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Optical coherence tomography (OCT) is a rapidly emerging imaging modality 

that can non-invasively provide cross-sectional, high-resolution images of tissue 

morphology such as kidney in situ and in real-time. Because the viability of a donor 

kidney is closely correlated with its tubular morphology, and a large amount of image 

datasets are expected when using OCT to scan the entire kidney, it is necessary to 

develop automated image analysis methods to quantify the spatially-resolved 

morphometric parameters such as tubular diameter, and to classify various 

microstructures. In this study, we imaged the human kidney in vitro, quantified the 

diameters of hollow structures such as blood vessels and uriniferous tubules, and 

classified those structures automatically. The quantification accuracy was validated. 

This work can enable studies to determine the clinical utility of OCT for kidney 

imaging, as well as studies to evaluate kidney morphology as a biomarker for 

assessing kidney’s viability prior to transplantation. 
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CHAPTER 1 

 

1 INTRODUCTION AND MOTIVATION 

Optical coherence tomography (OCT) is a rapidly emerging imaging modality 

that allows high resolution, noninvasive, cross-sectional imaging of tissue morphology in 

situ and in real-time [1]. OCT is analogous to ultrasound, however, OCT generates 

images by measuring the back reflection intensity of light instead of sound wave. 

Although the light scattering properties of biological tissues typically limit light 

penetration to less than 2 mm, this imaging depth has proven sufficient to provide 

valuable information about tissue pathology in a number of biomedical fields. Therefore, 

OCT is a promising imaging modality to assess tissue pathologies in situ and in real time. 

In addition, image processing has evolved to play an important role in understanding the 

information content of biological tissues [2-5]. 

1.1 Current trends in OCT technique 

In the recent decades, OCT has been widely used in diagnosis and computer-

guided surgery. Numerous literatures have been reported applying OCT in different 

biomedical fields, including ophthalmology [6-8], cardiology [9, 10], and 

gastroenterology [11-14].  In certain areas, such as ophthalmology, proven products have 

been developed from OCT to serve as prime tools in clinical offices. Furthermore, OCT 

can be interfaced with various imaging devices such as catheters, endoscopes, 

laparoscopes, and needles, with typical image resolutions of 1-15 µm [15], to provide 

broader applications in biomedical area. 
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1.2 Significance of kidney images obtained by OCT 

A kidney transplant is often the most ideal treatment option for kidney failure 

[16], and according to the National Kidney Foundation there are approximately seventy 

thousand patients awaiting kidney transplants per year in the U.S. One severe problem for 

kidney transplant is post transplant renal failure due to kidney deterioration during the 

storage. Therefore, a reliable and accurate test is needed to evaluate the viability of donor 

kidney and predict post-transplantation renal function.  

The viability of a donor kidney is closely correlated with its tubular morphology 

[17]. OCT enables three-dimensional visualization of the kidney microstructures, thus 

can assist in the evaluation of donor kidneys. Compared with conventional microscopy, 

Computed Tomography (CT), Magnetic Resonance Imaging (MRI) and ultrasound, the 

versatility of OCT imaging procedures, its resolution capabilities and increased depth 

analysis make OCT an ideal method for imaging the human kidney in situ and in real 

time.  

Prior studies utilized non-human kidneys for OCT imaging analysis, while this 

study uses OCT to study the human kidney ex vivo. Various structures from different 

human kidneys were readily distinguished, including the blood vessels, uriniferous 

tubules, glomeruli, and kidney capsules. The methods of this study could be directly 

applied to donor kidney viability analysis, since the previous study [17] indicated that 

proximal tubular structure and post-transplantation renal function are closely correlated. 

In addition, there are existing correlations between glomerular morphology and renal 

diseases, i.e. mesangial proliferative glomerulonephritis [18], focal segmental 

glomerulosclerosis [19], Type I diabetes mellitus [20], and renal ischemia [21]. 
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Therefore, OCT’s ability to distinguish glomeruli structures is a potentially valuable tool 

for the diagnosis of glomerular diseases as well.  

OCT imaging can provide immediate information regarding the histopathological 

status of the renal vasculature, tubules, and glomeruli. One potential OCT application is 

the evaluation of the viability of donor kidneys [22]. Previous studies using tandem-

scanning confocal microscopy [17] indicated that proximal tubular structure and post-

transplantation renal function are closely correlated. In a recent study [23], living rat 

kidneys were observed in vivo before, during, and after an ischemic insult using OCT, 

which enabled the visualization and comparison of the rat kidney morphology. OCT 

therefore represents an exciting new approach to visualize, in real-time, the pathological 

changes in the living kidney in a non-invasive or minimally invasive fashion. 

1.3 Motivation for developing automated algorithms  

In an earlier study [23], the total volume of the kidney tubules were segmented 

and quantified. Statistically significant changes were observed during the ischemia. 

However, the segmentation algorithm used in this prior study quantified the average 

tubular volume changes only, and the spatially-resolved local morphological changes 

were not able to be separated and quantified. Furthermore, kidney structures are 

heterogeneous; therefore the difference in tubular volume is confounded by the tubular 

density. Another earlier study [17] suggested that the tubular lumen diameter is a more 

robust biomarker for kidney viability, and a decrease in lumen diameter during ischemia 

was observed visually by both confocal microscopy [17] and OCT [23]. Therefore, it is 

important to develop methods to quantify the spatially-resolved tubular diameters.  
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The most straight-forward method to quantify the tubular diameters from OCT (or 

other imaging modalities) images is manual measurement using calipers or partially-

automated image analysis software, i.e. ImageJ. Although accurate and reproducible 

measurements can be obtained in this way, an obvious drawback is the extent of user 

interaction required for the analysis. For instance, it requires manual selection of the 

region-of-interest (ROI) and the tubular wall edges on the images by the operator as the 

first step. This procedure is very laborious and time-consuming, which precludes the 

possibility of analyzing large amounts of data. This is especially challenging for OCT 

imaging of the kidney, since individual OCT images have a field-of-view (FOV) of 

several millimeters while a typical human kidney has a surface area larger than 10 cm by 

10 cm. To provide an accurate assessment of the entire kidney, comprehensive OCT 

imaging is necessary, which would involve a large number of images from various 

locations of the kidney. Thus, an automated image analysis method is critical. 

Our previous work has demonstrated that hollow kidney microstructures such as 

uriniferous tubules and Bowman’s space can be automatically segmented based on their 

different backscattering intensities [23]. Automated segmentation of colonic crypt 

morphology using OCT [4] has also been demonstrated. In addition, automatic evaluation 

of diameters of a single cylindrical structure such as brachial artery has been 

demonstrated using B-mode ultrasonic imaging [24, 25]. However, in our application, 

multiple isolated tubules with various diameters and curvatures are presented in a single 

OCT image. To obtain the spatially-resolved morphometric information, it is necessary to 

separate those isolated regions for further quantification. The purpose of the present study 

was to develop an image processing method for automated selection of individual ROI 

and quantification of the size of the hollow structures in the kidney, including renal 
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tubules, glomeruli, and vessels. Since there are significant differences in the size and 

structure of human kidneys and those of rodents, we undertook these studies using human 

kidneys for enhanced clinical relevance. This study is a necessary step before assessing 

the utility of OCT in clinical evaluation of kidney viability.  

In summary, a large number of image datasets are expected when using OCT to 

scan the entire kidney to provide a global assessment of its viability, so it is necessary to 

develop automated image analysis methods to quantify the spatially-resolved 

morphometric parameters such as tubular diameter. 

1.4 Overview 

The objective of this study is to realize automated quantification and classification 

of human kidney microstructures from images obtained by OCT to provide potential 

diagnostic information of donor kidney. 

This thesis is based on the following topics. Chapter 2 will describe the materials 

and experimental setup. Chapter 3 will be an overview of the image preprocessing. 

Chapter 4 will demonstrate the image feature quantification and results while in Chapter 

5 the methods and results of the image classification will be presented. Chapter 6 is the 

summary and discussion of the work and an insight into future work.



 
 
 

 6 
 

CHAPTER 2 

2 EXPERIMENTAL SETUP 

2.1 Human kidney and histology 

 
This study protocol was approved by the Institutional Review Boards (IRB) at 

both the University of Maryland and Georgetown University. Four donor kidneys were 

obtained through the Washington Regional Transplant Consortium (WRTC). Upon 

arrival, the kidneys were fixed by vascular perfusion with 10% neutral formalin (through 

the renal artery) to preserve their renal morphology.  After the OCT image acquisition, 

the location and direction of each scanned section were marked with ink, for subsequent 

standard histology processing. For conventional light microscopy, 4 µm thick sections 

were cut, stained with hematoxylin-eosin (H&E), and photographed with a Nikon Eclipse 

80i (Nikon, Melville, NY) attached to a digital camera Nikon DS-Fi1 (Nikon). The 

micrographs were obtained for comparison with the OCT images.  

2 cm2 cm
 

 
Fig. 1. The photo of one of the human kidneys imaged by OCT.   

2.2 Optical coherence tomography (OCT) imaging 
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OCT technology is based on low coherence interferometry. The interference in 

OCT is in the range of micrometers, thus requiring the use of broadband light sources. In 

OCT system, the light source is divided into two branches or arms - a sample arm which 

holds the object of interest and a reference arm which is typically a mirror. The 

combination of reflected lights from both arms (sample arm and reference arm) can result 

in an interference pattern if the optical distance of the light in each of the arm has 

traveled comparable distances. This occurs when the difference of optical distances is 

less than a coherence length. There will be no interference of any light outside this short 

coherence length. Therefore, areas of the object which reflect back light will create 

greater interference than areas that do not. The reflectivity profile is known as an A-scan, 

consisting of the location of structures within the object of interest and also information 

about the spatial dimensions. A cross-sectional tomographe, known as B-scan, may be 

achieved by combining laterally a series of these axial depth scans (A-scan). En face 

imaging (C-scan) at an acquired depth is possible, but depends on the imaging engine 

used. 

This study used a high-speed high-resolution OCT system (Thorlabs Inc., NJ, 

USA) using swept source/Fourier domain detection that enabled three-dimensional (3D) 

OCT imaging in situ. The light source was a wavelength-swept laser light source 

generating a 100 nm full width at half maximum (FWHM) bandwidth at 1310 nm, 

yielding an axial resolution of 10 µm in the tissue. The laser operated at a swept rate of 

16 kHz with an average output power of 12 mW. The imaging frame rate was 30 frames 

per second. The transverse resolution of the system was 15 µm with 4 mW of power 

illuminating the sample.  
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Fig. 2 shows the overall schematic of the OCT system used in this experiment. 

The inset in the lower left corner shows the imaging microscope. The output of the swept 

laser was split into two portions: three percent was used to generate a clock signal for 

triggering the sample of the OCT signal on a uniformly-spaced optical frequency grid 

[26]; the remaining ninety-seven percent of the output was equally distributed to the OCT 

sample and reference arms. Imaging of the human kidney sample was performed by a 

pair of mirrors mounted to XY scanning galvanometers (Cambridge Technology, MA, 

USA) and a microscope objective.  
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Fig. 2. Schematic and photo of the OCT imaging system. FC: fiber coupler, PC: polarization controller, C: 

collimator, MZI: Mach-Zehnder interferometer (frequency clocks), M: mirror, BD: balanced detector, 

DAQ: data acquisition board, DCG: dispersion compensating glasses, OBJ: objective. 

The OCT imaging system’s sensitivity was 97 dB (defined as the signal-to-noise 

ratio for a perfect sample reflector) [27]. 3D OCT images of the kidney measuring 3 mm 

by 3 mm by 2.25 mm (512 x 512 x 512 pixels) were obtained from various locations on 
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the human kidney samples within minutes, in a non-contact manner. The software 

associated with the OCT system saved each set of data as a file with extension of .IMG, 

which contains all information of the entire volume of images within a certain location. 

Images along the three orthogonal image-planes (XY, YZ, and XZ) in the Euclidean 

space could be extracted and displayed effectively by MATLAB routines.  

After the acquisition of original images, 3D OCT images with representative 

microstructures were selected and compared with corresponding conventional 

histology. To quantitatively evaluate and classify the OCT images to obtain diagnostic 

information, automated image processing was performed on each individual cross-

sectional (XZ or YZ plane) OCT image.  
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CHAPTER 3 

3 IMAGE PREPROCESSING 

3.1 Procedures of image processing 

In disease diagnosis, most suspicious regions of OCT images have subtle 

abnormalities, and at the same time the OCT suffers from speckle noises. All these 

factors directly reduce the reliability of monitoring and diagnosing diseases. Therefore, 

image denoising and enhancement are the primary steps after raw images acquisition. In 

order to obtain valuable information from OCT, image segmentation is another important 

step for feature extraction or image enhancement. These steps are referred to as 

preprocessing. Based on the segmented images, researchers are able to perform the 

measurements such as characteristics quantification. Finally, image classification is 

necessary in certain situations, when real time monitoring and massive data analysis 

make it near impossible to implement manually.  

In the following sections, these image processing techniques mentioned above will 

be reviewed in the case of human kidney images obtained by OCT. In order to prove the 

effects of image preprocessing, the comparison is displayed between a segmentation 

based on the raw image and the preprocessed image. 

3.2 Image preprocessing 

The image preprocessing involves image denoising, enhancement, etc to get the 

images ready for the next step, such as features extraction. 
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3.2.1 Image denoising 

Denoising is noise removal while preserving as much of the significant features as 

possible. Speckle noise is one of the main sources of image quality degradation. Speckles 

arise as random interferences between reflected waves that are mutually coherent. It is 

one of the natural consequences of the limited spatial-frequency bandwidth of the 

interference signals measured in OCT [28]. The OCT speckle is similar to the speckle in 

ultrasound or radar imaging, which is a complex phenomenon but in general occurs when 

light from a coherent source illuminates scatters separated by distances near that of the 

coherence length of the source [29].  

It is important to point out that speckle is both the signal and the noise in OCT. 

Thus, the objective of speckle reduction is to suppress signal degrading speckle and 

accentuate signal-carrying speckle [28]. In order to achieve this objective, numerous 

approaches have been developed, such as polarization diversity, spatial compounding, 

frequency compounding, and digital image processing. The most popular image 

processing methods are spatial filters, including mean, median, and hybrid median. Other 

techniques include rotational kernel transformation (RKT), Wiener filtering, multi-

resolution wavelet analysis, and adaptive smoothing and anisotropic diffusion [30].  

For example, in the image processing method of median filtering, the median 

filter replaces a pixel by the median of all pixels in the neighborhood: 

 )},(],,[{],[ jiwjixmediannmy ∋=  (1) 

where represents a neighborhood centered around location (m,n) in the image. One 

benefit of median filter is that it can suppress isolated noise without blurring sharp edges.  
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Many granular or mottled patterns on the image are the speckle noises which do 

not correspond to the real kidney microstructure, so it is challenging to detect the kidney 

features in the OCT images. Therefore, a 5x5 median filter was first applied to the OCT 

images to reduce the background speckle noise.  Figure 3 is an example of filtered human 

kidney image obtained by OCT. 

Raw image Filtered imageRaw image Filtered image

 

Fig. 3. OCT images of Human kidney before (left) and after (right) median filter. 

3.2.2 Image enhancement 

The aim of image enhancement is to improve the interpretability or perception of 

information in images for human viewers, or to provide better input for other automated 

image processing techniques. For example, image enhancement will eliminate errors 

caused during the image acquisition and can reduce brightness effects on the image. 

Typical image enhancement methods include Gamma correction, adaptive contrast 

enhancement, edge enhancement, and histogram equalization. Gamma correction is a 

nonlinear transformation process which can alter the transition from one gray level to the 

next, and change the contrast and latitude of gray scale in the image [31]. Histogram 

equalization enables the most frequent intensity values to effectively spread out, which 
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can increase the local contrast without changing global contrast of images. Histogram 

equalization is usually applied to images having backgrounds and foregrounds which are 

both bright or both dark. Figure 4 shows a raw image of human kidney and the image 

enhanced in contrast. 

Raw Image Enhanced ImageRaw Image Enhanced Image

 

Fig. 4. OCT images of Human kidney before (left) and after (right) contrast enhancement. 

3.3 Preprocessing effect 

Image preprocessing is useful for subsequent operations such as segmentation. 

The goal of segmentation is to obtain informative image data, while avoiding pixels with 

noisy image data. Figure 5 is the comparison between segmented images with and 

without preprocessing. Compared to segmentations based on raw image, segmentations 

from preprocessed images are less noisy. According to the comparison from the 

segmentation results, it is mature to conclude that the image preprocessing does play an 

important role for the following image analysis. 
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Preprocessed image

Segmentation

Raw image

Segmentation

Preprocessed image

Segmentation

Raw image

Segmentation

 

Fig. 5. Segmentation comparison between raw image and preprocessed image. Left top: image  

after preprocessing; left bottom: segmentation based on the preprocessed image; right top: raw 

image; right bottom: segmentation based on the raw image; 
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CHAPTER 4 

4 IMAGE QUANTIFICATION AND VISUALIZATION 

4.1 Image quantification process 

The overall automated image quantification included image segmentation, ROI 

selection, and image feature quantification. Fig. 5 displays a general flow chart of the 

automated imaging quantification procedure.   

 

(2)

Raw OCT Image

Boundary & Skeleton

Segmentation

Automatic Selection

(1)

(3)  

Fig. 6. General flow chart of the automated image processing algorithm, which includes three major steps: 

1) image segmentation from the raw OCT image; 2) automated region selection (denoted by different gray 

values), enabling individual analysis of each isolated region; 3) finding the boundary and skeleton for each 

isolated region, and quantification of the local tubule/vessel diameters.   

First, the raw image data were obtained by the OCT system and were displayed in 

both XZ and YZ plane. The contour of kidney surface was identified by edge detection 

on each A-scan. Then the structures in the kidney (such as uriniferous tubules and blood 
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vessels) were segmented from the kidney parenchyma based on their different 

backscattering intensities [23] (Step 1 in Fig. 6).  

To accurately distinguish local changes, an image processing algorithm was used 

to automatically identify and separate the isolated sections (e.g. uriniferous tubules) from 

the segmented images to quantify the diameter of each ROI (such as individual tubules or 

blood vessels). The algorithm systematically filled the region to the section boundary and 

labeled each region with a unique index. This algorithm allowed different regions to be 

individually selected for further morphometrical analysis (for instance, quantifying the 

diameter) or to count the total number of isolated sections (Step 2 in Fig. 6). This step 

was essential to ensure that the diameters measured are from the selected ROI, therefore, 

can be color-coded and displayed in a spatially-resolved way. 

In this chapter, the objective focuses on the quantification of tubular (or vessel) 

diameter. To quantify the diameter of each isolated ROI, the corresponding boundary and 

skeleton were generated. As a result, the diameters of each luminal position in this ROI 

were calculated based on the average of the shortest distances from the boundary to the 

skeleton. To minimize the errors due to sampling, the same analysis approaches were 

applied to both the XZ and YZ image cross-sections, and the final dimension was 

calculated by averaging the values obtained from the two cross-sections (XZ and YZ). In 

this way, the spatially-resolved dimensional information was obtained (Step 3 in Fig. 6) 

and presented in three dimensions. 

4.1.1 Segmentation of hollow structures 
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In the area of image processing, it is essential to subdivide an image into its 

constituent parts to distinguish the objects of interest and the background. For intensity 

images formed by OCT systems, there are several popular approaches including 

thresholding, edge detection, and region-based techniques.  

Various other techniques beside these basic segmentation methods were reported 

recently. For examples, Yazdanpanah et al. [32]  proposed a new method to segment 

OCT data using a multi-phase, level-set Mumford–Shah model that incorporates a shape 

prior based on expert anatomical knowledge of the retinal layers, avoiding the need for 

training. Fernandez et al. [33] examined the application of complex diffusion filtering 

[34] along with coherence-enhancing diffusion filtering [35] as a tool for noise reduction, 

segmentation, and structural analysis in retinal OCT images. The authors proposed a 

model based enhancement segmentation approach by combining complex diffusion and 

coherence-enhanced diffusion filtering in three consecutive steps. 

At present, there is no universally applicable segmentation technique that will 

work for all images, and no segmentation technique is perfect. The specific method 

chosen for the OCT images is dependent on the image itself and the information requiring 

extraction. 

In this study, we used an intensity threshold to segment the OCT images. A 

resulting binary image g(x,y) is defined as [36]: 




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=
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where f(x,y) was the gray level of a point (x,y) in the original OCT images. Thus the 

pixel (x,y) corresponding to hollow structure (such as tubules) was labeled ‘1’ in the 

segmented image, whereas pixels labeled ‘0’ corresponded to the background (kidney 

parenchyma). In such a way all pixels with a gray level lower than empirical value 

threshold (T) were extracted from the background for each image. Step 1 in Fig. 6 shows 

a typical segmentation procedure of a human kidney image. 

4.1.2 Automated selection of isolated ROIs 

The intensity values of the segmented images g(x,y) were scanned pixel by pixel. 

The background intensity was ‘0’ and each isolated ROI was ‘1’, every time a ‘1’ was 

detected, the program was triggered to fill the region. The filling process flooded the 

region in four directions (up, down, left and right) until reaching the boundary, i.e., 

encountering ‘0.’ The filling process was performed in MATLAB based on the function 

“encodem”. Fig. 7 shows the process of segmentation followed by the automated 

selection of individual isolated ROIs. The filling process filled different regions with 

different values (as indicated by different colors in Fig. 7) in order to count the regions 

and extract each region from the image for further processes.  
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Fig. 7. Demonstration of automated selection of isolated ROIs (as indicated by different 

colors) (Media 1). This process enables further image analysis algorithm (such as diameter 

quantification) being applied to a spatially-resolved ROI instead of the whole image. 

4.1.3 Quantification of image features 

Quantitative analysis supplies numerical values of image feature, such as 

thickness, diameter, area, volume, and curvature, to assist researchers in providing correct 

diagnosis. Compared to manual measurements, computer-based quantitative analysis is 

more accurate, objective, economical, and time efficient. 

Quantitative analysis also relies on morphological image processing, which is 

crucial for obtaining feature components that are useful in the representation and 

description of region shape, i.e. boundaries, skeletons, and the convex hull. The two basic 

morphological functions are erosion - the removal of pixels from the periphery of a 

feature, or dilation - the adding of pixels to that periphery. An opening is erosion 

followed by dilation, while a closing is a dilation followed by erosion. These operations 
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can smooth irregular borders, and fill in or remove, isolated pixel noise and fine lines. 

Because opening suppresses bright details smaller than the specified seed, and closing 

suppresses dark details, they are used often in combination as morphological filters for 

image smoothing and noise removal [36].  

After extraction of an individual ROI, further morphometric analysis could be 

performed on the region. In the present study, we focused on the estimation of the 

diameter of the tubular lumen. The diameter was quantified by measuring the radius, 

which was the minimal distance from a specific boundary pixel to the skeleton (see Fig. 

8).  

  
 

Fig. 8. Illustration of segmented image (A-C) radius quantification. D, E, and F are the 

graphical representations of the radius quantification of the segmented images A, B and C, 

respectively. A limited number of radii are shown (in red color). Boundary is shown in black 

color, and the skeleton is shown in gray color. 

The boundary was defined as a pixel set where the spatial neighbor of every 

member contains both intensity ‘1’ and ‘0’ pixels. The skeleton is another pixel set which 

represents spatially a minimally connected stroke that a region thins to [37]. The 
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boundary and skeleton were obtained by the MATLAB function “bwmorph”.  By using 

these two pixel sets, the radius for every pixel (b) on the boundary (B) was defined to be: 

                                              )),(.min()( sbdistbRadius
Ss∈∀

=          (3) 

A radius was determined for every point b by finding the minimal distance between b and 

the skeleton set (S). This process was applied to both cylindrical and non-cylindrical 

structures as illustrated in Fig. 8. For visual purposes, pixels’ intensities were rendered 

with a number twice that of the associated radius (the local diameter of the feature).  

4.2 Results 

4.2.1 Calibration of the quantification algorithm 

To quantitatively assess the accuracy of the dimension calculation algorithm, we 

applied this algorithm to the dimensional calculation of a capillary tube phantom. By 

comparing the computer calculated results with manual measurements, the performance 

of the algorithm was validated.   
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Fig. 9. (A) An OCT image of a capillary tube phantom in YZ plane. The tube 

(indicated by an arrow) is submerged in a highly scattering medium with 2% 

Intralipid (a safe fat emulsion for human use). (B) Corresponding segmentation 

image of (A). Tube region is highlighted by green color. (C) Histogram of the 

estimated tube diameters from 61 different OCT cross-sectional (YZ) images along 

X dimension by computer analysis and a human observer (D). (E) A digital 

microscopy image of the capillary tube. 
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Fig. 9A shows one representative cross-sectional OCT image (YZ) of a capillary 

tube phantom, with the associated segmented image shown in Fig. 9B.  Fig. 9C shows the 

histogram of the automated estimation of the tube radius from a total of 61 different YZ 

cross-sectional OCT images along X axis. The computer algorithm estimated the 

diameter of the capillary tube to be 126.6 ± 8.6 µm. A human observer measured the 

diameter directly from the same set of OCT images, and result in 128.3 ± 7.4 µm (Fig. 

9D). The computer analysis result shows a slightly larger variance since the diameter is 

averaged from all boundary pixel measurements, while the human observer only selected 

few edge pixels to quantify the diameter. Fig. 9E shows a digital microscopy image of the 

capillary tube. The measured diameter is 132.7 ± 0.9 µm.  

The relatively larger standard deviation from the computer algorithm compared to 

digital microscopy is due to: 1) the OCT imaging of tube phantom (containing the 

scattering media) has lower contrast compared to digital microscopy imaging of tube in 

air; 2) OCT imaging system has lower resolution (10 µm) compared to that of digital 

microscopy (~1 µm). Therefore, the tube edge in OCT image is not as sharp as those in 

the digital microscopy, which will result in errors in segmentation.  Nevertheless, the 

result shows that the mean of estimation obtained by the automated computer analysis is 

comparable to the true tube dimension. 

4.2.2 Comparison between OCT imaging and histology  

The kidney microstructures of interest, including the uriniferous tubules, vessels, 

and glomeruli were identified based on their distinct morphologies. Comparisons 

between the OCT image and the corresponding histological micrograph indicated a close 

match in terms of the main structural features. In addition, the resolution of the OCT 
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images (~10 µm) was sufficient for the purpose of revealing the morphological details. 

Fig. 10A shows a representative cross-sectional OCT image of the human kidney, and 

Fig. 10B is the corresponding histopathology.  
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Fig. 10. (a) Cross-sectional OCT image of the human kidney. Uriniferous tubules (T), glomerulus (G) 

and the kidney capsule (C) are distinguishable. (b) Conventional histology of the associated area in the 

human kidney.  (c) and (d) are the histograms of the uriniferous tubules diameters calculated by the 

computer algorithm from OCT images, and manually measurement from the histology, respectively. 

As seen in Fig. 10A, tissues with high backscattering such as kidney capsule 

appeared bright, while low backscattering regions such as uriniferous tubular lumens 

appeared dark. It was clearly observable that OCT could penetrate through the kidney 

capsule (C) with a penetration depth of more than 800 µm. The kidney microanatomy 

including uriniferous tubules (T) and glomeruli (G) were also readily distinguished. 

Fig. 10C shows the histogram of the tubular lumen diameter measured by the 

automated algorithm described in Section 2.3. Automated measurement gives an 
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estimation of lumen diameter of 27.5 ± 10.1 µm. The manual measurement of lumen 

diameter from the histology slide (Fig. 10B) gives the results of 29.5 ± 9.2 µm (see Fig. 

10D). This shows that the results obtained by the automated computer analysis are 

comparable to that of the manual measurements of histology slide. However, the 

computer calculation was significantly faster than the manual measurements. In addition, 

computer-aided analysis promises to automatically analyze a large volume of data (for 

example, three-dimensional data) efficiently and will be very helpful for providing the 

clinicians with quantitative information in a timely manner.  

4.2.3 Quantification and three-dimensional imaging visualization 

4.2.3.1 Human kidney case I (blood vessels)  
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Fig. 11. (A) 3D cut-through view of the human kidney. The blood vessels as well as the 

kidney parenchyma are visualized. (B-D): Representative OCT images in the XY, XZ, 

and YZ planes. (E) 3D volumetric image of the segmented vasculature (Media 2). (F) 

Automatically quantified and color-coded structural image. (G) Volume histogram of 

the blood vessel diameter distribution. 
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Fig. 11A is the three-dimensional view of the human kidney, as generated from 

individual cross-sectional images. Fig. 11B-D shows representative images along the 

three orthogonal planes (XY, YZ, and XZ), respectively. Detailed kidney vascular 

networks were visualized in all the image planes. The OCT image data set was further 

segmented and analyzed to quantify the luminal diameter of the blood vessels. Fig. 11E 

shows the 3D reconstructed images showing vascular trees after intensity segmentation. 

The segmented 3D vascular tree was reconstructed by utilizing a 3D visualization 

software (Amira).  The morphological features of the blood vessels can be examined. Fig. 

11F shows the quantification of the representative blood vessels luminal diameters from 

the ROI. Fig. 11G shows the volume histogram of the diameter (which is obtained by 

counting the voxel numbers associated with the specific diameter, and multiplied by the 

individual voxel volume, 150.9 µm3), indicating that the majority of vessel diameters 

range from 50 µm to 100 µm.   

For those regions without any microstructures such as tubules or vessels, the light 

intensity decreases exponentially with depth because of light scattering effects. However, 

hollow microstructures such as uriniferous tubules or blood vessels alter this exponential 

decay pattern due to the minimal light scattering within these hollow structures. After the 

light passes through these structures, it continues decreasing again. This phenomenon 

results in relatively higher light intensity (hyperdense shadow) below some of the 

microstructures as shown in the cross-sectional images (Fig. 11C and D), and casts white 

shadows on the enface image (Fig. 11B).  

4.2.3.2 Human kidney case II (uriniferous tubules)  
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Fig. 12. (A) 3D cut-through view of the human kidney including uriniferous tubules and 

the kidney parenchyma is displayed. (B-D): Representative OCT images in the XY, XZ, 

and YZ planes. (E) 3D volumetric image of the segmented tubular network (Media 3). (F) 

Automatically quantified and color-coded structural image. (G) Volume histogram of the 

uriniferous tubules diameter distribution.  



 
 
 

 29 
 

The previously described procedures were applied to another kidney as shown in 

Fig. 12. As with case I, detailed kidney tubular structures were visualized in all image 

planes (Fig. 12A-D). Fig. 12E shows the 3D reconstructed images of the tubular network 

after intensity segmentation, which allows comprehensive examination of morphological 

features and interconnectivity of the renal tubules. Fig. 12F shows the automated 

quantification of tubular diameters, which were color-coded on the structural map. The 

volume histogram in Fig. 12G indicates that most tubule luminal diameters at this region 

range from 20 µm to approximate 40 µm, with a mean diameter around 30 µm. 

4.2.3.3 Human kidney case III (distended uriniferous tubules)  
 

Case III is from a third kidney. Fig. 13A-D show the 3D cut-through views and 

the representative images along the three orthogonal planes. Two clusters of distended 

tubules are clearly identified on Fig. 13E.  Fig. 13F shows the automated quantification 

of all the luminal tubular diameters. The tubular lumen diameters range approximately 

from 30 – 60 µm in diameter, as shown in the volume histogram (Fig. 13G). 
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Fig. 13. (A) 3D cut-through view of the human kidney with distended uriniferous 

tubules. (B-D): Representative OCT images in the XY, XZ, and YZ planes. (E) 3D 

volumetric image of the segmented distended tubular network (Media 4).  (F) 

Automatically quantified and color-coded structural image. (G) Volume histogram of 

the distended uriniferous tubules diameter distribution. 
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Based on the volume histograms of blood vessels, distended tubules, and 

uriniferous tubules, the comparison among three different microstructures is shown in 

figure 14. The peaks of the dimension distributions are significantly different in terms of 

the histogram showed in fig. 14. 
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Fig. 14.  The histogram of luminal Volume distribution for blood vessels (red), 

distended tubules (green), and uriniferous tubules (blue). 
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4.2.3.4 Human kidney case IV (glomerulus) 

 

Fig. 15. (A) 3D cut-through enlarged view of the human kidney showing a glomerulus and 

tubular network. (B-D): Representative OCT images in the XY, XZ, and YZ planes. (E) 

3D volumetric image of the segmented glomerulus and tubular network (Media 5).  (F) 

Automatically quantified and color-coded structural image. 

We were also able to visualize the glomerular structures. Fig. 15A-D shows an 

individual glomerulus in the enlarged view, as compared to previous figures. We could 
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easily visualize the glomerulus surrounded by the circular Bowman’s space. However, 

the segmentation of the complete glomeruli was challenging, because in most cases, the 

Bowman’s space separating the glomerular capillary tufts from the renal parenchyma is 

not a full circle (see Fig. 15D and Fig. 15B). Fig. 15D shows the diameter of the 

glomerulus to be approximately 220 µm. This result is in agreement with previous 

literature using ultrasound imaging (216 ± 27 µm) [38]. Fig. 15E shows the 3D view of 

the segmented Bowman’s space. 

4.2.3.5 Human kidney case V (vessels, tubules, & glomeruli)  
 

Fig. 16 shows a representative region with different renal structures including 

blood vessels, uriniferous tubules, and glomeruli. The glomeruli are surrounded by an 

expanded network of uriniferous tubules and blood vessels. The diameters of the 

glomeruli are approximately 200 µm. This result demonstrates the capability of OCT to 

visualize different renal microstructures in situ. 
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Fig. 16. (A) 3D cut-through view of the human kidney showing a glomerulus (G) surrounded by 

tubules (T) and vessels (V). (B-D): Representative OCT images in the XY, XZ, and YZ planes. (E) 

3D volumetric image of the segmented glomeruli and tubular network (Media 6). (F) Automatically 

quantified and color-coded structural image. 
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CHAPTER 5 

5 IMAGE CLASSIFICATION 

5.1 Classification definition 

An object is a physical unit, usually represented in image analysis by ROIs in 

segmented images [39]. The set of objects can be divided into disjoint subsets, which 

have some common properties and are called classes. Classification aims to classify data 

based either on a priori knowledge or on statistical information extracted from the 

patterns. The patterns to be classified are usually groups of objects from images to be 

analyzed.  

The main image classification steps are in shown in figure 17 [39]. The block 

‘Construction of formal description’ is based on the experience and intuition of the 

designer. A set of elementary properties is chosen which describe some characteristics of 

the objects; these properties are measured in an appropriate way and form the description 

pattern of the object. These properties are defined as descriptors and can be either 

quantitative or qualitative in character. A classifier places patterns into a specific class 

based on these descriptors of the pattern.   

Mathematically the approaches to image classification are divided into two 

principal areas: decision-theoretic and structural [36]. The first category deals with 

patterns described using quantitative descriptors, such as length, area, and texture. Sonka 

et al. [39] listed some simple geometric region descriptors: Area, Euler’s number, 

projections, height, width, eccentricity, elongatedness, rectangularity, direction and 
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compactness. The second category takes use of structural relationships inherent in a 

pattern’s shape, which seek to achieve pattern recognition by capitalizing precisely on 

these types of relationships.    

Construction of 
formal description

Classifier
Object Pattern

Classes
Construction of 

formal description
Classifier

Object Pattern
Classes

 

 Fig. 17. Main steps of image classification. 

Image classification helps biochemists, biologists, medical scientists, and 

physicians to judge quantitative measurements, which facilitate the validation of 

scientific hypothesis and accurate medical diagnosis. Image classification is also the basis 

for computer-aided diagnosis systems in medical-imaging-based diagnostics areas.     

5.2 Kidney image classification algorithm 

Decision-theoretic classification is used widely in OCT image processing.  

Sabeenian et al. [40] found out the abnormalities of a patient's abdomen and more 

particularly in organs such as kidney, liver, and spleen by analysis and classifying the CT 

scan images of a patient's abdomen. The classification is done automatically by extracting 

the statistical and spectral characteristics. The similar classification method is also 

suitable for OCT scan images of human kidney. 

In the image classification for this study, the object is the isolated ROIs of a set of 

kidney images obtained by OCT (i.e. 512 images in XZ). The construction of formal 

description in current study is image grouping. Then decision-theoretic classifier is 

applied to each image group to estimate which class this group belongs to. The classifier 

works on multiple-parameter descriptors: the shape of the images and the diameters of 
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images. Decisions are made by priori knowledge, that is, groups with ‘ring’ shapes are 

classified to glomeruli; groups without ‘ring’ shapes are categorized to sclerous 

glomeruli, blood vessels, or tubules based on the statistical value of their diameters.  

After the accomplishment of image classification, each ROI is categorized to one 

of the three main microstructures in the human kidney: glomeruli, blood vessels, and 

tubules. Figure 18 depicts the general structure of the flow chart for the classification 

process. T1 and T2 are thresholds derived from statistical diameter values to distinguish 

the class of each group. The determinate value of T1 and T2 will be discussed in the 

posterior sections in this chapter. 
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Fig. 18.  Flow chart of the human kidney image classification algorithm.  hist(D) means the histogram of 
diameter; T1, T2 are empirical thresholds. 
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5.2.1 Image grouping 

Image grouping designates each ROI to a specific group which represents a 

connected entity in geometry in the human kidney.  

The image grouping algorithm is fulfilled by MATLAB routines and composed of 

three steps: labeling, overlapping assessing, and group marking.          The algorithm for 

labeling was the same as the ROI selection algorithm used in image quantification 

discussed in previous chapter. The process is to assign a unique number to each ROI of 

512 images in the entire set of XZ images. The next step is to assess the overlapping of a 

paired ROI between two spatially consecutive XZ images. The criterion of overlapping 

relies on the fact that there is at least one pixel overlapped within the two ROIs. Paired 

ROIs unsatisfied with the criterion indicate that the two ROIs are spatially isolated. Then 

the program proceeds to assess the overlapping of the next paired ROIs. If the paired 

ROIs are overlapping, indicating that this pair represents the same entity, the program 

triggers the group marking process before proceeding to the next assessment. Triggered 

group marking program places a group marker for overlapped ROIs.  The 3-step process 

is implemented in each ROI individually, and after the image grouping is finished, ROIs 

with the same marker represent that they belong to one group, in other words, one 

connected entity. 

5.2.2 Classifiers 

In this study, we are interested in three main classes in human kidney images: 

glomeruli, blood vessels, and tubules. The final aspect of image classification is to 

evaluate the class for each group. The difference among the three classes can be 

determined by priori knowledge: normal glomeruli have ‘ring’ shape or partial ‘ring’ 
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shape.  Sclerous glomeruli, blood vessels, and tubules only have solid disk shape or 

arbitrary shape. In that case, the quantification of the diameter for these three 

microstructures is statistically significant. As a result, the histogram distribution of the 

diameter values could be plotted and empirical thresholds are set to determine the class 

for each group. Therefore, the classifiers are made dependent on multiple-parameter 

descriptors: the shape of the images and the diameters of images.  

First the shape classifier singles out groups which have partial-ring or ring-shape 

images and categorize these groups as the glomeruli class; then the left groups are 

estimated by the diameter classifiers and finally categorized as corresponding classes.  

5.2.2.1 Shape classifier 

Fig. 19 demonstrates the steps of how the shape classifier works. As shown in this 

figure, images from one group are severed as an input of the classification. In order to 

evaluate the ring-shape images in each group, a method known as ‘stable-centre’ was 

developed. This method is based on the assumption that any ring-shape or partial ring-

shape image has a relatively fixed centre. The center coordinates (x,y) of the ring are 

computed by least squares means for each image within one group, and the standard 

deviation (STD) of the coordinates are compared by threshold t. Either STD(x) or STD(y) 

less than t means the images contains ‘ring’ or ‘partial ring’ shape, thus the whole group 

is classified as glomeruli class.  
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 Fig. 19.  Flow chart of the shape classifier.  t is empirical thresholds 

Shape classifier selects groups containing ‘ring’ or ‘partial-ring’ images, which is 

a typical characteristic of normal glomeruli, and labels the groups with a glomeruli 

marker.  In this study, the glomeruli marker is red color. 

5.2.2.2 Diameter classifier 

The diameter distribution was obtained by the quantification algorithm in chapter 

4.  Prior knowledge shows the mean diameter of sclerous glomeruli, blood vessels, and 

tubules to be approximately 160 µm, 85 µm, and 30 µm respectively. Fig. 20 illustrates 

the difference among the three structures. The determinate values of T1 and T2 therefore 

can be derived from the fig. 20 distribution. At the aid of threshold T1 (120 µm) and T2 

(50 µm), sclerous glomeruli, blood vessels, and tubules are separated and classified to 

corresponding classes. 
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Fig. 20.  Illustration of the diameter distribution for sclerous glomeruli, blood vessels, 

and tubules. 

5.3 Results 

5.3.1 Image grouping 

The upper left image on Fig. 21 shows the overall image group from one human 

kidney sample. The other images in this figure are of selected groups from this overall 

image.  
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Fig. 21.  Demonstration of human kidney image grouping. Top left: all groups from one human kidney 

sample. Others: selected groups from image grouping. 

5.3.2 Image classification 

Three main classes of human kidney microstructures are color coded in the Fig. 

22. The red images represent glomeruli, the yellow images represent blood vessels, and 

the blue images represent tubules.  All groups are clearly classified in this set of data. 
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Fig. 22.  Result of human kidney image classification (Media 7). Yellow: glomeruli; Red: blood vessels; 

Blue: tubules 

Most microstructures in Fig. 22 are correctly classified and color coded according 

to prior experience. There is a minor error in the glomeruli class: some tubular structures 

were classified as the glomeruli class near the top of the figure. The reason for this error 

can be explained by the fact that the glomerulus and tubules are physically connected 

based on the segmentation information. An optimization in image segmentation and 

image grouping will assist in resolving this issue.  
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CHAPTER 6 

6 DISCUSSION AND FUTURE WORK 

6.1 Discussion 

OCT as a high-resolution medical imaging modality has become one of the most 

important visualization and interpretation methods in biology and medicine. In the past 

decade, tremendous improvements have been accrued for OCT in both hardware and 

software. High speed, high resolution OCT systems have led to a rapid growth in the 

application of digital processing techniques for solving medical problems. A large 

volume of images requiring processing poses a challenge to the efficiency of today’s 

image processing algorithm, but this can be overcome as more efficient algorithms are 

developed. Furthermore, as the image capturing hardware and software improves, we can 

obtain higher resolution images.  These higher resolution images will provide us with 

finer image details, thus leading researchers to developing and improving their image 

processing techniques. 

In this study, we were able to image up to approximately 800 µm depths in the 

human kidney, which was deep enough to image superficial blood vessels, uriniferous 

tubules, and glomeruli. Such structures are closely related to many physiological 

functions, for example, in the case of evaluation of transplant kidney function [17]. High 

acquisition speed (video rate) achieved by Fourier domain OCT enables real time 

imaging in 3D [41-44] and the surveying of large kidney surface area in a timeframe 
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reasonable for clinical practice. In general, with further development, OCT has the 

potential to be translated into clinical settings for kidney imaging.  

The algorithms applied in this study, such as, automated imaging quantification 

and classification methods, could be generalized to many other imaging analyses. The 

dimensional calculation of a capillary tube phantom proved that the algorithm could 

successfully estimate actual luminal volumes. 3D visualization and volumetric rendering 

provided quantitative evaluations of the dimensional changes in tubular or vessel lumens. 

These renderings and the use of color coded 3D images can potentially provide clinicians 

with useful diagnostic tools.  

However, there is still space for improvement of the current study. The first 

problem encountered by OCT is speckle noise, which is a never ending issue requiring 

extensive research for its full understanding. Noise obscures the original images, and 

introduces artifacts, resulting in obstructing in further operations including image 

segmentation and feature extraction. Certain issues are listed below which require special 

attention: 

1. The comprehension of the types of speckle and the origin of speckle is not clear to 

date. Further studies are necessary to understand the relationship between the 

scattering properties of tissue at the microscopic level, and the statistical 

properties of speckle in OCT image.    

2. As a natural result of the limited spatial-frequency bandwidth of an 

interferometric system, speckle effects in OCT should be surpassed by the way of 

widening the light source bandwidth and widening the light collection aperture at 

the same time. 
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3. More research is needed focusing on techniques to relate spatial-compounding 

and frequency-compounding methods, particularly methods used in those 

relatively mature techniques such as synthetic-aperture radar and medical 

ultrasound and how they relate to OCT. 

It should also be mentioned that there are challenges in image segmentation. An 

intensity-based segmentation algorithm was used in this study, which is subject to the 

setting of threshold values. In the future, more advanced segmentation algorithms, such 

as marker-controlled watershed segmentation [4], will be investigated as well.  

The automated selection of individual ROI for further analysis represents a unique 

merit of this algorithm. This approach simulates human behavior using an automated 

computer algorithm. After automated selection, various morphormetric analyses could be 

applied to the selected ROI, including the measurement of area, diameter, and curvature. 

In this study we focused on the local diameter because it is closely related to the kidney 

viability [17]. 

The quantification of tubular (or vessel) diameters was achieved by automated 

identification of the boundary and skeleton of individual ROIs. This approach was 

limited in its estimation of the correct tubular diameter when the imaging plane did not 

cut through the central axis of the tubules. However, this limitation was also shared by 

most, if not all, cross-sectional imaging methods. For example, histology analysis of 

tubular and glomeruli diameter will be subject to the same sampling limitations. In our 

study, 3D OCT images with two orthogonal cross-sections (XZ and YZ) were utilized to 

obtain an averaged estimation of the tubular dimension. The sampling limitation will be 

further alleviated by panning the imaging plane 180 degree to fully cover the different 
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angles. In addition, the skeleton extraction method used in this study is based on 

morphological thinning, which sometimes led to unwanted branches [4], which tended to 

under-estimate the tubular diameter. However, this limitation was alleviated when a large 

number of boundary pixels were evaluated and presented statistically. Reasonably 

accurate estimations of diameters of capillary tube phantom and kidney tubules were 

achieved through this algorithm, as confirmed by digital microscopy and histology. To 

overcome these limitations completely, future development of 3D boundary and skeleton 

recognition algorithms would be an ultimate solution.  

We should note as well that the present image analysis method cannot 

automatically separate different objects which are slightly connected to each other such 

as glomerulus and its associated tubules. In the image processing of human kidney 

microstructures obtained by optical OCT, one challenging step is to separate different 

microstructures which are slightly ‘touching’ each other. For instance, the glomerulus 

needs to be separated from its associated proximal tubule for image processing 

consideration, although they are physically connected to each other. Two approaches are 

proposed in the following paragraphs. 

The first approach is based on image opening. Images to be separated are binary 

images since they are the image features extracted by image segmentation. Therefore, 

morphological operations are suitable to be applied on these images. Basic morphological 

operations include erosion and dilation. Erosion shrinks image objects while dilation 

expands them. Dilation and erosion are often applied to an image in concatenation. An 

erosion followed by a dilation is called image opening, which can separate objects 
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connected in a binary image. The specific actions of each operation are illustrated in the 

figure 23 [45]. 

 
A B C DA B C D

 

Fig. 23. Examples of various mathematical morphology operations: A) original image; B) 

dilation; C) erosion; D) image opening.  

According to the result of image opening showed in fig. 23, image opening shows 

to be a feasible approach for separation of different connected microstructures. Image 

opening operation generates a certain amount of smoothing on an object contour and 

especially smoothes from the inside of the object contour. In order to disconnect different 

objects and at the same time preserve as much of the original images as possible, the 

structuring element used to do image erosion and dilation should be selected carefully. 

Too large of a structuring element will lead to image distortion, while too small of a 

structuring element can only break thin connections.   

The second approach lies on watershed transformation. Figure 24 illustrates a 

glomerulus connected by a proximal tubule.  
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Fig. 24 Illustration of a glomerulus connected with a proximal tubule 

First of all, the radii of all pixels on the boundary are calculated.  Since the radius 

of the glomerulus (r1) is significantly greater than that of the tubule (r2), the histogram of 

radii distribution will have at least two peaks. By judging the radii histogram, all 

connected images with different microstructures are distinguished. Finally, watershed 

transformation can be used to separate the images characterized as an oval (glomerulus) 

connected by narrow tubes (tubules). This approach works for images with special 

morphologies as illustrated in the fig. 24. However, it is impossible to differentiate 

images showing ring shape connected with tubes because the radii of the ring are similar 

to that of the tubes.  

Although the present OCT system has a limited resolution of 10 µm, it is still 

sufficient to detect the tubules in the human kidney. We observed tubular diameters range 

from 30 - 60 µm from four human kidneys after formalin fixation. From the literature, 

normal human proximal convoluted tubule has a diameter of approximately  55 µm [46]. 

The ultimate clinical utility of this method will be assessed by the clinical evaluation of 

kidney viability, where the threshold tubular diameter for viable kidney can be 

determined. 
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Finally, along with the complexity of the processing methods, time economics 

become another issue especially when a real-time processing is required. One way to 

speed up the implementation is to translate this algorithm into more efficient 

programming language, i.e. C++.  

6.2 Conclusion 

OCT is a rapidly developing imaging modality that can produce 3D imaging of 

tissue in situ and in real time. OCT can provide cross-sectional images which make 3D 

reconstruction and image processing possible. It can visualize tissue microstructure 

without the need for contact or tissue removal, thereby facilitating sterility and 

minimizing possible damage to the tissue. The high resolution capability of OCT is 

sufficient for imaging numerous organs such as the human kidney.  

In this study, OCT imaging of human kidney was visualized in real time. 

Automated image analyses algorithms have been developed for quantifying spatially-

resolved tubular diameter as a biomarker for kidney viability. Images along the three 

orthogonal image-planes (XY, YZ, and XZ) in the Euclidean space were displayed 

sequentially. Moreover, the rendering of the images provided a 3D volumetric view. The 

computed microstructure sizes were then color-coded on the reconstructed images, 

revealing quantitative information of the kidney microanatomy.  Based on the results of 

this study, we have demonstrated the capability of OCT imaging and automated 

quantification of human kidney microanatomy. Automated image classification is also 

successfully implemented to separate three classes of human kidney microstructures:  

glomeruli, blood vessels, and tubules. The ability of OCT to provide 3D, high resolution 

imaging illustrates the potential of using OCT to image donor kidney structures and to 
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evaluate the organ’s viability, or image the responses to acute kidney injuries. Automated 

image processing algorithm in the current study helps researchers to handle a large 

volume of data set in real time, which will promote OCT image technology from ‘bench 

side’ to ‘bed side’. 

6.3 Future Work 

Future work will involve the quantification of more parameters like the curvature 

for human kidney images and compare them with the histopathology for diagnostic 

calibration. 

In addition, those parameters should be quantified for different human kidneys to 

obtain the baseline values for diagnostic purposes, and perform OCT images for human 

kidney in vivo to examine the correlation between the dimensions of their imaged 

features and post-transplantation renal function, or further analyze and diagnose kidney 

diseases. 

The image classification could be improved in other novel ways. Recently 

Miyazawa et al. [47] developed a tissue discrimination algorithm of polarization sensitive 

optical coherence tomography (PS-OCT) based on the optical properties of tissues. They 

calculated the three-dimensional (3D) feature vector from the parameters intensity, 

extinction coefficient, and birefringence and determined the tissue type of each pixel 

according to the position of the feature vector in the 3D feature space. The conjunctiva, 

sclera, trabecular meshwork (TM), cornea, and uvea were well separated in the 3D 

feature space as they reported.  
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Research is ongoing and future improvement should concentrate on developing 

more efficient and effective algorithms for OCT image processing.  The algorithms must 

also increase in accuracy in order to be reliable for the everyday user.  
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