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CHAPTER 1

1 INTRODUCTIONAND MOTIVATION

Optical coherence tomography (OCT) is a rapidly rgimg imaging modality
that allows high resolution, noninvasive, crossiseal imaging of tissue morphology
situ and in real-time [1]. OCT is analogous to ultrasduhowever, OCT generates
images by measuring the back reflection intensitylight instead of sound wave.
Although the light scattering properties of biolca)i tissues typically limit light
penetration to less than 2 mm, this imaging demh proven sufficient to provide
valuable information about tissue pathology in anbar of biomedical fields. Therefore,
OCT is a promising imaging modality to assess &égzathologiesn situ and in real time.
In addition, image processing has evolved to pltayngortant role in understanding the

information content of biological tissues [2-5].

1.1 Currenttrendsin OCT technique

In the recent decades, OCT has been widely usetiagnosis and computer-
guided surgery. Numerous literatures have beenrtegbapplying OCT in different
biomedical fields, including ophthalmology [6-8], ardiology [9, 10], and
gastroenterology [11-14]. In certain areas, sich@hthalmology, proven products have
been developed from OCT to serve as prime tootdimcal offices. Furthermore, OCT
can be interfaced with various imaging devices suxh catheters, endoscopes,
laparoscopes, and needles, with typical image wésok of 1-15 um [15], to provide

broader applications in biomedical area.



1.2 Significance of kidney images obtained by OCT

A kidney transplant is often the most ideal treattmeption for kidney failure
[16], and according to the National Kidney Foundiatthere are approximately seventy
thousand patients awaiting kidney transplants par yn the U.S. One severe problem for
kidney transplant is post transplant renal faildue to kidney deterioration during the
storage. Therefore, a reliable and accurate testaded to evaluate the viability of donor

kidney and predict post-transplantation renal fiomct

The viability of a donor kidney is closely corradtwith its tubular morphology
[17]. OCT enables three-dimensional visualizatidnthe kidney microstructures, thus
can assist in the evaluation of donor kidneys. Canegb with conventional microscopy,
Computed Tomography (CT), Magnetic Resonance IngagtRI) and ultrasound, the
versatility of OCT imaging procedures, its resalaticapabilities and increased depth
analysis make OCT an ideal method for imaging thedn kidneyin situ and in real

time.

Prior studies utilized non-human kidneys for OCTagimg analysis, while this
study uses OCT to study the human kidney ex vivariods structures from different
human kidneys were readily distinguished, includihg blood vessels, uriniferous
tubules, glomeruli, and kidney capsules. The methofdthis study could be directly
applied to donor kidney viability analysis, sinde tprevious study [17] indicated that
proximal tubular structure and post-transplantatemal function are closely correlated.
In addition, there are existing correlations betwegomerular morphology and renal
diseases, i.e. mesangial proliferative glomerulonép [18], focal segmental

glomerulosclerosis [19], Type | diabetes mellitud0]] and renal ischemia [21].



Therefore, OCT'’s ability to distinguish glomerutrisctures is a potentially valuable tool

for the diagnosis of glomerular diseases as well.

OCT imaging can provide immediate information relyag the histopathological
status of the renal vasculature, tubules, and gloim®ne potential OCT application is
the evaluation of the viability of donor kidneys2]2 Previous studies using tandem-
scanning confocal microscopy [17] indicated thatxpmal tubular structure and post-
transplantation renal function are closely coredatin a recent study [23], living rat
kidneys were observead vivo before, during, and after an ischemic insult ust@T,
which enabled the visualization and comparisonhef tat kidney morphology. OCT
therefore represents an exciting new approachsioalize, in real-time, the pathological

changes in the living kidney in a non-invasive animally invasive fashion.

1.3 Motivation for developing automated algorithms

In an earlier study [23], the total volume of thdrey tubules were segmented
and quantified. Statistically significant changeserev observed during the ischemia.
However, the segmentation algorithm used in thisrpstudy quantified the average
tubular volume changes only, and the spatially{wesb local morphological changes
were not able to be separated and quantified. &urtbre, kidney structures are
heterogeneous; therefore the difference in tubutdume is confounded by the tubular
density. Another earlier study [17] suggested thattubular lumen diameter is a more
robust biomarker for kidney viability, and a de@ean lumen diameter during ischemia
was observed visually by both confocal microscapg] [and OCT [23]. Therefore, it is

important to develop methods to quantify the sfigti@solved tubular diameters.



The most straight-forward method to quantify thieutar diameters from OCT (or
other imaging modalities) images is manual measen¢musing calipers or partially-
automated image analysis software, i.e. Imageho@ljh accurate and reproducible
measurements can be obtained in this way, an obwloawback is the extent of user
interaction required for the analysis. For instanteequires manual selection of the
region-of-interest (ROI) and the tubular wall edgesthe images by the operator as the
first step. This procedure is very laborious anmdeticonsuming, which precludes the
possibility of analyzing large amounts of data.sTtd especially challenging for OCT
imaging of the kidney, since individual OCT imadesve a field-of-view (FOV) of
several millimeters while a typical human kidne laasurface area larger than 10 cm by
10 cm. To provide an accurate assessment of thee éadney, comprehensive OCT
imaging is necessary, which would involve a largenber of images from various

locations of the kidney. Thus, an automated imagdyais method is critical.

Our previous work has demonstrated that hollow éydmicrostructures such as
uriniferous tubules and Bowman'’s space can be atioaily segmented based on their
different backscattering intensities [23]. Autonthteegmentation of colonic crypt
morphology using OCT [4] has also been demonstréteaiddition, automatic evaluation
of diameters of a single cylindrical structure suak brachial artery has been
demonstrated using B-mode ultrasonic imaging [Z], Blowever, in our application,
multiple isolated tubules with various diametersl anrvatures are presented in a single
OCT image. To obtain the spatially-resolved morpawio information, it is necessary to
separate those isolated regions for further queatibn. The purpose of the present study
was to develop an image processing method for aattmmnselection of individual ROI

and quantification of the size of the hollow stwres in the kidney, including renal



tubules, glomeruli, and vessels. Since there ageifgiant differences in the size and
structure of human kidneys and those of rodentyiwvaertook these studies using human
kidneys for enhanced clinical relevance. This stisdg necessary step before assessing

the utility of OCT in clinical evaluation of kidneyability.

In summary, a large number of image datasets grectxd when using OCT to
scan the entire kidney to provide a global assestofdts viability, so it is necessary to
develop automated image analysis methods to quarttie spatially-resolved

morphometric parameters such as tubular diameter.

1.4 Overview
The objective of this study is to realize automajadntification and classification
of human kidney microstructures from images obthibg OCT to provide potential

diagnostic information of donor kidney.

This thesis is based on the following topics. Caagtwill describe the materials
and experimental setup. Chapter 3 will be an oeervof the image preprocessing.
Chapter 4 will demonstrate the image feature gtieation and results while in Chapter
5 the methods and results of the image classifinatiill be presented. Chapter 6 is the

summary and discussion of the work and an insighto i future work.



CHAPTER 2

2 EXPERIMENTAL SETUP

2.1 Human kidney and histology

This study protocol was approved by the InstitidioReview Boards (IRB) at
both the University of Maryland and Georgetown Wmsity. Four donor kidneys were
obtained through the Washington Regional Transplaansortium (WRTC). Upon
arrival, the kidneys were fixed by vascular perdaswith 10% neutral formalin (through
the renal artery) to preserve their renal morphplogfter the OCT image acquisition,
the location and direction of each scanned seetiere marked with ink, for subsequent
standard histology processing. For conventionditligicroscopy, 4 um thick sections
were cut, stained with hematoxylin-eosin (H&E), giebtographed with a Nikon Eclipse
80i (Nikon, Melville, NY) attached to a digital cama Nikon DS-Fil (Nikon). The

micrographs were obtained for comparison with tigff@mages.

Fig. 1. The photo of one of the human kidneys indagge OCT.

2.2  Optical coherence tomography (OCT) imaging



OCT technology is based on low coherence interfetom The interference in
OCT is in the range of micrometers, thus requitimguse of broadband light sources. In
OCT system, the light source is divided into twariwhes or arms - a sample arm which
holds the object of interest and a reference arniclwlis typically a mirror. The
combination of reflected lights from both arms (péerarm and reference arm) can result
in an interference pattern if the optical distarméethe light in each of the arm has
traveled comparable distances. This occurs wherdifference of optical distances is
less than a coherence length. There will be nafarence of any light outside this short
coherence length. Therefore, areas of the objedathwieflect back light will create
greater interference than areas that do not. Tihextity profile is known as an A-scan,
consisting of the location of structures within thigect of interest and also information
about the spatial dimensions. A cross-sectionalotpaphe, known as B-scan, may be
achieved by combining laterally a series of thesi@aladepth scans (A-scan). En face
imaging (C-scan) at an acquired depth is posshile,depends on the imaging engine

used.

This study used a high-speed high-resolution OCStesy (Thorlabs Inc., NJ,
USA) using swept source/Fourier domain detectiat #mabled three-dimensional (3D)
OCT imagingin situ. The light source was a wavelength-swept lasemt ligpurce
generating a 100 nm full width at half maximum (FWHbandwidth at 1310 nm,
yielding an axial resolution of 10 pm in the tisslie laser operated at a swept rate of
16 kHz with an average output power of 12 mW. Thading frame rate was 30 frames
per second. The transverse resolution of the systam15 pm with 4 mW of power

illuminating the sample.



Fig. 2 shows the overall schematic of the OCT systised in this experiment.
The inset in the lower left corner shows the imggimicroscope. The output of the swept
laser was split into two portions: three percens wiaed to generate a clock signal for
triggering the sample of the OCT signal on a ummigrspaced optical frequency grid
[26]; the remaining ninety-seven percent of thepautvas equally distributed to the OCT
sample and reference arms. Imaging of the humamekidample was performed by a
pair of mirrors mounted to XY scanning galvanom&téCambridge Technology, MA,

USA) and a microscope objective.

C C
FC FC FC BD MZ| Clock
Swept Laser PC }
Reference Arm
PC DCG M
Circulator
ircu EC I
12 -
XY Scanner
Sample Arm
OBJ
uv J"Q\ ) Tissue
BD
]
DAQ Signal Processing Computer

Fig. 2. Schematic and photo of the OCT imagingesyst=C: fiber coupler, PC: polarization controlir,
collimator, MZI: Mach-Zehnder interferometer (freaqcy clocks), M: mirror, BD: balanced detector,

DAQ: data acquisition board, DCG: dispersion conga¢ing glasses, OBJ: objective.

The OCT imaging system’s sensitivity was 97 dB ifted as the signal-to-noise
ratio for a perfect sample reflector) [27]. 3D O®@Tages of the kidney measuring 3 mm

by 3 mm by 2.25 mm (512 x 512 x 512 pixels) wer&ted from various locations on



the human kidney samples within minutes, in a nomact manner. The software
associated with the OCT system saved each sett@fadaa file with extension of .IMG,
which contains all information of the entire volurokimages within a certain location.
Images along the three orthogonal image-planes (XX, and XZ) in the Euclidean

space could be extracted and displayed effectivglyIATLAB routines.

After the acquisition of original images, 3D OCTages with representative
microstructures were selected and compared withresponding conventional
histology. To quantitatively evaluate and classifg OCT images to obtain diagnostic
information, automated image processing was pesddrmn each individual cross-

sectional (XZ or YZ plane) OCT image.



CHAPTER 3

3 IMAGE PREPROCESSING

3.1 Procedures of image processing

In disease diagnosis, most suspicious regions ofl Of@ages have subtle
abnormalities, and at the same time the OCT sufienm speckle noises. All these
factors directly reduce the reliability of monitog and diagnosing diseases. Therefore,
image denoising and enhancement are the primapg stiter raw images acquisition. In
order to obtain valuable information from OCT, ireagpgmentation is another important
step for feature extraction or image enhancemehesd& steps are referred to as
preprocessing. Based on the segmented imagesrafeseaare able to perform the
measurements such as characteristics quantificaiorally, image classification is
necessary in certain situations, when real time itoong and massive data analysis

make it near impossible to implement manually.

In the following sections, these image processauniques mentioned above will
be reviewed in the case of human kidney imagedraateby OCT. In order to prove the
effects of image preprocessing, the comparisonisplaled between a segmentation

based on the raw image and the preprocessed image.

3.2 Image preprocessing
The image preprocessing involves image denoisingagcement, etc to get the

images ready for the next step, such as featutescéirn.

10



3.2.1 Image denoising

Denoising is noise removal while preserving as nafdfe significant features as
possible. Speckle noise is one of the main sowtersage quality degradation. Speckles
arise as random interferences between reflectecsvthat are mutually coherent. It is
one of the natural consequences of the limitediaga¢quency bandwidth of the
interference signals measured in OCT [28]. The G@dckle is similar to the speckle in
ultrasound or radar imaging, which is a complexrimeenon but in general occurs when
light from a coherent source illuminates scatteysasated by distances near that of the

coherence length of the source [29].

It is important to point out that speckle is batie signal and the noise in OCT.
Thus, the objective of speckle reduction is to sapp signal degrading speckle and
accentuate signal-carrying speckle [28]. In orderathieve this objective, numerous
approaches have been developed, such as polanizéitiersity, spatial compounding,
frequency compounding, and digital image processifibe most popular image
processing methods are spatial filters, includiregm median, and hybrid median. Other
techniques include rotational kernel transformati®KT), Wiener filtering, multi-

resolution wavelet analysis, and adaptive smootahmdjanisotropic diffusion [30].

For example, in the image processing method of amediitering, the median

filter replaces a pixel by the median of all pixelghe neighborhood:

y[m,n] = median {x[i, jI, w L (i, j)} 1)
where W represents a neighborhood centered around locétiom) in the image. One

benefit of median filter is that it can suppresgased noise without blurring sharp edges.

11



Many granular or mottled patterns on the imagetlagespeckle noises which do
not correspond to the real kidney microstructueeit $s challenging to detect the kidney
features in the OCT images. Therefore, a 5x5 mefiltan was first applied to the OCT
images to reduce the background speckle noisaurd-igjis an example of filtered human

kidney image obtained by OCT.

Raw image Filtered image

Fig. 3. OCT images of Human kidney before (left)l after (right) median filter.

3.2.2 I mage enhancement
The aim of image enhancement is to improve thepné¢ability or perception of

information in images for human viewers, or to pdevbetter input for other automated
image processing techniques. For example, imaganeement will eliminate errors
caused during the image acquisition and can rethictness effects on the image.
Typical image enhancement methods include Gammeea@n, adaptive contrast
enhancement, edge enhancement, and histogram zzgiosdi Gamma correction is a
nonlinear transformation process which can alterttansition from one gray level to the
next, and change the contrast and latitude of gcaje in the image [31]. Histogram

equalization enables the most frequent intensityegto effectively spread out, which

12



can increase the local contrast without changiraball contrast of images. Histogram
equalization is usually applied to images havingkgeounds and foregrounds which are
both bright or both darkFigure 4 shows a raw image of human kidney andrttege

enhanced in contrast.

Raw Image Enhanced Image

Fig. 4. OCT images of Human kidney before (left)l after (right) contrast enhancement.

3.3 Preprocessing effect

Image preprocessing is useful for subsequent apesasuch as segmentation.
The goal of segmentation is to obtain informativege data, while avoiding pixels with
noisy image data. Figure 5 is the comparison betwssgmented images with and
without preprocessing. Compared to segmentatiossdban raw image, segmentations
from preprocessed images are less noisy. Accordinghe comparison from the
segmentation results, it is mature to conclude ttatimage preprocessing does play an

important role for the following image analysis.

13



Fig. 5. Segmentation comparison between raw imagepeeprocessed image. Left top: image
after preprocessing; left bottom: segmentation thasethe preprocessed image; right top: raw

image; right bottom: segmentation based on theimzage;

14



CHAPTER 4

4  IMAGE QUANTIFICATION AND VISUALIZATION

4.1 Image quantification process
The overall automated image quantification includ®age segmentation, ROI
selection, and image feature quantification. Figlig¢plays a general flow chart of the

automated imaging quantification procedure.

Automatic Selection Boundary & Skeleton
* )
Raw OCT Image Segmentation -
'. 9 \J /
'* L * ) "- ‘
Ké, o \
M A - @
@ ©)]

Fig. 6. General flow chart of the automated imageessing algorithm, which includes three majopste
1) image segmentation from the raw OCT image; 2raated region selection (denoted by different gray
values), enabling individual analysis of each iwadaregion; 3) finding the boundary and skeletanefach
isolated region, and quantification of the locddule/vessel diameters.

First, the raw image data were obtained by the GgStem and were displayed in
both XZ and YZ plane. The contour of kidney surfaces identified by edge detection

on each A-scan. Then the structures in the kideagh as uriniferous tubules and blood

15



vessels) were segmented from the kidney parenchpased on their different

backscattering intensities [23] (Step 1 in Fig. 6).

To accurately distinguish local changes, an imagegssing algorithm was used
to automatically identify and separate the isolaedions (e.g. uriniferous tubules) from
the segmented images to quantify the diameterdf B®I (such as individual tubules or
blood vessels). The algorithm systematically filted region to the section boundary and
labeled each region with a unique index. This allgor allowed different regions to be
individually selected for further morphometricaladysis (for instance, quantifying the
diameter) or to count the total number of isolasedtions (Step 2 in Fig. 6). This step
was essential to ensure that the diameters meaateddbom the selected ROI, therefore,

can be color-coded and displayed in a spatiallgives! way.

In this chapter, the objective focuses on the dfieation of tubular (or vessel)
diameter. To quantify the diameter of each isol®€x, the corresponding boundary and
skeleton were generated. As a result, the diamefezach luminal position in this ROI
were calculated based on the average of the shalistances from the boundary to the
skeleton. To minimize the errors due to samplihg, $ame analysis approaches were
applied to both the XZ and YZ image cross-secticary] the final dimension was
calculated by averaging the values obtained froentwo cross-sections (XZ and YZ). In
this way, the spatially-resolved dimensional infation was obtained (Step 3 in Fig. 6)

and presented in three dimensions.

4.1.1 Segmentation of hollow structures

16



In the area of image processing, it is essentiatuiodivide an image into its
constituent parts to distinguish the objects oérest and the background. For intensity
images formed by OCT systems, there are severallg@opmpproaches including

thresholding, edge detection, and region-basedigaés.

Various other techniques beside these basic segtimnimethods were reported
recently. For examples, Yazdanpanah et al. [32pp@sed a new method to segment
OCT data using a multi-phase, level-set Mumford-RSimadel that incorporates a shape
prior based on expert anatomical knowledge of #tmal layers, avoiding the need for
training. Fernandez et al. [33] examined the apgiben of complex diffusion filtering
[34] along with coherence-enhancing diffusion filbg [35] as a tool for noise reduction,
segmentation, and structural analysis in retinalTO@ages. The authors proposed a
model based enhancement segmentation approachnilyiring complex diffusion and

coherence-enhanced diffusion filtering in threessmutive steps.

At present, there is no universally applicable segtation technique that will
work for all images, and no segmentation technigu@erfect. The specific method
chosen for the OCT images is dependent on the itsgéand the information requiring

extraction.

In this study, we used an intensity threshold tgnsent the OCT images. A

resulting binary image g(x,y) is defined as [36]:

1;,f(x,y)<T

g(x'y):{o;f(x,y)zT @

17



where f(x,y) was the gray level of a point (x,y)the original OCT images. Thus the
pixel (x,y) corresponding to hollow structure (sua tubules) was labeled ‘1’ in the
segmented image, whereas pixels labeled ‘0’ cooredgd to the background (kidney
parenchyma). In such a way all pixels with a grayel lower than empirical value

threshold (T) were extracted from the backgroundetch image. Step 1 in Fig. 6 shows

a typical segmentation procedure of a human kidimage.

4.1.2 Automated selection of isolated ROI's

The intensity values of the segmented images gixeyg scanned pixel by pixel.
The background intensity was ‘0’ and each isold®€d was ‘1’, every time a ‘1’ was
detected, the program was triggered to fill theiaegThe filling process flooded the
region in four directions (up, down, left and righintil reaching the boundary, i.e.,
encountering ‘0.” The filling process was performedVATLAB based on the function
“encodem”. Fig. 7 shows the process of segmentatalowed by the automated
selection of individual isolated ROIs. The fillifgocess filled different regions with
different values (as indicated by different colorsFig. 7) in order to count the regions

and extract each region from the image for furfirecesses.
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Fig. 7. Demonstration of automated selection ofatsal ROIs (as indicated by different
colors) Media 1. This process enables further image analysisrithgo (such as diameter
quantification) being applied to a spatially-regaVROI instead of the whole image.

4.1.3 Quantification of image features

Quantitative analysis supplies numerical valuesimbfge feature, such as
thickness, diameter, area, volume, and curvatarassist researchers in providing correct
diagnosis. Compared to manual measurements, cordpaged quantitative analysis is

more accurate, objective, economical, and timeiefi.

Quantitative analysis also relies on morphologicahge processing, which is
crucial for obtaining feature components that asefwl in the representation and
description of region shape, i.e. boundaries, s@et and the convex hull. The two basic
morphological functions are erosion - the removialpixels from the periphery of a
feature, or dilation - the adding of pixels to thagriphery. An opening is erosion

followed by dilation, while a closing is a dilatidollowed by erosion. These operations
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can smooth irregular borders, and fill in or remo®lated pixel noise and fine lines.
Because opening suppresses bright details smbaber the specified seed, and closing
suppresses dark details, they are used often irbication as morphological filters for

image smoothing and noise removal [36].

After extraction of an individual ROI, further mdrpmetric analysis could be
performed on the region. In the present study, a@idged on the estimation of the
diameter of the tubular lumen. The diameter wastfied by measuring the radius,

which was the minimal distance from a specific ktany pixel to the skeleton (see Fig.

|~
;

8).

=

Fig. 8. lllustration of segmented image (A-C) radiguantification. D, E, and F are the

graphical representations of the radius quantificabf the segmented images A, B and C,
respectively. A limited number of radii are shovim red color). Boundary is shown in black

color, and the skeleton is shown in gray color.

The boundary was defined as a pixel set where pla¢ias neighbor of every
member contains both intensity ‘1’ and ‘0’ pixel$ie skeleton is another pixel set which

represents spatially a minimally connected strokat ta region thins to [37]. The
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boundary and skeleton were obtained by the MATLABction “bwmorph”. By using

these two pixel sets, the radius for every pixglfpthe boundary (B) was defined to be:

Radius (b) =min(dist (b, s)) (3)

A radius was determined for every point b by firgdthe minimal distance between b and
the skeleton set (S). This process was appliedoth bylindrical and non-cylindrical
structures as illustrated in Fig. 8. For visualgoses, pixels’ intensities were rendered

with a number twice that of the associated radius lpcal diameter of the feature).
4.2 Results

4.2.1 Calibration of the quantification algorithm

To quantitatively assess the accuracy of the dinansalculation algorithm, we
applied this algorithm to the dimensional calcwatiof a capillary tube phantom. By
comparing the computer calculated results with mhmeasurements, the performance

of the algorithm was validated.
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Fig. 9. (A) An OCT image of a capillary tube phamton YZ plane. The tube
(indicated by an arrow) is submerged in a highlat®eing medium with 2%
Intralipid (a safe fat emulsion for human use). @)rresponding segmentation
image of (A). Tube region is highlighted by greesloc. (C) Histogram of the
estimated tube diameters from 61 different OCT ssectional (YZ) images along
X dimension by computer analysis and a human obse(). (E) A digital
microscopy image of the capillary tube.
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Fig. 9A shows one representative cross-sectiondl diage (YZ) of a capillary
tube phantom, with the associated segmented intagyersin Fig. 9B. Fig. 9C shows the
histogram of the automated estimation of the t@skus from a total of 61 different YZ
cross-sectional OCT images along X axis. The coepuaigorithm estimated the
diameter of the capillary tube to be 126@.6 pm. A human observer measured the
diameter directly from the same set of OCT ima@esl result in 128.2 7.4 um (Fig.
9D). The computer analysis result shows a sliglatiger variance since the diameter is
averaged from all boundary pixel measurements,enthi2 human observer only selected
few edge pixels to quantify the diameter. Fig. 8Bvgs a digital microscopy image of the

capillary tube. The measured diameter is 13200 um.

The relatively larger standard deviation from tleenputer algorithm compared to
digital microscopy is due to: 1) the OCT imaging tabe phantom (containing the
scattering media) has lower contrast comparedduatlimicroscopy imaging of tube in
air; 2) OCT imaging system has lower resolution (f) compared to that of digital
microscopy (~1 pum). Therefore, the tube edge in @@dge is not as sharp as those in
the digital microscopy, which will result in errons segmentation. Nevertheless, the
result shows that the mean of estimation obtainethé automated computer analysis is

comparable to the true tube dimension.

4.2.2 Comparison between OCT imaging and histology

The kidney microstructures of interest, includihg uriniferous tubules, vessels,
and glomeruli were identified based on their ddtirmorphologies. Comparisons
between the OCT image and the corresponding hgit@lbmicrograph indicated a close

match in terms of the main structural featuresadidition, the resolution of the OCT
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images (~10 um) was sufficient for the purposeeskenling the morphological details.
Fig. 10A shows a representative cross-sectional @@ge of the human kidney, and

Fig. 10B is the corresponding histopathology.
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Fig. 10. (a) Cross-sectional OCT image of the huikidney. Uriniferous tubules (T), glomerulus (G)
and the kidney capsule (C) are distinguishable Ggmventional histology of the associated aredén t
human kidney. (c) and (d) are the histograms ef uhiniferous tubules diameters calculated by the
computer algorithm from OCT images, and manuallgsoeement from the histology, respectively.

As seen in Fig. 10A, tissues with high backscattesuch as kidney capsule
appeared bright, while low backscattering regionshsas uriniferous tubular lumens
appeared dark. It was clearly observable that OQdldcpenetrate through the kidney
capsule (C) with a penetration depth of more th@® gm. The kidney microanatomy

including uriniferous tubules (T) and glomeruli (Bgre also readily distinguished.

Fig. 10C shows the histogram of the tubular lumeameéter measured by the

automated algorithm described in Section 2.3. Aateth measurement gives an
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estimation of lumen diameter of 274510.1 um. The manual measurement of lumen

diameter from the histology slide (Fig. 10B) giuhe results of 29.% 9.2 um (see Fig.
10D). This shows that the results obtained by thtoraated computer analysis are
comparable to that of the manual measurements siblbgy slide. However, the
computer calculation was significantly faster tthe manual measurements. In addition,
computer-aided analysis promises to automaticaiBlyae a large volume of data (for
example, three-dimensional data) efficiently andl & very helpful for providing the

clinicians with quantitative information in a tinyeianner.

4.2.3 Quantification and three-dimensional imaging visualization

4.2.3.1 Human kidney case | (blood vessels)
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Fig. 11. (A) 3D cut-through view of the human kign&he blood vessels as well as the
kidney parenchyma are visualized. (B-D): Represdmta@CT images in the XY, XZ,
and YZ planes. (E) 3D volumetric image of the segime vasculatureMedia 2. (F)
Automatically quantified and color-coded structuimalage. (G) Volume histogram of

the blood vessel diameter distribution.
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Fig. 11A is the three-dimensional view of the hunk&tney, as generated from
individual cross-sectional images. Fig. 11B-D shawepresentative images along the
three orthogonal planes (XY, YZ, and XZ), respegiv Detailed kidney vascular
networks were visualized in all the image plandse DCT image data set was further
segmented and analyzed to quantify the luminal éiamof the blood vessels. Fig. 11E
shows the 3D reconstructed images showing vastides after intensity segmentation.
The segmented 3D vascular tree was reconstructedtibging a 3D visualization
software (Amira). The morphological features & tiood vessels can be examined. Fig.
11F shows the quantification of the representadbio®d vessels luminal diameters from
the ROI. Fig. 11G shows the volume histogram of diemeter (which is obtained by
counting the voxel numbers associated with theipetameter, and multiplied by the
individual voxel volume, 150.9 pi)) indicating that the majority of vessel diameters

range from 50 um to 100 pm.

For those regions without any microstructures aagkubules or vessels, the light
intensity decreases exponentially with depth bezafisight scattering effects. However,
hollow microstructures such as uriniferous tubue$lood vessels alter this exponential
decay pattern due to the minimal light scatteriniw these hollow structures. After the
light passes through these structures, it contirdezseasing again. This phenomenon
results in relatively higher light intensity (hypense shadow) below some of the
microstructures as shown in the cross-sectionag@sdFig. 11C and D), and casts white

shadows on the enface image (Fig. 11B).

4.2.3.2 Human kidney case |l (uriniferoustubules)
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Fig. 12. (A) 3D cut-through view of the human kigniacluding uriniferous tubules and
the kidney parenchyma is displayed. (B-D): Reprgare OCT images in the XY, XZ,
and YZ planes. (E) 3D volumetric image of the segtee tubular networkMedia 3. (F)

Automatically quantified and color-coded structurabge. (G) Volume histogram of the

uriniferous tubules diameter distribution.
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The previously described procedures were applieghtiiher kidney as shown in
Fig. 12. As with case |, detailed kidney tubulaiustures were visualized in all image
planes (Fig. 12A-D). Fig. 12E shows the 3D recartséd images of the tubular network
after intensity segmentation, which allows comprsiee examination of morphological
features and interconnectivity of the renal tubulBg). 12F shows the automated
quantification of tubular diameters, which wereacedoded on the structural map. The
volume histogram in Fig. 12G indicates that mobute luminal diameters at this region

range from 20 um to approximate 40 pm, with a negdameter around 30 pum.

4.2.3.3 Human kidney case 11 (distended uriniferous tubules)

Case lll is from a third kidney. Fig. 13A-D showetBD cut-through views and
the representative images along the three orthdgnaaes. Two clusters of distended
tubules are clearly identified on Fig. 13E. Fi§Flshows the automated quantification
of all the luminal tubular diameters. The tubulamen diameters range approximately

from 30 — 60 pum in diameter, as shown in the vollnstogram (Fig. 13G).
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Fig. 13. (A) 3D cut-through view of the human kignheith distended uriniferous
tubules. (B-D): Representative OCT images in the, X¥, and YZ planes. (E) 3D
volumetric image of the segmented distended tubukiwork Media 4. (F)
Automatically quantified and color-coded structuirabge. (G) Volume histogram of
the distended uriniferous tubules diameter distigou
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Based on the volume histograms of blood vesselstetied tubules, and
uriniferous tubules, the comparison among threéemdiht microstructures is shown in
figure 14. The peaks of the dimension distributiars significantly different in terms of

the histogram showed in fig. 14.
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Fig. 14. The histogram of luminal Volume distritmt for blood vessels (red),

distended tubules (green), and uriniferous tub{idkee).
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4.2.3.4 Human kidney case IV (glomerulus)

Fig. 15. (A) 3D cut-through enlarged view of thentan kidney showing a glomerulus and
tubular network. (B-D): Representative OCT imageshie XY, XZ, and YZ planes. (E)
3D volumetric image of the segmented glomerulus tadlar network Media 5. (F)
Automatically quantified and color-coded structuraége.

We were also able to visualize the glomerular stmes. Fig. 15A-D shows an

individual glomerulus in the enlarged view, as canga to previous figures. We could
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easily visualize the glomerulus surrounded by tineutar Bowman'’s space. However,
the segmentation of the complete glomeruli waslehging, because in most cases, the
Bowman'’s space separating the glomerular capiliaftg from the renal parenchyma is
not a full circle (see Fig. 15D and Fig. 15B). FitbD shows the diameter of the
glomerulus to be approximately 220 pum. This ressilin agreement with previous
literature using ultrasound imaging (216 +2n) [38]. Fig. 15E shows the 3D view of

the segmented Bowman'’s space.

4.2.3.5 Human kidney case V (vessels, tubules, & glomeruli)

Fig. 16 shows a representative region with differ@mal structures including
blood vessels, uriniferous tubules, and glomerTiie glomeruli are surrounded by an
expanded network of uriniferous tubules and blo@$sels. The diameters of the
glomeruli are approximately 200 um. This result dastrates the capability of OCT to

visualize different renal microstructunassitu.
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Fig. 16. (A) 3D cut-through view of the human kiginghowing a glomerulus (G) surrounded by
tubules (T) and vessels (V). (B-D): Representa@&T images in the XY, XZ, and YZ planes. (E)
3D volumetric image of the segmented glomeruli arfglilar network Kedia §. (F) Automatically
quantified and color-coded structural image.
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CHAPTER S5

5 IMAGE CLASSIFICATION

5.1 Classfication definition

An object is a physical unit, usually representedmage analysis by ROIs in
segmented images [39]. The set of objects can Wdedi into disjoint subsets, which
have some common properties and are called claSsessification aims to classify data
based either on a priori knowledge or on statiktinformation extracted from the
patterns. The patterns to be classified are usgmtiyps of objects from images to be

analyzed.

The main image classification steps are in showfigare 17 [39]. The block
‘Construction of formal description’ is based ore texperience and intuition of the
designer. A set of elementary properties is cheggnh describe some characteristics of
the objects; these properties are measured in@o@jate way and form the description
pattern of the object. These properties are defiagddescriptors and can be either
guantitative or qualitative in character. A clagsifplaces patterns into a specific class

based on these descriptors of the pattern.

Mathematically the approaches to image classibcatare divided into two
principal areas: decision-theoretic and structy8#l]. The first category deals with
patterns described using quantitative descripgush as length, area, and texture. Sonka
et al. [39] listed some simple geometric regioncdesors: Area, Euler's number,

projections, height, width, eccentricity, elongatess, rectangularity, direction and
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compactness. The second category takes use otusaiucelationships inherent in a
pattern’s shape, which seek to achieve patterngreton by capitalizing precisely on

these types of relationships.

Object Construction of Pattern

o Classifier |—— Classes
formal description

Fig. 17. Main steps of image classification.

Image classification helps biochemists, biologisteedical scientists, and
physicians to judge quantitative measurements, lwHecilitate the validation of
scientific hypothesis and accurate medical diagndsiage classification is also the basis

for computer-aided diagnosis systems in medicabingbased diagnostics areas.

5.2 Kidney image classification algorithm

Decision-theoretic classification is used widely @CT image processing.
Sabeenian et al. [40] found out the abnormalitiésa gatient's abdomen and more
particularly in organs such as kidney, liver, aptéen by analysis and classifying the CT
scan images of a patient's abdomen. The classificet done automatically by extracting
the statistical and spectral characteristics. Timeilay classification method is also

suitable for OCT scan images of human kidney.

In the image classification for this study, theedaftjis the isolated ROIs of a set of
kidney images obtained by OCT (i.e. 512 images #). XThe construction of formal
description in current study is image grouping. M taecision-theoretic classifier is
applied to each image group to estimate which dlassgroup belongs to. The classifier

works on multiple-parameter descriptors: the shaipthe images and the diameters of
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images. Decisions are made by priori knowledget, igyagroups with ‘ring’ shapes are
classified to glomeruli; groups without ‘ring’ shegp are categorized to sclerous

glomeruli, blood vessels, or tubules based ontidigsscal value of their diameters.

After the accomplishment of image classificatioacle ROI is categorized to one
of the three main microstructures in the human éydrglomeruli, blood vessels, and
tubules. Figure 18 depicts the general structuréhefflow chart for the classification
process. T1 and T2 are thresholds derived fronsttall diameter values to distinguish
the class of each group. The determinate valueloaid T2 will be discussed in the

posterior sections in this chapter.

| mage Growping_|
—

Yes

tubule

Fig. 18. Flow chart of the human kidney image sifesation algorithm. hist(D) means the histograim
diameter; T1, T2 are empirical thresholds.



5.2.1 Image grouping
Image grouping designates each ROI to a specifiwpmwhich represents a

connected entity in geometry in the human kidney.

The image grouping algorithm is fulfilled by MATLAButines and composed of
three steps: labeling, overlapping assessing, amgogmarking. The algorithm for
labeling was the same as the ROI selection alguoritlsed in image quantification
discussed in previous chapter. The process isdigrag unique number to each ROI of
512 images in the entire set of XZ images. The st is to assess the overlapping of a
paired ROI between two spatially consecutive XZgew The criterion of overlapping
relies on the fact that there is at least one pixelrlapped within the two ROIs. Paired
ROIs unsatisfied with the criterion indicate thag two ROIs are spatially isolated. Then
the program proceeds to assess the overlappingeohéxt paired ROIs. If the paired
ROIs are overlapping, indicating that this pairresgnts the same entity, the program
triggers the group marking process before procegttirthe next assessment. Triggered
group marking program places a group marker forlapped ROIs. The 3-step process
is implemented in each ROI individually, and aftee image grouping is finished, ROIs
with the same marker represent that they belongn® group, in other words, one

connected entity.

5.2.2 Classifiers

In this study, we are interested in three mainsgasn human kidney images:
glomeruli, blood vessels, and tubules. The fingleas of image classification is to
evaluate the class for each group. The differeno@ng the three classes can be

determined by priori knowledge: normal glomerulivedring’ shape or partial ‘ring’
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shape. Sclerous glomeruli, blood vessels, andlésbonly have solid disk shape or
arbitrary shape. In that case, the quantificatidntiee diameter for these three
microstructures is statistically significant. Agesult, the histogram distribution of the
diameter values could be plotted and empiricalsthoéds are set to determine the class
for each group. Therefore, the classifiers are ma@elgendent on multiple-parameter

descriptors: the shape of the images and the deamet images.

First the shape classifier singles out groups whiate partial-ring or ring-shape
images and categorize these groups as the glomdads; then the left groups are

estimated by the diameter classifiers and finadiggorized as corresponding classes.

5221 Shape classifier

Fig. 19 demonstrates the steps of how the shapsifoét works. As shown in this
figure, images from one group are severed as aut iopthe classification. In order to
evaluate the ring-shape images in each group, aaudéinown as ‘stable-centre’ was
developed. This method is based on the assumgtatnany ring-shape or partial ring-
shape image has a relatively fixed centre. Theecerdordinates (x,y) of the ring are
computed by least squares means for each imagénvatie group, and the standard
deviation (STD) of the coordinates are comparethbgshold t. Either STD(x) or STD(y)
less than t means the images contains ‘ring’ ortigaring’ shape, thus the whole group

is classified as glomeruli class.
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Fig. 19. Flow chart of the shape classifier. t igp@oal thresholds

Shape classifier selects groups containing ‘ringpartial-ring’ images, which is
a typical characteristic of normal glomeruli, arabéls the groups with a glomeruli

marker. In this study, the glomeruli marker is cedor.

5222 Diameter classifier

The diameter distribution was obtained by the gtiaation algorithm in chapter
4. Prior knowledge shows the mean diameter of@ateglomeruli, blood vessels, and
tubules to be approximately 160 pm, 85 um, and i@0rgspectively. Fig. 20 illustrates
the difference among the three structures. Themétate values of T1 and T2 therefore
can be derived from the fig. 20 distribution. Aetaid of threshold T1 (120 um) and T2
(50 um), sclerous glomeruli, blood vessels, andileghare separated and classified to

corresponding classes.
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Fig. 20. lllustration of the diameter distributiorr fclerous glomeruli, blood vessels,

and tubules.

5.3 Reaults

5.3.1 Imagegrouping

The upper left image on Fig. 21 shows the overalide group from one human

kidney sample. The other images in this figure afreelected groups from this overall

image.
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Fig. 21. Demonstration of human kidney image giegpTop left: all groups from one human kidney

sample. Others: selected groups from image grouping

5.3.2 Image classification
Three main classes of human kidney microstructarescolor coded in the Fig.
22. The red images represent glomeruli, the yelloages represent blood vessels, and

the blue images represent tubules. All groupslea@ly classified in this set of data.
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Fig. 22. Result of human kidney image classifmaiiMedia 7. Yellow: glomeruli; Red: blood vessels;

Blue: tubules

Most microstructures in Fig. 22 are correctly cifsgd and color coded according
to prior experience. There is a minor error in gh@meruli class: some tubular structures
were classified as the glomeruli class near theofdpe figure. The reason for this error
can be explained by the fact that the glomerulus tabules are physically connected
based on the segmentation information. An optinormain image segmentation and

image grouping will assist in resolving this issue.
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CHAPTERG6

6 DISCUSSION AND FUTURE WORK

6.1 Discussion

OCT as a high-resolution medical imaging modalig lbecome one of the most
important visualization and interpretation methaad$iology and medicine. In the past
decade, tremendous improvements have been acooueddT in both hardware and
software. High speed, high resolution OCT systemgeHed to a rapid growth in the
application of digital processing techniques folvem medical problems. A large
volume of images requiring processing poses a e@mgdl to the efficiency of today’s
image processing algorithm, but this can be oveecas more efficient algorithms are
developed. Furthermore, as the image capturinghaedand software improves, we can
obtain higher resolution images. These higherluéso images will provide us with
finer image details, thus leading researchers teldping and improving their image
processing techniques.

In this study, we were able to image up to apprexaty 800 um depths in the
human kidney, which was deep enough to image sSof@rblood vessels, uriniferous
tubules, and glomeruli. Such structures are closelgated to many physiological
functions, for example, in the case of evaluatibtransplant kidney function [17]. High
acquisition speed (video rate) achieved by Foudemain OCT enables real time

imaging in 3D [41-44] and the surveying of largelrey surface area in a timeframe
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reasonable for clinical practice. In general, withither development, OCT has the

potential to be translated into clinical settingsKidney imaging.

The algorithms applied in this study, such as, mated imaging quantification
and classification methods, could be generalizechémy other imaging analyses. The
dimensional calculation of a capillary tube phantproved that the algorithm could
successfully estimate actual luminal volumes. 38ualization and volumetric rendering
provided quantitative evaluations of the dimensi@h@anges in tubular or vessel lumens.
These renderings and the use of color coded 3Damegn potentially provide clinicians

with useful diagnostic tools.

However, there is still space for improvement oé #turrent study. The first
problem encountered by OCT is speckle noise, wlich never ending issue requiring
extensive research for its full understanding. Maiscures the original images, and
introduces artifacts, resulting in obstructing iarther operations including image
segmentation and feature extraction. Certain isatefisted below which require special

attention:

1. The comprehension of the types of speckle andtilgenaf speckle is not clear to
date. Further studies are necessary to understendetationship between the
scattering properties of tissue at the microscdeiel, and the statistical
properties of speckle in OCT image.

2. As a natural result of the limited spatial-frequendandwidth of an
interferometric system, speckle effects in OCT #thdne surpassed by the way of
widening the light source bandwidth and widening lilght collection aperture at

the same time.
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3. More research is needed focusing on technique®l&ter spatial-compounding
and frequency-compounding methods, particularly hods used in those
relatively mature techniques such as synthetictaperradar and medical

ultrasound and how they relate to OCT.

It should also be mentioned that there are chadlenig image segmentation. An
intensity-based segmentation algorithm was usethigstudy, which is subject to the
setting of threshold values. In the future, moreasmded segmentation algorithms, such

as marker-controlled watershed segmentation [4] beiinvestigated as well.

The automated selection of individual ROI for ftlanalysis represents a unique
merit of this algorithm. This approach simulatesnian behavior using an automated
computer algorithm. After automated selection, masi morphormetric analyses could be
applied to the selected ROI, including the measerdrof area, diameter, and curvature.
In this study we focused on the local diameter bseat is closely related to the kidney

viability [17].

The quantification of tubular (or vessel) diametesss achieved by automated
identification of the boundary and skeleton of indual ROls. This approach was
limited in its estimation of the correct tubulaandieter when the imaging plane did not
cut through the central axis of the tubules. Howgtlgs limitation was also shared by
most, if not all, cross-sectional imaging methoBer example, histology analysis of
tubular and glomeruli diameter will be subject e tsame sampling limitations. In our
study, 3D OCT images with two orthogonal crossisast(XZ and YZ) were utilized to
obtain an averaged estimation of the tubular dino@nd’ he sampling limitation will be

further alleviated by panning the imaging plane Hg&@ree to fully cover the different
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angles. In addition, the skeleton extraction methseéd in this study is based on
morphological thinning, which sometimes led to untea branches [4], which tended to
under-estimate the tubular diameter. However,limgation was alleviated when a large
number of boundary pixels were evaluated and ptedestatistically. Reasonably
accurate estimations of diameters of capillary tphantom and kidney tubules were
achieved through this algorithm, as confirmed hbgitdl microscopy and histology. To
overcome these limitations completely, future depeient of 3D boundary and skeleton

recognition algorithms would be an ultimate solatio

We should note as well that the present image aisalynethod cannot
automatically separate different objects which dightly connected to each other such
as glomerulus and its associated tubules. In thegeémprocessing of human kidney
microstructures obtained by optical OCT, one cingileg step is to separate different
microstructures which are slightly ‘touching’ eacther. For instance, the glomerulus
needs to be separated from its associated proxiotalhle for image processing
consideration, although they are physically coneet¢bd each other. Two approaches are

proposed in the following paragraphs.

The first approach is based on image opening. I&gée separated are binary
images since they are the image features extrdmteidhage segmentation. Therefore,
morphological operations are suitable to be appiethese images. Basic morphological
operations include erosion and dilation. Erosionngs image objects while dilation
expands them. Dilation and erosion are often aggliean image in concatenation. An

erosion followed by a dilation is called image opepn which can separate objects
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connected in a binary image. The specific actidnsagh operation are illustrated in the

figure 23 [45].

A B C
%y Sl - %
SRR

Fig. 23. Examples of various mathematical morphplogerations: A) original image; B)
dilation; C) erosion; D) image opening.

According to the result of image opening showetign23, image opening shows
to be a feasible approach for separation of diffe@mnnected microstructures. Image
opening operation generates a certain amount ob#nmy on an object contour and
especially smoothes from the inside of the objeataur. In order to disconnect different
objects and at the same time preserve as mucheobrijinal images as possible, the
structuring element used to do image erosion aladiah should be selected carefully.
Too large of a structuring element will lead to geadistortion, while too small of a

structuring element can only break thin connections

The second approach lies on watershed transformafigure 24 illustrates a

glomerulus connected by a proximal tubule.
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(radius) =r, (radius) =T,

Fig. 24 lllustration of a glomerulus connected wvatproximal tubule

First of all, the radii of all pixels on the boumgare calculated. Since the radius
of the glomerulus (rl) is significantly greaterthat of the tubule (r2), the histogram of
radii distribution will have at least two peaks. Bydging the radii histogram, all
connected images with different microstructures @istinguished. Finally, watershed
transformation can be used to separate the imdgaaaterized as an oval (glomerulus)
connected by narrow tubes (tubules). This approaolrks for images with special
morphologies as illustrated in the fig. 24. Howevieris impossible to differentiate
images showing ring shape connected with tubesusecthe radii of the ring are similar

to that of the tubes.

Although the present OCT system has a limited tggol of 10 um, it is still
sufficient to detect the tubules in the human kydn&e observed tubular diameters range
from 30 - 60 um from four human kidneys after folimdixation. From the literature,
normal human proximal convoluted tubule has a dieamaf approximately 55 um [46].
The ultimate clinical utility of this method willdbassessed by the clinical evaluation of
kidney viability, where the threshold tubular diasere for viable kidney can be

determined.
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Finally, along with the complexity of the procegsimethods, time economics
become another issue especially when a real-timeepsing is required. One way to
speed up the implementation is to translate thigoridhm into more efficient

programming language, i.e. C++.

6.2 Conclusion

OCT is a rapidly developing imaging modality thangoroduce 3D imaging of
tissuein situ and in real time. OCT can provide cross-sectiamalges which make 3D
reconstruction and image processing possible. ft wigualize tissue microstructure
without the need for contact or tissue removal,redhg facilitating sterility and
minimizing possible damage to the tissue. The higgplution capability of OCT is

sufficient for imaging numerous organs such ashtirean kidney.

In this study, OCT imaging of human kidney was @ls&zed in real time.
Automated image analyses algorithms have been a@e@lfor quantifying spatially-
resolved tubular diameter as a biomarker for kidwiapility. Images along the three
orthogonal image-planes (XY, YZ, and XZ) in the Hdean space were displayed
sequentially. Moreover, the rendering of the imggewided a 3D volumetric view. The
computed microstructure sizes were then color-codadthe reconstructed images,
revealing quantitative information of the kidneycnoianatomy. Based on the results of
this study, we have demonstrated the capabilityO&T imaging and automated
guantification of human kidney microanatomy. Autdethimage classification is also
successfully implemented to separate three clagbdsaiman kidney microstructures:
glomeruli, blood vessels, and tubules. The abdityDCT to provide 3D, high resolution

imaging illustrates the potential of using OCT toeage donor kidney structures and to
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evaluate the organ’s viability, or image the regasto acute kidney injuries. Automated
image processing algorithm in the current studyp$ealesearchers to handle a large
volume of data set in real time, which will prom@€T image technology from ‘bench

side’ to ‘bed side’.

6.3 Future Work

Future work will involve the quantification of moparameters like the curvature
for human kidney images and compare them with tiséopathology for diagnostic
calibration.

In addition, those parameters should be quantfbedlifferent human kidneys to
obtain the baseline values for diagnostic purpoaed,perform OCT images for human
kidney in vivo to examine the correlation between the dimensiohsheir imaged
features and post-transplantation renal functiorfugher analyze and diagnose kidney

diseases.

The image classification could be improved in otmavel ways. Recently
Miyazawa et al. [47] developed a tissue discrimoratlgorithm of polarization sensitive
optical coherence tomography (PS-OCT) based owpkieal properties of tissues. They
calculated the three-dimensional (3D) feature wedtom the parameters intensity,
extinction coefficient, and birefringence and deteed the tissue type of each pixel
according to the position of the feature vectothia 3D feature space. The conjunctiva,
sclera, trabecular meshwork (TM), cornea, and uveege well separated in the 3D

feature space as they reported.
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Research is ongoing and future improvement shoalitentrate on developing
more efficient and effective algorithms for OCT meaprocessing. The algorithms must

also increase in accuracy in order to be reliatete everyday user.
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