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A recursive parameter estimator in discrete time is presented for multiple-
input, multiple-output linear stochastic systems that are bilinear in the pa-
rameters and state. It is globally convergent to minima of the asymptotic
negative log likelihood function, and approzimates the fast transient response
of the optimal nonlinear filter used as a parameter estimator.
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Abstract — Multiple-input, multiple-output (MIMO), exponentially stable, linear, stochas-
tic systems in discrete time are considered, that are bilinear in the state and parameters to
be recursively estimated, and in which no such parameters enter into the output map. A
new recursive parameter estimator is developed that is globally convergent to minima of the
asymptotic negative log likelihood function. Furthermore, as time ¢ tends to infinity, the
new estimator asymptotically tends to a variant of the recursive prediction error method,
and as the sampling interval h tends to zero, the new estimator tends to a convergent ap-
proximation of the continuous-time minimum variance parameter estimator. This establishes
a connection in discrete time between commonly used convergent parameter estimators and
the optimal nonlinear filter. Numerical simulations indicate the new estimator has better
transient response than commonly used convergent parameter estimators, which is to be
expected because the commonly used estimators are not approximations of the optimal non-
linear filter. However, the new estimator requires about n?p dynamic equations, where n

and p are the dimensions of the state and parameter vectors, respectively.

1. Introduction

A number of recursive parameter estimation algorithms are available commercially, e.g. in
the System Identification Toolbox of MATLAB. Such commonly used algorithms include the
gradient, the extended least squares (ELS), the recursive prediction error (RPE), and the
extended Kalman filter (EKF). These algorithms are described and analyzed in a number of
books and articles, including Ljung and Soderstrém (1983) and Ljung (1987). For numerical

implementation, all these algorithms have been developed in discrete time. They all update



the parameter estimate é(t + h) incrementally proportional to the prediction error, i.e., the
difference between the real system output y(¢) and that predicted by the model using the

present parameter value, § (t, é(t)) .

In the limit as the sampling interval & tends to zero, these algorithms have continuous-
time counterparts. (However, sometimes appropriate normalizations must be made, as in
Gevers et al. (1991).) The connection between these algorithms and the optimal nonlinear
filter used as a parameter estimator was made by DeWolf and Wiberg (1993), and Wiberg
and DeWolf (1993) in continuous time. The discrete-time optimal nonlinear filter propagates
the conditional probability density by integrals at each time step (Kramer and Sorensen,
1987), and no equations exist for updating the parameter estimate in terms of the prediction
error. In continuous time, optimal estimates are updated using the prediction error, so it is
necessary to explore the connection between the optimal nonlinear filter and these commonly
used algorithms in continuous time. It is the purpose of this paper to develop a discrete-
time algorithm that somehow preserves the qualities of the approximately optimal parameter

estimator in continuous time that was developed in Wiberg and DeWolf (1993).

Before proceeding with this development, a quick review of the conclusions of DeWolf
and Wiberg (1993), and Wiberg and DeWolf (1993) establishes the benefits of developing

such a discrete-time approximation of the optimal parameter estimator.

(i) The EKF fails, with probability one, to converge to the true value of the parameter in
a model whose state noise covariance is unknown. In such a case, global convergence to

the true parameter value is almost impossible. However, when the EKF does converge

to the true parameter value, the transient response appears close to optimal.



(i) The ELS often needs a prefilter to satisfy a “positive real” condition that guarantees
) I &57;»/7‘0/7(
global convergence in such a case. But use of this prefilter slows the Tate of convergence.

(iii) The gradient method is globally convergent under mild conditions, but the rate of

convergence can be very slow.

(iv) The RPE is globally convergent under somewhat more strict conditions than the gra-
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dient method, but is conjectured to have an optimal rate of convergence!

(v) A globally convergent approximation of the optimal parameter estimator is developed
Gsgmprotic
that is asymptotically equivalent to the RPE, and thus inherits the fate of convergence

of the RPE.

(vi) Numerical simulations indicate this globally convergent approximation has faster tran-
sient response than the RPE, in the sense of minimum error variance as a function
of time. This is probably because the RPE is not an approximation of an optimal

(minimum variance) estimator.

It is plausible that the conclusions (i)-(vi) hold in discrete time, at least for small enough
sampling interval h. This is the motivation for developing a discrete-time version of the

globally convergent approximation of the optimal parameter estimator derived in Wiberg

and DeWolf (1993).

Three improvements have been made in the form of the algorithm of Wiberg and DeWolf
(1993). First, rather than the standard deviation, the variance of the process noise has been
parameterized linearly in the parameter vector 8. Parameterizing the standard deviations

linearly in 6 gives likelihood functions with nonunique minima, such as at +#6,, where



0o is the true value, and thus creates local maxima, such as at § = 0, to which estimate
trajectories can be attracted in finite time. This phenomenon is further explained in Powell

et al. (1993), who also show it can be fixed by parameterizing the variance linearly in 6.

Second, two third order moment approximations have been eliminated, in an attempt to
minimize computation. Call # and @ the state and parameter error vectors of dimensions
n and p, respectively. Call ® the Kronecker product as defined in Brewer (1978), where

the properties of ® are further discussed in Appendix I. Here, zero is taken to be the

approximation of the conditional expectations of  ® 2 ® ¥ and 0 ® § ® Z, rather
than approximating the third order moment dynamic equations of the optimal nonlinear
filter. This reduces the number of dynamic equations by n® and np?. Limited numerical
experimentation has shown very small loss in transient performance. Furthermore, Wiberg
and DeWolf (1993) show that the approximations of the conditional expectationsof T® Z ®
and 0@ 0®% asymptotically decouple from the other estimator update dynamical equations,

so that there is no asymptotic error incurred by not retaining these approximations.

Third, correlation is permitted between process and measurement noise. This permits
ARMAX processes { AutoRegressive Moving Average processes with eXogenous variables) to

be included in the class of systems whose parameters are to be estimated.

The paper is organized as follows. First, notation is defined and the form of the model
considered is given. Second, the new parameter estimation algorithm is stated. Its dje@-}iy\-——*
development is postponed to Appendix II. Appendix I is a review of Kronecker products,
necessary in the treatment of third order moments as used here. Third, the new estimator is

shown to approach the discrete-time RPE in the limit as ¢ tends to infinity. Fourth, global



convergence is proven. Fifth, the new estimator is shown to approach the approximation of
the minimum variance optimal nonlinear filter of Wiberg and DeWolf (1993) as the sampling
interval h tends to zero. Sixth, application of the new estimator and the commonly used

estimators are compared by simulation for simple hypothetical examples.

2. Models Considered

Let the sampling interval be h, so that discrete time ¢ takes values in the set T =

{0,h,2h,...}. The n-vector state z(t) at time ¢ obeys the linear state space equation

st +h) = A(B)z(t) + BO)ult) +v(t) (2.1)

y(t)

Cz(t) + w(t) . (2.2)

Note equation (2.2) for the output £-vector y(¢) at time ¢ is independent of the parameter
p-vector 0. The zero mean white Gaussian random sequences defined by v(¢), an n-vector,
and w(t), an {-vector, are independent of the initial condition z(0) = z4(), and have a
covariance

o(t) | (7(7) w'(r) Q) s©) |
E = h™" bir

w(t) ST(9) R

? (2'3)

in which the known ¢ x ¢ symmetric matrix R is positive definite, E is the expectation
operator, the superscript T denotes transpose, and &;, is the Kronecker delta defined equal
to zero except in the case 7 =t, when é;; = 1. Call the set Dy C RP the collection of 4
such that (2.3) is nonnegative definite, i.e., for § € Dy, then Q(8) > S(0) R~*ST(9).
To insure the existence of a limit measure (essentially, a steady state probability density),
A(0) must be strictly stable. Therefore, define the stability region Dgs C R? such that for

S



0 € Dg the eigenvalues of A(0) are strictly inside the unit circle. Assume that any “true

value ” 6y of # is such that , € Dg N Dy.

Furthermore, to assure the existence of a limit measure, assume the input m-vector valued
input process u is generated by an exponentially stable linear Gaussian stochastic system,

and that u does not depend on 6.

The matrices A(6), B(8), Q(0), and S(#) are affine in 6. Define known matrices

Ao, Ay, ..., A, and Ap such that
A0) = Ap+ A1, ®0) (2.4)
where I, is the n x n identity matrix, and
Ag = (A1 | A2 | .. | An) (2.5)

in which the vertical bars denote partitioning, and A;, ..., A, are each n X p matrices.
Similarly, define By, Qo, So, By, etc., to obtain the most general affine form for A(6),
B(8), Q(8), and S(0).

Using (2.4) and (2.5), etc., egs. (2.1)-(2.3) represent the most general MIMO discrete-time

linear stochastic system that is bilinear in the state and in the parameters to be recursively
However,
estimated, and in which C' and R are independent of ¢ " he measurement noise covariance

il L_are Inc

/( R can be estimated independently of § using the prediction errors (Ljung and Soderstrém,
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3. Statement of the Algorithm
Let the extended state be ¢ = (27 67)T. Define
Eitlm) = 1) - E{E0) | Y(N)}

€
where Y(7) is the set of y(t) for chT }. Call the approximations ¢, &, 8,

T, 067,

ot

P:, P, Py, Py, M to the conditional expectations of ¢, z, 8, €T 73T
and 03T ® %, respectively. Also call m = vec M, the column stacking of the matrix M.

These approximations are the variables propagated by the new algorithm.
predictorn errzr

Define the innewsfions ¢ by
e(t) = y(t) — Cz(t|t—h) (3.1)
P/(o(«'&/bd\« ervov
and the approximation of the innévations covariance V by
V(t) = 'R+ CP(t|t—h)CT . (3.2)
Define the state and parameter measurement update gains K, and Ky by

K. (t) = Py(t|t—h)CTV(?) (3.3)

and Ky(t) = Po (t|t—h)CTV(2) . (3.4)

From the state equations (2.1)-(2.5), form the quantities

A(0) = A(8) - S(O)RC (3.5)
Ay = Ag— Sy (R'C ® I) (3.6)
B(z,y,u) = Ao(z ® L)+ Bo(u ® 1) + Se (R"'y ® 1) (3.7)



Ae(0,z,y,u) = ) (3.8)

As explained in Ljung and Soderstrom (1983), pp. 93, 162, and 366, projections of updates
must be taken. Denote the projection of the update of z to the domain D by [z],. Call
the initial estimates of z, 6, P,, and Py as zg, 8y, P, and Py, where P, and
Pgo are positive definite. The new algorithm starts from initial conditions (0| — k) = =,
00| —h) =8y, Po(0| —h) = Py, Ps(0] —h) =0, Py(0| —h) = Py, and m(0| —h) =0.

The new parameter estimation algorithm is motivated in Appendix 2. The following

measurement and time updates result.

Measurement update:

Bt]t) = #(t|t—h)+ K. (t)e(?) (3.9)
b1ty = [0(t]t—h)+ Ko(t) e(t)]DSnDN (3.10)
Pi(t|t) = [I,— K.(t)C]Pu(t|t— h) (3.11)

Py (t]t) = [[sz(t [t—=h)+ (L, @ )V It)C)M(t|t — )] (I, — Ka(t) C)T]D (3.12)

P

Py(t|t) = [Po(t|t—h)— Po(t|t —h)CT V7I(t) C PL(t|t — h) — P*(t) — PeT(t)]DP (3.13)
m(tt) = [(In —K:(t)C) ® I, ® (In — Ki(t) C)] m(t|t — k) (3.14)
where
Pet) = (L @eT(t) V1 (t)C) M(t|t—h)CTV=H(t)C Py(t]|t—h) (3.15)

and in which Dp is the region of P;, and P, space in which Py > Py, P! P} .

To next compute the time update, adopt the convention that the subscript ¢ means the



variable in question is evaluated with its arguments at (t]¢), e.g. A, = A(0(t]|1)).

Time update:

Et+h|t) = Aid + Bu(t)+ S R [ y(t) — Czy] + Ag vec Pyyy (3.16)

0t +h|t) = 4 (3.17)

Pt +h|t) = AgPuAg+ H(t)+ H'(t) + diag (PA(t) + PE(t), 0,) (3.18)

-mit+h]t) = (A @ L ® A)mi+mA(t) + mP(t) + mE(¢) (3.19)
in which

H(t) = [diag (As Upn My, Op)] AL (3.20)

PA(t) = As [Po ® Pou+ Upp (Pose ® PL,) ] A7 (3.21)

PE(t) = h7'[Qi~ SRS~ Sy (R ® Po) ST ] (3.22)

mz(t) = h7 (Upn ® In) {Vec [Qo(Ln @ Por) Upn] + [In2pt

(I ® Un)] [ I, ® Sy Upe @ S, R7'] [ vec Py @ vecly]} (3.23)

and

mA(t) = {(A:® L, ® Ag) + [ A ® (I, ® A) Upyp | (Unpn ® L) } (vec Py ® vec Pygy)

+ { [(A4AQL)U,, A ] (U p® L)+ (A @ L, ® Ay) (1, ® Uy p2) } (vec Py ® vec Py:)
(3.24)

mB(t) = { [A(? ® (I, ® By) (12 + Uy,p) ] (Up2n ® ) + [ B ® (I, ® As) Upyp ] (Lz @ Un,p)

+ [B:® I, ® (A Upn) | Upnp | (vec Pay ® vec Ppgy) . (3.25)

Computing first the measurement update (3.9) — (3.14) and then the time update (3.16)
- (3.19) at each time ¢ propagates the estimates Z, g, P, and m.
There are n + p first order moment approximations # and @, there are (n + p)(n +

p+1)/2 second order moment approximations P, and there are pn(n+1) /2 third order

9



moment approximations M to propagate at each time step. This is the same number of
dynamic equations as the state space form of the recursive prediction error method, but

much more than most other recursive parameter estimation algorithms.

4. Asymptotic Equivalence to RPE

Here, the unprojected new algorithm (3.9) — (8.25) is shown to approach a variant of the

state space form of the unprojected recursive prediction error method (RPE) of Ljung and

9

Soderstrom (1986) in the limit as time ¢ tends to infinity. From page 428 of Ljung and
)

Soderstrém (19865: in terms of the system (2.1) — (2.5) of this paper, the RPE is

R(t) = R(t—h)+t7" [WI()CT VI (t)CW(t) — h R(t — h)] (4.1)

6(t) = Bt —h)+t "R W) CT V- (t)e(t) (4.2)

Tt+h) = Ai(t)+ Beu(t) + K(t)e(t) (4.3)

W(t+h) = [A-K@)C] W)+ A(2(t) © I) + Kbbyetin (4.4)

Be(ut1@Ty) + [ | Ko 0| o Lk )] (et @ T, ]
Pit+h) = APHAT +r71Q,— K(t) V() KT(t) (4.5)

and for : =1,2,...,p,

IL(t+h) = Ag(, ® ) P(t) AT + A, 1L;(t) AT + A, P(t) (I, @ eT) AT

+ Qo (I, ® &) — Ki(t) V(t) KT(t) — K(t) C i(t) CT KT(t) — K(t) V(t) Ki(t) (4.6)

in which
e(t) = y(t) - Ci(t) (4.7)
V(i) = CP)CT+hr'R (4.8)
and K(it) = (AP®)CT+hS) V@) (4.9)

10



and for 1 =1,2,...,p,

’Ci(t) = {Ag(fn &® 6,‘) P(t) OT+At Hi(t) CT +59(Ig ® e,-)] V‘l(t)—K(t)CHi(t) cT V—l(t) .
(4.10)

Consider a variant of the RPE (4.1) — (4.9) in which eqn. (4.1) is replaced by

R(t+h) = R(t)+ ¢ [WI)CT V() CW(t) - hR()] . (4.1A)
The solution for R(t) in (4.1) is

t (Dﬁ'
R) = ¢tV Y WT(r)CTv-i(t) CW (1) *’,g

TR -
A k < =h

whereas the solution for R(t) in (4.1A) is the same, except that the most recent term,
WT(t) CTV-1(t) CW(t), is not included in the time average. There is very little difference
between eqns. (4.1) and (4.1A) asymptotically as ¢ tends to infinity, because in the proofs of
global convergence of the RPE and its variant with (4.1A), the associated ordinary differential
equations are exactly the same. This implies that R(t), as defined in (4.1) or (4.1A),

approaches the same constant limiting value.

To make the correspondence of the variant of the RPE, eqns. (4.1A), (4.2) - (4.10), and
the new algorithm (3.9) - (3.25), identify #(t), 6(t), and P(t) above with &(t|t — h),
d(t|t), and P,(t|t — h), respectively. Then the definitions of ¢ and V in (4.7) and (4.8)
correspond to the definitions of ¢ and V in (3.1) and (3.2). Furthermore, change variables

as

Rty = ¢'PY(t|t—1h) , (4.11)
WT(t) = tR(t) Pu(t|t—1h) , (4.12)
vec (T(1)] ... |TL,(2) = t(I, ® V(t) ® I,) m(t|t —h) . (4.13)

11



Combining (3.9) and (3.16), and also (3.10) and (3.17), and using eqns. (4.7), (4.8), (4.9)

and (4.11), gives

Et+h|t) = A &(t|t—h)+ Bau(t) + K(t)e(t) + Ot™) (4.14)

Ot +h|t) = O(t|t—h)+t TR WT(E)CTV(H)e(t) (4.15)
Therefore, the first order moment approximations obeying (3.9), (3.10), (3.16), and (3.17)
are within O(t™!) of (4.2) and (4.3), respectively.

Now investigate the correspondence of Py of (3.13) and (3.18) with (4.1A), using eqn.

(4.11). First, notice that (3.18) implies
Pyt +h|t) = Po(t|t) . (4.16)

Using (4.11), (4.12), and (4.16) above in the unprojected version of (3.13), and suppressing

the dependence on t, gives
R7'(t+h)=(t+h) [t R =t R WTICTVIOWR™ = P PT] . (417)

Referring to the definition (3.15) of P¢(t), note that M ~ ¢~ by (4.13), and Py, ~ ¢! by

(4.12), so that P°(t) ~ ¢~2. Therefore, denote P(t) = t* P(t), and rewrite (4.17) above as

R7t+h) = R —t'R [WICTV'CW —hBR+R(P+P")R]| R 4+ O(t7%)
(4.18)

To O(t~?), the inverse can then be taken, to obtain
R(t+hk) = R+t [WICTVICW —hR+R(P+P") R| +0(t™%) (4.19)

Except for the term R(P + ﬁT)R, this is to within O(¢72) of eqn. (4.1A). To explain
the term R (? + ?T) R, note P¢, and consequently P, is driven by the innovations . A

12



corresponding innovations-driven term in Py is also found in continuous time (Wiberg and
DeWolf, 1993). There, an averaging theory argument shows this P term does not affect the
asymptotic dynamics of the averaged parameter estimate, and has only a slight effect on the
asymptotic dynamics of the averaged value of R(¢). The same technique applies in discrete

time, and therefore this P term can be omitted here for purposes of comparison.

In a similar manner, equations (3.11) and (8.12) with (3.18) can be shown asymptotically
equivalent to (4.5) and (4.4), respectively, under the correspondence of P,(t|t—h) to P(t)
and (4.12). Finally, using the change of variables (4.13), eqns. (3.14) and (3.19) can also
be shown to be within O(™") of (4.6). This shows that the unprojected algorithm (3.9)
- (3.19) is within O(¢t™!) of the unprojected state space form of the variant of the RPE

(4.1A), (4.2) - (4.10).

5. Proof of Global Convergence

Assume that the O(¢™') terms of the previous section are kept finite by projection, and
thus decay at least as fast as t~!. Assume that trajectories of the parameter estimates are
projected away from any stationary points of the asymptotic negative log likelihood function
that are not exponentially stable. Assume that all slow variables are projected into a compact
domain. Then, under the same conditions as the RPE (Ljung, 1977), the algorithm (eqns.
(3.9) - (3.19) ) is globally convergent to a minimum of the asymptotic negative log likelihood
function.

Proof is immediate from the preceding section, since (3.9) - (3.19) is asymptotically

equivalent to the RPE. The projections away from finite escape and from non-stable equi-

13



librium permit the use of averaging theory. Then the averaged equations of (3.9) - (3.19)

and the RPE are identical, and Ljung’s (1977) proof holds here, also.

6. Limit as h Tends to Zero

As the sampling interval & tends to zero, the algorithm (3.9) — (3.19) approaches a continuous
time algorithm. Here, that continuous time algorithm is shown to be the approximation of

the optimal recursive parameter estimator of Wiberg and DeWolf (1993).

To do this for the general case is an algebraic mess. Furthermore, the correlated pro-
cess/measurement noise case is not developed in continuous time. Consequently, consider

the special case of estimating the parameters ¢ and ¢ in the scalar system

zt+h) = az(t)+o(t) (6.1)
y(t) = o(t)+w(t) (6.2)
where E{s({t)} = 7" ,
E{w()} = b,
and E{v@)w(t)} = 0

The limiting continuous time system corresponding to (6.1) and (6.2) above as h tends

to zero is dz = fzdt+do (6.3)

dy = zdt+dw (6.4)

in which v and w are Wiener processes having incremental variance o and 1, respectively,

so that ¢ = oh?, and f is defined by a = exp(fh), so that
a = 1+ fR+0(h%) . (6.5)

14



From Wiberg and DeWolf (1993), the continuous-time approximately optimal parameter
for eqns. (6.3) and (6.4) is, for the case m; and mgs set to zero and the process noise

incremental variance o linear in the parameter ¢7 = (f o),

di = (f&+Pp)dt+P,de (6.6)

dp = Py.de (6.7)
dP,/dt = 2fP,—P?242iPs +6+2mTe (6.8)
dPys = [(f = P) Psw + & Pyey] dt + mde (6.9)
dPy/dt = —Pys PL, (6.10)
dmg/dt = 2(f ~P)my+2 (P P+ PL)es+ Poer (6.11)

where el = (10) and eI =(01).

Now the discrete time algorithm (3.9) — (3.19) can be written for the system (6.1), (6.2),
and the limit taken as A tends to zero. First, from eqns. (3.1) - (3.8), note that in the limit

as h tends to zero, for this case,

e(t) = de+ O(h) (6.12)
V() = R1+0(1) (6.13)
K.(t) = hP(t|t—h)+O(h?) (6.14)
Ko(t) = hPa(t|t—h)+O(Rh?) (6.15)
A@f) = a = 70 (6.16)
Ay = €f (6.17)
B(z) = wzef (6.18)
A = (a ”{) . (6.19)
0 I



In continuous time, the incremental variance is ¢, implying that at time A the variance is
oh = gqh™! by (2.3). This fact and (6.5) give

0 = e +[diag(h, k?)] [¢+O(R)] . (6.20)
For the system (6.1), (6.2), the measurement update (3.9) - (3.14) then becomes, to the

leading terms in the h expansion,

F(t|t) = #(t|t—h)+ he(t) Po(t|t —h) (6.21)
O(t|t) = B(¢|t—h)+ he(t) Pag(t|t — h) (6.22)
P(t|t) = [1—hPy(t|t—h)] P(t]|t—h) (6.23)

Po(t|t) = [Pas(t|t—h)+ he(t)m(t[t —h)] [1—hP,(t|t—h)] (6.24)
Py(t|t) = Po(t|t—h)—hPe(t|t —h)PL(t|t—h) (6.25)

m(t|t) = [1—=2hP,(t|t—h)] m(t|t—h) (6.26)
The time update (3.16) — (3.19) becomes, to the leading terms in the h expansion,

#t+h|t) = &+ P (6.27)

It +h|t) = 6, (6.28)

P(t+h|t) = AgPuAf+H(t)+ HT(t) + (Pot P+ PL,+ h7'q,) diag (1,0,0)  (6.29)

m(t + h lt) = &tZ my + €2 h_l Pqt + 2&t (szt + Pat th) €1 (630)
flt i‘t 6:1[‘ T

where H(t) = e; my . (6.31)
0 0

Using eqn. (6.5) gives Py, = hPsy, P, = h>P;, and m = [diag(h,h?)]my. Then
substitution of (6.21) — (6.26) into (6.27) — (6.30), and use of eqn. (6.20), gives (6.6) — (6.11)
in the limit as h tends to zero. Therefore, for this special case, the discrete-time algorithm
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(3.9) - (3.19) approaches the approximation of the optimal recursive parameter estimator of

Wiberg and DeWolf (1993). This can be shown in general.

7. Simulation

The first example is (6.1) — (6.2) of the previous section, estimating both @ and ¢ in a first

order system. Figure 1 shows a typical response.

The second example estimates only the state noise variance ¢ in (6.1) - (6.2) for known
a = 0.3. Also considered is the case where the standard deviation s is estimated, such that
s = ¢. In this case, the algorithm not only converges to § = +.,/q0, but also very
quickly to § = 0. The value § = 0 is a local maximum of the likelihood function. Instead,
the parameterization in terms of ¢ prevents convergence to § = 0 and only converges to
¢ = qo. Figure 2 shows this behavior for the RPE algorithm, similar to that occuring for
(3.9) - (3.19).

The third example shows the effect of using zero as the approximation of the third order
moments, E{z3(t)|V(t—1)} and E{Z(t)a*t)|Y(t —1)}, as contrasted to retain-
ing their dynamic equations. Figure 3 shows very little difference for the simple example,
in which it appears that keeping the extra third order moment dynamic equations is not

worthwhile. However, this effect is still under investigation for more complicated cases.

1 s

.. e . . .
A_{ourthrexample-is-intended-to-beteuded i the conferetice-proeccdingsstrmt=is-not

. . P . 1 .
_ready al this time Th\, fuu;.‘{:.‘lT CRMPIC IS 10 Tomprare the Q]g’““““uu TeTe WTCH oHier algﬁ—

~sithmsfrorm-MALLAB~to-oxaluat ethedmprovement.dn. transient response.
Presently , o ahgon flm s iy v th, oxtonded east
IGenLy (FSE’Q&L’Q* é‘fwm M?’U"Qée}%) an A Conalomt pon N2 ctenetimt ‘
dsclopn, ¢ v e o AEMA ,ﬁ#,;\m\ CPrge me At e Rt aﬁma{ .
),(; . M ﬁ"fié& Soptemn & Lonty J{f‘ wFien T;;ji;’g\, ReSulis S’(/Lf‘rfé’( N gg‘&fgé{’é Som,

C o pé-e J



8. Conclusions

A discrete-time parameter estimator is derived that is globally convergent and that is an ap-
proximation of the optimal parameter estimator. It is globally convergent with probability
one to stationary points of the asymptotic negative log likelihood function, and appropriate
parameterization can assure convergence to true parameter values in many cases. Correla-
tion 1s permitted between process and measurement noise, so that ARMAX models can be
estimated. In the case of significant process noise, the estimator derived has much better

transient response than commonly used algorithms.

Much work remains to make the algorithm practical. The update equations, especially for
the third order moment, can be significantly compressed. Numerically stable coding should
be employed for the propagation of the second order moments. Appropriate projection rules

need to be researched.

The class of models wé::;m‘i)e widened to include parameter dependence in the output map
Forjctl:iv\g ackvrs; imet Riown
i.e. 6 dependence in C). ’time—vm“hw'a,nd'delay models can be easily incorporated, b oweves .
P pYime-verzng )

Tre c@ﬁ‘,‘m»qu"'fM\e OV’W/NL‘ eS‘""}‘ma‘i:c?r i$ easyl wyiflew ']Cvr the case C(g))
bt an a\c&ebrd(c y\(\aﬁ‘tmarc results that rust be Cakre-ﬁt({y ama[7ze‘{j.
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Appendix I: KRONECKER PRODUCTS

Kronecker products are the appropriate tool to handle moments of third order (and higher,
if necessary), similar to vectors for first order moments (estimates) and matrices for second
order moments (Riccati equations). Here, a brief review is given. More complete treatments
can be found in Brewer (1978), Henderson and Searle (1981), and Lancaster (1969), although
Lancaster uses a different definition of the vec operation. Here, for an m X n matrix A
with column m-vectors ay,...,a,, vecA is defined as the mn-vector formed by stacking
ay , then a,, etc., and finally, a, on the bottom. Let a;; denote the ¢k element of A for

i=1,2,...,m and k=1,2,...,n. The Kronecker product of A(m xn) and B(p x q) is

B —
a119... a, B

A®B = | : : (AL1)
amlB... amnB

denoted A ® B, and is an mp X ng matrix defined by

From this definition of A ® B, it follows that if A is partitioned into Ay, A;s, A2y,

and Aj;, then

A A A B A B
11 A2 © B = 11 ® 12 ® ’ (AL2)
A1 Azg A1 ® B Ay ® B

but there is no such property for partitions of B.

Furthermore, Brewer (1978) lists (among many others) the following properties:

(A®B)®C = A® (B® () (AL3)
(A+H)® (B+R) = AQB+AQR+HQ®B+HQ®R (AL4)
(A®B)T = AT @ BT (AL5)
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(A®B) (D ®G) = (AD) ® (BG) (AL6)
(A®B)! = Al @ B! (ALT)

vec(ADB) = (BT @ A)vecD (ALS)
The permutation matrix Uy, is defined by
vecA = Uy, vecAT . (AL9)

Explicitly, U can be computed as
m n m n

Unp = 3. S el ®@ejel =3 T @L®e =Y ¢;®I.®e , (ALLD)

i=1 j=1 i=1 j=1

where e; is the unit vector of zeros, except for a “1” in the ith position. Brewer (1978)
describes Up,, as “square (mn x mn) and has precisely a single ‘1’ in each row and in
each column.” Computationally, sometimes it may be easier to compute U, vec AT by

unstacking vec AT to form AT, taking the transpose, and then forming vec A rather than

using eq. (AL.10) above.

Some properties of U,,, are

Um,l = Ul,m = Im (A112)
B®A = Un,(A®B)U,, (AL13)

This final formula (AI.13) is especially helpful in the derivation in the following Appen-

pendix II.
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Appendix II: DEVELOPMENT OF THE ALGORITHM

This appendix is based on the work found in Wiberg (1992), with the following exceptions:

() In(2.1), E{o(t)v7(t)} = A1 Q(8)é;, where Q(0) is affine in 0, instead of a term
¥(0) v(t) appearing in place of v(t) in (2.1), where X(0) is affinein #. This creates a
unique global minimum in the likelihood function, as explained in Powell et al. (1993),
and is the difference between a successful and an unsuccessful algorithm.

trndationed o

(ii) In Wiberg (1992), the third orde¥moments m; = E {«9 R0IR 53}, my = E{Z®
0® :Ic} , and mg = E{Z ® £ ® #} are all approximated by dynamic equations.
Here, m; and mg3 are set to zero, saving significant computation at apparently little

cost in performance.

(i) The model is extended to correlated measurement and process noise. This is easily

accomplished by setting
o(t) = v(t) - S(O)R " w(t) , (AIL1)

so that ¥ and w are uncorrelated in the model. Then the uncorrelated noise algorithm

of Wiberg (1992) can be used on the model with process noise .

The reparameterization of (i) has only slight effect on the resulting algorithm. Only terms
containing %(#) and X4 are affected. Compare egs. (3.22) and (3.23) with the corresponding
equations in Wiberg (1992) numbered there as (38) and (76). Unfortunately, there are a
number of algebraic and typographical errors in Wiberg (1992), and it is hoped that these

are all corrected here.
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The following derivation is merely for purposes of motivation. The algorithm (3.9) -
(3.23), regardless of its derivation, has been proven to have desirable properties in Sections
4 and 5. Therefore, the following merely indicates the thought processes involved in its

creation.

First, use of the substitution (AIL1) in the model (2.1) gives the new model
z(t+h) = A(0) z(t) + =2(t) +o(t) |, (AIL2)
where A(6) is defined by (3.5), and in which the “input” z(t) is defined by
z(t) = B(@)u(t) + SO) R 'y(t) . (AIL3)

Then following the derivation of the EKF in Anderson and Moore (1979) gives equs. (3.9),
(3.10), and (3.17). This also gives (3.16), except for the term Ag vec Py, . Since (3.16) is the
conditional expectation of the right-hand side of (AIL2), substitution of § = 6§+ 6 and

T = I+ 2 in that expectation shows the appearance of Ay vec Py, .

Having (3.9), (3.10), (3.16), and (3.17), subtract them from the model (AIL.2) to obtain
the error equations for # and €. Form the second and third order products, and take
conditional expectations to get egs. (3.11), (3.12), (3.13), (3.14), (3.18), and (3.19). This
is not quite straightforward, because moments higher than third need to be approximated
by Gaussians to close the moment equations, and because the measurement updates are
the best linear unbiased estimator for Pe(t|¢) and m(t|t) in terms of the innovations.

Furthermore, the algebra with the Kronecker products gets quite involved. The interested

reader is referred to Wiberg (1992) for further details.
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Figure 1: Estimation of both a and ¢ in a first order system.
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Figure 2: Convergence of §; to 6o, the true value, and of §; to 0, a local
maximum of the likelihood function for the RPE.
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