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Although tyrosine kinase inhibitors (TKIs) such as imatinib have transformed chronic

myelogenous leukemia (CML) into a chronic condition, these therapies are not curative in

the majority of cases. Most patients must continue TKI therapy indefinitely, a requirement

that is both expensive and that compromises a patient’s quality of life. While TKIs are

known to reduce leukemic cells’ proliferative capacity and to induce apoptosis, their effects on

leukemic stem cells, the immune system, and the microenvironment are not fully understood.

A more complete understanding of their global therapeutic effects would help us to identify

any limitations of TKI monotherapy and to address these issues through novel combination

therapies.

Mathematical models are a complementary tool to experimental and clinical data that

can provide valuable insights into the underlying mechanisms of TKI therapy. Previous

modeling efforts have focused on CML patients who show biphasic and triphasic exponential

declines in BCR-ABL ratio during therapy. However, our patient data indicates that many



patients treated with TKIs show fluctuations in BCR-ABL ratio yet are able to achieve

durable remissions. To investigate these fluctuations, we construct a mathematical model

that integrates CML with a patient’s autologous immune response to the disease. In our

model, we define an immune window, which is an intermediate range of leukemic concen-

trations that lead to an effective immune response against CML. While small leukemic con-

centrations provide insufficient stimulus, large leukemic concentrations actively suppress a

patient’s immune system, thus limiting it’s ability to respond. Our patient data and modeling

results suggest that at diagnosis, a patient’s high leukemic concentration is able to suppress

their immune system. TKI therapy drives the leukemic population into the immune window,

allowing the patient’s immune cells to expand and eventually mount an efficient response

against the residual CML. This response drives the leukemic population below the immune

window, causing the immune population to contract and allowing the leukemia to partially

recover. The leukemia eventually reenters the immune window, thus stimulating a sequence

of weaker immune responses as the two populations approach equilibrium.

We hypothesize that a patient’s autologous immune response to CML may explain

the fluctuations in BCR-ABL ratio that are regularly seen during TKI therapy. These

fluctuations may serve as a signature of a patient’s individual immune response to CML. By

applying our modeling framework to patient data, we are able to construct an immune profile

that can then be used to propose patient-specific combination therapies aimed at further

reducing a patient’s leukemic burden. Our characterization of a patient’s anti-leukemia

immune response may be especially valuable in the study of drug resistance, treatment

cessation, and combination therapy.
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Chapter 1: Introduction

The goal of this dissertation is to develop and apply mathematical models to study

chronic myelogenous leukemia (CML). We take an interdisciplinary approach that combines

modeling with patient data, to study various aspects of the dynamics of CML and its treat-

ment. The biological background presented in Chapter 1 provides the foundation of these

models.

1.1 Introduction to CML

Hematopoiesis is a complex and tightly regulated process that maintains our body’s

blood supply, producing between 1011 and 1012 new blood cells per day. All of these cells are

derived from a single type of cell, the hematopoietic stem cells (HSCs). Each day, a small

subset of these cells differentiates and expands down the blood cell hierarchy in order to

produce the various types of mature blood cells. This process is heavily regulated in order

to ensure an appropriate balance of red blood cells, white blood cells, and platelets.

Leukemia is a type of cancer that occurs when a few mutated blood cells escape the

normal regulations of hematopoiesis. This type of cancer generally originates in the bone

marrow and eventually results in significantly elevated white blood cell counts. Leukemia can

be further classified as acute or chronic and as myeloid or lymphocytic based on the maturity
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and type of the leukemic cells. In this dissertation, we focus on chronic myeloid leukemia

(CML), a myeloproliferative disorder that accounts for about 20% of leukemias in adults.

CML occurs primarily in adults, with a median age of diagnosis of 65 years. A majority

of cases of CML is initiated by the formation of the BCR-ABL fusion oncogene, which

encodes for a constitutively active tyrosine kinase, that allows these cells to proliferate more

rapidly than their healthy counterparts and independently of external regulations. Without

treatment, CML patients typically progress from the chronic phase to the accelerated phase,

and finally to blast crisis, which is similar to acute leukemia and leads to metastasis, organ

failure, and death.

Introduced in the late 1990s, tyrosine kinase inhibitors (TKIs), such as imatinib (IM),

dasatinib, and nilotinib, have revolutionized the treatment of CML. These targeted therapies

work via competitive inhibition, by binding to the adenosine triphosphate (ATP)-binding site

of ABL tyrosine kinases, thus preventing these proteins from switching into their active form.

Because of their specificity, TKIs are able to target leukemic cells, while healthy cells are

left mostly intact. TKI therapy produces hematological and cytogenetic remissions in most

patients [34, 73]. Beyond these levels of remission, a patient’s response is determined on a

molecular level based on their BCR-ABL ratio, a blood measurement that represents the ratio

of BCR-ABL transcript to a control transcript, either BCR, ABL, or GUS. Many patients

achieve a major molecular response (MMR), or a 3-log decrease in BCR-ABL ratio, with

some even reaching MMR4 (4-log decrease), MMR4.5 (a 4.5-log decrease), or undetectable

minimal residual disease (UMRD) (undetectable by RQ-PCR, or a measured ratio of zero,

which generally corresponds to at least a 5-log decrease) [38]. Reaching UMRD may indicate

leukemia elimination in some cases, but often small concentrations of leukemic cells can be
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detected using more sensitive tests [86]. Still, TKIs have transformed CML into a chronic

condition, with patients’ life expectancies comparable to those of their healthy counterparts.

Despite their success, it is unclear whether TKIs alone can be curative, and as a result

patients typically continue TKI therapy indefinitely, a requirement that is both expensive and

compromises their quality of life. A more complete understanding of their global therapeutic

effect may lead to improved therapy schedules that would further reduce or eliminate any

residual leukemia. While TKIs are known to decrease leukemic cell proliferation [4, 41] and

increase apoptosis [24], other effects, such as their impact on the immune cell population

or on the microenvironment, may also play a significant role. Gallipoli et al. [29] and Rea

et al. [80] found that quiescent leukemic stem cells (LSCs) are insensitive to TKIs, which

suggests that ‘cure’ in the sense of elimination of the leukemic burden may not be possible

with TKIs alone. This finding is further supported by the fact that many patients in long-

term remission continue to harbor small residual leukemic loads even after many years of

therapy [86]. However, leukemia eradication may not be necessary to achieve an ‘operational

cure’ [31], in which a patient can stop therapy without relapsing, as evidenced in the various

treatment cessation trials, which will be discussed in Section 1.2. A better understanding

of TKIs would allow us to improve the way that these drugs are administered and also to

identify their limitations. If TKIs are incapable of curing most patients, then understanding

their mechanisms of action may inform our use of combination therapies.
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1.2 Treatment Cessation

Because of the success of TKI therapy for CML, many clinicians have shifted their ef-

forts toward the goal of achieving treatment-free remission (TFR). Currently, CML patients

continue TKI therapy indefinitely, regardless of whether they achieve long-term deep remis-

sions. However, treatment cessation is desirable for several reasons. First, although TKIs

are generally well-tolerated, these therapies, particularly second-generation TKIs, may have

significant side effects that can compromise a patient’s quality of life. Second, TKI therapy

is expensive, especially over many years. CML patients’ life expectancies are comparable

to their healthy counterparts’, and several decades of treatment can cost hundreds of thou-

sands of dollars per patient [87]. Given these quality of life and financial concerns, reducing

the necessary duration of therapy from a patient’s lifetime down to 5-10 years would be a

significant accomplishment.

Several clinical trials involving over 900 total patients [58] have been conducted in order

to evaluate the safety and efficacy of treatment cessation in patients who have responded

well to TKI therapy (that is, patients who have at least achieved a durable MMR4). Stop

Imatinib (STIM) [60] studied treatment cessation in 100 patients who had remained in

UMRD for at least two years. After stopping IM, patients’ BCR-ABL ratios were measured

once per month during the first year, every two months during the second year, and every

three months thereafter. Relapse was defined as two consecutive positive measurements

(loss of UMRD), where the second measurement represented a 1-log increase in BCR-ABL

ratio compared to the first measurement. In TWISTER [86], similar inclusion criteria were

used, and patients were monitored every month for the first year and every three months
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thereafter. In contrast to STIM, relapse was defined more strictly, as any two consecutive

positive measurements. Both trials found that about 60% of patients relapsed, mostly in the

first six months of treatment cessation. These patients then resumed IM therapy and were

generally able to re-achieve deep remissions. The remaining 40% achieved durable TFRs

that lasted for several years.

It is important to note, however, that the inclusion and relapse criteria may be un-

necessarily strict, thus excluding patients who would otherwise achieve TFR. ASTIM [88],

EUROSKI [92], and STIM2 [59] have explored alternative inclusion and relapse criteria.

Specifically, in ASTIM, patients were allowed to show occasional low-levels of BCR-ABL ex-

pression in the two years prior to treatment cessation. Relapse was defined as loss of MMR

(a ratio greater than 0.1%), a much weaker condition than loss of UMRD. Using the original

STIM relapse definition, 46% of patients were in TFR at two years, but with their new

definition, 64% remained in TFR. In the ongoing EUROSKI trial, patients were required to

have remained in MMR4 for the previous year. Preliminary results include a 6-month TFR

rate of 61.5%, which suggests that MMR4 may be sufficient. In a STIM2 interim report [59],

the authors observed a TFR rate of 61%, with median follow-up of 12 months. Interestingly,

one-third of TFR patients showed low-level fluctuations in BCR-ABL ratio but maintained

their MMR status. These trials suggest that with relaxed inclusion and relapse criteria, more

CML patients may be able to achieve TFR. The precise optimal set of requirements remains

to be determined.

Based on STIM and TWISTER, approximately 40% of CML patients treated with IM

will become eligible for treatment cessation, and about 10-15% will achieve long-term TFR.

If the definition of relapse is relaxed to loss of MMR, then this rate may increase to 20-25%
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of all CML patients. It remains to be determined why some patients relapse within the first

six months of treatment cessation, while others achieve long-term TFR. Factors currently

being investigated include Sokal score, duration of IM therapy, the kinetics of response to

therapy, time to various levels of remission, duration of remission prior to cessation, prior

interferon-alpha (IFNα) therapy, and various immune cell markers. A summary of these

factors and remaining questions related to treatment cessation can be found in [58] and [87].

This analysis must also be extended to include patients treated with second-generation TKIs

nilotinib and dasatinib. A more complete understanding of the dynamics of TKI therapy

and treatment cessation would allow clinicians to identify the patients most likely to achieve

TFR.

1.3 The Immune System in CML

As previously mentioned, approximately 10-15% of patients treated with IM are ex-

pected to be able to achieve TFR. For the remaining patients, we would like to identify novel

strategies aimed at producing deeper remissions and improving their chances of successful

treatment cessation. One promising approach is to combine TKIs with an agent that affects

a patient’s autologous immune system.

There is compelling evidence that a patient’s immune response plays a significant role

in the dynamics of CML. In general, it is known that immune cells are capable of detecting

and eliminating cancer cells [71]. The cancer immune surveillance theory states that our

immune systems are continuously recognizing and eliminating newly transformed cells, to

prevent them from developing into malignant cancers. Initially, the immune system destroys
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these cells until they are eliminated or an equilibrium is reached. In the latter case, a subset

of these genetically unstable cells may escape immune surveillance to produce a tumor.

Immunotherapy is a major goal of both immunology and cancer research because of the

ability of the immune system to target and eliminate abnormal cells while leaving healthy

cells intact.

Prior to TKIs, many CML patients were treated with either allogeneic bone marrow

transplants [46] or IFNα [96], both of whose success seem to partially depend on inducing an

immune response. Following an allogeneic transplant, donor lymphocytes mount a response

that reduces and may even eliminate the CML clone. Allogeneic bone marrow transplants

may be the only curative therapy for CML but is rarely used because of its toxicity [46].

IFNα works through a variety of mechanisms, including induction of apoptosis, inhibi-

tion of growth, suppression of angiogenesis, and activation of immune cells [96]. A patient’s

immune system may play an especially important role in this therapy. IFNα improves the de-

tection of leukemic cells by increasing expression of tumor-associated antigens and MHC class

I molecules [7]. Additionally, CD8+ T cells [33,69,101], natural killer (NK) cells [54,95], and

dendritic cells [25, 82] are activated by IFNα. T cells specific for an antigen called PR1 are

specifically associated with successful IFNα therapy [12,68, 69] and are able to identify and

eliminate CML progenitor cells [67]. IFNα is able to induce cytogenetic remission in some

patients. A few of these patients have even achieved TFR [57, 96], despite the persistence

of detectable levels of CML [15, 35]. Interestingly, PR1-specific T cells are associated with

continued remission following IFNα cessation [40], which suggests that a patient’s immune

system may help to control the residual CML in the absence of therapy.

Several combination therapies involving TKIs and IFNα are currently being investi-
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gated [32,72,78], in part, because of their complementary mechanisms of action. While TKIs

do not affect quiescent leukemic stem cells [29,80], IFNα has both direct and indirect effects

on the immature leukemic population. IFNα may drive quiescent leukemic stem cells into

the cell cycle [28,91], where they become exposed to the effects of TKIs. The immunostimu-

latory effects of IFNα may also help in the elimination of CML cells not directly affected by

TKIs. Thus, while TKIs remain the primary first-line therapy for CML and are responsible

for eliminating the majority of the CML burden, IFNα may assist in controlling residual

CML cells.

Initial results suggest that TKIs combined with IFNα produce improved rates of molec-

ular response during the first few years of treatment [72, 78]. However, in many cases, the

toxicity of IFNα limits its effectiveness, and long-term benefits remain to be evaluated.

The addition of IFNα may improve a patient’s chances of achieving TFR [60], although

the observed advantage is not statistically significant, possibly due to small sample size. A

12-patient study found that while the two IM-only patients relapsed after stopping treat-

ment, six out of ten patients who had received a combination of IM and IFNα remained in

remission [89]. Despite these promising results, the toxicity of IFNα remains a significant

barrier, and further research is required to determine an optimal schedule for combining

these potentially complementary therapies.

The role of the immune system in the dynamics of CML is further supported by the

results of the IM cessation trials. Similar to the results of IFNα cessation studies, many pa-

tients who achieve TFR continue to express BCR-ABL DNA and mRNA [59,86]. Moreover,

in [14], patients still harbored BCR-ABL+ leukemic stem cells, despite having remained in

TFR for up to eight years. In these cases, since treatment did not completely eradicate the
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disease, some other mechanisms, such as the autologous immune system, must be preventing

this residual cancer population from expanding. The hypothesis that the immune system

controls the residual leukemic burden during TFR is further supported by the association

of TFR with prior IFNα therapy and the activity and presence of various immune popula-

tions. Specifically, several independent groups [39, 66, 74, 81] have observed that higher NK

cell count and functionality are associated with TFR. Additionally, Usuki et al. [102] found

higher memory CD8+ T cell concentrations and lower näıve CD8+ T cell concentrations in

patients who remained in TFR. A recent and promising 2015 study [11] shows that higher

concentrations of CD86+ dendritic cells are associated with relapse. Moreover, the authors

proposed a specific mechanism driving this phenomenon, namely, that CD86+ dendritic cells

interact with the CTLA-4 inhibitory receptor of T cells, which impedes T cells that would

otherwise participate in the body’s anti-leukemia immune response. Together, these findings

suggest that a patient’s autologous immune system may play a critical role in the future of

CML treatment, by providing biomarkers that guide clinical decisions, and by serving as an

additional therapeutic option to complement TKIs.

1.4 Outline of Thesis

The remainder of this dissertation is organized as follows. In Chapter 2, we present

an overview of the recent contributions of mathematical modeling groups to the study of

leukemia and lymphoma. Although our list is not exhaustive, it does provide a representation

of the types of contributions mathematicians can make to understanding these diseases. At

the end of the chapter, we focus on the models of Michor et al. [65], Kim et al. [43], and
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Roeder et al. [85] and their applications to CML. These three models serve as a starting

point for our own mathematical modeling efforts.

In Chapter 3, we revisit the model of Roeder et al. [85], which we modify in order to

produce a model that more accurately reflects the biology of CML. We incorporate asym-

metric division, a variable lifetime for precursor cells, and feedback from mature cells into

the model. We present an implementation of this model as a system of difference equations,

followed by numerical simulations and a discussion of our results.

We present our own mathematical model of CML and the autologous immune system

in Chapter 4. We use this model to study the role of the immune system during IM therapy,

by applying it to patient data. A detailed analysis of this model is presented in Chapter 5,

followed by additional applications and extensions in Chapter 6. Finally, we conclude with

discussion of our work and future directions in Chapter 7.

10



Chapter 2: Mathematical Models of Leukemia and Lymphoma

2.1 Motivation

Recently, there has been significant effort in the mathematical community aimed at

developing quantitative tools for studying leukemia and lymphoma. Mathematical models

complement clinical and experimental data and can be used to identify underlying mecha-

nisms driving an observed phenomenon, or to determine a quantity that is not experimentally

accessible. In a clinical setting, mathematical modeling can be applied to evaluate and im-

prove the scheduling of an existing therapy or to propose novel drug combinations.

Mathematicians, clinicians, and experimentalists have complementary skill sets and

perspectives that, when combined, can lead to significant improvements in patient care and

wellbeing. Leukemia and lymphoma research can benefit greatly from a collaborative and

interdisciplinary approach that allows each group to utilize the others’ expertise. Mathe-

maticians depend on clinicians’ and experimentalists’ understanding of a disease’s biology

in order to produce a realistic mathematical representation, and on their data in order to

validate their resulting models. Likewise, mathematical modeling provides an inexpensive

and efficient setting for preliminary testing of hypotheses before they reach the clinical and

experimental phase. Additionally, these models can guide experimental design and identify

critical parameters that should be measured. Ultimately, a research environment in which
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ideas and data are shared across disciplines will lead to more rapid discoveries that will

improve our ability to treat leukemia and lymphoma.

2.2 Summary of Mathematical Models

We begin with an overview of the recent contributions of mathematicians to the study

of leukemia and lymphoma. While the focus of this dissertation is CML specifically, these

works as a whole provide valuable insight into the clinical questions that mathematicians

can help to answer and some of the tools available to study these diseases. Although this

summary is not exhaustive, it does describe the contributions of many modeling groups to

the study of hematopoiesis, cancer genesis, therapy, and drug resistance. The rest of Section

2.2 was published in [20].

2.2.1 Hematopoiesis

Hematopoiesis is the process by which our body creates new blood cells. Mathematical

models of hematopoiesis provide a framework for mathematicians to study cancer genesis and

treatment strategies. Hematopoiesis can be modeled as a system of discrete maturity stages

starting with hematopoietic stem cells (HSCs) and ending with mature blood cells. Within

each stage, a balance between self-renewal and differentiation must be achieved. When a cell

divides, each daughter cell remains in its current compartment with a certain probability,

referred to as the renewal fraction, or differentiates and enters the next stage. This complex

and well-regulated process produces more than 1011 cells per day in order to maintain the

equilibrium levels of cells in the erythroid, lymphocyte, and myelocyte lines.
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Despite the complexity of hematopoiesis, several simple ordinary differential equation

(ODE) models have provided insight into the process. Michor et al. [65] divide blood cells

into four categories based on maturity - stem, progenitor, differentiated, and terminally

differentiated - and represent each by a single ODE. Healthy cells and cancer cells are as-

sumed to both progress through these differentiation stages, differing only in their rates of

differentiation and their ability to compete for resources.

Marciniak-Czochra et al. [61] also model hematopoiesis with a system of ODEs but

incorporate feedback inhibition via cytokines. It is known that environmental signals, such as

granulocyte colony-stimulating factor (G-CSF) [79] and erythropoietin [93], play a significant

role in regulating hematopoiesis [83]. In order to explore these regulatory mechanisms and,

specifically, their role in the rapid recovery of the mature blood cell population following

chemotherapy [45], the authors in [61] implement feedback inhibition from mature cells

that affects proliferation rates and/or renewal fractions of the less mature compartments.

This feedback is assumed to take the form of a single cytokine, such as G-CSF. When the

population of mature blood cells is large, the cytokine is consumed by these cells. When

the population of mature blood cells declines, the cytokine becomes more abundant, and

its presence triggers an increase in proliferation, an increase in renewal fraction, or both.

Numerical simulations suggest that regulation of renewal fractions alone leads to a more

rapid regeneration of the mature blood cells than does regulation of proliferation rates alone,

although combining the two leads to slightly faster recovery [61]. This model has also been

applied to studying the dynamics of leukemogenesis [94].

By incorporating time delays or accounting for spatial or age heterogeneity, more com-

plex models have been constructed in order to better capture the biology of the system. Time
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delays have been added to account for events such as cell divisions (for instance [1], [2]) and

the interactions between cancer and immune cells (for instance [43]). In [2], Adimy and

Crauste present three delay differential equation (DDE) models of cycling and quiescent

HSCs, with constant, distributed, and state-dependent delays. These delays represent the

time to complete one cell division. The system with distributed delays is derived from an

age-structured partial differential equation (PDE) in [1]. All three models have been applied

to studying periodic hematological diseases, which are characterized by oscillations in vari-

ous blood cell populations. It is concluded that although all three models produce periodic

solutions, the nature of the oscillations depends on the type of delay [2].

To explore oscillations that occur in multiple cell lines simultaneously, Colijn and

Mackey [21] combine constant DDEs representing HSCs, leukocytes, erythrocytes, and platelets.

This model includes more biological detail than those mentioned earlier, in that it replaces

the generic mature cell compartment with three different cell lines. The model is later applied

to cyclical neutropenia and G-CSF therapy [55].

In general, deterministic ODE and DDE models, like the ones presented so far, can

serve as good approximations of the average behavior of a system when the populations

are large. However, when considering small cell populations, stochasticity plays a key role

in the emerging dynamics. In [52], larger populations of mature cells are represented by

ODEs, while a stochastic model is used for the smaller populations of less mature cells.

Using a bivariate Markov process and its deterministic approximation, Chrobak et al. [16]

model the competition between healthy and precursor T-cell lymphoma cells, for a survival

stimulus. Cancer T cells are assumed to be more competitive and able to accept a wider

variety of stimuli. Simulations show that healthy T cells with more specific receptors survive
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longer than healthy T cells with less specific receptors, while cancer T cells, despite their

lack of specificity, are able to out-compete normal cells. To study drug resistance, branching

processes [53, 100] and birth-death processes [47, 49] with mutations have been applied to

calculate mutation probabilities and sizes of mutant clones at the time of cancer diagno-

sis. Stochastic models are especially useful when considering cancer genesis and resistance

mutations, as both processes start from a single cell.

In contrast to the previous population-based models, the agent-based model (ABM) of

Roeder et al. [85] treats each individual cell as an autonomous agent. The model considers

quiescent and cycling stem cells, progenitors, and mature cells. Each stem cell is character-

ized by an affinity variable, which represents its tendency to either cycle or remain quiescent.

Though ABMs retain valuable information about individual cells and their interactions, they

are very computationally demanding, and simulations involving a realistic number of cells

may not be feasible. To address this limitation, Kim et al. [44] reduce the Roeder model [85]

to systems of difference equations, while Kim et al. [42] and Roeder et al. [84] reduce the

model to a system of PDEs . Although some detail is lost in these reductions, both systems

can be used to quickly capture quantities of interest, such as the steady state distribution

of stem cells, with a realistic number of cells, as computation time does not depend on the

total number of cells.

Once these models have been parameterized and validated using experimental and

clinical data, they serve as useful tools for studying cancer treatment and drug resistance.

The models mentioned above have been applied to several diseases within the leukemia and

lymphoma families, including chronic myeloid leukemia (CML) [26, 30, 36, 43, 52, 65, 85, 97],

acute myeloid leukemia (AML) [1], T-cell lymphoma [16], and periodic hematological diseases
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[2, 21, 55].

2.2.2 The Dynamics of Treatment

One of the main goals of mathematical modeling of cancer is to improve treatment,

either by optimizing the way existing therapies are being administered, or by motivating novel

therapies. The optimal timing and dosage schedule remains an open question for many drugs

used to treat leukemia and lymphoma. Mathematical models have been utilized to investigate

treatment strategies, by considering, for instance, impulse versus continuous doses [30] as well

as the number of drugs to be used and their order [49,53,85]. Using sensitivity analysis and

numerical simulation, the dependence of a treatment outcome on specific model parameters

can be determined. Mathematical models can be applied to interpret experimental or clinical

data, or to evaluate a treatment strategy before it is tested in an experimental or clinical

setting.

Models of a single cell are useful for studying intracellular drug accumulation and con-

centrations of substances involved in cell fate decisions. In [77], intracellular and extracellular

concentrations of methotrexate (MTX), a treatment for acute lymphoblastic leukemia (ALL),

are modeled. In vivo measurements indicate that levels of intracellular MTX are greater in

leukemia B cells than in T cells. Simulations show that increasing the dose can only par-

tially compensate for the lower levels of intracellular MTX in T cells. It is hypothesized that

extending the infusion time would lead to greater MTX accumulations in leukemia T cells

and may enhance the effectiveness of the therapy [77]. A follow-up study [76] that compares

infusion times of four and twenty-four hours, in a clinical trial and with an extended MTX
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model that includes the drug’s effects on the folate pathway, supports this hypothesis.

Alarcon et al. [3] take a similar modeling approach to attempt to understand the

factors that determine the fate of lymphoma B cells during antibody treatment. Treatment

of lymphoma B cells with a specific antibody causes either apoptosis or quiescence. In

order to determine how to induce apoptosis in these B cells, an ODE model of intracellular

substances involved in cell fate decisions is developed. The modeling results suggest that

Myc plays a crucial role in cell fate decision of lymphoma B cells during antibody therapy.

A significant amount of attention has been given to modeling the treatment of CML.

Although we briefly cover some of these studies here, a more detailed description of these

models and their applications can be found in Section 2.3. These models have been applied to

investigate the underlying mechanisms of action of TKIs, which can then be used to identify

any limitations of these drugs. Several groups [52, 85, 99] have argued that IM affects all

leukemic cells and therefore may be able to cure patients after many years of treatment.

Others [26, 65] claim that certain subsets of leukemic cells are protected from the effects of

IM, and therefore a residual population of leukemia will remain indefinitely. These models

have also been applied to treatment cessation [36,97] and combination therapy [30,43].

2.2.3 Drug Resistance

Drug resistance remains a major challenge in leukemia and lymphoma therapy. Mathe-

matical models can be used to assess a patient’s risk of relapse upon diagnosis and to identify

strategies that minimize the probability of treatment failure.

Panetta et al. [75] conduct an experiment in which ALL T cells, of varying drug re-

17



sistance, are treated with mercaptopurine (MP), and cell cycle distributions and apoptosis

rates are measured. Using this data, they construct a mathematical model of the cell cycle

and apoptosis during MP treatment. The model divides cells into normally cycling cells;

cells that are cycling with thioguanine nucleotides (TGNs), a byproduct of MP, incorpo-

rated in their DNA and RNA; apoptotic cells; and necrotic cells. Interestingly, the model

parameterizations suggests that the rate of TGN incorporation is greater in resistant cells

than in sensitive cells. However, this difference is overcome by the higher rates of entry into

apoptosis found for the sensitive cell line compared to the resistant lines. This result suggests

that although the drug is able to incorporate itself into the cancer cells’ DNA, resistance is

explained by an inability of resistant cells to detect damaged TGN-incorporated DNA [75].

Using branching processes [53, 100] and birth-death processes with mutations [47, 49],

several groups have sought to quantify the probability of resistance and the size and diversity

of resistant clones, at the time of diagnosis. In both types of models, cancer initiates from

a single cell, with a birth rate, death rate, and a small probability of mutation per division.

Mutations can lead to several different resistance clones, each with its own growth kinetics.

The time of diagnosis is estimated by the time at which the cancer population reaches a

certain size. Using both simulation and analysis techniques, the aforementioned quantities

can be determined.

Tomasetti and Levy [100] construct a model of cancer stem cells in which the cells

may divide in one of three ways. A stem cell may divide into two stem cells (symmetric

renewal), differentiate into two progenitor cells (symmetric differentiation), or divide asym-

metrically into one stem cell and one progenitor cell. By incorporating data on the relapse

rate of patients that are treated with IM [34], it is concluded that cancer stem cells tend
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to symmetrically renew, as opposed to their healthy counterparts that predominantly divide

asymmetrically [100]. In a later paper [99], Tomasetti argues that, based on modeling re-

sults [100] and clinical data [60], IM affects leukemic stem cells the same way it affects all

leukemic cells, by decreasing their proliferation rates.

Leder et al. [53] and Komarova et al. [47, 49] use their models to determine when

combination therapy can be administered to minimize the chance of resistance mutations.

In [53], the authors calculate that if a patient is diagnosed at an early stage of cancer, then

there is only a 12% chance of having a resistance mutation. However, when diagnosed at a late

stage, the risk increases, and multiple mutations become possible [53]. Their modeling results

demonstrate the importance of early detection and also suggest that combination therapy

is advantageous when the cancer is detected at a late stage. Komarova and Wodarz [47]

create a mathematical framework to study resistance to targeted therapies. It is found

that the combination of three drugs should prevent resistance in the treatment of CML.

Komarova et al. [49] later consider specific resistance mutations to TKI treatment of CML.

They evaluate the effectiveness of combinations of IM, dasatinib, and nilotinib. Most of

the known resistance point mutations confer resistance to only one of the three, but the

T315I mutation causes resistance to all three [4]. It is concluded that two-drug combination

therapies can increase the probability of treatment success, but adding a third drug does not

lead to further improvements [49].
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Figure 2.1: The Michor model divides healthy cells (x) and leukemic cells (y)
into stem cells (x0, y0), progenitors (x1, y1), differentiated cells (x2, y2), and
terminally differentiated cells (x3, y3). Healthy cells xi and leukemic cells yi are
assumed to have the same death rates di for each compartment i, but to differ
in their stem cell growth rates r and their differentiation rates a, b, and c. The
parameters in red (ry, ay, and by) are those affected by IM therapy.

2.3 Models of CML

We now shift our focus to mathematical models of CML, specifically the Michor model

[65], the DDE model of Kim et al. [43], and the Roeder model [85]. For each, we will present

the details of each model and then discuss their applications. Ultimately, these three models

serve as a basis from which we constructed our own CML model (see Chapter 4).

2.3.1 The Michor Model

The Michor model [65] is an ODE model that divides both healthy cells (x) and

leukemic cells (y) into stem cells (x0, y0), progenitors (x1, y1), differentiated cells (x2, y2),

and terminally differentiated cells (x3, y3). These populations are described by the following
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system of equations.

ẋ0 = (rxϕ− d0)x0, (2.1a)

ẋ1 = axx0 − d1x1, (2.1b)

ẋ2 = bxx1 − d2x2, (2.1c)

ẋ3 = cxx2 − d3x3, (2.1d)

ẏ0 = (ryψ − d0)y0, (2.2a)

ẏ1 = ayy0 − d1y1, (2.2b)

ẏ2 = byy1 − d2y2, (2.2c)

ẏ3 = cyy2 − d3y3. (2.2d)

In the equations above, r is the maximum division rate of stem cells, and p is the sensitivity

of each population to crowding. The parameters a, b, and c are differentiation and expansion

rates of the stem cells, precursors, and differentiated cells. Lastly the {di} are the death

rates of each compartment. The terms ϕ = 1/(1 + px(x0 + y0), and ψ = 1/(1 + py(x0 + y0))

incorporate competition between healthy and leukemic stem cells. The parameters px and

py represent each population’s sensitivity to crowding. Although these terms are not in the

original model [65], they are introduced in [26] and are included in future works [97, 98]. A

diagram representing this model can be found in Figure 2.1

Leukemic cells are assumed to have a greater stem cell proliferation rate (ry > rx), a

greater stem cell differentiation rate (ay > ax), and to be less sensitive to crowding (py < px)

than healthy cells. Healthy and leukemic cells are assigned the same death rates. IM therapy
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decreases the proliferative capacity of leukemic cells, by decreasing the parameters ry, ay,

and by to values r′y, a
′
y, and b

′
y.

By analyzing patients’ initial response to IM therapy, Michor et al. [65] find that many

patients show a biphasic exponential decline in BCR-ABL ratio. In their model, the first,

sharper decline is explained by the decreased proliferative capacity of differentiated cells

(a′y < ay), which causes both the differentiated and terminally differentiated populations to

shrink. After 3-6 months, these populations reach an equilibrium relative to the progenitor

compartment. During months 6-12, there is a second, slower exponential decline that is

explained by a similar effect on progenitors (b′y < by), until they reach an equilibrium with

the stem cell population. The parameters a′y and b′y are calculate based averages of their

patient data, and are assumed to be the same for all patients. The slopes of these two

declines are interpreted as the death rates of the progenitors (d1) and differentiated cells

(d2), which are allowed to vary between patients.

In their initial fits, the authors assume that IM has no effect on leukemic stem cells (that

is, r′y = ry). The leukemic stem cell population continues to grow during therapy. Eventually,

all simulated patients relapse, a result that does not accurately represent the long-term

effects of IM seen in most patients. However, their initial data only includes the first year

of IM therapy, so their fits are largely unaffected by this assumption. In a later analysis

of patients’ long-term responses over many years of IM therapy [98], these assumptions are

adjusted to allow IM therapy to also affects leukemic stem cells, by decreasing their growth

rate (ry < r′y). Some patients show a triphasic exponential decline in leukemic load. The

authors hypothesize that the third decline may represent an effect on a less mature leukemic

population, such as the leukemic stem cells. In [26], it is suggested that a successful therapy
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must target leukemic stem cells in order to eliminate the leukemic clone, a result which

motivates the question of whether IM alone may be curative.

In [97], Tang et al. attempt to understand the contrasting results of the STIM trials

[60]. They first sought to determine whether TFR indicates cure in some patients, or whether

these patients continue to harbor small residual leukemic clones. However, both cure and

non-cure statistical models were in agreement with the STIM data, suggesting that a longer

follow-up time was necessary to make any conclusions. By parameterizing the Michor model

based on STIM survival curves, it is found that the leukemic population has significantly

slower growth kinetics after treatment than before treatment. This result suggests that

selection pressures during IM therapy lead to different subsets of the heterogeneous leukemic

population surviving, which in part explains the disparate outcomes of the trial. The author

notes that this selection effect may act in combination with suppression of the leukemia by

the immune system, crowding, or the microenvironment.

2.3.2 DDE Model of CML and the Immune System

In [43], Kim et al. present the following DDE model of CML and the immune system

in order to study the anti-leukemia immune response during IM therapy.

ẏ0 = (ry − d0)y0 − qCp(C, T )y0, (2.3a)

ẏ1 = ayy0 − d1y1 − qCp(C, T )y1, (2.3b)

ẏ2 = byy1 − d2y2 − qCp(C, T )y2, (2.3c)

ẏ3 = cyy2 − d3y3 − qCp(C, T )y3, (2.3d)

Ṫ = sT − dTT − p(C, T )C + qT2
np(Cnτ , Tnτ )Cnτ , (2.3e)
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Figure 2.2: The DDE model of Kim et al. [43] considers leukemic stem cells y0,
progenitors y1, differentiated cells y2, and terminally differentiated cells y3, which
are all modeled as in the original ODE model of Michor et al. [65] An additional
T cell compartment T is described by a DDE, where the delay nτ accounts for
the time to complete n cell divisions, each of which requires time τ , following
stimulation by a leukemic cell.
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where

Cnτ = C(t− nτ),

Tnτ = T (t− nτ),

p(C, T ) = p0e
−cnCkT,

C =
∑3

i=0 yi.

In this model, which is depicted in Figure 2.2, the variables {yi} represent leukemic stem

cells, progenitors, differentiated cells, and terminally differentiated cells, and an additional

variable T is introduced that represents anti-leukemia T cells. As in the Michor model (see

Equations (2.1a)-(2.2d)), ry is the growth rate of leukemic stem cells, which are assumed to

grow exponentially in the absence of an immune response. The parameters ay, by, and cy are

differentiation rates, while {di} are natural death rates. The last terms p0qCe
−cnCkTyi in the

leukemic cell equations represent an anti-leukemia immune response. The rate of interaction

between T cells T and each leukemic subpopulation yi is described by a mass-action term

kTyi with coefficient k. The constant p0 is the probability that a T cell engages, while qC

is the probability that the leukemic cell dies because of that engagement. This probability

p0qC is decreased by a factor e−cnC in order to incorporate immune suppression by the total

leukemic population C =
∑3

i=0 yi.

Lastly, T cells are assumed to have a constant source term sT and a constant death rate

dT . The third term on the right side represents T cells that engage leukemic cells and commit

to n rounds of cell division. The last term represents the population increase due to immune

cells that committed to division at a time nτ in the past, where τ is the time to complete one

cell division. The variables Cnτ and Tnτ are the leukemic and T cell concentrations at time
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t− nτ . A T cell survives the encounter with the leukemic cell with probability qT , and if it

survives, it produces 2n new T cells. We note that the precise interactions between leukemic

and immune cells are not known, and so there are several alternate ways of representing

these interactions, as shown in [50] and [70].

Without an immune response, and assuming no effect of IM on leukemic stem cells,

the leukemic stem cells continue to grow exponentially. The model therefore predicts that

all patients will relapse after about 3 years of therapy. On the other hand, simulations of

this model with an immune response produce long-term remissions that are in agreement

with patient data. These contrasting outcomes suggest that a patient’s immune system may

play a critical role during IM therapy.

The authors therefore sought to characterize patients’ individual immune responses to

CML. They fit their model to individual patient data by choosing patient-specific values of

sT , dT , cn, n, and y0(0). They define an optimal load zone for leukemic cells that maximizes

the anti-leukemia immune response. This zone coincides with the range of leukemic loads

C where the rate of immunostimulation p0ke
−cnC exceeds the T cell death rate dT and

is therefore patient-specific, as it depends on the parameters cn and dT . Based on their

modeling results and data measuring patients’ immune responses during IM therapy, they

hypothesize that IM may drive the leukemia below the optimal load zone. As a result, after

an initially strong immune response, the T cells contract, allowing the leukemic population

to survive and partially recover. This result suggest that carefully-timed patient-specific

vaccines may help to maintain a patient’s strong immune response in order to further reduce

or even eradicate the leukemic population.
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2.3.3 The Roeder Model

In this section, which is taken from our publication [19], we provide a brief overview

of the Roeder model [85]. The Roeder model is an ABM that considers hematopoietic cells

in three compartments: stem cells (STC), proliferating precursor cells (P), and mature cells

(M). Stem cells are either quiescent, denoted by A, or cycling, denoted by Ω. Let A(t) and

Ω(t) represent the total number of quiescent and cycling stem cells at time t. Each individual

stem cell is characterized by an affinity variable a(t) ∈ [amin, amax] which determines the

probability that the cell will be quiescent or cycling. At each time step, which represents

one hour, a quiescent stem cell will enter the cell cycle with probability ω, and a cycling

stem cell will become quiescent with probability α, where

ω(Ω(t), a(t)) =
amin

a(t)
fω(Ω(t)), (2.4)

α(A(t), a(t)) =
a(t)

amax

fα(A(t)). (2.5)

Thus, cells with affinity a(t) close to amax tend to remain or become quiescent, while cells

with a(t) close to amin tend to remain or become cycling. The functions fω and fα are defined

by

fω(Ω(t)) =
1

ν1 + ν2 exp
(
ν3

Ω(t)
Nω

) + ν4, (2.6)

fα(A(t)) =
1

µ1 + µ2 exp
(
µ3

A(t)
Nα

) + µ4. (2.7)

Both functions, fω and fα, are decreasing sigmoidal functions whose shapes depend on the

parameters νi and µi. The parameters Nω and Nα are scaling factors for Ω(t) and A(t).

Given the values of fω at Ω(t) = 0, Nω/2, Nω, and ∞, we can compute the coefficients νi as
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follows:

ν1 = (h1h3 − h22)/(h1 + h3 − 2h2),

ν2 = h1 − ν1,

ν3 = log((h3 − ν1)/ν2),

ν4 = fω(∞),

where

h1 = 1/(fω(0)− fω(∞)),

h2 = 1/(fω(Nω/2)− fω(∞)),

h3 = 1/(fω(Nω)− fω(∞)).

A similar set of formulas can be used to determine the parameters µi of fα. These functions

are constructed so that cells that are in the less-populated compartment are less likely to

move.

Quiescent cells that remain quiescent during a time step increase their affinity by a

factor of r, until they reach the maximum affinity amax. Cycling cells that continue to cycle

during a time step decrease their affinity by a factor of d, until they reach the minimum

affinity amin. In other words, cells that remain in A or Ω become more likely to stay in A or

Ω in the future.

Cycling cells are also characterized by a cell cycle counter c(t), which represents their

place in the cell cycle. In [85], the cell cycle lasts 49 hours, so c(t) ∈ {0, 1, ..., 48}. The first

32 hours represent the G1 phase, where cells grow and can transition to quiescence. Cells

that reach c(t) = 32 commit to division and must go through the S, G2, and M stages of the
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Figure 2.3: A diagram for the Roeder model. (1) At each time step, quiescent
stem cells enter the cell cycle with probability ω, while cycling cells in G1 become
quiescent with probability α. Quiescent stem cells that remain quiescent during
a time step increase their affinity by a factor of r, up to a maximum value of
amax. Cycling stem cells that continue to cycle decrease their affinity by a factor
of d. (2) Cycling stem cells progress through G1, S, G2, and M. The cell cycle
counter c(t) ∈ {0, 1, ..., 48} indicates the cell’s phase in the cell cycle. Stem cells
enter the cell cycle at hour c(t) = 32. At hour c(t) = 48, the cell divides, and
its daughter cells reset their cell cycle counters to c(t) = 0. (3) A cycling stem
cell whose affinity reaches amin differentiates into a precursor cell, which lives
for 20 days and divides once per day. (4) In the last division, precursor cells
differentiate into mature cells, which do not divide and die after 8 days.

cell cycle. After the cell divides (c(t) = 48), each daughter cell reenters G1 (c(t) = 0) and

becomes an uncommitted cycling cell that may transition to quiescence. Quiescent cells that

enter the cell cycle have their cell cycle counter initialized to c(t) = 32, which means that

they commit to at least one division. Stem cells that reach affinity a(t) = amin differentiate

into precursor cells. Precursors (P ) live for a fixed amount of time and undergo a fixed

number of divisions. They then differentiate into mature cells (M), which do not divide and

die after a fixed amount of time. Figure 2.3 summarizes the Roeder model.

Both healthy (Ph-) and cancer cells (Ph+) cells differentiate through the maturity
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stages discussed above. Ph- cells and Ph+ cells compete at the stem cell level through the

functions fω and fα, whose inputs are the total number of cycling cells and quiescent cells,

respectively. Ph+ cells differ from Ph- cells in their transition functions fω and fα. It is

assumed that Ph+ stem cells are more likely to transition between quiescence and cycling

and that the probability of a quiescent Ph+ stem cell transitioning to cycling is only slightly

affected by the current number of cycling stem cells. Cancer genesis is characterized by a

long latency period of 5 to 7 years, in which Ph+ and Ph- populations coexist. Without

treatment, Ph+ cells are eventually able to out-compete Ph- cells and take over the system.

Treatment with IM is assumed to have two effects on Ph+ stem cells while not directly

affecting Ph- cells. First, all cycling Ph+ stem cells are killed at a rate rdeg. In addition,

all cycling Ph+ stem cells become IM-affected with probability rinh. Once a Ph+ stem cell

becomes IM-affected, its transition function fω is decreased significantly, making it much

less likely for quiescent Ph+ stem cells to enter the cell cycle. Note that there is no direct

action of IM on quiescent Ph+ stem cells.

The effect of the treatment is evaluated by monitoring levels of BCR-ABL fusion tran-

script in the blood. These levels are reported relative to an endogenous control transcript,

BCR or ABL, in order to normalize the BCR-ABL measurements. This relative value, known

as the BCR-ABL ratio, is estimated in [85] by

BCR-ABL ratio =
100× (# of mature Ph+ cells)

2× (# of mature Ph- cells) + (# of mature Ph+ cells)
. (2.8)

The contributions of stem cells and precursors to this ratio are negligible because these

populations are small relative to the mature cells, and the mature cells are the dominant

population in the blood. In each healthy Ph- cell, there are two copies of the control gene,
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while Ph+ cells are assumed to possess one copy of the BCR-ABL fusion gene and one copy

of the control gene. Thus, BCR-ABL transcript levels should be proportional to the number

of mature Ph+ cells, while the control transcript levels should be proportional to twice the

number of mature Ph- cells plus the number of mature Ph+ cells. This quantity is multiplied

by 100 so that it represents a percentage.

In simulations, treatment leads to a biphasic exponential decline in BCR-ABL levels,

with a rapid first decline followed by a slower second decline. However, small populations of

Ph+ cells persist over many years of treatment, and cessation of treatment generally leads

to a rapid relapse.

The Roeder model is later applied to study the combination of TKIs and IFNα [30].

In their modeling framework, IFNα is assumed to stimulate quiescent cancer cells to enter

the cell cycle, where they are more likely to be affected by IM. It is shown that pulsed IFNα

with continuous IM is nearly as effective as administering both drugs continuously, but with

significantly less toxicity. Moreover, since the initial response to IM alone is very strong, the

authors suggest that pulsed IFNα should be started after 9-12 months of IM-only therapy.

Simulations of this combination therapy suggest that the addition of IFNα may reduce the

time to CML eradication from 25 years with IM alone down to as few as three years.

Using patient-specific data, the Roeder model is used in [36] to determine which pa-

tients can be safely taken off IM without relapsing. The slopes of each patient’s biphasic

decline are used to estimate the parameters rdeg and fω (which is constant for leukemic cells

during treatment). Treatment cessation is then simulated in order to determine whether a

patient would relapse or remain in remission. Their model predicts that 14% of patients

will be cured after 15 years of therapy while an additional 16% will remain in TFR for at
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least two years despite harboring residual leukemic populations. The authors provide model-

based and model-independent criteria for selecting the best treatment cessation candidates.

Together with other clinical markers, their criteria may be used to improve the number of

patients who achieve TFR.
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Chapter 3: Incorporating Asymmetric Stem Cell Division into the Roeder

Model

3.1 Overview

In this chapter, we propose several modifications to the Roeder model [85] (described

in Section 2.3.3), in order to construct a model that more closely represents hematopoiesis.

Specifically, we incorporate asymmetric division of stem cells and precursors, allow precursors

to live a variable amount of time before maturing, and introduce feedback inhibition from

mature cells to stem cells and precursors. These modifications result in more accurate

simulations of cancer genesis and treatment. We begin by presenting a reduction of the

Roeder model to a system of difference equations. Then, we discuss the additional biological

details that we incorporate into the model, which we then incorporate into the system of

difference equations. Lastly, we present results of numerical simulations and discuss the

implications of our findings. The content of the remainder of this chapter was previously

published in [19].
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3.2 Reducing the Agent-Based Model to a System of Difference Equations

Although the Roeder model has the advantage of being able to capture the dynamics

of cell-cell interactions, simulations with a realistic number of agents is computationally very

expensive. In the simulations in [85], the number of cells is down-scaled to 1/10 of normal

patient values, resulting in approximately 105 stem cells. Even with this reduction in the

number of agents, a simulation of 20 years requires approximately 175,000 steps for each of

the 105 agents (Precursors and mature cells can be represented as populations, so the total

number of agents is the total number of stem cells.) To address this limitation, the Roeder

model is reduced to a system of PDEs in [42] and [84] and a system of difference equations

in [44]. In this section we follow [44] and provide a brief summary of the system of difference

equations. A modified version of this system is used for the numerical simulations that we

present in Section 3.4.

In order to decrease the number of variables, Kim et al. [44] discretize the affinity state

space. In [85], d = 1.05 and r = 1.1, so log(d) = ρ = 0.0488 ≈ log(r)/2. By setting d = eρ

and r = e2ρ, any cell whose initial affinity is of the form a(t) = e−kρ for an integer k will

continue to have this form. Since 0.002 ≤ a(t) ≤ 1, k is restricted to 0 ≤ k ≤ 127. Because

of the negative in the exponent, the maximum affinity corresponds to the minimum k value,

and the minimum affinity corresponds to the maximum k value. More importantly, though,

with these new values of r and d, it is no longer necessary to track individual agents. Rather,

we can group stem cells into populations whose affinity a(t) = e−kρ, for each of the finitely

many k values.
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Define Ak(t) and Ωk,c(t) as follows:

Ak(t) = Number of cells in A at time t with log a(t) = −kρ (3.1)

Gk,c(t) = Number of cells in Ω at time t with log a(t) = −kρ and c(t) = c (3.2)

As mentioned earlier, k ∈ {0, ..., 127}, and c ∈ {0, ..., 48}. Given this discretization, the

Roeder model is represented by the following system of difference equations:

Ak(t+ 1) =


(A0(t)−B0(t)) + (A1(t)−B1(t)) + (A2(t)−B2(t)), k = 0

(Ak+2(t)−Bk+2(t)) +
∑31

c=0Ψk,c(t), k = 1 . . . 125∑31
c=0Ψk,c(t), k = 126, 127

(3.3)

Ωk,c(t+ 1) =



B0(t), k = 0, c = 32

2Ωk−1,48(t), k > 0, c = 0

Ωk−1,c−1(t)−Ψk−1,c−1(t), k > 0, c = 1, . . . , 31

(Ωk−1,31(t)−Ψk−1,31(t)) + Bk(t), k > 0, c = 32

Ωk−1,c−1(t), k > 0, c = 33, . . . , 48

0 otherwise

(3.4)

The terms Bk represents the number of cells that leave Ak and enter the cycling compartment

Ωk,32. Ψk,c is the number of cells that leave Ωk,c and enter the quiescent compartment Ak.

These terms are defined by

Bk(t) ∼ Bin
(
Ak(t), ω(Ω(t), e

−kρ)
)
, (3.5)

Ψk,c(t) ∼ Bin
(
Ωk,c(t), α(A(t), e

−kρ)
)
, c = 0, ..., 31, (3.6)

where, Ω(t) =
∑

k,c Ωk,c(t) and A(t) =
∑

k Ak(t) are the total number of cycling and qui-

escent stem cells, and the functions ω and α are defined in Equations (2.4) and (2.5). In
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our simulations, we replace these stochastic variables with their expected value and allow

populations to be continuous variables.

At each time step, a quiescent cell may remain quiescent or enter the cell cycle. Cells

that remain quiescent increase their affinity by a factor of r, which translates to a decrease

in k by two. Equation (3.3) describes the number of quiescent cells in each compartment, at

time t + 1. The first line (k = 0) represents the number of cells entering A0, namely those

cells previously in A0, A1, or A2, that remain quiescent. In the second line (k = 1, ..., 125),

cells previously in Ak+2 that remain quiescent enter Ak. The summation term is the number

of cycling cells in Ωk,c that become quiescent. The sum is over c ∈ {0, ..., 31} because only

cells in G1 can become quiescent. Lastly, when k = 126 or k = 127, there are no quiescent

cells with k > 127 to feed these compartments. Therefore, the only cells entering these

compartment are cycling cells that become quiescent.

On the other hand, cycling cells that continue to cycle decrease their affinity by a

factor of d, which translates to an increase in k by one. At each step, the cell cycle counter

also increases by one. The cycling cells are described by Equation (3.4). The first line

(k = 0, c = 32) represents cells that have maximum affinity who are entering the S phase of

the cell cycle. Since there are no cycling cells with greater affinity, the only cells entering

this compartment are quiescent cells that have just entered the cell cycle. The second line

(k > 0, c = 0) represents cells that have just completed the cell cycle. The constant 2

represents division into two daughter cells, whose cell cycle counters are reset to c(t) = 0.

The third line (k > 0, c = 1, ..., 31) represents cycling cells in the G1 phase. The right hand

side is the number of cycling cells in the (k − 1)st compartment that continue to cycle. The

beginning of the S phase, marked by c(t) = 32, is where transitioning quiescent cells enter
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the cell cycle. The fourth line (k > 0, c = 32) is similar to the third, with an additional term

for the quiescent cells that begin cycling. The fifth line (k > 0, c = 33, ..., 48) represents cells

in S, G2, and M. Because these cells have committed to division, they all progress to the

next step in the cell cycle and increase their k value by one, until division. All other cycling

cell compartments are zero at all times.

When a cycling cell’s affinity reaches its minimum, corresponding to k taking its maxi-

mum value of 127, the cell differentiates into a precursor cell. The precursor cell divides once

per day for twenty days (480 hours). Upon the last division, both daughter cells differentiate

into mature cells, which live for another eight days without dividing, and then die. The

equations for these compartments are

Pj(t+ 1) =



∑48
c=0Ω127,c(t)−

∑31
c=0Ψ127,c(t), j = 0

2Pj−1(t), j = 24, 48, 72, ..., 456

Pj−1(t), otherwise

(3.7)

Mj(t+ 1) =


2P479(t), j = 0

Mj−1(t), otherwise

(3.8)

Here, Pj(t) is the number of cells that have been precursors for j hours, where j ∈ {0, ..., 479}.

Mj(t) is the number of cells that have been mature for j hours, where j ∈ {0, ..., 191}. In

Equation (3.7), the first line on the right hand side represents cycling stem cells that reach

minimum affinity (k = 127), continue to cycle, and become precursors. The second line

accounts for the division of precursor cells, which occurs every 24 hours. For all other

values of j, cells increase their age j by one per time step. In Equation (3.8), precursor

cells completing their final division become mature, which is the first line. The second line

represents the fact that mature cells continue to age without dividing.
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As in the Roeder model, cancer genesis is simulated by initializing a single Ph+ stem

cell into the Ph- cell steady state. Both populations are described by the system of difference

equations (Equations (3.3), (3.4), (3.7), (3.8)). The two populations compete at the stem

cell level and differ in their transition functions fω and fα.

In simulating treatment, we divide the Ph+ population into two categories: those

that are not affected by IM, which we denote Ph+/R, and those that are, which we denote

Ph+/I. These two Ph+ populations differ in their transition function fω, with the Ph+/I

stem cells being much less likely to transition from quiescence to cycling. At the beginning of

treatment, all Ph+ cells are not IM-affected. The effects of treatment are assumed to occur

at the beginning of every time step. For each k and c, let Ω
+/R
k,c (t) be the number of cycling

Ph+/R cells, and let Ω
+/I
k,c (t) be the number of Ph+/I cells. Each cell in Ω

+/R
k,c will become

IM-affected with probability rinh. The number of cells in Ω
+/R
k,c that becomes IM-affected at

that time step is given by Ω
+/I,new
k,c (t) ∼ Bin(Ω

+/R
k,c (t), rinh). We set

Ω
+/R
k,c (t) := Ω

+/R
k,c (t)− Ω

+/I,new
k,c (t), (3.9)

Ω
+/I
k,c (t) := Ω

+/I
k,c (t) + Ω

+/I,new
k,c (t). (3.10)

We additionally assume that all cycling Ph+ cells will apoptose with probability rdeg.

We therefore remove these cells from the Ph+ populations at the beginning of each time step,

by subtracting them from Equations (3.9) and (3.10). In our simulations, we choose to make

the effects of IM deterministic by setting the number of cells that become IM-affected and

apoptose to the expected values rather than taking them from their binomial distributions.

Once the values of Ωk,c(t) are updated, all three populations (Ph-, Ph+/R, Ph-/I) evolve

following Equations (3.3), (3.4), (3.7), and (3.8).
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Figure 3.1: A diagram of the modified Roeder model. (1) Stem cell transitions
between quiescence and the cell cycle are unchanged. The affinity variable is
updated in the same way as in the original model. (2) Cycling stem cells progress
through G1, S, G2, and M. Stem cells enter the cell cycle at hour c(t) = 32. (3)
At hour c(t) = 48, the cell divides, and each daughter cell will remain a stem cell
with probability aSTC(t) and will differentiate into a precursor with probability
1 − aSTC(t). Precursor cells symmetrically renew ten times. For all subsequent
divisions, up to a total of thirty divisions, the daughter cells will remain precursors
with probability aP (t) and will differentiate into mature cells with probability
1− aP (t). (4) On the last division, both precursor cells differentiate into mature
cells. Mature cells provide feedback, marked by dashed lines, that affects the
renewal fractions aSTC(t) and aP (t) of the stem and precursor cells. After 8
days, mature cells die.

3.3 Modifications to the Roeder Model

In this section we propose several modifications to the Roeder model [85]. Our model

is summarized in Figure 3.1. First, we consider three types of stem cell division:

1. Asymmetric division, in which one daughter cell remains a stem cell and the other

differentiates into a precursor cell

2. Symmetric differentiation, in which both daughter cells differentiate into precursors
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3. Symmetric renewal, in which both daughter cells remain stem cells.

In the Roeder model, all dividing stem cells symmetrically renew. Differentiation into

precursor cells is not tied to a division event, and stem cells whose affinity reaches amin

instantaneously transform into precursor cells. Thus, the affinity variable controls both cell

cycle transitions and differentiation.

By incorporating these three types of cell division, each with probability a′, b′, and c′,

where a′+b′+c′ = 1, we provide a mechanism for differentiation that is independent of affinity,

while still allowing a cell’s affinity to control transitions between quiescence and cycling.

Several other modeling groups have represented differentiation in this way, including [61]

and [100]. Moreover, in [100], it is suggested that cancer stem cells tend to symmetrically

renew, while healthy stem cells tend to divide asymmetrically. By associating differentiation

with a cell division, it becomes possible to implement this hypothesis in the model.

Secondly, we allow precursor cells to divide a variable number of times before they

differentiate into mature cells. To implement this, we allow precursors to go through the

same three types of divisions as stem cells. Precursors can divide between 10 and 30 times

before differentiating into mature cells. This range is centered around 20 divisions, which

is assumed for all precursor cells in [85]. The lower bound to the number of divisions

enforces a minimum number of divisions before maturation, and the upper bound prevents

any precursor cells from living forever.

Lastly, it is known that hematopoiesis is a very closely regulated process that is affected

by many different signals and cytokines [64]. For instance, G-CSF is known to play a

significant role in granulopoiesis [64,79]. Motivated by [61], we implement feedback inhibition
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from mature cells that affects less mature cells (precursors and stem cells). Consider a

cytokine S(t) that is produced at a constant rate α, degraded at a constant rate d, and is

consumed by mature cells at a rate β. Then

dS

dt
= α− dS − βSM, (3.11)

where M(t) is the number of mature cells. Since the cytokine dynamics occur on a faster

time scale than cell division, we may assume that the cytokine exists at its quasi-steady

state, which when scaled to s(t) ∈ [0, 1], is

s(t) =
1

1 + kM(t)
, (3.12)

where s = dS/α and k = β/d. We define the renewal fraction a of the stem cell population

as

a =
a′

2
+ c′. (3.13)

This quantity represents the probability that a daughter cell of a stem cell will also

be a stem cell. In [61], feedback inhibition affects proliferation rates, renewal fractions, or

both, in the less mature compartments. It is found that regulation of self-renewal fractions is

essential for the system to be able to recover from events such as chemotherapy that deplete

the mature blood cell population. Therefore, we choose to focus on feedback inhibition that

affects renewal fractions aSTC and aP of stem cells and precursors by defining

aSTC(t) =
aSTC,max

1 + kM(t)
, (3.14)

aP (t) =
aP,max

1 + kM(t)
. (3.15)
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Here, aSTC,max and aP,max define the maximum renewal fractions of the stem cell and pre-

cursors, respectively. As M(t) becomes smaller, the renewal fractions of both stem cells and

precursors increases, in order to expand both pools, which ultimately leads to an increase in

mature cells.

We incorporate these changes into the system of difference equations defined by Equa-

tions (3.3), (3.4), (3.7), and (3.8). These changes do not change the form of Equation (3.3).

Line 2 in Equation (3.4) is replaced by

Ωk,c(t+ 1) = 2aSTC(t)Ωk−1,48(t), 0 < k < 127, c = 0, (3.16)

in order to incorporate asymmetric division of stem cells. Each of the two daughter cells of

the dividing stem cell will remain a stem cell with probability aSTC(t). Note that instead

of choosing the number of daughter stem cells from a binomial distribution, we use the

expected value. All other lines in Equation (3.4) are unchanged, for 0 ≤ k < 127. However,

when k = 127, we must account for the fact that cycling cells with minimum affinity are no

longer differentiating into precursors but instead remain stem cells. Thus, when k = 127, we

replace Equation (3.4) with

Ω127,c(t+ 1) =



2aSTC(t)(Ω126,48(t) + Ω127,48(t)), c = 0∑127
k=126Ωk,c−1(t)−Ψk,c−1(t), c = 1 . . . 31∑127
k=126(Ωk,31(t)−Ψk,31(t)) +Bk(t), c = 32

Ω126,c−1(t) + Ω127,c−1(t), c = 33, . . . , 48

(3.17)
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The precursor cells are described by

Pj(t+ 1) =



2(1− aSTC(t))
∑

k Ωk,48(t), j = 0

2Pj−1(t), j = 24, 48, 72, ..., 240

2aP (t)Pj−1(t), j = 264, 288, 312, ..., 696

Pj−1(t), otherwise

(3.18)

Since the precursors can now live for up to 30 days, j = 0, ..., 719. Line 1 in Equation (3.18)

represents new precursor cells. Stem cells differentiate into precursors during cell divisions,

each of which produces two daughter cells. Each daughter cell will become a precursor with

probability 1− aSTC(t). All progenitor cells divide every 24 hours. The first 10 divisions are

symmetric renewals, which is represented by line 2 in Equation (3.18). For each subsequent

division, up to a total of 30 divisions, daughter cells will remain precursors with probability

aP (t). For all other times, precursor cells age by one hour.

The mature cells are described by

Mj(t+ 1) =


2P719(t) + 2(1− aP (t))

∑29
d=11 P24d−1(t), j = 0

Mj−1(t), otherwise

(3.19)

The only difference from Equation (3.8) is when j = 0. This line represents the source

of mature cells. The first term of line 1 of Equation (3.19) represents precursors who are

completing their 30th division and must undergo symmetric differentiation. The second

term represents the contributions of all precursors who are completing their dth division,

where d = 11, ..., 29. For these divisions, each of the two daughter cells differentiates with

probability 1 − aP (t). We use this modified system of difference equations to produce the

simulations that are discussed in Section 3.4.
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3.4 Numerical Results

For our simulations, we use the system of difference equations in [44], modified to

incorporate the changes discussed in Section 3.3. For all parameters that are present in the

original Roeder model, we choose the same values given in [85]. In order to allow the stem

cell compartment to grow or shrink, we must set aSTC,max > 0.5. We choose aSTC,max = 0.52

and aP,max = 0.51. In determining the value of k, we observe that at steady state, the total

number of stem cells should be constant. In this model, this occurs when the renewal fraction

of the stem cells aSTC(t) = 0.5. Thus, if we want a steady-state solution with M(t) = M ′,

then we should choose

k =
2aSTC,max − 1

M ′ . (3.20)

We set M ′ = 6.8246 · 1010 cells, which is the mature healthy cell steady state value in [44]

and apply Equation (3.20) to determine k.

Using these parameters, numerical simulations of healthy cells produce a shift in the

stem cell population toward their cycling state, when compared to the simulations in [44]

and [85]. This shift had to be addressed since it is known that the stem cells tend to be

quiescent [5]. In order to restore the quiescent stem cell population, we reduce the function

fω by a factor of 10, in comparison to the function used in the original Roeder model. In

other words, we reduce the probability that a quiescent stem cell will enter the cell cycle.

This modification restores the balance of stem cells, with 91% in quiescence at steady state.

The parameters, including this modification of fω, are given in Table 3.1.

In implementing carcinogenesis, as in [85], we introduce a single Ph+ stem cell into

the healthy cell population at its steady state. As mentioned previously, in [85], Ph- and

44



Parameter Description Ph- Ph+/R, Ph+/I
amin Minimum value of affinity a 0.002 0.002
amax Maximum value of affinity a 1.0 1.0
ρ Affinity factor 0.0488 0.0488
d Differentiation coefficient eρ eρ

r Regeneration coefficient e2ρ e2ρ

τc Cell cycle duration 49 hours 49 hours
τS Duration of S phase 8 hours 8 hours
τG2/M Duration of G2 and M phases 8 hours 8 hours

λp
Lifespan of proliferating
precursor cells

10-30 days 10-30 days

λm Lifespan of mature cells 8 days 8 days

τ̃c
Cell cycle of proliferating
precursors

24 hours 24 hours

fα(0) Transition characteristic for fα 0.5 1.0
fα(Nα/2) Transition characteristic for fα 0.45 0.9
fα(Nα) Transition characteristic for fα 0.05 0.058
fα(∞) Transition characteristic for fα 0.0 0.0
Nα Scaling factor 105 105

fω(0) Transition characteristic for fω 0.05 0.1, 0.00500
fω(Nω/2) Transition characteristic for fω 0.03 0.099, 0.00499
fω(Nω) Transition characteristic for fω 0.01 0.098, 0.00498
fω(∞) Transition characteristic for fω 0.0 0.096, 0.00496
Nω Scaling factor 105 105

aSTC,max
The maximum renewal fraction
of stem cells

0.52 0.52

aP,max
The maximum renewal fraction
of precursors

0.51 0.51

M ′ The steady state number of
mature cells

6.8246 · 1010 1.36492 · 1010

Table 3.1: Parameters for the simulations in Section 3.4. We replace the constant lifespan
λp = 20 days of precursors with a range of 10-30 days. Additionally, all parameters related to
fω are decreased by a factor of 10 compared with the values in [44], to restore the population
of quiescent stem cells. For all other parameters included in the original Roeder model,
we choose the same values given in [44]. The last three parameters arise because of our
modifications to the model. The parameter M ′ is used in Equation (3.20) to determine the
value of k.

45



0 5 10 15 20
0

2

4

6

8

10

12

14
x 10

10

Time (years)

N
um

be
r 

of
 c

el
ls

 

 

Ph−
Ph+

Figure 3.2: A simulation of cancer genesis. The solid line represents mature Ph-
cells, and the dashed line represents mature Ph+ cells.

Ph+ cells compete at the stem cell level. They differ in their transition functions fω and

fα. We decrease fω for both populations by a factor of 10, in order to maintain the same

relative difference between these functions for the Ph- and Ph+ cells. We additionally

assume that Ph- and Ph+ stem cells compete for cytokine, which is consumed by the mature

cells of both populations. We choose a smaller value of k for the Ph+ population, which

represents cancer’s decreased sensitivity to environmental signals. Specifically, we set kcancer

= khealthy/2.

Figure 3.2 shows a simulation of cancer genesis for the parameters values described

above. The simulation shows a long latency time during which Ph- (solid) and Ph+ (dashed)

cells coexist. The Ph+ population becomes greater than the Ph- population between years

5 and 6. These simulations show similar behavior to the simulations of cancer genesis in [44]
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and [85].

A simulation of a treatment is shown in Figure 3.3. The initial conditions are taken from

the end of the cancer simulation in Figure 3.2. The number of quiescent stem cells, number

of mature cells, and BCR-ABL ratio are displayed as functions of time. In comparison with

results from [44,85], we observe a much slower decline in the BCR-ABL ratio and the number

of cancer cells during treatment. This difference can be understood by considering the Ph+

stem cells. First, recall that quiescent Ph+ stem cells are assumed to be unaffected by IM.

These cells are only affected by IM if they enter the cell cycle. Thus, a decrease in the

transition rate of stem cells from quiescence to cycling results in quiescent Ph+ stem cells

that will remain quiescent for longer periods of time, during which they will remain protected

from IM. Figure 3.3(a) illustrates this phenomenon, as the number of quiescent Ph+ stem

cells decreases by less than one order and remains above 104, after 20 years of treatment.

As a result, the number of mature Ph+ cells, shown in Figure 3.3(b), remains above 107.

The BCR-ABL ratio, shown in Figure 3.3(c), decreases by about 3.5 orders. The simulated

patient achieves a MMR, or a 3-log decrease in BCR-ABL ratio, at year 4. However, MMR4

(a 4-log decrease in BCR-ABL ratio) and MMR5 (a 5-log decrease) are not achieved.

We consider varying the two treatment parameters, rdeg and rinh, in order to simulate

patients that achieve MMR4 and MMR5. We find that increasing rdeg, the rate at which IM

kills cycling Ph+ stem cells, results in an increase in the rate at which cancer is cleared, as

illustrated in Figure 3.4. By increasing rdeg, our simulated patient achieves MMR4 (rdeg =

0.066 hour−1) and MMR5 (rdeg = 0.132 hour−1).

On the other hand, rinh has a non-monotonic relationship with the rate of cancer

clearance. The parameter rinh describes the rate at which cycling Ph+ stem cells become IM-
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Figure 3.3: A simulation of treatment. (a) Quiescent stem cells. (b) Mature
cells. (c) BCR-ABL ratio. In Figures (a) and (b) Ph- cells are represented by
a solid line, Ph+ cells that are not affected by IM are represented by a dashed
line, and Ph+ cells that are affected by IM are represented by a dotted line.
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Figure 3.4: BCR-ABL ratio is plotted during treatment, for three different values
of rdeg: 0.033 hour−1 (solid), 0.066 hour−1(dashed), and 0.132 hour−1 (dotted).
As rdeg increases, the BCR-ABL ratio declines more rapidly. For all three simu-
lations, rinh = 0.05 hour−1.
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Figure 3.5: Number of quiescent Ph+ stem cells and BCR-ABL ratio dur-
ing treatment, for three different values of rinh: 0 hour−1 (solid), 0.05 hour−1

(dashed), 0.1 hour−1 (dotted). (a) Quiescent Ph+ stem cells. (b) BCR-ABL ra-
tio. Initially, a higher value of rinh leads to faster cancer clearance, but later the
lower values of rinh become more favorable. For all three simulations, rdeg = 0.033
hour−1.

affected, meaning they become less likely to enter the cell cycle. Decreasing the transitions

of quiescent Ph+ stem cells to cycling has two contrasting effects. On one hand, Ph+ stem

cells are prevented from cycling, limiting the number of mature Ph+ cells. On the other

hand, these quiescent Ph+ stem cells cannot be eliminated from the stem cell population,

as IM does not kill non-cycling Ph+ stem cells.

For large rinh, the Ph+ population rapidly shifts toward these decreased transition

rates. As a result, initially the simulations show a sharper decline in mature Ph+ cells,

compared to simulations with smaller rinh values. However, Ph+ stem cells with IM-affected

transition rates remain quiescent for longer periods of time and are protected from the

degradation effect of IM. Eventually, the number of mature Ph+ cells for rinh large becomes

greater than the number of mature Ph+ cells for rinh smaller. Figure 3.5(b) shows the effects
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of treatment on mature Ph+ cells over time, for different values of rinh.

Figure 3.5(a) shows the number of quiescent Ph+ stem cells over time for different

values of rinh. Here, the relationship is more straight-forward. As rinh increases, Ph+ stem

cells become IM-affected more rapidly, and as a result, the number of quiescent Ph+ stem

cells increases.

3.5 Discussion of Modified Roeder Model Results

In this chapter we modified the Roeder model [85] by adding more biological detail.

Specifically, we incorporate asymmetric division of stem cells and precursors, allow precur-

sors to live for a variable amount of time before maturing, and add feedback inhibition

from mature cells that affects stem cells and precursors. A more accurate representation of

hematopoiesis can lead to more realistic simulations of CML genesis and treatment.

Parametrization of our model suggests that healthy stem cells transition between the

quiescent and proliferating compartments at rates that are lower than the rates obtained in

the original Roeder model. In the Roeder model, at healthy steady state, approximately 1

quiescent stem cell enters the cell cycle per 1000 quiescent stem cells per time step. Thus,

quiescent cells enter the cell cycle, on average, once per 1.4 months. In contrast, in our

simulations, 1 quiescent stem cell enters the cell cycle per 10,000 cells, which translates to

quiescent cells entering the cell cycle, on average, once every 14 months. This lower rate of

entry into the cell cycle by stem cells is supported by [56] and [90].

Lower stem cell transition rates have a significant effect on the results of IM therapy.

In our model, we assume that IM only affects cycling Ph+ cells. By decreasing the transition
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rates of Ph+ stem cells, quiescent Ph+ stem cells can better evade the effects of IM during

treatment. During 20 years of simulated treatment, we see an initial phase of a few months

when IM kills most cycling Ph+ stem cells. Once the cycling Ph+ population is depleted, the

majority of the remaining Ph+ stem cell population is quiescent and is therefore protected

from IM. What follows is a very slow decline in the number of quiescent Ph+ cells over time,

since only a few of these cells enter the cell cycle every hour. Our treatment simulations

indicate a much larger residual cancer population than those in [85]. These results suggest

that IM alone, acting through the implemented mechanisms, can never fully eradicate the

cancer population.

The Stop Imatinib trial [60] sought to determine whether patients who responded well

to IM therapy could be safely taken off treatment without relapsing. They found that while

61% of patients relapsed, 39% remained in remission for the duration of the two-year study.

It is possible that some of the patients in sustained remission had no Ph+ cells remaining

when they stopped IM. If this is the case, it may imply that there is an additional action

of IM that is not included in the model. Alternatively, patients that remain in sustained

remission after stopping IM may still harbor small populations of Ph+ cells. Remaining in

remission after stopping IM would then require some other mechanism (e.g. the immune

response) to control the Ph+ population and prevent it from expanding.

Still, the fact that many patients do relapse after being taken off IM motivates studying

methods by which IM therapy can be improved. Our results suggest that IM therapy may

greatly benefit from quiescent Ph+ stem cell activation. IFNα has been shown to activate

quiescent stem cells [28] and is therefore a strong candidate for combination therapy. A

detailed analysis of immunotherapy in this context is left for a future study.
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Chapter 4: The Role of the Autologous Immune System During Imatinib

Therapy

The majority of this chapter is taken from [17] and [18].

While TKIs have transformed chronic phase (CP) CML into a long-term survivable

and manageable condition, these drugs are not curative in the majority of cases. As a result,

patients need to continue therapy indefinitely, a requirement that is both expensive and

impairs their quality of life. Further study of the underlying mechanisms of action of TKIs

will elucidate whether this limitation is the result of a suboptimal therapy schedule (that is,

if changes in the timing and dosage might actually result in a curative therapy), or whether

TKIs alone are simply insufficient and combination therapy is necessary. Mathematical

modeling is a valuable and complementary tool to clinical data that can be used both to

investigate existing therapeutic strategies and to propose novel combinations.

Several mathematical modeling groups have studied various aspects of CML and TKI

therapy (see Chapter 2). Both Michor et al. [65] and Roeder et al. [85] observed that at the

beginning of IM therapy, leukemic loads exhibit an initial sharp exponential decline, followed

by a second, slower exponential decline. While Michor et al. argued that the biphasic

exponential decline is the result of decreased proliferative capacities of leukemic progenitors

and differentiated cells, Roeder et al. hypothesized that IM affects cycling leukemic stem
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cells while having no direct effect on quiescent cells.

Although both modeling frameworks capture some characteristic initial responses to

therapy, they do not include mechanisms that allow oscillations in the BCR-ABL/ABL ratio

to develop. While some patients’ leukemic loads continue to monotonically decline, resulting

in a triphasic exponential decline [98], our patient data indicates that the leukemic loads

of many responding patients exhibit fluctuations. These fluctuations do not necessarily

indicate relapse but appear to be an integral part of the response to TKI therapy. The

inability of these modeling frameworks to reproduce these fluctuations suggests that an

additional mechanism, not included in either model, plays a significant role in the dynamics

of TKI therapy. In order to address this limitation, we construct a mathematical model that

integrates CML and the autologous immune response.

4.1 Our Model of CML and the Autologous Immune System

We develop an ODE model of CML and the immune system, to study the dynamics

of IM therapy. Specifically, we seek to understand patients whose BCR-ABL ratios vary

non-monotonically during therapy.

Let y0, y1, and y2, and y3 represent the concentrations of quiescent leukemic stem

cells, cycling leukemic stem cells, progenitor leukemic cells, and mature leukemic cells. Let
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Figure 4.1: Mathematical model including the intervention of the autologous im-
mune system. In our model of CML and the immune response, we divide leukemic
cells into quiescent stem cells (y0), cycling stem cells (y1), and progenitors (y2),
and mature cells (y3). Stem cells transition between quiescence and cycling, and
some cycling stem cells differentiate into progenitors cells, which can further dif-
ferentiate into mature cells. Leukemic cells can die naturally at rates di or as
a result of an interaction with immune cells (z). Immune cells are supposed in
this disease to be supplied at a constant rate sz and to die at a rate dz. They
can also be stimulated by leukemic cells to divide to produce more immune cells.
Large leukemic populations are able to suppress the autologous immune system,
by limiting immune cell expansion and limiting immune effector cells’ ability to
kill cancer cells.
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z denote the concentration of immune cells. We consider the following system of ODEs.

ẏ0 = b1y1 − a0y0 −
µy0z

1 + ϵy23
, (4.1a)

ẏ1 = a0y0 − b1y1 + ry1(1−
y1
K

)− d1y1 −
µy1z

1 + ϵy23
, (4.1b)

ẏ2 =
a1
inh1

y1 − d2y2 −
µy2z

1 + ϵy23
, (4.1c)

ẏ3 =
a2
inh2

y2 − d3y3 −
µy3z

1 + ϵy23
, (4.1d)

ż = sz − dzz +
αy3z

1 + ϵy23
. (4.1e)

In Equations (4.1a) and (4.1b), a0 and b1 represent the transition rates of leukemic stem cells

from quiescence to cycling and cycling to quiescence, respectively. We assume logistic growth

of cycling stem cells, with growth rate r and carrying capacity K. Cycling stem cells die

naturally at a rate d1. In Equation (4.1c), the first term represents the differentiation of stem

cells into progenitors. The coefficient a1 is the product of the differentiation rate and the

amplification factor upon differentiation due to cell proliferation. Progenitors die naturally

at a rate d2. Equation (4.1d) is similar to Equation (4.1c), with differentiation rate a2 and

death rate d3. The last terms in Equations (4.1a)-(4.1d) represent the death of leukemic cells

caused by an immune response. The mass action term µyiz represents the killing of leukemic

cells by the immune system, where µ is the maximal rate (per immune cell) at which an

immune cell will engage and kill a leukemic cell. Equation (4.1e) represents the concentration

of autologous immune cells. The first term sz is a constant source term. Immune cells die

at a rate dz. The mass action term αy3z represents the expansion (proliferation) of the

immune cell pool in response to its leukemia stimulus, which occurs with maximal rate

per leukemic cell α. We include only the contributions of the mature leukemic cells y3 to

immune stimulation since they are a much larger population than the immature leukemic
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cells (ytotal ≈ y3).

Our model is based on the assumption that immunosuppression acts in two ways. First,

mature leukemic cells inhibit the expansion of immune cells. In Equation (4.1e), the immune

cell expansion term αy3z is divided by 1+ ϵy23, where the constant ϵ determines the strength

of the immunosuppression. Second, mature leukemic cells are assumed to decrease the killing

capacity µ of activated immune cells, also by a factor of 1+ ϵy23. This effect is represented in

the last terms in Equations (4.1a)-(4.1d). This approach is similar to the one used in [43].

By implementing immunosuppression in this way, we encode an autologous immune response

that is effective only with intermediate levels of leukemic cells. When the leukemic load is

small, only a small number of immune cells is stimulated to respond. On the other hand,

although large leukemic loads provide a stronger stimulus, the leukemic cells are able to

suppress the efficacy of the immune system. Thus, the immune response will be negligible

when the leukemic load is either very small, at levels undetectable by the immune system,

or very large, at levels that overwhelm and suppress the immune system. A strong immune

response can occur only when the leukemic load y3 is at an intermediate level, within a range

[ymin, ymax] that we call the immune window. In our model, we define the immune window

as the range of y3 for which the rate of immune stimulation αy3
1+ϵy23

exceeds the death rate dz.

IM therapy may be used to drive the leukemic load into this immune window, allowing the

autologous immune system to assist the drug in the elimination of the leukemic cells. Our

model is summarized in Figure 4.1.

IM is known to block the kinase activity of the BCR-ABL protein, which results in

a significant decrease in the proliferation rates of the BCR-ABL+ leukemic cells [4, 41] and

apoptotic death [24]. However, we focus here on the effects of IM on proliferation and leave
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incorporation of other mechanisms to a future work. We implement IM therapy, starting at

time t = 0, by decreasing the differentiation/amplification rates a1 and a2 to lower values

a′1 = a1
inh1

and a′2 = a2
inh2

. It is unknown how IM affect leukemic stem cells and whether

quiescent leukemic stem cells are affected at all, so we assume no direct effect of IM on these

populations. However, our model provides a framework for testing various mechanisms of

actions of IM, which we leave for a future work.

It is also unclear whether IM is capable of completely eliminating the leukemic cell

burden, or whether small residual populations will persist indefinitely. In our model, a

leukemic load of zero can only be approached asymptotically, so we define cure as a cancer

stem cell concentration less than 1.67 · 10−4 cells/mL, which corresponds to less than one

leukemic stem cell. We stop all simulations of the model whenever this is achieved.

4.2 Materials and Methods

A group of 104 patients with CML was monitored during IM therapy in the Centre

Hospitalier Lyon Sud. These patients were all treated with first-line IM 400 mg daily.

Patients’ BCR-ABL ratios were measured in the same laboratory according to the guidelines

of European LeukemiaNet, with the same techniques at diagnosis, months 3, 6, 9, and 12 of

therapy, and every 6 months thereafter; in order to limit variability, each measurement was

run in duplicate, and the two resulting measurements were averaged. Overall, the patients

had an average follow-up time of 62.76 months (range: 2.96 - 148.70), with an average of

12.69 measurements taken (range: 2 - 26). We excluded patients who changed TKIs for

safety reasons (n = 33) and patients whose disease progressed (n = 14), as we focused
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exclusively in this study on patients obtaining a residual disease on IM. Thus, a population

of 65 patients who responded well to IM remained for analysis.

BCR-ABL ratios were serially measured by quantitative RT-PCR in the peripheral

blood of patients in the same laboratory according to the European standards of European

Leukemia Net recommendations [6, 22] and expressed as a percentage on the International

Scale (IS) [37]. Each sampling was run in duplicate in order to reduce variability and

additionally run in parallel to the previous (frozen) sample from each patient in order to

exclude technical problems, at each time point (except diagnosis) for all patients. A two-fold

variation was considered as significant [8].

Our mathematical model (Equation (4.1)) divides leukemic cells into quiescent stem

cells (y0), cycling stem cells (y1), progenitors (y2), and mature cells (y3). We also represent

a single autologous immune cell population (z). For simplicity, we do not distinguish further

between immune subpopulations. Leukemia cells stimulate immune cells to proliferate at a

maximum rate α, while immune cells kill leukemia cells at a maximum rate µ. We incorporate

immunosuppression by inhibiting the proliferation of the immune cells as well as their action

on leukemic cells. Our model is summarized in Figure 4.1. A more thorough description of

the model is provided in Section 4.1.

As was previously discussed in Sections 1.1 and 2.3.3, the BCR-ABL ratio is a blood

measurement that quantifies the amount of BCR-ABL transcript relative to a control gene

transcript, in our case ABL. Each leukemic cell (y3) possesses the BCR-ABL gene and the

normal allele of ABL gene, while healthy cells (x) possess two alleles of the ABL gene.

Therefore, BCR-ABL transcripts are proportional to y3 (the immature leukemia cell popu-

lations are much smaller than the mature population and can be neglected), while control
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transcripts are approximately proportional to 2x+ y3. For simplicity, the number of healthy

cells (x) is assumed to be constant and is estimated based on the patient’s initial BCR-ABL

ratio at diagnosis. For all later measurements, the BCR-ABL ratio is approximated by

ratio = 100β
y3

2x+ y3
. (4.2)

This equation is similar to Equation (2.8) used in [85], with an additional multiplication

factor β that accounts for differences in mRNA expression between BCR-ABL and the control

gene. We multiply by 100, in order to convert the ratio into a percentage when β = 1 and a

value between 0 and 100β otherwise.

4.3 Results

Many patients who otherwise respond well to therapy exhibit oscillations in their BCR-

ABL ratios. Of the 104 patients in our data set, only 15 showed monotonically decreasing

BCR-ABL ratios throughout therapy. Each of the remaining 89 patients showed increases in

BCR-ABL ratios in, on average, 28.82% of their measurements. Two representative patients

are shown in Figure 4.2. These fluctuations occurred in many patients who responded well

to IM therapy and did not have any adverse events. This lack of monotonicity in patients

who responded well to therapy motivated this study.

We applied our mathematical model, which is summarized in Figure 4.1, to the patient

data in order to study these oscillations. As previously mentioned, our model represents

leukemic cells of varying maturity and a single immune cell population. We applied Latin

hypercube sampling in order to determine the effect of the drug (a′1 and a
′
2) and the immune

parameters (µ, dz, α, and ϵ). The parameters dz, α, and ϵ determine the patient’s immune
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Figure 4.2: Oscillations of the BCR-ABL ratio in two representative patients.
During TKI therapy, a patient’s progress is monitored by measuring their BCR-
ABL ratio, which is a ratio of BCR-ABL mRNA expression to the expression
of a control gene, in this case ABL. Both patients shown above were treated
with standard IM 400 mg daily. During treatment, both patients show multiple
increases in BCR-ABL ratio without overt relapse. Here, dots represent clinical
data, and the dashed line approximates the detection threshold, or the lowest
detectable leukemia level. Dots along this line indicate measurements of zero,
meaning the leukemia was undetectable within the limits of the assay. These
figures correspond to patients 4 and 12 in Table 4.2.
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window [ymin, ymax], or the range of leukemia loads that will stimulate a strong immune

response. We define [ymin, ymax] by the range of y3 for which the level of immune stimulation

exceeds the death rate. For each patient, we selected the parameter set that minimizes

the squared log-distance between the patient data and the results of the model simulation

(sampled at the same time as the data). All other parameters were held constant across all

patients; their values can be found in Table 4.1. Figures 4.3 and 4.4 show representative fits

of our model to patient data. Keeping in mind that these fits are plotted on a logarithmic

scale, we see that our model is able to reproduce many patients’ dynamics during therapy.

Parameter Description Value Source

y0(0)
Initial leukemic quiescent
stem cell concentration

37.5000
Estimated based
on [65]

y1(0)
Initial leukemic cycling
stem cell concentration

4.1667
Estimated based
on [65]

y2(0)
Initial leukemic progenitor
concentration

1.6667 · 104 [65]

y3(0)
Initial leukemic mature cell
concentration

1.5 · 108 [23]

z(0)
Initial autologous immune
cell concentration

120
Estimated based
on [23]

a0
Stem cell transition rate to
cycling

0.0027 Estimated

b1
Stem cell transition rate to
quiescence

0.0247 Estimated

r
Cycling stem cell growth
rate

0.08
Estimated based
on [43]

K
Cycling stem cell carrying
capacity

4.2872 Estimated

a1

Differentiation rate and
expansion factor for
progenitors

24.0005 Estimated

a2

Differentiation rate and
expansion factor for mature
cells

899.9820 Estimated

d1 Cycling stem cell death rate 0.00225 [43]

d2 Progenitor cell death rate 0.006 [43]

d3 Mature cell death rate 0.0375 [43]
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sz
Source term for autologous
immune cells

120 dz Estimated

β
Adjustment factor for
BCR-ABL ratio

3
Estimated based on
patient data

Table 4.1: Universal parameter estimates. This table
provides the values of the universal parameters. Cell
concentrations are in cells/mL. The initial values y0(0)+
y1(0) and y2(0) are chosen based on the initial number
of leukemic stem (2.5 · 105 cells) and precursor cells (108

cells) in [65], converted to cells/mL by assuming a blood
volume of 6 L. The value y3(0) is estimated in [23]. The
value z(0) is also based on [23], assuming a concentra-
tion of 6 · 105 cells/mL, of which about 1/5000 is spe-
cific to leukemia. Quiescent stem cells enter the cell cy-
cle infrequently [43], so we set a0 equal to 1/365 day−1.
The parameter b1 is set to 9a0 so that most stem cells in
our model are quiescent, which is in agreement with [56].
Thus, the two stem cell populations will approximately
have a 1:9 ratio, so we set y0(0) = 0.9(y0(0) + y1(0)) and
y1(0) = 0.1(y0(0) + y1(0)). The death rates d1, d2, and
d3 are set to those in [43]. The stem cell growth rate is
also based on the value in [43]. We increase the origi-
nal value (r = 0.008) by a factor of 10 to account for
the fact that only 10% of the stem cells in our model
contribute to growth, while all stem cells contribute to
growth in [43]. The parameters K, a1, and a2 are se-
lected so that the initial conditions represent a steady
state when the immune response is removed from the
model. (That is, y1(0) = K(r−d1)/r, y0(0) = b1y1(0)/a0,
y2(0) = a1y1(0)/d2, and y3(0) = a2y2(0)/d3.) We as-
sume that z(0) = sz/dz, so the value of dz determines sz.
Lastly, the adjustment factor β is selected based on the
maximum BCR-ABL ratio (269) in our data set.

The patient data and modeling results suggest that patients who respond well to IM

therapy go through three to four phases of tumor reduction. During the first few months,

there is a rapid exponential decline in BCR-ABL ratio. In our model, this effect is due

primarily to the action of the drug on the mature leukemic population. The immune response
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Figure 4.3: Fits of our mathematical model to six representative patients. The
base-10 log of the BCR-ABL ratio is plotted against time, in months. The dots
represent patient data, and the solid lines represent our simulations. Dashed
lines show the BCR-ABL ratios that correspond to the ends of immune window,
ymin and ymax. These figures correspond to patients 1-6 in Table 4.2.

64



0 20 40 60 80 100 120
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time (months)

lo
g 10

(B
C

R
−

A
B

L)

(a)

0 20 40 60 80 100 120
−4

−3

−2

−1

0

1

2

Time (months)

lo
g 10

(B
C

R
−

A
B

L)

(b)

0 20 40 60 80 100 120
−4

−3

−2

−1

0

1

2

3

Time (months)

lo
g 10

(B
C

R
−

A
B

L)

(c)

0 20 40 60 80 100 120
−6

−5

−4

−3

−2

−1

0

1

2

Time (months)

lo
g 10

(B
C

R
−

A
B

L)

(d)

0 20 40 60 80 100 120
−4

−3

−2

−1

0

1

2

Time (months)

lo
g 10

(B
C

R
−

A
B

L)

(e)

0 20 40 60 80 100 120
−5

−4

−3

−2

−1

0

1

2

Time (months)

lo
g 10

(B
C

R
−

A
B

L)

(f)

Figure 4.4: Fits of our model to six additional patients. The base-10 log of the
BCR-ABL ratio is plotted against time, in months. Dots represent patient data,
and the solid lines represent our simulations. Dashed lines show the BCR-ABL
ratios that correspond to the ends of immune window, ymin and ymax. Dotted
lines approximate the minimum leukemic level that is detectable by RT-PCR.
Dots along this line represent zero measurements, meaning CML cells were not
detected. These figures correspond to patients 7-12 in Table 4.2.
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is negligible at this stage because the large leukemic load suppresses the immune system.

Beginning around month six, there is a second, slower exponential decline in BCR-ABL ratio.

In some patients, the second phase is a plateau in BCR-ABL ratio rather than a decline (see

Figure 4.3(d)). The location of this plateau is determined primarily by the direct effects of

IM on the leukemic cell population (parameters inh1 and inh2). This biphasic exponential

decline has been previously observed in [65] and [85]. A few patients show a triphasic

exponential decline (Figures 4.4(b)-4.4(d)), which was discussed in [98]. The duration of the

biphasic or triphasic decline can vary significantly between patients, from the first two years

(Figures 4.3(a), 4.3(c), 4.3(d), and 4.4(f)) to several years of therapy (Figures 4.4(b)-4.4(d)).

After this period of monotonic decline, many patients’ leukemic loads begin to vary

non-monotonically. These fluctuations are often preceded by a sudden sharp decline in the

leukemic population, as illustrated in Figures 4.3(f), 4.4(b), and 4.4(d)-4.4(f). If this effect

is sufficiently strong, the leukemic stem cell population may be driven to less than one cell,

which we interpret as cure in our model. Otherwise, the leukemic population is able to par-

tially recover. Several oscillations in both the leukemic and immune cell populations follow,

with their amplitudes decreasing over time as the populations approach an equilibrium, as

seen in Figure 4.5.

Patient-specific parameter values are given in Table 4.2 and are summarized in Table

4.3. Of the six parameters varied, the fits seem to be most sensitive to inh1 and inh2,

followed by ymin and ymax. The parameters dz and µ seem to be less important. This is not

surprising, as inh1 and inh2 determine the effect of the drug, and ymin and ymax determine

at what point the autologous immune response becomes significant. Scatter plots depicting

parameter sensitivities for a representative patient are shown in Figure 4.6.
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Figure 4.5: Model simulation for a single representative patient. The base-10
log of the leukemia and immune cell populations, in cells/mL, are plotted as a
function of time, in months. The thick solid line represents the total leukemic
population (ytotal = y0 + y1 + y2 + y3), and the thick dashed line represents
the immune cell population (z). The thin solid lines show the immune window
[ymin, ymax] = [104.58, 105.44] cells/mL. For the first twenty months, the patient’s
leukemia load decreases monotonically, while the immune cells begin to expand.
The leukemic population enters the immune window at around month 7. The
immune cells mount an attack starting around month 18. This first attack results
in the minimum leukemia load achieved during therapy, at around 104 cells/mL.
The immune cells drive the leukemia load below the immune window, allow-
ing the leukemic population to partially recover. The two populations oscillate
with decreasing amplitudes as they approach their equilibrium concentrations of
(ytotal, z) = (104.61, 105.85) cells/mL. This simulation corresponds to the plot in
Figure 4.3(d) (patient 4 in Table 4.2).
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Patient inh1 inh2 dz µ ymin ymax

1 9.944 131.016 0.187 4.021 · 10−8 6.001 · 104 1.754 · 105
2 33.268 148.517 0.131 1.515 · 10−8 1.443 · 104 4.521 · 104
3 4.612 92.3215 0.031 9.964 · 10−7 4.994 · 104 5.598 · 105
4 1.456 545.150 0.099 1.504 · 10−8 3.765 · 104 2.759 · 105
5 1.872 1700.274 0.128 3.082 · 10−7 2.482 · 104 6.513 · 104
6 9.652 43.752 0.238 1.350 · 10−7 1.050 · 105 8.637 · 105
7 5.771 155.963 0.019 4.057 · 10−8 4.846 · 104 3.695 · 105
8 591.591 14.568 0.040 2.371 · 10−7 3.132 · 103 2.228 · 104
9 486.315 226.000 0.075 2.879 · 10−8 3.536 · 102 1.684 · 103
10 50.988 79.645 0.005 1.271 · 10−6 1.182 · 103 5.482 · 104
11 30.208 359.979 0.371 2.263 · 10−7 4.959 · 103 1.353 · 104
12 1.5201 265.6435 0.015 2.748 · 10−8 2.031 · 104 9.352 · 105

Table 4.2: Parameter values for patients 1-6 were used to produce Figure 3, while parameter
values for patients 7-12 were used to produce Figure 4. Here, ymin and ymax can be used to
obtain immune parameters ϵ = 1/(yminymax) and α = (ymin + ymax)ϵdz.

Parameter log(inh1) log(inh2) dz log(µ) log(ymin) log(ymin) log(ymax

ymin
)

Mean 1.132 2.487 0.099 -7.047 3.970 5.024 1.053
STD 0.830 0.754 0.097 0.636 0.888 0.804 0.499
Max 2.772 3.880 0.371 -5.896 5.483 6.024 2.006
Min 0.024 1.073 0.005 -7.954 2.548 3.226 0.197

Table 4.3: Summary of parameter values used in our model simulations. Of the 65 IM
patients who do not relapse, develop drug resistance, or progress, 22 change their IM dose
during therapy. An additional 6 patients have non-international standard (non-IS) mea-
surements, and 11 patients have five or fewer measurements. We focus on the remaining
25 patients and present the mean, standard deviation, maximum, and minimum parameter
values.
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Figure 4.6: Quality of the fit as a function of a pair of parameters, for a single
representative patient. This is the same patient whose simulation is shown in
Figures 4.3(d) and 4.5 (patient 4 in Table 4.2). Red dots indicate worse fits,
and dark blue dots indicate better fits. Here, we only show simulations that
resulted in a total cost of less than 10, where cost is the squared log-distance
between the patient data and model simulation. (a) log(inh2) vs. log(inh1).
For this patient inhibition values satisfying log(inh1inh2) in [2, 4] were tested.
These two parameters are strongly related to the quality of the fit. (b) log(µ)
vs. dz. These two parameters seem to be the least important, as it is difficult
to see any correlation between the fit and either of these parameters. (c) ymax

vs. ymin. There is a definite relationship between the fit and these two variables.
The worse fits tend to be in the upper left corner, while the better fits tend to be
in the lower right corner. The parameters ymax and ymin determine the immune
window and therefore affect the timing and magnitude of the autologous immune
response.
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The parameter values in Table 4.3 suggest that IM alone results in a 3.5-log decrease

in the total leukemia load, on average (STD: 0.786, max: 5.158, min: 2.426). This effect is

divided into a 2.5-log decrease in the proliferation of mature cells and a 1-log decrease in

the proliferation of progenitors. Each patient’s immune window covers approximately one

order of magnitude of leukemic populations, generally falling between 102.5 cells/mL and 106

cells/mL. We assume an initial mature leukemic population of 1.5 · 108 cells/mL. Thus, IM

must decrease the leukemia load by several orders of magnitude before the leukemia enters

the immune window and an immune response is initiated. After the leukemic population

enters this window, the leukemia and immune populations oscillate, with the amplitude of

oscillations decreasing over time.

4.4 Discussion

Despite the success of IM and other TKI therapies, many questions about the underly-

ing mechanisms of action remain. Mathematical modeling is a complementary tool to clinical

and experimental data that can help us understand these mechanisms. Several mathematical

modeling groups have already studied various aspects of CML. We briefly review some of

these contributions but note that a more thorough review can be found in Chapter 2.

Michor et al. [65] constructed an ODE model of CML that divides leukemic cells

into stem cells, progenitors, differentiated cells, and terminally differentiated cells. Upon

analyzing patients’ initial responses to IM therapy, they found that IM often leads to biphasic

exponential declines in the leukemic cell populations. Their modeling results suggested that

the first, steeper decline represents the action of IM on the differentiated leukemic cell
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population, while the second, slower decline represents an effect on the leukemic progenitors.

They later hypothesized that long-term therapy leads to a triphasic exponential decline,

where the third decline may represent an effect on immature leukemic cells and possibly

leukemic stem cells [98].

On the other hand, Roeder et al. [85] developed an agent-based model of CML that

divides leukemic stem cells into cycling and quiescent compartments. In their model, IM

results in the degradation and inhibition of cycling leukemic stem cells while having no direct

effect on quiescent leukemic stem cells. They interpreted the biphasic exponential decline

as an initial degradation effect, followed by a change in the regulatory response of leukemic

stem cells which produces the second decline. A similar interpretation to the biphasic decline

is proposed in [48].

Although these modeling frameworks are capable of reproducing the dynamics of some

patients during therapy, both are limited to those who show a monotonic decline in their

leukemic burdens. Neither model includes a mechanism that would allow patients to show

oscillations in leukemia load. However, in our data, we found that many patients who respond

well to IM and achieve long-term remissions exhibit increases in leukemic burden. The fact

that the Michor and Roeder models are unable to reproduce such oscillations suggests that

there may be (an) additional mechanism(s) that contribute(s) to patients’ dynamics during

therapy.

Motivated by this, we developed a mathematical model that integrates CML and an

autologous immune response. As previously discussed in Section 1.3, there is strong evidence

that the immune system plays a role in the dynamics of CML. In our modeling framework, we

defined an immune window, or a range of leukemic loads that will provoke a strong autologous
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Figure 4.7: Comparison of the model with and without an autologous immune
response. Patients 4 and 10 from Table 4.2 are shown in (a) and (b), respectively.
The dots represent patient data, the solid lines represent fits for the model with
an immune response, and the dashed lines represent fits for the model without an
immune system (set z(0) = 0 and sz = 0). The dotted line in (a) approximates
the minimum leukemic level that is detectable by RT-PCR. Dots along this line
represent zero measurements, meaning CML cells were not detected. For simu-
lations without an immune response, inh1 = 17.140 and inh2 = 239.330 in (a),
and inh1 = 37.393 and inh2 = 299.235 in (b). All other parameters, besides sz
and z(0), are set to those given in Table 4.1. Only the model with an autologous
immune response is able to produce the non-monotonicity seen in both patients’
BCR-ABL ratios.

immune response. At diagnosis, the leukemic load is above this window, and the large

leukemic population is able to partially or fully suppress the autologous immune system’s

response to CML. IM therapy generally reduces a patient’s leukemic load by several orders

of magnitude, representing a significant reduction in immunosuppression. We hypothesize

that IM may drive the leukemic population into the immune window, allowing a patient’s

autologous immune system to mount a response to CML.

In our model, oscillations in leukemic load occur after the leukemia enters the immune

window. Without the autologous immune response, our model produces monotonically de-
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creasing cancer loads, as seen in Figure 4.7. Once the autologous immune cells have expanded

sufficiently, they attack the residual leukemic population. This first attack by the autologous

immune system results in the minimum detectable leukemic load achieved during IM therapy.

However, because the leukemia is driven below the immune window, the patient’s immune

cell population begins to contract. If the leukemia is not eradicated, it is able to rebound,

until it reenters the immune window, thus stimulating another weaker immune response.

The immune and leukemic cell populations continue to oscillate in this way, with the ampli-

tude of these oscillations decreasing over time. Eventually, the oscillations dampen, and an

equilibrium is achieved between the leukemic and autologous immune cells. Our modeling

results suggest that oscillations in BCR-ABL ratio during therapy may be partially explained

by the patient’s autologous immune response to the residual CML population.

Moreover, the oscillations may be a signature of the autologous immune response, that

can be used to characterize a patient’s individual immune system. This result is reminiscent

of previous tumor-immune models, e.g. Kuznetsov et al. [50].

Based on a patient’s data over the course of TKI therapy, we determine their im-

mune profile in the context of our model. Each patient’s immune profile is different, as

demonstrated by differences in the immune windows and in the timing and magnitude of the

autologous immune response to CML. Our modeling framework provides a potential tool to

help quantify these differences, which may play a significant role in designing personalized

therapies or combination therapies aimed at further reducing or eradicating the residual

CML burden. This framework will serve as a basis for future studies of treatment cessation

and personalized combination therapies consisting of TKIs and immunotherapy.
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4.5 Conclusion

The potentially significant role of the immune system in the dynamics of IM ther-

apy suggests that immunotherapy may help to eliminate the residual leukemic burden. In

our simulations, when IM therapy drives the leukemia into the immune window, an ini-

tially strong immune response occurs that weakens over time. Eventually, the immune cell

population contracts, allowing the leukemia to partially recover. A combination of IM and

immunotherapy may help to maintain a strong immune response, to prevent such a recovery

in the leukemic population. As suggested in [43], carefully-timed vaccines may stimulate the

patient’s immune system when the residual CML burden is no longer sufficient. A sustained

immune response may result in a further decrease of the leukemic population and may even

drive the leukemia to extinction. An optimal vaccine schedule would depend heavily on each

patient’s immune profile, and our model offers a tool for characterizing this.

Although we focus on the autologous immune response as a possible explanation of

the oscillations that occur during IM therapy, many other factors may contribute to this

behavior. The microenvironment of the leukemic cells is known to have a strong influence on

both healthy and leukemic cells [51,63], but is not included in our model. Additionally, we do

not account for patients who do not properly or regularly take their drugs, which is known to

be an important factor [62]. Moreover, for simplicity, we do not distinguish between various

subtypes of immune cells, each of which may interact and play different roles in CML. Our

model can be expanded in order to achieve a more accurate representation of the autologous

immune response to CML. We leave this for a future work.

Still, the oscillations in patients’ leukemic loads suggest an additional mechanism dur-
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ing therapy that has not previously been included in mathematical models. Our modeling

results support the hypothesis that the autologous immune system contributes to the dynam-

ics of IM therapy. If this is the case, our model may serve as a valuable tool for characterizing

a patient’s immune response to CML. This immune profile may then help in designing per-

sonalized combination therapies in order to further control or eliminate the residual leukemic

burden.

4.6 Afterthoughts: An Alternate Mechanistic Model

We also consider the following alternative model of CML and the autologous immune

system, in which the immune-leukemia interactions are based on [50].

ẏ0 = b1y1 − a0y0 − µy0z, (4.3a)

ẏ1 = a0y0 − b1y1 + ry1(1−
y1
K

)− d1y1 − µy1z, (4.3b)

ẏ2 =
a1
inh1

y1 − d2y2 − µy2z, (4.3c)

ẏ3 =
a2
inh2

y2 − d3y3 − µy3z, (4.3d)

ż = sz − dzz + α
y3z

1 + ϵy3
− α2y3z. (4.3e)

This model is similar to Equation (4.1) except in the way in which the immune response is

represented. In the previous model, immunosuppression is incorporated by dividing the mass

action terms representing immune-leukemia interactions (immunostimulation αy3z and the

killing of leukemic cells by immune cells µyiz) by 1+ϵy23. As was previously mentioned, these

terms encode an immune response that is most effective at intermediate levels of leukemic

stimulus. This representation is not motivated by a specific mechanism of immunosuppres-

sion, although we note that these immunosuppression terms are similar to terms found in [61].
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In their model, proliferation rates and renewal fractions are divided by a factor 1+kc6, where

k is a constant, and c6 is the mature blood cell population, in order to incorporate the effect

of a regulatory cytokine. The presence of two regulatory cytokines would lead to division by

a quadratic function of the mature population, producing terms similar to those in Equations

(4.1a)-(4.1e).

In the mechanistic model, there are no terms representing immunosuppression of

the immune-leukemia interactions. Rather, mature leukemic cells are assumed to have

two contrasting effects on immune cells, as seen in the last two terms of Equation (4.3e).

The Michaelis-Menten term (αy3z/(1 + ϵy3)) represents the stimulation of immune cells by

leukemic cells, with maximum rate α2ϵ
−1 and Michaelis constant ϵ−1. The mass action term

(α2y3z) represents the killing of immune cells by leukemic cells, at a rate α2.

Although the two models of CML and the autologous immune system represent immune-

leukemia interactions differently, they are qualitatively very similar and produce similar fits,

as seen in Figures 4.8 and 4.9. The mechanistic model does, however, introduce an additional

parameter α2, and this model seems to be stiff. For convenience, although both models seem

plausible and it may be difficult to exclude either until further information about the nature

of immunosuppression in CML is known, we choose to focus on our original model given by

Equations (4.1a)-(4.1e).
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Figure 4.8: Fits of our two models to patient data. Dots indicate patient data.
Fits of our original model (Equations (4.1a)-(4.1e)) are shown in red. These
fits are obtained as described in Section 4.2. Fits to the alternative mechanistic
model (Equations (4.3a)-(4.3e)) are shown in blue. These fits are obtained using
a similar strategy, with one additional immune parameter α2. The two models
produce comparable fits.

77



0 20 40 60 80
−2

−1.5

−1

−0.5

0

0.5

1

1.5

Time (months)

lo
g 10

(B
C

R
−

A
B

L)

(a)

0 20 40 60 80 100 120
−4

−3

−2

−1

0

1

2

Time (months)

lo
g 10

(B
C

R
−

A
B

L)

(b)

0 20 40 60 80 100 120
−4

−3

−2

−1

0

1

2

3

Time (months)

lo
g 10

(B
C

R
−

A
B

L)

 

 

(c)

0 20 40 60 80 100 120
−6

−5

−4

−3

−2

−1

0

1

2

Time (months)

lo
g 10

(B
C

R
−

A
B

L)

(d)

0 20 40 60 80 100 120
−4

−3

−2

−1

0

1

2

Time (months)

lo
g 10

(B
C

R
−

A
B

L)

(e)

0 20 40 60 80 100 120
−5

−4

−3

−2

−1

0

1

2

Time (months)

lo
g 10

(B
C

R
−

A
B

L)

(f)

Figure 4.9: Six additional fits of both models to patient data. Fits of our original
model (Equations (4.1a)-(4.1e)) are shown in red, while fits to the alternative
mechanistic model (Equations (4.3a)-(4.3e)) are shown in blue. Dots indicate
patient data. A dotted line approximates the lowest detectable BCR-ABL ratio.
Dots along this line indicate zero measurements. Again, the two models produce
comparable fits.
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Chapter 5: Analysis of a Simplified Model of CML and the Immune System

The analysis that follows is the result of a collaboration with Apollos Besse, a graduate

student and member of Inria and the University of Lyon.

5.1 A Simplified Model

We consider the following simplified version of our original model presented in Chapter

4:

ẏ0 = b1y1 − a0y0, (5.1a)

ẏ1 = a0y0 − b1y1 + ry1(1−
y1
K

)− d1y1 − µ1
y1z

1 + ϵ1y22
, (5.1b)

ẏ2 = a1y1 − d2y2 − µ2
y2z

1 + ϵ2y22
, (5.1c)

ż = s− dz + α
y2z

1 + ϵy22
. (5.1d)

In contrast to our original model (Equations (4.1a)-(4.1e)), the simplified model includes

only three leukemic subpopulations: quiescent stem cells y0, cycling stem cells y1, and mature

cells y2. We exclude the progenitor compartment in order to make the analysis of the system

more accessible. Our analysis provides insight into the behavior that should be expected

from the full model, although we acknowledge that this simplification may affect the stability

properties of the system.
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We initially include a term d1y1 that represents the natural death of leukemic stem

cells. However, we can incorporate this term into the logistic growth term ry1(1− y1
K
) simply

by redefining r and K as rnew = rold − d1 and Knew = rnew

rold
Kold.

Additionally, we assume that immune cells have the same effect on both leukemic stem

cells and mature leukemic cells, by setting µ1 = µ2 := µ and ϵ1 = ϵ2. We arrive at the

following system:

ẏ0 = b1y1 − a0y0, (5.2a)

ẏ1 = a0y0 − b1y1 + ry1(1−
y1
K

)− µ
y1z

1 + ϵ1y22
, (5.2b)

ẏ2 = a1y1 − d2y2 − µ
y2z

1 + ϵ1y22
, (5.2c)

ż = s− dz + α
y2z

1 + ϵy22
. (5.2d)

Because all coefficients in Equations (5.2a)-(5.2d) are positive, the populations must remain

nonnegative and satisfy

y1 ≤ K y2 ≤
a1K

d2
:=M z ≥ s

d
.

5.2 Steady States of the Simplified System

We want to determine the steady states of the system given by Equations (5.2a)-(5.2d)

and their stability. For now, we assume that α2 ≥ 4ϵd2 so that the following quantities will

be real:

ymin =
α−

√
α2 − 4ϵd2

2ϵd
,

ymax =
α+

√
α2 − 4ϵd2

2ϵd
.
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We will call the interval [ymin, ymax] an immune window. If we define Y = (ymin + ymax)/2,

then ϵ = (yminymax)
−1 and α = 2Y ϵd.

Proposition 5.2.1 There is one healthy equilibrium given by (0, 0, 0, s
d
). The others satisfy

y0 =
b1
a0

(r + d2)y2
(a1 +

ry2
K
)
,

y1 =
(r + d2)y2
a1 +

ry2
K

,

z =
s(1 + ϵy22)

dϵy22 − αy2 + d
=

s(1 + ϵy22)

dϵ(y2 − ymin)(y2 − ymax)
,

where y2 is a positive root of the polynomial

p(X) = (X − ymin)(X − ymax)(X −M)(1 + ϵ1X
2) +

µs

ϵrd
(M +

r

d2
X)(1 + ϵX2). (5.3)

These roots lie outside [ymin, ymax].

Proof The equilibria can be found by setting Equations (5.2a)-(5.2d) to zero.

0 = b1y1 − a0y0,

0 = ry1(1−
y1
K

)− µ
y1z

1 + ϵ1y22
,

0 = a1y1 − d2y2 − µ
y2z

1 + ϵ1y22
,

0 = s− dz + α
y2z

1 + ϵy22
.

The healthy equilibrium (0, 0, 0, s
d
) clearly satisfies these equations. We now search for equi-

libria such that yi > 0 for i = 0, 1, 2. Then, ẏ0 = 0 iff y0 =
b1y1
a0

. When y1 > 0, the equilibria

must also satisfy

r(1− y1
K

) = µ
z

1 + ϵ1y22
, (5.4a)

a1y1 − d2y2 = µ
y2z

1 + ϵ1y22
, (5.4b)

dz − s = α
y2z

1 + ϵy22
. (5.4c)
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By multiplying Equation (5.4a) by y2, we can set it equal to Equation (5.4b) and solve for

y1 as a function of y2. We can also solve Equation (5.4c) for z as a function of y2. We arrive

at the following.

y0 =
b1
a0

(r + d2)y2
(a1 +

ry2
K
)
, (5.5a)

y1 =
(r + d2)y2
a1 +

ry2
K

, (5.5b)

z =
s(1 + ϵy22)

dϵy22 − αy2 + d
. (5.5c)

When α2 ≥ 4ϵd2, we can rewrite the equation for z with respect to ymin and ymax as follows.

z =
s(1 + ϵy22)

dϵ(y2 − ymin)(y2 − ymax)
.

Thus, z > 0 iff either y2 < ymin or y2 > ymax. That is, equilibrium values for y2 must lie

outside the immune window.

We have found y0, y1, and z with respect to y2, so all that remains is to find the

appropriate y2 values. We can plug Equation (5.5b) into 1− y1
K
, which simplifies to

1− y1
K

=
a1K − d2y2
a1K + ry2

=
M − y2
M + r

d2
y2
.

Replacing 1− y1
K

and z in Equation (5.4a), we arrive at

r
M − y2
M + r

d2
y2

=
µs

dϵ(y2 − ymin)(y2 − ymax)

1 + ϵy22
1 + ϵ1y22

.

It follows that y2 must satisfy

(y2 − ymin)(y2 − ymax)(y2 −M)(1 + ϵ1y
2
2) +

µs

ϵrd
(M +

r

d2
y2)(1 + ϵy22) = 0.
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We observe that

P (0) =M(−yminymax +
µs

ϵrd
) = −M

ϵ
(1− µs

rd
),

where the second equality comes from the fact that 1
ϵ
= yminymax. Thus, P (0) < 0 iff

µs < rd. Later, we will find that we are interested primarily in the case when µs < rd.

When P (0) < 0, since P (ymin) > 0, it follows that there is a zero of P on (0, ymin).

Additionally, provided ymin < M , P is positive on the intervals [ymin,min{ymax,M}] and

[max{ymax,M},∞). When ymin < ymax < M , if we can find a value y∗2 ∈ (ymax,M) such

that P (y∗2) < 0, then it will follow that there are at least two additional roots of P , one in

(ymax, y
∗
2) and another in (y∗2,M).

Since all steady states (y1, y2, z) must satisfy y2 < M , it follows that:

• If ymax ≥M , then we expect roots only on (0, ymin).

• If ymax < M , then we expect roots on (0, ymin) and possibly (ymax,M).

We will soon see that in most cases of interest, there are three equilibria: a large one

near ( b1K
a0
, K,M, s

d
), an intermediate one (y0,int, y1,int, y2,int ≈ ymax, zint), and a low one

(y0,low, y1,low, y2,low ≈ ymin, zlow).
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5.3 The Healthy Steady State

The healthy equilibrium (0, 0, 0, s
d
) represents the case when there are no leukemic cells.

We can linearize the system about this point to obtain the following.

ẏ0 = −a0y0 + b1y1, (5.6a)

ẏ1 = a0y0 + (−b1 + r − µs

d
)y1, (5.6b)

ẏ2 = a1y1 − (d2 +
µs

d
)y2, (5.6c)

ż =
αs

d
y2 − dz. (5.6d)

Thus, the matrix of this system is

A =



−a0 b1 0 0

a0 −b1 + r − µs
d

0 0

0 a1 −d2 − µs
d

0

0 0 αs
d

−d


.

This matrix has a characteristic polynomial

χA(X) = (X + d)(X + d2 +
µs

d
)[(X + b1 − r +

µs

d
)(X + a0)− a0b1]

= (X + d)(X + d2 +
µs

d
)(X2 + (a0 + b1 − r +

µs

d
)X + (−r + µs

d
)).

Define f(X) = X2+(a0+b1−r+ µs
d
)X+(−r+ µs

d
). It is clear that λ1 = −d and λ2 = −d2− µs

d

are two eigenvalues of A. The other two eigenvalues are the roots of f . Suppose rd < µs.

Then f(0) > 0 and f ′(0) > 0, so the remaining two eigenvalues have negative real part,

making the healthy equilibrium stable. If rd > µs, then f(0) < 0, so it follows that one

of the remaining eigenvalues is real and positive, making this equilibrium unstable. We are
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primarily interested in the latter case, so for the remainder of this discussion, we will assume

that rd > µs. Recall that this assumption implies that P (0) < 0, so P will have a zero on

(0, ymin).

5.4 Steady States Without Suppression of Activated Immune Cells

The polynomial P given in Equation (5.3) has degree five. We can simplify the problem

by adjusting our immunosuppression parameters ϵ1 and ϵ in one of two ways.

• Set ϵ1 = 0. That is, assume that immunosuppression only affects the activation and

expansion of immune cells but does not affect an activated immune cell’s efficacy at

killing leukemic cells.

• Set ϵ1 = ϵ. That is, assume that immunosuppression affects the activation and efficacy

of immune cells equally.

Both assumptions reduce P to a degree three polynomial. For now, we consider the first

case, as parameter estimates suggest that this is reasonable.

By setting ϵ1 = 0, we arrive at the following model

ẏ0 = b1y1 − a0y0, (5.7a)

ẏ1 = a0y0 − b1y1 + ry1(1−
y1
K

)− µy1z, (5.7b)

ẏ2 = a1y1 − d2y2 − µy2z, (5.7c)

ż = s− dz + α
y2z

1 + ϵy22
. (5.7d)

and the polynomial

P (X) = (X − ymin)(X − ymax)(X −M) +
µs

ϵrd
(M +

r

d2
X)(1 + ϵX2). (5.8)
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We can expand this polynomial in the following way:

P (X) = X3(1 +
µs

dd2
)−X2(M + ymin + ymax −M

µs

rd
)

+X(Mymin +Mymax + yminymax +
µs

ϵdd2
)− (Myminymax −M

µs

ϵrd
)

= X3(1 +
µs

dd2
)−X2(ymin + ymax +M(1− µs

rd
))

+X(Mymin +Mymax + yminymax(1 +
µs

dd2
))−Myminymax(1−

µs

rd
)

= X3ω+ −X2(ymin + ymax +Mω−)

+X(Mymin +Mymax + yminymaxω+)−Myminymaxω−.

Here, ω+ = 1+ µs
dd2

and ω− = 1− µs
rd
. Since we want the healthy equilibrium to be unstable,

it follows that rd > µs and therefore ω− > 0. Therefore, P has alternating signs, so by

Descartes’ rule of signs, P cannot have any negative roots. Because P has odd degree, it

must therefore have either 1 or 3 real positive roots.

Proposition 5.4.1 If M satisfies

M > max

{
2Y

ω−
(2

√
ω+

ω−
(
ω+

ω−
− 1) + 2

ω+

ω−
− 1),

ymin(2ω+ − 1)− ymax

ω−

}
, (5.9)

then P has three positive roots, one in (0, ymin) and two in (ymax,M).

Proof Since P (0) < 0 < P (ymin), P has a root on (0, ymin). If M satisfies Equation (5.9),

then M > ymax. We will now show that P has two roots on (ymax,M) by finding a value of

X ∈ (ymax,M) such that P (X) < 0. Since P (ymax) > 0 and P (M) > 0 the result will follow

immediately.
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We begin by searching for X = cM for a positive constant c. Consider P (cM):

P (cM) = (cM)3ω+ − (cM)2(ymin + ymax +Mω−)

+cM(Mymin +Mymax + yminymaxω+)−Myminymaxω−

= c2M3(cω+ − ω−) + cM2(ymin(1− c) + ymax(1− c))

+Myminymax(cω+ − ω−)

= M [(c2M2 + yminymax)(cω+ − ω−) +M(ymin + ymax)c(1− c)].

If we assume that c < ω−
ω+

< 1, then we can produce the following upper bound:

P (cM) < M [c2M2(cω+ − ω−) +M(ymin + ymax)c(1− c)]

< cM2[cM(cω+ − ω−) + (ymin + ymax)(1− c)]

< cM2[c2Mω+− c(Mω− + 2Y ) + 2Y ].

Define Q(c) = c2Mω+ − c(Mω− + 2Y ) + 2Y . Then, Q is a degree two polynomial with

determinant

∆ = (Mω− + 2Y )2 − 4(Mω+)(2Y )

= M2ω2
− + 4MY ω−(1− 2

ω+

ω−
) + 4Y 2

= (Mω− + 2Y (1− 2
ω+

ω−
))2 − 4Y 2((1− 2

ω+

ω−
)2 − 1)

= (Mω− − 2Y (2
ω+

ω−
− 1))2 − 16Y 2(

ω+

ω−
(
ω+

ω−
− 1)).

By solving for M , we find that ∆ > 0 when

M >
2Y

ω−
(2

√
ω+

ω−
(
ω+

ω−
− 1) + 2

ω+

ω−
− 1).

When ∆ > 0, Q has two real roots and is negative at c = Mω−+2Y
2Mω+

. Since ω+

ω−
> 1, it follows
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that

ω2
−(2

√
ω+

ω−
(
ω+

ω−
− 1) + 2

ω+

ω−
− 1) > 1.

Therefore M > 2Y
ω−

which implies that c < ω−
ω+

< 1. Thus,

P (cM) = P (
Mω− + 2Y

2Mω+

M) < cM2Q(
Mω− + 2Y

2Mω+

) < 0.

Since c < 1 we know that cM ∈ (0,M). However, it is not clear whether cM ∈ (0, ymin) or

cM ∈ (ymax,M) (we know that P is positive in [ymin, ymax]). By ensuring that

M >
ymin(2ω+ − 1)− ymax

ω−
,

it follows that cM > ymin and hence cM ∈ (ymax,M). We conclude that P has two roots on

(ymax,M).

When ymin < M < ymax, the theorem does not apply, and there will be one equilibrium

(y0,low, y1,low, y2,low ≈ ymin, zlow). When M < ymin, there will again be only one equilibrium,

near ( b1
a0
K,K,M, s

d
yminymax

(ymin−M)(ymax−M)
).

The bound given by Equation (5.9) is not necessarily the minimum lower bound. How-

ever, this proposition does provide a sufficient condition that guarantees three equilibria.

5.5 Stability Analysis

We will now shift our attention to the stability of the fixed points of the system given

by Equations (5.7a)-(5.7d). To approach this problem, we further simplify our model by no

longer distinguishing between cycling and quiescent stem cells. We arrive at the following
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model:

ẏ1 = ry1(1−
y1
K

)− µy1z, (5.10a)

ẏ2 = a1y1 − d2y2 − µy2z, (5.10b)

ż = s− dz + α
y2z

1 + ϵy22
. (5.10c)

We note that all of the analysis up to this point holds for this new system. That is,

removing the quiescent stem cell compartment does not affect the number of steady states

or the stability of the healthy equilibrium. Although it is possible that this simplification may

(in some cases) affect the stability of the other fixed points, this analysis provides valuable

insight into the original system.

We start with the low equilibrium (ȳ1, ȳ2, z̄) satisfying ȳ2 ∈ (0, ymin). In general, the

matrix of the system (5.10a)-(5.10c) linearized about (ȳ1, ȳ2, z̄) is given by

B =


r − 2 r

K
ȳ1 − µz̄ 0 −µȳ1

a1 −d2 − µz̄ −µȳ2

0 αz̄ 1−ϵȳ22

(1+ϵȳ22)2
−d+ α ȳ2

1+ϵȳ22

 .

Since (ȳ1, ȳ2, z̄) is a positive fixed point, we can rewrite this as

B =


− r

K
ȳ1 0 −µȳ1

a1 −a1 ȳ1ȳ2 −µȳ2

0 αz̄ 1−ϵȳ22

(1+ϵȳ22)2
− s

z̄

 . (5.11)

We wish to prove that the low equilibrium is stable. To do this, we will make use of the

following Lemma.

Lemma 5.5.1 Consider a polynomial P (X) = X3 + aX2 + bX + c with positive coefficients

a, b, and c. If ab > c, then the dominant root of P has negative real part.

89



Proof Because P has positive coefficients, it cannot have positive real roots by Descartes’

rule of signs. Also, since P (0) = c > 0, P must have at least one real negative root λ. The

remaining two roots are either negative real or complex. If they are negative, then we are

done. If the roots are complex, then we wish to show that the real part is negative. We can

factor P as

P (X) = (X − λ)(X2 + (a+ λ)X + (b+ aλ+ λ2)).

Denote the complex roots as z and z̄. Then since

X2 + (a+ λ)X + (b+ aλ+ λ2) = (X − z)(X − z̄),

then it follows that

a+ λ = −(z + z̄) = −2Re z,

b+ aλ+ λ2 = zz̄ = (Re z)2 + (Im z)2.

Now, we observe that P (−a) = −ab + c < 0 since ab > c. Since λ is the only negative root

of P , it must be that −a < λ. Hence, Re z = −a+λ
2
< 0.

Proposition 5.5.2 The low equilibrium (ȳ1, ȳ2, z̄) satisfying ȳ2 ∈ (0, ymin) is asymptotically

stable.

Proof We first observe that the all terms in Equation (5.11) have sign independent of the

fixed point coordinates, except αz̄ 1−ϵȳ22

(1+ϵȳ22)2
. Define E = 1−ϵȳ22

(1+ϵȳ22)2
. Since ϵ = 1

yminymax
, it

follows that ϵȳ2
2 < 1, so E > 0. (If ȳ2 > ymax, then E < 0.)
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Consider the characteristic polynomial χB of B.

χB(X) = (X − r

K
ȳ1)((X + a1

ȳ1
ȳ2
)(X +

s

z̄
) + µαȳ2z̄E) + a1µαȳ1z̄E

= X3 +X2(
r

K
ȳ1 + a1

ȳ1
ȳ2

+
s

z̄
)

+X(
r

K
ȳ1(a1

ȳ1
ȳ2

+
s

z̄
) + a1

ȳ1
ȳ2

s

z̄
+ µαȳ2z̄E)

+(
r

K
ȳ1(a1

ȳ1
ȳ2

s

z̄
+ µαȳ2z̄E) + a1µαȳ2z̄E))

= X3 +X2(r + d2 +
s

z̄
) +X(

r

K
ȳ1(a1

ȳ1
ȳ2

+
s

z̄
) + a1

ȳ1
ȳ2

s

z̄
+ µαȳ2z̄E)

+(µα(r + d2)ȳ2z̄E +
r

K
ȳ1a1

ȳ1
ȳ2

s

z̄
).

We simplified the above expression using the fact that r
K
ȳ1 + a1

ȳ1
ȳ2

= r + d2.

Since ȳ2 ∈ (0, ymin), E > 0. Thus, χB has positive coefficients. We would like to apply

the previous lemma to complete our proof. Thus, we consider

aχbχ − cχ = (r + d2 +
s

z̄
)(
r

K
ȳ1(a1

ȳ1
ȳ2

+
s

z̄
) + a1

ȳ1
ȳ2

s

z̄
+ µαȳ2z̄E)

−(µα(r + d2)ȳ2z̄E +
r

K
ȳ1a1

ȳ1
ȳ2

s

z̄
)

= (r + d2)(
r

K
ȳ1(a1

ȳ1
ȳ2

+
s

z̄
) + a1

ȳ1
ȳ2

s

z̄
)

+
s

z̄
(
r

K
ȳ1(a1

ȳ1
ȳ2

+
s

z̄
) + a1

ȳ1
ȳ2

s

z̄
+ µαȳ2z̄E − r

K
ȳ1a1

ȳ1
ȳ2
)

= (r + d2)((r + d2)
s

z̄
+

r

K
ȳ1a1

ȳ1
ȳ2
) +

s

z̄
((r + d2)

s

z̄
+ µαȳ2z̄E)

> 0.

By the previous lemma, χB has a dominant root with negative real part, so the dominant

eigenvalue of B has negative real part. We conclude that the low equilibrium is asymptoti-

cally stable.

The low equilibrium should be attracting for sufficiently close initial conditions. How-

ever, the basin of attraction is so small that almost all solutions converge to the large
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equilibrium. Thus, a successful treatment should either expand the basin of attraction of

the low equilibrium or eliminate the larger equilibria.

5.5.1 Special Case: sz = 0

We consider the case when sz = 0 because it allows us to fully classify the equilibria.

These classifications provide insights about the stability of the equilibria when sz is small.

We consider the following system:

ẏ1 = ry1(1−
y1
K

)− µy1z, (5.12a)

ẏ2 = a1y1 − d2y2 − µy2z, (5.12b)

ż = (α
y2

1 + ϵy22
− d)z. (5.12c)

We will first assume that α2 > 4ϵd2 and ymax < M . Then we can rewrite ż as

ż =
−dϵ(y − ymin)(y − ymax)

1 + ϵy22
z.

It follows that ż = 0 iff z = 0, y2 = ymin, or y2 = ymax. The first case produces the equilibria

(0, 0, 0) and (K,M, 0). The other two cases produce the equilibria (y1(ymin), ymin, z(ymin))

and (y1(ymax), ymax, z(ymax)) where

y1(y2) =
(r + d2)y2
a1 +

r
K
y2
,

z(y2) =
r

µ
(1− y1

K
).

Thus, we have four equilibria. Since s = 0, the condition for the healthy equilibrium (0, 0, 0)

to be unstable reduces to rd > 0. Hence, the healthy equilibrium is always unstable. Further,

by Proposition 5.5.2, (y1(ymin), ymin, z(ymin)) is asymptotically stable. We wish to classify

the remaining two equilibria.
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First, consider (y1(ymax), ymax, z(ymax)). The matrix of the system linearized about

this equilibrium C is

C =


− r

K
ȳ1 0 −µȳ1

a1 −a1 ȳ1ȳ2 −µȳ2

0 αz̄ 1−ϵȳ22

(1+ϵȳ22)2
0

 . (5.13)

with characteristic polynomial

χC(X) = (X +
r

K
ȳ1)[X(X + a1

ȳ1
ȳ2
) + αµȳ2

1− ϵȳ2
2

(1 + ϵȳ22)2
]

+a1αµȳ1z
1− ϵȳ2

2

(1 + ϵȳ22)2

= X3 +X2(
r

K
ȳ1 + a1

ȳ1
ȳ2
) +X(

r

K
a1
ȳ1

2

ȳ2
+ αµȳ2z

1− ϵȳ2
2

(1 + ϵȳ22)2
)

+αµy1z
1− ϵȳ2

2

(1 + ϵȳ22)2
(
r

K
ȳ2 + a1).

Since ȳ2 = ymax, it follows that 1− ϵȳ2
2 < 0, so χC(0) < 0. Therefore, χC must have at least

one real positive root, so (y1(ymax), ymax, z(ymax)) is unstable.

The last equilibrium (K,M, 0) represents the case when the leukemic population fully

overcomes and suppresses the immune system. The matrix of the linearized system about

this fixed point is

D =


−r 0 −µK

a1 −d2 −µM

0 0 −d+ αM
1+ϵM2

 . (5.14)

The characteristic polynomial is

χD(X) = [X + r][X + d2][X − (
αM

1 + ϵM2
− d)],

so the eigenvalues of (5.14) are λ1 = −r, λ2 = −d2, and λ3 = αM
1+ϵM2 − d. Since M > ymax,

it follows that all three eigenvalues are negative, so (K,M, 0) is a stable node.
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K Stem cell carrying capacity 4.2872r/(r + d1)
d1 Stem cell death rate 0.00225
a1 Differentiation and expansion rate 2.16 · 106
d2 Mature cell death rate 0.06
s Immune cell source term 120 * d
y1(0) Initial stem cell concentration K
y2(0) Initial mature cell concentration a1K/d2
z(0) Initial immune concentration s/d

Table 5.1: Universal parameters and initial conditions for our simplified model.

When α2 < 4ϵd2, no immune window exists, and ż < 0 whenever z > 0. Hence, the

only positive equilibrium is (K,M, 0), and it is stable, by a similar argument to the one given

above. A saddle-node bifurcation occurs when α2 = 4ϵd2, provided ymin = ymax < M .

When M < ymin, the only positive equilibrium is (K,M, 0), and it is stable. Lastly,

when ymin < M < ymax, there is only one positive equilibrium: (y1(ymin), ymin, z(ymin)). By

Proposition 5.5.2, it is stable.

Recall that treatment has the effect of decreasing M . As M approaches ymax from

above, the two equilibria (K,M, 0) and (y1(ymax), ymax, z(ymax)) approach one another.

There is a saddle-node bifurcation at M = ymax, after which (M < ymax), both equilib-

ria are eliminated.

5.6 Numerical Simulations

Fits of our simplified model (Equations (5.10a)-(5.10c)) to data of two patients are

shown in Figure 5.1. The universal parameters and initial conditions used in Figure 5.1 are

provided in Table 5.1.

As in Chapter 4, IM is assumed to decrease the leukemic cells’ differentiation rate a1

by a factor inh to a′1 = a1
inh

. The treatment parameter, inh, and immune parameters, µ,
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Figure 5.1: We fit two representative patients to our simplified model given in
Equations (5.10a)-(5.10c). Patient data is represented by dots, and our fits are
shown as solid lines. The dashed line approximates the detection threshold, or
the lowest detectable leukemia level. Dots along this line represent zero mea-
surements, which indicate BCR-ABL ratios below the detection threshold. (a)
This data corresponds to patient 4 in Table 4.2. The following patient-specific
parameter values were used: d = 0.127, µ = 10−8.18, ymin = 104.50, ymax = 105.34,
inh = 102.85, r = 0.0134. (b) This patient proved difficult to fit when varying
only the drug and immune parameters. By varying both r and d, the model
is able to reproduce the slower fluctuations present in the data. The following
parameters were used: d = 0.006, µ = 10−9.25, ymin = 102.97, ymax = 105.26,
inh = 103.64, and r = 0.0276.

α, d, and ϵ, are allowed to vary between patients. We additionally allow r to vary, as it

characterizes the aggressiveness of the leukemic clone. Varying both r and d allows us to

reproduce slower fluctuations, as seen in Figure 5.1(b).

We now consider the effect of the treatment parameter inh on the number and sta-

bility of the steady states. Our results for the patient in Figure 5.1(a) are shown in Figure

5.2. For small values of inh, four equilibria exist: the healthy equilibrium (0, 0, s
d
) (dark

blue), the low equilibrium (y1,low, y2,low ≈ ymax, zlow) (green), the intermediate equilibrium

(y1,int, y2,int ≈ ymax, zint) (red), and the high equilibrium near (K,M, s
d
) (light blue). The
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Figure 5.2: The steady states and their stability are plotted as functions of inh.
For each value of inh, there are at most four equilibria: the healthy equilibrium
(0, 0, s

d
) represented by dark blue, the low equilibrium (y1,low, y2,low ≈ ymax, zlow)

represented in green, the intermediate equilibrium (y1,int, y2,int ≈ ymax, zint) rep-
resented in red, and the high equilibrium near (K,M, s

d
) represented in light

blue. However, for large values of inh, the middle and high steady states are
eliminated. Circles mark the inh value (707.95) used in our model simulation
shown in Figure 5.1(a). (a) Stem cell concentration y1 is plotted against inh. In-
terestingly, y1,low and y1,int are increasing functions of inh. (b) Mature leukemic
concentration y2 is plotted against inh. A saddle-node bifurcation occurs when
inh ≈ 593, and the low and high equilibria are eliminated. (c) Immune cell con-
centration z is plotted against inh. (d) The real part of the dominant eigenvalue
is plotted against inh. When these values are above (below) the dashed line
λ = 0, the corresponding fixed points are unstable (stable). Hence, we see that
the healthy and intermediate steady states are always unstable, while the low
and high equilibria are always stable.
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healthy and intermediate equilibria are always unstable, as indicated by negative real parts

of the dominant eigenvalues in Figure 5.2(d). The low and high equilibria are stable. These

stability results are in agreement with our analysis in the previous sections.

Although both the low and high equilibria are stable, the high equilibrium has a larger

basin of attraction, so most simulations converge to this equilibrium rather than the low

equilibrium. Since we would like treatment to decrease the leukemic population significantly,

one possible strategy is to drive the leukemic population toward the low equilibrium, either

by expanding the basin of attraction of the low equilibrium or by eliminating the high

equilibrium. As we will see, the latter occurs in our simulation.

As inh increases, the mature leukemic concentration of the high equilibrium y2,high

decreases. When inh ≈ 593, there is a saddle-node bifurcation. The high stable equilibrium

collides with the unstable intermediate equilibrium, and both are eliminated for larger values

of inh. This result also supports our analysis. In our model simulation shown in Figure

5.1(a), inh = 707.95. This value is indicated in Figure 5.2 with circles. Thus, during

IM therapy, only the stable low equilibrium and unstable healthy equilibrium exist, so the

patient converges to the low equilibrium.

Interestingly, in Figure 5.2(a), we see that the steady state leukemic stem cell con-

centration is an increasing function of inh. Large values of inh, while effective against the

mature leukemic population, allow a large residual leukemic stem cell population to persist.

As inh increases, the leukemic stem cell concentrations approach the carrying capacity K,

which is approximately marked by the light blue line. A large leukemic stem cell population

increases the risk of resistant subpopulations that could eventually cause relapse. This result

suggests that treatment should achieve an inh value large enough to drive the leukemia to the
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low equilibrium but small enough to prevent a large residual leukemic stem cell population.
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Chapter 6: Applications and Extensions

In this section, we apply our modeling framework developed in Chapter 4 to studying

various aspects of CML. We first present fits of our model to patients treated with second-

generation TKIs nilotinib and dasatinib. We then expand our model in order to study drug

resistance, treatment cessation, and combination therapy.

6.1 Dynamics During Therapy with Second-Generation TKIs

A group of 46 patients with CML was monitored at the Centre Hospitaller Lyon Sudd

during therapy with second-generation TKIs. One group of 21 patients was treated with

dasatinib (100 gm daily), while the other 25 patients were treated with nilotinib (600 gm

daily). The BCR-ABL ratios were measured at diagnosis, months 3, 6, 9, and 12, and every

six months thereafter. The average follow-up time for these patients is 25.14 months (range:

2.06 - 62.33), with an average of 6.98 measurements during this time (range: 2 - 14). Six

dasatinib patients change TKIs, one of whose disease progresses. Two nilotinib patients also

change TKIs, both of whose disease progresses.

In comparison to the IM data, the average follow-up time is much shorter. Only seven

patients (4 dasatinib, 3 nilotinib) have at least ten measurements. We chose not to include

any patients taking dasatinib or nilotinib in [17] because of the shorter follow-up times and
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the smaller number of patients per drug. A shorter follow-up time makes it more difficult

to evaluate our model’s ability to fit patients treated with second-generation TKIs. It is

also difficult to classify a patient’s immune response to CML, as such a response during

IM therapy seems to occur only after several months to a few years of therapy. Still, 23 of

the 38 patients who do not relapse and whose disease does not progress show at least one

increase in BCR-ABL ratio during therapy. Thirteen even show increases that are larger

than 0.5-log. Our previous modeling results suggest that these fluctuations may represent a

patient’s immune response to CML.

In order to further investigate this phenomenon, we applied the model in Equations

(4.1a)-(4.1e) to these patients. Fits to patients treated with dasatinib are shown in Figures

6.1(a)-6.1(c), while fits to patients treated with nilotinib are shown in Figures 6.1(d)-6.1(f).

The universal parameter values used in these simulations are the same ones in Table 4.1

of Chapter 4. Patient-specific parameters are given in Table 6.1. These particular patients

were chosen because they have the largest number of measurements. However, we note that

the patients in Figures 6.1(b), 6.1(c), and 6.1(e) change TKIs (at months 20, 28, and 9), and

the patient in Figure 6.1(e) shows disease progression (at month 10). The remaining three

patients have no adverse events.

Patient inh1 inh2 dz µ ymin ymax

1 21.056 349.677 0.119 3.972 · 10−8 1.246 · 104 3.401 · 105
2 40.701 14.192 0.122 1.039 · 10−7 1.481 · 105 3.483 · 105
3 1.122 810.343 0.046 6.314 · 10−7 4.488 · 104 2.291 · 105
4 1.026 11253.417 0.021 1.558 · 10−8 2.309 · 102 2.103 · 104
5 83.619 15.117 0.084 2.488 · 10−7 6.478 · 104 2.016 · 105
6 18.676 161.473 0.047 1.492 · 10−8 1.456 · 104 8.915 · 104

Table 6.1: Patient-specific parameter values for patients shown in Figure 6.1.

Similar to patients treated with IM, patients treated with second-generation TKIs
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Figure 6.1: Fits of the model given in Equations (4.1a)-(4.1e) to patients treated
with second-generation TKIs. Patients were treated with either dasatinib (Fig-
ures 6.1(a)-6.1(c)) or nilotinib (Figures 6.1(d)-6.1(f)). The base-10 log of the
BCR-ABL ratio is plotted against time, in months. Dots represent patient data,
and the solid lines represent the simulations. Dashed lines show the BCR-ABL
ratios that correspond to the ends of immune window, ymin and ymax. Dotted
lines approximate the minimum leukemic level that is detectable by RT-PCR.
Dots along this line represent zero measurements, meaning CML cells were not
detected.
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appear to exhibit three phases of leukemia reduction: a first sharp exponential decline,

a second slower exponential decline, and a period of fluctuations that may be caused by

leukemia-immune interactions. Patients’ immune windows tend to span approximately one

order of magnitude. The patient shown in Figure 6.1(d) has a larger immune window.

Interestingly, our model suggests that this patient’s immune response to CML results in

eradication of the disease. The patient’s BCR-ABL ratio levels off at around 10−7 which

corresponds to a leukemic stem cell concentration of less than one cell. Overall, these fits

to patients’ initial responses to second-generation TKIs suggest that this model is capable

of capturing the dynamics of patients treated with both IM and second-generation TKIs

dasatinib and nilotinib.

6.2 Incorporating Drug Resistance

We study the effects of pre-existing resistant leukemia by incorporating sensitive and

resistant subpopulations into our model, resulting in the following system of ODEs.

ẋ1 = rxx1(1−
x1 + y1
Kx

)− µx1z

1 + ϵ(x2 + y2)2
, (6.1a)

ẋ2 = axx1 − d2x2 −
µx2z

1 + ϵ(x2 + y2)2
, (6.1b)

ẏ1 = ryy1(1−
x1 + y1
Ky

)− µy1z

1 + ϵ(x2 + y2)2
, (6.1c)

ẏ2 = ayy1 − d2y2 −
µy2z

1 + ϵ(x2 + y2)2
, (6.1d)

ż = sz − dzz +
α(x2 + y2)z

1 + ϵ(x2 + y2)2
. (6.1e)

In this model, sensitive leukemic cells x and resistant leukemic cells y are divided into stem

cells (x1 and y1) and mature cells (x2 and y2). For simplicity, we do not further distinguish

between cycling and quiescent leukemic cells nor do we include progenitor compartments.
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Sensitive and resistant cells are described by the same pair of equations, except that their

stem cell carrying capacities K and differentiation rates a may differ. Competition between

sensitive and resistant cells is incorporated at the stem cell level with the terms 1 + x1+y1
Kx

and 1 + x1+y1
Ky

.

Prior to treatment, sensitive and resistant leukemic populations are assigned the same

parameter values. Specifically rx = ry := r, Kx = Ky := K, and ax = ay := a. TKI

therapy is assumed to inhibit the sensitive leukemic population by decreasing its stem cell

carrying capacity to K ′
x = K

inh0
and its differentiation rate to a′x = a

inh1
. On the other

hand, resistant leukemic cells are assumed to be completely resistant to TKIs, that is, K ′
y =

Ky = K and a′y = ay = a. Initially, it is assumed that the sensitive population is at its

equilibrium for the system without an immune response or a resistant subpopulation (that

is (x1(0), x2(0)) = (Kx,
axKx

d2
)). A small resistant population is introduced (y1(0), y2(0)) =

(1.6667 · 10−3, 1.6667·10
−3ay

d2
), and immune cells are set to z(0) = sz

dz
.

We consider the effect of inh := inh0inh1 on the time to relapse, which we define as

a BCR-ABL ratio exceeding 1. Figure 6.2 shows the time to relapse as a function of inh.

Figure 6.3 shows simulations of a patient’s BCR-ABL ratio during treatment, for specific

values of inh. It is clear from these figures that time to relapse is a nonmonotone function of

drug inhibition. Specifically, in some cases, increasing the drug’s effect results in an earlier

time to relapse.
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Figure 6.2: Relapse time is plotted as a function of inh = inh0inh1. A relapse
time of zero indicates that the patient’s BCR-ABL ratio never falls below 1 during
therapy. Simulations were run for 20 years. A relapse time of 20 years, therefore,
indicates that the patient does not relapse during simulation. Initially relapse
time is an increasing function of drug time. For larger values of inh, the immune
system plays a significant role, and relapse time becomes a nonmonotone function
of inh. In fact, an inh value that is too large can result in a faster relapse. The
following parameter values are used in these simulations: r = 0.008,K = 41.6667,
a = 2.16 · 105, d2 = 0.06, µ = 10−8, sz = 2.4, dz = 0.02, ymin = 104, ymax = 105,
inh0 = 1.32, inh1 =

inh
inh0

.
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Figure 6.3: Simulations of a patient’s BCR-ABL ratio for inh = inh0inh1 = 10n,
n = 1 (blue), 2 (red), 3 (green), 4 (black), 5 (purple), 6 (light blue). All other
parameters are those given in the caption of Figure 6.2. We see that inh = 104

results in the latest relapse, at about 19 years, which is over four years after the
relapse times when inh = 105 or inh = 106.
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6.3 IM Cessation

We now apply our mathematical model to study the dynamics of IM cessation and the

potential benefits of carefully-timed vaccines. We incorporate vaccine cells v into our model

as follows:

ẏ0 = b1y1 − a0y0 −
µy0z

1 + ϵy23
, (6.2a)

ẏ1 = a0y0 − b1y1 + ry1(1−
y1
K

)− d1y1 −
µy1z

1 + ϵy23
, (6.2b)

ẏ2 =
a1
inh1

y1 − d2y2 −
µy2z

1 + ϵy23
, (6.2c)

ẏ3 =
a2
inh2

y2 − d3y3 −
µy3z

1 + ϵy23
, (6.2d)

ż = sz − dzz + αz
(y3 + v)z

1 + ϵy23
, (6.2e)

v̇ = ϕv(t)− dvv −
µvz

1 + ϵy23
. (6.2f)

Here, Equations (6.2a)-(6.2d) are the same as in Equations (4.1a)-(4.1e) in Chapter 4. Equa-

tion (6.2e) is similar to Equation (4.1e), except that the vaccine cells provide an additional

stimulus to the immune cells. We assume that vaccine cells do not contribute to immuno-

suppression, hence they are not included in the denominators. Vaccine cells, which are

represented by Equation (6.2f), are introduced at a rate ϕv(t) and die naturally at a rate dv

and as a result of an immune response at a maximal rate µ and with suppression constant ϵ.

The source term is zero, except for the periods during which the vaccines are administered.

Similar to [43], we assume that each vaccine is delivered over the course of a day.

Treatment cessation is simulated by reducing the inhibition parameters inh1 and inh2

to the values inh′1 and inh′2, thus resulting in partially restored proliferative capacities of

leukemic progenitors and mature cells. If we were to assume that the pre-treatment and
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Figure 6.4: Simulation of successful treatment cessation. A patient’s BCR-ABL
ratio (solid line) is shown as a function of time in months. For the first 84
months, the patient is treated with IM therapy (red). At month 84, the patient
stops therapy (blue). Despite having a small residual leukemic population which
initially grows, the patient does not relapse. Rather, treatment cessation results
in an immune response that eliminates the leukemic population. Thus, this
patient will remain in TFR indefinitely. Dotted lines mark the patient’s immune
window. For this simulation, we set dv = 0.35, inh′1 = inh1, and inh

′
2 = inh2/10.

All other parameters are those of Patient 12 in Chapter 4.

post-treatment leukemic populations have similar growth rates, then we could set inh′1 =

inh′2 ≈ 1 during treatment cessation. However, as suggested in [97], it is possible that IM

exerts a selective pressure on the leukemic population that may result in post-treatment

cells with less proliferative capacity. We therefore choose inh′1 = inh1 and either inh′2 =

inh2/10 or inh2/100. We recall that treatment cessation trials have produced two disparate

results. While 60% of patients relapse within the first six months, 40% achieve durable

TFR. Moreover, in many patients who achieved TFR, residual levels of leukemia persisted.
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In our simulations, the success of treatment cessation depends both on the patient’s immune

profile and the growth kinetics of the post-treatment leukemic population. For a single

representative patient treated with IM (patient 12 in Chapter 4), we simulate treatment

cessation starting at month 84. During treatment, IM is assumed to decrease the proliferation

of progenitors by a factor inh1 = 1.5201 and to decrease the proliferation of mature cells by

a factor inh2 = 265.6435. All other model parameters for this patient are shown in Tables

4.1 and 4.2.

We first consider the case when inh′2 = inh2/10. That is, the proliferative capacity of

leukemic cells is partially restored by treatment cessation. Although the leukemia initially

grows, the patient’s immune system is able to mount an efficient response that eliminates

the residual leukemia. Therefore, this patient remains leukemia-free indefinitely without

resuming IM therapy. This behavior, shown in Figure 6.4, represents the best possible

outcome of treatment cessation. On the other hand, if we assume that the post-treatment

leukemia’s proliferative capacity is almost fully restored, by setting inh′1 = inh1 = 1.5201

and inh′2 = inh2/100 = 2.6564, then the patient relapses shortly after treatment cessation.

In our simulations, we resume IM therapy at month 85, one month after cessation, as this

is a likely first follow-up time during cessation. The results of this unsuccessful treatment

cessation are shown in Figure 6.5(a).

For patients who relapse, we consider a combination of IM therapy and vaccines. The

vaccines are intended to maintain a patient’s immune response to CML when the leukemic

stimulus alone becomes insufficient. This prolonged immune response may result in fur-

ther control or even elimination of the residual leukemia. We therefore construct a vaccine

schedule based on a patient’s individual immune profile and response to IM therapy. For
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Figure 6.5: Residual leukemia can be eliminated by a sequence of vaccines. (a)
This patient is treated with first-line IM and achieved a BCR-ABL ratio around
10−2 (red) during treatment. Treatment cessation (blue) starts at month 84.
The patient relapses within the first month and resumes therapy starting at
month 85 (green). A sequence of seven vaccines during IM therapy results in the
elimination of the leukemic burden. (b) This figure focuses on the time during
which the vaccines are administered. Each vaccine delivers 105 cells/mL over a
one-day period. These cells die at a rate dv = 0.35. The solid red line represents
leukemia, while the thick dotted red line represents immune cells. The black
curve represents vaccine cells, and the immune window is marked by thin dotted
red lines. Each of the seven vaccines boosts the total leukemic concentration
into the immune window, thus sustaining immune cells that would otherwise
contract. (c) The effects of a variable number of vaccines on the mature leukemic
population are shown. Administering as many as six vaccines is insufficient to
eliminate the leukemia. However, applying seven vaccines sustains the immune
response long enough to drive the leukemia to extinction. (d) If we increase the
individual vaccines to 2.5 · 105 cells/mL, then only three vaccines are needed to
cure the patient.
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simplicity, just like in [43], we assume that each vaccine delivers a total of 105 cells/mL

over a period of one day. Using the MATLAB function fminbnd, we optimize the timing of

each vaccine, one at a time. That is, the time of the first vaccine is chosen to minimize the

leukemic concentration following the vaccine. Then, the time of the second vaccine is chosen,

and so on. Although this is a simplification of the full optimization problem in which all

vaccine times are chosen in parallel and doses are allowed to vary, this strategy still produces

successful treatment outcomes in many cases.

As previously mentioned, the patient shown in Figure 6.5(a) relapses within one month

of IM cessation and resumes treatment at month 85. Figure 6.5(c) shows the effects of

administering a variable number of vaccines during IM therapy. Administering up to six

vaccines reduces a patient’s leukemic temporarily below the immune window. However, once

the vaccines are stopped, the leukemia is able to return to its original low-level equilibrium

concentration. A sequence of seven vaccines administered during IM therapy results in the

elimination of the residual leukemia, as shown in Figure 6.5(b). Increasing each vaccine’s

dose to 2.5 · 105 cells/mL decreases the number of vaccines necessary to cure the patient to

three, as seen in Figure 6.5(d).

In summary, our model is able to reproduce a TFR in a patient with a small residual

leukemic population at the time of IM cessation. Surprisingly, our modeling results suggest

that treatment cessation alone may result in the elimination of the residual leukemia that

remains even after several years of IM therapy. As suggested in [97], TFR may be partially

explained by a selection effect caused by long-term IM therapy, resulting in a less aggressive

leukemic clone than the one present at diagnosis. However, we acknowledge that many other

factors may play a role in successful treatment cessation, including a patient’s immune profile
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(which may be affected by IM), the partial restoration of the microenvironment, or dynamics

at the stem cell level. Our modeling framework offers a quantitative tool for exploring these

factors.

For patients who relapse during IM cessation, we propose a combination therapy that

involves IM and patient-specific, carefully-timed vaccines. Unlike IFNα, which is limited in

may cases due to significant toxicity, vaccines offer a low-risk strategy aimed at boosting a

patient’s immune response to CML. This combination may improve a patient’s likelihood of

achieving a TFR if they stop IM therapy a second time. In some cases, these vaccines may

even result in cancer elimination, thus guaranteeing a durable disease-free state.
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Chapter 7: Conclusion

Thanks to TKI therapy, CML has been transformed into a chronic condition in which

patients’ life expectancies are similar those of their healthy counterparts. TKIs specifically

target the constitutively active tyrosine kinase encoded by the BCR-ABL fusion oncogene, a

mutation that is present in the majority of CML patients and which drives the disease. While

TKIs have significant effects on BCR-ABL+ leukemic cells, they leave healthy cells mostly

intact, in contrast to IFNα which is toxic to all cells. Because of their superior outcomes and

their limited toxicity, TKIs remain the primary first-line therapy in the treatment of CML.

Despite these improvements, several open questions remain regarding the treatment

of CML. It is unclear whether TKIs alone are capable of eliminating the leukemic burden.

Most CML patients continue TKI therapy indefinitely, which is both expensive and may

compromise a patient’s quality of life. Although many patients respond extremely well to

TKI therapy and achieve deep remissions, most continue to harbor detectable leukemic clones

even after several years of therapy [86]. This may be partially explained by the claim that

quiescent leukemic stem cells are insensitive to TKIs [29, 80]. The extent of the effects of

TKIs on leukemic subpopulations, particularly leukemic stem cells, remains undetermined.

A more complete understanding of their global mechanisms of action would allow us to

identify any limitations of TKI monotherapy and to propose novel combination therapies
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that may be able to target any leukemic subpopulations that are insensitive to TKIs.

Even if TKIs prove incapable of eliminating all leukemic cells, the IM cessation tri-

als [60, 86] have shown that this is not necessary to achieve TFR. These trials found that

patients who respond especially well to TKI therapy may be safely taken off these drugs,

with about 40% achieving durable TFRs that last for many years. Many of these patients

have detectable leukemic populations yet do not relapse. One study [14] detected leukemic

stem cells in patients who had remained in TFR for up to eight years. Given the persistence

of CML during treatment cessation, there must be some alternate mechanism(s) controlling

the residual disease. A better understanding of these mechanisms would help clinicians to

identify the best candidates for treatment cessation.

The IM cessation trials suggest that about 10-15% of patients diagnosed with CML will

achieve TFR. This low percentage motivates the question of how treatment can be improved

to achieve more TFRs. One possible strategy is to modify the inclusion and relapse definitions

used in the trials. In STIM [60] and TWISTER [86], patients were included only if they

had achieved UMRD for the last two years. Relapse was defined as two consecutive positive

measurements (loss of UMRD), where STIM additionally required a 1-log increase between

these two measurements. It is possible that these criteria unnecessarily exclude patients and

may cause others included in the trials to resume treatment before it is needed. Several

recent studies [59, 88, 92] are exploring relaxed criteria, with positive preliminary results.

These new criteria may allow up to 20-25% of CML patients to achieve TFR.

Even with these new inclusion and relapse criteria, many patients will not respond

well enough to TKI monotherapy to become eligible. Combinations of TKIs with IFNα are

being investigated by several groups [32, 72, 78] in order to further control and reduce the
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residual leukemic population. Because IFNα and TKIs have very different mechanisms of

action [96], it is believed that their combination may have a synergistic effect. While TKIs

will likely be responsible for removing the majority of the tumor burden, IFNα may target

leukemic stem cells that would otherwise survive TKI therapy. Still, the long-term benefits

of these combinations are not yet known. Moreover, the optimal scheduling of these two

agents is an open research question that is especially difficult to address strictly through

experimentation.

Mathematical modeling is a complementary tool to experimental and clinical data that

can provide valuable insights into the treatment of CML. In general, mathematical models

can be applied to study the underlying mechanisms driving an observed behavior that are

difficult to access directly through experiments. They provide an inexpensive environment

for testing hypotheses that are too expensive or unethical to study in a clinical setting.

When physical experiments and clinical trials are possible, modeling results can be used to

guide the experimental design, by identifying the most important parameters and the times

at which they should be measured. They can also provide insight into long-term effects

that will not be observable for several years. When combined with experimental and clinical

data, mathematical models can lead to improvements in patient care and well-being, which

I believe is the ultimate goal of mathematics applied to medicine.

Several mathematical modeling groups have studied various aspects of CML, including

hematopoiesis, cancer genesis, treatment, and drug resistance. Michor et al. [65] construct

an ODE model of CML that divides healthy and leukemic cells into four compartments

based on their maturity. Roeder et al. [85] develop an ABM that also divides healthy and

leukemic cells based on maturity but further divides stem cell into cycling and quiescent
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compartments. Both models are able to reproduce the biphasic exponential declines that

characterize many patients’ initial response to IM. In the Michor model, the first steeper

decline is explained by a decrease in the proliferative capacity of differentiated leukemic

cells, while the second slower decline is explained by a similar effect on leukemic progenitors.

The Roeder model attributes this biphasic decline to two effects on cycling leukemic stem

cells: an immediate degradation effect followed by a change in the regulatory response of the

remaining cells. Interestingly, both models initially assume that a subset of leukemic stem

cells is unaffected by IM. In a later paper analyzing patients’ long-term responses to IM

with the Michor model, Tang et al. [98] find that some patients show triphasic exponential

declines. They hypothesize that the third decline may indicate an effect of IM on immature

leukemic cells, possibly leukemic stem cells.

Although both models are able to reproduce the monotonic biphasic and triphasic

declines observed in some CML patients during IM therapy, our patient data indicates that

many patients show nonmonotonic fluctuations in their BCR-ABL ratios. These fluctuations

do not indicate relapse in the majority of cases and seem to be a natural part of the dynamics

during therapy. The fact that neither the Michor model nor the Roeder model can reproduce

these fluctuations suggests that an additional mechanism not included in either plays a

critical role during IM therapy.

We therefore constructed a mathematical model that integrates CML and a patient’s

autologous immune response (see Chapter 4). Our choice to model the autologous immune

response to CML is motivated by clinical evidence that a patient’s immune system plays

a significant role in the dynamics of the disease. Allogeneic bone marrow transplants and

IFNα, two common treatments for CML prior to TKIs, work in part by stimulating an im-
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mune response against CML. IFNα has reemerged as a potential treatment in combination

with TKIs because of the former’s ability to target leukemic stem cells and its immunostim-

ulatory effects. The treatment cessation trials further support a critical role of a patient’s

immune response during TKI therapy. The fact that some patients achieve TFR despite

detectable leukemia suggests that another mechanism, such as the immune system, is con-

trolling the residual disease. This hypothesis is further supported by the observation that

TFR is associated with prior IFNα therapy and higher concentrations and functionality of

NK cells [39, 66, 74, 81], memory CD8+ T cells [102], and CD86+ dendritic cells [11]. Our

model allows us to investigate the effects of an immune response on the dynamics during

TKI therapy.

Our modeling framework divides leukemic cells into quiescent and cycling stem cells,

progenitors, and mature cells. We additionally include a compartment representing immune

cells that are able to detect and eliminate leukemic cells. We encode in our model an immune

response in which small leukemic loads are an insufficient stimulus, while large leukemic loads

suppress the immune system, thereby limiting its response to CML. However, at intermediate

leukemic concentrations, which we call an immune window, a balance between immunostim-

ulation and immunosuppression is achieved, and the autologous immune system is able to

mount an efficient response against CML. This mechanism allowed us to fit our model to

patients showing nonmonotonic variations in leukemic load.

Based on our patient data, modeling results, and analysis, we hypothesize that patients

receiving TKI therapy go through three phases of leukemia reduction. The initial two phases

are similar to the biphasic decline previously described in [65,85]. During this time, because

leukemic loads are still large, the immune system plays a minimal role, and the decline
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in the leukemic population is driven primarily by the drug. However, as a result of the

biphasic decline, the leukemic load may be driven into the immune window, which allows

the immune population to develop an efficient first response, often resulting in a sudden

sharp decline in BCR-ABL ratio. This first response marks the beginning of the third

stage of therapy. The leukemic population is driven below the immune window, causing the

immune population to contract, allowing the leukemia to partially recover. Eventually the

leukemia reenters the immune window, which initiates another weaker immune response.

This process repeats, producing oscillations in the leukemic and immune populations as the

two populations approach equilibrium. It is during this third phase that fluctuations in

BCR-ABL ratio are typically observed.

Our patient data and modeling results suggest that a patient’s autologous immune

system plays a significant role in the dynamics of TKI therapy. Moreover, the fluctuations

that occur following the biphasic exponential decline may be explained by the immune system

and therefore serve as a signature of a patient’s individual immune profile. Our mathematical

model is a potential tool for quantifying such inter-patient differences, in order to design

patient-specific therapies aimed at achieving TFR.

The ability of our modeling framework to reproduce the dynamics of many patients

during IM therapy suggests that it may serve as a valuable tool in studying other aspects of

CML. Our model is able to fit CML patients treated with second-generation TKIs dasatinib

and nilotinib, as shown in Section 6.1. We also include in Sections 6.2 and 6.3 preliminary

results of applying extensions of this model to drug resistance, treatment cessation, and

combination therapy. A more thorough investigation of these topics may require us to add

more biological detail to this model which can be done, for instance, by incorporating variable
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healthy cell populations, distinguishing between immune subtypes, or introducing the effects

of the microenvironment. These directions are left for a future work.

This dissertation is the product of an active collaboration between clinicians, experi-

mentalists, and mathematicians aimed at using adaptive and quantitative tools to improve

patient care. Working directly with clinicians has not only given us access to data but

has allowed us to construct a more realistic mathematical representation of CML through

their feedback. We were then able to apply the model to study clinically-relevant questions.

We believe that an interdisciplinary environment is the ideal setting for studying complex

diseases like CML, as each group offers unique resources, insights, and perspectives. This

project has convinced me that the most efficient path toward advancing our medical knowl-

edge is through an interdisciplinary and collaborative approach in which both data and ideas

are shared.
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