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ABSTRACT

Title of Thesis: A Frequency Domain Design for the control of a
Distributed Parameter System

Name of degree candidate: Bernard Adrian Frankpitt
Degree and Year: Master of Science, 1993

Thesis directed by: Professor John Baras and
Professor Carlos Berenstein

This thesis presents a new approach to frequency domain design of robust
controllers for distributed parameter systems. The central idea is to use tech-
niques from complex analysis, that were developed for the solution of the Corona
Problem, for the solution to the Bezout equation that arises in the parameteri-
zation of stable feedback controllers. An algebraic reformulation of the Bezout
equation allows the solution to be computed from the solution of an auxiliary o
equation with a Carleson measure as the inhomogeneous term.

We first show how the Bezout equation arises in the problem of feedback
controller design, then we present techniques that are used for its solution. An
example is given in which the solution to a Bezout equation derived from an
unstable plant with a delay is calculated. Finally this example is extended to
show how the techniques developed for the Bezout equation may be used to
calculate a sub-optimal solution to the Nehari Problem for a single-input single-

output system.
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NOTATION

The "real conjugate” of z. If Z denotes the complex conjugate of

z, then z = —Z.
The half plane {z =z + iy | = > 0}.

The algebra of functions of a complex variable that are both an-

alytic and bounded on the right half plane.

Antiholomorphic derivative. If the complex plane is identified
with R2 by z = = + iy, and if f(z) is a function on the complex

piane, then (d/d3)f(z) = 1/2(df /dz + i df /dy).

The O equation is the equation

% (z2) =p

which is understood to hold in a distributional sense for a

funtion f and a measure p on the complex plane.



(i) If f(z) is a function on the complex plane (considered as a

real manifold of dimension 2), then d is the exterior derivative

_ df
Of(z) = —d-=.
f)=La:
p(z1, 22) Pseudo-hyperbolic metric in the half plane:

p(z1, 22) = (21 — 22)/(21 — Z2).

Q) If Q is a square, then {Q) is the length of one side.

1 The identity matrix. For a general module this is a diagonal
matrix with the multiplicative identity of the base ring appearing

on the diagonal.

vi



. CHAPTER

1

Introduction

Robust control of linear systems has been an important research area in
control theory for the last 10 years. In 1981 G.Zames [29] introduced a new
methodology for designing feedback controllers for linear systems when he rec-
ognized that robust control could be achieved by designing a controller that
minimized a certain norm of the sensitivity operator. In the case of a linear
time invariant plant the sensitivity operator is a convolution operator that maps
L?[0, 00) into itself; the domain of the operator models a disturbance input sig-
nal, and the range the plant output signal. It is a consequence of the Paley
Wiener Schwartz theorem [18] that if Laplace transforms of the signal spaces
are considered, then the sensitivity operator acts on the transformed signals as
a multiplicative operator with symbol in the function algebra He,, and that the
operator norm is equal to the Hy norm of the symbol. Since the work in this
thesis is set entirely in the frequency domain. we call the multiplicative oper-
ator on the Laplace transforms of the signals the sensitivity operator. Zames’

approach to robust control is to minimize the He, norm of the symbol after it is



weighted by a multiplicative factor. He solved this norm minimization problem
by applying a bilinear transform to the feedback operator which converts the
sensitivity operator of a stable closed looi) system to an affine function of an He,
parameter. The optimal feedback operator is obtained by applying the inverse
bilinear transform to a value of the parameter that minimizes the norm of the
affine expression.

By 1987 H,, design — as the methodology is now known — had attracted
wide interest and the original scheme of Zames had been extended and refined
with the discovery of important links to operator theory, and in particular a link
to the Nehari Interpolation Problem. This development is the subject of [14],
Bruce Francis’ monograph, which provides the point of departure of this thesis.
In 1989 Tadmor {26} and Doyle et al. {7] independently presented a new approach
to the problem of computing robust controllers that avoids the bilinear trans-
formation and resulting interpolation problem. Instead, the optimal controller
is constructed from the solutions of two Riccati equations that are derived from
a state space model. The algorithms presented in [7] currently provide the most
popular method for designing robust controllers for finite dimensional plants.

Work on robust control for finite dimensional plants has been paralleled
by work in the infinite dimensional or distributed parameter case. Frequency
domain approaches have been presented by Flamm and Mitter [10] and by Foias
and Tannenbaum [11] {12} [13]. Van Kuelen [27] has extended the results in [7].

The principal contribution in this thesis is the presentation of a new fre-



quency domain method for calculating robust, étabilizing controllers for linear
distributed parameter systems. The central feature of this method is the use of a
constructive solution to the Corona Problem to solve the Bezout Equation over
the ring of Hy, functions. The ingredients are drawn from a number of sources.
In [3] Baras and Dewilde presented the concept of a co-prime factorization of an
irrational transfer function, and in [1] Baras was the first to show that the exis-
tence of a parameterization of stablizing controllers for distributed systems with
strongly coprime factorizations is a direct consequence of the Corona Theorem.
In 2] the connection between control theory and the Corona Problem is elabo-
rated, and reference is made to the work of Berenstein et al. that is mentioned
below. In [17] Hormander provided an algebraic technique for reformulating
the Corona Problem in terms of the § equation, and in [20] Jones provided a
constructive solution for the J equation. There is a thorough discussion of the
Corona Problem in chapter 8 of Garnett’s book {15], and this is the primary
source of the material presented in Section 3.2. Another source of motivation
has been the work of Berenstein, Taylor and Struppa [3], [4], [25]. Although
these authors use the same approach as is presented here to solve Bezout Identi-
ties over rings of analytic functions with bounded growth, the singular integral
methods that they employ for the solution of the § equation can not be applied
to the H., case.

The presentation of these results, while close to the sources cited, does require

some modification: in particular, technical arguments are required to elucidate



the exact nature of the measures that are to be approximated in the computa-
tions, and the estimates of the norms of the solutions to the Bezout Equations
play a special role in the robust control setting.

The remainder of the work is divided into three chapters: Chapter 2 describes
the standard H., control problem from the point of view of Francis [14], and
shows how the solution of a Bezout Equation over H,, functions allows the
stable feedback controllers to be parameterized. Chapter 3 presents the theory
behind the solution of the Bezout Equation. And Chapter 4 shows how the
theory may be applied to the solution of the Nehari problem for the single input,
single output case. Some further work is required before the multi-input multi-
output case can be dealt with completely; at present the parameterization of the
stabilizing controllers can be calculated by the method presented in Chapter 2,
but the solution of the Nehari problem will need a generalization of the theory

presented in Chapter 3.



CHAPTER

2

The Standard Problem

The standard problem referred to in the chapter title is a general frame-
work for studying questions of robust control. In particular the sensitivity and
mixed sensitivity approaches of Zames [29] [30] to robust stabilization can be
recast in this framework. In [14] Bruce Francis treats at length the standard
problem for finite dimensional multivariable systems. He uses algebraic, state
space techniques to reduce the problem of finding an optimal control in the He,
sense for the standard problem to a Nehari problem, which is then solved by a
spectral synthesis approach, again with the use of state space techniques. This
thesis takes the framework used by Francis for finite dimensional systems and
applies it to systems that have irrational transfer functions. To accomplish this,
the state space methods employed by Francis are replaced by frequency domain

techniques.

2.1 The Standard Problem for an Unstable Plant

Figure 2.1 depicts the system structure for the standard problem. The signals

labeled in the diagram are all considered to be vector valued functions in L2,
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K <\ /<‘——v2

Figure 2.1: Block diagram for the standard problem



labeled in the diagram are all considered to be vector valued functions in L?,
w models exogenous inputs, z models measured outputs, v the input to the
plant from the controller y the output to the controller from the plant. The
remaining signals v; and v, are used in the definition of closed loop stability
and are not given physical interpretation. The standard problem is solved when
a feedback operator K is found which minimizes the operator norm of the closed
loop operator that maps w to z, while stabilizing the closed loop system. In this
guise the problem is stated as a disturbance rejection problem, but as Francis
illustrates in {14] the standard problem is equivalent to a variety of control
problems including optimal robustness problems, tracking problems, and model
matching problems. In fact the reformulation of the standard problem as a
model matching problem is the first step to its solution.

Suppose the plant G is written as a block transfer function matrix

z G11 G12 w
y Ga1 Gx u

-

then the equations for the closed loop system of Figure 2.1 are

= Guw + Glgu

™
I

y = Gaw+ Gaou+ 1y

v = Ky+4+1n

Closed loop (BIBO) stability is achieved when the nine transfer functions map-

ping the input signals w, v;, and 1, to the signals z, u and y are bounded linear



mappings from Ly[0,00) to L2[0,00). Let A = (1 — KGg), then the closed loop
transfer functions are given by the following matrix.

G11 + G12A_1KG21 Gle—l GlgA—lK

AT1K Gy ATt AIK

Go + G22A—1KG21 GQQA_I 1+ GQQA—IK

In Chapter 4 of [14] Francis proves the results summarized in the following

theorem for the case of rational plant and compensator.

Theorem 2.1 [Francis [14]]

Assume that G s stabilizable, then:

(i) K stabilizes G if and only if K stabilizes Go.

(i) Suppose Gos = NM™1 = M™IN are coprime factorizations of Ga, then
there exist X, Y, and 5(:, Y such that
X -Y||MY
= 1. (2.1)
-N M || N X
and the set of all K stabilizing Goo is parameterized by the formulae
K = (X-MQ(X-NQ)™
= (X - QN)y™(¥Y - QM)

Q € Hs.

(111) With K given by the parameterization in (i), and with the transfer func-

tions Ty, T, T3 given by

T = G11+G12M?G21



T2 == G12M

Ty = MGy,
the transfer function from w to z in figure 2.1 equals Ty — ToQT3.

The key step in the proof of Theorem 2.1 is the construction of the dou-
bly coprime factorization given in equation (2.1). The finite dimensional state
space models and state feedback theory that Francis uses to tackle the ratio-
nal case do not generalize to irrational transfer functions; for these alternative
arguements are needed. Baras [1] was the first to provide a parametrization
of all stabilizing controllers for distributed systems with transfer functions that
admit co-prime factorizations, although the form of the parameterization that
he presents is different from that presented in Theorem 2.1. The next section
introduces the concept of a coprime factorization for an H,, function, and the
techniques that are needed to prove the theorem for irrational transfer functions.
The only restriction on the transfer functions is a requirement for the existence

of appropriate co-prime factorizations.

2.2 "Doubly Coprime Factorizations

Suppose R is an integral domain, then the following definitions hold:

1) Let S be a set of elements in R, then d is a greatest common divisor

(g.c.d.) of S if for all a € S there exists b € R such that a = bd, and if d;



is any other element of R with this property, then d = cd, for some c € R.

g.c.d.s are unique up to multiplication by a unit.
2) Two elements of R are weakly coprime if they have 1 as a g.c.d.

3) Two elements a,b € R are strongly coprime if there exist z,y € R such
that

ar +by=1

In the integral domain of rational H,, functions, strong coprimeness and
weak coprimeness are equivalent, however in the whole of Hy, this need not be
the case. For example if A is an irrational number in the interval (0,1), then
the functions (1/z)e~*sinhz and (1/z)e™?sinh Az are weakly coprime but not
strongly coprime. An equivalent condition for strong coprimeness in Hy, is given
by the corona theorem which in the context of functions analytic on the disc is

stated as:

Theorem 2.2 {Garnett [15]]
If fi, ..., fa are functions in Hy, that satisfy || fille < 1 and max; |f;(2)] > 6 >0
for |z| < 1, then there ezists a constant C depending only on n and 6, and

functions g1, ...gn such that figi + ...+ fagn =1 and ||gillc < C.

For MIMO systems factorizations are performed over matrices with entries
in Hoo. Again in the matrix case concepts of weak and strong coprimeness are

defined [24]. M, a matrix of rank r over an integral domain, is said to be

10



irreducible if the greatest common divisor of the r dimensional minors of M

is 1. Two matrices N € R™*™ and M € R™*™ are weakly right coprime if

N —_ —~
the block matrix is irreducible, and two matrices M and N are weakly

M

left coprime if the block matrix [M,N] is irreducible. Two matrices M and

N ~
N are strongly right coprime if has a left inverse, and two matrices M

M

and N are weakly left coprime if the block matrix [1\7 N ] has a right inverse.
The following theorem from Rao [23] reduces the problem of determining strong
coprimeness in the matrix case to the problem of determining coprimeness in

the integral domain.

Theorem 2.3 [Rao]
Let R be an integral domain, and A be an m X r matriz over R, then A has
a right inverse if and only if a linear combination of all T X r minors with

coefficients in R s equal to one.

An analogous theorem holds for left inverses of r X m matrices.

Rao provides the following method based on the Cauchy-Binet Theorem for
constructing the right inverse from the solution of the Bezout Identity in the
integral domain. A left inverse may be constructed by the same method with
the obvious substitutions.

Let |As| denote an r-minor of A containing the columns (61, P2, ---,0-), and

suppose Y |Ag|cs = 1 for some cg in the base ring R. Let a—g;—%l be the coefficient

11



of a;; in the minor |Ap|, and let by = (T |Aplcg)/Oaki. Then if B is the matrix

with elements bk, the diagonal elements of the product AB are given by

m OlA,
Z;akibik =) ¢ {Z ki | 3'} =3 caldsl = 1.

8 i Jan 8

Consider an off diagonal element 3; a;;bix. If D denotes the matrix formed by
replacing the k’th row of A by the j’th row of A, then

m

> ajibu =3 c5| D).

i=1 3
But each of the minors Dy must be identically zero, and consequently all the
off-diagonal elements of the product are zero and B is the required inverse.

Let G = M~IN be a left factorization over matrices with entries in the

integral domain Hyand let A be the matrix [:\7 ,M]. Then provided that the
condition on the minors of A is satisfied, theorem 2.3 provides a matrix B such

that
Y

AB =[N, M] =1,
X
the identity matrix. Similarly, if G = NM ™! is a right factorization and the
minors of [M, N]* satisfy the appropriate condition then an application of the left
inverse theorem produces matrices X and ¥ that solve the equation YN+XM =
1. These two results may be combined to produce the equation
M N ||X N 1 0

o~

Y -X Y -M K 1

12



in which K is some matrix with entries in H,,. A simple row operator applied

to both sides of the equation gives the doubly coprime factorization

M N X N 10
Yy -X||Yy -M 0 1

inwhichY =V —KMand X=X + KN.

13



CHAPTER

3

Solving the Analytic Bezout Identity

This chapter describes a method for computing solutions to the Bezout Equa-
tion in algebras of holomorphic functions. The method relies on an algebraic
reformulation of the problem that reduces the computation to one of finding a

solution to the d equation

in which f and v lie in appropriate algebras of functions (or more generally dis-
tributions) on the complex plane z = r +1y. The d equation and the notation
associated with it were developed in the general setting of complex differen-
tial geometry. Hormander's book [16] is the classical reference in the field, and
[28] is another good reference. The theory may be simplified considerably in
the context of the complex plane; in particular, C, considered as two dimen-
sional real Euclidean space, may be identified with its tangent space. With this
identification a natural almost-complex structure is induced by multiplication
by ¢ = v/—1. This simplification enables the 8 equation to be given a naive

interpretation which will be sufficient here.

14



Consider the space of co-vectors on € with basis {dz,dy}. A change of co-
ordinates z = z + iy, Z = z — iy produces a new basis {dz,dz}!. Suppose
that f = fi(2)dz + f2(z)dz is a 1-form 6n C, and let the natural projections be
denoted by

a0f = fidz 7% f = fadz,

then if d is the exterior derivative which maps ¢g(z) a function on € to a 1-form

dg, define 8 and 3§ to be the operators
dg = 74dg, dg = 7%ldg

The expressions for these operators in local co-ordinates are

_dg _1(dg .9g

9 = dzdz ) (82 B zé)y) d
= dg,  _ 1/(d8g  .9g\ .
dg = dZdZ =3 (ax + lay dz

It follows from the Cauchy Riemann equations that the kernel of the operator
9 is exactly the space of holomorphic functions.

Finally it is worth noting that in the geometric context outlined, the 8 prob-
lem is a statement about a cohomology group [16], [28]. If A denotes the space of
holomorphic functions on the half plane #, £%° the space of bounded functions
on H and E£%! the space of antiholomorphic 1-forms on H, then the inclusion

map i : A — £%, and the operator 9 : £%0 — £%! form a sequence

0— A5 g2 g0t 0

1What is really meant here is that {dz,dz} is the dual basis to the basis in the tangent
space that diagonalizes the almost-complex structure

15



and the 0 problem is equivalent to the question of whether this sequence is exact
at £%1, or equivalently, whether the cohomology is trivial.

The method of solving Bezout equatiéns over bounded holomorphic functions
described in this chapter originates in Carleson’s solution to the Corona problem
[6]. Hormander [17] was the first to explicitly cast the Corona problem in an
algebraic setting and extend the result to a general class of analytic functions.
In [15] Garnett presents a method due to Peter Jones for calculating bounded
solutions to the & equation, and it is on this account that the results in section

3.2 are based.

3.1 An Algebraic Reformulation of the Bezout Equation

Lol

Recall {19] that (4, +,.) is an algebra over a ring K if

(i) (A,+) is a unitary left K-module,
(ii) k(a.b) = (ka).b = a.(kb) Vke K a,be€A.
I, a subset of A, is a left ideal of A if
al=1 Va € A,

and the left ideal generated by the set B = {fi,..., fv} containing elements
of A is the set span{g.f; | g € A and f; € B}. Let 1 denote the multiplicative
identity of A then the left ideal generated by B will coincide with the whole

space A if and only if there exist elements gi,...,gy € A such that

1=figi+...+ fngwn.

16



In other words, the question of the existence of a solution to the Bezout Iden-
tity is equivalent to the question of whether the ideal generated by fi,..., fn
coincides with the whole algebra A. |

The algebra that is of particular interest in this thesis is the algebra Hy of
holomorphic functions on the right half plane with nontangential limits defined
almost everywhere on the imaginary axis, and the property that these limits
determine an element of L. The Paley-Wiener-Schwartz theorem {18], [3] allows
this algebra to be identified with Transfer Functions of proper causal linear
plants. In the calculations that follow, this algebra will be extended to include
nonholomorphic functions and distributions on the right hand plane; since the
operation of multiplication on two distributions is not always well defined, some
care must be exercised when working with these objects.

The algebraic reformulation of the Bezout equation presented in this section
was developed by Hormander in [17] for algebras of holomorphic functions in
several complex variables with general growth conditions. Although the key
theorem is stated and proved here in general terms, the conditions under which
the theorem holds are only established for the case of interest: solving the Bezout
equation in the algebra H.

The algebraic constructions in the next paragraph follow the definitions given
by Hérmander in {17]. Garnett also gives a description of the Koszul Complex in
an appendix to Chapter 8 of [15]. For a thorough discussion of the use of these

constructions in more general settings than presented here, consult Struppa in

17



[25]. For a discussion of basic concepts that come from differential geometry on
compex manifolds, consult {28] or [16].

Suppose A is an algebra of functioﬁs ( or more generally distributions )
defined on the right half complex plane and on which antiholomorphic derivatives
d/0% : A — A are defined. Define L? as the space of differential forms of type
(0,r) (r = 0,1) with vector valued coefficients in A®C™, the vector space of
alternating s-forms on C™, with components A, ;,) in the algebra A. The
spaces L3 have a single element, the zero form 0. Let f = (f1,.. ., fm) be m
functions in A satisfying 8f;/0% = 0, then a double complex called the Koszul
complex is defined on the spaces L. The first operator 6:L: — L, the
antiholomorphic exterior derivative, is defined componentwise by

871( . .
h(ix,m,j.) = _’"J‘al'__m'df when r =0
A

kgyyjndz = 0 when r = 1.
The second operator Py : L3*! — L2 operates on a form h € L:*1 by acting on
the coefficients as follows: suppose that Psh has coefficients g(;;,...;,), then
m
Iirrdn) = 2 PGt o) fi-
k=1

If h € LY, then Psh = 0, the zero form. From the antisymmetry of Py it follows
that PJ? = 0, and the analyticity of (fi,..., f.) ensures that Py commutes with

d. The next Theorem is from Hoérmander [17].

Theorem 3.1 [Hormander]

Suppose that the following conditions are satisfied:

18



(i) If g € L? and Pyg = 0 then the equation Psh = g has a solution h € L2+

with 8h € L2t} when g = 0.
(i) Og = h has a solution g € L} for every h € L}, with oh =0.

Then for every g € L? with 8g = P;g = 0 one can find h € LE+) 50 that Oh =0

and Psh = g.

Proof:
The premises of the theorem ensure that the rows and columns of the double
complex illustrated in the diagram of Figure 3.1 are exact, and the result follows
by using these premises to traverse the diagram.

Suppose that g(z) € LJ is a holomorphic function, that is, dg = 0. Then
by the first premise there exists A! € L} such that P;h! = g and 9h!(z) € L}.
Commutativity implies that Pfgh1 = 5Pfh1 = 0, so again by the first premise
there exists h? € L? such that P;h? = Gh!, and by the second premise h3 € L]

such that 8h3 = h%. Now let h = h! — P;A3, then

Gh = Oh' — P

Oh — P;OR®

= 0

and Pfh = Pf(hl - Pfh3) = .Pf(hl) - PfPfh3 = Pfh1 =g as required.

19
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Figure 3.1: Koszul complex form = 2
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Theorem 3.1 can only be useful as a means of solving Bezout Equations for
a particular choice of algebra if an explicit means can be found for calculating
inverses for the two operators, & and Py, appearing in the complex. These
inverses must also satisfy the conditions of the theorem. To resolve this question
the algebra A and the spaces L? need to be specified more precisely; first some
definitions.

Denote the open right half plane by H, its closure by H, and its boundary,

the imaginary axis, by 8H. A distribution u on H satisfies the equation

Ju
35 = H (3.1)

for some measure p with support on H if for any continuously differentiable test

function v with support compactly contained in H,

6} a(z
<a—’;,¢> = ~ [ w2 argy

/;i u(z) dp. (3.2)

The measure dr dy in the first integral is the Lebesgue measure on C. A distri-
bution u that satisfies (3.2) is said to have boundary value ¢, an L* function

on the imaginary axis, if there exists U, an extension of u to H that satisfies:

‘Z_Z = — ¢dz/2i. (3.3)

Each side of this formula is to be interpreted as a distribution acting on test
functions supported in the closed half plane H. The measure ¢dz/2i is a measure

on € with support on the imaginary axis.

21



The motivation for this definition comes from Stokes’ theorem. Suppose that
U is a function that equals ¢ on the imaginary axis, and f is some test function
that is compactly supported on C, then ¢f dz = U f dz defines a (1,0) form on

OH, and Stokes theorem gives:

/aHdez = /Hd(dez)

= /féUdzAdz+/U<‘§fdz/\dz
H H

- Q'i/‘dfdu-%?z'/ﬂUéfdf/\dz.

Recalling the definition of a derivative for a distribution one can say that U
defines a distribution on H with a derivative that satisfies (3.3).

A measure g in 7 is called a Carleson measure [15] with Carleson constant
Cif

p(S) < C KS)

for every square S C H with a side of length I(S) lying on an interval on the
imaginary axis.

Appropriate spaces for L? are now defined as follows: h € Lj if each compo-
nent h; is a distribution in H with boundary value in L*, and each component

satisfies

Ohy = (3.4)

for some bounded measure x in H; h € L} if each component hy = pydz for
some Carleson measure ;. In [17] Hérmander uses an argument based on the

Hahn Banach theorem to prove the existence of solutions in L§ to dh/dZ = p for

22



a Carleson measure p in L{; from this it follows that condition (ii) of Theorem
3.1 is satisfied. The domain of the 3 operator does not however coincide with
the spaces L, and this is why the ﬁrst. condition of the theorem requires that
Oh € L1, These definitions together with (3.4) complete the picture as far as
the existence of an inverse for 9 is concerned, and it remains only to deal with

P,

J

Inversion of the operator Py is considered in two parts. Suppose that g € L}

with Prg = figi + faga =0 and let h € L? be given by

s+l  fi
hy = Z(—l)”’l"gr,-l—f,#2 (3.5)
J=l t ‘
in which I denotes the multi index (41, ...,%s+1) and I; denotes the multi index
(315 y95-1,%541,...,1s). Since s = 1 in this instance, h has only one component
fo fi
ha2) = 91773 — 92773
RV EARSTiE
with
f2 i
(Psh)y = hagpfe = glfzm'z‘ - gz]zl%g
= 0
(Pth)e = henfi = _glflf—22 + £J2f1f—12
| f] | £l
= go.

Another straightforward calculation shows that OP;h = 0 and permits the con-

clusion that (3.5) provides the appropriate inverse when s > 1.
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When g € L? the expression (3.5) fails to give an inverse for Py that satisfies
the exterior derivative condition (3.4) on account of the fact that f € He
does not necessarily imply 0f € Hyo (an.exception that is exploited later in an
example is the case of f being restricted to rational functions). To overcome
this hitch, which in fact is the major obstacle in constructing solutions to the

Corona Problem, a construction based on the following lemma from [17] is used.

Lemma 3.2 [Carleson - Hormander| Let f; € H, j = 1,...,n, and assume that

for some ¢ >0
A+ +fu(2)] > (3.6)

Then for sufficiently small e > 0 one can find a partition of unity ¢; subordinate
to the covering of H by open sets H; = {z : |f;(2)] > €} such that 3¢;/0z,defined

in the sense of distribution theory, is a Carleson measure for all j.

This Lemma is a restatement of a result of Carleson’s original paper [6] in which
he directly constructs the measure. A more recent account of the construction is
given in Garnett’s book [15]. The difficult part of the lemma is the construction
of a partition of the plane into two sets each of which contains the regions of the
plane where one of the two functions f; or f» becomes very small. In general, the
boundary between the two sets will be a complicated curve, however in practice,
the functions f; and f, may possess some regularity that allows a boundary

curve to be easily chosen. In the example considered at the end of this chapter

fi(z) = e"™/(142) and fo(z) = (1 —2z)/(1+z) so the restriction on the partition
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is that it separate the point z = 1 where fo = 0 from the regions of the plane
where |2] is large and f;(z) tends to zero.

The partition of unity from Lemma .3.2 is used to construct a left inverse for
P; on L? as follows: let g € LY, then

s+1 ¢
h] = Z ngf_J'- (37)
j=1 J

This expression is produced from (3.5) by replacing the term f;/|f|* with ¢;/ f:.

With g € H,, and s = 0 equation (3.7) becomes

hi’:gg

and Oh/0z = gf'0¢;/0Z which by Lemma 3.2 is a Carleson measure.
The construction of an inverse for P; together with Lemma 3.2 and the
existence theorem for solutions to d from [17] allow the Corona theorem to be

deduced as a corollary to Theorem 3.1.

Theorem 3.3 If fi,...,fn € Hoo and |/1(2)] + ... + |fa(2)] = ¢ > 0 then it

follows that the ideal generated by fi,..., fo coincides with the whole of Heo.

In addition, Theorem 3.1 gives a method for explicitly constructing solutions
to the Bezout Equation provided that the partition of unity in Lemma 3.2 may
be constructed, and that the solution to the inhomogeneous d equation may be

computed when the right hand side is a Carleson measure.
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3.2 Constructing Bounded Solutions to the Inhomogeneous  Equa-

tion

In the preceding section the construction of solutions to the Bezout Equation
has been reduced to two steps: the construction of the partition of unity ¢;, and
the construction of bounded solutions to the 0 equation. This section describes
a technique devised by P. Jones [20] for solving the 0 equation; the presentation
is based on the account given in CGarnett [13]. The problem that needs to be
solved is: given y, a Carleson measure on the right half plane, find a distribution

b with bounded boundary values that satisfies
ob/0z = p.

The solution, which is based on a Green’s function argument, has three stages:
the measure p is approximated by a sequence of measures y; which converge
weakly to u, each p; being supported on a finite set of points; the support of each
measure y; is partitioned in such a way that the pseudo-hyperbolic distance?
between any two points in the same partition is bounded from below, and the
measure u; is subdivided into a corresponding sum 3. ,uf each u? having support
on a distinct set in the partition; finally the & problem is boundedly solved for
each uf and these solutions are summed to form the approximate solution b;.

The whole procedure is performed in such a way that the sequence of solutions

b; is a uniformly bounded sequence of functions in He.

2The pseudo-hyperbolic distance between two points in the half-plane is defined as
p(z1,22) = (21 — z2)/(21 — 22)
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Before the solution is discussed in detail the fundamental solution to the &
operator is introduced, and a result about interpolating Blaschke products is
recounted. Let D C C be an open domain with C! boundary that contains the
origin z = 0. The fundamental solution to the d operator on D is a distribution

b that satisfies the identity

_/b

for any C* function ¢ with support compactly contained in D [18]. In this

formula the integral on the left hand side of the identity should be interpreted
as the action of the distribution on a test function. The fundamental solution for
the 8 operator is easily computed. Suppose that ¢ is an arbitrary C* function
with support compactly contained in D. Let U C D have C! boundary and
contain the support of ¢ in its interior. Consider the function ¢(¢)/¢, Stokes’

theorem gives

o) ,. o . ((C))
w ¢ CT e T /<|>eac c ) Ln

10¢
= —2i [ 22 dzdy.
/<I>6C3C

Because ¢(z) = 0 on the boundary of U, the first boundary integral is zero,
and as € — 0 the second integral approaches the limit i27¢(0). Consequently a
fundamental solution for J is given by the distribution b(z) = 1/(=2).

If z = z + iy is a complex number, then the real conjugate of z is defined to
be the number ¥ = —z + iy. The need for this usage results from considering

Laplace transforms of system operators; the Laplace transform of a bounded
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causal system gives a transfer function which is analytic in the right half plane,
so in places where a complex conjugate Z occurs in the analysis of functions
analytic in the upper half plane, it will be natural to substitute the real conjugate

Z. For instance given a set {¢; = & +11;,&; > 0} that satisfies the condition

1+ |22

a Blaschke product with zeros (; is defined by the expression

z—1I\" g'—-l C
B(Z):(~.l> 157 | < ]
s+l gm G-la=G

The factors |(; —1|/(¢; —1) ensure that the product converges when the sequence
{I¢1} is unbounded, and for finite zero sets they may be omitted.

Let By(z) be a Blaschke product with a zero set {(; = &; +i7;} that satisfies
the condition
L

21>6>0, (3.8)

2 — %5

Ji#k

then the inverse 1/By(z) is an analytic function except on the zero set {(;} and

is given by the expression
l/B()(Z) =14+ Z 1/BO(CJ)

If 1/ By(z) is considered as a distribution on H, then it follows from the discussion

of the fundamental solution to the § operator that

31/B) = X gy

Zﬂjfja('j) (39)
J
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where 1 < |8;] < 1/6.

The following theorem is due to Earl [8][9].

Theorem 3.4 [Earl]

Let {z;} be a sequence in the right half plane such that

Z* %5560, k=1,2,...

2k — %5

II

Ji#k

Then there is a constant K independent of & such that whenever {a;} € I,

there exists f(z) € H* such that

and such that
fz)=K (SUP!C‘JO 6B int(2),

where B in(2) is a Blaschke product. The zeros {(;} of B in(2) satisfy

)
p(Gr25) = C E <3
and
Clc - CJ é
jgk Ck CJ 3

This theorem is a particular instance of Carleson’s interpolation theorem ([15]
chapter 7). It has an advantage over Carleson’s theorem in that it explicitly
gives the form of the interpolating function, in fact the interpolating Blaschke

product is constructed in the proof of the theorem. The bound on the norm
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of the interpolating function, K(sup;|a;|)é~2 is not optimal, Carleson’s theorem

gives the better estimate
1/6 <M < C(1—1logb)/é.

in which C is a constant that depends only on (sup;|a;).
The following technical lemma will be needed in order to apply Earl’s Theo-
rem. The content of the lemma and its proof apppear in [15] as part of a proof

of Carleson's interpolation theorem.

Lemma 3.5 [Garnett] [15]
Suppose that {2;} is a sequence in the right half plane, then the following con-

ditions are equivalent:

(i) There ezists § such that

zk—j

Rk — <25

>0

— b

Ji#k

(i1) The points z; are well-separated in the pseudo-hypebolic metric,

2 — 25
p(z,2) = =

Zk-—Zj

and there is a constant A such that for every square Q = {yo < y <

yo + £Q),0 < z < (Q)},

> z; <AKQ)

z;€Q
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Proof:
The proof is presented only for the direction (ii) => (i) as this is the only direction
that is needed later.

First, the following inequality is established:

—2loga

1
—5 < (1+2log E)(l —t), fora’?<t<1 (3.10)

The left hand inequality follows from the observation that a? <t < 1 implies
both —2loga > —logt and (1 —¢) > (1 — a?) which combine to give

—2loga
1—a?

—logt <

(1-1).

The right hand inequality follows from the series expansion

logl=b)=-b+—=——+ > —b—b: -1 - =—i 0<dkl
5~ g2 =TT .

Let b=1—a? with 0 < a <1, then

loga®> >

= —loga?+(1-a*)loga® < 1-4a?

~2loga
1—a?

Let t = |(zx — 2;)/(2x — Z;)|?, then it follows from statement (ii) of the Lemma

N (1-1) < (1+2log%)(1—t)

that t > a2 > 0 for some a > 0 and for all j # k. Substituting for ¢ in both the
left hand and right hand ends of (3.10) gives

< (l+210g-(1;> (1— 2)

1 (zk—E-)(Zk—z-)—(zk—z-)(Ek—Z)
< —(1‘*‘210%5‘) ! I;k__:,lz ’ :
<3

2k — %

zk—Ej

1 4z
< (1+210g—) Tk
a |Zk—ZJ'|
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Fix k and sum each side of the inequality over the indices 7 # k to get

2k — %5

< (1 +2log é) PP ELI (3.11)

Gilae — 52

— log H
£k

Zp — ZJ
It remains only to bound the summation in the right hand side of (3.11). With

2z still fixed, consider the following collection of semicircles with center iy in

the complex plane.
Sn.—.{ZEH:'Z—iykIS_Qn:Ek}, n=2012,..
From the second inequality in statement (ii) of the Lemma it follows that

Aon-=1
Z I; & < A2 Tk.
z;+iy;€Sn

Also, if z; € Sy then |z; — %|? > 72, and when z; € S, — Sp—; With n > 1,

lz; — 2|2 > 22°~2z%. Consequently,

dxLx; T T;
Z__l 1o < 4y J+162 > o
IR 2;€5 T n=12;€5,~Sa_1 < Tk

< 844324 E 2"
1
= 404
Substituting this result into (3.11) gives

ZA4H ss k=1,2,...

Stz — 25
j#k 1<k J
with

1
6 =exp (—40A (1 + 2log ;)) .
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The next two lemmas contain the constructive solution to the d equation
that is presented in Chapter 8 of [15]. The proofs closely follow the work cited,
but are given here because they contain the algorithms that are used to compute
actual solutions. Earl’s Theorem and the discussion preceding it on fundamental

solutions provide the basis for calculating d solutions in the following simple case.

Lemma 3.6 [Garnett [15]]
Let z; be a finite set of points satisfying (3.8) and let p = ¥ a;z;6,; with

la;| < 1. Then the rational function
b(z) = K67%(Ba(2)/ B1(2))

satisfies b = u where By(z) is a Blaschke product with zeros zj, B(z) is a

second Blaschke product, and K is a constant independent of 6.

Proof:

Equation (3.9) states

d 1
il =Y 8,z,6.,,
ZB.() - & it

J

and Earl’s theorem guarantees the existence of a second interpolating Blaschke
product Bs(z) such that

K67°By(z;) = /55
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The case of a general Carleson measure p is tackled by constructing a se-
quence of approximating measures {u,} that converges (weakly) to u; each
measure in the sequence is supported oﬁ a finite set of points and has the form
pn = ¥ a;z;6;;. The next lemma presents a method for solving the equations
d/dz b,(z) = pn(z) with a uniform bound on the sequence of solutions b,. The
difficulty here is that the bound in Lemma 3.6 depends on the parameter 6
which, through Lemma 3.5, is related to the spacing ( in the pseudo-hyperbolic
metric ) of the points in the supporting set {z;}. If a general Carleson measure
is going to be approximated by a sequence of measures with finite point support,
then the spacing of the points in the support of the approximating measures wili
decrease to zero as the approximations converge. What is needed is a method
for decomposing the approximating measures in such a way that the spacing be-
tween points of support for each element of the decomposition remains large, yet
the sum of the Carleson constants of the elements in the decomposition remains

constant.

Lemma 3.7 [Jones-Garnett] [15]
Let p = Zjle 0;z;0;; be a measure supported on the finite set {zj = z; + 1y;},
with masses a;x; at the points z;, and with Carleson constant N(u) < C. Then

there exist an integer N, rational functions by(z), and a function

2N

b(2) = 7 2 ol2)

such that each b,(z) is a function of the type produced in Lemma 3.6, d/dz b(z) =
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fi for a measure [i that is arbitrarily close to u, and |b(it)] < KC fort € R and

K a constant independent of .

The proof below replaces the dyadic construction of [15] by an m-adic subdi-
vision. Although setting m = 2 reduces the complexity of the proof and is
sufficient to prove continuity of the inversion, the choice of m will influence the
bound achieved on the solution and is important if solutions with small norm
are to be calculated.

Proof:

First it is shown that x may be approximated arbitrarily closely by a new mea-
sure [ of the form C/N ¥ z;6,,. The support of & is the same as the support
of p, but each point mass z;;, may be repeated a finite, and possibly large
npumber of times in the new sum. If N is chosen to be a sufficiently large positive
integer, the coefficients j in the finite sum g may be uniformly approximated to
arbitrary accuracy by a; = n;/NC in which n; are positive integers and C is

the Carleson constant of . If each term in the sum 3 ajxjézj is expanded as

C
@;z;b,; = N(xjézj + ... (n; times)...+ 1;6z;)

then a renumbering of the terms in the summation gives the approximation

. c
prRp=2 T8
2

From here on no distinction will be made between the measure y and the ap-

proximation [
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In the second part of the proof a systematic method of decomposing the
measure p is established. The point masses z;6,, are distributed amongst a
finite number of sets in such a way that the distance between any two points in

the same set is large.

Figure 3.2: m-adic Subdivision of the Half Plane (m = 3)

Choose a square Qg with suppy C Qo C H and a side of length I(Qo)
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lying on the imaginary axis. This square may be subdivided to form an m-adic
sequence of squares of uniform hyperbolic size as follows (Figure 3.2 illustrates
the construction for the case m = 2). Let. Q1,...,Qn be the m adjacent squares
contained in Qg each with sides of length I(Q)/m, and each having one side on
the imaginary axis; continue this subdivision process inductively on each square
Q; until all the squares Qumn, ..., @mn+1_; are outside the support of 1 for some n
(the process is guaranteed to stop since the support of p is compactly contained
in H). The right hand section of any m-adic square Q can contain at most mN
points z; because N(p) < C This allows the points {z;} to be partitioned into
2m N sets in such a way that the spacing between any two points in the same
set is uniformly bounded from below by § = 221,

For every n, let S, = {z; : I(Qg)m™""! < z; < [{Qo)m ™"} and order the

elements of each S, so that S, = {Zkn + Yk} With

Ye—1i,n S Ykn S yk+1,n-

Then the set {z;} may be split into mV sequences Y1,...,Ynn such that the
points in each S, are evenly distributed between the Y;, i.e. if z; = T +1Ykn €
S, then z; € Y, if r = k mod mN. Now suppose that P C H is a fixed square
with one side lying on the imaginary axis, let M,(P) be the number of points
in S, N P, then each set Y, N S, N P must contain fewer than 1+ M,(P)/(mN)

points z;, and

S s v (1) e

Y. NP n:SaNP#¢
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had 1
ml m"+ — mc;
S (P) 712=:0 * mN z_,ZE:P !
< M Py + £ (P )
< (m+3)(P) (3.12)

Consider the sets {X,} defined by

X.=Y.n Y S

n even

X‘2r+l = }/r N U Sn-
n odd

then the measures y, = 3, ¢x, :0;; satisfy p = ¥, yp and provide a decomposi-
tion of 1 into measures of bounded Carleson constant with well spaced support.
The upper bound on the Carleson constants is given by Equation (3.12) and the

lower bound on the separation of two points of support for the measure y,

p(zi,2;) 2 e
m+1

when z;, z; € X,. (3.13)

This bound is arrived at by the following argument. If z; € S, and z; € Sp—o
then p(z;,2;) > (m — 1)/(m + 1) by the definition of the sets S,. On the other
hand, if z; and z; are in the same set S, then it follows, from the fact that the
top half of any Q; contains at most m/N points, and the way in which the set

Y, that corresponds to X, was constructed, that z; and z; must be separated by

m — 1 hyperbolic squares each of length I[(Qq)m™™". Cosequently, the distance
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between z; and z; must be bounded below by

(m -1)m™
\/(m —12m=2* 4 4m~2"
m-—1
m+1

p(zi,25) 2

Lemma 3.6 can now be applied to the measures p, to produce functions b,

that satisfy

d
—b, = pp.

dz '’
The constant § in Lemma 3.6 which determines the bounds on the norms ||, ||

is estimated by using Lemma 3.5 and the inequalities (3.12) and (3.13). This

gives an estimate on the norms [[b,|| of
1B]] < K672,

in which K is a constant that is independent of the measure p,, and 6 is given

by the formula

§ = exp (120(m +3) (1 + 2log (Z—f—i—))) . (3.14)
Let
C 2mN
b(z) = N z_:l bp(2).
p—
Then 0b(z) = C/N ¥ z;6,, = p and
o] < 2mKC§73, (3.15)

which completes the proof.
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The bound on the norm of the solution b depends on the choice of m both
directly through the factor in (3.15), and indirectly through (3.14), the expres-
sion for §. If the procedure given in the i)roof is being used for computation of
solutions to the 8 equation, then the question of what value should be chosen
for m will arise. When deciding this, particular attention should be payed to the
inequality (3.12). The appearance of m on the right hand side of this inequality
comes from the constant term 1 in the estimate that each set Y. N S, N P must
contain fewer than 1 + M, (P)/(mN) points z;. This estimate is too large for
most of the sets Y. N S, N P: take for instance the case illustrated in Figure 3.2
and assume that the Carleson constant for the measue C = 1, and that each
circle represents a mass of magnitude equal to its distance from the imaginary
axis, it follows that ¥ = 4 and m = 3. If the square P is taken to be equal to
Qo then although most of the sets Y, N S, N P contain zero points, the estimate
assigns them each at least one point. The problem arises from the way the
points are assigned to the sets Y;; the sets Y, with small r consistently get more
points than those with large r. To mitigate this discrepency it is sufficient to
take each point z; = Zgn + i¥kq in the set S, and instead of assigning it to the
set Y, with r = k mod mN, use the assignment r = (k + 7(n)) mod mN where
7(n), which acts as an offset, is a function of the set Si..

The case for a general Carleson measure p is now straight forward, but since
the proof, which involves proving that the approximations converge to a bounded

distribution with boundary values, does not add anything to the construction
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of the approximations, the reader is referred to Garnett [15] for the details.

Theorem 3.8 [Garnett [15]]
Let p = C¥ a;z;6;; be a Carleson measure with Carleson constant N(p) < C.

Then there is an Ho, function b(z) such that
ob(z) = p,

and the boundary value of b is an L™ function with ||blls < C for C a positive

constant.

3.3 Examples

In this section two examples are presented that indicate how the methods pre-
sented in the previous section can be applied to calculate solutions to the Bezout

equation.

3.3.1 Example 1

In the first example the Bezout Identity comes from an unstable plant with
rational Hy, factors f; and f,. Although this simplification allows the problem
to be solved with elementary algebraic methods, the example serves well as an

illustration of the general method.

z—1 d z -2
par R

fi(z) =

b
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The solution is found by following the construction given in the proof of Theorem

3.1.

1241 " 1241
l(z) 2,1 a‘nd hQ(Z) 27— 2
solve the equation |

Psht =1
in a distributional sense. Taking the exterior derivative of A' gives
Oh! = (w61,3/2762),
and inverting the operator Ps in

Pih? = Rt

= (wéy,3/276s),

produces the solution h}, = —276; — 9/2w6;. The Bezout problem is now

reduced to solving the equation dh® = A2, or in components

ii_ 3 h2
2 T e

—276, — 9/276s. (3.16)

Let B;(z) be the Blaschke Product with zeros at z = 1 and z = 2, then it follows
from equation (3.9) that

d
— 1/By(z) = —676; + 1276
7 /Bi(z) 670y + 2,
and equation (3.16) is solved by h?, = F in(2)/Bi1(2) when Fy(2) is a bounded

function that is analytic on the right half plane and interpolates the values
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F (1) =1/3 and Fipe(1) = —3/8. Such a function is given by

z2—2 9z-1
Fint(z)z"' -
z+2 8z+1
which produces the solution
3 ___z+1 _gz+2
h1’2(z)— z—1 8z-2

The formula for the analytic solution of the Bezout equation A is
h = h'—P;R®

= (Rl —hd,fo, hy—h3 f1)

(21z+30 133-%—19)
8z+8 82+38

The answer is checked by evaluating

Pih = hifi+hafo

21z+30 z—1 132419 z—-2
82+8 z+1 8z2+8 z+4+1

= 1,

the expected answer.

3.3.2 Example 2

The second example involves an irrational function. Set

1 z—1
1+Z’ f2(")—

fl(z) — e—TZ

The irrationality of the data means that greater care needs to be taken when

inverting the operator P;. The first step is to find an instance of the partition
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of unity predicted by Lemma 3.2. The characteristic functions

Q61 X{z:|zl>e}s - ¢2 = X{z:|z|<o}

satisfy the requirements when 0 < Reo < 1. Formula 3.7 is used to invert the
operator Py in the equation Prh! =1 to give a 1-form valued function h! with

coefficients

z+1
z—1

h} =e" (24 1)¢1, hé = o2

The § derivative of h! has components:

On! = € (z+1)0é
- +1\ -
mo= (2 ) 6.

Ohs z—1 02

Equation 3.7 is again used to solve P;h? = h! with result

T.(z+1)2

(2t )2
z—1 z—

h12=

8¢2¢1 a<P ®2

Let p = $18¢9 — $200,; that this expression defines a measure can be seen as
follows. Let ¥ be a C* mollifier, and denote by Xy |:/>- the mollification of the
characteristic function, then if ¢; and $> denote the C* approximations to the

functions ¢; and @, and D is the set {z : |z| = ¢} + supp ¥, the distribution
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51 552 — %25471 acts on a test function f as follows:
[ 18625 = 3,06 dz dy
= /2 [ :05:f - 05, f dz N dz
= —i/2 /5(52351 — $10¢9)f dz A dz
- ——i/2/5 fop1dz A dz
= —i/2 [[d(fdz)
+ i/2/5$15fdz/\d2
= "i/2/85f¢~51d2
+ i/2/5515fdz A dz
The calculation above uses the fact that ¢; + #2 = 1, and the corollary that
8, = —dés. Consider what happens as the support of the mollifier is allowed to
shrink to zero; for any test function f the first term converges to a line integral
on 8D while the second integral, which has a uniformly bounded integrand,

converges to zero. It follows that p is indeed a measure, and is given explicitly

by

/Re(zm fdu = —ij2 [ f(z)dz

x/2 .
= —0/2| f(2)e’® db

-

where in the last integral the substitution z = o€ is made.

Returning to the example, h?, can now be written as

(z +1)2
o= )
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The algorithm presented in the previous section is used to solve the equation
on® = h?, (3.17)

and the final solution is k = h! — P;h®. A computer program has been written
to calculate the solution to Equation (3.17) for the example given. The software
generates a finitely supported approximation to the measure u, decomposes
the measure into a sum of measures each with points of support well-spaced
with respect to the pseudo-hyperbolic distance, and solves the Blaschke Product
interpolation problem using an iterative scheme. The result of the algorithm is
a rational H., function that approximates the solution to the 0 equation. by
increasing the number of points in the support of the approximating measure, the
L norm of the error in the solution may be reduced to lie within an arbitrary
distance from zero.

Figures 3.3 and 3.4 illustrate the solutions obtained for Example 2 when
T = 0.4 and 0 = 4. The graphs in Figure 3.4 show the responses of the decon-
volution filters to the pulse input illustrated in Figure 3.3. That the solutions
solve the Bezout Equation is clear from the algorithm, and the causal nature
of the responses in Figure 3.4 indicates that the solutions closely approximate
holomorphic functions. The sharp corners that occur in the pulse responses are

a characteristic of infinite dimensional filters that may incorporate pure delays
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Figure 3.3: Test pulse applied to deconvolution filters
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Figure 3.4: Pulse responses for filters representing solutions to the Bezout equa-
tion
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CHAPTER

4

The Nehari Problem

The final chapter demonstrates how the solution to the Bezout Equation pre-
sented in the previous chapter may be used to calculate sub-optimal controllers
at least for the case of single input single output systems. While the method may
not produce the “best” sub-optimal solutions, it does have the advantage that
it requires relatively little information about the open loop transfer function. In
particular, an inner outer factorization is not required.

Recall the definition of T}, To, and T3 in Theorem 2.1

T = G11+G12]\/f?6’21
T, = GppM

Ty = MGy,

let

n= i%{ T\ — T»QT3|,

Qe

then Theorem 2.1 formulates the sub-optimal controller design problem as a
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search for a matrix Q with H,, entries that satisfies
Ty —TQT5[| < n+e (4.1)

for some acceptably small . Suppose @ is one such matrix, then there exists

P € Hyo, with ||P|| < 7+ € and
T, -ToQT3 =P € H,,
or, with a small rearrangement,
Ty = P1+T,QT3 (4.2)

in which 1 is the function 1(z) = 1. The suboptimal controller design problem
can now be restated as: given T,Toand T3 € Hy, find P,Q € Hy that satisfy
equation (4.2) and such that |P]| <n+e

In the SISO case the operators in (4.2) are members of the commutative
algebra of Hy,, and the equation reduces to the Bezout Equation that was solved
in the previous chapter. Let Z denote the zero set of T5T3, then a lower bound
on 7 is given by

n>m = fgng(z)'

This observation provides the basis for the following approach to the Ne-
hari Problem. Choose a neighborhood Q of Z such that the measure pg =
Ty(2)2/(Ta(2)Ts(2))dxsa is a Carleson measure that is supported on the bound-
ary of  and has Carleson constant N(ugq). Following the notation of Theorem

3.1, define f; as the constant function 1, let fo = To(2)Ta(z), 9(2) = T1(z), and
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associate with Q the characteristic functions ¢; = xq and ¢2 = Xc\q, then, the

equation Psh! = g is solved by

b = Ti(2)¢u(2)

Tl(z)

h% T2(Z)T3(Z)

$2(2).

The function A} is uniformly bounded, and the minimum upper bound of its
magnitude is given by

m = sup [T3(2)]-

z€Z

Equation (4.2) can be rewritten as P;h = g, and if A}, is the solution to the

equation Oh3 = pq, then from the proof of Theorem 3.1 an H solution is given
by

= (P,Q) = h' — P;R°.

If b(z) = h},(z) then the solution may be rewritten in terms of its components

P and @ as follows

P(z) = Ti(z)eu(z) — Ta(2)T5(2)b()

Q) = Fmm ) )

This gives the following estimate for the norm in the Nehari problem

1P < m + I Ta(2)Ts(2)b(2)]

and leads to the conclusion that the quality of the suboptimal solution calculated

will depend on the the choice of 2 and the ability to find solutions to the equation
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8b = pq with small H,, norm and rapid decay away from the support of puq.
The method presented in Chapter 3 for the solution of the d problem is not
optimal in this sense; in particular, as Wés mentioned, the bound given for the
interpolation operator of Theorem 3.4 is not optimal, and better interpolation
operators have been presented in [21] and [22]. An obvious avenue for future
work would be to investigate whether these operators give a clear computational
advantage.

The technique presented above was used to compute a controller for the
example given in Section 3.3.2. The first graph of Figure 4.1 shows the response
of the closed loop transfer function to the test pulse of Figure 3.3 applied at the
input. The second graph shows the response of the sensitivity function to the

same input.
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Figure 4.1: Pulse responses for closed loop transfer function and sensitivity
function of closed loop system
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