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Abstract:

The objective of this paper is to show that Petri nets facilitate a comprehensive approach to
production management and reduce the complexity of the problems involved at the expense of some
constraints imposed on the decision making system.

The first part of the paper focuses on cyclic manutfacturing systems. For this type of systems, it is
always possible to propose an event graph model which represents both the physical and the decision
making systems. We use such a model to propose a near-optimal scheduling algorithm that maximizes
productivity while minimizing the work-in-process (WIP) in the deterministic case.

The approach used for non-cyclic manufacturing systems is ditferent in the sense that only the
manufacturing processes (i.e. the physical part of the system) and the related constraints are modelled
using Petri nets. We use such a Petri net model to propose a short-term planning process which
results in a trade-off between the computation burden and the level of resource utilization. The short-
term planning model is then enhanced to obtain the scheduling model. The latter is used to develop an
etticient scheduling algorithm that is able to satisty the requirements imposed by short-term planning.
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I - Introduction

During the 70s and the early 80s, Petri nets were considered mainly as modelling and simulation
tools. This is the reason why research studies were first oriented toward small-sized models based on
high-level nets such as the predicate/transitions nets 5], the colored Petri nets [9], and the Petri nets
with individual tokens [17]. More recently, researchers became interested in the analytical properties
of elementary nets, also called black-and-white nets. Very important results were proposed by
COMMONER et al. [2], MURATA [13], CHRETIENNE [1], ZHOU [19], and many others. As far
as we know, the application of those results to cyclic manufacturing systems, and their enhancement
in order to model, evaluate and manage manufacturing systems were initiated by HILLION et al. [8].
Several studies are currently in progress and deal with both cyclic and non-cyclic manufacturing



systems. The purpose of this paper is to present the most important results in this field which can
reduce the complexity of the management problems in cyclic and non-cyclic manufacturing systems.

The second section of the paper is devoted to the definitions, concepts and properties to be used in
the remainder of the paper. We introduce the definition of elementary nets, the state equation, the
definitions of p-invariants and t-invariants, and the qualitative properties which are desirable in
manufacturing. We also introduce the event graphs (also called marked graphs), a special type of Petri
nets, which are used to model cyclic manufacturing systems. The second section concludes by
presenting the decomposable nets, which are the basic tools in the planning and scheduling of non-
cyclic manufacturing systems. '

In section three, we show that it is possible to model both the physical and the decision making
systems (DMSs) of cyclic manufacturing systems with an event graph. Using the properties of event
graphs and a given cyclic control, we show how to maximize the productivity of a manufacturing
system (i.e. to minimize the cycle time) while minimizing the work-in-process. The properties of
event graphs are also used to develop a near-optimal scheduling algorithm.

Section four focuses on non-cyclic manufacturing systems. We present a short-term planning
problem and we develop a solution approach which takes advantage of the fact that the system can be
modeled as a decomposable Petri net. We then propose a scheduling model and develop a scheduling
algorithm which allows us to satisty the requirements imposed by short-term planning.

Section five presents the concluding remarks.

II - Petri nets (PNs): definitions, concepts and properties
1. Elementary Petri nets

a. Definitions
A Petr netis a 5-tuple PN = (P, T, A, W, Mg) where:
P={ p, pa. ... py | is the set of places,
T={1t, b4, ..t }is the set of transitions,
Ac(PxTu(TxP)isasetof arcs,
W:A—={1,2,... }is a weight function,
Mo: P — { 1, 2,... } is the initial marking.
In Figure 1, we present a Petri net with marking:
Mo =<2,0,1,3,04 >
When no weight is mentioned, an arc is supposed to be weighted by 1.
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Fig. 1: A Petri net

Places are represented by circles, transitions by bars, and each place contains a number of
tokens (represented by dots) equal to its marking.

Given a marking M, a transition is said to be enabled if and only if:

M(p) 2 W(p.1), Vpe o
where Ot represents the set of input places of transition t

Firing a transition consists in:

(i) removing W(p,t) tokens from each p € °t,

(i) adding W(t,p) tokens in each p € t9, where tO is the set of output places of t.

For instance, the marking of the net in Figure | becomes M = < 1.3,1,1,1,5 > after firing t2 and
ts.

An enabled transition may, or may not, be tired.

A timed Petri net is a Petri net for which a duration, or tiring time, (which is deterministic or
stochastic) is associated to each transition. In this paper, only deterministic tiring times are
considered.

The duration associated with a transition represents the time between the instant the tokens
disappear from the input places and the instant the tokens appear in the output places. Usually, we
consider that tokens continue to belong to the input places of a transition t until the firing of tends.

The incidence matrix of a Petri net, say U = [uy], i = 1,2.....q; j = 1,2,....n, is defined as
follows:

W(tj,pi) if tj € opi
uij = —W(pi,tj) if tj € p?

0 otherwise



where Op (resp. p9) is the set of input (resp. output) transitions of p.

Note that the incidence matrix reflects the structure of the Petri net provided that the net does not
contain self-loops (i.e. loops composed by only one place and one transition).

Let Mg be an initial marking and ¢ a sequence of transitions fired starting from Mg. We denote
by M the marking obtained after firing the last transition of 6. We define the firing count vector
Vg related to the sequence o as: ‘

Vo =(v1, V2, ..., Vp)
where vj (i = 1,2,...,n) is the number of times transition t; appears in G, and n the total number of

[y

transitions.

The state equation is as follows:

M' =M} +U.VE M)

where Al denotes the transpose of A.

Note that if a sequence ¢ of transitions verifies (1), it is not guaranteed that G is feasible (i.e. that
it is possible to fire the sequence of transitions o).

A vector Z is a p-invariant if;

(i) zZU=0, )

(ii) Zisaq-vector whose components are non-negative integers,

(iii) at least one of the components of Z is strictly positive.

Let R(Mg) be the set of markings reachable trom Mg. It can be easily shown that, tor any

M e R(Mp):
Z.Mj =Z.M! 3)

The proof is made by left-multiplying both sides of (1) by Z, and by using (2). Thus, Z.M!is
an invariant, i.e. a linear combination ot the place markings that remains constant under any
sequence of transition firings.

A vector H is a t-invariant if:

i) UH'=0,e@ 4

(i) Hisan-vector whose components are non-negative integers.

(iii) atleast one of the components ot H is strictly positive.

Let o be a firing sequence and V4 the related firing count vector. It V4 is a t-invariant, Mg the
initial marking and M the marking obtained after firing the sequence o of transitions, then:

M=Mp

b. Qualitative properties
The following properties are important when using Petri nets to model manufacturing systems.



bj. Structural liveness

Definition 1: A PN N = (P, T, A, W) is structurally live if their exists an initial marking Mg
such that, for any t e Tand M € R(Mp) (i.e. M reachable from Mp) there exists a firing sequence
which leads from M to a marking which enables t,

In manufacturing systems, structural liveness implies that it is always possible to perform any
operation for which the system was designed, assuming that the initial state of the System is
properly chosen. In other words, any operation which can be performed by the system will remain
possible in the future, irrespective of the past sequence of decisions.

ba. Reversibility and home state

Definition 2: A PN N = (P, T. A, W) is reversible for a marking My if, for any
M e R(My), there exists a firing sequence oy which leads to Mg from M.

This property is also very important for manufacturing systems. It guarantees that it is always
possible to return to the initial state, no matter what the current state is. This is often necessary for
maintenance, tool adjustments or changes in production. The next definition generalizes definition
2. :
Definition 3: A marking Mg of a Petri net N = (P, T, A, W) is a home state for the marking
Mg it it can be reached from any marking reachable from Mo, i.e. Mg € R(M) for any M e R(Mp).

The use of a home state is the same as the one of Mg in definition 2,

According to these definitions, any marking reachable from the initial marking in a reversible PN
is a home state, but a PN with a home state may be not reversible.

- b3. Boundedness

Definition 4

() A marked PN N = (P, T, A, W, M) is said to be k-bounded if M(p) <k foranype P

and M € R(Mo).

() A marked PN N = (P, T, A, W, My) is said to be bounded if it is k-bounded for some

integerk > 0.

(i) APNN=(P, T, A, W) is structurally bounded if the marked PN (N, M) is bounded for

any initial marking My,

Boundedness is not necessary in manufacturing, but may be desirable when fully automated
systems are concerned, Nevertheless, it is always necessary to be able to keep the PN model of a -
manufacturing system bounded: for example, an unbounded model may result in WIP that
increases to infinity. ‘



2. Event graphs (or marked graphs)

a. General properties

Fig. 2: An event graph

An event graph is a Petri net such that each place has exactly one input and one output transition.
Furthermore, the weight associated to each transition is 1. Such a Petri net is represented in Figure
2. Note that event graphs may contain elementary circuits. For example, the event graph of Figure
2 contains two elementary circuits: namely v = <p1. t1. p2. t2, p1> and y2 = <p2, 12, p4. 3, P3, L1,
p2>.

It is easy to prove that;

(1) If we assign 1 to each place belonging to one of the elementary circuits and O to the other
places, then the vector whose elements are these values is a p-invariant —more precisely a
minimal p-invariant. Another way to express the toregoing is to say that the number of
tokens is any elementary circuit is invariant by any transition firing. We owe this result to
COMMONER et al. [2].

(i) The n-vector whose components are equal to 1 is a t-invariant. It means that the marking
returns to the initial marking after firing each transition exactly once.

The following result is due to COMMONER et al. [2].

Result 1: A strongly connected event graph is guaranteed to be deadlock-free if and only if

every elementary circuit contains at least one token.

b. Deterministic event graphs
In this section, we consider timed event graphs where the times associated to the transitions are
deterministic. For any elementary circuit ¥, we define the cycle time as:
CC) =p(y) / M(y) &)
where:
H(y) is the sum of the firing times of the transitions belonging to v,



M(y) is the number of tokens circulating in ¥.
If Mg is the initial marking, we know that M(y) = Mp(y), V M € R(Mg). Thus C(y) is an

invariant. Let C* be the maximal cycle time among all elementary circuits, i.e.:
C*= mc;_x C(y) )
Ye

where I is the set of elementary circuits of a strongly connected event graph. Any ¥ e T such that
C(7y) = C* is called a critical circuit,

In order to guarantee that only a single firing of a certain transition may occur at time t, we
introduce a self-loop to each transition with initially one token in each self-loop place.

From now on, we consider only the firing policy called "Earliest Operating Mode" (EOM). Itis
the policy where transitions fire as soon as they are enabled. This corresponds to the common
policy applied to tully automated systems as we will see in section IIl. CHRETIENNE (1] showed
that, under an EOM, the operation of the system becomes periodic after a finite time. Periodicity
means that there exist two integers ng and K such that:

Si(n+K)=S;(n)+KC*, Vnzng, VteT
where Sy(k) is the starting time of the k-th firing of transition t, and K is the period. The following
result holds.

Result 2: Provided that the event graph is strongly connected and that the EOM policy applies,
the cycle time of the model is C* in a steady state. In other words, the firing rate of all transitions
in steady state is A = 1 / C*,

This result provides the productivity of a manutacturing system which is modeled by a strongly
connected event graph, assuming that the WIP is known.

Several algorithms have been proposed to reach a given cycle time while minimizing a linear
combination of the markings, the coefficients of which are the components of a p-invariant. They
can be found in LAFTIT et al. [11]. In particular, an adjustment heuristic algorithm which can be
used in practice for models of any size, is proposed in this paper.

c. Qualitarive properties of event graphs

It is easy to verify that a strongly connected event graph is:

* Structurally live for any marking Mg such that each elementary circuit contains at least one
token.

* Reversible for any marking Mg such that each elementary circuit contains at least one token.
Furthermore, under the same condition, any M € R(Mp) is a home state.

* Structurally bounded, assuming that the initial marking M is finite.



3. Decomposable nets

a. Definitions

Let X =[x1, ..., Xg] be a t-invariant of a Petrinet N= (P, T, A, W).

Definition 5: The set of transitions t; € T such that x; > 0 is called the support of the
t-invariant X and is denoted by IX|.

In a non-cyclic manufacturing system, parts enter and exit the system; thus, its PN model
contains source transitions (also called input transitions), which are used to model the entrance of
parts into the system, and sink transitions (or output transitions), which are used to model the exit
from the system.

Definition 6: Let X be a t-invariant of the PN model N = (P, T, A, W) of a manufacturing
system, Let Nx < N be a PN such that:

Nx = (Px, IXll, Ax, Wx)
where Px = {p/pe Pand3t;, tpe IXllst.pe ®tjandpe t; in N}, Ax = A {(Px x IXI) u
(Xl x Px)} and W is the restriction of W to Ax.

Nx is referred to as X-related subnet of N.

If, in addition:

(i) the cardinality of p°is 1 for every p € Px,

() there exists at least one t1 € IXll and one tp € Xl such that°t; = @ and t5 = @,

(1ii) Ny is acyclic, A

then Ny is referred to as X-CFIO of N, where CFIO stands for Contlict Free net with Input
and Qutput transitions.

b. Decomposability of a net

Decomposability is the key concept in the planning and scheduling approaches for non-cyclic
manufacturing systems we are proposing in this paper.

Definition 7: Let N be a PN model of a manufacturing system with input and output
transitions. Let {Xj, ..., X;} be a set of t-invariants of N such that:

T
N =| Ny , where Nx; s the Xi-CFIO of N (we will say that the set of X;-CFIOs Nx;

i=1
covers N),

Then N is said to be decomposable.

¢. Qualitative properties of a decomposable net
Result 3: A decomposable net N is structurally live for any initial marking M.
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Proof:

o. LetM e R(Mp) and ¢ a firing sequence which leads to M starting from Mp. Since N is a
decomposable PN, there exists a set {Xy, ..., X;} of t-invariants of N such that the
corresponding set of X-CFIOs Nx; covers N. Thus, it is possible to assign each element of
G to one N;, designing firable sequences which maintain the order of the elements in ©.
Let us call ox; (1 = 1,2,....r) the sequence related to Nx,. Note that some of these

sequences may be empty.
B. Letusnow consider t € T and let Nx, be a X-CFIO containing t. Due to the definition of

X-CFIOs, there exists Sx, such that firing 6k, o Gx  from Mg (restriction of Mg to

Nx,) leads to Mlé again, and this sequence contains each transition at least once (o

. * -~ - . o .
represents the concatenation). As a consequence, O =Cx, ° Ox, ° Ox, Is a firing

sequence which applies to M and contains t.
This proof holds for any M.
Q.E.D.
Result 4: A decomposable PN is reversible for any initial marking Mo.
Proot:
o. This first part of the proof is identical to the tirst part of the proof of result 3.

B. Due to the definition of X-CFIOs, there exists Sx, such that 6, o &, leads to M%) from
M) fori=1.2,...r. Thusif &= 0 réxl then 6o leads o Mg from Mo.
Q.E.D.

A decomposable net is not structurally bounded; for instance, the number ot tokens in such a
system increases indefinitely if we keep firing only the input transitions. Nevertheless, the
following result holds.

Result 5: A decomposable net N = (P, T, A, W) can be kept bounded by appropriate firings of
its input transitions, no matter how many times the output transitions are fired, provided that the
number ot the output firings is finite.

Proof:

Let kj, ..., ks be the minimal numbers of times the output transitions tg,1, .... 1,5, Mmust be
fired. Let Xj, ..., X be a set of t-invariants such that the corresponding X-CFIOs Nx; cover N.

Let nj be the component of the t-invariant X; which corresponds to toj. At least one of the nj,

i=1.2,...r, is strictly positive for any j € {l....,s}, and at least one of the n‘i, j=12,..s,1is

strictly positive for any i € {1.....r}. Thus the integer linear programming problem
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r
Mi,nz: Yi
i=1
S.t.

r
Zyi.n3 2kj j=L2...s
i=1

yi€{0.1....}, i=12....r
has a finite solution. The integer y; is the number of times the set [X;/l of transitions must be fired
according to X in order to fire the output transitions for the required number of times. Thus, the

marking M(p) of p € t{, is bounded from above by:

T
Mo (p)+ Zyixi,. where x}, is the v - th componant of X
i=1
This relation holds for any p € P.
Q.E.D.

III - Cyclic manufacturing systems

1. Problem formulation

In this section, we emphasize the usefulness of event graphs to model cyclic manufacturing
systems, also called off-line or ratio-driven manufacturing systems. Such a system manufactures a
given set of part types at given ratios. The objective of the control problem of such a system is to
maximize its productivity while minimizing the WIP.

In a cyclic system, there exists an optimal control which is periodic. From the management point
of view, a periodic control can be expressed as a sequence of part types associated to each machine,
cell or transportation system. Such a sequence is referred to as the input sequence of the resource. It
is emphasized that the same part type can appear several times in the same input sequence in order to
satisfy the production ratios. )

Let us consider, for instance, a set of three machines denoted by M, M3 and M3, which
manufacture three types of parts, say Py, P and P3. Assume that the manufacturing routings of these
part types are as follows (the number in parenthesis provides the manufacturing time of each
operation):

P1: M1(2), M2(1), M3(4)
P2: M3(2), M1(3)
P3: Ma(4), M(1)

Assume also that the production ratios are .25, (.25 and 0.5 tor Py, P and P3, respectively. In

this case, a set of input sequences associated to My, My and M3 could be:



o(My) = <Py, Py, P3, P3>, 6(M») = <Py, P3, P3>, 6(M3) = <Py, P2>.
We do not claim that this periodic control is optimal, but that there exists an optimal control with
respect to the objective detined above (6*(M1), 6*(M2), 6*(M3)) where 6*(M;) is obtained by
applying a cyclic permutation to 6(M;), i = 1.2,3.

The next subsection is devoted to the modelling of cyclic manufacturing systems. In subsection 3,

we show that it is possible to maximize the productivity of the system for any cyclic control. Finally,

subsection 4 proposes a heuristic algorithm to reach a near-optimal cyclic control.

2. Modelling of cyclic manufacturing systems

The event graph model of a cyclic manufacturing system is developed as follows:

®

@i

(iif)

Model the manufacturing process of each part type. In such a model, a transition represents
an operation and a place a buffer. Each transition firing corresponds to the execution of an
operation and the firing time of the transition is the time required to perform this operation.
Each manufacturing process is reproduced as many times as necessary to yield the given
production ratios. For instance, in the example introduced in the previous subsection, the
manufacturing processes of Py and P; are represented once, and the manufacturing process
of P3 is represented twice.

Model the cyclic operation mode of the system by assuming that a new part is launched in the
system as soon as a part of the same type is completed. This is modelled by adding an output
place to the last transition of each manutacturing process model, and by connecting this place
to the first transition of the same model. Thus, we obtain elementary circuits called process
circuits.

The final step is to model the sequencing of the part types for each machine. This is done by
connecting in a unique circuit all the transitions corresponding to operations performed by the
same machine. The order of transitions in these new elementary circuits (called command
circuits) is determined by the sequencing of the jobs on the corresponding machines.

Tokens circulating in the process circuits represent parts, whereas tokens in the command circuits

represent machine status information. Note that there is exactly one token in each command circuit,

since a machine is assumed to manutacture at most one part at a time, and since an elementary circuit

without a token blocks after a finite number of transition firings.

a. Model of a cyclic job-shop

The above steps were employed to model the job-shop introduced in subsection III-1 with the
control (6(M1), o(M3), 6(M3)). The resulting model is shown in Figure 3.
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Fig. 3: A job-shop model

b. Model of a cyclic assembly system

As a second example, let us consider two product types, the bills of materials and manutacturing
processes of which are represented in Figure 4. Each box in the tigure corresponds to a make item
(part). In addition, each box represents an operation and contains the machine which performs this
operation. The parameters in parentheses denote operation times.

We assume that the production ratios are 0.5 and 0.5. Following the general approach presented
in subsection 1 of this section, we obtain the model shown in Figure 5.

In this model, we only show the command circuit related to machine My for simplicity.
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Fig. 4: Two assembly manufacturing processes

Fig. 5: The assembly system model
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Places P; (i = 1.2....,10) represent butfers. Places Q; (i = 1,2....,10) are used to control the
number of components of each type in the system. For instance, Q) contains initially n) tokens,
which guarantees that at most ny pieces of the component of pj that is manufactured by Mj can be
found simultaneously in the system.

As shown in Figure 5, some transitions which do not represent operations have been introduced
in the model. These transitions are t3, t7, t1g and t13. The time associated to these transitions is 0.
They have been introduced to allow for WIP control.

The following result holds for cyclic manufacturing systems:

Result 6:

Assuming that:

(1) anew part is launched in the manufacturing system as soon as a part of the same type is

completed,

(ii) the control applied to the system is cyclic and can be expressed in terms of input sequences

which satisfy the production ratios,

(iii) one manufacturing process is associated to each part type,

we claim that the corresponding Petri net model encapsulates both the physical and the decision
making systems. Furthermore, this model is an event graph.

Remarks

1- If more than one manufacturing process alternatives are available to manufacture some part
types, then it is possible to split up each part type into as many sub-part types as the
number of manufacturing processes available, and to distribute the production ratio of the
part type among the sub-part types in order to optimize a criterion of interest, such as work
load balancing among the resources. This leads to a problem that satisfies condition (iii) of
result 6.

2 - If the model is not strongly connected, then it is always possible to introduce transitions
with zero duration which represent the entrance of the parts in the system. These
transitions are then connected by means of a command circuit, which transforms the model
into a strongly connected event graph.

3. Evaluation of a cyclic manufacturing system

Since a Petri net model of a cyclic manufacturing system is, or can always be transtormed into, a
strongly connected event graph and the firing times are deterministic, the results presented in section
[I-2 apply. In such a model, three types of elementary circuits exist, namely:

(i) the process circuits, which can contain as many tokens as desirable,
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(1) the command circuits, which contain one token each. the initial position of which is defined
by the input sequence of the related resource,
(iif) the hybrid circuits, which are composed of portions of command and process circuits; for
instance, in Figure 3, the circuit ¥ = <t1, S2, t5, Q4. t4, Sg, t3, Q1. t1> is a hybrid circuit.
Since 2 command circuit contains exactly one token and since it is possible to put as many tokens as
desirable in the places which belong to process circuits, it is possible to find infinite initial Arnarkings

such that the critical circuit is a command circuit, and more precisely the command circuit y* such that:
Cy*) =MaxC(y) (7
yeI‘C

where I'c is the set of command circuits and C(y) is the cycle time of .

In other words, it is always possible to fully utilize the bottleneck machine if the initial WIP is large
enough, and thus to reach the maximal productivity of the system. However, the objective is to reach
the maximal productivity while minimizing the WIP. This problem can be written as follows for a

given cyclic control:
Minimize Z X; )]
i/P;ePx

s.t.

ZXi ?.p.(“{)/Co— in . Vvelg,

i/Pjey\Pg i/P,eynPc
x; €{0.1,...}, Visuch that P, € Pg.

where x; = Mg(Pj), Pc is the set of places belonging to the command circuits, P is the set of
places which do not belong to the command circuits, I%= is the set of elementary circuits which are not
command circuits, and Cg = C(y*) is defined by relationship (7).

Note that xj = Mo(P;) is known for Pj € Pc; this is derived from the input sequences of the
resources. The difficulty in solving problem (8) is to compute all elementary circuits of the model, the
number of which increases often exponentially with the size of the model. For this reason, a heuristic
algorithm, called adjustment algorithm, was proposed in [11]. In practice, this heuristic algorithm is
not limited by the size of the model.

So far, we have shown that it is possible to reach the maximal productivity of the system while
minimizing the WIP when the periodic control is known. However the problem of finding the
periodic control which results in maximal productivity with a WIP which is the minimum among all
WIP values corresponding to all periodic controls remains open. This problem is considered in the
next sub-section.
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4. Optimization of the cyclic control

The problem to be considered is a scheduling problem which is NP-hard. Thus, only heuristic
algorithms can be used to solve large-sized problems. Two algorithms have been shown to provide
near-optimal solutions within reasonable times.

a. The simulated annealing algorithm

This algorithm has been presented in numerous papers, and in particular in [10] and [12]. The
part of the algorithm which is specific to the problem at hand is the generation of alternatives by
perturbation of a given schedule, i.e. a given set of input sequences. We generate a new schedule
in the neighborhood of a previous one by permuting two elements in each input sequence of the
resources.

The results obtained by applying simulated annealing to this problem have been found to be
better, on the average, than those obtained trom Tabou and genetic search approaches.

b. Construction approach
The basic idea of this algorithm is to (i) determine, tor each process circuit, the minimal number
of tokens (2 1) required such that a command circuit becomes the critical circuit; (ii) assign to each
process circuit as many periods of duration Cp {see Eq. (8)] as the number found in (i); and (iii) fit
the firing periods of the transitions within these Cq periods, taking into account the scheduling
constraints, i.e. the fact that two firing periods of transitions corresponding to the same machine do
not‘overlap, and the fact that the partial order imposed by the manufacturing processes is verified.
A sufficient optimality condition is to find a schedule with the appropriate number of Cq periods
initially assigned to the manutacturing process circuits.
Algorithm .
L. Initialization
1.1. Foreach process circuiti (i = 1.....n)
1.1.1. Setk;j=0
ki is a counter equal to the number of firing periods already placed in the Cg-
period related to manufacturing process i.
1.1.2. SetN;j(0)=1
Ni(k;) is the number of Cg-periods available for the next firing period.
1.1.3. Seti(0)=0
@i(k;) is the ending time of the first firing of the ki-th transition of i.
1.1.4. Compute dj(0) =0
di(k;) is the degree of freedom corresponding to i given the schedule of the k;
first firing periods.



ditk)=1- Y u(s) / (Co - itk + [N (k) - Nyt [cy)
te;-Ti(k)
where: T; is the set of transitions of i,
Ti(k) is the set of the first k transitions of i,
N (k) =Max[N;(k), c; ], where a; = [12(i)/Cy ],
(i) is the sum of the firing times of the transitions of i,
(1) is the firing time of t.
1.2. Setm=1
m is the counter for iterations.
1.3. SetEqp = {1,2,....n}
E is the set of process circuits for which some firing periods have not been placed.

2. Scheduling
2.1. Compute j such that dj(kj) = Ngn d;(k;)
1€L |,

J is the elementary circuit ro be considered next.

2.2, Ifdjk)) <0
Add gj(k;) Co-periods for the process circuit j: Nj(kj) = Nj(kj) + gj(k;) where gj(k;) is
the smallest integer such that

T o) | /(Co - o5k + [Nj ek~ Njlep) + itk p]Co) <1
teT;~Tj(k;)
2.3. Choose the transition to be fired
Ifk; > 0, ¢ is the next transition in the order derived from the manufacturing process.
Otherwise, we choose the transition which yields the minimal value of dj(1).
2.4. Place the firing period of t; at the earliest time, taking into account the manufacturing
constraints.
2.5. Set Tjk; +1) = Tjk;) w {1}
2.6. Compute @j(kj +1) and dj(k; +1).
2.7. Setkj=k+landm=m+ L
2.8. Update Ep,.
2.9. IfEqn# @ go to 2.1, otherwise stop.

To illustrate this algorithm, let us consider the model represented in Figure 3. The bottleneck
machine is M2 and Cp = 9. To ensure that the critical circuit of the model is the command circuit
corresponding to machine M3, we need a minimum of:

* one token in the process circuit corresponding to Py,

* one token in the process circuit corresponding to Py,
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* one token in each of the process circuits corresponding to Ps3.
Applying the previous algorithm leads to the schedule represented in Figure 6.
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Fig. 6: An optimal schedule

Since no Cop-period was added to the initial ones, the schedule provided by the algorithm is
optimal. This indicates that the optimal input sequences are:
o(Mj) = <Py, P3, P1>, c(M3) = <Py, P3, P3>, 6(M3) = <P, Pa>.
Furthermore, the initial marking is:
Mo(Qz) = Mo(Qs) = Mo(Qs) =Mo(Qo) = 1

Mo(Q1) = Mo(Q3) = Mo(Q4) = Mo(Q7) = Mp(Qg) = |
Finally, the command circuit and the initial locations of its tokens are fixed by the optimal input

sequences.

IV - Non-cyclic manufacturing systems

1. Problem formulation

We are interested in a job-shop comprising n machines My, M3, ..., Mj, that manufacture q types of
parts denoted by Py, P2, ..., Pq. The demand for each part type is known at the end of each of R
consecutive elementary periods. For instance, an elementary period could be a day and R = 5; in this
case, we are interested in managing the system over a working week on a day-to-day basis. In the
remainder of the paper, the union of the R elementary periods is referred to as the sub-period. Let us

denote by d{ i=12,..q.j=12...R, the demand for part type Pi at the end of the j-th elementary

period.



s? is the inventory level of part type i at the beginning of the first elementary period. We also

define M.(p;) as the manufacturing process (routing) of part type P;. M (p;) provides:

(i) the sequence of operations to be performed on a part of type Pj;

(i) the type of each operation, which can be either "assembly” or "regular”; disassembly
operations are not considered;

(iii) the list of machines on which each operation can be performed;

(iv) the time required to perform each operation on each alternative machine.

The first problem to be solved is the short-term planning (STP) problem. Knowing the capacity of
the system (i.e. the time available within each elementary period), we seek to determine the number of
parts of each type to be manufactured during each elementary period in order to optimize a given
criterion. Commonly used criteria include the number of delayed products, the maximal delay, the
weighted sum of delays, or the sum of the inventory and backlogging costs. In the remainder of this
paper, we seek to minimize the sum ot the inventory and backlogging costs to illustrate the proposed
approach.

Note that the time assigned to manufacturing tasks within each elementary period is bounded above
by the duration of the period. The difference between the duration of an elementary period and the
time assigned to tasks within this period is the maximal idle time of the machines during the period. It
represents the tlexibility of the system: the smaller the time assigned to tasks within an elementary
period, the more likely it is that a feasible schedule exists. However, the productivity of the system is
lower.

Starting from the number of parts of each type to be manufactured during the first elementary
period (provided by the solution of the STP problem), the scheduling process (S) consists of
assigning operations to their alternative machines and computing the beginning time of each operation
in order to satisfy the usual manufacturing constraints, namely:

(i) operations should be performed according to the partial order specified by the manufacturing
processes (routings): two operations helonging to the same manufacturing process should be
performed according to the required order;

(i) a given machine performs at most one operation at a time.

We do not try to optimize some criterion, but simply to find a feasible schedule, i.e. a schedule
which meets the requirements of the STP for the first elementary period. If such a feasible schedule
does not exist, the only solution is to reduce the time assigned to tasks within the elementary periods,
and to re-compute the STP: since such a change reduces the amount of parts to be manutactured
during each elementary period, it is more likely that a feasible schedule exists.

In Figure 7, we summarize the procedure to obtain a feasible schedule. The STP problem can
usually be solved using classical optimization software tools the choice of which depends upon the
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type of criterion to be optimized. However, the SP is NP-hard and, therefore, only heuristic problems

are practical.

In the next section, we introduce basic concepts used to re-visit the previous approach in

of PNs.

T=T

ReduceT

!

=

Computation of the solution of
the STP (on the R elementary

periods)

Computation of a feasible
schedule (on the first
elementary period)

;

no A feasible schedule has
been obtained?

‘ yes

End

Fig. 7: General tlow-chart for production management

2. Short-term planning

a. Modelling examples

I i I 4 ] ?
MzTM.t M, | M3 M M | M. M
M. M M .M M; | MM

a. Part-type Pl b. Part-type P2 c. Part-type P3

Fig. 8: Sample manufacturing processes

the light

Figure 8 shows the manufacturing processes (routings) for three part types Pq, P2 and P3.

Alternative machines for each operation are separated by commas in the corresponding boxes. The
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Fig. 9: The decomposable PN model of the system from

the short-term planning point of view

numbers in squares are the manufacturing times of the operations (i.e. the firing times of the
corresponding transitions). The duration of all input transitions of each ot these models is zero.
These transitions represent the launching of components to production. Each of the remaining
transitions represents an operation on a machine. The machines corresponding to these transitions
are included in parentheses. At most one firing is in progress at each transition at a time, which
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implies that a self-loop, with one token in the corresponding place, is associated to each transition.
These self-loops are not represented in Figure 9 for simplicity.

The PN model N presented in Figure 9 is obviously a decomposable net. It is possible to find
several sets of t-invariants for which the corresponding CFIOs cover N. We can, for instance,
choose the minimal t-invariants of the PN, which are obtained by combining the minimal t-
invariants of each of the manutacturing process models. Since the models corresponding to Py, P2
and P3 have respectively 4, 4 and 8 minimal t-invariants, we would obtain 4 X 4 X 8 = 128 minimal
t-invariants for the complete model. We can also choose some linear combinations of the minimal
t-invariants provided that the derived CFIOs cover N. |

b. Planning process
Let {Xi, .... X;} be a set of t-invariants such that:

i=1
Let Ok be the set of output transitions of the manufacturing process model of part type Py,
k = 1,...,q. The demands for parts of type Px are known at the end of each of R consecutive

elementary periods. We denote, as in section IV-1, by d{ the number of parts of type Py required

at the end of the j-th elementary period; d{( is also the total number of times the transitions of Ok

must be fired to satisty the demand by the end of the j-th elementary period. T is the duration of an
elementary period and < is the time assigned to an elementary period (see section IV-1).

If y{' is the number of times the transitions of IX;ll fire according to the components of X; during
the j-th elementary period, the following relations hold.

r
P , .
st =s{<—d{<+z v} Zx{ )

i=l tEOk
where x; denotes the component of X; corresponding to t in X;.

This state equation holds fork = 1.....q and j = O,....R-1. 52 is the initial inventory of parts of

type Pk.
Furthermore, if Z(t) is the firing time of t:

T
Y ylxiziy<t, j=L..R.teT (10)
i=1
afe the capacity constraints.
If the criterion to be minimized is the sum of the backlogging costs and inventory costs, it can be
expressed as:
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q R
Mind " by (-sh)* +ix ()] (11)
k=1j=1
where by (resp. iy) is the backlogging cost (resp. the inventory cost) of one unit of part type Py
during one elementary period. Note that the problem which consists of minimizing (11) under
constraints (9) and (10) can be re-written as a linear programming problem. '

¢. Remarks

The key to this approach is the choice of the set of t-invariants {Xj, ..., X;}. Depending on this
choice, Nx; may be the model of one of the mantfacturing processes or the model of a set of
manufacturing processes corresponding to different part types. In the first case, the short-term
planning procedure provides a better result, but requires extensive computation. In the second

case, the number of y{. variables may be very small, and thus the computation required may be very

limited; however, the result will be certainly inferior to that of the prévious case. In general,
selecting a smaller number of t-invariants (assuming that the CFIOs derived from them cover the
PN model) offers the potential for reducing the computation burden at the expense of productivity.
In is noted that the short-term planning process introduced in this section guarantees that the
qualitative properties presented in the previous section hold.

3. Scheduling

a. Problem serting and definitions

The goal of the scheduling process is to assign operations to resources (in the case that several
resources are available) and to define the starting time of each operation for the first elementary
period in order to meet the firing requirements of short-term planning.

The model used in the scheduling process is obtained by adding resource sharing places to the
model used for short-term planning. Such a place:

(1) initially contains one token,

(i) forms a self-loop with each transition corresponding to the same machine.

These places guarantee non-reentrance; i.e. the fact that machines can perform at most one
operation at any given time. For instance, we should have five resource sharing places in the
model given in Figure 9. The place corresponding to machine My would be linked in both ways to
t3, t10, t15 and tg.

Thus, there are two types of decisions that have to be made, namely:

(i) The decisions related to the selection of a resource, when several resources are available to

perform the same task. We define such a decision as an RU decision, where RU stands
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for Resource Use. An RU decision must be made in the model of Figure 10, in which the
next operation on the part represented by the token can be performed by Mj or M or Ms.

tl(M P

LM,

M)

Fig. 10: Modelling of a RU type of decision

In Figure 9, this situation can be observed in py, p2, p6. P7> P12» P13 and pi4.

(i) The decisions related to the sequencing of part types on resources, called PS decisions,
where PS stands for Product Sequencing. Figure 11 represents such a situation: we can
fire either t1, which represents the manufacturing of a part of type R} on My, or t2, which
represents the manufacturing of a part of type Rz on M.

P
R, lz(M P

Fig. 11: Modelling of a PS type of decision

Hereatter, places related to the RU (resp. PS) type of decisions will be called RU (resp. PS)
places.

We assume that transitions are fired as soon as they are enabled. Consequently, a schedule is
defined as soon as a sequence of transitions is assigned to each RU and each PS place. The
transitions belonging to such a sequence are the output transitions of the place, and they appear in
the sequence as many times as specified by the short-term planning solution for the first elementary
period. Let us for instance consider the RU place p in Figure 10. If, according to the short-term
planning solution, ty, t and t3 have to be fired twice, once and three times, respectively, a valid
sequence could be op = <1y, 13, 13, 12, 1. 13 >.

As we can see, the PN modelling of the scheduling problem represents the RU and PS
decisions, thus illustrating the decisions to be made explicitly. Nevertheless, it should be noted that
these decisions are not independent and that improper sequences may lead to blocking. Such a case

is shown in Figure 12 which contains two PS places. qj and qp: if tj, t2, t3 and t4 are fired once,
then Gq, = < t2, t3 > leads to a blocking situation.



Fig. 12: A situation where blocking may occur

Having established the appropriate system model, the objective of the scheduling problem can be
expressed as follows: determine the sequences to be assigned to each RU and PS places that result
in a makespan which is less than the duration of an elementary period, knowing that:

(i) the transitions belonging to a sequence are the output transitions of the related RU or PS

place,

(i) a transition appears in a sequence as many times as specitied by the short-term planning

solution for the first elementary period.

b. Scheduling algorithm

It is well-known that the scheduling problem of the general job-shop is NP-hard. As a
consequence, only heuristic algorithms can be considered for solving large-sized problems. We
have developed two heuristics: a simulated annealing approach and an approach based on the
improvement of a critical circuit. For the sake of brevity, only the second algorithm is presented in
this section.

The algorithm starts with a feasible set of sequences, i.e. with a set of valid sequences which do
not lead to blocking. An easy way to build such a feasible set of sequences consists of assigning
any valid sequence to each PS place, simulate the system according to these sequences by firing the
transitions as soon as they are enabled, and assign to the RU places the sequences resulting from
the simulation.

Let T be the duration of the elementary period. ng the number of times t should be fired during
the first elementary period, Sy(k) the instant when the k-th firing of t starts and Fy(k) = Sy(k) + Z(1).
This notation refers to the initial feasible set of sequences, assuming that the starting time of the
first transition firing is 0 and that a transition fires as soon as it is enabled. A critical path is a
sequence of pairs:

C=<(ty, kg hoooa(ty kg ) >

such that:
@ Sy key) =0;



(i) F. (kg )=Max{F(k)} (this value is the makespan);
1r 4 (t,k)

(1ii) Ftij(kaj) = Stij+1(kaj+1)’ forj=1,..r-l
A necessary condition to reduce the makespan is to reduce Fy; (kg ). and thus to bring forward
the finishing time of one of the transition firings that belongs to the critical path. To do this, we
will have to delay some transition firings which do not belong to the critical path. Note that it is not
allowed to violate the machine precedence constraints (i.e. the constraints related to the
manufacturing process, taking into account the initial marking). Furthermore, in order to reduce
the computational burden, we introduce the float time, which is the maximal time a transition can
be delayed without increasing the makespan. The calculation of the float time takes into account the
schedule and machine precedence dependencies of the operations. The objective is to move earlier
a transition firing which belongs to the critical path only it this delays another transition firing for
less than its float time. The two transition tirings which are involved in the scheduling perturbation
are not taken into account in the computation ot the float times. The following algorithm is derived
from the above remarks.
Algorithm
1. Compute a feasible set of sequences and the initiation times of the transition ﬁn’hgs.
2. Compute the critical path and the makespan.
3. Select (t, ky) and (te, ko) such that:
* g #E
* (ty, ky) belongs to the critical path,
* the k¢-th transition t¢ just preceding the ky-th transition ty in one of the sequences
belonging to the feasible set of sequences,
* swapping the ky-th transition ty and the k-th transition . in the sequence does not violate
the machine precedence constraints,
* the float time associated to (i, k) is greater than or equal to the delay resulting from the
swapping.
If several pairs (ty, ky) and (t;, k¢) are candidates for swapping, select the one for which
the delay is the closest to the float time.
4. If a pair has been selected, go to 2, else stop.

Y - Concluding remarks

Manufacturing systems can take advantage of the properties of Petri nets to cope with the
complexity of scheduling problems.

In cyclic manufacturing systems, the properties of event graphs may be used to propose fast and
powerful algorithms which maximize the praductivity while minimizing WIP, when a cyclic control is
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known. An algorithm which proceeds by construction is also available to provide a near-optimal
control (i.e. schedule). This algorithm is closely related to the Petri net model.

Non-cyclic manufacturing systems are modelled using decomposable nets at the short-term
planning level. The computation of a short-term plan is based on a set of t-invariants, the choice of
which provides for adjustment of the computational burden. A system model applicable to scheduling
is obtained by completing the planning model. It was used in this work to develop a new scheduling
heuristic.

A major problem which remains open in Petri net related work for management of systems is the
integration of cyclic or/and non-cyclic manufacturing systems.
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