
1

An FSM Re-Engineering Approach to Sequential
Circuit Synthesis by State Splitting

Lin Yuan1, Gang Qu2, Tiziano Villa3,4, and Alberto Sangiovanni- Vincentelli4,5

1Synopsys Inc., Mountain View, CA 94043
2ECE Dept., Univ. of Maryland, College Park, MD 20742

3DI, Univ. of Verona, 37134 Verona, Italy
4PARADES, 00186 Roma, Italy

5EECS Dept., Univ. of California, Berkeley, CA 94720

ABSTRACT

We propose Finite State Machine (FSM) re-engineering, a
performance enhancement framework for FSM synthesis and
optimization. It starts with the traditional FSM synthesis pro-
cedure, then proceeds to re-construct a functionally equivalent
but topologically different FSM based on the optimization
objective, and concludes with another round of FSM synthesis
on the re-constructed FSM. This approach explores a larger
solution space that consists of a set of FSMs functionally
equivalent to the original one, making it possible to obtain
better solutions than in the original FSM. Guided by the result
from the first round of synthesis, the solution space exploration
process can be rapid and cost-efficient.

We apply this framework to FSM state encoding for power
minimization and area minimization. The FSM is first mini-
mized and encoded using existing state encoding algorithms.
Then we develop both a heuristic algorithm and a genetic
algorithm to re-construct the FSM. Finally, the FSM is re-
encoded by the same encoding algorithms. To demonstrate
the effectiveness of this framework, we conduct experiments
on MCNC91 sequential circuit benchmarks. The circuits are
read in and synthesized in SIS environment. After FSM
re-engineering are performed, we measure the power, area
and delay in the newly synthesized circuits. In the power-
driven synthesis, we observe an average 5.5% of total power
reduction with 1.3% area increase and 1.3% delay increase.
This results are in general better than other low power state
encoding techniques on comparable cases. In the area-driven
synthesis, we observe an average 2.7% area reduction, 1.8%
delay reduction, and 0.4% power increase. Finally, we use
integer linear programming to obtain the optimal low power
state encoding for benchmarks of small size. We find that the
optimal solutions in the re- engineered FSMs are 1% to 8%
better than the optimal solutions in the original FSMs in terms
of power minimization.

I. INTRODUCTION

Sequential circuits, which play a major role in digital
system control part, are commonly modeled by the finite state

A preliminary version of parts of this manuscript has been published at the
10th Asia and South Pacific Design Automation Conference, pp. 254-259,
January 2005

machines (FSMs). Sequential circuit synthesis, often referred
to as FSM synthesis, is the process of converting the symbolic
description of an FSM into a hardware implementation with
certain design optimization objectives, such as speed, area, and
power.

State encoding or state assignment is a crucial step in FSM
synthesis. This classical optimization problem has received
an extensive amount of research attention. Originally, the
goal of state encoding was to minimize the circuit area and
the problem was formulated as “how to simplify the logic
representation of the output and next-state functions.” Such
work can be found in [5], [20], [6], [22], [23], [32], [34].
In the early 90’s, with low power becoming an increasingly
important design objective, efforts in state encoding have also
been shifted to focus on power minimization in sequential
circuits. Due to the well-known fact that dynamic power
dissipation in a CMOS circuit is proportional to its total
switching activity, state encoding problem is formulated as
“minimizing the number of state bit switches per transition.”
This problem is known to be NP-hard and many heuristic
algorithms have been proposed. Such techniques include state
encoding with minimal code length [3], [26], [30], non-
minimal code length [19], [24] and variable code length
[28], state re-encoding approaches [8], [31], and simultaneous
power and area optimization encoding [17], [25].

All of these works start with the minimized FSM, which has
a minimum number of states, and then seek the best encoding
scheme for these states. Such serial strategy may prevent find-
ing optimal state encodings [11]. Therefore, conducting state
minimization and state encoding in one step has been studied
in [2], [10], [18], with the target of area reduction; power
minimization was not considered. In addition, considering
non-minimal FSMs dramatically increases the solution space
for state encoding. Although better state encoding solutions
may exist, it is not easy to find them without an efficient
solution space exploration algorithm.

In this work, we propose FSM re-engineering, a novel
approach that re-constructs a minimized FSM and re-encodes
it to achieve better synthesis solutions. As we will see in
the following motivational examples, the best solutions, in
terms of power and area, do not necessarily come from the
minimized FSM. Via the FSM re-engineering approach, better
encoding solutions can be found. In fact, low power encoding

000

100

001

111

101

S1

S2 S3

S4

S51−/−0

10/11,01/−1
0−/11

00/11,11/0−

1−/0011/11,0−/00

00/−1,1−/10

01/1−,00/10

01/−1

10/00

���
���
���
���

���
���
���
���

1−/0001/−1

(a) Original STG with a total switching activity of 1.27

110

000

001

100 101

111S1

S2 S3

S4

S5
00/11,11/0−

11/11,0−/00

00/−1,1−/10

1−/−0

(b) The re−constructed STG with a total switching activity of 1.17

0−/11

01/1−,00/1010/00

10/00

11/11,0−/00

10/11,01/−1

S6

Fig. 1. Power-driven state encoding on a 5-state FSM and its functionally equivalent 6-state FSM.

on the re-engineered FSMs can give solutions with lower
power consumption than the optimal encoding for the original
FSMs.

A. A Motivational Example

Power minimization
We take the example from a paper on power-driven FSM

state encoding [16] to show the potential of the proposed FSM
re-engineering approach in power minimization.

The state transition graph (STG) in Figure 1(a) represents
a 2-input 2-output FSM with five states {S1, S2, S3, S4, S5}.
Each edge represents a transition with the input and output
pair shown along the edge. For example, the edge between
S1 and S2 with label “11/11,0-/00” means that at state S1,
on input ‘11’, the next state will be S2 with output ‘11’; on
input ‘00’ or ’01’, the next state will be S2 with output ’00’.
This FSM has already been minimized.

We re-construct this FSM by introducing state S6 as shown
in Figure 1(b). One can easily verify that these two STGs
are functionally equivalent. In fact, state S6 is an equivalent
state of S1. We then exhaustively search for all the possible
state encoding schemes for both FSMs and report the one
that minimizes the total switching activity in Figure 1 (the
3-bit codes shown next to each state). For example, state
S1 is encoded as ’000’ in the original FSM and its code
becomes ’110’ in the re-constructed FSM. We observe that
the switching activity in the FSM, an indicator of power
efficiency of the encoding scheme, drops from 1.27 to 1.17
(a 7.9% reduction) after we add state S6. Note that the
encoding scheme for the original 5-state FSM is the optimal
one obtained from exhaustive search. In another word, the
most energy-efficient encoding for this FSM is lost (and its
functionally equivalent FSMs) once it is minimized! This
implies that the optimal synthesis solution does not necessarily
come from the minimized FSMs, which was observed by
Hartmanis and Stearns [11].
Area minimization

The goal of sequential circuit synthesis is to implement both
the output and next state as functions of the current state and
input. The complexity of such functions, normally measured
by the number of literals and the logic depth, has a direct

impact on the area of the circuits. Area-driven state encoding
aims to encode the FSM such that the output and next state
functions are simplified. In this example, the complexity of a
function is measured by the number of literals in a two-level
logic representation.

Consider an encoded 5-state FSM shown in Figure 2(a). At
current state X2X1X0, on input I , we denote the next state
to be Y2Y1Y0 and the output to be O. We can express Y2, Y1,
Y0, and O as:

Y2 = I ′X ′
2X0 + I ′X2X

′
1 + IX ′

2X
′
0 (1)

Y1 = IX0 + X ′
2X1 (2)

Y0 = I ′X ′
2X

′
0 + X1 + IX0 (3)

O = I ′X ′
2 + X ′

1X0 + IX2 (4)

These functions have a total of 25 literals.
Now we consider the re-constructed 6-state FSM in Figure

2(b). The expressions for Y1, Y0, and O remain the same;
however, Y2 is simplified to (5). Compared to expression (1),
we see a reduction of 2 literals. When these two FSMs are
mapped to circuits in SIS, the re-constructed FSM gives a 5%
area reduction.

Y2 = I ′X0 + I ′X2 + IX ′
2X

′
0 (5)

B. FSM Re-Engineering: Goal, Novelty, and Contributions
The goal of FSM re-engineering is to improve the quality

of the FSM synthesis and optimization solutions. FSM re-
engineering not only provides the theoretical opportunity to
produce synthesis solutions of higher implementation quality,
it can also enhance practically the performance of existing
FSM synthesis algorithms. For example, the power-driven state
encoding heuristic POW3 [3] encodes the original 5-state FSM
in Figure 1(a) with a switching activity 18.9% higher than the
optimal encoding solution. However, when we use POW3 to
encode the equivalent 6-state FSM, it successfully finds an
encoding solution that is only 5.4% worse than the optimal.

The proposed FSM re-engineering approach is a three-phase
performance enhancement framework that can be combined
with most existing FSM synthesis techniques. We first obtain
a synthesis solution using existing tools. Then we analyze this

2

S2

S1 S3

S4

S5

(b) The re−constructed STG with total number of literals 23

���
���
���
���

���
���
���
���

S2

S5

S1 S3

S4

001

100

011111

000 000

111

100

011

001

101

0/1

0/0

0/1

0/1

0/1

0/0

1/1

1/1

0/1

1/1

1/0

1/1

1/1

1/0

0/1

1/1

1/1

0/0

1/0

0/1

0/0

1/0

(a) Original STG with total number of literals 25

S6

Fig. 2. Area-driven state encoding on the original and re-constructed FSMs.

solution and re-construct functionally equivalent FSMs based
on such analysis. Finally we apply the same synthesis tools on
the re-constructed FSM to obtain a new solution. Compared to
techniques such as state re-encoding that reshape the synthesis
solution based on the minimized FSM, our approach has
the potential to find solutions of higher quality because it
investigates a larger solution space that includes functionally
equivalent non-minimized FSMs. Compared to techniques
such as simultaneous state minimization and encoding that are
not restricted to the minimized FSM, our approach selectively
enlarges the solution space. Although this will not guarantee to
find an optimal solution, its high efficiency makes it applicable
to large machines.

In this paper, we demonstrate this approach on power-
driven and area-driven state encoding algorithms. We propose
efficient and practical methods to re-construct functionally
equivalent FSMs. We conduct extensive experiments and care-
fully analyze the results to show the effectiveness of our
approach. To address the natural concerns of overhead and
search cost we mention the following:

• Overhead: Implementing the non-minimized FSM may
require more hardware which increase the design costs.
However, this is not always true. For example, a 36-state
FSM and a 42-state FSM need the same number of latches
(flip flops, or state registers). Furthermore, it is known
that synthesis of minimized FSMs does not guarantee the
optimality in implementation [11]. One example is the
one-bit hot encoding scheme that we will survey in the
next section.

• Search cost: Although the solution quality can be im-
proved theoretically if one searches in a larger solution
space that includes all the (non-minimized) functionally
equivalent FSMs, such exploration may become infea-
sible as the searching complexity increases. Our FSM
re-construction is done after the first round of synthesis
and driven by the optimization objective. Therefore, our
search is actually restricted to a subset of the functionally
equivalent FSMs that might yield good solutions. This
reduces the search cost dramatically.

C. Paper Organization
In Section II, we survey the most relevant works on FSM

state encoding and discuss their relationship with the proposed
FSM re-engineering framework. We give the notation and
problem formulation in Section III. The generic FSM re-
engineering approach is presented in Section IV together
with two heuristic algorithms and a genetic algorithm to re-
construct FSMs. We report the experimental results in Section
V and conclude in Section VI.

II. RELATED WORK

FSM synthesis is a well studied area that includes state
minimization and state encoding. For a given FSM, state
minimization (SM) aims to find another FSM that has the
same input/output behavior as the original machine and has the
minimum number of states. On the other hand, state encoding
(SE) is to find a binary code for each state of the FSM such
that the FSM (i.e., the next-state and output functions) can be
efficiently implemented with a given technology library, where
the efficiency is measured by speed, area, power, testability,
and so on.

Although there are several standard methods to solve the SM
problem [15], SE algorithms evolve as the design objectives
and implementation platforms changes. In this section we
focus our review on SE problem, in particular on SE for area
and power minimization.

A. State Encoding for Area
Given the computational challenge of the problem, whose

version for truth tables in NP-complete and for sums of
cubes is Σ2

p-complete [33], [35], the literature is huge and
we mention here only a few landmark contributions, referring
to [33] for a complete discussion.

The earliest state encoding algorithms date back to
1960s [1], and were based on grouping together 1s in the Kar-
naugh tables of the resulting binary output and the next-state
functions in order to minimize the number of product terms in
the sum-of-product expressions describing the combinational

3

part of the FSM realization. An important area of research
was state assignment of asynchronous circuits to avoid critical
races [29].

Later, De Micheli et al. formulated the minimum area
state encoding problem for PLA realization as generating a
minimum (multi-valued) symbolic cover of the FSM followed
by a step of satisfying the encoding constraints. The idea
was implemented in KISS [22], with a restriction to input
constraints and a heuristic row encoding technique. Successive
extensions, from CAPPUCCINO [22] to NOVA [32] and ESP-
SA [34] introduced also output constraints and more efficient
algorithms to satisfy the input and output encoding constraints.

MUSTANG [5] is one of the earliest state encoding tech-
niques for multi-level logic minimization; it assigns a weight to
each pair of symbols and gives adjacent codes to pairs of states
with large weight. JEDI [20] and MUSE [6] adopt a weighted
graph model similar to the one in MUSTANG, but JEDI uses a
simulated annealing algorithm to perform the embedding and
MUSE starts from a multi-level representation of the FSM to
derive the weights. Instead MIS-MV [21] applies the multi-
valued minimization paradigm followed by extraction and
satisfaction of encoding constraints, generalizing it to multi-
level logic, i.e., it applies multi-level minimization first to the
combinational component of FSM when the state variable is
still in its symbolic, multi-valued form and then it derives input
constraints.

All the above approaches perform state encoding after
state minimization. Concurrent state minimization and state
encoding was suggested in [2], [7], [10], [18], [10] with
little success. Hallbauer et al. [10] proposed a method for
asynchronous circuits based on pseudo-dichotomies trying to
perform state minimization while heuristically reducing the en-
coding length, with no reported results. To explore the solution
space in the non-minimized FSM, Lee’s method [18] employs
a branch-and-bound technique; however, it is only feasible for
very small machines (no more than sixteen states). Avedillo
et al. [2] presented a heuristic method in which the encod-
ing is generated incrementally, and may create incompletely
specified codes for the states in the original FSM. Although
reasonably efficient, the experimental results on a subset of the
MCNC benchmarks do not show improvements over a serial
synthesis strategy. Fuhrer et al. proposed OPTIMIST [7], a
concurrent state minimization and state encoding algorithm for
two-level logic implementation. It provides an exact solution
to FSM optimization for two-level logic implementation. But
the largest FSM in the reported table of results has only nine
states, and the authors pointed out that their algorithm does
not scale well.

Our three-phase FSM re-engineering approach can be ap-
plied to improve most of the above state encoding techniques
(JEDI is used in our experiments), where an accurate and
efficient cost function is defined. It allows the state encoding
algorithms to explore functionally equivalent non-minimized
FSMs; but unlike the simultaneous state minimization and state
encoding strategy, our approach is more efficient in solution
space exploration and so is capable of handling larger FSMs.

B. State Encoding for Low Power
Dynamic power dissipation in CMOS circuits is caused

by the charging and discharging of capacitive loads, also
known as switching activity, in both sequential logic and
combinational logic. Switching activity in sequential logic
mainly comes from the switching in the state registers [30]
and can be described as

P =
1

2
V 2

ddf
∑

i∈sb

C(i)E(i) (6)

where Vdd is supply voltage, f is clock frequency, C(i) is the
capacitance of the register storing the i-th state bit, and E(i)
is the expected switching activity of the i-th state register.

The switching activity in combinational logic is the total
switching at each logic gate. Therefore, it depends on the
complexity of the implementation of the combinational logic.
However, it is hard to estimate, at FSM synthesis level and
before technology mapping, the impact of state encoding
on switching activity in combinational circuit. Normally, the
complexity of the next-state and output functions, in terms of
the number of literals, is used to estimate the power dissipation
in the combinational logic. This complexity is also used as the
indicator of the circuit area. So in the following, we briefly
survey power-driven state encoding algorithms that reduce the
switching activity in state registers and hereby power.

Roy and Prasad proposed a simulated annealing based
algorithm to improve any given state encoding scheme [26].
Washabaugh et al. suggested to first obtain state transition
probability, then build a weighted state transition graph, and
finally apply branch and bound for state encoding [36]. Olson
and Kang presented a genetic algorithm, where in addition
to the state transition probability, they also considered area
while encoding in order to achieve different area-power trade-
offs [25]. Benini and De Micheli presented POW3, a greedy
algorithm that assigns code bit by bit. At each step, the
codes are selected to minimize the number of states with
different partial codes [3]. Iman and Pedram developed a
power synthesis methodology and created a complete and
unified framework for design and analysis of low power digital
circuits [13].

Unlike these power-driven state encoding algorithms, low
power state re-encoding techniques start from an encoded
FSM and seek a better encoding scheme to reduce switching
activity. Hachtel et al. recursively used weighted matching
and min-cut bi-partitioning methods to re-assign codes [8].
Veeramachaneni et al. proposed to perform code exchange
locally to improve the coding scheme’s power efficiency [31].
Our FSM re-engineering approach is conceptually different
from re-encoding in that we do not only re-assign codes to
the existing states, but also change the topology of the FSM.

The above work is based on two common assumptions: 1)
the length of the state code is minimal, that is, the number
of bits to represent a state will be dlog ne for an n-state
FSM; 2) state encoding (or re-encoding) should be performed
after state minimization. A couple of recent papers on non-
minimal length encoding algorithms show that power may
be improved with code length longer than the lower bound
[19], [24]. These methods require extra state register(s) in

4

S1

S2 S3

S4

S5

w =0.11

w =0.18

w =0.12

w =0.08

w =0.24

w =0.04
w =0.08

w =0.1512

15

14

23

24
34

45

25

Fig. 3. Weighted STG of the original FSM in Fig. 1; the weights are
calculated based on transition probability.

the FSM implementation which will add to the hardware cost
and cause area increase. Unfortunately, none of the papers
reported the area overhead. One of the advantages in our
approach is that usually no extra state bit is required (when
the number of states is not 2k), so The hardware overhead can
be kept to a minimum. Besides, as we mentioned earlier, our
technique is a stand-alone enhancement tool. Therefore, it can
be applied to non-minimal length encoding algorithms to find
better solutions as well.

Finally, we mention one-hot encoding where each state in an
n-state FSM receives an n-bit code with exactly one bit set
to ’1’. This encoding scheme can greatly simplify the logic
implementation of the FSM and also reduce the switching
activity because it guarantees that the Hamming distance of
every pair of states is exactly two. However, it requires that
the code length is the same as the number of states, which
makes it impractical for large FSMs.

III. DEFINITIONS AND PROBLEM FORMULATION

A. FSM representation
We consider the standard state transition graph (STG)

representation of an encoded FSM G = (V, E), where a node
vi ∈ V represents a state si with code Ci in the FSM M ,
and a directed edge (vi, vj) ∈ E represents a transition from
state si to state sj . We transform this directed graph G to an
undirected weighted graph G̃ = (V, Ẽ, {Ci}, {wij}):

• V , the set of states, which is the same as in G;
• Ẽ, the set of edges. An edge (vi, vj) ∈ Ẽ if and only if

(vi, vj) ∈ E, or (vj , vi) ∈ E, or both;
• Ci, the label of node vi ∈ V , which is the code of state

si;
• wij , the weight of edge (vi, vj) ∈ Ẽ, which depends on

the optimization objective (wij > 0).
We denote H(vi, vj) as the Hamming distance between the

codes (vectors of 0s and 1s), Ci and Cj , of states si and sj ,
under the given encoding scheme. We define the weighted sum
of an encoded FSM as:

weighted sum =
∑

(vi,vj)∈Ẽ

wijH(vi, vj) (7)

Equation (7) has a significant implication for state encoding,
because in many state encoding algorithms, both power-driven

and area-driven, such weighted sum is used as the objective
function in logic optimization. In power-driven state encoding
algorithms, like POW3 [3], GALOPS [25], SYCLOP [26]
and SABSA [36], the weight is defined by the transition
probabilities between two states; in area-driven state encoding,
such as MUSTANG [5], JEDI [20] and PESTO [12], the
weight is calculated through the adjacency matrices. Due to
this reason, we simply refer to the weighted sum of Hamming
distances as the “cost” in the FSM state encoding algorithms
based on minimum weighted Hamming distance (MWHD).
We show in Figure 3 a weighted STG of the original FSM in
Figure 1.

B. Calculating the Weight
Power optimization Since the dynamic power is propor-

tional to the total switching activity, the weight on an edge
is defined as the total transition probability between its two
ending states. This measures how frequently each transition
occurs; if two states have frequent transitions between them,
they should be assigned adjacent codes to reduce the total
number of switching bits. The weight is expressed as:

wij = Pij + Pji (8)

where Pij is the transition probability from state si to state
sj .

To compute the transition probability, it is necessary to have
the input distribution at each state, which can be obtained
by simulating the FSM at a higher level of abstraction [36].
This gives us pj|i, the conditional probability that the next
state is sj if the current state is si. Then a Markov chain
can be built based on these conditional probabilities to model
the FSM. The Markov chain is a stochastic process whose
dynamic behavior depends only on the present state and not
on how the present state is reached [9]. Now we can obtain
the steady-state probability Pi of each state si corresponding
to the stationary distribution of the Markov chain. The state
transition probability Pij for the transition si → sj is given
by

Pij = pj|iPi (9)

Area minimization There are several different methods to
define the weight. The most popular ones are the fanout
oriented and fan-in oriented algorithms [5], [6], [20]. The
fanout oriented algorithm is as follows:

1) For each output o build a set Oo of the present states
where o is asserted. Each state p in the set has a weight
OW o

s that is equal to the number of times that o is
asserted in s (each cube under which a transition can
happen appears as a separate edge in the state transition
graph).

2) For each next state n build a set Nn of the present states
that have n as next state. Again each state s in the set
has a weight NW n

s that is equal to the number of times
that n is a next state of s multiplied by the number of
state bits (the number of output bits that the next state
symbol generates).

5

3) For each pair of states k, l define the weight of the
edge joining them in the weight graph as wkl =
∑

n∈S NW n
k × NW n

l +
∑

o∈O OW o
k × OW o

l .
This algorithm gives a high weight to present state pairs that
have a high degree of similarity, measured as the number of
common outputs asserted by the pair.

The fan-in oriented algorithm is almost symmetric with the
fanout oriented algorithm [33].

C. Problem Formulation
Recall that two FSMs, M and M ′, are equivalent if and only

if they always produce the same sequence of outputs on the
same sequence of inputs, regardless of the topological structure
of their STGs. We formally state the FSM re-engineering
problem as:

Given an encoded FSM M and its corresponding
weighted graph G̃ = (V, Ẽ, {Ci}, {wij}), construct
an equivalent FSM M ′ and encode it so that in the
corresponding graph G̃′ = (V ′, Ẽ′, {C ′

i}, {w
′
ij}),

the total cost reduction is maximized:
∑

(vi,vj)∈Ẽ

wijH(vi, vj) −
∑

(ui,uj)∈Ẽ′

w′
ijH(ui, uj) (10)

The FSM re-engineering problem targets the re-construction
and encoding of a functionally equivalent FSM for a better im-
plementation. We set the optimization objective as maximizing
the difference in cost between the original and re-constructed
FSMs rather than minimizing the cost in the new FSM because
these two objectives are essentially equivalent and it is more
efficient to calculate the cost difference in our implementation.
Clearly, the problem is NP-hard because it requires the best
state encoding for the re-constructed FSM M ′, which itself
is an NP-hard problem (it is NP -hard for minterm-based
representations; it is worse, i.e., Σ2

p-hard for representations
based on sum of products, see [33], [35]). Furthermore, when
we restrict M ′ to be the same as M , the problem becomes
“determining a new encoding scheme to minimize the total
cost”, which is the FSM re-encoding problem.

The novel contribution of the FSM re-engineering problem
is that it re-constructs the original (minimized and encoded)
FSM to allow us explore a larger design space for a better
FSM encoding. In this paper, we focus on FSM re-construction
and defer the state encoding problem to existing algorithms.
It is also possible to extend the problem formulation to non-
encoded FSMs, which would further enlarge the search space
and could lead to better solutions at an higher search cost.
We now give an example on how to re-engineer an FSM and
explain how it can effectively lead to better solutions.

D. An Example of Re-constructing FSMs
We have already seen from Figures 1 and 2 how to add a

new state to the FSM without altering its functionality. Figure
4 illustrates a systematic way to do so. We see that a new
state, S′, is added as a split of state S in the following way: S ′

goes to the same next state under the same transition condition
as state S; the transitions from other states to state S in the
original STG will be split such that some of them still go to

state S while the rest go to the new state S ′. In the rest of the
paper, we will call this process state splitting.

To see the advantage of this non-minimized FSM, we
consider a scenario where state S has a large Hamming
distance to one of its previous states Spj and the transition
from Spj to S contributes a lot to the total cost. In the
re-constructed FSM, we can redirect the next state of this
transition to S′ and assign S′ a code with a small Hamming
distance to Spj .

For example, in Figure 4, no matter which code we assign
to state S, it will have a Hamming distance three or larger to at
least one of its previous states. (To see this, notice that both
codes 11111 and 00000 are assigned to its previous states).
However, in the re-constructed FSM, we can assign code
11110 and 00001 to state S and its equivalent S ′, respectively.
This ensures that S will have Hamming distance one from all
of its previous states, and S ′ will have Hamming distance two
from S4 and distance one from all the other previous states.

IV. FSM RE-ENGINEERING ALGORITHM

In this section, we elaborate the FSM re-engineering ap-
proach by showing how the state splitting technique can
improve state encoding algorithms. We first propose two
heuristic algorithms, based on Hamming distance, on how
to select a state for splitting and how to split the selected
state. We then present a genetic algorithm for state splitting
to target more general cost functions that may not be based
on Hamming distance. Finally, we describe an integer linear
programming (ILP) method that can find the most power-
efficient state encoding to evaluate our proposed FSM re-
engineering approach.

A. A Generic Approach

Reported
synthesis
solution

FSM_Re−construct()
synthesis tool

synthesis tool

Original
FSM

Optimal
synthesis
solution

new
FSM

if reduction
> d %

estimate cost reduction

split state(s)

analyze solution

NO YES

select splitting strategy

Fig. 5. FSM re-engineering flow.

Figure 5 outlines the proposed FSM re-engineering ap-
proach. This three-phase approach can be used to improve
the performance of FSM synthesis tools for different design
objectives. First, we apply an existing synthesis tool to obtain
an “optimal” solution (i.e., the best based on the tool we use)
for the given FSM. The second phase is FSM re-construction
based on this synthesis solution. In the third and last phase, the
re-constructed FSM is re-synthesized using the same synthesis
tool to obtain a new synthesis solution.

6

1
Sn

Sn
k

S 2

S 3

S 4

5
S

S 6

S 1

1
Sn

Sn
k

S 2

S 3

5
S

S 6

S 1

S 4 S’

S

S

11010

10110

00111

00011

00000

11111

11010

10110

00000

00111

11110

00001

00011

11111

Fig. 4. Re-constructing an FSM by splitting state S and its incoming edges.

The FSM re-construction phase starts with solution analysis
where we evaluate the solution based on a given cost function.
Such cost function depends on the synthesis objective and
one can compute or estimate it for a given (encoded) FSM.
For example, in Section 3.2, we have shown that both power
minimization and area minimization can be formulated as
a minimum weighted Hamming distance problem. The cost
function in this case can be defined as the total switching
activity and the total state adjacencies, respectively. It is
crucial to have a cost function that can model the design
objective accurately and can be computed efficiently. We
study the feature of the current FSM contributing most to the
cost function and re-construct the FSM accordingly. For this
purpose, we can utilize options inherently existing in the FSM
such as compatible sets in an incompletely specified FSM and
the don’t care conditions on state transitions. We can also
explore the class of FSMs that are functional equivalent to the
original FSM. This process can be performed iteratively as
well to locate the most promising re-constructed FSM. Figure
5 illustrates this phase by the state splitting technique. In the
rest of this section, we will illustrate the three key steps of
this technique:

1) select the best candidate state for splitting.
2) decide how to split the selected state.
3) estimate the (maximum) cost reduction after the state

splitting.

We will use power optimization as an example to describe
the algorithms. Since the cost function of both power and area
optimization can be formulated as minimizing a weighted sum
of Hamming distances, the algorithms can be easily adopted
for area minimization by modifying the weight definition.

Finally, we mention that the strength of FSM re-engineering
is to improve the performance of FSM synthesis and optimiza-
tion tools/algorithms. This can be seen from Figure 5 as we use
the same algorithm, which gives us the input encoded FSM,
to encode the re-constructed FSM and produce the encoded
FSM. In our simulation, POW3 developed by Benini and De
Micheli [3] is used as the power-driven state encoding scheme;
and JEDI developed by Lin and Newton [20] is used as the
area-driven state encoding scheme.

B. Heuristic for Selecting States to Split
As shown in Figure 4, state splitting enables us to assign

different codes to the original state and the new split state.
However, as it has also been implied in Section 3, choosing
an optimal state splitting strategy is also NP-hard. The reason
is that it is necessary to encode the split states optimally first
to determine whether a state splitting strategy is optimal. This
necessary condition itself is already known as NP-hard.

Therefore we describe heuristic algorithms to select and
split states. Intuitively, states with large (average) Hamming
distance from their previous states will benefit from state
splitting because they will have fewer previous states in the re-
constructed FSM, which allows the encoding scheme to find
a better code to reduce the Hamming distance. Because both
the selected state and its split state will be connected to all
the next states to preserve the FSM’s functionality, the codes
of the next states play a less important role in selecting which
state to split. However, the next states will impact the codes
for the selected state and its split states when we encode the
re-constructed FSM.

For each state si, we define:

r(si) =
∑

(vj ,vi)∈E

H(vi, vj)/indgree(vi) (11)

where node vi represents state si in the STG and the sum is
taken over all the incoming edges (vj , vi) to node vi.

This value measures the average Hamming distance between
state si and all its previous states. We split one state at a time
and each time we select the state according to the following
rules:

1) select the state with the largest r-value;
2) if there is a tie, select the state with fewer previous

and/or next states;
3) if the tie still exists, break it by selecting a state

randomly.
Rule 1) helps us to locate the state(s) such that state splitting

can give us a large gain in reducing Hamming distance. Rule
2) helps the encoding engine to select a code for the split
states that minimizes the average Hamming distance from its
previous states. It also helps to reduce the additional switching
activities created between the split state and its next states.

7

C. Heuristic for Splitting a Selected State

We now present a heuristic algorithm that splits the selected
state. Ideally, we want to split the state in such a way that the
new FSM will maximally reduce the switching activity when
encoded optimally. Apparently, this requires solving the NP-
hard state encoding problem optimally. Instead, we focus on
how to split a state to minimize switching activity locally.

More specifically, let s be the state we select for splitting,
PS and NS be the sets of previous states and next states of s
respectively in the original FSM. The state splitting procedure
1) creates a state s′ that also has NS as its next states, and 2)
splits PS into PT1 and PT2 and makes them as the previous
states for s and s′ in the new FSM. The goal of such local
state splitting is to minimize

∑

t∈PT1

PtsH(t, s) +
∑

t∈NS

PstH(t, s) +

∑

t∈PT2

Pts′H(t, s′) +
∑

t∈NS

Ps′tH(t, s′)

where Pts is the transition probability from state t to state s
and H(t, s) is the Hamming distance between the two states.

Local Algorithm to Split a State
/* Split state s */
1. for each pair si and sj in PS, the previous states of s
2. compute the Hamming distance H(si, sj);
3. pick s1 and s2 s.t. H(s1, s2) = max

si,sj∈PS
{H(si, sj)};

4. c1 = s1; c2 = s2;
5. do
6. PT1 = {c1}; PT2 = {c2};
7. for each state t ∈ PS
8. if (H(t, c1) < H(t, c2))
9. PT1 = PT1 ∪ {t};
10. else PT2 = PT2 ∪ {t};
11. c1 = center of PT1; c2 = center of PT2;
12. Htotal =

∑

t∈PT1

H(t, c1) +
∑

t∈PT2

H(t, c2);

13. while (Htotal is decreasing);
14. for each state t ∈ PT1

15. add t as a previous state of state s;
16. for each state t ∈ PT2

17. add t as a previous state of state s′;
18. for each state t ∈ NS, the next state of s

19. add t as a next state of state s′;

Fig. 6. Pseudo code: Split a State

We propose a greedy heuristic to partition the previous states
in PS into two clusters, which is shown in Figure 6. The
algorithm first puts the two states s1 and s2 with the largest
Hamming distance into clusters PT1 and PT2, respectively
(line 3-4). For each of the other states t ∈ PS, we assign t to
PT1 if it is closer to s1 in terms of Hamming distance, or PT2

if it is closer to s2 (lines 6-9). We define the center of a cluster
to be the code that has the minimum total Hamming distance
from all the states in the cluster. Suppose that a cluster has n
states and the code for the i-th state is c1ic2i . . . cki, then the
center is c1cc2c . . . ckc, where cjc = MAJ(cj1, cj2, . . . , cjn)

and MAJ is the majority function 1. For example, the center
for codes ’00’, ’01’ and ’11’ will be ’01’. After we partition
the previous states into two clusters, the centers c1 and c2 of
the two clusters (line 11) are computed. We then re-partition
set PS based on these new centers and continue if the new
partition results in reduced total Hamming distance (line 13).

The following lemma upper bounds the run-time complexity
of this algorithm.

Lemma 1: The run-time complexity of the procedure in
Figure 6 is linear in kn, where k is the size of set PS and n
is the encoding length.

[Proof]. For the loop (lines 6-12) to be repeated, it is
necessary that the total Hamming distance is reduced by at
least 1. Therefore, this loop will stop after being repeated a
finite number of times, upper bounded by Htotal. Furthermore,
the largest Hamming distance from s (or its equivalent s′) to
any state in PS is n, that is the encoding length. If there are
k states in PS, then the loop will not be executed more than
kn times.

This procedure is illustrated in Figure 4. In the original
FSM, state S has six encoded previous states. S1 and S6 have
the largest Hamming distance and are put into two subsets.
The remaining states from S2 to S5 are partitioned according
to line 7 to 10 in Figure 6. Then the center in the first subset
(that contains S1) is calculated as “11110”; the center in the
second subset (that contains S6) is “00001”. Then all the states
are assigned again based on their Hamming distance to each
center. In this round, state S4 is moved from the first subset to
the second subset because it has a smaller Hamming distance,
that is 2, to the center in the second subset. There will be no
partition afterwards because the total Hamming distance has
reached a minimum.

D. A Genetic Algorithm for Selecting and Splitting States
As the technology scales down and the number of transistors

on chip rises so fast, power has become the major design
concern in CMOS circuits design and synthesis. Since the
total dynamic power includes both sequential power and
combinational power, minimizing the total switching in state
registers alone may not be optimal in power. As the power in
combinational part is proportional to area, we want to modify
our cost function such that total switching is minimized with
area under control. To do this, we simply combine the weight
function for power and area minimization using a linear model:
wij = α ∗ wsw

ij + (1 − α) ∗ war
ij .

1Suppose that one partition has k states with codes {xi1xi2 · · ·xin : i =
1, 2, · · · , k} whose next state will be s in the re-constructed FSM. We want to
find the code c1c2 · · · cn for state s to minimize the total Hamming distance

k
∑

i=1

H(s, xi) =

k
∑

i=1

n
∑

j=1

|xij − cj | =

n
∑

j=1

(

k
∑

i=1

|xij − cj |)

Because each bit is independent, the above is minimized if and only if
∑k

i=1
|xij − cj | is minimized for each j = 1, 2, · · · , n. Let a be the

number of 1’s in {xij : i = 1, 2, · · · , k} and b be the number of 0’s.
∑k

i=1
|xij−cj | = b if cj = 1 and

∑k

i=1
|xij−cj | = a if cj = 0. Clearly,

it is minimized when cj is defined as the majority of {xij : i = 1, 2, · · · , k}.

8

Figure 7 depicts the proposed genetic algorithm that
searches for a good state splitting strategy. Since splitting a
state with only one previous state does not help in reducing
the Hamming distance between that state and its previous
state, we eliminate all the states with a single previous state
from the queue of states to be split (line 1-3). For the 5-state
FSM in Figure 1(a), the candidate queue for state splitting is
{S1, S3, S4, S5}.

A state splitting scheme is represented by a boolean vector
of the same length as the above candidate queue. A bit ‘1’ at
the ith position of the vector indicates that the ith candidate
state is split and a bit ‘0’ means that the scheme chooses
not to split this state. For example, the 6-state FSM in Figure
1(b), where state S1 is split, corresponds to vector 1000. Each
vector is referred as a chromosome.

According to each chromosome, we split the states (lines
7-9) and calculate its fitness (line 10), which is defined as
the total switching activity according to that chromosome. The
smaller the total switching activity, the better the chromosome.
We start with an initial population of N randomly generated
chromosomes (line 5). Children are created by the roulette
wheel method in which the probability that a chromosome
is selected as one of the two parents is proportional to its
fitness (line 13). With a certain ratio, crossover is performed
among parents to produce children by exchanging substrings
in their chromosomes. A simple mutation operation flips a
bit in the chromosome with a given probability known as bit
mutation rate (line 14). When the population pool is full, i.e.,
the number of new chromosomes reaches N , the algorithm
stops to evaluate fitness of each individual for the creation
of next generation. This process is repeated for MAX GEN
times and the best chromosome gives the optimal state splitting
strategy.

Genetic Algorithm
/* Traverse STG and split states. */
1. for each state in STG
2. if it has more than one incoming edge
3. put it in candidate queue;
4. chromosome length = the size of candidate queue;
5. initialize N random vectors;
6. while generation < MAX GEN
7. for each chromosome vk and for each i
8. if vk[i] == 1
9. split the ith candidate state;

10. vk.fitness = total cost;
11. do
12. sort chromosome by non-decreasing fitness;
13. roulette wheel selection to select parents;
14. crossover & mutate to create children;
15. until number of new chromosomes = N

Fig. 7. Pseudo code: State splitting via genetic algorithm

We will discuss how to calculate the fitness of each chro-
mosome, that is, the total cost for a new FSM with certain
states split.

A way to calculate the cost in each step after state splitting
is to encode the re-constructed FSM and to compute its total

cost as discussed in Section 3. This gives the actual gain in
total cost reduction by splitting a set of states. When it is
too expensive to apply the state encoding algorithm on the
entire FSM, we use the following alternative: we assign locally
to the new state the “best” code (notice that it might not be
feasible) and calculate the lower bound for its cost. Here we
trade accuracy for efficiency, since a lower bound may not
always lead to the optimal solution.

Lemma 2: Let {xi : (xi1xi2 · · ·xin)} be the set of states
that have transitions to/from state s and their codes. Let wxis

be the weight between states xi and s. The total cost is
minimized at state s when it has code c1c2 · · · cn, where

cj =

{

1 if
∑

xi
wxis(1 − 2xij) < 0

0 otherwise
[Proof]. From the definition, the switching activity at the

j-th bit will be
∑

xi
wxisxij if cj = 0, and

∑

xi
wxis(1−xij)

if cj = 1. Comparing these two values, we conclude that cj

should be assigned 1 if
∑

xi
wxis(1 − xij) <

∑

xi
wxisxij ,

which yields the result as above.

E. ILP Computation of the Minimum Switching Activity

There are two reasons to determine the optimal encoding
scheme for a given FSM. First, it allows to test the quality of
low power state encoding heuristics. Second, comparing the
minimum switching activity of the original FSM with that of
the re-constructed FSM provides insights on the potential of
FSM re-engineering approach in power minimization.

The power-driven state encoding problem can be formulated
as follows: find a code xi1xi2 · · ·xin for each state xi, i =
1, . . . , k, of a k-state FSM, such that

n
∑

l=1

|xil − xjl| ≥ 1, ∀i 6= j (12)

and the following (total switching activity) is minimized

∑

1≤i<j≤k

pij

n
∑

l=1

|xil − xjl| (13)

where pij = Pij + Pji is the total transition probability
between states xi and xj as defined earlier.

Equation (12) enforces that no two states have the same
code. Expression (13) represents the weighted sum of Ham-
ming distances, because the Hamming distance between states
xi and xj is defined as H(xi, xj) =

∑n

l=1 |xil − xjl|.
We introduce (Boolean) variables d

(l)
ij = |xil − xjl| and

dl
ii = 0 for 1 ≤ i < j ≤ k and 1 ≤ l ≤ n. Equations (12)

and Expression (13) can be re-written in the following linear
form:

n
∑

l=1

d
(l)
ij ≥ 1 (14)

∑

1≤i<j≤k

pij

n
∑

l=1

d
(l)
ij (15)

9

The definition of d
(l)
ij is equivalent to the following:

xil + xjl + (1 − d
(l)
ij) ≥ 1

xil + (1 − xjl) + d
(l)
ij ≥ 1

(1 − xil) + xjl + d
(l)
ij ≥ 1

(1 − xil) + (1 − xjl) + (1 − d
(l)
ij) ≥ 1

The problem then becomes a (0-1) integer linear programming
(ILP) problem that can be solved by an off-the-shelf ILP
solver.

V. EXPERIMENTAL RESULTS

We demonstrate the FSM re-engineering framework on state
encoding of FSM benchmarks from the MCNC91 suite. Our
simulation is designed to show the performance enhancement
of FSM re-engineering on a given state encoding algorithm.
Based on different optimization objectives, we run FSM re-
engineering with a power-driven state encoding algorithm
and an area-driven state encoding algorithm, respectively. We
compare the cost function before and after FSM re-engineering
in each optimization framework. Then we synthesize the
sequential circuits in the SIS environment [27] as follows: we
first read in the minimized FSM in kiss2 format. Then, we use
the ’state assign’ command to encode the FSM by one of the
encoding algorithms. Next, we run the ’source script.rugged’
command to further optimize the circuit and map the circuit to
a general library ’lib2.genlib’ using the command ‘map -m -s’.
Area and delay results are reported after technology mapping.
The delay is computed using the average of the maximal
rising and falling arrival times. Afterwards, we measure power
consumption by running the command ’power estimate -t
SEQUENTIAL’ in SIS.

A. Power driven optimization
We implemented the power-driven POW3 [3] algorithm for

state encoding. We use the Markov model to calculate the
transition probability between states (for that the FSM not
only has to be a Markov chain, it also must be strongly
connected, i.e., every state has to be reachable from every
other state). For this reason, some of the benchmarks that have
non-deterministic transitions are excluded, and the unreachable
states in some benchmarks are removed or modified. We run
the experiments on 25 benchmarks that can be encoded using
our POW3.

To compare the performance of POW3 before and after
FSM re-engineering, we use the following metrics: switching
activity (calculated from Equation (7)) and sequential power
(simulated in SIS). We also compare the performance en-
hancement of POW3 by FSM re-engineering with the reported
literature on comparable cases.
Switching Activity Reduction

Table I reports the switching activity reduction by the
proposed FSM re-engineering algorithms and their run-times.
The first column lists the 25 FSM benchmarks from MCNC91;
the second column shows the number of states in each original
FSM; the third column shows the number of states split by

the state splitting strategy based on the heuristic algorithm
and on the genetic algorithm, respectively. We note that, for
several benchmarks, the GA algorithm creates many more split
states than the heuristic one. This is because the heuristic state
splitting algorithm is a greedy approach that only proceeds
when there is enough reduction in switching activity. On
the other hand, the genetic algorithm works more globally.
Therefore, if more than one state needs to be split to reduce
the switching activity, the heuristic may be unable to do
so, whereas the genetic algorithm may succeed in finding
multiple splits. For example, in s1488, five states need to be
split to achieve a 0.2% reduction in switching activity. The
greedy heuristic algorithm, in this case, cannot find any single
state whose splitting may lead to sufficient switching activity
reduction.

The switching activities in the original FSMs encoded by
POW3 are shown in the fourth column. Column 5 and 6
report the switching activity reduction over POW3 in FSMs re-
engineered by our heuristic algorithm and genetic algorithm,
respectively. In the genetic algorithm, we chose the population
size to be 11 and the number of generations to be 30. We
notice that the genetic algorithm performs worse than heuristic
on lion9. This is due to the nature of the genetic algorithm.
The results can be improved by increasing the population size
or the number of iterations at the cost of run-times. In our
experiment, we found the current setting gives us good results
for most benchmarks with moderate run-times.

The next two columns list the switching activity reduction
over POW3 by two non-minimal length low-power state
encoding algorithms for low power reported in [24]. The
asterisks in these two columns mean that the results are not
available from [24]. POW3 is a state-of-the-art low power state
encoding algorithm; it achieves an average of 16% switching
activity reduction over non-power-driven encoding algorithms
[3]. The two non-minimal length low-power state encoding
algorithms proposed in [24] claim average of 2.3% and 6.6%
more reduction over POW3, respectively. When we apply the
FSM re-engineering framework to POW3, we see that for most
of the benchmarks, we are able to further reduce the switching
activity over the solution provided by POW3. The average
reduction is 8.5% for the genetic algorithm and 5.7% for the
heuristic algorithm.

Finally, in the last three columns in Table I, we report the
run-times of POW3 and the proposed FSM re-engineering
algorithms. Note that both algorithms invoke POW3 encoding
in their cost estimation step (see Figure 5) in order to obtain
an accurate estimation on switching activity reduction. We
are able to do this because of the small run time of the
synthesis tool, POW3 in this case. When the synthesis tool
is time consuming, we can reduce the frequency of invoking
the tool or use only the switching activity reduction estimation
method we proposed earlier. Therefore, the run-times of FSM
re-engineering are susceptible to the run-times of the encoding
algorithm, in this case POW3. The heuristic algorithm can
run all the benchmarks with average run-times less than
one second; the genetic algorithm can finish most of the
benchmarks within one minute.

10

TABLE I
SWITCHING ACTIVITIES IN THE ORIGINAL FSMS ENCODED BY POW3 (COLUMN 4) AND THE REDUCTION IN FSMS RE-ENGINEERED BY THE GENETIC

ALGORITHM (COLUMN 5) AND HEURISTIC ALGORITHM (COLUMN 6), COMPARED WITH THE REDUCTION BY TWO NON-MINIMAL STATE ENCODING

ALGORITHMS PROPOSED IN [24] (COLUMN 7 AND 8); THE RUN-TIMES OF POW3 ALONE AND THE TWO FSM RE-ENGINEERING ALGORITHMS THAT

INVOKE POW3 ENCODING ITERATIVELY (COLUMN 9 TO 11).

splits switching activity run-time(s)FSM # states (ga/heu) pow3 ga heu fast[24] greedy[24] pow3 ga heu
s8 5 2/1 0.22 34.4% 27.0% -16.9% 0.0% 0.01 0.22 0.03

ex3 5 2/3 1.20 10.9% 10.4% 14.1% 19.5% 0.01 0.24 0.05
s27 6 2/1 0.89 4.3% 0.0% 0.0% 0.0% 0.01 0.26 0.02

bbtas 6 0/0 0.44 0.0% 0.0% 0.0% 0.0% 0.01 0.24 0.02
beecount 7 0/1 0.50 0.0% 0.0% 0.0% 2.1% 0.01 0.61 0.02

dk14 7 1/0 1.17 3.7% 0.0% 10.5% 10.5% 0.01 0.79 0.01
ex5 9 2/2 1.20 12.8% 12.8% 0.0% 0.0% 0.01 1.72 0.03

lion9 9 1/2 0.56 11.4% 18.8% 20.0% 20.0% 0.01 1.69 0.03
ex7 10 1/1 1.01 5.9% 5.9% 0.0% 0.0% 0.01 1.94 0.02

bbara 10 0/0 0.31 0.0% 0.0% 3.3% 6.7% 0.01 1.89 0.01
train11 11 1/1 0.55 8.2% 8.2% 0.0% 0.0% 0.01 2.01 0.04

modulo12 12 2/2 0.58 14.3% 14.3% * * 0.02 2.44 0.06
mark1 12 1/1 0.95 3.1% 1.6% -4.3% -2.2% 0.02 2.24 0.04

ex4 14 0/0 0.59 0.0% 0.0% 7.7% 7.7% 0.01 2.96 0.05
dk512 15 1/1 1.60 15.3% 11.5% 7.4% 19.6% 0.03 3.11 0.06
s208 18 0/0 0.48 0.0% 0.0% * * 0.04 9.02 0.06
s1 20 8/1 1.25 7.2% 4.4% 3.8% 15.8% 0.04 10.15 0.02

ex1 20 3/2 0.98 12.5% 4.7% 0.8% 2.4% 0.03 10.01 0.09
donfile 24 6/3 1.52 10.2% 8.6% -13.6% -6.4% 0.07 20.25 0.28

pma 24 1/0 0.91 6.8% 0.0% * * 0.05 18.66 0.06
dk16 27 2/2 1.92 8.6% 3.5% 1.6% 9.2% 0.08 82.61 0.31
styr 30 2/2 0.53 18.4% 1.2% 1.7% 6.8% 0.05 49.32 0.21
s510 47 4/1 0.92 12.2% 4.1% * * 0.15 177.12 0.35

planet 48 8/1 1.53 11.8% 5.8% 10.8% 20.0% 0.15 197.63 0.37
s1488 48 5/0 0.35 0.2% 0.0% * * 0.17 215.45 0.19

Average 17.8 2.2/1.1 8.5% 5.7% 2.3% 6.6% 0.04 32.50 0.10

Comparison with the Optimal Encoding Solutions
To further demonstrate the advantage of FSM re-engineering

as a performance enhancement technique, we apply FSM re-
engineering to seven small FSM benchmarks, where the state
encoding can be obtained optimally using the technique dis-
cussed in Section 4.5. This will also allow us to quantitatively
judge the quality of POW3 by comparing with the optimal
solutions.

Figure 8 depicts from bottom to top: the switching activity
in the re-constructed FSMs (using the genetic algorithm)
encoded by the optimal algorithm(OPT) and by POW3, and
the switching activity in the original FSMs encoded by POW3.
These numbers are all normalized to the switching activity in
the original FSMs with the optimal encoding. We see that FSM
re-engineering not only reduces the switching activity in the
original optimally-encoded FSMs by 2.5% on average, it also
enhances the effectiveness of POW3 greatly. From Figure 8,
we see that the state encodings by POW3 in the original FSMs
have switching activities up to 48.6% higher than the optimal
encodings, with an average 27.0%. However, when we encode
the re-constructed FSMs using POW3, this gap shrinks to
6.7%. In fact, in more than half of the benchmarks after FSM
re-engineering, POW3 finds encoding schemes that have lower
switching activity than the optimal ones in the original FSMs.
Although these results show the power of re-engineering, we
cannot assume that they can be safely extrapolated to larger
FSMs (the experimental bottleneck being the computation of

the exact switching activity).

Impact of Circuit Implementations
Table II reports the power, area, and delay of the circuits

that implement the FSM benchmarks based on POW3 and our
proposed FSM re-engineering approach. The data are from
SIS. A † in the entry means that the benchmark degenerates
into a single state after SIS optimization and no power, area
or delay data are reported from SIS.

We see that an average 5.5% and 3.3% power reduction is
achieved at the cost of 1.3% and 0.9% area increase and 1.3%
and 0.8% delay increase in the circuits synthesized after FSM
re-engineering using genetic algorithm and heuristic algorithm
respectively. Note that in those FSMs modified by FSM re-
engineering the average power reduction is 7.1%. However,
on three benchmarks (namely ex5, mark1, and planet), we
observe power increase after FSM re-engineering with genetic
algorithm. This occurs when the power increase in the combi-
national part of a circuit (implied by the area increase) exceeds
the power saving in the sequential part. The reason is that
switching activity estimates the power in the sequential part,
but it does not reflect the power in the combinational part of
a circuit. For the same reason, we see that power reduction in
Table II is less than the switching activity reduction reported
in Table I, which is also true for other low power approaches
based on switching activity such as [24]. With an accurate
model that accounts both sequential and combinational logic

11

0.8

0.9

1

1.1

1.2

1.3

1.4

s8 ex3 ex5 lion9 ex7 train11

No
rm

al
iz

ed
 S

w
itc

hi
ng

 A
ct

iv
ity

Pow3 on orig FSM
Pow3 on new FSM (heu)
Pow3 on new FSM (ga)
Opt on new FSM

Fig. 8. Switching activities in (1) original FSMs encoded by POW3 and ILP-based optimal encoding (OPT) and (2) re-engineered FSMs encoded by POW3
and OPT; results are normalized to the switching activity in the original FSM encoded by OPT.

and a cost metric at the FSM level, we expect that the FSM
re-engineering framework will be able to report always non-
negative power reduction.

We have also compared our results in power reduction with
the two low power non-minimal state encoding algorithms
(fast and greedy) reported in [24]. Due to the lack of a common
experimental setup, it is unrealistic to compare directly the
absolute value of power consumption. Instead we adopt the
practical method to compare the power reduction by different
approaches with respect to the POW3 algorithm. We obtained
the power values from [24] and computed their reduction (in
%) over POW3 for each benchmark FSM reported in [24].
Over all the 44 benchmarks, the average power reduction is
0.7% for the fast method and 3.2% for the greedy method.
When restricted to the same set of benchmarks used in our
paper, the average power reduction improves to 1.1% for the
fast method and decreases to 1.9% for the greedy method,
which are reported in the fifth and sixth column of Table II. An
asterisk means that the power reduction for that benchmark is
not available in [24]. Finally, on the 14 common benchmarks
that are both included in our experiments and in [24], the
average power reduction is 5.4% for our genetic algorithm
based approach and 4.3% for our heuristic based approach.

B. Area driven optimization
We use JEDI [20], a well known area-driven state encoding

algorithm, to encode the FSMs for area. In particular, we run

JEDI with the fanout algorithm. Then we apply to the FSMs
the re-engineering algorithm and finally we encode them by
JEDI again. In the state splitting process, we consider the
number of literals as the cost figure for area minimization
in multi-level logic circuits. We mention that this is an
approximation, since the effects of technology mapping and
the cost of interconnections are not modeled; however, at FSM
synthesis level, literal count is a very common and relatively
effective way to estimate area.

Synthesis results of JEDI on FSMs before and after re-
engineering are compared in Table III. The third column
lists the number of states being split in FSM re-engineering;
the fourth column shows the number of literals obtained
by JEDI in the original FSMs and the fifth column shows
the reduction in the number of literals after re-engineering.
Only the heuristic algorithm is used in re-engineering because
estimating the number of literals after each step of state
splitting (see Figure 5) is computationally expensive, which
makes it infeasible for the genetic algorithm.

FSM re-engineering splits state(s) in 16 benchmarks and
reduces the number of their literals by 5.0% on average. In the
remaining benchmarks, since no state is split, the literal counts
remain the same, which accounts for an average reduction over
all benchmarks of 3.5%. The reduction in the number of liter-
als is smaller than that of switching activity in power-driven
encoding. This is because the weight functions (obtained by
fanout adjacency matrices) used in area minimization are not

12

TABLE II
POWER IN THE ORIGINAL CIRCUITS SYNTHESIZED BY POW3 (COLUMN 2) AND POWER REDUCTION BY FSM RE-ENGINEERING USING GENETIC

ALGORITHM (COLUMN 3) AND HEURISTIC (COLUMN 4), COMPARED WITH POWER REDUCTION OVER POW3 BY FAST AND GREEDY STATE ENCODING

ALGORITHMS IN [24] (COLUMN 5-6); AREA AND DELAY IN THE ORIGINAL CIRCUITS (COLUMN 7, 10) AND THEIR INCREASE IN CIRCUITS SYNTHESIZED

WITH FSM RE-ENGINEERING (COLUMN 8, 9 AND 11, 12);’*’ MEANS DATA NOT AVAILABLE IN [24] AND ’†’ MEANS DATA IS NOT AVAILABLE FROM SIS.

Power (µW) reduction Area (mm2) increase Delay (ns) increaseCircuit pow3 ga heu fast[24] greedy[24] pow3 ga heu pow3 ga heu
s8 † † † * * † † † † † †

ex3 314 10.0% 6.8% 5.2% 7.0% 46400 8.0% 9.2% 14.68 3.1% 4.1%
s27 188.6 5.0% -2.7% * * 37584 2.0% 0.8% 5.96 1.0% 0.6%

bbtas 107.2 0.0% 0.0% 4.1% 1.0% 35264 0.0% 0.0% 5.74 0.0% 0.0%
beecount 161.3 0.0% 0.0% -8.1% 3.0% 33872 0.0% 0.0% 7.69 0.0% 0.0%

dk14 587.9 6.8% 0.0% 5.0% 7.0% 88160 2.1% 0.0% 22.16 5.2% 0.0%
ex5 405.2 -15.5% -15.5% 0.0% 0.0% 70852 13.3% 13.3% 9.32 4.8% 4.8%

lion9 178.3 7.1% 10.9% 2.1% -3.5% 38976 16.7% 18.5% 4.22 8.1% 10.2%
ex7 405.8 29.1% 29.1% 11.1% 13.6% 78416 -11.7% -11.7% 13.28 -2.3% -2.3%

bbara 350.3 0.0% 0.0% 5.8% 5.8% 60320 0.0% 0.0% 15.91 0.0% 0.0%
train11 212.3 19.0% 19.0% 12.3% 24.5% 47792 2.9% 2.9% 5.12 4.3% 4.3%

modulo12 † † † * * † † † † † †
mark1 280.7 -12.9% -9.1% -4.2% -21.3% 94656 5.4% 3.7% 16.01 4.7% 3.9%

ex4 433.9 0.0% 0.0% -31.7% -21.3% 79101 0.0% 0.0% 13.69 0.0% 0.0%
dk512 430.1 5.1% 2.9% 3.3% 11.7% 79344 2.3% 1.1% 19.99 0.2% 0.0%
s208 630.3 0.0% 0.0% * * 101781 0.0% 0.0% 14.22 0.0% 0.0%

s1 1388.7 12.9% 10.8% * * 321088 -2.3% -1.9% 24.34 -1.7% -0.2%
ex1 744.9 13.6% 4.6% 6.0% -10.0% 234784 -8.9% -6.5% 36.77 -3.0% -2.2%

donfile † † † * * † † † † † †
pma 987.2 7.3% 0.0% * * 180200 6.3% 0.0% 43.88 4.4% 0.0%
dk16 1547.3 13.3% 11.5% 4.8% 9.6% 282122 -9.7% -9.7% 53.21 -5.7% -5.7%
styr 1347.6 10.0% 1.1% * * 407856 3.3% 2.9% 41.73 0.9% 0.6%
s510 923.1 13.4% 5.7% * * 302046 -6.3% -4.4% 33.57 -1.8% -1.1%

planet 2042.1 -7.9% 3.1% * * 504832 1.8% 0.6% 37.72 1.7% 0.5%
s1488 7516.3 4.6% 0.0% * * 949344 3.9% 0.0% 48.33 5.3% 0.0%

Average 5.5% 3.3% 1.1% 1.9% 1.3% 0.9% 1.3% 0.8%

TABLE III
NUMBER OF LITERALS IN THE ORIGINAL FSMS ENCODED BY JEDI (COLUMN 4) AND ITS REDUCTION IN THE RE-ENGINEERED FSMS (COLUMN 5);

AREA OF THE CIRCUITS SYNTHESIZED BY JEDI (COLUMN 6) AND ITS REDUCTION IN THE RE-ENGINEERED FSMS (COLUMN 7); POWER AND DELAY IN

CIRCUITS SYNTHESIZED BY JEDI (COLUMN 8, 10) AND THEIR INCREASE IN THE RE-ENGINEERED FSMS (COLUMN 9, 11); THE RUN-TIMES OF JEDI
AND FSM RE-ENGINEERING (COLUMN 12-13); ’†’ MEANS DATA IS NOT AVAILABLE FROM SIS.

literals Area (mm2) Power (µW) Delay (ns) Run-time (s)FSM # states # splits JEDI re-eng JEDI re-eng JEDI re-eng JEDI re-eng JEDI re-eng
s8 5 0 † † † † † † † † † †

ex3 5 1 85 9.0% 37120 2.0% 403.9 2.0% 13.79 -2.0% 0.01 0.01
s27 6 1 63 11.0% 29232 7.0% 136.2 -2.0% 5.66 -5.0% 0.02 0.01

bbtas 6 1 34 2.9% 35264 0.1% 122.1 12.9% 9.45 -0.5% 0.02 ∼
beecount 7 0 29 0.0% 26912 0.0% 144.7 0.0% 6.73 0.0% 0.02 0.01

dk14 7 1 362 4.0% 76560 2.0% 545.9 -1.0% 25.87 -1.0% 0.04 0.03
ex5 9 1 89 12.0% 65424 8.0% 399.1 -5.0% 9.22 -2.0% 0.06 0.07

lion9 9 1 23 -4.0% 32944 -1.0% 149.6 -3.0% 4.03 3.0% 0.05 0.03
ex7 10 1 111 6.0% 67744 7.0% 413.1 10.0% 6.73 -2.8% 0.16 0.08

bbara 10 0 126 0.0% 70852 0.0% 176.4 0.0% 13.63 0.0% 0.1 0.04
train11 11 1 40 -5.0% 43152 -14.0% 215.6 6.0% 4.69 7.0% 0.14 0.08

modulo12 12 0 † † † † † † † † † †
mark1 12 1 269 10.0% 89088 5.0% 438.9 1.0% 15.03 -1.0% 0.27 0.11

ex4 14 2 114 6.0% 78416 13.0% 460.4 -15.0% 13.57 -4.0% 0.38 0.13
dk512 15 0 99 0.0% 68672 0.0% 493.9 0.0% 17.02 0.0% 0.88 0.02
s208 18 1 187 9.0% 101616 20.0% 633.9 -6.0% 14.16 -14.0% 1.38 0.25
s1 20 1 1047 3.2% 168432 8.1% 753.2 5.0% 19.75 -5.0% 1.17 0.53

ex1 20 1 1132 0.0% 208836 0.0% 916.2 0.0% 35.03 0.0% 1.75 0.76
donfile 24 0 † † † † † † † † † †

pma 24 1 567 2.9% 178640 -9.1% 1000.2 0.1% 43.23 -9.0% 1.05 1.44
dk16 27 1 626 5.0% 227824 7.3% 1414.6 8.0% 48.88 1.3% 1.5 1.38
styr 30 0 1855 0.0% 750752 0.0% 4687.1 0.0% 33.55 0.0% 2.44 1.1
s510 47 0 1009 0.0% 276544 0.0% 2248.2 0.0% 32.46 0.0% 4.37 0.99

planet 48 1 2676 4.2% 949344 4.0% 7971.4 -5.0% 48.33 -2.0% 10.55 22.41
s1488 48 0 1979 0.0% 841332 0.0% 4997.1 0.0% 34.23 0.0% 6.93 1.01

Average 3.5% 2.7% 0.4% -1.8% 1.51 1.45

13

as accurate in estimating the number of literals as the state
transition probabilities in estimating the switching activities
in power-driven synthesis. We also noticed that the number
of states being split never exceeds two and when the original
number of states is a power of 2, the re-engineering algorithm
always chooses not to split any state. This implies (1) state
splitting for area minimization is not as effective as it is for
power; (2) increasing the number of state bits rarely helps to
reduce area.

After synthesis, we map the FSMs to sequential circuits
in SIS. The sixth column shows the area in the circuits
implemented from the original FSMs; the seventh column
shows the area reduction in the circuits implemented from
the re-engineered FSMs. We see that 11 circuits had an
area reduction after FSM re-engineering averaging 2.7%. In
benchmark ex1, one state was split with no area reduction
(or a reduction smaller than 0.004%). We also notice that a
reduction in the number of literals results in area increase in
benchmark pma. This is caused by the discrepancy between the
real area and the approximation using the number of literals.
The effectiveness of FSM re-engineering highly depends on
the accuracy of the indicator for the optimization objective,
because the FSM re-engineering algorithm in phase II needs
to analyze the quality of solution based on the cost model to
decide how to re-construct the FSM.

The next four columns show the power and delay in the
original FSMs by JEDI and their increase in the re-engineered
FSMs. We see that delay always decreases as the circuit’s area
decreases; power is also reduced (negative figures in the table)
whenever there is a large reduction in area, because fewer gates
are dissipating power in the combinational part.

The last two columns in Table III report the run times of
JEDI and of the heuristic FSM re-engineering algorithm.

VI. CONCLUSIONS

The concept of FSM re-engineering is introduced in this
paper. It is a generic framework for FSM synthesis based
on the observation that minimizing the number of states in
FSMs may lose the optimal solutions, or make harder to find
them, for many FSM related optimization problems. To keep
the discussion concrete, we propose a state splitting based
FSM re-engineering technique for power-driven synthesis and
area-driven synthesis, respectively. In order to demonstrate
its strength in enhancing the performance of any given state
encoding algorithms, we apply this technique on MCNC
benchmarks using POW3 as the power-driven state encoding
algorithm, and JEDI as the area-driven state encoding algo-
rithm. Experimental results show that POW3’s effectiveness
in reducing circuit’s total switching activity has almost been
doubled by the proposed FSM re-engineering approach; on
the other hand, the performance of JEDI in reducing circuit’s
area has been improved by up to 20%. Moreover, the FSM re-
engineering framework has a small run-time overhead and can
be applied to most of the FSM encoding tools or algorithms.

REFERENCES

[1] D.B. Armstrong, “A Programmed Algorithm for Assigning Internal
Codes to Sequential Machines,” IRE Transaction on Electronic Com-
puters, pp. 466-472, 1962.

[2] M.J. Avedillo, J.M. Quintana, and J.L. Huertas, “SMAS: a Program
for Concurrent State Reduction and State Assignment of Finite State
Machines,” IEEE International Symposium on Circuits and Systems, pp.
1781-1784, 1991.

[3] L. Benini and G. De Micheli, “State Assignment for Low Power
Dissipation,” IEEE Journal of Solid-State Circuits, Vol.30, pp.258-268,
March 1995.

[4] A. Chandrakasan, S. Sheng, and R. Brodersen, “Low-Power CMOS
Digital Design,” IEEE Journal of Solid-State Circuits, Vol.27, pp. 473-
484, April 1992.

[5] S. Devadas, H-T. Ma, R. Newton, and A. Sangiovanni-Vincentelli,
“MUSTANG: State Assignment of Finite State Machines Targeting
Multi-level Logic Implementations,” IEEE Transactions on Computer-
Aided Design, pp/ 1290-1300, December 1988.

[6] X.Du, G.D. Hachtel, B.Lin, and A.R.Newton, “MUSE: a MUltilevel
Symbolic Encoding Algorithm for State Assignment,” IEEE Transaction
on Computer-Aided Design, pp. 28-38, 1991.

[7] R.M. Fuhrer and S.M. Nowick, “OPTIMIST: State Minimization for
Optimal 2-Level Logic Implementation,” Proceedings of International
Conference of Computer-Aided Design, pp. 308-315, Nov. 1997.

[8] G.D. Hachtel, M. Hermida, A. Pardo, M. Poncino, and F. Somenzi,
“Re-Encoding Sequential Circuits to Reduce Power Dissipation,” Inter-
national Workshop on Low-Power Design, Napa, April 1994.

[9] G.D. Hachtel, B. Macii, A. Pardo, and F. Somenzi, “Probabilistic
Analysis of Large Finite State Machines,” Proceedings of the ACM
Design Automation Conferences, San Diego, CA, June 1994.

[10] G. Hallbauer, “Procedures of State Reduction and Assignment in One
Step in Synthesis of Asynchronous Sequential Circuits,” International
IFAC Symposium on Discrete Systems, pp. 272-282, 1974.

[11] J. Hartmanis and R.E. Stearns, “Some Dangers in State Reduction of
Sequential Machines”, Information and Control, pp252-260, Sept, 1962.

[12] B. Holmer, “What are the Ingredients for a Good State Assignment
Program?”, Technical Report No. CSE-95-002, EECS Department,
Northwestern University, April 1995.

[13] S. Iman, and M. Pedram, “POSE: Power Optimization and Synthesis
Environment”, Proceedings of the 33rd Design Automation Conferences,
pp. 21-26, Las Vegas, NV, June 1996.

[14] L. Jozwiak, “Efficient Suboptimal State Assignment of Large Sequential
Machines”, Proceedings of Euro DAC, pp. 536-541, 1990.

[15] T. Kam, T. Villa, R. Brayton and A. Sangiovanni-Vincentelli, “Synthesis
of FSMs: Functional Optimization”, Kluwer Academic Publishers, 1997.

[16] M. Koegst, G. Franke, and K. Feske, “State Assignments for FSM Low
Power Design”, Proceedings of the Conference on European Design
Automation, pp. 28-33, 1996.

[17] M. Koegst, S. Rulke, G. Franke, and M. Avedillo, “Two-Criterial
Constraint-Driven FSM State Encoding for Low Power”, Euromicro
Symposium on Digital Systems Design, Warsaw, Poland, September
2001.

[18] E.B. Lee and M. Perkowski, “Concurrent Minimization and State
Assignment of Finite State Machines”, International Conference on
Systems Man and Cybernetics, pp. 248-260, 1984.

[19] I. Lemberski, M. Koegst, S. Cotofana, and B. Juurlink, “FSM Non-
Minimal State Encoding for Low Power,” Proceedings of the 23rd
International Conference on Microelectronics, Yugoslavia, May 2002.

[20] B. Lin, and A. R. Newton, “Synthesis of Multiple-Level Logic from
Symbolic High-Level Description Languages,” Proceedings of the IFIP
TC 10/WG 10.5 International Conference on Very Large Scale Integra-
tion, pp. 187-196, Federal Republic of Germany, August 1989.

[21] S. Malik, L.Lavagno, R.Brayton, and A.Sangiovanni-Vincentelli, “Sym-
bolic Minimization of Multilevel Logic and the Input Encoding Prob-
lem,” IEEE Transaction on Computer-Aided Design, pp. 825-843, 1992.

[22] G. De Micheli, R. Brayton, and A. Sangiovanni-Vincentelli, “Optimal
State Assignment for Finite State Machines,” IEEE Transactions on
Computer-Aided Design, pp. 269-285, July 1985 .

[23] G. De Micheli, “Symbolic Design of Combinational and Sequential
Logic Circuits Implemented by Two-level Logic Macros,” IEEE Trans-
actions on Computer-Aided Design, pp. 597-616, October 1986.

[24] W. Noth, and R. Kolla, “Spanning Tree Based State Encoding for Low
Power Dissipation,” Proceedings of the Design Automation and Test in
Europe ’99, pp. 168, Munich, Germany, March 1999.

[25] E. Olson and S.M.Kang, “State Assignment for Low-Power FSM
Synthesis Using Genetic Local Search,” Proceedings of the IEEE 1994
Custom Integrated Circuits Conference, pp.140-143, San Diego, CA,
May 1994.

[26] K. Roy and S. C. Prasad, “SYCLOP: Synthesis of CMOS logic for
low power application,” Proceedings of the International Conference on
Computer Design, pp. 464-467, October 1992.

14

[27] E. Sentovich, et al., “SIS: A System for Sequential Circuit Synthe-
sis,” Electronics Research Laboratory Memorandum, U.C.Berkeley, No.
UCB/ERL M92/41.

[28] P. Surti, L. F. Chao and A. Tyagi, “Low Power FSM Design Using
Huffman-Style Encoding,” Proceedings of IEEE European Design and
Test Conference, pp. 521-525, Paris, France 1997.

[29] J.H. Tracey, “Internal State Assignments for Asynchronous Sequential
Machines”, IEEE Transactions on Electronic Computers, EC-15:551
560, August 1966.

[30] C. Tsui, M. Pedram, C. Chen, and A. M. Despain, “Low Power State
Assignment Targeting Two- and Multi-level Logic Implementations,”
Proceedings of 1994 IEEE/ACM International Conference on Computer-
Aided Design, pp. 82-87, San Jose, CA, 1994.

[31] V. Veeramachaneni, A. Tyagi, and S. Rajgopal, “Re-encoding for Low
Power State Assignment of FSMs,” International Symposium on Low
Power Design, pp. 173-178, Dana Point, CA, April 1995.

[32] T. Villa and A. Sangiovanni-Vincentelli, “NOVA: State Assignment of
Finite State Machines for Optimal Two-Level Logic Implementations,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, pp. 905-924, September 1990.

[33] T. Villa, T. Kam, R. Brayton and A. Sangiovanni-Vincentelli, “Synthesis
of FSMs: Logic Optimization”, Kluwer Academic Publishers, 1997.

[34] T. Villa, A. Saldanha, R. Brayton and A. Sangiovanni-Vincentelli,
“Symbolic Two-Level Minimization,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, pp. 692-708, Vol. 16,
N. 7, July 1997.

[35] C. Umans, T. Villa and A. Sangiovanni-Vincentelli, “Complexity of
Two-Level Logic Minimization,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, pp. 1230-1246, Vol. 25, N.
7, July 2006.

[36] S. Washabaugh, P. Franzon, and H. Nagle, “SABSA: Switching Activity
Based State Assignment,” Proceedings of IEEE Solid State Circuits and
Technology Committee Workshop on Low Power Electronics, 1993.

15

