by

a linear extrapolation from the regularization points Slr +O(ε) and 1− Sgr −O(ε)

with the slopes P ′c(Slr +O(ε)) and P ′c(1− Sgr −O(ε)), respectively.
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5.2.3 Primary Variables

There are many ways to choose a set of primary variables, depending on the

problem formulation and applications. In our model example, a convenient choice is

the liquid pressure, liquid saturation, and the concentration of hydrogen in the liquid

phase. We then have our solution vector u = {Pl, Sl, ρhl }. Unlike in other methods

such as primary variable switching, for NCP, the choice of primary variables is fixed

throughout the simulation.

5.3 Nonlinear Complementarity Problem

In its simplest form, a nonlinear complementarity problem with respect to a

smooth function f : Rn 7→ Rn is to find a vector x ∈ Rn such that

x ≥ 0, f(x) ≥ 0, xTf(x) = 0, (5.12)

A slightly more general form of the last equation in equation (5.12) reads

g(x)Tf(x) = 0,

where g : Rn → Rn is another smooth function. As we have mentioned in section 5.2,

for the solution to be valid, the pressure, saturation, and hydrogen concentration

in the liquid phase must satisfy the constraints in equations (5.6) and (5.7). These

conditions can be reformulated as an NCP as follows:

1− Sl ≥ 0, ChPg − ρhl ≥ 0, (1− Sl)(ChPg − ρhl ) = 0. (5.13)
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As we have observed, methods based on NCP require a complementarity function,

also called C-function, Φ(a, b) : R2 → R, which satisfies

Φ(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = 0. (5.14)

Solving the NCP problem in equation (5.13) is equivalent to solving Φ(a, b) = 0

with functions a(u) = 1 − Sl and b(u) = ChPg − ρhl . There are many examples of

C-functions. In this work, we focus on two popular choices

Φmin(a, b) = min(a, b) (5.15)

ΦFB(a, b) =
√
a2 + b2 − (a+ b) (Fischer-Burmeister) (5.16)

The minimum function is convenient because it is piecewise linear with respect to the

variables a and b, which simplifies the computation of the Jacobian in each nonlinear

iteration. When the gas phase is not present, equation (5.15) reduces to 1−Sl = 0.

When the gas phase appears, 1−Sl > 0 and the constraint equation is governed by

Henry’s law equation (5.7). However, compared to the Fischer-Burmeister function,

the minimum function is less useful with respect to globalization with line search

strategies.

First, as shown and discussed in [13–15], global semi-smooth Newton methods

may diverge even for linear C-functions if the starting point is not close enough to

a solution. Second, in global semi-smooth Newton approaches, at each step of the

iteration, one needs to find an appropriate step size αk for the solution update xk+1 =

xk +αkpk, where pk is a search direction. This can be accomplished by introducing

a merit function1. Since the step size is usually chosen based on the derivative of the

1For a precise definition and discussion of merit functions, we refer to [66].
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merit function, it is desirable for the merit function to be continuously differentiable.

The merit function associated with the minimum function Ψmin = ‖Φmin(a, b)‖2,

however, does not satisfy this condition. In contrast, the Fischer-Burmeister merit

function ΨFB = ‖ΦFB(a, b)‖2 is continuously differentiable.

5.4 Solution Algorithm

We consider solving the coupled system consisting of equations (5.1), (5.2)

and (5.13) fully implicitly. We use a cell-centered finite volume method for spatial

discretization, as it is a natural way to preserve the mass conservation property

of the balance equations (5.1) and (5.2). In addition, it can deal with the case of

discontinuous permeability coefficients, and it is relatively straightforward to imple-

ment. For the time domain, we employ the backward Euler method to avoid a CFL

stability restriction on the time step. Because this method is unconditionally stable,

it also allows us to experiment with variable time stepping, which can significantly

reduce execution time.
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5.4.1 Semi-smooth Newton Method

Let us introduce a discrete version of the C-function equation (5.14) with

respect to the solution vector u introduced in section 5.2.3,

Θ(u) =



Φ(1− (Sl)1, (ChPg − ρhl )1)

Φ(1− (Sl)2, (ChPg − ρhl )2)

· · ·

Φ(1− (Sl)N , (ChPg − ρhl )N)


(5.17)

where N is the number of cells in the mesh. Thus, Θ is the discrete function of the

reformulation of the constraints using a C-function. We want to solve the system

R(u) = 0 where R(u) is the residual function given by

R(u) =


H(u) (from the PDEs)

Θ(u) (from the constraints)

(5.18)

A straightforward approach for solving nonlinear systems of equations is Newton’s

method, which requires solution of a linear system at each iteration k:

∂R

∂u

∣∣∣
u=uk

δu = −R(uk). (5.19)

This method requires that the Jacobian ∂R/∂u be defined everywhere. In the NCP

formulation, the constraints Θ are not differentiable when there is phase transition

as the solution changes from satisfying 1 − Sl = 0 to ChPg − ρhl = 0. To address

this, we will consider a semi-smooth Newton method, which is similar to Newton’s

method, except the derivative Θ′ is replaced by a member of the subdifferential ∂Θ

when Θ is not differentiable. Let F : Rn 7→ Rn be a locally Lipschitz-continuous
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function and DF be the set where F is differentiable; the B-subdifferential of F at

x is defined as the set

∂BF (x) := {G ∈ Rn×n : ∃ xk ∈ DF with xk → x,∇F (xk)→ G} .

Below is the algorithm for the general semi-smooth Newton method (see [46]), of

which algorithm 4 in chapter 4 is a particular case.

Algorithm 6 General semi-Smooth Newton method.

while k < max iter and res > tol do

(1) Given u0, k = 0

(2) Select an element Jk ∈ ∂BΘ(uk)

(3) Solve the systemH ′(uk)
Jk(u

k)

4 uk =

−H(uk)

−Θ(uk)


(4) Update uk+1

uk+1 = uk +4uk

To compute Jk in the algorithm above, one can use an active set strategy [54].

In the context of multiphase flow with phase appearance and disappearance, the

idea is to define the set of indices for the cells in which the gas phase is present (see

[16,59]). Let Ak := {j : 1−(Sl)j ≥ (ChPg−ρhl )j}, Ik := {j : 1−(Sl)j < (ChPg−ρhl )j}.

Then for the minimum function, the jth row of Jk is equal to
∂

∂u
a(u)j if j ∈ Ik

∂

∂u
b(u)j if j ∈ Ak

(5.20)
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where a(u)j = 1 − (Sl)j and b(u)j = (ChPg − ρhl )j. For the Fischer-Burmeister

function, we can compute the jth row of Jk as follows,

1√
a(u)2

j + b(u)2
j

(
a(u)j

∂

∂u
a(u)j + b(u)j

∂

∂u
b(u)j

)
−

( ∂
∂u
a(u)j +

∂

∂u
b(u)j

)
if a(u)2

j + b(u)2
j 6= 0

(αi − 1)
∂

∂u
a(u)j + (βi − 1)

∂

∂u
b(u)j otherwise

(5.21)

where for all i such that a(u)2
j + b(u)2

j = 0, αi and βi are arbitrary nonnegative

constants satisfying α2
i + β2

i = 1. For a more complete treatment of semi-smooth

Newton methods, we refer to [46].

5.4.2 Jacobian Smoothing Method

An alternative to the semi-smooth approach is to employ a smooth approxi-

mation to the non-smooth function Θ. Let G : Rn × R+ 7→ Rn such that for any

τ > 0, G(·, τ) is continuously differentiable on Rn and

‖Θ(u)−G(u, τ)‖ → 0, as τ → 0. (5.22)

Then, given a sequence τ k, k = 0, 1, 2, ..., we can solve the system in equation (5.18)

inexactly using G′(uk, τ k) as an approximation to the generalized Jacobian Jk =

∂BΘ(uk). In this work, we explore a smooth approximation to the Fischer-Burmeister

functions given by

GFB(u, τ) =
√
a2 + b2 + 2τ − (a+ b) (5.23)

The complete algorithm is as follows:
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Algorithm 7 Jacobian Smoothing Method.

while k < max iter and res > tol do

(1) Given u0, k = 0, and τ 0

(2) Solve the system H ′(uk)

G′(uk, τ k)

4 uk =

−H(uk)

−Θ(uk)


(3) Update the smoothing parameter τ

τ k+1 = βτ k for β ∈ (0, 1)

(4) Update uk+1

uk+1 = uk +4uk

There also exist smooth approximations to the minimum function. In partic-

ular, we experimented with the Chen-Harker-Kanzow-Smale smoothing [24,56],

Gmin(u, τ) = (a+ b)−
√

(a− b)2 + 4τ . (5.24)

However, in our experience, this smooth version of the minimum function does not

improve the convergence of the semi-smooth Newton’s method significantly, and we

do not include the results here.

5.4.3 Linear System

Assuming that each physical variable is ordered lexicographically, each step of

the nonlinear iteration (step 3 in algorithm 6 and step 2 in algorithm 7) requires
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solution of a large sparse, non-symmetric, indefinite linear system of the form
A11 A12 A13

A21 A22 A23

A31 A32 A33




u1

u2

u3

 =


f1

f2

f3

 , (5.25)

in which the matrices in the first two rows are the discretized version of the linearized

operators from the PDEs, and the last row corresponds to the discrete derivative

of the complementarity constraint equation introduced in equation (5.17). Iterative

methods such as GMRES [84] are the only viable option to solve the system above,

and preconditioning is critical for fast convergence. Here, all of our experiments use

GMRES preconditioned with hypreMGR, the AMG preconditioner we discussed in

chapter 4. Unlike ILU preconditioners in which one only needs to specify the level

of fill (in ILU(k)) or the threshold tolerance (in ILU(t)), hypreMGR requires extra

information regarding the block structure of the system and the order of reduction.

There exists a small but important difference in the structure of the matri-

ces A created using the Jacobian smoothing method and the semi-smooth Newton

methods. For the semi-smooth Newton methods with an active set strategy, the

diagonal of the block A33 contains zeros for the cells that are devoid of the gas

phase (see section 4.3.2 for the case with the minimum function). In contrast, for

τ > 0, the diagonal of the block A33 is guaranteed to be nonzero for the Jacobian

smoothing method regardless of the existence of phase transitions. Thus, using

the Jacobian smoothing method, we do not need to partition the block A33 as in

equation (4.24). The last reduction step in equation (4.42) can be omitted as a

consequence. This means that the Jacobian method requires only two levels of re-
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duction for hypreMGR, as opposed to three levels in the case of the semi-smooth

Newton approach presented in chapter 4. Using fewer reduction steps helps decrease

both the number of GMRES iterations and execution time, as will become evident

from the results presented in section 5.5.3.

5.5 Numerical Results

In this section, we perform numerical experiments for the semi-smooth New-

ton’s approach using the minimum and the Fischer-Burmeister functions, and the

Jacobian smoothing method with the smooth Fischer-Burmeister function for the

NCP formulation. All of these methods are implemented in Amanzi. GMRES is

also provided within Amanzi while hypreMGR is employed through HYPRE.

This section has three parts. In the first part, we show the results for two

benchmark problems that aims to show the effectiveness of the NCP approach in

handling phase appearance and disappearance. In the second part, we report the

results for both two- and three-dimensional cases with highly heterogeneous media.

In the last part, we perform a scalability study of the new algorithm.

For all the simulations presented here, the convergence tolerance for nonlinear

step is ||F (x)|| ≤ 10−6, and the linear tolerance for GMRES is ||Jδuk − F (uk)|| ≤

10−12||F (uk)||, which is the default in Amanzi. Depending on the performance of

the nonlinear solver, a heuristic for choosing the time step is used: if the number of

nonlinear steps (NS) required at a given time are less than 10, then the next time

step dtnext is doubled, dtnext = 2 ·dt; if NS ∈ [11, 15], then the time step is kept fixed,
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Figure 5.1: Core domain for the gas infiltration example.

dtnext = dt; and if NS is greater than 15, then the time step is halved dtnext = dt/2.

The maximum number of nonlinear iteration is max iter = 20.

5.5.1 Benchmark problems

These tests are derived from the MoMaS benchmark project [19], which is

designed to evaluate the effectiveness of different approaches for handling gas phase

appearance and disappearance. Pure hydrogen is injected into a two-dimensional

homogeneous porous domain Ω, which was initially 100% saturated with pure water.

The domain is a rectangle of size 200m × 20m, and it is discretized only in the

horizontal direction, leading to a quasi one-dimensional problem. There are three

types of boundaries : Γin on the left side is the inflow boundary; Γout on the right

side is the outflow boundary; and Γimp at the top and bottom is the impervious

boundary (see figure 5.1). There are no source terms inside the domain, and denoting

ψw = ρwl Kλl∇Pl − jhl and ψh = ρhlKλl∇Pl + ρhgKλg∇Pg + jhl , the boundary

conditions are as follows

• No flux on Γimp

ψw · ν = 0 and ψh · ν = 0 (5.26)
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• Injection of hydrogen on the inlet Γin

ψw · ν = 0 and ψh · ν = 5.57× 10−6 kg/m2/year (5.27)

• Fixed liquid saturation and pressure on the outlet

Pl = 106 Pa, Sl = 1, ρhl = 0 (5.28)

Initial conditions are uniform throughout the domain, corresponding to a stationary

state of saturated liquid and no hydrogen injection,

Pl = 106 Pa, Sl = 1, ρhl = 0. (5.29)

The values of the physical parameters are given in table 5.1.

Figure 5.2 shows the Van Genuchten capillary pressure curve for different

values of the entry pressure Pr. These parameter values, along with others in the

Van Genuchten model, depend on the porous material. For example, the MoMaS

benchmark problem (test case 1 in [19]) uses Pr = 2 · 106 for a very dense rock with

extremely low permeability of K = 5 · 10−20. In other applications including CO2

sequestration and reservoir simulation, the material is much more permeable and

Pr = 2 · 103 would produce the capillary pressure curves typically used (see [30,67]).

Other parameters for the Van Genuchten model are Slr = 0.4, Sgr = 0, and n = 1.49.

The smaller Pr is, the steeper the curve becomes near Sl = 0, and that also makes

the problem more difficult to solve. The effect of capillary pressure on the solution

is shown in figure 5.3, in which the gas saturation throughout the domain is plotted

at 100,000 years for Pr = 2 · 106 and Pr = 2 · 103. For the MoMaS benchmark

118



K 5× 10−20 m2

φ 0.15

Dh
l 3× 10−9 m2/s

µl 1× 10−9 Pa s

µg 9× 10−6 Pa s

H 7.65 × 10−6

mol/Pa/m3

Mh 2× 10−3 kg/mol

Mw 1× 10−2 kg/mol

ρwl 103 kg/m3

Table 5.1: Parameter Values

Figure 5.2: Capillary pressure curves for different

entry pressure Pr.

case with Pr = 2 · 106, the gas saturation curve exhibits a more gradual transition

from the unsaturated to the saturated region. In contrast, for the difficult case of

Pr = 2 · 103 Pa, the gas saturation changes very quickly both at the injection point

and at the interface with the saturated region. We note that the simulation results

in figure 5.3 match well with those in [39, 62]. A comparison of the performance of

the three solution methods is shown below in tables 5.2 and 5.3. TS, NS denote

the total number of successful time steps and nonlinear iterations, respectively, and

the numbers in parentheses are for the failed time steps and nonlinear iterations.

Failed time steps are those in which the method diverges or does not converge
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Figure 5.3: Gas infiltration into the domain for two different capillary pressure

curves after 100,000 years.

within the allowed maximum number of iterations, and the failed nonlinear iterations

correspond to those spent during the failed time steps. For both of these benchmark

problems, an initial smoothing parameter τ = 10−6 and a reduction ratio β = 0.1

are used for the smooth Fischer-Burmeister approach.

For the MoMaS gas injection benchmark problem with Pr = 2 · 106 Pa, the

results in table 5.2 show that for the nonlinear solve, the Fischer-Burmeister function

(without smoothing) does not show any improvement over the minimum function.

It registers the same numbers of time steps needed to run the simulation both to 105

and to 5·105 years. In contrast, the smooth Fischer-Burmeister function achieves the

same performance up to T = 105 years, and it reduces both the number of time steps

and nonlinear iterations by about 20% for the full simulation. This suggests that

the smooth Fischer-Burmeister function is better for simulating long time periods,

when the gas phase infiltrates a larger portion of the domain.

The second example illustrates the effectiveness of the smooth Fischer-Burmeister
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End Time (years)

min FB Smooth FB

TS NS TS NS TS NS

105 5 (0) 35 (0) 5 (0) 35 (0) 5 (0) 36 (0)

5 · 105 10 (0) 80 (0) 10 (0) 80 (0) 8 (0) 63 (0)

Table 5.2: Performance of the nonlinear solver for the capillary pressure model

with Pr = 2× 106 Pa with mesh size of 200.

Mesh size

min FB Smooth FB

TS NS TS NS TS NS

200 37 (20) 487 (195) 5 (0) 41 (0) 5 (0) 38 (0)

400 59 (48) 949 (440) 6 (0) 59 (0) 5 (0) 42 (0)

Table 5.3: Performance of the nonlinear solver for the highly nonlinear capillary

pressure model with Pr = 2× 103 Pa after 100,000 years.

121



function in handling phase transitions for highly nonlinear problems. We compare

the performance of the three different strategies and show the results in table 5.3.

The semi-smooth Newton method with the minimum function struggles to converge

for many time steps. It requires 37 and 59 time steps in total, with 20 and 48 failed

time steps for mesh sizes of 200 and 400, respectively. Use of the Fischer-Burmeister

function reduces the number of time steps by a factor of seven, and it also requires

less than 10% number of nonlinear iterations. This means that on average, we can

take about seven times larger time step and achieve approximately 90% decrease in

run time with the Fischer-Burmeister function.

The approach using the smooth Fischer-Burmeister function registers about

the same number of time steps as the approach using the standard Fischer-Burmeister

function and it furthers decreases the number of time steps by 7% for the mesh size

of 200. For the larger mesh of 400, however, the smooth Fischer-Burmeister variant

shows a large improvement over the standard Fischer-Burmeister approach, requir-

ing 29% fewer nonlinear iterations.

5.5.2 Problems with highly heterogeneous media

We perform two numerical experiments with highly heterogeneous permeabil-

ity: (1) a modified two-dimensional SPE-10 problem, and (2) a three-dimensional

problem. The permeability fields for these problems are shown in figures 5.4a

and 5.4b. In both cases, the entry pressure for the Van Genuchten capillary pressure

is chosen as Pr = 2×103, which corresponds to the difficult nonlinear case in the pre-
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(a) Modified two-dimensional SPE10

problem.

(b) Three-dimensional problem

with random permeability.

Figure 5.4: Heterogeneous Problems.

vious benchmark problem. For the first case, we modify the two-dimensional SPE10

problem [28] by scaling the permeability field by a constant factor of 10−5 to make

the porous medium more dense. The domain is a rectangle of size 762m× 15.24m.

Pure hydrogen is injected on the left side Γin = {0} × [0, 15.24]: ψw · ν = 0 and

ψh · ν = 5.57 × 10−2kg/m2/year, and a Dirichlet boundary condition is chosen on

Γout = {762} × [0, 15.24]: Pl = 106 Pa, Sl = 1, and ρhl = 0. The upper and lower

boundary is impervious, i.e. ψw ·ν = 0 and ψh ·ν = 0. Initial conditions are Pl = 106

Pa, Sl = 1, and ρhl = 0 for the whole domain. For the spatial discretization, we use

a 100×20 mesh. The initial time step dt = 20 days and the end time is Tfinal = 1160

days. The initial smoothing parameter for the smooth Fischer-Burmeister function

is τ = 10−6.

In the second example, the domain is a box of size 50m × 30m × 20m. The

porosity and permeability fields are random, generated by a geostatistic model using

the open-source code MRST [60]. The porosity has a range of [0.002, 0.1] and the

permeability varies from 1.377 · 10−20 to 2.117 · 10−15. Pure hydrogen is injected
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Two-dimensional SPE10 Three-dimensional problem

C-function FB Smooth FB FB Smooth FB

Number of time steps 60 (7) 37 (4) 13 (4) 8 (3)

Average time step size (days) 19.3 31.3 151.8 250.0

Total nonlinear iterations 856 (147) 530 (84) 202 (84) 135 (63)

Execution time (s) 941.6 566.8 972.6 620.3

Table 5.4: Performance comparison for heterogeneous problems.

through the boundary at a corner: ψw · ν = 0 and ψh · ν = 5.57× 10−2kg/m2/year,

and a Dirichlet boundary condition is chosen on the opposite corner: Pl = 106 Pa,

Sl = 1, and ρhl = 0. The rest of the boundary is impervious, i.e. ψw · ν = 0 and

ψh · ν = 0. Initial conditions are Pl = 106 Pa, Sl = 1, and ρhl = 0 for the whole

domain. For the spatial discretization, we use a uniform 50 × 30 × 20 mesh. The

initial time step dt = 200 days and the end time is Tfinal = 2000 days. The initial

smoothing parameter for the smooth Fischer-Burmeister function is τ = 10−4.

For both of these problems, the semi-smooth Newton approach using the min-

imum function fails to converge for many time steps, and dt becomes too small to

obtain the full simulation results. Thus, only the results for the standard Fischer-

Burmeister function and the smooth variant are reported in table 5.4. Again, the

numbers in parentheses are for the failed time steps and nonlinear iterations. The

Jacobian smoothing method combined with the smooth Fischer-Burmeister function
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is more robust than the semi-smooth Newton approach with the standard Fischer-

Burmeister function, as demonstrated by the reduction in the number successful and

failed time steps. For example, in the two-dimensional SPE10 problem, the former

requires only 37 successful time steps and registers 4 failed time steps, as opposed

to 60 successful and 7 failed time steps of the latter. In terms of performance, the

Jacobian smoothing method combined with the smooth Fischer-Burmeister function

is clearly better as it helps decrease the number of nonlinear iterations and execution

time by 34-40% approximately for both the two-dimensional and three-dimensional

problems.

5.5.3 Scaling Results

To study the parallel performance, we use the same setup as for the three-

dimensional case with highly heterogeneous media considered in section 5.5.2. Par-

allel tests are run on Syrah, a Cray system with 5,184 Intel Xeon E5-2670 cores

at the Lawrence Livermore National Laboratory Computing Center. Amanzi and

other libraries are compiled with OpenMPI 1.6.5 and gcc-4.9.2. For strong scaling,

the mesh size is fixed at 200× 120× 80, and the problem has 5.76 million unknowns

in total. We choose an initial time step of dt = 2 days and stop the simulation after

20 days. For weak scalability, the number of processors is increased in proportion to

the problem size. We use meshes of size 50×30×20, 100×60×40, and 200×120×80

with 2, 16, and 128 processors, respectively. The initial time step is set to dt = 2

days for all the mesh sizes and the simulation is stopped at T = 200 days. For both
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Figure 5.5: Strong scaling for the three-dimensional heterogeneous problem. The

total runtime for the simulation, the setup, and solve time for the linear solver are

reported.

cases, the entry pressure is set at Pr = 2 × 103. The results reported in figure 5.5

show that the Jacobian smoothing method, combined with GMRES preconditioned

by hypreMGR achieves near optimal strong scalability on 8 to 128 processors for

the total time needed to run the whole simulation. The slight deviation from the

ideal performance at 64 and 128 processors results from the decrease in parallel

performance of the setup phase of hypreMGR, which has been observed in [22].

For weak scaling, a comparison between the Jacobian smoothing method us-

ing the smooth Fischer-Burmeister function and the semi-smooth Newton approach

with the standard Fischer-Burmeister function is shown in tables 5.5 and 5.6. For

the semi-smooth Newton method using the standard Fischer-Burmeister function,
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Number of processors 2 16 128

Mesh size 50× 30× 20 100× 60× 40 200× 120× 80

Initial smoothing parameter τ 10−6 10−6 10−5

Average step size (days) 28.6 28.6 25.0

Number of time steps 7 7 8

Average nonlinear iterations 5.1 6.6 8.9

Average linear iterations 10.7 13.5 17.4

Execution time 122 (s) 286 (s) 995 (s)

Table 5.5: Weak scaling performance of the Jacobian smoothing method.

Number of processors 2 16 128

Mesh size 50× 30× 20 100× 60× 40 200× 120× 80

Average step size (days) 28.6 25.0 3.45*

Number of time steps 7 8 11 (2)*

Average nonlinear iterations 4.7 6.6 11.1*

Average linear iterations 12.7 22.0 28.5*

Execution time 463 (s) 1623 (s) > 4 hours

Table 5.6: Weak scaling performance of the semi-smooth Newton approach using

the standard Fischer-Burmeister function.
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the simulation does not finish within the 4-hour limit of run time on the cluster.

Thus, we only report the solver statistics up to T = 38 days when the simula-

tion terminates. As the mesh is refined, the Jacobian smoothing method is clearly

more robust and efficient than the semi-smooth Newton method using the standard

Fischer-Burmeister function. Not only does it reduce the number of nonlinear it-

erations, it also helps improve the performance of the linear solver as indicated by

smaller number of linear iterations. The execution time is significantly reduced as

a consequence.

5.6 Conclusions

In this work, we have developed a new Jacobian smoothing method based

on the smooth Fischer-Burmeister function to solve the discrete nonlinear systems

resulting from the the fully implicit discretization of the NCP formulation for com-

positional multiphase flow in porous media with phase transitions. Additionally,

we performed various numerical experiments to compare our method with a semi-

smooth Newton approach for two choices of C-function: the minimum and the

Fischer-Burmeister functions. The results demonstrate that this method is signifi-

cantly more robust and efficient with respect to the run time and number of nonlinear

iterations. Unlike the semi-smooth Newton method using the minimum function,

the Jacobian smoothing approach converges in all examples. Moreover, depending

on the problem, it also reduces the number of nonlinear iterations and execution

time by 34-40% compared to the semi-smooth Newton method using the standard
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Fischer-Burmeister function.
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Chapter 6: Concluding Remarks

With the rapid advance in computational power comes the increasing demand

for high fidelity models that can take into account important effects, including capi-

larity, miscibility, and phase transitions. These effects result in the strong coupling

between the physical variables such as pressure, saturation, and concentrations, and

in most cases, fully coupled approaches are needed for fast convergence. However,

fully coupled methods require solution of large, sparse linear systems that are par-

ticularly difficult to solve when capillarity and phase transitions are present. For

flow in highly heterogeneous media, phase transitions also causes slow convergence

for even state-of-the-art nonlinear solvers, such as semi-smooth Newton’s methods

for NCP reformulation of compositional multiphase flow. This dissertation aims to

address these computational issues through the design of robust and scalable AMG

preconditioners for iterative methods applied to the linear systems arising from dis-

cretizations of the fully coupled incompressible and compositional two-phase flow

models, as well as development of a new method for the nonlinear solve for compo-

sitional two-phase flow model with phase transitions.

In particular, in chapter 3, we implemented a parallel simulator for the fully

coupled incompressible two-phase flow model and developed a new block factoriza-
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tion preconditioner that can capture the effect of capillary pressure on the flow. An

analysis of the eigenvalues of the preconditioned system using the block factorization

method showed that all the eigenvalues are clustered and bounded away from zero.

The effectiveness and scalability of the preconditioner were demonstrated for both

advection-dominated and diffusion-dominated flows on a wide range of test prob-

lems, including those with highly heterogeneous media such as the three-dimensional

SPE10 problem.

We turned our attention to compositional models with phase transitions in

chapter 4. We implemented a simplified two-phase, two-component flow model

using the NCP formulation, because this method shows excellent robustness in han-

dling phase transitions, and by avoiding variable switching, it uses a fixed set of

primary variables. We then develop hypreMGR, an AMG preconditioner based on

multigrid reduction for GMES applied to the indefinite linear systems that result

from linearization of the NCP formulation using a semi-smooth Newton’s method.

By choosing an appropriate coarse grid for each level of reduction, our method

can handle the presence of zeros on the diagonal of the linear systems when phase

transitions are present. We demonstrated that our method is applicable to various

models of capillary pressure, and it also scales optimally with problem size of up to

100 million unknowns and 1024 processors.

Finally in chapter 5, we addressed the robustness issue of the semi-smooth

Newton’s methods for problems with phase transitions in highly heterogeneous me-

dia. We developed a new Jacobian smoothing method using a smooth approxima-

tion of the Fischer-Burmeister function to solve the NCP formulation of the simpli-
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fied two-phase, two-component flow with phase transitions. Our numerical results

showed that the nonlinear Fischer-Burmeister function is a better choice than the

piecewise linear minimum function as a C-function for the NCP formulation that is

solved with a semi-smooth Newton’s method. We demonstrated that the Jacobian

smoothing method using the smooth version of the Fischer-Burmeister is more effi-

cient than both of the semi-smooth Newton’s methods that use the minimum and

the Fischer-Burmeister functions, especially for problems in highly heterogeneous

media.
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[86] K. Stüben. A review of algebraic multigrid. Journal of Computational and

Applied Mathematics, 128(12):281 – 309, 2001.
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