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Chapter 1

Introduction

1.1 The mean curvature flow: a model for geo-

metrically based motions

Geometrically based motions and their numerical approx-

imation

Partial Differential Equations (PDE’s) were conceived to model the evolution of

physical phenomena on one hand, and to describe objects of differential geometry

on the other hand. These two aspects can easily overlap. For example, in many

cases of physical modeling, part of the phenomenon is an evolution in time of a

geometric object according to some given relationship between different geometric

and kinematic quantities. In this case the model is called a Geometrically Based

Motion (GBM).

GBM arise in various mathematical and applicative settings. The study of

these highly nonlinear PDE’s, both analytically and computationally, constitutes

a nontrivial mathematical and numerical challenge. In recent years much effort
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has been invested in order to get a better understanding of GBM and the im-

plementation of numerical methods to simulate them. This is due not only to

the interesting mathematical theories that must be developed, but also to the

interest that non-mathematicians have in the solutions of such equations whose

applicability fields range from Materials Science to General Relativity, from Phase

Transition to Medical Imaging [HI97, MS95, SO89].

This dissertation focuses on the numerical approximation of the mean cur-

vature flow, which is a model PDE describing a GBM. We investigate a finite

element method that approximates the exact solution of the mean curvature flow

of graphs described in section 1.2.

Aposteriori error estimates

Numerical schemes for the solution of PDE’s should be implemented in both a

reliable and an efficient way, so as to achieve the best accuracy possible with the

least expenditure of computing time and space.

Adaptive finite element methods have provided a very useful tool for the imple-

mentation of efficient and reliable algorithms that are used in different application

fields from Computational Fluid Dynamics to Materials Science.

A mathematically sound starting point for the derivation of reliable and effi-

cient adaptive finite element methods are the aposteriori1 error estimates. Apos-

teriori error estimates based adaptive methods have been used with success for

linear elliptic partial differential equations starting in the late seventies [BR78].

1We will be using the somewhat barbaric but practical version of the Latin “a posteriori”

by contracting it into “aposteriori” (See [GT83, p.3] for a similar remark). Notice that we do

not italicize the Latin in the text.
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These methods prove especially useful in problems which solution has localized

singularities. In this case the computational effort is reduced, by reducing the

amount of “wasted” resolution. The finite element meshes are adaptively de-

signed so as to reduce this waste.

Following the pioneers there has been extensive work treating linear and, to

a much less extent, nonlinear elliptic and parabolic problems during the last two

decades of the past century.

The monographs by Verfürth [Ver98] and Ainsworth & Oden [AO00] survey

the situation for elliptic equations. Some nonlinear situations are discussed by

Verfürth, but the generality of the discussion prevents the understanding of the

fine details that an ad hoc analysis might provide. This necessitates the more

careful study of particular equations [FV02].

As for the parabolic problems, the most ambitious work in the literature is

the series of articles by Johnson and his coworkers [EJ91]. While their coverage

of the linear case is very deep and general, the one for the nonlinear case leaves

much room for improvement. The ad hoc approach to these problems remains

the best means to exploit successfully some particular nonlinear structure of the

problem at hand, as exemplified by the articles of Nochetto, Savaré, Schmidt &

Verdi [NSV00a, NSV00b].

The Mean Curvature Flow, which we will be dealing with in this dissertation,

is yet another example that is not even included in the “theories” on aposteriori

error estimates for nonlinear parabolic problems. A fundamental reason for this

is the nonuniform parabolic nature of the equation.
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Reliability of error estimators

As mentioned in the previous paragraph error estimators must satisfy two fun-

damental properties: reliability and efficiency. In this work we will be mainly

concerned with the first aspect. We will derive upper bounds as aposteriori error

estimates for the mean curvature flow of graphs. The major issue, besides estab-

lishing the mathematical results, is relating these estimates to computations by

exploring how reliable the upper bounds are. In the derivation of the estimates

one has to inevitably use inequalities; thus, no matter how careful is the anal-

ysis, the reliability is somewhat compromised. Hence, the estimators must be

also tested practically in many different situations to obtain effective conclusions

about their usefulness. The tests can be divided in two distinct categories. The

first category consists of so-called benchmark problems of which the exact solu-

tion is known; the true error can be evaluated and compared to the estimators

providing a reliability measure of the upper bound. The second category of tests

consists of problems where the exact solution is not entirely known; here we can

track the experimental asymptotic behavior of the estimators by successive global

refinements of the mesh.

1.2 What is the Mean Curvature Flow (MCF)

and what motivates its study

Let T ∈ R+ and Γ(t) be a codimension 1 submanifold (with or without boundary)

of a Riemannian manifold M , for each t ∈ [0, T ]. That is, we give ourselves

a real-parameter family of submanifolds. The real parameter is thought of as

time. Although the theory of MCF goes through in a very general setting as in
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Ambrosio’s notes [Amb97], in our study we will be dealing with the case of proven

physical relevance in which M is the Euclidean space Rd+1 with d ∈ [1 : 3]. Thus

Γ(t) is either a plane curve, or a surface in space, or a 3-submanifold of the 4-

dimensional space. We refer to Γ(t) as “surface” in all these cases, although Γ(t)

might actually not be a 2-dimensional manifold.

The family of surfaces {Γ(t)}t∈[0,T ] is said to be a Mean Curvature Flow (MCF)

if at each instant t ∈ [0, T ] and at each non-boundary point x ∈ Γ(t) the normal

velocity vector V (x, t) x ∈ Γ(t) is negatively proportional to the mean curvature

H(x, t), that is

(1.1) V (x, t) = −H(x, t).

Let ν(x, t) be a choice of a normal vector such that

(1.2) H(x, t) = −1

d
(κ1(x, t) + · · ·+ κd(x, t))ν(x, t),

where the κi(x, t) are the principal curvatures of Γ(t) at x (this is the “in-

ward” normal for a sphere). We can then introduce the (scalar) normal velocity

V (x, t) := V (x, t) ·ν. By multiplying both members of (1.1) by ν we obtain the

following scalar equation

(1.3) V (x, t) = −1

d
(κ1(x, t) + · · ·+ κd(x, t)).

Conversely, assuming that the flow of the family {Γ(t)} is normal and that (1.3)

is satisfied, then it follows that (1.1) is satisfied.

If the initial surface Γ(0) is given, we pose the problem of determining the

whole flow Γ(t) as t ranges in (0, T ), assuming it obeys (1.1).

5



Mean curvature flow of graphs

If we look at a portion of Γ(t) (named again Γ(t)) that can be represented as the

graph of a function u : Ω ⊂⊂ R
2 → R, then the equation (1.3) can be written as

(1.4)
∂tu(x, t)√

1 + |∇u(x, t)|2
− 1

d
div

∇u(x, t)√
1 + |∇u(x, t)|2

= 0, for x ∈ Ω, t ∈ [0, T ]

where ∇ is the derivative with respect to x. This is the so called Mean Curvature

Flow of Graphs.

The study of (1.4) is important, not only to understand the local behavior

of the MCF as a geometrically based motion, but equation (1.4), with suitable

boundary conditions imposed on ∂Ω, arises in free boundary problems in fluid

dynamics [Bän01]. Anisotropic versions of (1.4) are encountered also in phase

transition problems [FV01, DD00]

Also, by adding one more spatial dimension — that is, Ω ∈ R3 instead of R2

— and replacing 1 + |∇u|2 with ε2 + |∇u|2 in the denominators, it is possible

to obtain the level-set formulation of the MCF and find a viscosity solution, by

taking the limit for ε → 0. Notice that the Level Set formulation is a powerful

way of describing the MCF which handles topological type changes in the family

Γ(t) [Amb97, ES91].

Examples of Mean Curvature Flow

A basic yet important example of a surface moving by mean curvature is given

by the following:

1.2.1 Example (Shrinking Sphere). Let r : [0, T ) → R
+. If Sd denotes the

unit sphere in R
d+1, we can associate to r the family of spheres

(1.5)
{
S(t) : S(t) := r(t)S2, t ≥ 0

}
.

6



We pose now the question of determining r such that this family is a mean

curvature flow.

According to our convention the curvature vector of the sphere points outward

and is a constant as a function on the sphere S(t) at a given time t. This constant

is given by 1/r(t) since r(t) is the radius of the sphere. Also this implies that the

normal velocity is given by dtr(t). Thus equation (1.3) becomes

(1.6) dtr(t) = − 1

r(t)
,

which implies

(1.7) r(t) =
√
r(0)2 − 2t.

Thus the sphere S(t) is shrinking in time, and reduces to a point at time t =

r(0)2/2. For a thorough discussion of this example, the reader is referred to the

seminal work of Huisken [Hui84], and for a discussion on “what happens after

the point singularity” it is worth reading the beautiful articles of Evans & Spruck

[ES91] and Chen, Giga & Goto [CGG91].

For a visualization of this phenomenon we refer to Figure 1.1. There we

represent a portion of the sphere as a graph of a function. When the shrinking

sphere portion becomes vertical at a boundary point of the square, the gradient

blows up and it develops a singularity. (This is an singularity of analytic nature,

due to the limitations of the graph formulation; it is different than, and not to be

confused with, the point singularity of geometric nature described above). This

singularity will be described in details in Chapter 2 and will be also used for the

benchmark computations of Chapter 4.

This is shown in the sequence of snapshots in Figure 1.1, taken from a com-

puter simulation of the MCF via a finite element code. The code is written in

7



C and relies on the ALBERT library [SS00]. We used GLTools to produce the

graphics.

1.2.2 Example (Planar angle becoming a soap film). The Mean Curvature

Flow with Dirichlet prescribed boundary conditions evolves a give initial con-

dition into a minimal surface, when the forcing term is zero. This allows to

construct many examples. For instance if the initial condition is given by

u(x, y; 0) = |1− x− y|

on the square domain [0, 1]× [0, 1], we can see a sharp angle between two planes

evolving into a smooth surface which becomes closer to a minimal surface with

time.

In the same spirit we can give another example that will be used also in

Chapter 4.

1.2.3 Example (A cone becoming a catenoid). If the MCF of graphs is

taken with zero forcing term and constant boundary values on the boundary of

the annulus Ω = B1 (0)rB1/2 (0). If the initial condition is a truncated cone, that

has zero height at the external circle of ∂Ω and has height H at the internal circle,

then the solution is a flow of a graph from the truncated cone into a catenoid as

shown in Figure 1.3. The catenoid is the minimal surface spanning two coaxial

circles.

Again here, the graph formulation leads to singular solution in some case.

The development of singularities happens for certain values of H. If H < H∗ :=

log(2 +
√

3)/2 there no singularities. If H = H∗ a singularity forms “at time

T =∞” (so technically there are no singularities), and for H > H∗ a singularity

appears in finite time [Ura94]. This will lead to interesting numerical experiments.
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As a last example in this introduction we show a curiosity which illustrates

once more the smoothing feature of the MCF.

1.2.4 Example (From an egg box to a crown). We take a highly oscillatory

initial condition on the square and flow it with our code. The results are shown

in Figure 1.4.

1.3 Plan of the dissertation

In Chapter 2 we state the initial boundary value problem that will be studied. Its

basic properties of like stability estimates are established. We also show how to

derive a weak form that allows a finite element discretization in space. Appendix

A should be referred to whenever notation doesn’t look familiar.

We the proceed to Chapter 3 which constitutes the central part of this work.

Here we develop a theory of aposteriori based error estimation. We first show

some basic geometric relations that are crucial for the analysis. We also introduce

the concept of error, indeed Sobolev norms do not allow to derive any satisfactory

estimate.

In deriving the estimates for the MCF of graphs we incidentally find ourselves

discovering new estimates for the simpler case of the heat equation. This sec-

ondary result, which is unpublished, has hence been included in Section A.3. Its

proof is simpler than the one for the MCF and it will be helpful to read it before

reading Chapter 3.

Finally, in Chapter 4 we present results from our computer simulations efforts.

The main purpose of this chapter is to show that the error bounds derived in

Chapter 3 are meaningful in practical cases.

9
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Figure 1.1: A sphere moving by mean curvature shrinks to a point in finite time.

If we represent a portion of a moving sphere as a graph of a function on a square

domain in the plane, we obtain a parabolic equation (the MCF for graphs) which

has a solution that develops a singularity on the boundary in finite time.
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Figure 1.2: A planar angle becomes a soap film. This is a parabolic smoothing

feature of the MCF. The non-smooth initial surface evolves into a minimal surface.

Minimal surfaces are used in architecture to construct beautiful and amazingly

stable structures like München’s Olympic stadium rooftop designed by Frei Otto

in the late sixties.
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Figure 1.3: Catenoids are the only axially symmetric minimal surfaces. A so-

lution of the MCF that starts from a cone, evolves into a catenoid when this

surface is a graph of a function in the annulus. Otherwise, the solution develops

a singularity in finite time.
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Figure 1.4: As seen by this series of snapshots the MCF has a very nice smoothing

property, due to the parabolic nature of the equation. The behavior is somewhat

similar to that of the heat equation, as long as gradients are small.
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Chapter 2

The Mean Curvature Flow of Graphs and its

Approximation via Semidiscrete Finite Element

Approximation

In this chapter we introduce precisely the initial-boundary value problems that

will be studied. We then review very briefly some partial differential equation the-

ory related to these problems and provide our blanket assumptions on solvability

and regularity. The weak form is then introduced and some useful stability results

are established. Finally we introduce the space-discretization of the equations via

a finite element method.

2.1 The Cauchy-Dirichlet problem for the MCF

of graphs

Let us start by introducing some definitions and hypotheses that will be assumed

throughout the dissertation. Should we ever need to relax or strengthen them, we

will explicitly state it.

15



Most of the basic notation used here and in the subsequent chapters is defined

in appendix A.

2.1.1 Hypothesis (Domain regularity). Let d ∈ {2, 3} we denote by Ω ⊂ R
d

a connected and bounded set whose boundary ∂Ω is a finite union of Lipschitz

(d− 1)-dimensional sets. The set Ω is also assumed to lie on one side of its

boundary.1 (For details, see the definition in Evans & Gariepy’s book [EG92,

Section 4.2, p. 127].)

2.1.2 Definition (Elementary surface area, surface normal and normal ve-

locity of graphs). We will use extensively restrictions of the following nonlinear

operators

Q : W1(Ω) 3 w 7→Q[w] := (1 + |∇w|2)1/2 ∈ Lloc
1 (Ω);

N : W1(Ω) 3 w 7→N [w] := (∇w;−1)/Q[w] ∈ L∞(Ω)d;

V : W1(Ω × (0, T )) 3 w 7→V [w] := ∂tw/Q[w] ∈ Lloc
1 (Ω × (0, T )).

For each function w in the spaces above Q[w](x), N [w](x) and V [w](x, t) are re-

spectively the elementary surface area, the normal vector and the normal velocity

of graphw at the point (x,w(x)) (or (x,w(x, t) if w depends on time).

Since the use of these operators is very frequent we will drop the square brack-

ets and write Qw,Nw, V w for short whenever this is not a source of confusion.

The restrictions of these operators to subspaces of their domain will be indicated

by the same symbols.

1We will refer to this kind of domain as a Lipschitz domain, and accordingly we will talk

about Ck domains. Notice that it’s crucial that the domain lie on one side of the boundary.

Assuming smoothness of the boundary alone is not enough.
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2.1.3 Problem (Cauchy-Dirichlet problem for the MCF). Given two func-

tions f : Ω × (0, T ] → R, and g : ∂p (Ω × (0, T )) → R; find u : Ω × [0, T ] → R

such that

∂tu(x, t)

Qu(x, t)
− div

∇u(x, t)

Qu(x, t)
= f(x, t), for (x, t) ∈ Ω × (0, T ];(2.1)

u(x, t) = g(x, t), for (x, t) ∈ ∂p (Ω × (0, T )) .(2.2)

2.1.4 Remark (Accelerated MCF). Notice that the factor 1/d in front of

the divergence in the mean curvature flow equation has been dropped (and will

be dropped consistently from now on). The reason for this is to keep with the

custom in related work in the literature. Thus we are actually dealing with an

“accelerated” mean curvature flow: i.e., u : Ω × [0, T ]→ R is a solution of (2.1)

with f = 0 if and only if u# : Ω × [0, dT ] → R, where u(x, t) = u#(x, dt), is a

solution of the original equation (1.4). It is important to keep this in mind when

relating to examples from geometry.

2.2 Solvability and regularity

In this section we address fundamental questions regarding Problem 2.1.3 mainly

by quoting known result and providing assumptions, some of which will hold

throughout the dissertation. We will deal with classical solutions, but will allow

singular boundary gradient behavior.

Uniqueness of a solution u ∈ C2,1(Ω × (0, T ]) for 2.1.3 follows from the ba-

sic maximum principle for quasilinear parabolic equations in Lieberman’s book

[Lie96, Theorem 9.3].

As for existence, the most noteworthy result in the literature is given by

17



2.2.1 Theorem (Solution of the Cauchy-Dirichlet problem). [Lie96, 12.8]

Let Ω be a C2 domain and let γ denote the mean curvature of ∂Ω (a function

defined thereon). If g ∈ C1+α(∂p (Ω × (0, T ])) and

(2.3) |f(x, t)| ≤ (d− 1)γ(x), ∀x ∈ ∂Ω, t ∈ (0, T ],

then there exists a unique solution u in C2,1(Ω×(0, T ])∩C0(Ω×[0, T ]) to Problem

2.1.3.

Since we will be considering more general situations, ones where the sufficient

conditions for existence are not satisfied, we have to assume that a solution exists

(uniqueness still follows from maximum principle). For example, we will consider

the Cauchy-Dirichlet problem on polygonal and non-convex domains which are

not covered by Theorem 2.2.1. Notice that the subtle relationship between the

mean curvature of the boundary ∂Ω and the right-hand side term f given by

(2.3) Consequently we always assume the

2.2.2 Hypothesis (Classical solvability). Problem 2.1.3 admits a classical

solution u in C2,1(Ω × (0, T ]) ∩ C0(Ω × [0, T ]).

2.2.3 Remark (Data regularity). It is worth emphasizing two rather obvious

consequences of Hypothesis 2.2.2; namely

f ∈ C0(Ω × (0, T ))(2.4)

g ∈ C0(∂p (Ω × (0, T ))).(2.5)

As for the contact angle we always require

2.2.4 Hypothesis (Boundary regularity of contact angle). If u solves 2.1.3

it satisfies

(2.6)
∇u
Qu
∈W1

d(Ω).
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for all t ∈ [0, T ].

2.2.5 Hypothesis (Regularity of normal velocity). If u is the solution of

2.1.3 then it satisfies

(2.7)
∂tu

Qu
∈ Ld(Ω),

for all t ∈ [0, T ].

2.2.6 Remark (Discussion of Hypothesis 2.2.4). Property (2.6) is needed in

order to apply Gauss-Green formula A.2.2 to equation (2.1), the solution u being

considered to be merely continuous up to the boundary in 2.2.2. This will allow

us to introduce the weak form in Section 2.3.

Notice that requiring (2.6) is not so demanding as∇u ∈ C0(Ω), in fact∇u/Qu

is automatically in L∞(Ω). This allows to apply the Gauss-Green formula with

less requirements from the ∇u at the boundary, than in the case of the heat

equation for example.

It is also worth noticing that while

(2.8) ∂2u ∈ L2(Ω)

is sufficient for (2.6) to hold, in dimension d = 2, it is far from being necessary.

This allows us to include in the discussion mild blow-up situations in which the

gradient of the solution becomes infinite at the boundary, as illustrated by the

following example.

2.2.7 Example (Shrinking sphere portion). We look at the shrinking sphere

of Example 1.2.1 from a graph perspective. To do this, let us assume that the

initial radius of the sphere r(0) equals 2, that its center is located at (0, 0, 0) and

that we are looking at the portion of the surface that lies above [0, 1]× [0, 1]×{0}.
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In view of remark 2.1.4 and relation (1.7), this surface is given by the graph of

the function

u : [0, 1]× [0, 1]× [0, T ]→ R

(x1, x2; t) 7→
√
r(0)2 − 4t− |x1|2 − |x2|2.

It follows that a blow-up in the gradient occurs at point (1, 1; 1/2). The solution

at time t = 1/2 is thus singular. Indeed, the gradient

(2.9) ∇u(1/2) = − id /u(1/2) 6∈ L2([0, 1]2)

and the second derivatives

(2.10) ∂i,ju(x1, x2; 1/2) = − δi,j
u(1/2)

− xixj

u(1/2)3
,

implying ∂2u(1/2) 6∈ L2([0, 1]2), whereas

(2.11)
∇u(1/2)

Qu(1/2)
= id ∈W1

2(Ω).

That is, (2.6) is satisfied but not (2.8).

Sometimes we will also need the

2.2.8 Hypothesis (Boundary regularity of time derivative). The solution u

of 2.1.3 satisfies

(2.12) ∂tu(t) ∈W1
2(Ω), ∀t ∈ [0, T ].

This hypothesis be needed in deriving the stability estimates in Lemma 2.4.1.

2.3 Weak form of the MCF of graphs

2.3.1 Proposition (Weak form of the Cauchy-Dirichlet problem). Let u ∈

C2,1(Ω × (0, T ]) ∩ C0(Ω × [0, T ]) be a given function that satisfies Hypotheses
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2.2.4 and 2.2.5. The function u is a solution of Problem 2.1.3 if and only if∫
Ω

∂tu(t)

Qu(t)
φ+
∇u(t) · ∇φ
Qu(t)

=

∫
Ω

f(t)φ, ∀φ ∈
◦

W1
1(Ω), t ∈ [0, T ];(2.13)

u(t)− g̃(t) ∈
◦

W1
1, ∀t ∈ (0, T );(2.14)

u(0) = g(0)(2.15)

where g̃(t) is an extension2 of g(t).

Proof Suppose that u solves 2.1.3 and satisfies (2.6) and (2.7), then if φ ∈
◦

W1
1

then we can multiply it with both members of (2.1) and integrate in space over

Ω to obtain ∫
Ω

f(t)φ =

∫
Ω

(
∂tu(t)

Qu(t)
− div

∇u(t)

Qu(t)

)
φ(2.16)

=

∫
Ω

∂tu(t)

Qu(t)
φ+

∫
Ω

∇u(t)

Qu(t)
∇φ,(2.17)

where the second step we make used Gauss-Green formula and the fact that the

trace of φ vanishes on ∂Ω. This is legal since the proof of Theorem A.2.2 can be

adapted very easily to the case w = ∇u/Qu ∈W1
d(Ω)∩L∞ and z = φ ∈

◦

W1
1(Ω).

Equation (2.14) is just a rewriting of (2.2) given the fact that both u(t) and g̃(t)

belong to W1
2. Finally (2.14) follows also from (2.2) for t = 0.

Conversely let u satisfy (2.6) and (2.7). If (2.13) is valid for any φ, by the

Gauss-Green formula we have

(2.18)

∫
Ω

(
∂tu(t)

Qu(t)
− div

∇u(t)

Qu(t)
− f(t)

)
φ = 0,∀φ ∈

◦

W1
1.

2The existence of such extension is guaranteed by a generalization to p = 1 of [Neč67,

Theorem 2.5.7], mentioned in [SZ90, (5.5)], as soon as g(t) ∈ L1(Ω). Recall that, in view of

2.2.3, g(t) is continuous, which means that the extension can be taken to be more regular than

W1
1.
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This implies that

(2.19)
∂tu(x, t)

Qu(x, t)
− div

∇u(x, t)

Qu(x, t)
− f(x, t) = 0, for a.a. x ∈ Ω.

Since it is assumed that u ∈ C2,1(Ω × (0, T ]), this equation must be verified for

all x ∈ Ω, which is (2.1). As for (2.1), that is an immediate consequence of

u ∈ C0(Ω), (2.14) and (2.15).

2.3.2 Remark (Weak form vs. weak formulation). The weak form of the

Cauchy-Dirichlet problem given in Proposition (2.3.1) is equivalent to the clas-

sical form, that is Problem 2.1, under suitable regularity assumptions. These

assumptions, can of course be relaxed, in an attempt to develop a theory of weak

solutions for the MCF of graphs. To the best of our knowledge at the time

of writing this dissertation there is no satisfactory theory of weak solutions for

Problem 2.1.3, in spite of the fact that the theory for weak solutions of non-

parametric minimal surfaces can be considered complete [Giu84]. For even more

general formulations of the mean curvature flow there are concepts of weak solu-

tions like the measure theoretic one of Brakke [Bra78] and the level set approach

[ES91, CGG91, Son93]. However none of these fits the equation for the mean

curvature flow of graphs that we are studying.

Since we will not be dealing with weak solutions, we assume 2.2.2, that is, the

existence of classical solutions throughout the dissertation. Notice that classical

solutions can still have unbounded gradient at the boundary.

2.4 Stability estimate

In this section we provide some basic stability estimates for the solution of Prob-

lem 2.1.3.
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We start with the following

2.4.1 Lemma (Stability estimate). Suppose u solves (2.1) and it satisfies

Hypothesis 2.2.8 (in addition to the blanket assumptions). If f is bounded in Ω

and g ∈W1
1(∂p (Ω × (0, T ))) then the following stability estimate holds

1

2

∫ t

0

∫
Ω

|V u|2Qu+

∫
Ω

Qu(t)

≤ e
∫ t
0 ‖f‖

2
L∞(Ω)/2

(∫
Ω

Qg(0) + ‖∂tg‖L1(∂Ω×(0,t))

)(2.20)

Proof Multiply both sides of the equation (2.1) by the function ∂tu and integrate

over the domain Ω (this is very similar to the proof of Proposition 2.3.1 but with

non-homogeneous boundary data):

0 =

∫
Ω

∂tu

Qu
∂tu−

∫
Ω

div
∇u
Qu

∂tu−
∫
Ω

f∂tu

=

∫
Ω

|V u|2Qu+

∫
Ω

∇u
Qu
· ∇∂tu−

∫
∂Ω

∇u
Qu
· ν∂tu−

∫
Ω

f∂tu.

The use of the Gauss-Green formula is legitimated by the fact that u satisfies

(2.6) and (2.12). Notice also that (2.7) implies that the first term is well defined.

The last two terms can be taken to the first member and bounded as following:∫
∂Ω

∇u
Qu
· ν∂tu =

∫
∂Ω

∇u
Qu
· ν∂tg

≤ ‖∂tg‖L1(∂Ω) ;

and ∫
Ω

f∂tu =

∫
Ω

f
√
Qu

∂tu√
Qu

≤ 1

2

∫
Ω

|V u|2Qu+
1

2
‖f‖2

L∞(Ω)

∫
Ω

Qu.

Since

(2.21) ∂tQu(x, t) = ∂t

√
1 + |∇u|2 =

∇u · ∂t∇u
Qu
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it follows that

(2.22)
1

2

∫
Ω

|V u|2Qu+ dt

∫
Ω

Qu ≤ ‖∂tg‖L1(∂Ω) +
1

2
‖f‖2

L∞(Ω)

∫
Ω

Qu.

To conclude, integrate in time on [0, t] and then apply Gronwall inequality (Lemma

A.2.1).

2.4.2 Remark (Geometric interpretation of Lemma 2.4.1). An interpretation

of 2.20 in terms of area of the graph Γ can be given. Indeed, the second term

on the left-hand side
∫
Ω
Qu(t) is the area of graphu(t). The gives a control on

the growth of the area in time in terms of data. For instance if the forcing term

f = 0 and the boundary conditions are stationary in time, the equation implies a

decrease in area until a stationary situation is reached. This happens for example

when the solution converges to a nonparametric minimal surface.

2.5 A space-discrete finite element method for

the MCF

In this section we finally introduce the finite element spatial discretization of

Problem 2.1.3 based on the weak form derived in Section 2.3.

Notation

Let us start by introducing the basic tools for the finite element method.

Let Th be a shape-regular triangulation (a simplicial partition) of the domain

Ω. By this we mean that Th is a set of simplexes K ⊂ Ω such that:

1. each K is a non-empty open simplex;
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2. for each K,L ∈ Th, K ∩ L is a complete subsimplex of K and L, that is, a

subset which is either empty, a vertex, a whole edge or, for d = 3, a whole face;

3. for each K ∈ Th, if we define

ρK := sup
{
ρ ∈ R+ : Bρ (x) ⊂ K

}
,

then ρK/ diam(K) ≥ σ; where σ ∈ R
+ doesn’t depend on Th (that is, σ is

independent of h). We will refer to σ as the shape (or geometric) regularity of

the triangulation

4. The union of the closures of the simplexes,
⋃
K∈Th

K =: Ωh, equals Ω.

The symbol h stands for the meshsize function of Th, which is defined by3

h(x) :=


diam(K), if x is a point of the simplex K ∈ Th;

diam(S), if x is lying on some face S ⊂ ∂K of a simplex K.

Very often h denotes also ‖h‖L∞(Ωh); that is the meshsize. For any function ψ

(including ψ = h) defined on Ωh we denote by ψK its restriction to K, where

K ∈ Th.

2.5.1 Remark (Domain approximation). Notice that the approximate do-

main Ωh, defined as the interior of the union of all closed simplexes K ∈ Th, is

assumed to be equal Ω, which means that the domain is polygonal. This is a sim-

plifying assumption that could be removed at the cost of seriously complicating

the analysis. This complication would boil down to adding an extra term in the

estimates, due to the discrepancy between Ωh and Ω. As long as the domain Ω

is not wildly behaved, the assumption Ωh = Ω doesn’t compromise our analysis.

3The subindex h which appears in Th (and all related spaces, functions and quantities) is

inconsistent, but we keep it here for historical reasons. Anytime h appears as a subscript to a

function, it “means” membership to the discrete space.
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2.5.2 Definition (Finite element spaces). We introduce the finite element

spaces that we will be using throughout the dissertation:

V
`
h :=

{
φ : Ω → R : φK ∈ P`, φ ∈W1

1(Ω)
}

(2.23)

◦
V
`
h := V

`
h ∩

◦

W1
1(Ω),(2.24)

where ` ∈ Z
+ and P

` is the space of polynomials of degree at most ` (in d

variables). By a well known result [Cia78, Theorem 2.2.3] these spaces are seen

to consist of continuous functions (thus using W1
2 instead of W1

1 in their definition

does not actually alter anything!). In the second case the functions vanish on the

boundary.

The spatial finite element semidiscretization of Problem 2.1.3 is obtained from

(2.13), by a “replacement” of the appropriate spaces.

2.5.3 Problem (Finite elements for Cauchy-Dirichlet). Let g̃h(t) ∈ V
`
h be

an interpolation of g̃(t) (the extension of g(t) introduced in 2.3.1). Find uh ∈

C1([0, T ];V`h) such that:

uh(t)− g̃h(t) ∈
◦
V
`
h,(2.25) ∫

Ω

∂tuh
Quh

φh +
∇uh
Quh
∇φh dx =

∫
Ω

fφh dx, ∀t ∈ [0, T ], ∀φh ∈
◦
V
`
h.(2.26)

The existence, uniqueness and apriori error estimates of the finite element

solution uh to Problem (2.5.3) are discussed in [DD00].
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Chapter 3

Aposteriori error analysis for the mean

curvature flow of graphs

This is the central chapter of the dissertation; its main goal will be to understand

the relationship between the exact MCF of graphs, described by the solution u

of Problem 2.1.3, and its finite element approximation, described by the solution

uh of Problem 2.5.3.

We will derive aposteriori bounds for the error between uh and u in certain

norm-like quantities. We consider general right-hand side f and time-dependent

boundary values g. One of the two main purposes for deriving aposteriori er-

ror bounds is to have a computable control over the numerical error, as all the

quantities appearing in the bound depend only on the data and the approximate

solution uh.

Problem 2.5.3 has been analyzed by Dziuk [Dzi99] from the apriori view-

point. He established an apriori error bound, that is in terms of quantities that

depend on the exact solution u. That bound, valid under rather strong regularity

assumptions on u, implies the convergence of uh to u, as h→ 0, with order h in

certain norm-like quantities. His proof is limited to homogeneous right-hand side
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f = 0 and time-independent boundary data g.

Our situation contrasts with (or rather complements) that situation, since

the aposteriori constants themselves depend on the approximate solution uh, and

are numerically computable if needed and do not require so strong regularity

assumptions on the exact solution (although such assumptions would improve

them).

As a by-product of our aposteriori analysis we also obtain a finer understand-

ing of the constants that are involved in the apriori analysis, and their dependence

on the exact solution. (By “constant” here we refer to C in an inequality of the

type error ≤ Cestimate.) The worst case scenario must be included in the anal-

ysis and the main technique for proving these bounds is the Gronwall inequality

— a linear technique applied to a nonlinear problem — so the behavior of these

constants can be very wild. Assuming we can compute exactly the constants ap-

pearing in the approximation properties of the interpolation operators that will

be used, the constants appearing in the aposteriori bound can be computed, if we

wish to.

3.1 How to measure the error

In any error analysis it is crucial to find what is the best concept of error that

fits the problem. By a concept of error we loosely mean a norm, or a metric, or

any measure of how close is the approximate solution to the exact solution in an

appropriate sense.

In finite elements for elliptic and parabolic problems, due to the variational

nature of most problems that are treated it is customary to use Sobolev norms

to measure the error. In linear problems L2 based Sobolev norms are naturally
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related to the energy norm which is in turn related to the nature of the differ-

ential operator. The extension of these norms to handle nonlinear problems has

sometimes to be made carefully. For instance in some cases, the nature of the

problem implies the use of Lp spaces with p 6= 2 .

Here we are dealing with a highly nonlinear problem and we encounter serious

difficulties in using Sobolev norms. The main problem is to relate Sobolev norms

to quantities that can be naturally extracted from the problem, like the energy

estimate of Section 2.4. This leads us to look for a concept of error that is more

appropriate to our problem. This leads us to introduce the geometric error.

3.1.1 Definition (Geometric error). Let u be the solution of Problem 2.1.3

and uh be the finite element solution give by Problem 2.5.3. For each t ∈ [0, T ],

define

A(t) :=

∫
Ω

|Nuh(x, t)−Nu(x, t)|2Qu(x, t) dx(3.1)

B(t) :=

∫ t

0

∫
Ω

(V uh(x, t)− V u(x, t))2Q(x, t)u dx dt(3.2)

The real valued functions A and B are the building blocks of the geometric

error:

B(t) + sup
[0,t]

A(s) =

∫ t

0

∫
Ω

(V uh − V u)2Qu dx ds

+ sup
(0,t)

∫
Ω

|Nuh −Nu|2Qu dx.

(3.3)

for all t ∈ [0, T ].

It’s quite apparent that the quantities measuring the error between the ap-

proximate and the exact solution are not usual (Sobolev) norms. These are not

even metrics, since the terms are not symmetric.
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The nature of these quantities is geometric as they are related to the structure

of the parabolic operator at hand, the integrals of the form ∫Ω · Qu dx in (3.3)

are just integrals over the surface Γ(t) which give us the L2(Γ) norm of the

difference of normals and the difference of normal velocities. A comparison with

the integrals appearing in the left-hand side of (2.20) explains in part why they

“fit” the problem.

It is also worth stressing that, despite our concept of error being naturally

related to MCF of graphs, it hasn’t been used in the literature for aposteriori error

control of parabolic equations. In fact, the geometric nature contrasts sharply

with the pure analytic setting found in Verfürth’s monograph [Ver98]. Geometric

quantities similar to the one we use are employed by Fierro & Veeser in their work

on the nonparametric prescribed mean curvature equation [FV02]. Owing to the

elliptic nature of their problem they are able to introduce symmetric versions of

these quantities that are more manageable. Unfortunately, in our case the use

of symmetric quantities doesn’t seem to lead to any reasonable aposteriori error

bound and we have to use non-symmetric ones.

3.2 Basic geometry

In this section we present some simple relations among geometric quantities that

will be instrumental in the derivation of the main results.

We begin with an inequality relating vectors in R
d−1 and vectors in R

d.

3.2.1 Lemma (Fierro-Veeser inequality [FV02]). Suppose p1,p2 ∈ Rd. Let

p̃i := (pi;−1) ∈ Rd+1, qi := |p̃i| (= (1 + |pi|
2)1/2) and ni := p̃i/qi for i = 1, 2.
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Then

(3.4) |p1 − p2|
1

q2
1

≤ 2 |n1 − n2|+ |n1 − n2|2 q2.

Proof Although this proof was given by Fierro & Veeser [FV02], we include it

for the sake of completeness.

Start with the simple bound

|p1 − p2| = |p̃1 − p̃2| =
∣∣∣∣p̃1 −

q1

q2

p̃2 + (q1 − q2)
p̃2

q2

∣∣∣∣
≤ |n1 − n2| q1 + |q1 − q2| .

Multiply this equation by 1/q2
1, and control the last term by observing that

|q1 − q2|
1

q2
1

=

∣∣∣∣ 1

q1

− q2

q2
1

+
1

q2

− 1

q2

+
1

q1

− 1

q1

∣∣∣∣
≤
∣∣∣∣ 1

q1

− 1

q2

∣∣∣∣+

∣∣∣∣ 1

q1

(
1− q2

q1

)
− 1

q2

(
−q2

q1

+ 1

)∣∣∣∣
=

∣∣∣∣ 1

q1

− 1

q2

∣∣∣∣+

∣∣∣∣ 1

q1

− 1

q2

∣∣∣∣2 q2

≤ |n1 − n2|+ |n1 − n2|2 q2,

where the last step we have use the fact that 1/qi is the last component of the

vector ni. Piecing together, and recalling that q1 ≥ 1 we obtain the result.

3.2.2 Lemma. With the same notation as Lemma 3.2.1 the following rela-

tions hold:

1− 1 + p1 · p2

q1q2

=
1

2
|n1 − n2|2 ,(3.5) ∣∣∣∣( 1

q1

− 1

q2

)(
p1

q1

− p2

q2

)∣∣∣∣ ≤ 1

2
|n1 − n2|2 ,(3.6)

|p1 − p2|
q1

≤ (1 + |p2|) |n1 − n2| .(3.7)
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Proof The identity (3.5) is a direct consequence of the definitions:

|n1 − n2|2 =

∣∣∣∣(p1;−1)

q1

− (p2;−1)

q2

∣∣∣∣2
= 2− 2

p1 · p2 + 1

q1q2

.

The inequality (3.6) is just Young inequality applied to the last component and

the first d components of the vector n1 − n2:∣∣∣∣ 1

q1

− 1

q2

∣∣∣∣ ∣∣∣∣p1

q1

− p2

q2

∣∣∣∣ ≤ 1

2

∣∣∣∣ 1

q1

− 1

q2

∣∣∣∣2 +
1

2

∣∣∣∣p1

q1

− p2

q2

∣∣∣∣2
=

1

2
|n1 − n2|2 .

As for (3.7) it is easily derived as follows∣∣∣∣p1

q1

− p2

q1

∣∣∣∣ =

∣∣∣∣p1

q1

− p2

q2

+
p2

q2

− p2

q1

∣∣∣∣
≤ |n1 − n2|+

∣∣∣∣ 1

q2

− 1

q1

∣∣∣∣ |p2|

≤ |n1 − n2| (1 + |p2|).

This concludes our proof.

3.3 The residual and the error equation

Throughout this chapter we will be using the following notation:

3.3.1 Definition (Notation for integral representation and duality pairing).

Given two functions v and w such that their product is in L1(D), (D,µ) being a

given measure space, we write

(3.8) 〈v, w〉D =

∫
D

v(x)w(x) dµx.
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If D = Ω we omit the subscript in the left-hand side. The only two measures we

will use are the Lebesgue measure, denoted simply by d in the integral, and the

codimension 1 (Hausdorff) measure denoted by s(d) in the integral. The choice

of the set D should imply clearly which measure we are dealing with.

In this chapter we also need to refer to the pairing of a linear functional F

acting on a function v in its domain X. For this we use a modification of (3.8)

and denote the duality pairing operation by

(3.9) 〈F | v〉 .

We say that the linear functional F admits a representation as a function if we

can write

(3.10) 〈F | v〉 =
k∑
i=1

〈fi, v〉Di

for suitable functions fi and measure spaces Di. Since we are dealing with only

two measures in our case k is at most 2.

Before starting our discussion on aposteriori bounds for the MCF, we point

out that the residual estimation energy technique that we will employ can be

applied to the simpler situation of the heat equation. This leads to aposteriori

error estimates for the heat equation that were not present in the literature to the

best of our knowledge. The result has been hence included in Section A.3. Since

the case of the heat equation entails fewer details than the MCF case, reading

it before proceeding here might prove helpful (to be sure, one should compare

Section 3.5 with Section A.3).

If (2.26) is tested with any function φ ∈
◦

W1
1(Ω) (instead of a finite element

function φh ∈
◦
V
`
h) and then subtracted from (2.13) with the same test function,
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we obtain a definition of the residual functional

(3.11) 〈R |φ〉 :=

〈
∂tuh
Quh

− ∂tu

Qu
, φ

〉
+

〈
∇uh
Quh

− ∇u
Qu

,∇φ
〉
.

The functional R is time dependent and R(t) ∈ W−1
1 (Ω), the dual space of

◦

W1
1(Ω), for all t ∈ [0, T ].

The starting point of our residual based aposteriori estimation, is to observe

that the residual functional vanishes on
◦
V
`
h. This is the so called Galerkin orthog-

onality property, which yields the error equation

〈R |φ〉 = 〈R |φ− φh〉 =

〈
∂tuh
Quh

− f, φ− φh
〉

+

〈
∇uh
Quh

,∇(φ− φh)
〉
,(3.12)

for all φh ∈
◦
V
`
h.

An integration by parts in the space variable leads to the representation of

the residual functional as

〈R |ψ〉 = 〈r, ψ〉+ 〈j, ψ〉Σh

:=

〈
∂tuh
Quh

− f − div

(
∇uh
Quh

)
, ψ

〉
+

〈s
∇uh
Quh

{
, ψ

〉
Σh

,
(3.13)

for any ψ ∈
◦

W1
1(Ω). Here Σh :=

⋃
S ◦h

S, with S ◦
h being the set of internal edges

(or faces) of the triangulation Th, and j is the jump residual defined as the jump

of the field ∇uh/Quh. The jump of a vector field ψ across a d − 1 dimensional

smooth manifold M is defined by

(3.14) JψKM (x) = lim
ε→0

(ψ(x+ εν(x))−ψ(x− εν(x))) · ν(x)

for x ∈M , here ν(x) is a unit length vector orthogonal to M at the point x. This

definition is independent on the orientation of the vector ν, and valid for vector

fields that are discontinuous on the manifold M . The function r appearing in

(3.13) is referred to as the interior residual.
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Choice of the test function

In order to exploit (3.12) for obtaining an a posteriori error estimate, it is conve-

nient to choose

φ(x, t) := ∂te(x, t);(3.15)

e(x, t) := uh(x, t)− u(x, t);(3.16)

φh(x, t) = Ihφ(x, t).(3.17)

The operator Ih could be any suitable interpolation operator from W1
1(Ω)

onto V
`
h. We choose Ih to be the Scott-Zhang interpolator of Theorem A.2.3.

In order for us to employ ∂te as a test function we must have ∂te ∈
◦

W1
1. This

motivates the following

3.3.2 Hypothesis (Exact boundary data resolution). We assume either:

(a) that the boundary value g is approximated exactly by gh.

or

(b) that g is time independent.

For what follows we will assume that this is the case to simplify the analysis.

Notice that we will remove this assumption in the last Section 3.7 and show how

to treat boundary data.
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3.4 Estimating the left-hand side of the error

equation

We estimate now the left-hand side of (3.12) using (3.11). The first term is

handled through the following inequality.

3.4.1 Lemma (Velocity term). Let

(3.18) %1(t) :=
1

2
‖∂tuh(t)‖2

L∞(Ω) ,

we have

(3.19)

〈
∂tuh
Quh

− ∂tu

Qu
, ∂tuh − ∂tu

〉
≥ 1

2
dtB(t)− %1A(t).

Proof〈
∂tuh
Quh

− ∂tu

Qu
, ∂tuh − ∂tu

〉
=

∫
Ω

(V uh − V u)2Qu+

∫
Ω

∂tuh

(
1

Qu
− 1

Quh

)
(V uh − V u)Qu

≥ dtB(t)− ‖∂tuh‖L∞(Ω)

∫
Ω

∣∣∣∣ 1

Qu
− 1

Quh

∣∣∣∣√Qu |V uh − V u|
√
Qu

≥ dtB(t)− ‖∂tuh‖L∞(Ω)

(∫
Ω

|Nuh −Nu|2Qu
)1/2(∫

Ω

(V uh − V u)2Qu

)1/2

≥ dtB(t)− 1

2
dtB(t)− %1(t)A(t)

=
1

2
dtB(t)− %1A(t)

In order to estimate the second term in (3.12) we will use the following identity.
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3.4.2 Lemma (Dziuk identity[Dzi99]). If v and w be differentiable functions

on Ω × (0, T ), then

1

2
∂t
(
|Nv −Nw|2Qw

)
=

(
∇v
Qv
− ∇w
Qw

)
· ∇ (∂tv − ∂tw)

−∇∂tv ·
(
∇w
Qv
− ∇w
Qw

+
∇v
Qv
− 1 +∇w · ∇v

(Qv)2

∇v
Qv

)(3.20)

Proof This identity, only claimed in [Dzi99], deserves a derivation. In light of

the geometric relation (3.5), we can write

1

2
∂t
(
|Nw −Nv|2Qw

)
= ∂t

((
1− 1 +∇w · ∇v

QwQv

)
Qw

)
=∂t

(
Qw − 1 +∇w · ∇v

Qv

)
.

Calculating each term separately we get

(3.21) ∂tQw =
∇w · ∂t∇w

Qw
;

(3.22) ∂t
1

Qv
= −∇v · ∂t∇v

(Qv)3

and

(3.23) ∂t (1 +∇w · ∇v) = ∂t∇w · ∇v +∇w · ∂t∇v.

It follows that

1

2
∂t
(
|Nw −Nv|2Qw

)
=
∇w
Qw
· ∂t∇w −

∇v
Qv
· ∂t∇w

− ∇w · ∂t∇v
Qv

+ (1 +∇w · ∇v)
∇v · ∂t∇v

(Qv)3
.

By subtracting and adding

∇w
Qw
· ∂t∇v

37



in the right-hand side above, isolating

(3.24)

(
∇v
Qv
− ∇w
Qw

)
· ∇ (∂tv − ∂tw)

and collecting all the remaining terms we obtain (3.20).

We can now state and prove an inequality concerning the term with gradients.

3.4.3 Lemma (Normals and gradients). Let

(3.25) %2(t) := ‖∇∂tuh(t)‖L∞(Ω) .

Then

(3.26)

〈
∇uh
Quh

− ∇u
Qu

,∇(∂tuh − ∂tu)

〉
≥ 1

2
dtA(t)− %2(t)A(t)

Proof In view of (3.20) (3.5) we start with〈
∇uh
Quh

− ∇u
Qu

,∇(∂tuh − ∂tu)

〉
=

1

2
dtA(t)

−
∫
Ω

∇∂tuh ·
(
∇u
Quh

− ∇u
Qu
− ∇uh
Quh

− 1 +∇u · ∇uh
Q2uh

∇uh
Quh

)
.

The last term above can be split by adding and subtracting (Qu∇uh)/(Quh)2 as

follows

−
∫
Ω

∇∂tuh ·
(
∇u
Quh

− ∇u
Qu

+
∇uh
Quh

− Qu∇uh
(Quh)2

)
−
∫
Ω

∇∂tuh ·
(
Qu∇uh
(Quh)2

− 1 +∇u · ∇uh
Q2uh

∇uh
Quh

)
.

We now estimate the absolute values of these terms. The first term with integral

sign above is bounded with the use of (3.6) as follows∫
Ω

∇∂tuh·
(
∇u
Quh

− ∇u
Qu

+
∇uh
Quh

− Qu∇uh
(Quh)2

)
≤ ‖∇∂tuh‖L∞(Ω)

∫
Ω

∣∣∣∣( 1

Qu
− 1

Quh

)(
∇uh
Quh

− ∇u
Qu

)
Qu

∣∣∣∣
≤ %2(t)

1

2
A(t).
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The second term with integral sign is bounded by applying again (3.5) as follows∫
Ω

∇∂tuh·
(
∇uh

(Quh)2
Qu− 1 +∇u · ∇uh

Q2uh

∇uh
Quh

)
(3.27)

≤ ‖∇∂tuh‖L∞(Ω)

∫
Ω

∣∣∣∣(1− 1 +∇uh · ∇u
QuhQu

)
Qu
∇uh

(Quh)2

∣∣∣∣(3.28)

≤ %2(t)
1

2
A(t).(3.29)

The assertion of the lemma is easily obtained.

3.4.4 Lemma (Estimate of the geometric terms). Define

%(t) := %1(t) + %2(t).

Then

A(t) +B(t) ≤A(0) + 2

∫ t

0

%(s)A(s) ds

+ 2

∫ t

0

〈R(s) | ∂t (e(s)− Ihe(s))〉 ds.

(3.30)

Proof Replacing (3.19) and (3.26) in (3.12), we obtain

(3.31)
1

2
( dtA(t) + dtB(t)) ≤ 〈R | ∂te(t)− Ih∂te(t)〉+ %(t)A(t),

for all t ∈ [0, T ]. An integration in time over the interval [0, t] yields the desired

result.

3.5 Residual estimate

We now estimate the integral of the residual term appearing in the right-hand

side of (3.30). Let us denote by d′ = d/(d − 1) the conjugate exponent of the

dimension d.
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3.5.1 Remark (Scott-Zhang interpolation and the Fierro-Veeser geometric

inequality). We will use the following properties of the Scott-Zhang interpolator,

cf. Theorem A.2.3 and corollary A.2.4:

‖ψ − Ihψ‖Ld′ (K) ≤ C1 |ψ|W1
1(U h

K) ,(3.32)

‖ψ − Ihψ‖L1(∂K) ≤ 2C2 |ψ|W1
1(U h

K)(3.33)

where U h
K is the neighborhood of the element K in the triangulation Th, that is

(3.34) U h
K =

⋃
{K ′ ∈ Th : K ′ ∩K 6= ∅} .

We use these rather unusual estimates for the Scott-Zhang interpolant because

we wish
√
A(t) to appear on the right-hand side.

Ideally we would like to bound |∇uh −∇u|2 from above by C[uh] |Nuh −Nu|2Qu,

with a constant C[uh] independent of u (think of uh being unrelated to u in this

paragraph). That is, we need a geometric relation of the type

(3.35)
|p1 − p2|

2

κ(p1) |n1 − n2|2 q2

≤ C,

where we used the notation of Lemma 3.2.1 and κ is some function. But this is

not possible because if we fix p1, we observe that n1 −n2 is bounded and we let

|p2| → ∞ we obtain

(3.36)
|p1 − p2|

2

κ(p1) |n1 − n2|2 q2

≥ C
|p1 − p2|

2

q2

= O(|p2|)→∞.

This difficulty is circumvented by using the L1 norm and the Fierro-Veeser

inequality given in Lemma 3.2.1 which reads

(3.37)

|∇uh −∇u| = Q2uh
|∇uh −∇u|

Q2uh
≤ Q2uh

(
2 |Nuh −Nu|+ |Nuh −Nu|2Qu

)
.
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Notice that the last term is the “price to pay”. Indeed, such a term is cumbersome

since the power is too high, this will yield a term of the form γA(t) on the right-

hand side (where γ is some coefficient) which has to be dealt with.

In the sequel we will need the definition of local indicators and global estima-

tors.

3.5.2 Definition (Local indicators and weights). To each simplex K ∈ Th

we can associate the following local indicators:

parabolic : ηK1 (t) := h
d/2
K

(
C1 ‖∂tr(t)‖Ld(K) + C2 ‖∂tj(t)‖L∞(∂K)

)
.(3.38)

elliptic : ηK0 (t) := h
d/2
K

(
C1 ‖r(t)‖Ld(K) + C2 ‖j(t)‖L∞(∂K)

)
;(3.39)

and the following local weights:

ωK(t) := sup
x∈U h

K

Q2uh(x, t);(3.40)

αK(t) := ωK(t)2 sup
x∈U h

K

1

Qu(x, t)
;(3.41)

Let us introduce the following

3.5.3 Definition (Global error estimators). Using the local indicators of

Definition 3.5.2, and two constants M and γ that depend only on the shape

regularity σ0 of the triangulation (see the proof of Lemma 3.5.4 for details on M

and γ). we introduce the following error estimators:

elliptic : E2,0(t)2 := γ2
∑
K∈Th

αK(t)ηK0 (t)2,(3.42)

parabolic : E2,1(t) :=

∫ t

0

Ė2,1(s) ds,(3.43)

Ė2,1(t)2 := γ2
∑
K∈Th

αK(s)ηK1 (s)2,
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elliptic conditional : E∞,0(t) := M max
K∈Th

ωK(t)ηK0 (t)h
−d/2
K ,(3.44)

parabolic conditional : E∞,1(t) :=

∫ t

0

Ė∞,1(s) ds(3.45)

Ė∞,1(t) := M max
K∈Th

ωK(t)ηK1 (t)h
−d/2
K .

initial : E 2
0 := (1 + 2E∞,0(0))A(0) + 2E2,0(0)

√
A(0)(3.46)

3.5.4 Lemma (Residual estimate). For each t ∈ [0, T ], the following inequal-

ity is verified

A(t) +B(t) ≤E 2
0 + 2E2,0(t)A(t)1/2 + 2E∞,0A(t)

+ 2

∫ t

0

Ė2,1(s)A(s)1/2 ds+ 2

∫ t

0

Ė∞,1(s)A(s) ds

+ 2

∫ t

0

%(s)A(s) ds.

(3.47)

Proof An application of the representation of the residual (3.13), the integration

by parts in time, and the commutativity property ∂tIh = Ih∂t yield∫ t

0

〈R(s) | ∂t (e(s)− Ihe(s))〉 ds

=

∫ t

0

(
〈r(s), ∂t(e(s)− Ihe(s))〉+ 〈j(s), ∂t(e(s)− Ihe(s))〉Σh

)
ds

=
[
〈r(s), e(s)− Ihe(s)〉+ 〈j(s), e(s)− Ihe(s)〉Σh

]s=t
s=0

−
∫ t

0

〈∂tr(s), e(s)− Ihe(s)〉+〈∂tj(s), e(s)− Ihe(s)〉Σhds

≤
∑
K∈Th

(
‖r(t)‖Ld(K) ‖e(t)− Ihe(t)‖Ld′ (K) + ‖r(0)‖Ld(K) ‖e(0)− Ihe(0)‖Ld′ (K)

+
1

2
‖j(t)‖L∞(∂K) ‖e(t)− Ihe(t)‖L1(∂K) +

1

2
‖j(0)‖L∞(∂K) ‖e(0)− Ihe(0)‖L1(∂K)

+

∫ t

0

(
‖∂tr(s)‖Ld(K) ‖e(s)− Ihe(s)‖Ld′ (K)

+
1

2
‖∂tj(s)‖L∞(∂K) ‖e(s)− Ihe(s)‖L1(∂K)

)
ds

)
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In view of the interpolation properties of the Scott-Zhang interpolator (3.32)

and (3.33), we obtain∫ t

0

〈R(s) | ∂t (e(s)− Ihe(s))〉 ds

≤
∑
K∈Th

(
ηK0 (t) ‖∇e(0)‖L1(U h

K) + ηK0 (t) ‖∇e(t)‖L1(U h
K)

+

∫ t

0

ηK1 (s) ‖∇e(s)‖L1(U h
K) ds

)
.

(3.48)

Inequality (3.37) implies

‖∇e(t)‖L1(Ω′) =

∫
Ω′
|∇(uh − u)| ≤

∫
Ω′
Q2uh

|∇(uh − u)|
Q2uh

≤ sup
Ω′

Q2uh

(∫
Ω′

2 |Nuh −Nu|
√
Qu

1√
Qu

+ |Nuh −Nu|2Qu
)
,(3.49)

for any Ω′ ⊂ Ω.

For the remainder of this section introduce the shorthand

(3.50) N := |Nuh −Nu|
√
Qu

We continue our bound in (3.48) by using (3.49):∫ t

0

〈R(s) | ∂te(s)− Ih∂te(s)〉 ds

≤
∑
K∈Th

ηK0 (0)h
−d/2
K ωK(0)

∫
U h
K

(
2N (0)√
Qu(0)

+ N (0)2

)

+
∑
K∈Th

ηK0 (t)h
−d/2
K ωK(t)

∫
U h
K

(
2N (t)√
Qu(t)

+ N (t)2

)

+
∑
K∈Th

∫ t

0

ηK1 (s)h
−d/2
K ωK(s)

∫
U h
K

(
2N (s)√
Qu(s)

+ N (s)2

)
ds.

(3.51)

The first two terms can be bounded by using the following (take t = 0 for the
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first term)∑
K∈Th

ηK0 (t)h
−d/2
K ωK(t)

∫
U h
K

(
2N (t)√
Qu(t)

+ N (t)2

)

≤ 2

(∑
K∈Th

ηK0 (t)2h−dK ωK(t)2
∣∣U h

K

∣∣ sup
U h
K

1

Qu(t)

)1/2(∑
K∈Th

∫
U h
K

N (t)2

)1/2

+ max
K∈Th

(
ηK0 (t)h

−d/2
K ωK(t)

)(∑
K∈Th

∫
U h
K

N (t)2

)
The term with the time integral is treated in the same way and can be bounded

by ∫ t

0

[
2

(∑
K∈Th

ηK1 (s)2h−dK ωK(s)2
∣∣U h

K

∣∣ sup
U h
K

1

Qu(s)

)1/2(∑
K∈Th

∫
U h
K

N (s)2

)1/2

+ max
K∈Th

(
ηK1 (s)h

−d/2
K ωK(s)

)(∑
K∈Th

∫
U h
K

N (s)2

)]
ds.

Shape regularity implies that
∣∣U h

K

∣∣ ≤ (γ2/4)hdK , for some γ depending only

on the shape regularity σ0. For the same reason there exists a number M ∈ N,

depending only on σ0, that bounds the number of elements in each patch U h
K . It

follows that∫ t

0

〈R(s) | ∂te(s)− Ih∂te(s)〉 ds

≤ γ

(∑
K∈Th

αK(0)ηK0 (0)2

)1/2

A(0)1/2 +M max
(
h
−d/2
K ωK(0)ηK0 (0)

)
A(0)

+ γ

(∑
K∈Th

αK(t)ηK0 (t)2

)1/2

A(t)1/2 +M max
K∈Th

(
h
−d/2
K ωK(t)ηK0 (t)

)
A(t)

+ γ

∫ t

0

(∑
K∈Th

αK(s)ηK1 (s)2

)1/2

A(s)1/2 ds+M

∫ t

0

max
K∈Th

(
h
−d/2
K ωK(s)ηK1 (s)

)
A(s) ds.

Using Definition 3.5.3, and combining this with (3.30) we obtain (3.47) which

proves the lemma.
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3.6 Main results

For (3.47) to be useful we must control the terms containing A(t) on the right-

hand side with those left hand side. There are two main ways of doing this. The

first way gives rise to conditional estimates.

3.6.1 Theorem (Conditional aposteriori estimate). Let u be the solution of

Problem 2.1.3 and uh the finite element solution of Problem (2.5.3). Assume

that, for t ∈ [0, T ], the following condition holds

E ∗∞,0(t) + E∞,1(t) ≤ 1

8
(3.52)

where

E ∗∞,0(t) := sup
s∈[0,t]

E∞,0(s).(3.53)

Then there exists a constant C = C[uh, t] such that the following aposteriori

estimate holds

(3.54)

∫ t

0

∫
Ω

(V uh − V u)2Qu+
1

2
sup
[0,t]

∫
Ω

|Nuh −Nu|2Qu ≤ C
(
E 2

0 + E 2(t)
)

where

E (t)2 := 8
(
E ∗2,0(t)2 + E2,1(t)2

)
,(3.55)

E ∗2,0(t) := sup
[0,t]

E2,0.(3.56)

Furthermore, the constant C = C[uh, t] is bounded by

(3.57) exp

∫ t

0

4%(s) ds = exp

∫ t

0

(
2 ‖∂tuh(s)‖2

L∞(Ω) + 4 ‖∇∂tuh(s)‖L∞(Ω)

)
ds.

.
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Proof The theorem is derived from (3.47). Introduce A∗(t) := sup[0,t] A, apply

Hölder inequality, and Young inequality with parameter µ = 1/8 to obtain

A(t) +B(t) ≤E 2
0 + µA(t) +

1

µ
E2,0(t)2 + µA∗(t) +

1

µ
E2,1(t)2

+ 2E∞,0(t)A(t) + 2A∗(t)E∞,1(t)

+ 2

∫ t

0

%(s)A(s) ds.

Taking the supremum over [0, t] on both sides, recalling that B is nondecreasing,

and collecting terms we obtain

A∗(t) +B(t) ≤E 2
0 +

1

4
A∗(t) + 8

(
E ∗2,0(t)2 + E2,1(t)2

)
+ 2

(
E ∗∞,0(t) + E∞,1(t)

)
A∗(t) + 2

∫ t

0

%(s)A∗(s) ds.

Exploiting (3.52) we reach

(3.58)
1

2
A∗(t) +B(t) ≤ E 2

0 + 8
(
E ∗2,0(t)2 + E2,1(t)2

)
+ 2

∫ t

0

%(s)A∗(s) ds,

which enables us to apply Gronwall inequality A.2.1 and conclude (3.54) and

(3.57).

In the light on the stability result of Lemma 2.4.1 we can relax assumption

(3.52) at the cost of living with a looser upper bound. This is the second way to

get an estimate.

3.6.2 Theorem (Unconditional aposteriori estimate). Suppose the assump-

tions of Theorem 2.4.1 are verified. Then there exist C = C[uh, f, t] and C ′ =

C ′[f, g, t] such that∫ t

0

∫
Ω

(V uh − V u)2Qu+
1

2

∫
Ω

sup
[0,t]

∫
Ω

|Nuh −Nu|2Qu

≤ C
(
E 2

0 + E2(t)2 + C ′E∞(t)
)(3.59)
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where

E2(t)2 := 4(E ∗2,0(t)2 + E2,1(t)2),

E∞(t) := 4(E∞,0(t) + E∞,1(t)),

and the constants are bounded by

C[uh, f, t] ≤ exp

∫ t

0

(
2 ‖∂tuh(s)‖2

L∞(Ω) + 4 ‖∇∂tuh(s)‖L∞(Ω) + ‖f(s)‖L∞(Ω)2

)
ds,

C ′[f, g, t] ≤
∫
Ω

Qg(0) + ‖∂tg‖L1(∂Ω×(0,t)) .

Proof The proof is a direct combination of Lemma 3.5.4, the elementary fact

that

(3.60)

∫
Ω

|Nuh(t)−Nu(t)|2Qu(t) ≤ 4

∫
Ω

Qu(t),

and the stability Theorem 2.4.1 which gives a bound for the last integral.

3.6.3 Remark (About the conditional estimate). Theorem 3.6.1 is a condi-

tional result. Such results are typical in nonlinear analysis. The condition can

be interpreted as the approximate solution uh having to be “close enough” to

the exact solution u for the estimate to hold and is the result of linearizing the

equation about u (or uh). What is important to notice in our estimate is that the

condition can be automatically checked by a computer since all the quantities that

enter in it are aposteriori quantities (one can think of us having linearized about

uh, a known quantity, in some indirect way, making the constants depend on

computable quantities). This is in contrast with most results on aposteriori anal-

ysis for nonlinear problems [Ver98] where conditions that cannot be automatically

checked are assumed.
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3.7 The treatment of boundary data

As promised earlier in this chapter we now remove Hypothesis 3.3.2, so we allow

for

(3.61) ∂t(uh − u)|∂Ω = ∂t(gh − g) 6= 0.

We will derive an estimate including the boundary value approximation assuming

that

(3.62) gh = Ihg,

where Ih continues to denote the Scott-Zhang interpolator. We think that this

result can be extended to some more practical interpolators, like the Lagrange

interpolator; however we did not pursue this issue as the analysis becomes tech-

nically complicated and far from clear.

We start by decomposing the error e = uh − u in two parts

e = e0 + ε,(3.63)

where

e0 := uh − g̃h − u+ g̃,(3.64)

ε := g̃h − g̃.(3.65)

Here g̃h and g̃ denote extensions of gh and g to the whole domain Ω (cf. [SZ90,

(5.5)]).

The main difficulty is that the error equation (3.12) is no longer valid for

φ = ∂te and φh = Ih∂te as the function ∂te is not admissible, for failing to vanish

at the boundary.
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Notice however that nothing prevents the extension of the residual functional

R to all of W1
1(Ω). (It was defined in (3.11) as acting on

◦

W1
1.) This means that

we can take φ = ∂te in (3.12) and obtain

〈R | ∂te〉 = 〈R | ∂te0〉+ 〈R | ∂tε〉

= 〈R | ∂te0 − Ih∂te0〉+ 〈R | ∂tε〉 .
(3.66)

The Galerkin orthogonality can be applied directly to the part containing the

admissible error (by “admissible” we mean ∈
◦

W1
1). In particular, we can derive

the residual representation for the first term

(3.67) 〈R | ∂t(e0 − Ihe0)〉 = 〈r, ∂t(e0 − Ihe0)〉+ 〈j, ∂t(e0 − Ihe0)〉Σh .

Some orthogonality can still be exploited to treat the last term in (3.66).

Namely, using the properties of the Scott-Zhang interpolator Ih we observe that

Ihε|∂Ω = (Ihg̃h)|∂Ω − (Ihg)|∂Ω

= Ih ( g̃h|∂Ω)− Ih ( g̃|∂Ω)

= IhIhg − Ihg

= 0.

Notice that the invariance of
◦
V
`
hunder Ih as a transformation is crucial for this

argument to go through.

This implies in particular that ∂tIhε ∈
◦
V
`
h, from which we infer

(3.68) 〈R | ∂tIhε〉 = 0.

Now the residual representation can be derived, by integrating by parts in space

as usual, as follows

〈R | ∂tε〉 = 〈R | ∂t(ε− Ihε)〉
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= 〈r, ∂t(ε− Ihε)〉+ 〈j, ∂t(ε− Ihε)〉Σh + 〈β − βh, ∂tε〉∂Ω

where β := (∇u · ν)/Qu and β = (∇uh · ν)/Quh.

We thus end up with the following equation

(3.69) 〈R | ∂te〉 = 〈r, ∂te− Ih∂te〉+ 〈j, ∂te− Ih∂te〉+ 〈β − βh, ∂tε〉∂Ω .

In order to obtain a lower bound of the left-hand side of the error equation,

we proceed in the same fashion as in Section 3.4 and thereby we derive again

(3.30).

The first term on the right-hand side is also treated as in Section 3.5 (owing

to the fact that the Scott-Zhang interpolator can be taken all the way up to the

boundary).

We thus need only to bound the integral in time of the last term. To this end

we exploit the fact that Ih preserves boundary values and the fact that β, βh ≤ 1

to reach

〈β − βh, ∂tε〉∂Ω ≤ ‖∂tε‖L1(∂Ω) = ‖∂tg − Ih∂tg‖L1(∂Ω) =: Ė∂Ω.

Once Ihg is at hand, the norm on the right-hand side is a computable quantity.

We then have the following generalization of Lemma (3.5.4)

3.7.1 Lemma (Residual estimate with boundary values). The following in-

equality holds for each t ∈ [0, T ]:

A(t) +B(t) ≤E 2
0 + E∂Ω(t)

+ 2E2,0(t)A(t)1/2 + 2E∞,0A(t)

+ 2

∫ t

0

Ė2,1(s)A(s)1/2 ds+ 2

∫ t

0

Ė∞,1(s)A(s) ds
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+ 2

∫ t

0

%(s)A(s) ds.

where

(3.70) E∂Ω(t) =

∫ t

0

Ė∂Ω.

We can then obtain extended versions of Theorems 3.6.1 and 3.6.2 by just

adding E∂Ω to the estimators of these theorems.
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Chapter 4

Numerical experiments: reliability tests

In this chapter we present the computational results that have been obtained in

order to test the reliability of the upper bound derived in chapter 3.

We begin by describing briefly the implementation of the finite element method

and the semi-implicit time stepping method, which linearizes the equation and

allows to use linear solvers at each time step in a stable way.

We then proceed to exhibit numerical results regarding the exact error and the

corresponding error estimators for examples where the exact solution is known.

Finally we show some results that have been obtained for problems without

an explicit solution.

4.1 Implementation

Space-time discretization of the mean curvature flow

We introduce first the numerical scheme for the time stepping and combine it

with the spatial finite element method to obtain a fully discrete scheme. This is

the basis of a computer implementation of the Cauchy-Dirichlet Problem 2.1.3.
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In order to implement a numerical scheme to approximate solutions of problem

2.1.3, Problem 2.5.3 needs to be further discretized in time. Following ideas by

Deckelnick & Dziuk [DD00, Dzi99] we introduce a semi-implicit time stepping

scheme associated to Problem 2.1.3 as follows.

4.1.1 Definition (Time-discrete semi-implicit scheme). Given N ∈ Z+ and

a finite set of times (or instants) {tn : n = 0, . . . , N} such that 0 = t0 < t1 <

. . . < tN = T and, for all n ∈ [1 : N ], denote by τn := tn − tn−1 the stepsize at

the n-th timestep (tn−1, tn). Given U0 = g(x, 0), for each n ∈ [1 : N ], solve the

following

4.1.2 Problem. Find Un ∈ C2(Ω) ∩ C(Ω) such that

Un − Un−1

τnQUn−1
− div

∇Un

QUn−1
= fn, in Ω;(4.1)

Un = gn, on ∂Ω;(4.2)

Notice that equation 4.1 is a linear elliptic equation which can implemented

rather easily. We discretize it in space by using a finite element approach which

parallels that in section 2.5. Namely, we consider the following scheme.

4.1.3 Problem. Given gh(0) ∈ V`h (an interpolant of g(0)), and g̃nh (an inter-

polant of g(tn)), we look for a sequence of functions Un
h ∈ V`h recursively defined

by 〈
∇Un

QUn−1
,∇φh

〉
+

〈
Un

τnQUn−1
, φh

〉
=

〈
Un−1

τnQUn−1
+ fn, φh

〉
, ∀φh ∈

◦
V
`
h;(4.3)

Un
h − g̃nh ∈

◦
V
`
h.(4.4)

This scheme is unconditionally stable [DD00, Proposition 2.1]. It has been

shown also to converge with order O(τ + h), where τ = max τn, under the hy-
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pothesis that τ ≤ δ0h for some δ0 > 0 and that u satisfies some rather strong

regularity properties [DD00, Proposition 3.3].

All our results are based on this scheme. The implementation uses the C

finite element toolbox ALBERT, kindly provided by Kunibert Siebert & Alfred

Schmidt [SS00].

We will assume no stronger regularity than needed for the estimators to make

sense in our examples. Actually we will be analyzing some singular situations,

and show relations between singular behavior of the solution and that of the

estimators. This is not covered by Deckelnick & Dziuk in their work on apriori

estimates [DD00].

Unless otherwise mentioned all our computations are based on piecewise linear

finite elements, commonly known also as P1-elements.

Practical version of the error estimators

In the reliability tests, we have to compute a discrete version of the global esti-

mators introduced in Definition 3.5.3, which are in turn computed using the local

indicators 3.5.2. A close look at the indicators

(4.5) ηKi (t) := h
d/2
K (C1

∥∥(∂t)
ir(t)

∥∥
Ld(K)

+ C2

∥∥(∂t)
ij(t)

∥∥
L∞(∂K)

)

for i = 0, 1, shows an L∞ norm which might prove to be hard to compute in

principle. However, for piecewise linear elements, the jump is itself a constant

function (being the gradient constant on each side and the denominator Quh

consequently constant), this norm can be replaced, using the following (L∞,L2)

inverse estimate

(4.6) ‖v‖L∞(∂K) ≤ Ch(1−d)/2 ‖v‖L2(∂K)
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obtained by equivalence of norms on finite dimensional spaces and scaling. This

legitimizes the use of the more practical indicators

(4.7) ηKi (t) := h
d/2
K C1

∥∥(∂t)
ir(t)

∥∥
Ld(K)

+ h
1/2
K C2

∥∥(∂t)
ij(t)

∥∥
L2(∂K)

.

The initial error can be computed exactly, modulo quadrature and round-off

errors of course. We will be concerned with the bulk part of the estimator, that

is E defined in (3.55).

4.2 Problems with known exact solution

We now present the numerical results obtained for certain problems where the

exact solution is known. These tests are important as they we can tell to what

extent our estimators are reliable by comparing the estimators to the exact error,

which is computable in this case. In what follows, in addition to the notation

introduced earlier, will make use of

E(t) = E[u, uh](t) =

(∫ t

0

∫
Ω

|V uh − V u|Qu+ sup
[0,t]

|Nuh −Nu|Qu

)
,(4.8)

Ê (t) = E0 + sup
[0,t]

E2,0 + E2,1(4.9)

E∞ = sup
[0,t]

E∞,0 + E∞,1.(4.10)

where the notation is introduced in Definition 3.5.3.

All the integrals above are to be understood as quadratures. While we use

ALBERT’s built in Gaussian quadrature in space, we use a simple midpoint rule

for the integrals in time and the sup in time is replaced by a max over the time

nodes.
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A problem with exact boundary and initial approximation

We start with a simple case:

4.2.1 Example (Exact solution on a square). Let

(4.11) u(x, y; t) = t (sin(t)− sin(t− x(1− x)y(1− y)))

for (x, y) ∈ Ω × (0, T ) := (0, 1)× (0, 1)× (0, 8). Then u ∈ C∞(Ω), its initial and

boundary values are zero. Thus the initial and boundary interpolation do not

have any effect on our computations as they are solved exactly. (The right hand

side f can be derived from u, by using the equation.)

We perform a series of computations, on uniform meshes, with the following

meshsizes

h ∈ {0.5000, 0.2500, 0.1250, 0.0625, 0.0312, 0.0156}.

We report all the results in form of graphs where the abscissa is the time

variable, so we can track the behavior of the errors and estimates in time. The

first series of graphs 4.1 shows the behavior of the exact spatial errors against

time in the geometric quantities and the more customary Sobolev norms for the

heat equation.

It is worth comparing this to the similar graph where the errors are replaced

by estimators 4.3.

To understand the asymptotic behavior from the numerical point of view, we

calculate and plot the experimental order of convergence of the error Ê (tn) at

each time tn.

The EOC of a sequence of a given quantity ei — which could be the error or

the estimator — that depends on the refinement level i with hi as meshsize is
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given by

log(ei+1/ei)

log(hi+1/hi)
.

As shown by Figure 4.2, the geometric error EOC 1 as expected from the

theory. Although the terms involving the normal velocity tend to decrease faster

(not shown here), it is the the sum of the two terms that is of order 1.

A crucial test for the estimators is whether their asymptotic behavior matches

that of the error. That is we need to compare the two EOC. In figure 4.3 we

show the behavior of the proper estimator Ê and the conditional estimator.

It is crucial for reliability, that the order of convergence for the error and the

estimator match. It can be seen from the graphics that this match is realized

in the long run. Indeed, in Figure 4.4 we plot the ratio E(t)/Ê (t). This ratio

converges to a function of time. This function represents the constant in front

of the estimator, that is bounded by the exponential constant. In this case, this

function is decreasing and we do not detect any exponential behavior.

A fact which is worth noticing is that the order of convergence of the con-

ditional estimators, seems to performs slightly worse than 1: there is a clear

numerical indication that it is closer to 0.95. The discrete norm — we take the

liberty to abuse this term — in which the conditional estimators are computed in

space are stronger than those for the proper estimators — by proper we mean the

elliptic and parabolic estimators introduced in 3.5.3. This is a reason why we can

expect worse behavior. The oscillatory nature of the solution is also responsible

for accentuating the discrepancy between the proper and conditional estimators.
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Problem with curved boundary

Although in our analysis we did not include curved boundaries, it happens very

frequently that this is not a major problem. The following example is very similar

to Example 4.2.1, albeit the problem is considered on the disk B1 (0). This

example was used by Gerhard Dziuk [Dzi99] for numerical tests and we shall

refer to it as the Dziuk benchmark.

4.2.2 Example (Dziuk benchmark: exact solution on a disk). Let

(4.12) u(x, y; t) = − sin(1− t)− sin(t− x2 − y2)

for (x, y) ∈ Ω × (0, T ) := B1 (0) × (0, 10). Then u ∈ C∞(Ω). Notice that

in contrast to the situation in Example 4.2.1 that the boundary interpolation

cannot be exact in this case, because the boundary is curved. Notice that the

boundary value is homogeneous though. The initial solution is non zero and

needs to be interpolated carefully to obtain satisfactory results. As we shall see

in Example 4.3.1, it’s important to take the minimal surface projection to an

associated problem as discrete initial value. Otherwise, the data will not have

any noticeable effect on our computations as they are solved exactly. (The right

hand side f can be derived from u, by using the equation.)

The meshsizes of the quasi-uniform triangulations that we compute the solu-

tion for are

(4.13) h ∈ {0.7368, 0.4203, 0.2219, 0.1137, 0.0575}.

We output the same kind of data as for Example 4.2.1: in Figures 4.5 and

4.7 we have the error and their estimators respectively, while in Figure 4.6 we see

the EOC of the error.
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Also in this example we can see that the estimators have the expected asymp-

totic behavior numerically.

Due to the matching asymptotic behavior the ratio between the error and

the estimators converges (as a function of time) to a function of time. In this

case, this function is decreasing and we do not detect any exponential behavior

either as shown in figure 4.8. The nature of the problem is very similar to the

one in Example 4.2.1. Notice that we did not take into account the boundary

approximation in the computation of the error. The disk having a well-behaved

boundary, this does not seem to give any problem on that side.

Shrinking sphere

We take the shrinking sphere of Example 2.2.7 as a benchmark for one more test.

Here we will have a blow up at the boundary for t = 0.5. The meshsizes are given

by the sequence

(4.14) h ∈ {1.0000, 0.5000, 0.2500, 0.1250, 0.0625, 0.0312, 0.0156, 0.0078}.

As before we report the error in Figure 4.9 and its asymptotic behavior in

Figure 4.10. This is done also for the estimators in Figure 4.11. In Figure 4.12

we report the ratio between the error and the estimator. In this case the ratio

increases as the time increases. It’s interesting to see that the ratio actually blows

up as t→ 0.5. This might be an indication of the exponential behavior.
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4.3 The initial condition

In our computations, whenever possible we take the minimal surface projection as

an interpolation for the initial values. The minimal surface projection of a given

function v is defined as the finite element solution vh of the elliptic boundary

value problem:

(4.15)

〈
∇vh
Quh

, φh

〉
=

〈
∇v
Qv

, φh

〉
.

It is a “projection” with respect to the surface area energy.

To show how important this choice is we reconsider the example of the shrink-

ing sphere.

4.3.1 Example (Initial condition approximation). We solve again the shrink-

ing sphere problem. This time we take as discrete initial value the interpolant

of the initial value. We plot the results on the same graph of those obtained for

the solution with the minimal projection. Notice the poor initial approximation

of the error (Figure 4.13) and the estimators (Figure 4.14).

4.4 Example without exact solution

As a last series of examples we will consider the situation where the domain is

non-convex and the exact solution might cease to exist.

4.4.1 Example. This is given by the catenoid described in Example 1.2.3.

The critical height is H∗ = log(2 +
√

3)/2 ≈ 0.6585. We will take three different

situations where H = 0.50, 0.60, 0.70.

The behavior of these estimators is given and discussed in Figure 4.15.
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Figure 4.1: We report the error, between uh and u in Example 4.2.1, mea-

sured with the geometric quantities and the more customary Sobolev norms

used for the heat equation. The different colors stand for the different mesh-

sizes h ∈ {0.5000, 0.2500, 0.1250, 0.0625, 0.0312, 0.0156}. It’s worth noticing the

similar behavior that norms and geometric quantities have, which justifies the

use of geometric quantities as an error concept.

61



0 1 2 3 4 5 6 7 8
−0.5

0

0.5

1

1.5

time

E
rr

or
’s

 E
xp

er
im

en
ta

l O
rd

er
 o

f C
on

ve
rg

en
ce

 (
E

O
C

)

Figure 4.2: The experimental order of convergence of the geometric error E gets

close to 1 as the meshsize decreases, in Example 4.2.1. The different colors stand

for the different meshsizes h = {0.5000, 0.2500, 0.1250, 0.0625, 0.0312, 0.0156}.

This is the rate that is expected in theory. The terms involving the normal

velocity tend to converge faster (not shown here), but since we have only one

estimate for both quantities we must look at the sum.
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Figure 4.3: In these plots we exhibit on the left-hand side both the

proper estimator Ê and the conditional estimator E∞ relative to Exam-

ple 4.2.1. The different colors stand for the different meshsizes h ∈

{0.5000, 0.2500, 0.1250, 0.0625, 0.0312, 0.0156}. Their EOC is computed and plot-

ted on the right hand side. It’s fundamental for the EOC of Ê to get close to 1

as the meshsize decreases. It is interesting to see that the conditional estimator

converges at a slower rate, meaning that the unconditional estimate in Theorem

3.6.2 is improved by the conditional estimate Theorem 3.6.1 once the approximate

solution is close enough to the exact one.
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Figure 4.4: This plot represents the ratio between the exact error E and the esti-

mator Ê for Example 4.2.1. This is a crucial test for the estimators, the fact that

the ratio converges as h→ 0 to a function of time means that the asymptotic be-

havior of the error and the estimator are the same. The different colors stand for

the different meshsizes h ∈ {0.5000, 0.2500, 0.1250, 0.0625, 0.0312, 0.0156}. The

theory derived in Chapter 3 gives a worst case scenario prediction of a ratio that

is an increasing exponential. In this case, we don’t detect this behavior.
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Figure 4.5: We report the error measured with the geometric quantities and

the more customary Sobolev norms used for the heat equation. Different colors

stand for different meshsizes h ∈ {0.7368, 0.4203, 0.2219, 0.1137, 0.0575} and the

abscissa is the time variable. It’s worth noticing the similar behavior, which

justifies the use of geometric quantities as an error concept.
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Figure 4.6: The EOC of the geometric error E gets close to 1 as the meshsize

decreases. This is the rate that is expected in theory. In these plots the rate

seems to be slightly better than 1 in a first stage. Different colors stand for

different meshsizes h ∈ {0.7368, 0.4203, 0.2219, 0.1137, 0.0575} and the abscissa

is the time variable.
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Figure 4.7: In these plots we exhibit on the left-hand side both the proper

estimator Ê and the conditional estimator E∞. Their EOC is computed and

plotted on the right hand side. Different colors stand for different meshsizes

h ∈ {0.7368, 0.4203, 0.2219, 0.1137, 0.0575} and the abscissa is the time variable.

As before we see that Ê converges with an asymptotic rate of 1. Again the dis-

crepancy between the EOC for the proper and conditional estimators is striking.

Notice that the conditional estimator doesn’t need to be asymptotically zero. It

has to be bounded by a small number though.
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Figure 4.8: This plot represents the ratio between the exact error E and the

estimator Ê . This is a crucial test for the estimators, the fact that the ratio

converges as h → 0 to a function of time means that the asymptotic behavior

of the error and the estimator are the same. Different colors stand for different

meshsizes h ∈ {0.7368, 0.4203, 0.2219, 0.1137, 0.0575} and the abscissa is the time

variable. The theory derived in Chapter 3 gives a worst case scenario prediction

of a ratio that is an increasing exponential. This is another case in which we

don’t detect this behavior.
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Figure 4.9: We report the error measured with the geometric quantities and the

Sobolev norms for the shrinking sphere example. Different colors stand for differ-

ent meshsizes h ∈ {1.0000, 0.5000, 0.2500, 0.1250, 0.0625, 0.0312, 0.0156, 0.0078}

and the abscissa is the time variable. Again the use of geometric quantities does

not compromise our results as they behave very similarly to norms as far as

convergence is concerned.

In this example the error increases as t reaches 0.5, the boundary blow-up point.
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Figure 4.10: The EOC of the geometric error E gets close to 1 . This is the

rate that is expected in theory. In these plots the rate seems to be slightly

better than 1 in a first stage. Different colors stand for different meshsizes h ∈

{1.0000, 0.5000, 0.2500, 0.1250, 0.0625, 0.0312, 0.0156, 0.0078} and the abscissa is

the time variable. Notice the dramatic change of behavior near the blow-up time

t = 0.5.
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Figure 4.11: In these plots we exhibit on the left-hand side both the proper

estimator Ê and the conditional estimator E∞. Their EOC is computed and

plotted on the right hand side. Different colors stand for different meshsizes h ∈

{1.0000, 0.5000, 0.2500, 0.1250, 0.0625, 0.0312, 0.0156, 0.0078} and the abscissa is

the time variable. As before we see that Ê converges with an asymptotic rate

of 1. Again the discrepancy between the EOC for the proper and conditional

estimators is striking. There is a striking difference between Ê and E∞ near the

blow-up time t = 0.5. The proper estimator Ê follows the behavior of the error

E itself, while the conditional estimator E∞ performs worse and worse as we inch

toward the blow-up.
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Figure 4.12: This plot represents the ratio between the exact error E

and the estimator Ê . Different colors stand for different meshsizes h ∈

{1.0000, 0.5000, 0.2500, 0.1250, 0.0625, 0.0312, 0.0156, 0.0078} and the abscissa is

the time variable. This is a crucial test for the estimators, the fact that the ratio

converges as h→ 0 to a function of time means that the asymptotic behavior of

the error and the estimator are the same. The theory derived in Chapter 3 gives

a worst case scenario prediction of a ratio that is an increasing exponential. In

this case we see that the ratio increases dramatically as t reaches 0.5, the blow-up

point. (The last numerical solution u0.0078 doesn’t have it’s ratio plotted for the

last point, as it is a very big number.)
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Figure 4.13: In this picture we have plotted simultaneously the errors in various

norms for the shrinking sphere simulations in two different cases. The dashed

lines correspond to the situation we presented above, where the initial condition

is approximated through a minimal surface projection (4.15), while the solid lines

correspond to the solution with a simple nodal Lagrange interpolant. The initial

part of the interval shows how bad can be the second choice with respect to

the first one. Recall that in the shrinking sphere there is nothing special about

starting at time 0.0, the solution is somewhat self similar and the error is bound

to get worse as time goes on, assuming that the initial condition is well resolved.
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Figure 4.14: In this picture we have plotted simultaneously the estimators and

their EOC, in various norms for the shrinking sphere simulations in two different

cases. The dashed lines correspond to the situation we presented above, where

the initial condition is approximated through a minimal surface projection (4.15),

while the solid lines correspond to the solution with a simple nodal Lagrange

interpolant. Notice however the EOC when we use the Lagrange interpolant. It

is better than the one for the minimal surface. This is probably due to the fact

that the effect of choosing the former is reduced as the meshsize goes to zero.
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−− line is for height 0.60 (subritical), 
−. is for height 0.70 (supercritical) 

Figure 4.15: These are the estimators for the catenoid problem for differ-

ent heights H = 0.50, 0.60, 0.70 (line style) and different meshsizes h ∈

{0.1571, 0.0798, 0.0402, 0.0202} (color). A noteworthy feature of these compu-

tations is the behavior of the EOC, especially for the conditional estimator. As

H increases this estimator which is well behaved at initial times, gets into a poor

convergence regime. This means that the conditional estimators might not be

applicable for the cases where H is supercritical. In this case a blow up occurs

in finite time [Ura94]. The poor behavior of the conditional estimator can be

interpreted as an indication of this phenomenon.
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Appendix A

A.1 Notation and conventions

Sets and functions

The sets Z, R and C are the customary sets of integer, real and complex numbers

respectively. The set of natural numbers (the strictly positive integers) is denoted

by Z
+. We also use the set of natural numbers and zero N0 := Z

+ ∪ {0}. The

same convention is applied to the real numbers, so R+ and R
+
0 indicate the open

and the closed positive real axes, respectively.

To indicate segments of integers we borrow the notation partially from Matlab R©;

that is, given two integers i, j ∈ Z, we define

[i : j] := {k ∈ Z : i ≤ k ≤ j},

[i :] := {k ∈ Z : i ≤ k},

[: i] := {k ∈ Z : k ≤ i}.

For a, b ∈ R the closed interval is denoted by [a, b] and the open interval by

(a, b). Parentheses and square brackets are combined also to define semi-open

intervals like [0, T ).
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If d ∈ Z+, Rd denotes the d-dimensional real vector space. Unless otherwise

stated it is assumed that Rd is equipped with the euclidean structure. We use

the notation x · y for the inner product in R
d and the euclidean norm is denoted

by |x|.

The open ball centered at x ∈ Rd with radius r ∈ R+ is denoted by Br (x). If

the dimension needs to be specified then the ball is denoted by Bd
r (x).

A.1.1 Definition (Space-time). Given a spatial domain Ω ∈ Rd and a time

interval (T0, T ), the corresponding time-space cylinder is the cartesian product

Ω × (T0, T ). The parabolic boundary of the time-space cylinder Ω × (T0, T ) is

defined as follows

∂p (Ω × (T0, T )) := (Ω × T0) ∪ (∂Ω × (T0, T )).

For functions defined on a space-time domain, dependence on the spatial

variable is often omitted. For instance, in many cases f(t) stands for the function

Ω 3 x 7→ f(x, t). We adopt this notation because it should not be a source

of major problems, while it improves readability and saves some space in long

formulas.

A.1.2 Definition (Differential symbology). Let D ∈ RN be an open set and

y ∈ D. Given a function f : D → R and a field w : D → R
N we use the following

notation:

• The first derivative of f at a point y ∈ D (a linear form on Rn at each point

of D) is denoted by ∂f(y).

• The first derivative of w at a point y ∈ D (a linear operator from R
n into

R
n) is denoted by ∂w(y).
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• The gradient of f at y (defined as the Riesz representative of ∂f(y) with

respect to the usual euclidean structure) is denoted by ∇f(y).

• Similarly, the Jacobian of w at y is denoted by ∇w(y).

• The first partial derivative in the n-th direction is denoted by ∂nf ;

• The second order derivative is indicated by ∂2f and the second order partial

derivative in the n-th and m-th directions by ∂n,mf (or ∂2
nf , when n = m.)

• According to this notation the Hessian of f should be written as ∇2f , but

we often denote it with ∂2f in order not to confuse it with the Laplacian

which is denoted with ∆f .

• Given a multi-index α = (α1, . . . , αN) ∈ NN0 , then ∂αf = ∂α1 · · · ∂αNf .

A.1.3 Definition (Space-time differential symbology). When dealing with

space time functions, that is, in the particular case where D = Ω× (0, T ) ∈ Rd+1

is a space-time cylinder and f a function that might depend on space and time

we will use a somewhat abusive1) variation of the definitions in A.1.2:

• No subscript in front of the differential operators mean derivatives with

respect to the space variable. For example, the space derivative is indicated

with ∂f , the space gradient corresponding to ∂f is denoted by ∇f and so

forth respecting the convention in.

• the partial space derivative in i-th (spatial) direction is denoted by ∂iu.

• the time derivative is denoted by ∂tu (even when time variable is indicated

by some other symbol!);

1Examples of this abuse are
∫ t

0
∂tf(x, s) ds or ∂2f(t).
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• iterated derivatives in space (or time) are denoted by “powers” like ∂2u or

∂2
t u

• mixed space-time derivatives use two different symbols like ∂t∂iu or ∂t∇u.

These definitions can be extended to subsets of the closure of open sets by

continuity. We will use such extension and will not need further generalization.

Function spaces

We use function spaces only on bounded (space, time, and space-time) Lipschitz

domains [EG92]. Space and time variables have sometimes different indices.

A.1.4 Definition (Lipschitz and Ck domain). An open set D ⊂ R
N is said

to be a Lipschitz domain if it satisfies the definition in Evans & Gariepy book

[EG92, Section 4.2, p. 127]. For k ∈ Z+, a Lipschitz domain D is said to be a Ck

domain if and only if its boundary ∂D is a finite union of Ck manifolds.

A.1.5 Definition (Spaces of (Hölder) continuous functions). Let D be a

bounded domain in R
N , k ∈ Z+, s ∈ R+ r Z

+, we adopt the following notation

C(D) = C0(D) := {f : D → R : f is continuous on D}

Ck(D) :=
{
f : D → R : ∂αf ∈ C(D), ∀α ∈ NN0 , |α| ≤ k

}
Cs(D) :=

{
f ∈ C[s] : sup

x,y∈D

|∂αf(x)− ∂αf(y)|
|x− y|{s}

<∞, ∀α ∈ NN0 , |α| = [s]

}
.

Here [s] is the integer part of s, i.e., the largest integer that is smaller than s, and

{s} = s− [s] is the fractional part.

The space of smooth functions is given by C∞(Ω) =
⋂∞
k=1 Ck(Ω), and the

space of compactly supported smooth functions is denoted by C∞c (Ω).
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Similarly we have

(A.1) C(D) = C0(D) := {f : D → R : f is uniformly continuous on D}

and so forth.

A.1.6 Definition (Sobolev spaces). Let D ∈ R
N , and k ∈ Z

+. The usual

spaces of Lebesgue integrable functions are denoted by Lp(D), for p ∈ [1,∞]. We

take the space of k-times weakly differentiable functions Wk as defined in [GT83,

sec. 7.3, p. 149]. Finally the Sobolev spaces are defined as usual

Wk
p(D) =

{
f ∈Wk(D) : ∂αf ∈ Lp(D), ∀α ∈ NN0 , |α| ≤ k

}
,

◦

Wk
p(D) = closureWk

p(D) C∞c (D).

A.1.7 Definition (Space-time function spaces). If D = Ω × (0, T ) ⊂ R
d+1,

sometimes we need to consider spaces where the smoothness order in the spatial

derivative differs from the one in the time derivative. Namely

Ck,l(Ω × (0, T )) =
{
f : Ω × (0, T )→ R :

∂αf ∈ C(Ω × (0, T )), ∀α ∈ Nd0, |α| ≤ k

and ∂jt f ∈ C(Ω × (0, T )), ∀j ∈ [0 : `]
}

All the definitions above apply (with the appropriate modifications) to spaces

of functions which take values in a Banach space, instead of R.

A.2 Simple technical tools

The following is the version of Gronwall inequality that we shall use. Although

it can be found in many textbooks we include the proof.
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A.2.1 Lemma (Gronwall inequality). Let T ∈ R+ and f, g, k, l be real-valued

measurable functions defined on [0, T ], such that:

(a) k and l are non-negative;

and

(b) l(t) + f(t) ≤ g(t) +

∫ t

0

k(s)f(s) ds <∞, ∀t ∈ [0, T ].

Then

(A.2) l(t) + f(t) ≤ sup
s∈[0,t]

|g(s)| exp

∫ t

0

k(s) ds, ∀t ∈ [0, T ].

Proof Introduce F (t) =
∫ t

0
k(s)f(s) ds and K(t) =

∫ t
0
k(s) ds. Then from (b)

and the non-negativity of k and l we infer

d

dt

(
e−K(t) F (t)

)
= e−K(t) k(t)f(t)− e−K(t) k(t)

∫ t

0

k(s)f(s) ds

≤ e−K(t) k(t)g(t).

An integration on [0, t] and the use of assumption (a), yields

e−K(t) F (t) ≤
∫ t

0

e−K(s) k(s)g(s) ds

≤ sup
s∈[0,t]

|g(s)|
∫ t

0

e−K(s) k(s) ds

= − sup
s∈[0,t]

|g(s)|
∫ t

0

d

ds
e−K(s) ds

= sup
s∈[0,t]

|g(s)|
(
1− e−K(t)

)
.

Thus F (t) ≤ sup[0,t] |g|
(
eK(t)−1

)
. Combining this with assumption (b) we obtain

the bound for l(t) + f(t).

A.2.2 Theorem (Gauss-Green formula). Let Ω be a Lipschitz domain. Sup-
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pose w ∈W1
p(Ω)d and z ∈W1

p′(Ω) where p′ is the conjugate exponent2, for some

p ∈ [1,∞], then we have

(A.3)

∫
Ω

∇z(x) ·w(x) +

∫
Ω

z(x) divw(x) dx =

∫
∂Ω

z(x)w(x) · ν(x) s(dx)

Proof For each i ∈ [1 : d] we apply the product rule for conjugate Sobolev spaces

and the integration by parts rule [EG92, 4.3, The. 1(ii)] with zwi ∈ W1
1(Ω) as

the Sobolev function and (δij)j as the test vector field. This yields∫
Ω

z(x)∂iwi(x) + ∂iz(x)wi(x) dx =

∫
Ω

∂i(z(x)wi(x)) dx

=

∫
∂Ω

z(x)wi(x)νi(x) s(dx).

Summing over i ∈ [1 : d] we obtain the result.

Clément-Scott-Zhang interpolation

We will be often using interpolation of weakly differentiable functions (like W1
2)

into finite element spaces, so Lagrange interpolation is not powerful enough and

we need to use regularized interpolation like the one discussed by Clément in his

PhD dissertation [Clé75]. Since we also require some care with the boundary val-

ues, like preserving homogeneity, we will be dealing with a refinement of Clément

interpolation, namely the boundary value preserving and projection interpola-

tion introduced by Scott & Shangyou Zhang [SZ90]. The needed results can be

summarized in the following3

2By conjugate exponent we mean the usual p′ = p/(p− 1), if p ∈ (1,∞), and p′ =∞ (resp.

1), if p = 1 (resp. ∞).

3We use the notation introduced in section 2.5.
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A.2.3 Theorem ([SZ90, Theorem 2.1 and eqn. (4.3)]). There exists a linear

operator

(A.4) Ih : W1
1(Ω)→ V

`
h

that satisfies the following properties

Ih|V`h = id
V
`
h

(projection property);(A.5)

Ih(
◦

W1
1(Ω)) =

◦
V
`
h (boundary value preservation);(A.6)

‖v − Ihv‖Wm
p (K) ≤ C(d, `, σ0)h1−m

K |v|W1
p(U h

K) , ∀v ∈W1
p(U

h
K), K ∈ Th;(A.7)

‖v − Ihv‖Lp(∂K) ≤ C ′(d, `, σ0)h
1−1/p
K |v|W1

p(U h
K) , ∀v ∈W1

p(U
h
K), K ∈ Th.(A.8)

Here m ∈ {0, 1}, p ∈ [1,∞) and U h
K denotes the union of all simplexes that are

neighbors of K in the triangulation Th.

Proof The first three properties are just copied from equations [SZ90, (2.17),

(2.18) and (4.3)]. To prove (A.8), we use the trace inequality [EG92, sec. 4.3] on

the reference simplex K̂ and a standard scaling argument by taking K̂ into K by

using a Lipschitz piecewise linear transformation Xh : UK̂ → U h
K = X(K̂). We

obtain

‖v − Ihv‖Lp(∂K) =

(∫
∂K

|v(x)− Ihv(x)|p dx

)1/p

=

(∫
∂K

∣∣∣v̂(X−1
h (x))− Î v̂(X−1

h (x))
∣∣∣p dx

)1/p

=

(∫
∂K̂

∣∣∣v̂(x)− Î v̂(x)
∣∣∣p |det∇Xh(x)| dx

)1/p

≤ C(σ0)h(d−1)/p
∥∥∥v̂ − Î v̂∥∥∥

Lp(∂K̂)

≤ C ′(σ0)h(d−1)/p
∥∥∥v̂ − Î v̂∥∥∥

W1
p(K̂)
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≤ C(p, `, σ0)C ′(σ0)h(d−1)/p |v̂|W1
p(UK̂)

.

The last step owes to (A.7). We conclude by rescaling back

(A.9) |v̂|W1
p(UK̂) ≤ C(σ0)h(p−d)/p |v|W1

p(U h
K)

and piecing together the last two inequalities.

We need also a version of (A.7) where the integrability indices are different.

This version uses the Sobolev imbedding theorem

A.2.4 Corollary. Given the Scott-Zhang interpolation operator Ih, p, q ∈

[1,∞) such that

q ≤ dp

d− p
;

then the following inequality holds

(A.10) ‖v − Ihv‖Lq(K) ≤ C(d, p, `, σ0)h1−d/p+d/q) |v|W1
p(U h

K) .

Proof In view of the Sobolev inequality [GT83] we have

(A.11)
∥∥∥v̂ − Î v̂∥∥∥

Lq(K̂)
≤ C(p, d)

∥∥∥v̂ − Î v̂∥∥∥
Lp(K̂)

,

where K̂ is the reference simplex as in the proof of Theorem A.2.3. Complete

this inequality by using (A.7) and obtain

(A.12)
∥∥∥v̂ − Î v̂∥∥∥

Lq(K̂)
≤ C(d, p, `, σ0) |v̂|W1

p(UK̂) .

A scaling argument as in proof of A.2.3 gives

‖v − Ihv‖Lq(K) ≤ C ′(σ0)hd/q
∥∥∥v̂ − Î v̂∥∥∥

Lq(K̂)
,

and

|v̂|W1
p(UK̂) ≤ C ′(σ0)h(p−d)/p |v|W1

p(U h
K) .

The proof is concluded by assembling together the last three inequalities.
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A.3 An aposteriori error bound for the heat

equation in higher Sobolev norms

In this section we derive an aposteriori error bound for the Cauchy-Dirichlet

problem associated to the heat equation

∂tu−∆u = 0, in Ω × (0, T ],(A.13)

u = g, on ∂p (Ω × (0, T )) .(A.14)

Although the purpose of this exercise is to outline part of the proof in chapter

3, it should be mentioned that this simple result is inedited to the best of our

knowledge.

We combine an energy and residual technique to derive our bound. The basic

energy estimate, however, is not for the customary norms

(A.15) sup
[0,T ]

‖u‖2
L2(Ω) +

∫ t

0

‖∇u‖2
L2(Ω) ,

but rather for the stronger higher order norms

(A.16)

∫ T

0

‖∂tu‖2
L2(Ω) + sup

[0,T ]

‖∇u‖2
L2(Ω) .

The reason for this is that, rather than testing equation (A.13) with u, we test

it with ∂tu.

Rewrite the problem into the weak form

(A.17) 〈∂tu, φ〉+ 〈∇u,∇φ〉 = 0, ∀φ ∈
◦

W1
2,

with u − g ∈
◦

W1
2 and u(0) = g(0). Then borrowing the finite element notation

from section 2.5, introduce the spatial finite element discretization

(A.18) 〈∂tuh, φh〉+ 〈∇uh,∇φh〉 = 0, ∀φh ∈
◦
V
`
h
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with uh − g ∈
◦
V
`
h. (For simplicity we assume that the boundary data is time

independent.)

Galerkin orthogonality implies the error equation

(A.19) 〈∂tuh − ∂u, φ〉+ 〈∇uh −∇u,∇φ〉 = 〈∂tuh, φ− φh〉+ 〈∇uh,∇φ−∇φh〉 ,

for all φ ∈
◦

W1
2 and φh ∈

◦
V
`
h.

Let e = uh − u be the error and take φ = ∂te. Since the boundary data is

time independent, φ is in
◦

W1
2 and is thus admissible. On the other hand, we

let φh = Ihφ where Ih is the Scott-Zhang interpolator defined in Theorem A.2.3.

Then (A.19) and an integration in time yield∫ t

0

‖∂te‖2
L2 +

1

2
‖∇e(t)‖2

L2 −
1

2
‖∇e(0)‖2

L2

=

∫ t

0

‖∂te(s)‖2
L2 +

1

2
dt ‖∇e(s)‖2

L2 ds

=

∫ t

0

〈R(s) | ∂t(e(s)− Ihe(s))〉 ds

(A.20)

where the residual functional R ∈W−1
2 (Ω) can be represented as

〈R |ψ〉 = 〈∂tuh, ψ〉+ 〈∇uh, ψ〉

=
∑
K∈Th

〈∂tuh −∆uh, ψ〉K +
1

2
〈J∇uhK , ψ〉∂K∩Ω =: 〈r, ψ〉+ 〈j, ψ〉Σh .

for all ψ ∈
◦

W1
2(Ω).

To estimate the residual we use Fubini theorem to interchange the space and

time integrals and integrate by parts in time. We abbreviate the writing by doing
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this rather formally∫ t

0

〈R(s) | ∂t(e(s)− Ihe(s))〉 ds

= 〈R(t) | e(t)− Ihe(t)〉 − 〈R(0) | e(0)− Ihe(0)〉

−
∫ t

0

〈∂tR(s) | e(s)− Ihe(s)〉

(A.21)

Now we need to estimate all these terms to factor out |e|W1
2
. This is easily

achieved by using the properties of operator Ih given in Theorem A.2.3. For

instance, we have

〈∂tR | e− Ihe〉 = 〈∂tr, e− Ihe〉+ 〈∂tj, e− Ihe〉Σh

=
〈
h∂tr, h

−1(e− Ihe)
〉

+
〈
h1/2∂tj, h

−1/2(e− Ihe)
〉

Σh

≤‖h∂tr‖L2(Ω)

∥∥h−1(e− Ihe)
∥∥

L2(Ω)

+
∥∥h1/2∂tj

∥∥
L2(Σh)

∥∥h−1/2(e− Ihe)
∥∥

L2(Σh)

≤
(
C ‖h∂tr‖2

L2(Ω) + C ′
∥∥h1/2∂tj

∥∥2

L2(Σh)

)1/2

‖∇e‖L2(Ω) .

Here C = C(d, l, σ0), C ′ = C ′(d, l, σ0) are the constants appearing in Theorem

A.2.3.

Combining estimations of this type with (A.21) and (A.20) we obtain∫ t

0

‖∂te‖2
L2(Ω) +

1

2
‖∇e(t)‖2 ≤ ‖∇e(0)‖2 +

1

2

(
C ‖hr(0)‖2

L2(Ω) + C ′
∥∥h1/2j(0)

∥∥2

L2(Σh)

)
+ µ ‖∇e(t)‖2

L2(Ω) +
1

4µ

(
C ‖hr(t)‖2

L2(Ω) + C ′
∥∥h1/2j(t)

∥∥2

L2(Σh)

)
+ µ sup

[0,t]

‖∇e(t)‖2
L2(Ω) +

1

4µ

(∫ t

0

(
C ‖h∂tr‖2

L2(Ω) + C ′
∥∥h1/2∂tj

∥∥2

L2(Ω)

)1/2
)2

,

where the arbitrary parameter µ > 0 is to be fixed.

If we fix now a time t̂ > 0 and let t∗ be such that

(A.22) sup
[0,t̂]

‖∇e‖2
L2(Ω) = ‖∇e(t∗)‖L2(Ω) ,
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and we replace t, once by t∗ and once by t̂, we obtain∫ t∗

0

‖∂te‖2
L2(Ω) +

1

2
sup
[0,t̂]

‖∇e‖2
L2(Ω)

≤E (0)2 + 2µ sup
[0,t̂]

‖∇e‖2
L2(Ω) +

1

4µ

(
E0(t∗)2 + E1(t∗)2

)(A.23)

∫ t̂

0

‖∂te‖2
L2(Ω) +

1

2

∥∥∇e(t̂)∥∥2

L2(Ω)

≤E (0)2 + 2µ sup
[0,t̂]

‖∇e‖2
L2(Ω) +

1

4µ

(
E0(t̂)2 + E1(t̂)2

)(A.24)

where the E are defined as

E (0)2 = ‖∇e(0)‖2 +
1

2

(
C ‖hr(0)‖2

L2(Ω) + C ′
∥∥h1/2j(0)

∥∥2

L2(Σh)

)
E0(t)2 := sup

[0,t]

(
C ‖hr(t)‖2

L2(Ω) + C ′
∥∥h1/2j(t)

∥∥2

L2(Σh)

)
E1(t) :=

∫ t

0

C ‖h∂tr‖L2(Ω) + C ′
∥∥h1/2∂tj

∥∥
L2(Ω)

.

(Notice the L1 nature in time of the last integral above.) By fixing the parameter

µ = 1/8 in (A.23) we obtain

(A.25)
1

4
‖∇e(t∗)‖2

L2(Ω) ≤ E (0)2 + 2
(
E0(t∗) + E1(t∗)2

)
.

Inserting this in the right-hand side of (A.24) we obtain

A.3.1 Theorem (Higher order norm estimates for the heat equation). Let u

and uh be respectively the exact and semidiscrete finite element solution of the

Cauchy-Dirichlet problem associated with the heat equation. Then the following

aposteriori error estimates holds

(A.26)

∫ t

0

‖∂te‖2
L2(Ω) +

1

4
‖∇e‖2

L2(Ω) ≤ 2E (0)2 + 4
(
E0(t)2 + E1(t)2

)
,

for all t ∈ [0, T ], and

(A.27) sup
[0,T ]

‖∇e‖2
L2(Ω) ≤ E(0)2 + 2

(
E0(T )2 + E1(T )2

)
.
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