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Advances in metamaterials technology have revealed novel opportunities for

achieving peculiar material properties amenable to the control of wave propaga-

tion paths for various applications not realizable with conventional materials. Some

prominent examples are schemes for electromagnetic and acoustic cloaking and fo-

cusing devices. In the classical approach to the formulations of these devices, one

exploits a change of physical coordinates to achieve a desired wave behavior within

a finite space. Such a change can be interpreted as a transformation of material

properties when the field equations of interest are invariant to coordinate trans-

formations. To date, this intuitive approach has led to the formulation of various

two-dimensional devices for wave redirection, including infinite circular and square

cloaks for both electromagnetic and acoustic fields. For acoustic fields, however,

the transformation approach is constrained to fluid-like metamaterials amenable to

the propagation of longitudinal waves only. Complications arise with solid materi-

als because of their inherent ability to sustain the propagation of both longitudinal



and transverse waves, which refract di↵erently in linear materials due to dissimilar

propagation speeds.

In this dissertation, the author first seeks a sequence of transformations that

may be used for cloaking two-dimensional airfoil sections through the classical

transformation method. For the sought sequence, the author takes advantage of

the mapping properties of the Joukowsky Transformation, and the closely related

Kaman-Tre↵tz Transformation, which are two well-known complex mappings that

have classically been used in the study of the aerodynamics of airfoil sections. Next,

the author explores wave redirection mechanisms that may take advantage of nonlin-

ear wave phenomena in elastic solid materials for acoustic wave redirection. Starting

from the classical nonlinear Murnaghan model, a hyper-elastic material is formu-

lated to realize couplings between shear and compressional modes that could lead to

a more suitable refractive behavior for acoustic wave redirection in a solid metama-

terial. The formulated model is studied by using perturbation and approximation

techniques.

The findings of this dissertation can be useful for redirecting and manipulating

acoustic waves for practical applications.
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Chapter 1: Introduction

1.1 Background

The bending phenomenon of waves as they propagate through media of di↵er-

ent refractive properties has long been exploited for practical applications in various

wave fields. In the optical field, for instance, devices such as microscopes and tele-

scopes that use engineered refractive lenses for magnification and focusing, have been

around for several centuries now [1]. While less trivial applications were found in

fields such as underwater acoustics where submariners have known for many decades

to exploit convergence and shadow zones created by the natural refractive charac-

teristics of the ocean for tactical purposes [2]. Thus, it is needless to persuade that

refraction has been extensively investigated to date for controlling wave propagation

paths. However, recent advances in metamaterials technology have led to renewed

interest in the phenomenon. Metamaterials are artificially designed materials that

exhibit peculiar wave interaction properties seldom found in natural or convention-

ally engineered material [3]. The field stemmed from the counter-intuitive property

of negative index of refraction (NIR), which can be traced back to the vision of

the Russian physicist Victor Veselago in 1967 [4]. Veselago postulated then that

although all known natural and engineered materials at the time had a positive in-
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dex of refraction, nothing precluded in theory from having NIR materials and that

such property was achievable if both the electrical permitivity ✏ and the magnetic

permeability µ of a material were allowed to be negative; that is, ✏ < 0, µ < 0 [4].

As a potential application, Veselago demonstrated that a flat lens could be designed

with NIR materials [4]. Despite their scientific merit and implications, NIR mate-

rials proposed by Veselago remained a mere academic curiosity for more than three

decades as no known material had the required negative permeability (µ < 0) [5].

However, in 2000, with advances in material fabrication techniques, a group of scien-

tists, Smith et al., successfully designed and demonstrated the first NIR material at

the University of California in San Diego [6]. To achieve the required negative permi-

tivity (✏ < 0) and permeability (µ < 0) postulated by Veselago, Smith’s group used

an array of split ring resonators and metal posts, designed at the sub-wavelength

scale [4]. Their work was groundbreaking, and several e↵orts were soon underway

to explore potential applications of NIRs and metamaterials technology. A note-

worthy e↵ort, among others, was the work of the British scientist John Pendry,

who demonstrated that a ”perfect lens” can be designed to achieve imaging beyond

Abbe’s di↵raction limit by using NIR materials [7]. Thought this was momentous in

itself, particularly for focusing devices in the optical field, it is rather Pendry’s intro-

duction of a transformation-based approach to formulating wave redirection devices

[8] a few years later that has arguably been the most consequential and thrusting

discovery to date for metamaterials research. In a seminal paper published in 2006,

Pendry presented a systematic means to formulating devices for electromagnetic
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wave redirection [8]. Starting from the known invariance of Maxwell’s equations

under coordinate transformations, Pendry demonstrated that a geometric transfor-

mation of a virtual electromagnetic domain with permitivity ✏, and permeability

µ, can simply be interpreted as a real physical domain with new properties ✏0 and

µ
0, which relate to those of the virtual domain through simple formulae involving

the gradient of the deformation [8]. As an immediate consequence of his findings,

Pendry formulated in the same paper the properties of a three-dimensional cloaking

device capable of rendering an enclosed object invisible to an electromagnetic wave

field [8]. Shortly thereafter, a physical realization of a two-dimensional electromag-

netic cloak based on Pendry’s formulation was achieved by Smith et al. of Duke

University using split ring resonators [9]. Pendry’s work and the ensuing experimen-

tal demonstration were major milestones, and sparked various e↵orts to explore the

possibility of extending the transformation approach to other classical waves fields,

including elastodynamic waves. However, Milton demonstrated later in the same

year that in the general case, the three-dimensional elastodynamic equations did not

maintain the same invariance properties as Maxwell’s equations under coordinate

transformations; therefore, violating a fundamental premise of Pendry’s transforma-

tion approach [10]. Nonetheless, Milton’s work did not exclude the possibility for

the special case of acoustic waves in fluid media where the necessary invariance of

the equations to coordinates change remained valid [10]. In fact, to date, numerous

acoustic wave redirection devices, including acoustic cloaks, lenses, beam shifters,

and field rotators, have been formulated by using the transformation approach [5].

However, despite their successful formulation, the aforementioned refraction based
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acoustic devices present major realization and practicability challenges due to the

fluid-like properties inherent to their formulation. As a results, more than a decade

since Pendry’s first introduction of the transformation approach, the formulation of

acoustic wave redirection materials and devices remains an active area of research.

1.2 Scope of Dissertation

In the present dissertation, the author explores the problem of bending and

controlling acoustic waves by using materials with unusual properties. The specific

objectives are to examine various approaches, including the use of geometric trans-

formations and the modification of constitutive laws to formulate materials that

can be used for the redirection of waves for practical applications. The scope of the

dissertation is two-fold. First, a sequence of transformations is sought for cloak-

ing airfoil geometries by using the transformation approach to wave redirection.

The interest in airfoil geometries is their practical relevance to both electromag-

netics and acoustics due to their use as control structures for vehicles operating in

air and undersea. In the sought sequence of transformations, the author exploits

Joukowsky and Karman-Tre↵tz maps, two complex variable transformations that

have been instrumental in the earlier studies of the aerodynamic of airfoils. In

a second facet of the investigation, the redirection of acoustic waves using elastic

materials is explored. Exploiting nonlinearity and nonlinear wave phenomena, a

hyper-elastic material favorable to controlling acoustic wave propagation paths is

formulated. The formulation stems from modifications to the Murnaghan strain
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energy function, a classical hyper-elastic material model, to help achieve a trans-

fer of energy from the longitudinal wave propagation mode to the transverse mode

through nonlinear couplings.

The dissertation is organized as follow. In this first introductory chapter, a

brief review of pertinent literature is presented to provide context for this work.

In Chapter 2, the Transformation Method is reviewed and its practicability for the

formulation of acoustic devices is discussed. In Chapter 3, the author’s e↵ort to

derive a sequence of transformations exploitable for cloaking two-dimensional airfoil

geometries is summarized. In Chapter 4, the formulation of a hyper-elastic material

amenable acoustic wave redirection is presented. Chapter 5 contains a discussion of

the findings, conclusions reached from the dissertation work, and recommendations

for future work.
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Chapter 2: Transformation Approach to Wave Redirection

2.1 Overview

In the introductory chapter the author presented a brief background of the

e↵orts to exploit advances in metamaterials technology to design wave redirection

devices for practical applications. A particular mention was made of Pendry for his

introduction of the transformation approach to wave redirection, which has been a

groundbreaking contribution to the state of the art of metamaterial research. In

the present chapter, the author presents in more details this intuitive and straight-

forward methodology for formulating the properties of wave redirection devices.

The necessary mathematical foundations are first introduced, which is followed by

a presentation of the methodology and its applications to the formulation of wave

redirection devices in electromagnetics and acoustics. The author gives particular

attention to the formulation of cloaking devices, which is pertinent to the first part

of this dissertation work.
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2.1.1 Mathematical Foundations

The fundamental premise of the transformation approach to formulate the

material properties of devices for wave redirection is based on the invariance of the

governing equations of the wave fields of interest to change of coordinates. To best

understand how a transformation of physical coordinates can translate to material

properties when the field equations are invariant to coordinate changes, one must

revisit the transformation rules for vectors and tensors, which are invariant quanti-

ties under a change of basis [11]. These rules are often introduced as mathematical

fundamentals in graduate courses in continuum mechanics or elasticity and can be

found in many classical textbooks.

Before proceeding with the discussion, a brief summary on the notational

conventions adopted throughout this dissertation is warranted. As in many classical

textbooks, scalar quantities are represented by italic or greek letters, for example, a

or ↵ while vectors and tensors are represented by bold font letters, for example, v

or A. To some exceptions, lower-case bold font letters are mainly used for vectors

while upper-case bold font letters are reserved for tensor quantities. Components

of vector and tensor quantities are represented by italic letters with subscripts, for

example, vi or Aij. Subscripts are also used to indicate partial di↵erentiation when

preceded by a comma as would be trivial from the context. The scalar and vector

products of two vectors u and v are represented respectively by u ·v and u⇥v, and

the tensor product is represented by u⌦v. The second order tensor u⌦v is defined

as (u⌦ v) ·w = (v ·w)u. Einstein summation convention over repeated indices is
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also assumed, i.e, the appearance of an index twice in a term, implies a summation

of that term over the range of the repeated index. Unless otherwise stated, the range

of indices can be assumed to be {1, 2, 3}, for example, uiei = u1e1 + u2e2 + u3e3.

The conventional vector calculus notation is adopted for di↵erential operators such

the gradient, curl, divergence, and Laplacian.

Let a vector u = uiei in a Cartesian coordinate system with orthonormal basis

vectors ei be re-expressed as u0 = u
0
ie

0
i in a new Cartesian coordinate system with

orthonormal basis vectors e
0
i. Since u and u

0 are the same vector that is simply

expressed in two di↵erent coordinate systems, that is, u0
ie

0
i = uiei, the relationship

between the components u0
i and ui of u in the two Cartesian coordinate systems can

be established and is given by Eq. (2.1).

u
0
i = Aijuj or u

0 = Au (2.1)

Here, Aij := e
0
i · ej are the components of the tensor A.

The transformation rules for vectors; that is, Eq. (2.1), can be extended

to second order tensors by recalling that second order tensors relate two vector

quantities. Thus, let two vectors u and v in a Cartesian coordinate system of

orthonormal basis vectors ei be related by the second order tensor S such that

v = Su. The relationship between u and v can be expressed in component form as

shown below in Eq. (2.2).

viei = (Sijei ⌦ ej) · (ukek) = Sijujei (2.2)
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Here, vi and ui are respectively the components of v and u, and Sij are the compo-

nents of the tensor S.

If the vectors u and v are expressed in a new Cartesian coordinate system with

orthonormal basis vectors e0i as u
0 and v

0 such that v0 = S
0
u
0, their relationship is

given by Eq. (2.3).

v
0
ie

0
i =

�
S
0
ije

0
i ⌦ e

0
j

�
· (u0

ke
0
k) = S

0
iju

0
je

0
i (2.3)

Here, v0i and u
0
i are respectively the components of v0 and u

0, and S
0
ij are the com-

ponents of the tensor S0.

From the expressions of Eq. (2.2) and Eq. (2.3), it is not di�cult to establish

the relationship between the components of the tensors S and S
0 by using Eq. (2.1)

to express v0i as v
0
i = Aikvk as shown below.

Ai,kSklul = S
0
iju

0
j ) Ai,kSklA

T
lju

0
j = S

0
iju

0
j (2.4)

Thus, from Eq. (2.4), the relationship between two second order tensors ex-

pressed in two di↵erent Cartesian coordinate systems is given by Eq. (2.5).

S
0
i,j = Ai,kSklA

T
lj or S

0 = ASA
T (2.5)

Here, S 0
ij and Skl are the components of the tensors S0 and S.

The transformation equations given by Eq. (2.1) and Eq. (2.5) are applicable

only to the Cartesian space, which is a special case of the general curvilinear space.

Unlike the Cartesian space that is generated from coordinate axes, the curvilinear
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space is generated from coordinate curves [12]. The basis vectors gi of the curvilinear

space are tangent to the coordinate curves and are not necessarily orthogonal to

each other [12]. Furthermore, these basis vectors are position dependent unlike

the basis vectors of the Cartesian space. One example of curvilinear coordinate

system that is commonly used, is the cylindrical coordinate system. The curvilinear

coordinates ⇥i of the cylindrical system are the familiar (r, ✓, z), which are expressed

in terms of the basis vectors gi = (r, ✓, z). Although problems are easier to solve

in the Cartesian coordinate systems, many problems do not lend themselves to a

treatment in this simple system and require one to work within the framework of the

curvilinear space [12]. This is particularly valid for the broad problem of interest

to this dissertation work; that is, the redirection of waves, whereas the shape of

the domains of interest are often not suited for the Cartesian coordinate system.

Consequently, it is necessary to establish the coordinate transformation rules for

the curvilinear space. The author presents these rules in Eq. (2.8) and Eq. (2.9)

without a rigorous mathematical treatment.

Let one have two curvilinear coordinate systems ⇥i and ⇥0
i, which are related

to each other. The basis vectors at a position X for the two coordinate systems are

given by Eq. (2.6) [3, 12].

gi =
@X

@⇥i
and g

0
i =

@X

@⇥0
i

(2.6)

By using the chain rule, the two basis vectors can be related as shown in Eq.

(2.7).
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gi =
@⇥0

j

@⇥i

@X

@⇥0
j

=
@⇥0

j

@⇥i
g
0
j and g

0
i =

@⇥j

@⇥0
i

@X

@⇥j
=

@⇥j

@⇥0
i

gj (2.7)

Since the expression in Eq. (2.7) relates the basis vectors of two curvilinear

coordinate systems, it is not di�cult for one to establish the transformation rules

for a vector u by expressing it in terms of the basis vectors in each system. This

leads to Eq. (2.8), the transformation rule for vector in curvilinear space [3, 12].

u
0
i = uj

@⇥0
i

@⇥j
= Fijuj (2.8)

Here, Fij :=
@⇥i
@⇥0

j
are the components of the deformation gradient tensor F.

The transformation rule for tensor quantities in curvilinear coordinate systems

can be derived in the similar way as before for Cartesian coordinate systems by using

Eq. (2.7) and Eq. (2.8). This is given below by Eq. (2.9)[3, 12].

S
0
ij =

@⇥0
i

@⇥k

@⇥0
j

@⇥p
Skp = FikFjpSkp (2.9)

Here, Fij :=
@⇥i
@⇥0

j
are the components of the deformation gradient tensor F.

Let one considers a mapping that takes a reference configuration of a body ⌦

to a deformed configuration ⌦x. The mapping X �! x takes points (X ) from ⌦ to

points (x) in ⌦x as shown in Figure 2.1. The Jacobian of the mapping is given by

Eq. (2.10) [11].

J = det (F) (2.10)

Here, Fij :=
@xi
@Xi

are the components of the deformation gradient tensor F.
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Figure 2.1: Body mapped from reference configuration ⌦ to deformed configuration ⌦x through

mapping X �! x.

The Maxwell’s equations in the original and deformed configuration (X ) and

(x) are given respectively by Eq. (2.11) and Eq. (2.12).

rX ⇥ E+ µ
d

dt
H = 0

rX ⇥H� ✏
d

dt
E = 0

(2.11)

Here, E and H are the electrical and magnetic field vectors. In addition, µ and ✏

are respectively the magnetic permeability and electric permittivity tensors.

r0
x ⇥ E

0 + µ0 d

dt
H

0 = 0

r0
x ⇥H

0 � ✏0
d

dt
E

0 = 0

(2.12)
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Here, E0 and H
0 are the electrical and magnetic field vectors. And µ0 and ✏0 are

respectively the magnetic permeability and electric permittivity tensors.

In Eq. (2.11) and Eq. (2.12), the electrical and magnetic field vectors E
0

and H
0 transform according to the coordinate transformation rules for vectors; that

is, Eq. (2.8). Similarly, the magnetic and electric permittivity tensors µ and ✏

transform according to Eq. (2.9). One can demonstrate by using the aforementioned

transformation rules that the permittivity and permeability tensors are given by Eq.

(2.13).

µ0 (x) =
F · µ (X ) · FT

detF

✏0 (x) =
F · ✏ (X ) · FT

detF

(2.13)

The mapping relationship of the permeability and permittivity tensors µ and

✏ from a reference configuration to a deformed configuration; that is, Eq. (2.11) and

Eq. (2.12), are the fundamental equations of what is known today as transformation

electromagnetics.

2.1.2 Methodology and Applications

The invariance of the Maxwell’s equations, as illustrated in Eq. (2.11) and Eq.

(2.12), was long established. However, it is Pendry that recognized the usefulness of

the invariance characteristics of the equations to the formulation of devices that can

be used to redirect electromagnetic waves. Indeed, in a seminal paper, Pendry shows

that Eq. (2.13) can be used to formulate the material properties of devices that

would guide electromagnetic waves in a manner analogus to the physical deformation

13



Figure 2.2: Singular transformation for cloaking.

achieved by the mapping X �! x [8]. As an application of his insightful discovery,

Pendry suggested that a cloaking device can be formulated by using a mapping

X �! x, which stretches a point (O) of a two-dimensional or three-dimensional

finite reference domain ⌦ to the outer boundary of a two-dimensional or three-

dimensional hole on the same finite domain in a deformed configuration as shown in

Figure 2.2 [8]. As a demonstration, Pendry used the cylindrical coordinate mapping

(r, ✓,�) ! (r0, ✓0,�0) given by Eq. (2.14) to formulate the parameters of a spherical

cloak by using Eq. (2.13) [8].

r
0 = R1 + r

R2 �R1

R2

✓
0 = ✓

�
0 = �

(2.14)

Here, (r, ✓,�) are the spherical coordinates in the reference domain, and (r0, ✓0,�0)

are the spherical coordinates in the deformed domain. R1 and R2 are the inner and

outer radii of the cloaking device.

The ensuing parameters of the spherical electromagnetic cloak can be found

from the mapping given by Eq. (2.14). These are given by Eq. (2.15).
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µ0 = µ

2

6666664

R2
R2�R1

(r0R1)2

r0 0 0

0 R2
R2�R1

0

0 0 R2
R2�R1

3

7777775

✏0 = ✏

2

6666664

R2
R2�R1

(r0R1)2

r0 0 0

0 R2
R2�R1

0

0 0 R2
R2�R1

3

7777775

(2.15)

The equations of transformation electromagnetics, Eq. (2.13), were extended

to acoustics by using the analogy between the two-dimensional single polarization

Maxwell’s equations and the two-dimensional acoustic wave equations [13, 14]. The

material properties for transformations acoustics; that is, the density ⇢ and the bulk

modulus � were derived and are given by Eq. (2.16).

⇢0 (x) =
F · ⇢ (X ) · FT

detF
1

�0 (x)
=

1

� (X )

F · FT

detF

(2.16)

The expressions of Eq. (2.16) were used to formulate the parameters of two-

dimensional acoustic cylindrical cloaks by taking advantage of the cylindrical coor-

dinate mapping (r, ✓, z) ! (r0, ✓0, z0) given by Eq. (2.17) [13, 14].
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Figure 2.3: Two-dimensional infinite circular acoustic cloak concept.

r
0 = R1 + r

R2 �R1

R2

✓
0 = ✓

z
0 = z

(2.17)

Here, (r, ✓, z) are the cylindrical coordinates in the reference domain, and (r0, ✓0, z0)

are the cylindrical coordinates in the deformed domain. R1 and R2 are the inner

and the outer radii of the cloaking device.

From Eq. (2.17) and by using Eq. (2.16), one can find the parameters of the

two-dimensional circular acoustic cloak. This is given in Eq. (2.18) [13, 14]. In

Figure 2.3, the author illustrates the concept of a two-dimensional acoustic cloak of

circular cross section.

⇢0 = ⇢

2

664

r
r�R1

0

0 r�R1
r

3

775

�
0 =

1

�

R
2
2

(R2 �R1)2
r �R1

r

(2.18)
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Figure 2.4: Two-dimensional infinite beam shifting device concept.

The above discussion underscored the application of the transformation ap-

proach to the formulation of cloaking devices. However, the method is applicable

to the formulation of other devices as long as one can find the necessary transfor-

mation. A simple illustration is the formulation of a two-dimensional device that

can be used to shift an incident beam. The author illustrates this concept in Figure

2.4. Using Eq. (2.13) or Eq. (2.16) one can find the properties of the beam shifting

device of Figure 2.4 by using the Cartesian coordinate mapping (x, y, z) ! (x0
, y

0
, z

0)

of Eq. 2.19 [5, 15]. These properties are given by Eq. (2.20) for the acoustic case

[5].

x
0 = x

y
0 = y

0 +
b

a
x
0

z
0 = z

(2.19)

Here, a is the thickness of the device and b is the vertical shift of the incident beam.
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⇢0 = ⇢

2

6666664

1 + ( ba)
2 (�b

a ) 0

(�b
a ) 1 0

0 0 1

3

7777775

�
0 = �

(2.20)

2.1.3 Summary

In this chapter, the author introduced the mathematical foundations of the

transformation approach to wave redirection. The author discussed the method-

ology and its applications for the formulation of wave redirection devices for both

electromagnetic and acoustic waves. Although, emphasis is put on cloaking, the

transformation method can be used for formulating other devices for wave redirec-

tion. The author illustrated this by presenting the case of a simple device for shifting

incident beams. To date, the transformation method have been used to formulate

practical devices such as cloaking, focusing, and beam shifting devices; to list only

a few [5, 16]. In the next chapter, the author will present his e↵orts to formulate a

sequence of transformations that can be useful to cloaking airfoil geometries.
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Chapter 3: Transformations Sequence for Cloaking Airfoil Sections

3.1 Overview

In the previous chapter, a review of the transformation approach for formu-

lating devices capable of bending waves for practical applications was presented.

Amongst the applications, the formulation of cloaking devices has been the most

sought-after application to date. Cloaking has tremendous implications, and the

transformation method brought the long time human reverie of designing invisibil-

ity cloaks within the realms of realization for the first time. As presented in Chapter

2, the construction of an invisibility cloak by using the transformation method con-

sists of exploiting a change of coordinates to create a void region within a finite space

whilst keeping the outer boundary of the considered space unchanged [8]. From the

ensuing transformation equations, the properties of an invisibility cloak can then be

inferred by using existing formulae; for example, Eq. (2.13) for electromagnetics and

Eq. (2.16) for acoustics [14]. To date, the approach has been successfully applied

to two-dimensional geometries such as circular and square cylinders by determin-

ing the necessary transformations equations [13, 15]. In this chapter, the author

summarizes an e↵ort to derive transformations equations that can be exploited for

cloaking two-dimensional airfoil sections by using the transformation method.
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Figure 3.1: Airfoil geometry.

An airfoil is a two-dimensional geometry that is representative of the cross

section of an aircraft wing, or similarly shaped structures. In Figure 3.1, the author

illustrates a basic airfoil section with its principal elements and dimensions shown.

The chord line is the straight line connecting the leading and the trailing edges of

the airfoil. The mean camber line is the locus of point midway between the top

and bottom surfaces of the airfoil [17, 18]. Airfoils originated from the aerospace

field, where an understanding of the flow around their shape played a fundamental

role in the development of airplanes. Throughout the years, many airfoils sections

were developed and tested around the world. This led to various families of airfoils

including NACA airfoils, a family developed in the United States by the National

Committee for Aeronautics (NACA) [17, 18]. NACA airfoils are the most commonly

used airfoils for wing sections, and are obtained from the addition of a thickness

distribution to a camber line [17, 18]. For instance, the simplest NACA series,
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the four-digit NACA-ABCD, is obtained by using the thickness distribution yt and

leading edge radius rt given by the polynomial expressions of Eq. (3.1) [17, 18].

±yt =
t

0.2
(0.29690

p
x� 0.12600x� 0.35160x2 + 0.28430x3 � 0.10150x4)

rt = 1.1019t2
(3.1)

In the four-digit designation, the digits A, B, C, and D provide the following infor-

mation about the airfoil [17, 18].

• The first integer A indicates the maximum value of the mean-line ordinate as

a percentage of the chord.

• The second integer B indicates the distance from the leading edge to the

location of the maximum camber as tenth of the chord.

• The last two integers CD indicate the section thickness as a percentage of the

chord.

As an example, NACA 2420 is an airfoil section that has a 2 percent camber located

at 0.4 chord length from the leading edge and a thickness of 20 percent of the chord.

Note that symmetric airfoils are represented by using zeros for the two first digits in

the designation [17]. Thus NACA 0030 is a symmetric airfoil with a thickness that

is 30 percent of the chord length.

Apart from aircraft wing designs, airfoil geometries are also encountered in

seaborne vehicles such as submarines where they typically serve as diving aides or

stabilizing structures. Thus, airfoils are prevalent on vehicles that operate in both
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Figure 3.2: Mapping of airfoil disc to airfoil annulus.

RADAR and SONAR environments; that is, airplanes and submarines. This makes

the problem of cloaking airfoil geometries relevant to both electromagnetics and

acoustics. In the present investigation, the author aspires to find a sequence of

transformations that can be used to formulate electromagnetic and acoustic airfoil

cloaks. Consistent with the premise of the transformation method, a transformation

f is sought that can be used to map an airfoil disc to an airfoil annulus as illustrated

in Figure 3.2.

To solve the problem of finding transformation f , the author took the approach

of breaking it down to the simpler problem of finding a sequence of three transfor-

mations f1, f2, and f3 as illustrated in Figure 3.3. The first transformation f1 can be

used to map an airfoil disc to a circular disc. The circular disc can then be mapped

to a circular annulus by using transformation f2. Finally, transformation f3 can be

used to map the circular annulus to an airfoil annulus with the same outer boundary

as the original airfoil disc. Once all three transformations are found, the sought-after

transformation f can be determined by using their composition. The motivation of

the aforementioned approach is to take advantage of the mapping properties of the

Joukowski and Karman-Tre↵tz transformations, two complex variable maps that are

classically used to approximate airfoils in aerodynamics applications [19, 20]. This

would become more evident in the remaining of this chapter, which is organized
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Figure 3.3: Mapping sequence of airfoil to annular airfoil.

as follow. In the next section, the author briefly introduces the Joukowski and the

Karman-Tre↵tz transformations and their relevant mapping properties to the prob-

lem of interest. In subsequent sections, the author presents his e↵orts to determine

the sought-after transformation f by solving for the three transformation f1, f2, and

f3. The found transformations are discussed in the context of formulating airfoil

cloaks by using the transformation method.

3.2 Transformations for Cloaking Airfoil Geometries based on the

Joukowski and Karman-Tre↵tz Transformations

3.2.1 The Joukowski Transformation

The important role that the study of flow around airfoil geometries played in

flight theory and the development of aircraft wing cannot be overstated. However,

at a time when computers were not available, obtaining accurate results for the flow

around these complex geometries was a very daunting tasks that required solving
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Laplace’s equation over their surfaces [20]. This di�culty was overcome by the

Russian mathematician and aerodynamicist Nikolai Joukowski in a pioneering work

in 1914 [17]. Joukowski exploited the method of conformal mapping [21, 22] to

derive transformations that led to the exact analytical solution of the flow around

some airfoil geometries by using Laplace’s equation and the known solution to the

flow around circles [20, 21]. In its general form, the Joukowski transformation is a

complex conformal mapping given by Eq. (3.2). For various choices of the parameter

�, the Joukowski transformation maps a circle centered at the origin and with radius

r � 1, to various geometries; this includes a line segment and an ellipse as illustrated

in Figure 3.4.

w(z) =
1

2

✓
z +

�
2

z

◆
(3.2)

Here z and w represents points respectively in the complex z- and w-plane. The

parameter � is the transformation parameter.

However, for a circle slightly o↵-centered from the origin to a new center (a, b),

the Joukowski transformation yields shapes similar to that of an airfoil for choices

of the paramater � such that � = r� |s|, with s = a+ ib, as shown in Figure 3.5 [20].

The generated airfoils are referred to as Joukowski airfoils and are characterized by

a cusp at the trailing end. Note that the Joukowski transformation cannot exactly

yield standard airfoils from the NACA family. However, with the proper choice of

parameters, a close approximation to specific NACA airfoils can be achieved. It

should also be mentioned that the Joukowski transformation is invertible and its
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Figure 3.4: Joukowski mapping of circle centered at origin with parameter �.

inverse is a multivalued complex function with two branch cuts as shown in Eq.

(3.3) [23].

z(w) = w ±
p
w2 � �2 (3.3)

3.2.2 Karman-Tre↵tz Transformation

As discussed above, the Joukowski transformation was of tremendous use in

the early studies of flows around airfoils. The simplicity of both the transformation

and its inverse makes it an attractive first choice for approximating airfoils even

today. However, the Joukowski transformation presents the undesirable feature of

a zero trailing edge angle (cusp), which is uncharacteristic of practical airfoils. Fur-

thermore, the Joukowski transformation only allows two possibilities for modifying
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Figure 3.5: Joukowski mapping of circle of radius r and center s = a+ib with parameter � = r�|s|.

the profile of an airfoil; that is, the camber and the thickness. To address the

aforementioned limitations, Karman and Tre↵tz introduced a generalized mapping

function of the Joukowski transformation that is more versatile in approximating the

profile of practical airfoil including NACA families of airfoils [24]. The expression

for the Karman-Tre↵tz transformation is given below by Eq.3.4.

w(z) = �b
(z + b)� + (z � b)�

(z + b)� � (z � b)�
(3.4)

As before, z and w represents points in the complex z- and w-planes. The parameter

� and b are the transformation parameters.

Though a more complex expression, the Karman-Tre↵tz transformation has a

number of advantageous characteristics over the Joukowski transformation for ap-

proximating airfoils. The most notable di↵erence is the ability for one to specify the
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trailing edge angle ✓ of the airfoil, and subsequently choose the necessary mapping

parameter � according to Eq. (3.5). Note from the expression of Eq. (3.5), that

when the trailing edge is chosen to be zero; that is, ✓ = 0 degrees, the mapping

parameter � = 2. It is not di�cult to show in that case that the Karman-Tre↵tz

transformation reduces to the Joukowski transformation [24].

� = 2� ✓

180
(3.5)

Here, ✓ is the trailing edge angle in degrees.

Similar to the Joukowski transformation, the Karman-Tre↵tz transformation

maps circles to various airfoil geometries. The transformation parameter b is the

critical point when z = 0; that is, where the circle of interest intersects the positive

real axis in the z-plane. As illustrated in Figure 3.6, a circle centered at the origin

yields a symmetric Karman-Tre↵tz airfoil bounded by two circular arcs. A camber

can be introduced to the airfoil by moving the center of the circle along the imaginary

axis as shown in the figure [24].

In order to approximate more conventional airfoils, such as symmetric 4-digit

series NACA airfoils, one needs to move the center of the circle in the mapping

domain (z-plane) on the real negative axis as shown in Figure 3.7. Here again, a

camber can be introduced to the airfoil by moving the center of the circle on the

second quadrant of the z-plane as with the Joukowski airfoils (see Figure 3.7)[24].
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Figure 3.6: Karman mapping of circle centered at origin with trailing edge angle ✓ = 30 degrees.

3.2.3 Transformations Solutions based on the Joukowski Transfor-

mation

In the previous section, the author introduced the Joukowski transformation

and its mapping properties for the approximation of airfoils. In particular, the

ability to use the transformation to map circles to airfoil profiles was underscored.

This characteristic was the main motivation for the choice of the transformations

sequence presented in Figure 3.3. As presented in Chapter 2, in the sequence of

Figure 3.3, transformation f2 that can be used to map a circular disc to a circular

annulus is already known. This transformation is given by Eq. (2.14), and is

reproduced below as Eq. (3.6). Transformation f2 is illustrated in Figure 3.8 for

a disc of radius Rout = 3, and an annulus of outer and inner radii Rout = 3 and
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Figure 3.7: Karman mapping of circle of radius r, centered at s = a + ib, and with trailing edge

angle ✓ = 30 degrees.

Rin = 2.

Ra(Rcd) = Rout +

✓
Rout �Rin

Rout

◆
Rcd

⇥a = ⇥cd

(3.6)

Here, (Ra,⇥a) is the polar coordinate of a point on the circular disc. Similarly,

(Rcd,⇥cd) is the polar coordinate of a point on the circular annulus.

Thus, to determine the sought-after transformation f , the task at hand is to

find the two transformations f1 and f3. To that end, the author chose to first seek

f3, the transformation of a circular annulus to an airfoil shaped annulus in order to

take advantage of the mapping properties of the Joukowski transformation. Before

proceeding, it needs to be emphasized that the Joukowski transformation, even with
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Figure 3.8: Mapping of circular disc centered at origin and of radius R = 3 to annulus of outer

radius Rout = 3 and inner radius Rin = 2.

appropriately chosen parameters, only maps the boundary of a circle in the z-plane

to that of an airfoil in the w-plane [25, 26]. The interior points of the circle are

mapped to points exterior to the airfoil [25, 26]. Consequently, for one to exploit

the mapping properties of the Joukowski transformation and determine f3 is not a

trivial task. This requires careful approach. The author successfully achieved this

objective by using a sequence of simple transformations as summarized next.

Let one start with a circular annulus of outer radius Rout and inner radius

Rin centered at the origin (0, 0). Two dimensional mappings are best treated in the

complex domain, and the aforementioned annulus has the complex representation

of Eq. (3.7). A Cartesian representation of the annulus is also given by Eq. (3.8).

Cartesian representations are provided through the derivation steps of f3 to correlate
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each step to the points (xa, ya) of the initial circular annulus and underscore the

intermediate nature of the transformations.

Za = xa + iya with Rin  |Za| =
p
x2
a + y2a  Rout (3.7)

x
2
a + y

2
a = R

2
a whith Rin  Ra  Rout (3.8)

Here, xa and ya are the Cartesian coordinates of points on the annulus, and Ra is

the radial distance from the origin to a point (xa, ya) on the annulus.

Next, the annulus can be mapped to a circle of radius ⇢ centered at the origin

by projecting the points on the unit circle, which can then be scaled to a circle of

radius ⇢. This is achieved by dividing the complex representation of each point on

the annulus, Eq. (3.7), by the corresponding magnitude and then multiplying by ⇢.

The result, which is shown in the complex representation, Eq. (3.9), is illustrated in

Figure 3.9 for a circle of radius ⇢ = 2, and an annulus with an outer radius Rout = 3

and inner radius Rin = 2. The mapping of Eq. (3.9) can be expressed as function

of the coordinate points (xa, ya) as shown in the Cartesian representation of Eq.

(3.10).

Zc = ⇢
Za

|Za|
(3.9)

xc =
⇢xap
x2
a + y2a

yc =
⇢yap
x2
a + y2a

(3.10)
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Figure 3.9: Mapping of annulus centered at origin, and of outer radius Rout = 3 and inner radius

Rin = 2 to circle of radius using Eq. (3.9)

Here, xc and yc are the Cartesian coordinates of the projected points on the circle

of radius ⇢.

With the circular annulus transformed to a circle centered at the origin, one

can take advantage of the the mapping properties of the Joukowski transformation

to obtain an airfoil profile. However, to do so, the center of the circle of Eq. (3.9)

needs to be shifted from the origin to a point s with Cartesian coordinates (↵, �).

This leads to the new circle given by the expression of Eq. (3.11), and is illustrated

in Figure 3.10 for the circle of Figure 3.9. Again, the Cartesian representation of

Eq. (3.12) relates a point (xcs, ycs) on the circle to a point (xa, ya) on the starting

circular annulus.
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Figure 3.10: Mapping of circle centered at origin and of radius ⇢ = 2 to circle of same radius, but

centered at s(�0.25, 0) by using Eq. (3.11).

Zcs = Zc + s with Zcs = xcs + iycs, and s = ↵ + i� (3.11)

xcs =
⇢xa + ↵

p
x2
a + y2ap

x2
a + y2a

ycs =
⇢ya + �

p
x2
a + y2ap

x2
a + y2a

(3.12)

Here, xcs and ycs are the Cartesian coordinates of the points on the circle of radius

⇢ and center s(↵, �).

The points (xcs, ycs) on the circle of radius ⇢ and center (↵, �) can be mapped

to points (xj, yj) on the boundary of a Joukowski airfoil by using the Joukowski

transformation. To obtain an airfoil, the mapping parameter � must be restricted

such that � = ⇢� |s| = ⇢�
p

↵2 + �2, as was underscored in the previous section.
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The ensuing transformation is given in the complex form as Eq. (3.13), and is

illustrated in Figure 3.11 for the circle of Figure 3.10. The Cartesian form of the

combined sequence is given by Eq. (3.14).

Zj =
1

2

✓
Zcs +

�
2

Zcs

◆
=

1

2

✓
Zcs +

�
2
Z̄j

|Zcs|

◆
with Zj = xj + iyj (3.13)

xj =
1

2

0

B@
⇢xa + ↵

p
x2
a + y2ap

x2
a + y2a

+
�
2
p
x2
a + y2a

⇣
⇢xa + ↵

p
x2
a + y2a

⌘

⇣
⇢xa + ↵

p
x2
a + y2a

⌘2

+
⇣
⇢ya + �

p
x2
a + y2a

⌘2

1

CA

yj =
1

2

0

B@
⇢ya + �

p
x2
a + y2ap

x2
a + y2a

�
�
2
p
x2
a + y2a

⇣
⇢ya + �

p
x2
a + y2a

⌘

⇣
⇢xa + ↵

p
x2
a + y2a

⌘2

+
⇣
⇢ya + �

p
x2
a + y2a

⌘2

1

CA

(3.14)

Here, xj and yj are the Cartesian coordinates of the points on the Joukowski airfoil

profile.

Thus far, the sequence of transformations given by Eq. (3.9) - Eq. (3.14) can

be used to map a circular annulus to the profile of a Joukowski airfoil. As can be

discerned from Eq. (3.14), each points Zj = xj + iyj on the Joukowski airfoil profile

represented by Eq. (3.13) is associated with a point Za = xa + iya, on the original

annulus represented by Eq. (3.7). Since each point Za on the annulus was first

projected on the unit circle by scaling by its modulus |Za| =
p
x2
a + y2a, one can

obtain the sought-after Joukowski airfoil annulus by re-scaling back each point Zj

on the Joukowski airfoil profile of Eq. (3.13) by the modulus |Za| associated with

it as shown in Eq. (3.15). This transformation is illustrated in Figure 3.12 and

concludes the sequence of transformations necessary to find f3.
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Figure 3.11: Mapping of circle centered at s(�.25, 0) to Joukowski airfoil profile using Eq.3.13.

Zja = |Za|Zj with Zja = xja + iyja (3.15)

Transformation f3 can be expressed in complex and Cartesian forms respec-

tively as Eq. (3.16), and Eq. (3.17), and can be used to map a point (xa, ya) of a

circular annulus Rin 
p

x2
a + y2a  Rout to a point (xja, yja) of a Joukowski airfoil

annulus. In Figure 3.14, the author illustrates transformation f3 for the annulus of

Figure 3.8 of outer radius Rout = 3, and inner radius Rin = 2.

Zja =
|Za|
2

h
⇢

⇣
Za
|Za|

⌘
+ s

i2
+ �

2

⇢

⇣
Za
|Za|

⌘
+ s

(3.16)
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Figure 3.12: Mapping of Joukowski airfoil profile to Joukowski airfoil annulus using Eq. (3.15).

xja =
1

2

0

B@⇢xa + ↵

p
x2
a + y2a +

�
2(x2

a + y
2
a)
⇣
⇢xa + ↵

p
x2
a + y2a

⌘

⇣
⇢xa + ↵

p
x2
a + y2a

⌘2

+
⇣
⇢ya + �

p
x2
a + y2a

⌘2

1

CA

yja =
1

2

0

B@⇢ya + �

p
x2
a + y2a �

�
2(x2

a + y
2
a)
⇣
⇢ya + �

p
x2
a + y2a

⌘

⇣
⇢xa + ↵

p
x2
a + y2a

⌘2

+
⇣
⇢ya + �

p
x2
a + y2a

⌘2

1

CA

(3.17)

Here, the necessary restriction � = ⇢�
p

↵2 + �2) is imposed.

Before proceeding with the discussion of the e↵ort to finding f1, the final trans-

formation needed to determine transformation f , it is worth adjourning to briefly

appreciate some features of transformation f3. In particular, note the explicit and

relatively simple nature of f3 in both complex and Cartesian forms as shown in

Eq. (3.7) and Eq. (3.8). Such simple expressions resulted from the relative sim-
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plicity of the Joukowski transformation, Eq. (3.2), and can be consequential for

formulating cloaking devices. Recall from Chapter 2 that the formulation of wave

redirection devices, including cloaking devices, on the basis of the transformation

method, requires the calculations of the deformation gradients. These calculations

are more manageable tasks analytically, as well as numerically, for explicit expres-

sions such as Eq. (3.7) and Eq. (3.8). Moreover, the deformation gradient of the

composition of mapping functions is the product of the deformation gradients of

each function. Thus, if one can determine transformation f1, the deformation gra-

dient of the sought-after function f can be found by calculating the product of the

deformation gradients of f1, f2, and f3. Thus far, the transformations f2 and f3

are known and their composition f3 (f2) is demonstrated to map a circular disc to a

Joukowski airfoil annulus in Figure 3.13. Next, the author turns to the discussion of

the e↵ort of finding transformation f1 to map a Joukowski airfoil disc to a circular

disc as illustrated in Figure 3.3.

The e↵ort to find transformation f1 has been unsuccessful, and f1 remains

elusive to date. However, a discussion of few of the approaches that the author

explored in the unsuccessful e↵ort of finding f1 is warranted. The discussion un-

derscores the subtleties of the approaches, but also leads to the rationale that led

the author to alternatively explore the Karman-Tre↵tz transformation to determine

transformation f in lieu of the Joukowski transformation. By starting with trans-

formation f3, the author’s initial intuition was that transformation f1 would have

been trivial if f3 was successfully formulated. The insight was that f1 would have

naturally fallen from the above formulation of f3 as its inverse, but with the inner
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Figure 3.13: Mapping of disc centered at origin and of radius ⇢ = 3 to Joukowski airfoil annulus

using composition of f2 and f3; that is, f3 (f2).

radius of the annulus assumed to be approximately equal to zero; that is, Rin ⇡ 0.

However, it turned out that transformation f3 is neither invertible at all points nor

could an inverse be found ; even numerically by using a powerful symbolic tool such

as Mathematica on a personal computer.

The author attributed the di�culties of finding the inverse of f3 to the cusp

at the trailing edge of Joukowski airfoils, and to the fact that the inverse Joukowski

transformation of Eq. (3.3) has two branch cuts. Thus, the transformation f3 is

not locally invertible at all points since it is not di↵erentiable at the cusp, nor is the

function one-to-one because of the two branch cuts of the inverse. The aforemen-

tioned points are two requirements that must be met for a function to be invertible

according to the inverse function theorem [27]. Nonetheless, it may be possible that
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through mathematical astuteness, an inverse function approach can lead to f1, by

restricting to one branch cut of the inverse Joukowski. This approach was unsuc-

cessful for the author. The vain e↵ort to find transformation f1 using the inverse

function of f3 and related approaches led the author to explore other avenues. In

particular, the author visited the possibility of exploiting other conformal maps to

obtain f1. This stemmed from the Riemann mapping theorem, according to which

there exists an analytic bijection (conformal transformation) that can be used to

map a simply connected domain in the complex plane C to the unit disc in C [28].

To that end, the author opted to circumvent the mathematical di�culties with

the Joukowski transformation and explore an approach to finding transformation f

based on the more generalized Karman-Tre↵tz transformation as presented in the

following section.

3.3 Transformation Solutions based on the Karman-Tre↵tz Transfor-

mation

In Section 3.2.3 above, the author sought to exploit the mapping properties of

the Joukowski transformation to find a sequence of transformations f1, f2, and f3,

the composition of which was to give the sought-after transformation f as illustrated

in Figure 3.3. In the sequence, transformation f2 was already known, and the author

successfully exploited the mapping properties of the Joukowski transformation to

find transformation f3. However, transformation f1, which, if formulated, could

have been used to map a Joukowski airfoil disc to a circular disc was not successfully
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Figure 3.14: Mapping of circle centered at origin and of radius ⇢ = 2 to circle of same radius, but

centered at s(�0, 25, 0) by using Eq. (3.11).

obtained. As an alternative, the author presents in this section a transformation

sequence, the composition can be used to map a symmetric Karman-Tre↵tz airfoil

disc bounded by two circular curves to a Karman-Tre↵tz airfoil annulus as illustrated

in Figure 3.15. To that end, the author exploits the properties of various complex

transformations, including the Karman-Tre↵tz transformation, and leverages the

approach he used to finding the transformation f3 in Section 3.2.3.

To start, let the symmetric Karman-Tre↵tz airfoil disc of Figure 3.15 be defined

by points Zktd in the complex plane C. The airfoil disc has a chord length C and

edge angles ↵, and its outer profile is a Karman-Tre↵tz airfoil with paramaters � and

b. The disc can be mapped to an infinite plane bounded by two line segments in the

positive half plane, and forming a vertex angle ↵ at the origin. This is achieved by
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Figure 3.15: Mapping f of a symmetric Karman-Tre↵tz airfoil disc of chord length C and edge

angles ↵ to a Karman-Tre↵tz airfoil annulus of outer chord C, inner chord c, and edge angles ↵.

using Eq. (3.18) to map point Zktd on the disc to a point Z↵p on the aforementioned

plane. Eq. (3.18) is a linear fractional transformation that maps the upper and

lower circular arc boundaries of the airfoil disc to the two line segments bounding

the infinite plane and forming a vertex ↵ at the origin [29]. The transformation is

illustrated in Figure 3.16.

Z↵p = ei⇡
Zktd + l

Zktd +m
(3.18)

Here, l = �b, and m = ��b; with � = 2� ↵
⇡ , and b is such that C = 2�b as defined

earlier.

The infinite plane bounded by the two line segments in the positive half space,

and with vertex ↵ at the origin can be mapped to the entire positive half space. To

do so one needs to use a complex exponentiation as shown in Eq. (3.19) to map

points Z↵p to points Zhp in the positive half space. The mapping is illustrated in

Figure 3.17.

Zhp = Z
⇡
↵
↵p (3.19)
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Figure 3.16: Mapping of symmetric Karman-Tre↵tz airfoil disc of chord length C = 7.33 and edge

angles ↵ = ⇡
6 to infinite space bounded by two line segments forming vertex angle ↵ = ⇡

6 at origin.

To map the positive half space to a circular disc of radius Rout = �b, one can

use Eq. (3.20), which is the inverse of Eq. (3.18). The transformation of Eq. (3.20)

is illustrated in Figure 3.18.

Zcd =
�me�i⇡

Zhp + l

e�i⇡Zhp � 1
(3.20)

Here, l, and m are as defined earlier.

It should be underscored that the sequence of transformations Zktd through Zcd

can be used to map the symmetric Karman-Tre↵tz airfoil disc shown in Figure 3.15

to a circular disc as shown in Figure 3.18. This is analogous to transformation f1 in

the sequence of Figure 3.3. The logical question may rise as to why such approach

was not extended to find the transformation f1 for a Joukowski airfoil disc. The
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Figure 3.17: Mapping of infinite space bounded by two line segments forming a vertex angle ↵ = ⇡
6

at origin to infinite positive half space.

reason lies primarily in the undesirable cusp inherent to Joukowski airfoils. The null

trailing edge angle does not permit the use of the aforementioned approach since

↵ ⇡ 0 is not compatible with Eq. (3.19). Moreover, the boundaries of Joukowski

airfoils are not perfect circular arcs, and this presents a challenge to overcome. A

similar challenge is presented by Karman-Tre↵tz airfoils not bounded by circular

curve. The author believes this can be overcome by using complex transformations

to relate those Karman-Tre↵tz airfoils to Karman-Tre↵tz airfoils bounded by circular

arcs. However, the author has not attempted to do so here.

With the sequence of transformations Z↵p, Zhp, and Zcd determined, the re-

maining transformations that are needed for one to find the transformation f shown

in Figure 3.15 are trivial. Since transformation f2 of a circular disc to an annulus is
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Figure 3.18: Mapping of infinite positive half space to circular disc centered at origin and of radius

R = 3.67.

already known and given by Eq. (3.6), one can simply use the approach that led to

transformation f3 in Section 3.2.3 to complete the sequence as presented next.

The points Zcd of the disc of radius Rout = �b can be mapped to the points Za

of a circular annulus of outer radius Rout and inner radius Rin by using the known

transformation f2 as shown in the complex form in Eq. (3.21). This mapping is

shown in Figure 3.19.

Za = Rae
i⇥a

Ra(Rcd) = Rout +

✓
Rout �Rin

Rout

◆
Rcd

⇥a = ⇥cd

(3.21)

Here, Rdc and Ra are respectively the magnitude of Zcd and Za, and ⇥cd and ⇥a are
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Figure 3.19: Mapping of circular disc centered at origin and of radius Rc = 3.67 to circular annulus

of outer radius Rout = 3.67 and inner radius Rin = 3
4Rout.

similarly the arguments of Zcd and Za.

The annulus can now be mapped to a circle of radius Rc = b, as illustrated in

Figure 3.20, by projecting its points on the unit circle and scaling the radius to Rc

by using Eq. (3.22).

Zc = Rc
Za

|Za|
(3.22)

The circle of Figure 3.20 is centered at the origin and has a radius Rc = b.

Thus, one can use the Karman-Tre↵tz transformation with parameter � = 2 � ↵
⇡

and b to map the aforementioned circle to a Karman-Tre↵tz airfoil of chord length

C = 2�b and edge angles ↵. This is done by using Eq. (3.23) and is illustrated in

Figure 3.21.
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Figure 3.20: Mapping of circular annulus of outer radius Rout = 3.67 and inner radius Rin = 3
4Rout

to circle of radius Rc = 2.

Zkt = �b
(Zc + b)� + (Zc � b)�

(Zc + b)� � (Zc � b)�
(3.23)

Here, b = Rc and � = 2� ↵
⇡ .

In the final step to determine transformation f that can be used to map a

Karman-Tre↵tz disc to a Karman-Tre↵tz airfoil annulus as shown in Figure 3.15,

one can re-scale the points Zkt of the Karman-Tre↵tz airfoil profile to obtain the

desired Karman-Tre↵tz airfoil annulus. This can be done by using Eq. (3.24) and

is illustrated in Figure 3.22.

Zkta = |Za|
Zkt

�Rc
(3.24)

Here, �Rc = �b = C
2 is half the chord length C.
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Figure 3.21: Mapping of circle of radius Rc = 2 to symmetric Karman-Tre↵tz airfoil profile of

chord length C = 7.33 and edge angles ↵ = ⇡
6 .

The composition of the complex transformations of Eq. (3.18) - Eq. (3.24)

can map a Karman-Tre↵tz airfoil disc to a Karman-Tre↵tz airfoil annulus and is

illustrated in Figure 3.23. Unlike the approach with the Joukowski transformation,

this sequence cannot be expressed explicitly in terms of the Cartersian or polar

coordinates of the points on the initial Karman-Tre↵tz airfoil. This makes it more

challenging, to determine the deformation gradient necessary for the formulation of

cloaking devices by using the transformation approach. However, a numerical tool

can be used to compute the necessary gradient. Moreover, the author found that the

transformation changes the angular coordinates of initial points, the e↵ect of those

changes on a cloak formulation based on the transformation sequence has not been

investigated. The author believes that this would have minimal e↵ect and can be
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Figure 3.22: Mapping of symmetric Karman-Tre↵tz airfoil profile of chord length C = 7.33 and

edge angles ↵ = ⇡
6 to Karman-Tre↵tz airfoil annulus of outer chord length C = 7.33, inner chord

length c = 3
4C, and edge angles ↵ = ⇡

6 .

corrected through some angular transform if necessary; this remains to be explored.

3.4 Summary

The author has presented two e↵orts to find a sequence of transformations that

can be used to formulate acoustic or electromagnetic airfoil cloaks by using the trans-

formation method. The e↵orts are based on the Joukowski and the Karman-Tre↵tz

transformation, two complex variable mappings that have been classically used to

approximate airfoil geometries in aerodynamic studies. The e↵ort based on the

Joukowski transformation was only partially successful as one of the transformation

in the sequence remains elusive. However, the shortcomings and approach of the ef-
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Figure 3.23: Mapping of symmetric Karman-Tre↵tz airfoil profile of chord length C = 7.33 and

edge angles ↵ = ⇡
6 to Karman-Tre↵tz airfoil annulus of outer chord length C = 7.33, inner chord

length c = 3
4C, and edge angles ↵ = ⇡

6 .

fort led to an alternative e↵ort based on the Karman-Tre↵tz transformation. In this

e↵ort, the author took advantage of the mapping properties of the Karman-Tre↵tz

transformation and leveraged the approach of the initial e↵ort to successfully derive

a sequence of transformation of a Karman-Tre↵tz airfoil disc to a Karman-Tre↵tz

airfoil annulus. The investigation was only limited to symmetric Karman-Tre↵tz

airfoils bounded by circular arc. The sequence can be used to formulate acous-

tic or electromagnetic cloaks for the aforementioned airfoils by using equations of

the transformation approach to wave redirection. The sequence of transformation

can be extended to more general Karman-Tre↵tz airfoils through astute mapping

of those airfoils to the symmetric airfoils considered in the investigation. Also, it is
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plausible that the approach based on the Joukowski transformation could be com-

pleted by successfully finding the incomplete transformation that maps a Joukowski

airfoil disc to a circular disc. This transformation exists according to the Riemann

mapping theorem. If successfully completed, the transformation sequence based on

the Joukowski mapping can be very attractive for formulating airfoil cloaks using

the transformation method. One of the main advantage of the Joukowski transfor-

mation is the simplicity of its expression. Thus, using the transformation could lead

to explicit expressions and facilitate the calculations necessary for the formulation

of cloaking devices. A hint of such simple explicit formulation was underscored in

the foregoing discussion.
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Chapter 4: Nonlinear Hyper-elastic Acoustic Metamaterial Studies

4.1 Overview

The derivation of the transformation method from the invariance of field equa-

tions often overshadows the fact that the approach is essentially a systematic for-

mulation of refraction-based devices for controlling wave propagation path. Recall

that in electromagnetics, the index of refraction n relates to the permitivity ✏, and

permeability µ as n2 / ✏µ, while in acoustics, the density ⇢ and bulk modulus  of

a material relate to the index of refraction through n
2 / ⇢/. Consequently, Eq.

(2.13) and Eq. (2.16) are mere formulations of refractive properties of an electro-

magnetic and acoustic wave redirection devices relative to their intended operational

environment.

Unlike their electromagnetic counterparts, the refractive nature of acoustic

wave redirection devices formulated through the transformation method restricts

their design to metamaterials with fluid-like properties in which only longitudi-

nal waves are allowed to propagate, and are readily controllable through refractive

properties. Elastic solids, however, allow the propagation of both longitudinal and

transverse waves because of their inherent ability to sustain both modes of defor-
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Figure 4.1: Acoustic wave refraction (a): fluid-fluid interface (b): fluid-solid interface.

mations [30]. Furthermore, in linear elastic materials, longitudinal and transverse

waves refract di↵erently because of di↵erences in their phase speeds, and also prop-

agate without interaction. This makes it challenging to simultaneously control their

propagation paths through refractive properties alone.

cl =

s
�+ 2µ

⇢
and ct =

r
µ

⇢
(4.1)

Here, ⇢ represents density, and � and µ are respectively the Lame’s parameter and

the shear modulus.

The propagation speeds of longitudinal and transverse waves in linear isotropic

solids is given by Eq. (4.1), and it is observed that longitudinal waves propagate

much faster than their transverse counterparts [30]. This results in two di↵erent

indices of refraction for linear elastic solids, and a more complicated refractive be-

havior compared to fluids as illustrated in Figure 4.1.

In Figure 4.1(a), the familiar refraction scenario of a plane wave propagating

from one fluid medium and incident upon the interface with another fluid medium is
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shown. The transmitted wave through the second medium is refracted, but remains

a single plane pressure wave. Thus, it is conceivable to use layers of fluid media

with various refractive characterisitics to control the path of an acoustic wave as

it propagates through the layers. However, in Figure 4.1(b) where the interfacing

medium is an elastic solid, the phenomenon of mode conversion occurs as the prop-

agating pressure wave from the fluid medium impinges on the fluid-solid boundary

resulting in the transmission of a refracted longitudinal wave as well as a refracted

transverse wave through the solid medium. This dual refractive characteristics of

elastic solids makes their use challenging for controlling acoustic wave propagation

through refraction.

To address the above mentioned quandary, an alternative solid material for-

mulation based on pentamode materials was proposed by Norris in 2008 [31]. These

peculiar solid materials were first introduced by Milton in 1997 and mimic fluid

behavior in the limiting case. Their elasticity tensor has five near zero eigenvalues,

hence the prefix ”penta”, which is associated with five compliant and one sti↵ modes

[32]. Norris’ work was a major breakthrough as it presented a pathway to potentially

realize practical solid metamaterials for acoustic wave redirection [31]. However, in

2012, Kadic et al. built and tested a proposed pentamode design by Milton (see

Figure 4.2), and revealed that the considered design presented practicability chal-

lenges due to an unfavorable trade-o↵ between their desired pentamode behavior

and their structural stability as observed in Figure 4.3[33]. In Figure 4.3, it is seen

that the desired pentamode behavior degrades rapidly with increase structural sta-

bility; that is, the shear modulus increases much faster than the bulk modulus as
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Figure 4.2: Proposed pentamode design by Milton. Sample polymer pentamode metamaterial

cube fabricated using direct-laser-writing (DLW) [33].

the diameter of the connecting nodes increases. Nonetheless, despite the practical

challenges that pentamodes may present, Norris’ formulation remains at the fore-

front of acoustic metamaterials research today. Consequently, the emerging field of

acoustic metamaterials remains open to novel approaches, which is the motivation

for the investigation set forth in this chapter.

Before proceeding, it needs to be underscored that the previous discussion per-

tains solely to wave redirection mechanisms on the basis of linear system behavior.

The refraction scenario depicted in Figure 4.1(b) is applicable only to linear elas-

tic solids wherein the refracted longitudinal and transverse waves are transmitted

through the solid medium without interaction as stipulated by the principle of su-

perposition. A richer and more complex wave behavior can manifest if nonlinearity

is allowed in the solid medium. Unlike their linear counterparts, nonlinear waves

seldom propagate without interaction, and these waves are amenable to combina-
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Figure 4.3: Structural stability trade-o↵ study for pentamode design [33].

tions and new wave formations that lead to a plethora of phenomena exploitable for

practical applications [34, 35]. In this chapter, the author summarizes an e↵ort to

exploits nonlinearities (geometric and material), and nonlinear wave phenomena to

formulate a hyper-elastic acoustic metamaterial favorable to the control of acoustic

wave propagation path. The formulated material model is investigated for plane

wave propagation by using perturbation and approximation analyses available for

studies of nonlinear waves.

4.2 Theory

4.2.1 Murnaghan strain energy function in elastoacoustic studies

Elastoacoustic investigations are classically formulated from the nonlinear hyper-

elastic material model first proposed by Murnaghan in 1937 [36]. In its classical form,

the Murnaghan model is a third order strain energy density function of components

of Green-Lagrange strain tensor, and is shown in Eq. (4.2) [36, 37]. The model can
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be used to describe the behavior of a large class of engineering materials, including

many metals, when material nonlinearity is accounted for [37].

W (✏ij) =
1

2
�(✏mm)

2 + µ(✏ik)
2 +

1

3
A✏ik✏im✏km +B(✏ik)

2
✏mm +

1

3
C(✏mm)

3 (4.2)

Here, the second order constants � and µ are commonly referred to as Lame’s elastic

constants, and the constants of the third order A, B, and C are the Murnaghan

material constants [37].

For wave propagation problems, it is convenient and common practice to re-

express the model given by Eq. (4.2) in terms of gradients of the displacements uk by

using the relationship between Green-Lagrange strain tensor and the displacement

gradients tensor Eq. (4.3) [37].

✏nm =
1

2
(un,m + um,n + uk,nuk,m) (4.3)

Here, u(xk, t) is the displacement vector.

The resulting formulation is shown in Eq. (4.4), and is more suited for the

types of initial and boundary conditions ordinarily encountered in wave propagation

problems.
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W (ui,k) =
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2
�(um,m)

2 +
1

4
µ(ui,k + uk,i)

2 + (µ+
1

4
A)ui,kum,kium,k

+
1

2
(�+B)um,m(ui,k)

2 +
1

12
Aui,kuk,mum,i +

1

2
Bui,kuk,ium,m +

1

3
C(um,m)

3

+
1

4
�(Un,m)

3 +
1

4
µ(un,iun,k)

2 +
1

8
A[(ui,k + uk,i)(ui,m + um,i)us,kus,m

+ (ui,k + uk,i)(uk,m, um,k)us,ius,m + (ui,m + um,i)(uk,m + um,k)us,ius,k

+
1

2
B[(ui,k + uk,i)un,iun,kum,m +

1

2
(ui,kuk,i + ui,kui,k)un,mun,m]

+
3

2
C(um,m)

2(un,m)
2 +

1

24
A[(ui,k + uk,i)(us,ius,m)(ul,kul,m)

+ (ui,m + um,i)(un,iun,k)(ul,kul,m) + (uk,m + um,k)(un,iun,k)(us,ius,k)]

+
1

4
B[(un,iun,k)

2
um,m + (ui,k + uk,i)un,iun,k(us,m)

2] +
1

12
Cum,m(un,m)

4

+
1

24
A(un,iun,k)(us,ius,m)(ul,kul,m) +

1

8
B(un,iun,k)

2(us,m)
2 +

1

24
C(un,m)

6

(4.4)

It should be noted that the strain energy function of Eq. (4.4) encompasses

both material and geometric nonlinearities as no assumption of infinitesimal dis-

placement is made in Eq. (4.3). And, unlike Eq. (4.2), which includes only third

powers of the strain components, Eq. (4.4) now includes up to sixth powers of the

displacement gradients. This allows for four nonlinear sub-potentials to be consid-

ered in the study of wave propagation problems. The simplest sub-potential, Eq.

(4.5), is obtained by neglecting terms of the fourth through six powers of the dis-

placement gradients. This was used in seminal papers on plane nonlinear elastic

waves in elastoacoustics studies [37, 38].
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W (ui,k) =
1

2
�(um,m)

2 +
1

4
µ(ui,k + uk,i)

2 + (µ+
1

4
A)ui,kum,kium,k
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2
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1

3
C(um,m)
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(4.5)

4.2.2 Plane waves in classical nonlinear Murnaghan materials

The third order sub-potential of Eq. (4.5) can be further simplified for plane

polarized wave propagation problems where the wave front is assumed to be de-

pendent on only one coordinate variable; that is, x1, x2, or x3. The resulting

sub-potential is shown in Eq. (4.6) for the case of a wave vector directed along

the abcissa x1 [37, 38].

W =
1

2
[(�+ 2µ)(u1,1)

2 + µ[(u2,1)
2 + (u3,1)

2]] + [µ+
1

2
�+

1

3
A+B +

1

3
C](u1,1)

3

+ [
1

2
(�+B) + (µ+

1

4
A)]u1,1[(u2,1)

2 + (u3,1)
2]

(4.6)

Recalling that the components of the First Piola-Kircho↵ stress tensor tik

relates to the strain energy function as tik = @W/@ui,j, the three stress expressions of

Eq. (4.7) are derived for the propagation of plane waves in the simplest Murnaghan

materials.
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t11 = (�+ 2µ)u1,1 +
3

2
[�+ 2µ+ 2(

A

3
+B +

C

3
)](u1,1)

2

+
1

2
[�+ 2µ+

1

2
A+B][(u2,1)

2 + (u3,1)
2],

t12 = µu2,1 +
1

2
[�+ 2µ+

1

2
A+B]u1,1u2,1,

t13 = µu3,1 +
1

2
[�+ 2µ+

1

2
A+B]u1,1u3,1

(4.7)

After substituting the stress components into Euler’s mass balance equation

⇢ük = tik,i + Fk, the result is the three coupled nonlinear wave equations of Eq.

(4.8), which govern the propagation of plane waves in the simplest Murnaghan’s

hyper-elastic materials of Eq. (4.6)[38, 39].

⇢u1,tt � (�+ 2µ)u1,11 = N1u1,11u1,1 +N2(u2,11u2,1 + u3,11u3,1),

⇢u2,tt � µu2,11 = N2(u2,11u1,1 + u1,11u2,1),

⇢u3,tt � µu3,11 = N2(u3,11u1,1 + u1,11u3,1)

(4.8)

Here, N1 = 3[(�+ 2µ) + 2(A3 +B + C
3 )], N2 = �+ 2µ+ 1

2A+B

Although nonlinear and inhomogenous, note that Eq. (4.8) was arranged in

a simple and intuitive form by regrouping all nonlinear terms to the right hand

side (RHS) of the equation whilst keeping the linear terms on the left hand side

(LHS). In this form, known as Lame’s form, the LHS terms are classical linear

wave equations, while the RHS terms can be viewed as nonlinear source terms and

provide an insight into the problem of interest[37, 40]. Indeed, the form of Eq. (4.8)

reveals an inherent feature of the system, a coupling between the longitudinal and

transverse equations, which is evident from the RHS terms of the first equation of

Eq. (4.8); that is, the equation governing the longitudinal response of the material.
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From these terms it can be inferred that a purely transverse excitation can result in a

longitudinal response in the material even in the absence of a longitudinal excitation

[37, 38]. However, the aforementioned coupling phenomenon is not bi-directional as

the equations governing the transverse responses, the last two equations of Eq. (4.8),

show that a purely longitudinal excitation would not conversely result in a transverse

response of the material. This can be made more evident by exploring the solutions

of Eq. (4.8) for plane longitudinal and transverse wave excitations at the boundary.

In exploring plane wave propagation in Murnaghan materials defined by the

strain energy function of Eq. (4.6), the system of nonlinear wave equations of Eq.

(4.8) must be solved for zero initial conditions, and prescribed boundary conditions

of the form ui(0, t) = Uicos(!t), where Ui is the amplitude of the harmonic excitation

at the boundary. The system lends itself to a number of classical solution methods

of nonlinear analysis such as the Method of Successive Approximations [37], or the

Straightforward Perturbation Method [41]. The former has classically been the

method of choice for elastoacoustics problems because of its relative simplicity, and

was used by Cattani and Ruschitsky to investigate quadradically nonlinear plane

wave propagation in Murnaghan materials [38]. Through successive approximations

up to the second approximation, Cattani and Rushchitsky demonstrated that the

solutions to Eq. (4.8) when subjected respectively to the set of boundary conditions

shown in Eq. (4.9) and Eq. (4.10), are given by Eq. (4.11), and Eq. (4.12).

These correspond respectively to the plane wave response of nonlinear Murnaghan

materials of Eq. (4.6) to longitudinal, and transverse harmonic boundary excitation

[37, 38].
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u1(0, t) = U1cos(!t)

u2(0, t) = u3(0, t) = 0

(4.9)

u1(0, t) = u2(0, t) = 0

u3(0, t) = U3cos(!t)

(4.10)

u1(x, t) = U1cos(kLx1 � !t) + x1
N1

8(�+ 2µ)
U

2
1k

2
Lcos2(kLx1 � !t) (4.11)

Here, kL = !
vL

is the longitudinal wave number.

u1(x, t) =
�+ 2µ+ 1

2A+B

4⇢(v2L + v2T )
k3U

2
3 sin((k3 � k1)x1)cos(2!t� (k3 � k1)x1),

u3(x, t) = U3cos(!t� k3x1)

(4.12)

From Eq. (4.11) and Eq. (4.12), it is noted that unlike the response to

longitudinal harmonic excitation at the boundary, which results in the propagation

of only longitudinal waves, the response to transverse excitation of the material is

rather bi-modal [37, 38]. Indeed, consistent with the earlier observation, by using Eq.

(4.12) one can prove that a transverse boundary excitation in Murnaghan materials

of Eq. (4.6) results inherently in both transverse and longitudinal responses even in

the absence of a longitudinal excitation.

4.3 Acoustic metamaterial formulation with nonlinear coupling

The above results from Cattani and Rutschistky demonstrate that nonlinear

Murnaghan materials of Eq. (4.6) are inherently amenable to transfer of energy be-
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tween longitudinal and transverse modes during plane wave propagation as a result

of the intrinsic coupling between the two modes. However, the energy transfer is

uni-directional from transverse to longitudinal mode; that is, a transverse excita-

tion yields both a transverse response and a longitudinal response in the material,

whereas a longitudinal excitation results solely in a longitudinal response. Though

potentially exploitable for other applications, this inherent coupling phenomenon

remains unfavorable to refraction-based acoustic wave redirection. Recall from Eq.

(4.1) and Section 4.1 that in elastic solid media, longitudinal waves propagate signifi-

cantly faster than transverse waves. Thus, to achieve a refractive behavior conducive

to acoustic wave redirection by using elastic solids, it is rather the converse trans-

fer of wave energy from longitudinal to transverse mode that needs to be sought.

Here, the question naturally arises, based on the foregoing treatment, of whether

such transfer of energy is theoretically achievable through suitable modifications

of the Murnaghan strain energy function of Eq. (4.6). In the remainder of this

chapter, the author’s e↵ort to answer that question and to formulate a hyper-elastic

material amenable to the transfer of energy from longitudinal to transverse mode

during plane wave propagation is described. Such materials, if physically realiz-

able through metamaterial technology, are postulated to exhibit a more suitable

refractive behavior for controlling acoustic wave propagation paths.
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4.3.1 Modification to the Murnaghan strain energy function

Typically, strain energy functions, including that of Eq. (4.6), can be used to

model the behavior of a material or class of physical materials for which experimen-

tal data can be obtained to assess the validity of the formulated model as well as

its limitations. Often, the model is obtained by solving an inverse problem where

observable behaviors of the material or material class of interest are the basis for

the mathematical properties and parameters required for the model. Once a model

is developed, a well-posed forward problem with defined loading, initial, and bound-

ary conditions, are solved to evaluate and validate the formulated model [42]. The

author adopted a similar inverse problem approach in exploring necessary modifi-

cations to the the Murnaghan strain energy function of Eq. (4.6) to achieve the

sought-after energy transfer. However, in this case, the aim of the formulation is

not to model the behavior of a physical material, but rather that of a hypothetical

hyper-elastic metamaterial with the desired mode coupling behavior underscored

earlier.

Starting first from Eq. (4.7) and Eq. (4.8), it is recognized that the last term,

1
2 [�+2µ+ 1

2A+B][(u2,1)2 + (u3,1)2], of the longitudinal stress equation of Eq. (4.7)

engenders the coupling of the longitudinal and transverse wave equations in Eq.

(4.8), which results in the demonstrated inherent coupling of the two modes of wave

propagation in Murnaghan materials defined by Eq. (4.6). Through mathematical

integration, it is not a tedious task to relate the aforementioned coupling term in the

longitudinal stress equation to the last term, (µ + 1
4A)]u1,1[(u2,1)2 + (u3,1)2], of the
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strain energy function Eq. (4.6). This provide an intuitive insight into modifications

to Eq. (4.6) necessary to achieve the sought-after energy transfer from longitudinal

to transverse mode during plane wave propagation. The above observations suggests

that a coupling term of the form ↵u
2
1,1(u2,1 + u3,1) be added to Eq. (4.6). The

resulting modified strain energy function is shown in Eq. (4.13), where the coupling

parameter ↵ is an additional third order material constant similar to A, B, and C.

As with classical inverse problems, the formulated material of Eq. (4.13) must be

investigated to assess the validity of the hypothesis that led to this formulation. To

that end, it is required to derive the governing wave equations as in Section 4.2.1

in order to set and solve the forward problem of a prescribed harmonic longitudinal

and transverse plane wave excitation at the boundary.

W (ui,k) =
1

2
[(�+ 2µ)(u1,1)

2 + µ[(u2,1)
2 + (u3,1)

2]] + [µ+
1

2
�+

1

3
A+B +

1

3
C](u1,1)

3

+ [
1

2
(�+B) + (µ+

1

4
A)]u1,1[(u2,1)

2 + (u3,1)
2] + ↵u

2
1,1(u2,1 + u3,1)

(4.13)

Proceeding as in Section 4.2.1, the components of the First Piola-Kircho↵

stress associated with the modified strain energy function are derived from tik =

@W/@ui,j, and shown in Eq. (4.14).

t11 = (�+ 2µ)u1,1 + (
3

2
[�+ 2µ+ 2(

A

3
+B +

C

3
)](u1,1)

2

+
1

2
[�+ 2µ+

1

2
A+B][(u2,1)

2 + (u3,1)
2] + 2↵u1,1(u2,1 + u3,1),

t12 = µu2,1 +
1

2
[�+ 2µ+

1

2
A+B]u1,1u2,1 + ↵(u1,1)

2
,

t13 = µu3,1 +
1

2
[�+ 2µ+

1

2
A+B]u1,1u3,1 + ↵(u1,1)

2

(4.14)
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The three nonlinear wave equations ensuing from the above stresses are found

as before from Euler’s balance equation ⇢ük = tik,i + Fk and shown in Eq. (4.15).

⇢u1,tt � (�+ 2µ)u1,11 = N1u1,11u1,1 +N2(u2,11u2,1 + u3,11u3,1)

+N3[u1,1(u2,11 + u3,11) + u1,11(u2,1 + u3,1)],

⇢u2,tt � µu2,11 = N2(u2,11u1,1 + u1,11u2,1) +N3u1,1u1,11,

⇢u3,tt � µu3,11 = N2(u3,11u1,1 + u1,11u3,1) +N3u1,1u1,11

(4.15)

Here, N1 = 3[(�+ 2µ) + 2(A3 +B + C
3 )], N2 = �+ 2µ+ 1

2A+B, andN3 = 2↵.

Through simple observation of the RHS terms of the last two equations of

Eq. (4.15), it can be noted that a longitudinal disturbance, even in the absence of

any transverse counterpart, would induce a transverse response of the material as a

direct sequel of the introduced coupling parameter ↵. Also note that in the modified

model, the inherent coupling of Murnaghan strain energy function is maintained.

To further explore the behavior of the formulated material, the nonlinear wave

equations of Eq. (4.15) are next solved for longitudinal and transverse harmonic

excitations at the boundary.

4.3.2 Response to longitudinal harmonic excitation at the boundary

As mentioned in Section 4.2.1, a number of analytical tools are available to

solve nonlinear wave equations of the form of Eq. (4.15). This includes the Method

of Successive Approximations, which has classically been the method of choice in

elastoacoustics studies as was used by Cattani and Rutchisky in their various inves-
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tigations of wave propagation in hyperelastic materials [38, 43]. However, for a more

rigorous mathematical treatment of Eq. (4.15), the broadly applicable Straightfor-

ward perturbation analysis is used to explore plane wave propagation in materials

governed by Eq. (4.13). The use of this perturbation analysis facilitates in under-

standing how the strengths of the di↵erent nonlinear terms influence the response.

To that end, the case of a harmonic longitudinal plane wave (P-wave) prescribed

at the boundary of a semi-infinite half space 0  x1 < 1 is first considered. This

is equivalent to solving Eq. (4.15) for the following set of initial and boundary

conditions.

u1(x1, 0) = u1,t(x1, 0) = 0, 0  x1 < 1 u1(0, t) = U1cos(!t), t > 0

u2(x1, 0) = u2,t(x1, 0) = 0, 0  x1 < 1 u2(0, t) = 0, t > 0

u3(x1, 0) = u3,t(x1, 0) = 0, 0  x1 < 1 u3(0, t) = 0, t > 0

(4.16)

Since a perturbation solution is sought, a small amplitude is assumed for the

displacement, a valid assumption for elastoacoustic problems. Thus, the boundary

conditions can be rewritten as in Eq.4.17 below.

u1(0, t) = ✏U1cos(!t). for t > 0

u2(0, t) = 0

u2(0, t) = 0

(4.17)

Here, ✏ is a small nondimensional scaling parameter that is a measure of the am-

plitude of the displacement and used here as a bookkeeping parameter for the per-

turbation analysis. The above assumption suggests an expansion of the solutions to

Eq. (4.15) is sought in the following form:
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u1(x1, t, ✏) = ✏u
(1)
1 (x1, t) + ✏

2
u
(2)
1 (x1, t) + ✏

3
u
(3)
1 (x1, t) + ...+ ✏

n
u
(n)
1 (x1, t)

u2(x1, t, ✏) = ✏u
(1)
2 (x1, t) + ✏

2
u
(2)
2 (x1, t) + ✏

3
u
(3)
2 (x1, t) + ...+ ✏

n
u
(n)
2 (x1, t)

u3(x1, t, ✏) = ✏u
(1)
3 (x1, t) + ✏

2
u
(2)
3 (x1, t) + ✏

3
u
(3)
3 (x1, t) + ...+ ✏

n
u
(n)
3 (x1, t)

(4.18)

where ✏u(1)
i (x1, t) is referred to as the first-order term in the expansion, ✏2u(2)

i (x1, t),

as the second-order term, ✏3u(3)
i (x1, t),as the third-order term, and so on up to the

nth-order term ✏
n
u
(n)
i (x1, t) [41].

Before proceeding with the perturbation analysis, the above expansion for the

solution must first be substituted into the boundary conditions as shown in Eq.

(4.19).

✏u
(1)
1 (0, t) + ✏

2
u
(2)
1 (0, t) + ✏

3
u
(3)
1 (0, t) + ...+ ✏

n
u
(n)
1 (0, t) = U1cos(!t)

✏u
(1)
2 (0, t) + ✏

2
u
(2)
2 (0, t) + ✏

3
u
(3)
2 (0, t) + ...+ ✏

n
u
(n)
2 (0, t) = 0

✏u
(1)
3 (0, t) + ✏

2
u
(2)
3 (0, t) + ✏

3
u
(3)
3 (0, t) + ...+ ✏

n
u
(n)
3 (0, t) = 0

(4.19)

From Eq. (4.19), the appropriate set initial and boundary conditions are

obtained and shown in Eq. (4.20).

u
(1)
1 (x1, 0) = 0 u

(1)
1 (0, t) = U1cos(!t)

u
(n)
1 (0, t) = 0

u
(n)
2 (x1, 0) = 0 u

(n)
2 (0, t) = 0

u
(n)
3 (x1, 0) = 0 u

(n)
2 (0, t) = 0

(4.20)

The author now proceeds with the solution steps by first substituting the

assumed expansion of Eq. (4.18) into the three wave equations of Eq. (4.15) and
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collecting terms of like powers of ✏. Starting with order ✏, one obtains the set

of homogeneous linear wave equations shown in Eq. (4.21), and corresponding

boundary conditions. Note that initial conditions, as in representation Eq. (4.21),

would not be explicitly stated unless they have non-zero values.

Order (✏):

u
(1)
1,tt � c

2
1u

(1)
1,11 = 0, with u

(1)
1 (0, t) = U1cos(!t)

u
(1)
2,tt � c

2
2u

(1)
2,11 = 0, with u

(1)
2 (0, t) = 0

u
(1)
3,tt � c

2
3u

(1)
3,11 = 0, with u

(1)
3 (0, t) = 0

(4.21)

Here, c1 =
q

�+2µ
⇢ is the linear longitudinal phase speed, and c2 = c3 =

q
µ
⇢ are the

transverse linear phase speeds.

Given zero initial conditions, the first two equations of Eq. (4.21) have the

trivial solutions of shown in Eq. (4.22)

u
(1)
2 (x1, t) = 0u(1)

3 (x1, t) = 0 (4.22)

And, Eq. (4.23), the solution to the first equation, can readily be found in any

classical partial di↵erential equations text book or simply by using D’Alembert

formula.

u
(1)
1 (x1, t) = U1 cos(k1x1 � !t) (4.23)

Here, the wave number k1 =
!
c1
.

With the solution at order ✏ found, the author proceeds with collection of terms

of order ✏
2. The resulting linear wave equations, Eq. (4.24), are in-homogeneous,
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but with homogeneous boundary conditions.

Order (✏2):

u
(2)
1,tt � c

2
1u

(2)
1,11 =

N1

⇢
u
(1)
1,1u

(1)
1,11, with u

(2)
1 (0, t) = 0

u
(2)
2,tt � c

2
2u

(2)
2,11 =

N3

⇢
u
(1)
1,1u

(1)
1,11, with u

(2)
2 (0, t) = 0

u
(2)
3,tt � c

2
3u

(2)
3,11 =

N3

⇢
u
(1)
1,1u

(1)
1,11, with u

(2)
3 (0, t) = 0

(4.24)

Note that the in-homogeneous part of the wave equations at order ✏2, there is

dependence solely on the known solution u
(1)
1 (x1, t) at order ✏. This is a hallmark

of perturbation methods where the substitution of the assumed solutions lead to

equations of subsequent orders of the perturbation parameter that are dependent

on the solutions of equations at previous orders allowing the problem to be solved

sequentially [41]. On substituting u
(1)
1 (x1, t) into Eq. (4.24) the result is:

Order (✏2):

u
(2)
1,tt � c

2
1u

(2)
1,11 =

N1

⇢
U

2
1k

3
1 sin(k1x1 � !t) cos(k1x1 � !t), with u

(2)
1 (0, t) = 0

u
(2)
2,tt � c

2
2u

(2)
2,11 =

N3

⇢
U

2
1k

3
1 sin(k1x1 � !t) cos(k1x1 � !t), with u

(2)
2 (0, t) = 0

u
(2)
3,tt � c

2
3u

(2)
3,11 =

N3

⇢
U

2
1k

3
1 sin(k1x1 � !t) cos(k1x1 � !t), with u

(2)
3 (0, t) = 0

(4.25)

The in-homogeneous wave equations of Eq. (4.25) can be solved by using

Duhamel’s Principle [40] by considering the nonlinear RHS term as a source term.

Duhamel’s Principle allows the solutions of a linear in-homogeneous partial di↵er-

ential equation (PDE) with zero initial conditions, by moving the source term to

the initial conditions as an initial velocity, and solving the ensuing homogeneous

problem [40]. Applying this methodology, the solution to Eq. (4.25) is found to be:
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u
(2)
1 (x1, t) =

N1

8(�+ 2µ)
U

2
1k

2
1x1 cos[2(k1x1 � !t)]

u
(2)
2 (x1, t) =

N2

4⇢(c22 � c21)
U

2
1k1 sin[(k1 � k2)x1] cos[(k1 + k2)x1 � 2!t)]

u
(2)
3 (x1, t) =

N2

4⇢(c23 � c21)
U

2
1k1 sin[(k1 � k3)x1] cos[(k1 + k3)x1 � 2!t)]

(4.26)

Here, the wave number ki =
!
ci
.

With the solutions at order ✏ and ✏
2 determined, the next solution step is to

collect terms of order ✏3, which would lead to much more complex set of equations.

However, undertaking such a daunting task is deemed inessential to the objective of

the e↵ort. Furthermore, the solutions at order ✏
3 and beyond are not expected to

be of significant contribution to the overall response when ✏ is assumed to be small.

By substituting Eq. (4.23) and Eq. (4.26) into the assumed solution expansion

of Eq. (4.18), the expansion solution to Eq. (4.15) up to order ✏2 is constructed and

shown in Eq. (4.27). This is the response of a semi-infinite space of materials gov-

erned by the modified Murnaghan strain energy model of Eq. (4.13) to longitudinal

harmonic excitation prescribed at the boundary.

u1(x1, t, ✏) = ✏U1 cos(k1x1 � !t) + ✏
2 N1

8(�+ 2µ)
U

2
1k

2
1x1 cos[2(k1x1 � !t)]

u2(x1, t, ✏) = ✏
2 N3

4⇢(c22 � c21)
U

2
1k1 sin[(k1 � k2)x1] cos[(k1 + k2)x1 � 2!t)]

u3(x1, t, ✏) = ✏
2 N3

4⇢(c23 � c21)
U

2
1k1 sin[(k1 � k3)x1] cos[(k1 + k3)x1 � 2!t)]

(4.27)

Before proceeding with the analysis of Eq. (4.27), it can be noted that both

the longitudinal u1, and transverse solutions u2 and u3 in Eq. (4.15) are dependent

on the amplitude U1 of the harmonic excitation and the scaling constant ✏ that also
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served as perturbation parameter. The observed dependence is in the form of ✏U1,

which allows the scaling constant ✏ to be absorbed by setting ✏ = 1, and alternatively

considering U1 as the perturbation parameter with |U1| << 1. Consequently, solu-

tion shown in Eq. (4.27) can be rewritten without ✏ in terms of only the excitation

amplitude U1 as in Eq. (4.28) below.

u1(x1, t) = U1 cos(k1x1 � !t) +
N1

8(�+ 2µ)
U

2
1k

2
1x1 cos[2(k1x1 � !t)]

u2(x1, t) =
N3

4⇢(c22 � c21)
U

2
1k1 sin[(k1 � k2)x1] cos[(k1 + k2)x1 � 2!t)]

u3(x1, t) =
N3

4⇢(c23 � c21)
U

2
1k1 sin[(k1 � k3)x1] cos[(k1 + k3)x1 � 2!t)]

(4.28)

Contrasting Eq. (4.28) with Eq. (4.11) one can see that the longitudinal re-

sponse of the formulated material to longitudinal plane wave excitation, Eq. (4.13),

is similar to that of a Murnaghan material, Eq. (4.6). The principal wave e↵ect

consists of the propagation of a linear harmonic wave with the same amplitude and

frequency as the harmonic excitation. This first harmonic is accompanied by a gen-

erated second harmonic wave with a spatially dependent amplitude as discussed by

Cattani and Rutchisky [43]. Unlike the first harmonic response, the second harmonic

generation is a direct sequel of the nonlinearity of the models, which is reflected by

the additional dependency of its amplitude on Murnaghan’s third order constants

A, B, and C.

Of more interest, however, are the last two expressions of Eq. (4.28), which

represent the transverse response of the formulated model to longitudinal harmonic

excitation. In comparing to Eq. (4.11), it is observed that unlike Murnaghan
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materials of Eq. (4.6), the formulated material manifests a transverse response to

purely longitudinal harmonic excitation at the boundary. The response, as observed

in Eq. (4.28), is a spatially modulated composite wave propagating with double the

excitation frequency and an amplitude dependent on the introduced third order

coupling constant ↵. The transverse response of the formulated material of Eq.

(4.13) is uncharacteristic of any known material including Murnaghan materials.

Through this analysis, there is evidence that a transfer of energy from longitudinal

to transverse wave propagation modes is theoretically achievable through a mere

modification to the Murnaghan strain energy function with the addition a single

third order material constant as shown in Eq. (4.13).

4.3.3 Response to transverse harmonic excitation at the boundary

Although the response to longitudinal harmonic excitation is of more relevance

to the problem of interest, the response of Eq. (4.13) to purely transverse harmonic

excitation was also explored using the Straightforward Expansion. This necessitates

solving Eq. (4.15) with the set of initial and boundary conditions of Eq. (4.29).

Here, only horizontally polarized transverse wave (SH wave) is prescribed at the

boundary of the semi-infinite half space.

u1(x1, 0) = u1,t(x1, 0) = 0, 0  x1 < 1 u1(0, t) = 0, t > 0

u2(x1, 0) = u2,t(x1, 0) = 0, 0  x1 < 1 u2(0, t) = U2cos(!t), t > 0

u3(x1, 0) = u3,t(x1, 0) = 0, 0  x1 < 1 u3(0, t) = 0, t > 0

(4.29)
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Proceeding as before, the boundary conditions can be rewritten as given in

Eq.4.30 below.

u1(0, t) = 0 for t > 0

u2(0, t) = ✏U2cos(!t)0

u2(0, t) = 0

(4.30)

Here, U2 is the amplitude of the transverse harmonic excitation. This leads to the

following expansion boundary conditions Eq. (4.31) for the perturbation analysis.

u
(n)
1 (x1, 0) = 0 u

(n)
1 (0, t) = 0

u
(1)
2 (x1, 0) = 0 u

(1)
2 (0, t) = U2cos(!t)

u
(n)
2 (0, t) = 0

u
(n)
3 (x1, 0) = 0 u

(n)
3 (0, t) = 0

(4.31)

On substituting the assumed perturbation solution of Eq. (4.18) into Eq.

(4.15), and collecting terms of various exponents of ✏ as before results in the following

equations and associated solutions:

Order (✏):

u
(1)
1,tt � c

2
1u

(1)
1,11 = 0, with u

(1)
1 (0, t) = 0

u
(1)
2,tt � c

2
2u

(1)
2,11 = 0, with u

(1)
2 (0, t) = U2cos(!t)

u
(1)
3,tt � c

2
3u

(1)
3,11 = 0, with u

(1)
3 (0, t) = 0

(4.32)

u
(1)
1 (x1, t) = 0, u(1)

2 (x1, t) = U2 cos(k2x1 � !t), u(1)
3 (x1, t) = 0
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Order (✏2):

u
(2)
1,tt � c

2
1u

(2)
1,11 =

N2

⇢
u
(1)
2,1u

(1)
2,11, with u

(2)
1 (0, t) = 0

u
(2)
2,tt � c

2
2u

(2)
2,11 = 0, with u

(2)
2 (0, t) = 0

u
(2)
3,tt � c

2
3u

(2)
3,11 = 0, with u

(2)
3 (0, t) = 0

(4.33)

On substituting in the above equations, the obtained solutions at order ✏ lead

to:

Order (✏2):

u
(2)
1,tt � c

2
1u

(2)
1,11 =

N3

2⇢
U

2
2k

3
2 cos[2(k1x1 � !t)], with u

(2)
1 (0, t) = 0

u
(2)
2,tt � c

2
2u

(2)
2,11 = 0, with u

(2)
2 (0, t) = 0

u
(2)
3,tt � c

2
3u

(2)
3,11 = 0, with u

(2)
3 (0, t) = 0

(4.34)

As a result, the solutions to Eq. (4.34) are found to be:

u
(2)
1 (x1, t) =

N3

4⇢(c21 � c22)
U

2
2k2 sin[(k2 � k1)x1] cos[(k1 + k2)x1 � 2!t)]

u
(2)
2 (x1, t) = 0

u
(2)
3 (x1, t) = 0

(4.35)

Stopping at order ✏2 as before, the Straightforward Expansion solution can be

constructed from Eq. (4.18) and is shown below in Eq. (4.36).

u1(x1, t, ✏) = ✏
2 N3

4⇢(c21 � c22)
U

2
2k2 sin[(k2 � k1)x1] cos[(k1 + k2)x1 � 2!t)]

u2(x1, t, ✏) = ✏U2 cos(k2x1 � !t)

u3(x1, t, ✏) = 0

(4.36)
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The solution to transverse harmonic excitation at the boundary, Eq. (4.36), is

as expected. A longitudinal response is observed from a purely transverse harmonic

excitation due to the inherent coupling in the formulated material model of Eq.

(4.13) similar to that of Murnaghan material of Eq. (4.6), which was demonstrated

by Cattani and Rushchitsky [43] by using the Successive Approximations method.

4.4 Summary

An analytical investigation is presented for the formulation of a hyper-elastic

material in which one exploits nonlinear couplings and nonlinear wave phenomena to

transfer energy from longitudinal to transverse wave propagation mode during plane

wave propagation. Starting from the classical Murnaghan strain energy function, it

was shown that through the introduction of an additional third order material pa-

rameter, which serves as a coupling term, a hyper-elastic material can be formulated

that achieves the sought energy transfer. The response of the formulated material

for small but finite longitudinal and transverse harmonic excitation at the boundary

was explored using the straightforward expansion. Through the solution of pertur-

bation analysis, it is shown that, unlike any existing materials including Murnaghan

material, the formulated material manifests a transverse response to a purely lon-

gitudinal disturbance. Such material, if physically realizable through metamaterial

technology, would be more amenable to controlling acoustic wave propagation path

than conventional solids, in which competing longitudinal and transverse wave en-

ergy transport mechanisms complicate the refractive behavior.

75



Chapter 5: Summary, Conclusions, and Recommendations for Fu-

ture Work

In the present chapter, the author provides concluding remarks and makes

recommendations for future work. The overall goal of this dissertation work was to

explore wave redirection mechanisms that takes advantage of materials with peculiar

properties such as metamaterials and nonlinear transformation based approaches.

The specific objectives included the following: a) examine various approaches, in-

cluding the use of geometric transformations and b) explore modifications to con-

stitutive laws to formulate material that can be use for the redirection of waves for

practical applications. To address these objectives, the following was carried out: i)

determination of a sequence of nonlinear transformations that can be used to for-

mulate cloaking devices (electromagnetic and acoustic) for two- dimensional airfoil

geometries by using the classical transformation method of wave redirection. ii)

exploitation of nonlinearities and nonlinear phenomena to formulate a hyper-elastic

material that can be useful for the redirection of acoustic waves. The contribu-

tions of this work are expected to be of benefit to metamaterials research and wave

redirection, and in the area of nonlinear phenomena and their applications.
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5.1 Summary and Conclusions

The authors e↵ort to achieve the first objective of the investigation resulted in

a sequence of transformations that can be used to map a symmetric Karman-Tre↵tz

airfoil disk bounded by two circular arcs, to a symmetric Karman-Tre↵tz airfoil

annulus whilst keeping the outer boundary unchanged. Based on the premises of

the transformation approach to cloaking, the found sequence of transformations can

be used to formulate airfoil cloaking devices for both electromagnetic and acous-

tic fields. To do so, it is required to determine the deformation gradient of the

composite of the found transformations, a task that may necessitate the use of a nu-

merical tool as the found sequence could not be combined to one explicit mapping of

Cartesian or polar coordinate variables. An initial e↵ort using the Joukowski trans-

formation, a special case of the Karman-Tre↵tz transformation, was only partially

successful. If the remaining transformation in the aforementioned approach based

on the relatively simpler Joukowski transformation is determined in the future, it

could lead to a sequence of transformations for which an explicit composite map

would transpire, and the required displacement gradient could be determined ana-

lytically. Nonetheless, the found solution based on the properties of the Karman-

Tre↵tz transformation, despite its relative complexity, is expected to be useful for

formulating cloaks for practical airfoils. In contrast to Joukowski transformation

that leads to non-realistic airfoils with a cusp at the trailing edge, the Karman-

Tre↵tz transformation leads to airfoils with finite trailing edge angles. Furthermore,

the Karman-Tre↵tz transformation presents means to control the characteristics of
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the airfoil that are attractive to approximating practical airfoils such as NACA series

of airfoils.

To achieve the second objective of the investigation, the author took advantage

of nonlinear wave phenomena to formulate a hyper-elastic material that manifests

a transverse response to a longitudinal plane wave perturbation at its boundary.

Specifically, the author exploited nonlinear couplings opportunities available in the

third order Murnaghan strain energy function, to couple wave propagation modes in

a way that is favorable to a transfer of energy from longitudinal mode to transverse

mode. By using approximation and perturbation techniques, the formulated mate-

rial was investigated for the propagation of plane longitudinal and transverse waves

at the boundary of an infinite half space. It was shown that a purely longitudinal

plane wave excitation at the boundary resulted in both a longitudinal response and

a transverse response of the formulated material. Such a response is uncharacter-

istic to any known material, including Murnaghan materials, and can be useful for

the redirection of acoustic waves. The redirection of acoustic waves by using the

refractive properties of solid elastic materials is challenging because of the inherent

presence of transverse wave, which refracts di↵erently than their faster longitudinal

counterparts. This remains an active area of research.

5.2 Recommendations for future work

The present investigation led to a sequence of transformations that is only

applicable to symmetric Karman-Tre↵tz airfoils bounded by two circular segments.
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It would be interesting to explore means that can be use to extend the finding

to more general Karman-Tre↵tz airfoils, including cambered airfoils. The overall

objective is to formulate cloaking devices for practical airfoils, for example NACA

family of airfoils, which can be well approximated by using general Karman-Tre↵tz

airfoils.

Also, although the geometric outcome of combining the found transformations

is consistent with the premises of the transformation approach to cloaking, numeri-

cal simulations should be conducted to assess the performance of a transformation

based airfoil cloak formulated by using the found transformations. This is particu-

larly important as the combination of the transformations in the sequence appears

to result in both radial and angular changes of the initial coordinates of mapped

points. These e↵ects of the angular changes, if any, would be interesting to observe

numerically and may need to be addressed if perfect cloaking is sought theoreti-

cally. Numerical simulations can present challenging, however, without an explicit

formulation of the deformation gradient. Furthermore, it is likely that discrete ma-

terial properties would be needed for the numerical simulations, which may required

interpolation of tensor like quantities; a task that is not trivial and need to be ap-

proached with caution. This is because the transformation approach leads to tensor

like quantities for the material properties; that is, the permitivity and permeability

for electromagnetics, and the density and bulk modulus for acoustics.

It would also be interesting to find the final transformation needed to complete

the sought-after transformations sequence based on the Joukowski transformation.

This can lead to a less daunting task to formulate the parameters of an airfoil cloak
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using the transformation equations. Consequently, the simulation e↵ort to assess

the performance of the formulated cloak could be significantly less challenging.

The formulated hyper-elastic material can be assessed numerically to validate

the postulated hypothesis, and the results found in the analysis. The model has

been challenging to implement in the numerical finite element tool Comsol because

of the formulation based on the displacement gradients instead of the components

of the deformation gradient tensor. However, it may be possible to reformulate the

formulation in term of the deformation gradient tensor instead of the displacement

gradient tensor by using equations of continuum mechanics that relate the two

measures of deformation. It is also likely that the numerical simulation would be

feasible by using future versions of Comsol multiphysics as suggested by the software

development team of the company.

Finally, it is an entire area of investigation to determine means to practically

achieve the nonlinear couplings in the manner that was analytically achieved in the

constitutive law as of the formulated material. One avenue may be to look into

inclusions in a polymer-based material and metamaterials technology.
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