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Sub-centimeter orbital debris is currently undetectable using ground-based

radar and optical methods. However, pits in Space Shuttle windows produced by

paint chips demonstrate that small debris can cause serious damage to spacecraft.

Recent analytical, computational and experimental work has shown that charged

objects moving quickly through a plasma will cause the formation of plasma density

solitary waves, or solitons. Due to their exposure to the solar wind plasma envi-

ronment, even the smallest space debris will be charged. Depending on the debris

size, charge and velocity, debris may produce plasma solitons that propagate along

the debris velocity vector and could be detected with existing sensor technology.

Plasma soliton detection would be the first collision-free method of mapping the

small debris population.

The first major contribution of this thesis is the identification of orbital loca-

tions where solitons will be produced, as a function of debris size and speed. Using

the Chan & Kerkhoven pseudospectral method, we apply the Forced Korteweg-de



Vries equation to describe the amplitude, width, and production frequency of soli-

tons that may be produced by mm-cm scale orbital debris, as a function of the

debris’ size, velocity, and location (altitude, latitude, longitude) about Earth.

Analytical solutions result in solitons that propagate forever without damping,

assuming a uniform plasma environment. However, Earth’s space plasma is complex,

with processes that could cause the solitons to dampen. Damped solitons will have

a limit to the distance they will travel before becoming undetectable. For our

second major contribution, we calculated the propagation distance of solitons in the

presence of damping processes. We applied the Damped Forced Korteweg-de Vries

equation to calculate the damping rate of the solitons, and estimate the resulting

soliton propagation distance. We demonstrate that Landau damping dominates over

collisional damping for these solitons. It is necessary to understand the damping of

solitons in order to assess the feasibility of on-orbit debris detection.

In our first contribution, we demonstrate that one dimensional simulations

are sufficient to model the orbital debris solitons that propagate along the debris

velocity vector. However, in order to fully understand the soliton signatures in a

3D spatial environment, it is necessary to extend the Damped Forced Korteweg-de

Vries model to three spatial dimensions. For our final major contribution, we apply

the Damped Forced Kadomtsev-Petviashvili Equation, which is a natural extension

for waves described by the Damped Forced Korteweg-de Vries equation. Trans-

verse solitonic perturbations extend across the width of the debris, with predictable

amplitudes and speeds that can be approximated by the one dimensional Damped

Forced Korteweg-de Vries equation at the transverse soliton location. The trans-



verse perturbations form soliton rings that advance ahead of the debris in the three

dimensional simulations, allowing for additional opportunity for detection.

With the current absence of a dedicated, calibrated, on-orbit debris detection

sensor, plasma soliton detection would be the first collision-free method of mapping

the small debris population. The characteristics of plasma solitons described here are

necessary to evaluate the feasibility of orbital debris detection via soliton detection

with future debris detection systems.
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Chapter 1: Introduction and Motivation

Orbital debris collisions are a significant risk to Earth-orbiting spacecraft.

With an average impact velocity of 10 km/s in low Earth orbit (LEO), even the

smallest pieces of debris can cause serious damage, as demonstrated by the 3.8 mm

diameter pit produced by a 0.2 mm paint chip on STS-7 [3]. Currently, there are

over 500,000 debris between 1 and 10 cm in diameter, and over 100 million particles

smaller than 1 cm [4, 5] orbiting the Earth. The debris population is dynamic

due to the influence of drag, driving the need for persistent monitoring. However,

sub-centimeter debris cannot be detected with ground based methods, and on-orbit

detectors (e.g., the Long Duration Exposure Facility) can only sample the population

at the detector altitude. Since the retirement of the Space Shuttle program in 2011,

NASA no longer has a dedicated, calibrated on-orbit sub-centimeter orbital debris

detection sensor [6, 7].

Orbital debris becomes charged due to its interaction with the solar wind

plasma and the solar UV radiation [8]. It has been theorized that charged orbital

debris will cause perturbations in the ion density in the ionospheric plasma, creating

ion acoustic solitary waves (IASWs, or solitons) [9]. Sen et al. conducted computa-

tional simulations [9, 10] and experiments [11] to investigate the general properties
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of plasma solitons produced by charged debris. Solitons are solitary waves that pre-

serve their velocity and shape during translation, assuming transmission through a

uniform, constant medium. Solitons remain unaltered if colliding with other soli-

tons. The product of a soliton’s amplitude with the square of its width remains

constant, and solitons are generated at predictable intervals depending on the am-

plitude of the source. Solitons can be found throughout nature in a variety of media,

to include shallow water, the atmosphere, and plasma [1, 12, 13, 14, 15, 16].

In Chapter 3, we derive the Forced Korteweg-de Vries equation from the

plasma fluid equations for orbital debris, and apply the Chan & Kerkhoven pseu-

dospectral method to simulate undamped solitons generated by debris, considering

relevant ionospheric plasma properties, with a special emphasis on precursor soli-

tons, which advance upstream of the debris and propagate along the debris velocity

vector. Regions where precursor solitons could be generated were identified us-

ing the plasma conditions downloaded from the International Reference Ionosphere

(IRI) model [17], as a function of the altitude, latitude, local time, and debris size.

The formation of a precursor soliton depends on the relative velocity between the

ions and the orbital debris. The range of velocities for which precursor solitons can

be generated are calculated. Finally, we calculate the range of orbital eccentricities,

and the percentage of each altitude where precursors could be created as a function

of debris size.

Analytical solutions result in solitons that propagate forever without damping,

assuming a uniform environment. However, Earth’s space plasma is complex and

influenced by seasonal and diurnal effects. A nonuniform environment or kinetic col-

2



lisions between solitons and ions or electrons in the plasma could cause the solitons

to dampen. Damped solitons will have a limit to the distance they will travel be-

fore becoming undetectable. In Chapter 4, we investigate the propagation distance

of solitons in the presence of damping processes. We apply the Damped Forced

Korteweg-de Vries (dfKdV) equation, derived from the plasma fluid equations, and

simulate the propagation of pinned and precursor solitons in the presence of damp-

ing processes. These propagation distances are necessary to assess the detectability

of precursor solitons via satellite or ground observations, the time required to map

detectable debris, and the number of sensors needed for mapping in a given mission

window.

Chapter 3 demonstrates that one dimensional simulations are sufficient to

model the orbital debris solitons, which propagate along the debris velocity vector.

However, in order to fully understand the soliton signatures in a 3D spatial envi-

ronment, it is necessary to extend the dfKdV model to three spatial dimensions.

In Chapter 5, we will apply the Damped Forced Kadomtsev-Petviashvili Equation

(dfKP), which is a natural extension for waves described by the dfKdV equation.

Soliton characterization in three spatial dimensions can allow for additional op-

portunity to measure previously undetectable orbital debris, in a region where the

characteristics of the sub-centimeter debris population are largely uncertain.
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1.1 Contributions

This thesis is concerned with the prediction of the signatures of plasma density

waves created by the presence of charged sub-centimeter orbital debris, potentially

enabling the design of collision-free detection systems for the small debris population.

The main contributions of this work are:

• Theoretical development to apply the Forced Korteweg-de Vries equation to

the orbital debris plasma density soliton system (Chapter 3).

• Creation of models to predict soliton amplitude, width and speed as a function

of debris size and speed (Chapter 3).

• Identification of the orbital altitudes and latitudes where solitons can be cre-

ated as a function of debris size and speed (Chapter 3).

• Calculation of the propagation distance of solitons in the presence of relevant

damping processes (Chapter 4).

• Extension of the one dimensional predictions to three spatial dimensions (Chap-

ter 5).

1.2 Publications

The publications related to this thesis are listed below for reference.

• Truitt, A. S., and Hartzell, C. M., “Simulating Plasma Solitons from Orbital
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Debris using the Forced Korteweg–de Vries Equation,” Journal of Spacecraft

and Rockets, accepted.

• Truitt, A. S., and Hartzell, C. M., “Simulating Damped Ion Acoustic Solitary

Waves from Orbital Debris,” Journal of Spacecraft and Rockets, accepted.

• Truitt, A. S., and Hartzell, C. M., “3D Kadomtsev-Petviashvili Damped Forced

Ion Acoustic Solitary Waves from Orbital Debris,” Journal of Spacecraft and

Rockets, submitted.

• Truitt, A. S., and Hartzell, C. M., “Characteristics of Plasma Solitons Pro-

duced by Small Orbital Debris,” First International Orbital Debris Conference,

Dec 2019.
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Chapter 2: Literature Review

While orbital debris solitons have not yet been detected, current orbital debris

detection methods, as well as prior research on solitons in a variety of fluid systems,

are relevant to assess whether orbital debris will produce detectable solitons. The

soliton research can be divided into three categories: observational evidence of soli-

tons, computational simulation of solitons, and experimental production of solitons

in a laboratory environment.

2.1 Orbital Debris Detection

Small orbital debris has become a great hazard to Earth orbiting spacecraft.

Debris smaller than 1 cm has shown the ability to chip ISS windows, penetrate

extravehicular activity (EVA) suits, and damage spacecraft components such as

radiators, thermal protection system (TPS) tiles, and cargo bay walls [5, 18].

NASA estimates that there are over 100 million particles smaller than 1 cm

orbiting the Earth. However, estimates for sub-centimeter debris are largely based

on collisional detections during the space shuttle mission, which has now retired.

These collisional detections were restricted to measuring debris strikes at altitudes

below 600 km, the upper limit of space shuttle operations, and were then used to

6



estimate the small debris population at a range of altitudes. Further, for debris

between 2 mm - 10 cm in LEO, the exposed surface will need to be larger than that

of a typical satellite in order to obtain a meaningful sample of impacts. [18].

While ground based sensors continue to improve their detection capabilities,

the ground sensor detection sensitivity rapidly decreases with increasing altitude,

and is limited to observing high latitudes. The ground sensors in the Space Surveil-

lance Network (SSN) are able to detect 10 cm objects at 2000 km altitude in LEO

and 1 m objects at 35,786 km altitude in GEO [18]. Unfortunately, ground based

sensors are not able to track sub-centimeter objects due debris’ relatively high an-

gular velocity, and remain in staring mode to count the number of objects passing

through their small fields of view [18]. The largest source of uncertainty exists in

the ability to interpret the signal strength in order to determine the size or mass of

the object passing through the field of view. Additionally, debris from objects in a

Molniya-type orbit cannot be detected, since the U.S. ground-based sensor systems

are in the Northern Hemisphere [18].

Most of the small orbital debris population resides in high LEO, with a mean

altitude of 850 km [5]. More orbital debris is created than removed due to the dimin-

ished atmospheric drag at high altitudes, making our current orbit characterization

for sub-centimeter debris even more uncertain [19].

An estimate from the SSN for the number of debris greater than 10 cm is

displayed in Fig 2.1, published by the NASA Orbital Debris Program office [5].

Two events are responsible for adding 40% to the LEO debris estimates: the Chinese

Anti-satellite Test (ASAT) in 2007 and the collision of the Cosmos–Iridium satellites
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in 2009. These two events significantly increased the challenges of operating in LEO.

Figure 2.1: Space Surveillance Network estimate of the number of de-
bris objects greater than 10 cm as a function of altitude. Image from
NASA/ODPO [5].

With the increase in the number of satellite launches over time, there is poten-

tial for rapid growth of the debris population. Therefore, active means are necessary

for quickly characterizing the dynamic orbital debris environment, allowing for the

ability to prevent satellite damage through mitigation and remediation. A non-

collisional capability to detect sub-centimeter debris from the ground and in situ

with existing sensor technology would provide for the most immediate contribution

for understanding the small debris population.
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2.2 Observation of Solitons

The first recorded solitary wave was observed by John Scott Russell in 1834,

who observed a solitary wave in the Union Canal in Scotland, as shown in Fig 2.2(a).

He then reproduced a soliton in a lab experiment using a wave tank, and described

the phenomenon in an 1844 publication [20]. Russell described the wave in the

Union Canal as follows: “I was observing the motion of a boat which was rapidly

drawn along a narrow channel by a pair of horses, when the boat suddenly stopped

– not so the mass of water in the channel which it had put in motion; it accumulated

round the prow of the vessel in a state of violent agitation, then suddenly leaving

it behind, rolled forward with great velocity, assuming the form of a large solitary

elevation, a rounded, smooth and well-defined heap of water, which continued its

course along the channel apparently without change of form or diminution of speed.

I followed it on horseback, and overtook it still rolling on at a rate of some eight

or nine miles an hour, preserving its original figure some thirty feet long and a foot

to a foot and a half in height.” [20] In 1895, Diederick Korteweg and Gustav de

Vries derived a nonlinear partial differential equation to describe Russell’s soliton

experiment, now known as the Korteweg–de Vries (KdV) Equation [21]:

∂U

∂t
+ U

∂U

∂x
+
∂3U

∂x3
= 0 (2.1)

More recently, oceanic solitons have been observed with satellite-based syn-

thetic aperture radar [14, 16], with an example shown in Fig 2.2(b). These oceanic
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surface solitons can be thought of as analogs of solitons generated by orbital debris.

Historically, oceanic solitons were described as bands of choppy water or ripplings

in the presence of local bathymetry, observed even in calm weather at well known

locations. These solitons are often generated when a current of shallow water flows

over a submerged obstacle. The solitons propagate radially outward from the ob-

stacle, forming semicircular rings of solitary waves. The height, width, and speed

of the solitons, as well as the extent of the semicircular arc, depend on the speed of

the current, depth of the water, and the size and shape of the obstacle.

(a) Soliton in Channel (b) Oceanic Soliton

Figure 2.2: (a) A soliton observed on the Scott Russell Aqueduct on
the Union Canal in 1995. Image reproduced from [22]. (b) ERS-2 SAR
image of solitons generated near the shallowest point (crosshair) of the
Dreadnought Bank in the Andaman Sea on May 4, 1996. Secondary
solitons are also observed due to activity further west. Image from Alpers
et al. [16].

While many variations of the KdV equation have been studied, we will focus

on the forced KdV (fKdV) equation, where the soliton wave, U , is generated due

to the presence of a forcing term, f(x, t), as shown in Eqn 2.2. In oceanic solitons,
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the submerged obstacle acts as the force term. Analogously, in the ionosphere, the

charged debris is represented by the forcing term.

∂U

∂t
+ U

∂U

∂x
+
∂3U

∂x3
= f(x, t) (2.2)

While plasma solitons resulting from charged orbital debris have not yet been

detected, the existence of ion acoustic solitons in unmagnetized plasma due to other

disturbances has already been demonstrated [15]. Solitons have also previously been

observed in the 3D plasma environment of the ionosphere. The Freja scientific satel-

lite observed nonlinear density waves in the upper ionosphere [12], and simulations

were conducted to support the observations [13]. Solitons were also observed by the

Cluster II satellites at the Earth’s magnetopause, created due to turbulence at the

boundary [23].

2.3 Computational Simulation of Solitons

In 1965, Norman Zabusky and Martin Kruskal were the first known to con-

duct numerical experiments with the KdV equation, using a finite difference method.

They showed that travelling waves can be produced by specific initial conditions,

similar to the wave described by Russell. In their computational studies, they ob-

served that the travelling waves remain unaltered when colliding with other trav-

elling waves, and this particle-like behavior of the waves is why the Zabusky and

Kruskal called the travelling waves “solitons” [24].

The work done by Zabusky and Kruskal allowed for exact solutions of the KdV
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equation to be derived. In 1975, Bona and Smith [25] published the first analyti-

cal solitons for the KdV equation. Subsequently, in 1978, Fornberg and Whitham

[26] developed a Fourier pseudospectral method for the KdV equation, which uses

three Fourier transforms per time step. The development of this pseudospectral

scheme was the first of many numerical methods for solving the KdV, including

a Petrov-Galerkin method, a hopscotch method by Geig and Morris, and another

pseudospectral scheme by Chan and Kerkhoven [27] which uses a Crank-Nicholson

method for the spatial derivatives, reducing the number of Fourier transforms re-

quired per time step. Thus, Chan-Kerkhoven is recognized as the fastest method to

date for solving the KdV equations [28].

In [9], Sen et al. derived the fKdV equation from the plasma fluid equations for

an orbital debris system, showing that the orbital debris will influence the density

of ions and electrons in the Poisson equation and consequently be represented as

the forcing function in the fKdV equation. Notional results were simulated for

plasma density solitons produced by orbital debris, with the charged orbital debris

source approximated as a Gaussian shape. A variety of constants were applied to the

system to observe how the plasma density solitons may change in size and frequency.

Subsequently, Tiwari and Sen [10] published computational results investigating the

existence region of pinned and pursor solitons as a function of forcing function speed

and soliton amplitude.
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2.4 Experimental Production of Solitons

Solitons have been studied experimentally in a variety of fluid systems. The

generation of solitons in electron beam experiments was recorded as early as 1939,

by Simon Ramo and W. C. Hahn [29, 30]. For shallow water waves, Feir published

results of solitons from wave pulse experiments in 1967 [31]. Additionally, Yuen and

Lake observed solitons in deep water experiments [32, 33] in 1975 and 1982.

In addition to their theoretical results [9], Sen et al. have successfully cre-

ated solitons in a dusty plasma laboratory experiment [11]. In their experiment,

nonlinear solitary dust acoustic waves are produced by a supersonic mass flow of

dust particles over an electrostatic potential hill. Micron-sized kaolin particles were

negatively charged and levitated in the argon plasma, which was confined due to

a charged copper wire creating a potential hill barrier. The production of solitons

was investigated as a function of fluid speed by systematically reducing the height

of the barrier. Results show that the unique properties of ion acoustic solitons,

such as their amplitude and width, are predictable and depend on the relative speed

between the charged source and the fluid medium.

2.5 Summary

Solitons have been observed experimentally in a variety of applications, in-

cluding fully 3D systems and space plasmas. The observation of plasma density

solitons in the Earth’s plasma environment due to other disturbances, combined

13



with the computational and experimental work done by Sen et al. for orbital debris,

suggest that orbital debris may produce plasma density solitons as well. The ref-

erenced soliton computational and experimental studies serve as the foundation for

additional theoretical development and application to existing models of the Earth’s

ionosphere.

We build on Sen et al.’s work by simulating solitons generated using relevant

ionospheric plasma and debris properties, with a special emphasis on precursor

solitons, which advance upstream of the debris. We determine the debris size and

velocity that will produce solitons, as well as the altitude range where solitons can

be produced and their propagation distance in the presence of damping processes.

We extend the one dimensional approximations to three spatial dimensions in order

to understand the full 3D signature of the solitons. The characteristics of solitons

generated by orbital debris will influence future evaluations of whether or not solitons

can be detected in situ in order to identify orbital debris that is currently too small

to be observed.
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Chapter 3: Simulating Undamped Solitons from Orbital Debris in

One Spatial Dimension

In this chapter, as published in [34], we will investigate Earth’s plasma envi-

ronment and the properties of charged orbital debris to evaluate whether solitons

will be produced in their presence. Since Earth’s plasma environment is dynamic

and complex due to seasonal and diurnal processes, we will focus on average plasma

parameters before applying an existing plasma model. We will seek to determine

the altitude, latitude, and local time where solitons can be created as a function of

debris size and speed.

The content of this chapter has been accepted for publication as Truitt and

Hartzell, “Simulating Plasma Solitons from Orbital Debris using the Forced Ko-

rteweg–de Vries Equation,” Journal of Spacecraft and Rockets, 2020. [34]

3.1 The Plasma Environment

The ionospheric plasma varies with altitude, latitude and illumination. Low

Earth orbit (LEO, 200-1000 km altitude) lies within the ionosphere’s F2 region.

The mid-latitudes of the F2 region consist of low energy, high density plasma (see

Table 3.1), and the dominant ion species is oxygen. Above the F2 layer, between
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Table 3.1: Plasma properties in the mid-latitude ionosphere, derived from ground-
based and space-based observations. Vd is the velocity of debris in a circular orbit.

Low LEO High LEO 1 High LEO 2 GEO
[35] [36, 37, 38] [36, 37, 38] [39, 40]

Altitude (km) 700 1,200 1,400 35,786
Latitude (deg) 0-55 0-55 0-55 0-90

ne (cm−3) 2x105 105 104 1
Te (eV) 0.25 0.35 0.35 1,000

Ion Species O+ H+ H+ O+ / H+

mi (mp) 16 1 1 16 / 1
λD (cm) 0.83 1.38 4.36 23,504.00

Vd (km/s) 7.51 7.26 7.16 3.08
Via (km/s) 1.22 5.75 5.75 77.43 / 309.73

1000-2000 km altitude, the number of oxygen ions decreases and lighter ions such

as hydrogen and helium become dominant. The plasma surrounding geostationary

orbits is also high energy and low density, similar to the high latitude LEO regions.

Nominal plasma properties for the mid-latitude regions are listed in Table 3.1 and

were derived from various ground-based and space-based observations in [35, 36, 37,

38, 39, 40]. For GEO, the dominant ion could be oxygen or hydrogen depending on

solar activity, so mi and Via are listed for both species.

The high latitude, or polar, regions of LEO contain open magnetic field lines,

allowing for the escape of particles as well as the entry of high energy particles from

the solar wind. The combination of these processes, in addition to geomagnetic

storms, creates a highly variable environment [41, 42]. Examples of the plasma en-

vironment at high latitudes are provided in Table 3.2. In general, the plasma density

is 10-100x less than the density at mid-latitude regions, with areas of precipitating

high energy electrons from the solar wind [41, 42]. For Polar LEO 1, the dominant

ion could be oxygen or hydrogen depending on solar activity, so mi and Via are listed
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Table 3.2: Plasma properties in high-latitude ionosphere [41, 42].
Polar LEO 1 Polar LEO 2 Polar LEO 3

Altitude (km) 600 600 950
Latitude (deg) 55-90 55-90 55-90

ne (cm−3) 10 104 103

Te (eV) 1,000 0.25 0.35
Ion Species O+ / H+ O+ H+

mi (mp) 16 / 1 16 1
λD (cm) 7,432.00 3.72 13.91

Vd (km/s) 7.56 7.56 7.38
Via (km/s) 77.43 / 309.73 1.22 5.75

for both species.

3.2 Plasma Fluid Equations

In the LEO plasma environment, we can model the equations of state in the

plasma using a fluid model. The fluid equations can be derived mathematically

by taking moments of the Boltzmann equation. These moments are the standard

plasma fluid equations for continuity, momentum, and Poisson’s equation, and are

used to derive the ion acoustic wave behavior:

∂n

∂t
+
∂(nu)

∂x
= 0 (3.1)

∂u

∂t
+ u

∂u

∂x
+
∂φ

∂x
= 0 (3.2)

∂2φ

∂x2
− eφ + n = f(x, t) (3.3)
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where n is the ion density, u is the ion velocity, φ is the electrostatic potential, and

f(x, t) is a forcing function described as a charge density source [9].

We normalize the domain as follows:

n =
n

n0

, x =
x

λD
, t =

Via
λD

t, u =
u

Via
, φ =

eφ

kbTe
(3.4)

where n0 is the initial ion density, λD =
√
εokBTe/q2ne is the Debye length, Via =√

kBTe/mi is the ion acoustic velocity, kB is the Boltzmann constant, mi is the ion

mass, and Te is the electron temperature.

In the weakly nonlinear limit, we invoke the long wave assumption that the

amplitude of the wave is much smaller than the length of the wave. In this weakly

nonlinear limit, the plasma fluid equations can be approximated by the KdV Equa-

tion, derived by linearizing the plasma fluid equations using the reductive pertur-

bation technique [43]. To conduct the perturbation analysis, we create stretched

variables, ξ and τ , for the independent variables, x and t:

ξ = ε1/2(x− vt) (3.5)

τ = ε3/2t (3.6)

∂

∂x
= ε1/2

∂

∂ξ
(3.7)
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∂

∂t
= −ε1/2v ∂

∂ξ
+ ε3/2

∂

∂τ
(3.8)

We then expand the n, u, and φ around the unperturbed states in powers of ε, where

ε is a small parameter that measures the weakness of dispersion.

n = 1 + εn1 + ε2n2 + ... (3.9)

u = 0 + εu1 + ε2u2 + ... (3.10)

φ = 0 + εφ1 + ε2φ2 + ... (3.11)

f(x, t) = ε2f(ξ, τ) + ... (3.12)

Next, we substitute Eqn 3.5-Eqn 3.12 into Eqn 3.1-Eqn 3.3. The perturbed

continuity equation becomes:

(
−ε1/2v ∂

∂ξ
+ε3/2

∂

∂τ

)(
1+εn1 +ε2n2

)
+
(
ε1/2

∂

∂ξ

)((
1+εn1 +ε2n2

)(
εu1 +ε2u2

))
= 0

(3.13)

The perturbed momentum equation becomes:

(
− ε1/2v ∂

∂ξ
+ ε3/2

∂

∂τ

)(
εu1 + ε2u2

)
+
(
εu1 + ε2u2

)(
ε1/2

∂

∂ξ

)(
εu1 + ε2u2

)
+
(
ε1/2

∂

∂ξ

)(
εφ1 + ε2φ2

)
= 0

(3.14)

The perturbed Poisson equation, using a Taylor expansion of eφ ≈ 1 + φ+ φ2

2
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becomes:

(
ε1/2

∂

∂ξ

)2(
εφ1 + ε2φ2

)
−
(

1 +
(
εφ1 + ε2φ2

)
+

1

2

(
εφ1 + ε2φ2

)2)
+
(

1 + εn1 + ε2n2

)
= ε2f(ξ, τ)

(3.15)

After comparing the coefficients of different powers of ε, and performing sub-

stitution in the set of resulting equations, we arrive at the forced Korteweg–de Vries

(fKdV) Equation [9]:

∂φ

∂τ
+ φ

∂φ

∂ξ
+

1

2

∂3φ

∂ξ3
=

1

2

∂f

∂ξ
(3.16)

Understanding that fluctuations in the electrostatic potential, φ, will drive the

nonlinear wave, U , we rewrite the equation using the traditional wave equation form

and compare to the fKdV equation often seen in literature:

∂U

∂τ
+ µ

∂U

∂ξ
+ αU

∂U

∂ξ
+ β

∂3U

∂ξ3
=

1

2

∂f

∂ξ
(3.17)

In Eqn 3.17, U(ξ,τ) is the derived ion acoustic wave, manifested as an electric

potential in the plasma surrounding the debris and a perturbation in the ion density.

The spatial and temporal variables, ξ and τ , are the derived stretched coordinates

of the initial boundary-value problem.

Soliton solutions can be derived for many mathematical and physical systems

that are modeled by weakly nonlinear partial differential equations, and are caused

when the nonlinear and dispersive forces are balanced. The coefficients α and β
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define the weighting of the steepening and dispersion terms, and µ is the speed of

the medium flowing over the submerged obstacle. Note that in our derivation of

Eqn 3.16 for LEO plasma, α = 1, β = 1/2, and µ = 0 since our reference frame

assumes that the medium is static and the submerged obstacle is in motion. The

coefficients are discussed in further detail in 3.2.1.

Thus, the forced KdV equation has been derived from first principles to de-

scribe perturbations in the ion density as a result of charged debris, assuming: (a)

a cold Maxwellian plasma (Ti < Te), (b) a collisionless plasma, meaning that the

dust density is negligible (ndust << nions), (c) a weakly nonlinear system, where

the amplitude of the wave is much smaller than the length of the wave, and (d)

magnetic field effects are negligible and wave propagation can be described in a 1D

system, further discussed in 3.2.1.

The forced KdV equation will be used in the remainder of this study. In the

absence of a forcing term, Eqn 3.17 reduces to the standard unforced KdV equation

in Eqn 3.18, which is often used in unforced, weakly nonlinear wave studies.

∂U

∂τ
+ αU

∂U

∂ξ
+ β

∂3U

∂ξ3
= 0 (3.18)

While many studies detail the application of the unforced KdV equation for a

variety of fluid systems, there are only a few that discuss application of the forced

KdV equation. The works that discuss the generation of IASWs by orbital debris

use the fully nonlinear plasma fluid equations instead of the fKdV [9, 10, 11]. Based

on the properties of plasma in LEO, we estimate that the amplitude is much smaller
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than the length of the waves, validating the long wave assumption and allowing for

use of the fKdV equation to characterize the solitons. Detailed derivations of the

fKdV equation can be found in [2, 44].

3.2.1 Derived Coefficients

Traditionally, the coefficients α and β, when applied to shallow water waves,

describe the geometry of the water channel with respect to the flow of the medium

and height of the obstacle at the floor of the channel [2, 44]. In our derivation of

Eqn 3.16 for LEO plasma, assuming a collisionless Maxwellian plasma, α = 1 and

β = 1/2. We verify these coefficients through study of the derived coefficients for

other plasma environments.

For IASWs, these coefficients have been derived in literature for complex plas-

mas consisting of strong magnetic fields, dust, and superthermal electrons with

κ−distributions using a damped KdV (dKdV) equation as shown in Eqn 3.19, where

γ is the coefficient for the additional damping term due to ion-neutral collisions

[45, 46, 47, 48].

∂U

∂τ
+ αU

∂U

∂ξ
+ β

∂3U

∂ξ3
+ γU = 0 (3.19)

It can be shown that for a cold plasma with negligible dust density and a weak

magnetic field, the complex plasma coefficients reduce to [45, 46]:

α =
3aκ(1/ρ

1/2)− 2bκ(ρ
1/2/zi)

2a
3/2
κ

(3.20)
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γ =
ϑ

2
(3.21)

β =
ρ1/2

2a
3/2
κ

(3.22)

where

aκ =
2κ− 1

2κ− 3
bκ =

4κ2 − 1

2(2κ− 3)2
(3.23)

ρ =
z2
i n0i

n0e

ϑ =
ωBi
ωpi

<< 1 (3.24)

Here, n0i and n0e are the unperturbed ion and electron densities, zi is the

ion charge state, ϑ is the ion-neutral collision frequency, ωBi is the ion cyclotron

frequency, and ωpi is the ion plasma frequency. Assuming a Maxwellian plasma

(κ→∞) for the plasma regions in Table 3.1 and Table 3.2, the coefficients using Eqn

3.20 - Eqn 3.24 are again calculated as α = 1, β = 1/2, and γ = 0, agreeing with our

derivation of Eqn 3.16. It is important to note that these coefficients are simplified

since we have assumed a collisionless Maxwellian plasma, with negligible dust density

and the magnetic field effects. However, the velocity distribution functions of space

plasmas typically have a suprathermal tail and are modeled with kappa distribution

functions instead of a Maxwellian model [49, 50]. Considering the estimated kappa

value from recent Earth magnetospheric models (κ = 100) [51, 52], the coefficients

become:
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α = 1.0051 β = 0.4925 γ = 0 (3.25)

We will use the κ−distribution coefficients in 3.25 for the remainder of this investi-

gation.

One must consider the dispersion relation to see if kinetic collisions or magnetic

field effects will have an influence on the coefficients or the velocity of the normalized

forcing function [45, 46]. Since ωBi << ωpi, the effect of the magnetic field is

negligible [53] and 1D wave solutions are sufficient. In some polar regions, the plasma

density is low, so the ion plasma frequency decreases and becomes comparable to

the ion cyclotron frequency. In that case, the angle between the velocity and the

magnetic field lines also needs to be considered.

Knowing that magnetic field effects are negligible, we need to assess whether

ion-neutral collisions will affect soliton production. In general, γ > 0 in regions

where the neutral density is at least three orders of magnitude greater than the

electron density [53]. The boundary between the O+ dominant plasma and the H+

dominant plasma defines the transition between the ionosphere and plasmasphere,

with the plasmasphere being fully ionized [54], and γ = 0. Since the dissipation

coefficient γ = 0, we can assume that solitons will propagate in this region without

collisional damping in a uniform environment.

Typical damping processes introduced into the damped KdV equation include

(a) magnetosonic waves damped by electron-ion collisions, (b) ion sound waves

damped by ion-neutral collisions, (c) ion sound waves with Landau damping, and (d)
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shallow water waves damped by viscosity [48]. The cases that apply to ion acoustic

solitons are ion-neutral collisions and Landau damping. It can be shown analyti-

cally that in the presence of damping, soliton amplitude decays as A(t) = A0e
−2γt/3,

soliton speed decays as V (t) = V0e
−2γt/3, and soliton width grows as W (t) = W0e

γt/3

[2, 46]. However, these estimates are based on unforced solitons, and it is expected

that solitons will propagate farther than these estimates in the presence of a per-

sistent force. We have addressed the ion-neutral collisions here, and will investigate

Landau damping in Chapter 4.

3.2.2 Derived Force

Orbital debris will become charged due to the electrons and ions in the plasma

environment, and will create a perturbation in the electric potential and density of

the surrounding plasma. We will approximate the forcing term of the fKdV equation

as a function of the debris surface potential and size.

For a spherical debris object immersed in a plasma, the charge Q of the sphere

is related to the capacitance C and surface potential Φs by:

Q = CΦs (3.26)

For a spherical particle with radius a < λD, the capacitance is estimated in

the orbit motion limited (OML) regime as [8]:

C = 4πεoa (3.27)
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We refer to Bibhas [55] for a general expression of the surface potential of the

debris. The radius, s, of the plasma sheath around a sphere is defined as:

s = a+ λD (3.28)

The surface potential of the debris (Φs) is calculated as [55]:

exp
[ eΦs

kBT

]
=
(me

mi

)1/2(s
a

)2
[

1− s2 − a2

s2
exp
[ a2

s2 − a2

eΦs

kBT

]]
(3.29)

In the thin sheath domain (a > λD), for a negative Φs, Eqn 3.29 simplifies to:

exp
[ eΦs

kBT

]
=
(me

mi

)1/2

(3.30)

In the thick sheath domain (a < λD), Eqn 3.29 simplifies to:

exp
[ eΦs

kBT

]
=
(me

mi

)1/2
[

1− eΦs

kBT

]
(3.31)

Next, we calculate the plasma potential Φp due to the surface potential of the debris

(Φs) using Eqn 3.32, at one Debye length away from the surface of the spherical

debris [56], r = λD. In our normalized coordinate system, plasma potential is

divided by the electron temperature, as shown in Eqn 3.33:

Φp = Φsexp
[−r
λD

]
(3.32)
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Φp,n = Φsexp
[−r
λD

]( e

kBTe

)
(3.33)

Fig 3.1 shows the resulting calculations of the normalized plasma potential, Φp,n,

using Eqn 3.29 and Eqn 3.33.

Figure 3.1: Normalized plasma potential, Φp,n, calculated from Eqn
3.33, for two different dominant plasma species (oxygen and hydrogen).

Finally, the forcing term is estimated as a Gaussian shape with Φp,n, the

amplitude, and G, the full width at half maximum [57]:

f(ξ, τ) = Φp,nexp
[
−
(ξ − Vdτ

G

)2]
(3.34)

where the G is radius of the orbital debris is normalized by λD:
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G =
a

λD
(3.35)

3.3 Numerical Methods

A pseudospectral scheme developed by Chan & Kerkhoven (CK) [27] was used

to simulate the solitons, using Fourier transforms of the fKdV terms. While there

are many examples of the pseudospectral method applied to the unforced KdV

equation, there are few that describe its application to the forced KdV equation.

We apply the Fourier transform to the forcing function as prescribed by Shen [44].

The scheme was written in Matlab and applied to known analytic solutions to the

fKdV, given by [1, 2, 58].

The spatial domain [−L,L] is discretized into N equidistant points and is

normalized to [0, 2π]. Now, ∆ξ = 2π
N

and ξ = s(x + L), where s = π
L

so that the

solution is periodic from 0-2π. The resulting normalized fKdV equation is:

∂U

∂τ
+ αsU

∂U

∂ξ
+ βs3∂

3U

∂ξ3
=

1

2
s
∂f

∂ξ
(3.36)

The time derivative is expressed as a finite difference approximation:

∂Uj
∂τ
≈ 1

2∆τ
(Un+1

j − Un−1
j ) (3.37)

where the subscripts are the spatial domain and the superscripts are in the temporal

domain. Thus, j = ∆ξ, n+ 1 = τ + ∆τ , and n− 1 = τ −∆τ .
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The discrete Fourier transform is:

Û = F (U) =
1√
N

N−1∑
j=0

Uje
(−2πjk/N)i k = −N

2
,−N

2
+ 1, ...,

N

2
− 1 (3.38)

where F is the Fourier transform, and F−1 is the inverse Fourier transform.

An important property of the Fourier transform is that it represents differen-

tiation as multiplication by ik, since the partial derivative commutes. Thus, we can

rewrite the Fourier transform of the partial derivative of a wave, U , as:

F
(∂U
∂ξ

)
=

∫ ∞
−∞

(∂U
∂ξ

)
e−ikξ dξ = −

∫ ∞
−∞

U
(∂e−ikξ

∂ξ

)
dξ = ik

∫ ∞
−∞

Ue−ikξ dξ (3.39)

The Chan-Kerkhoven scheme uses a leapfrog finite difference method in the

spectral space, thereby reducing the number of Fourier transforms required for each

time step. Thus, Chan-Kerkhoven is recognized as the fastest method to date for

solving the KdV equations [28]. The approximation for the dispersion term is:

∂3U

∂ξ3
≈ 1

2

∂3(Un+1
j + Un−1

j )

∂ξ3
(3.40)

F−1(F
∂3U

∂ξ3
) ≈ F−1((ik)3 1

2
F (Un+1

j + Un−1
j )) (3.41)
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The nonlinear term becomes:

F−1(F
∂U2

∂ξ
) ≈ F−1(iksF (Un

j )2) (3.42)

Applying Eqn 3.41 and Eqn 3.42 to Eqn 3.36 results in the following:

1

2∆t
(Un+1 − Un−1) + αF−1(iksF (Un)2) + βs3F−1(i3k3 1

2
F (Un+1 + Un−1)) =

1

2
sF−1(ikF (f))

(3.43)

After rearranging terms, the solution for U is:

Un+1 = F−1
[ 1

1−∆tβis3k3
((1 + ∆tβis3k3)F (Un−1)

−∆tαiskF (Un)2 + ∆tiskF (f))
] (3.44)

To implement the Chan-Kerkhoven method, we first define the input param-

eters α, β, N , L, Vd, Φp,n, G, ∆τ , τ0, and τfinal. Next, we define the mesh space,

ξ, and the wave numbers, k. For narrow forcing functions, it is important that the

shape of the Gaussian is well resolved with the given mesh size so that the force will

propagate appropriately as it translates in space. Increasing N to accommodate a

narrow forcing function and large τfinal may result in exponentially larger computa-

tion times. One may consider defining a smaller L and non-periodic boundary so

30



that the wave solution does not wrap from the right to left spatial boundaries. It

has been theorized that the precursor solitons comes solely from the depression zone

between the upstream and downstream regions [2]. Thus, when simulating precursor

solitons and defining non-periodic boundaries, it is important to ensure that L is

large enough such that the depression zone between the upstream and downstream

regions, as well as the upstream solitons, are well defined, as illustrated in Fig 3.2.

Figure 3.2: Example of depression zone (−20 < x < 10) between down-
stream wake (x < −20) and upstream precursor solitons (x > 10).

The solution for U is then marched forward in time using Eqn 3.44. For large

propagation times, it is recommended to store every 100th or 1000th solution for

U and the time vector in a matrix. Since the CK pseudospectral method requires
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information from the previous time step, we are required to define the initial wave,

U0 at τ0. To simulate from a rest state, initialize U = 0 and then march forward in

time with Eqn 3.44, using a small time step ∆τ/10 to grow the wave for ten steps to

remove any numerical instabilities for the initial approximation of U0 [44]. The total

time at this point is now ∆τ . Once U0 is obtained, the code marches forward in time

using Eqn 3.44 and ∆τ to τfinal. To simulate analytically derived pinned solitons,

it is important to initialize U with the soliton solution at t = 0 and t = −∆τ . As

shown in 3.4, a pinned soliton will not propagate in the numerical simulation unless

its analytic solution is defined at U0.

3.4 Numerical Validation

This section describes the validation of the numerical simulation described in

3.3. Several analytical solutions for the forced and unforced KdV equations were

chosen with a variety of input parameters. Differences between the numerical and

analytical solutions were calculated in order to assess accuracy of the code.

The code was first tested on an unforced analytic solution from [1], with the

input parameters in Table 3.3 and initial condition U0 = 12sech2(x). This solution

falls within the family of exact N-soliton solutions of the form in Eqn 3.45 [59], with

N = 3. The 3-soliton solution was produced as expected, and shown in Fig 3.3.

U(x, 0) = N(N + 1)sech2(x) (3.45)

Once the code was validated against an unforced KdV analytic solution, we
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Table 3.3: Input parameters for 3-soliton analytic solution from [1].
α β N L dt
6 1 1024 50 0.001

Figure 3.3: Reproduction of unforced 3-soliton solution from [1]. The
initial condition is 12sech2(x), with α = 6 and β = 1.

proceeded with several forced KdV analytic solutions of various coefficients, prop-

agation times, and forcing terms that are either static or change with space and

time.

Two analytic forced KdV solutions were tested from [58]. The forcing term

for both examples is given as Eqn 3.46, and the solution is given as Eqn 3.47.

f(x, t) =
12kβ

α

(
k3(4β − δ)− ∂a(t)

∂t

)
(3.46)
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Table 3.4: Input parameters for the analytic solution described Eqn 3.48 and Eqn
3.49 plotted in Fig 3.4.

k δ α β b1 b0 b2

1 4 -2 1/6 2 -1 -1

U(x, t) = 12βk2sech2
(
k(x− δk2t)− a(t)

)
(3.47)

For the example in Fig 3.4, a(t) is defined as a(t) = exp
(
b2t

2 + b1t+ b0

)
, where

b2, b1, and b0 are constants. This results in the traveling-wave forcing term in Eqn

3.48, with the resulting wave solution in Eqn 3.49. It is important to initialize the

numerical simulation with the analytical solution of the wave in Eqn 3.49 at t = 0.

The input parameters for Fig 3.4 are provided in Table 3.4. As expected, difference

between the numerical and analytic solution is on the order of ∆t = 10−4s due to

the discretized addition of the forcing function at each time step.

f(x, t) =
12kβ

α

(
k3(4β − δ)− (2b2t+ b1)exp(b2t

2 + b1t+ b0)
)

sech2(k(x− δk2t)

−exp(b2t
2 + b1t+ b0))

(3.48)

U(x, t) = 12βk2sech2
(
k(x− δk2t)− exp

(
b2t

2 + b1t+ b0

))
(3.49)

For the example in Fig 3.5, a(t) is defined as a(t) = b2arctan(At) + b1t + b0,

where b2,b1,b0, and A are constants. This results in the dromion forcing term in Eqn

3.50, with the resulting wave solution in Eqn 3.51. It is important to initialize the
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Table 3.5: Input parameters for the analytic solution described Eqn 3.50 and Eqn
3.51 plotted in Fig 3.5.

k A δ α β b1 b0 b
1 3 4 2 1/4 -3 0 -1

numerical simulation with the analytical solution of the wave in Eqn 3.51 at t = 0.

The input parameters for Fig 3.5 are provided in Table 3.5. As expected, difference

between the numerical and analytic solution is on the order of ∆t = 10−4s due to

the discretized addition of the forcing function at each time step.

f(x, t) =
12kβ

α

(
k3(4β−δ)− bA

1 + A2t2
−b1

)
sech2(k(x−δk2t)−(barctan(At)+b1t+b0))

(3.50)

U(x, t) = 12βk2sech2
(
k(x− 4k2t)− (barctan(At) + b1t+ b0)

)
(3.51)

A pinned soliton solution was modeled from Wu [2], and the results are shown

in Fig 3.6. The force is f(x) = 2b1sech(Kx)2, where b1 = −0.1250 and K = 0.6124.

The pinned soliton is initialized at U0 with its solution of U(x) = asech(Kx)2, where

a = 0.5. The difference between the numerical and analytical solutions are shown

on the right hand side of Fig 3.6. The solution is highly stable, with the difference

between the numerical and analytical solutions on the order of 10−9 for a soliton

with amplitude = 0.5.
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(a) Numerical simulation (b) Numerical accuracy

Figure 3.4: (a) Reproduction of an analytic solution for a moving hyper-
bolic secant force defined as Eqn 3.48 and wave solution defined as Eqn
3.49 [58]. (b) Accuracy of the numerical solution.

(a) Numerical simulation (b) Numerical accuracy

Figure 3.5: (a) Reproduction of an analytic solution for a moving hyper-
bolic secant force defined as Eqn 3.50 and solution defined as Eqn 3.51
[58]. (b) Accuracy of the numerical solution.
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Figure 3.6: Reproduction of Wu [2] pinned soliton solution. The force
is f(x) = 2b1sech(Kx)2, where b1 = −0.1250 and K = 0.6124. Right:
Accuracy of the numerical solution.
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3.5 Orbital Debris Simulation Results

Having validated our simulations of the fKdV equation, we now simulate soli-

tons using ionospheric plasma and orbital debris characteristics. Using the CK

method in Eqn 3.44 and the forcing function in Eqn 3.34, we simulated the response

of the plasma to a charged debris object for the plasma regions in Table 3.1 and

debris radii ranging from 0.1−10 cm, for a maximum propagation time of 1800 TU.

The coefficients used are provided in 3.25. The circular orbit velocity from Table

3.1 was used for the debris velocity. Note that as G, the dimensionless debris size,

decreases, L and N are adjusted to ensure that the force is sufficiently resolved as it

is propagated with time, and that the wave does not reflect across periodic bound-

aries in the pseudospectral scheme. The domain in these simulations is normalized

as in Eqn 3.4. For all figures in this section, the x domain is in units of the Debye

length, and time is units of Debye length divided by the ion acoustic velocity (one

time unit (TU) is λD/Via). The solitons propagate along the debris velocity vector.

3.5.1 Low LEO

Low energy, high density plasma is found in the mid-latitude regions of LEO.

The dominant ion species is O+. The debris orbital velocity is much faster than

the ion acoustic velocity. In this regime, pinned solitons were produced, traveling at

the same speed as the orbital debris, as shown in Fig 3.7. For the Low LEO region

specified in Table 3.1 and a circular orbit velocity of 7.51 km/s, pinned solitons

were observed for the full range of debris sizes (0.1 - 10cm) examined. For 1mm
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and 1cm radius debris, the pinned soliton amplitude was approximately 1.04 and

1.14 times the unperturbed background density, respectively. Since pinned solitons

travel with the debris, they are not useful for on-orbit detection efforts since they

would not be sensed prior to collision. However, pinned solitons can be detected

from ground sensors using the same techniques used to measure plasma density

irregularities. Small scale plasma irregularities are frequently studied with existing

sensor technology, including ground based radar [60], ionosondes [61], and space-

based sensors [62, 63]. The amplitude of the density waves that can be detected

is less than 0.1% of the unperturbed density [63]. Therefore, the amplitude of the

pinned solitons is within the range of detectability of current sensors.

(a) Instantaneous Debris and Soliton Signature (b) Soliton Propagation with Time

Figure 3.7: Pinned soliton created by 5 cm radius charged debris in Low
LEO region of Table 3.1, with a circular orbit velocity.
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3.5.2 High LEO Region 1

As the altitude increases, the plasma density decreases. In this topside iono-

sphere environment, the dominant ion species is H+, which is much lighter than

O+. The ion acoustic velocity is comparable to the debris orbital velocity, and the

Debye length is comparable to the debris size. As opposed to pinned solitons which

travel with the debris, precursor solitons are produced, which advance ahead of the

debris, as shown in Fig 3.8 and Fig 3.10. Since the precursor solitons will advance

ahead of the debris, they will allow for the potential to detect the debris without

collision.

In our normalized system, the soliton amplitude displayed in Fig 3.7 - Fig

3.11 is the perturbed ion density normalized by the unperturbed ion density, U =

(n − n0)/n0. For example, Fig 3.11 has a soliton amplitude of 2, corresponding to

3x the unperturbed ion density in High LEO 2. In High LEO 2, the unperturbed

ion density is 104 cm−3, so the perturbed ion density will be 3x104 cm−3.

Fig 3.8 and Fig 3.10 show the solitons generated by 2.5 mm and 0.5 cm radius

debris using the κ-distribution coefficients in 3.25, α = 1.0051, β = 0.4925, γ = 0,

while Fig 3.9 shows a comparison to the Maxwellian distribution coefficients, α = 1,

β = 0.5, γ = 0. Using the κ distribution results in more wave steepening and less

wave dissipation, allowing for more precursor solitons to be produced in the 1400TU

simulation time shown. A discussion of how the soliton characteristics change as a

result of the debris characteristics is given in 3.7.
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(a) Instantaneous Plasma Response (b) Time Varying Plasma Response

Figure 3.8: Precursor solitons created by 2.5 mm radius charged debris
in High LEO Region 1 of Table 3.1, in an elliptical orbit with V = 1.2Via,
Φp,n = −0.93, and κ coefficients.

3.5.3 High LEO Region 2

In this region, the lower limit to the topside ionosphere plasma density is used.

Precursor solitons are produced, advancing ahead of the debris, as shown in Fig 3.11.

While the ion acoustic velocity is still comparable to the debris orbital velocity, the

Debye length is increasingly larger than the debris size. When compared to High

LEO Region 1, smaller debris do not produce precursor solitons in this region, and

the limits for debris size and velocity that produce precursor solitons are discussed

in 3.6.

3.5.4 Polar LEO

In Polar LEO 1, the plasma is high energy and low density. As a result, the ion

acoustic velocity exceeds the debris orbital velocity, and the Debye length is much
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(a) Instantaneous Plasma Response (b) Time Varying Plasma Response

Figure 3.9: Precursor solitons created by 2.5 mm radius charged debris
in High LEO Region 1 of Table 3.1, in an elliptical orbit with V = 1.2Via,
Φp,n = −0.93, and Maxwellian coefficients.

larger than the debris size. The forcing function in Eqn 3.34 approaches a Dirac

function moving downstream with respect to the plasma. It is possible to generate

ion acoustic waves with a Dirac function with a speed comparable to the ion acoustic

speed. However, the debris speed in this case is much slower than the ion acoustic

speed. Over the full range of sizes considered and the circular orbit velocity of 7.56

km/s for Polar LEO 1 in Table 3.2, low amplitude wake perturbations are present,

but no coherent waves were produced. Similar to Low LEO, pinned solitons are

produced in Polar LEO 2, since the orbital debris velocity is much greater than

the ion acoustic velocity. Precursor solitons are generated in Polar LEO 3, since

the orbital debris velocity is comparable to the ion acoustic velocity. However, the

range of velocities that can produce precursor solitons is reduced since the Debye

length is greater in Polar LEO 3 when compared to High LEO 1 and High LEO 2.

These limits are further discussed in 3.6. The limits for debris size and velocity that
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(a) Instantaneous Plasma Response (b) Time Varying Plasma Response

Figure 3.10: Precursor solitons created by 0.5 cm radius charged debris
in High LEO Region 1 of Table 3.1. The debris has a circular orbit
velocity, with Φp,n = −0.94, and κ coefficients.

produce precursor solitons in Polar LEO 2 and Polar LEO 3 are discussed in 3.7.

3.5.5 GEO

Like the Polar LEO 1, the plasma environment at GEO consists of high energy,

low density electrons. The ion acoustic velocity is much larger than the debris orbital

velocity, and the Debye length is much larger than the debris size for mm-cm sized

debris. Similar to results in the Polar LEO 1, no waves were produced.

3.6 Velocity Threshold for Precursor Soliton Generation

The ability for orbital debris to produce pinned or precursor solitons depends

on the relative velocity between the debris and the plasma medium. The transcritical

regime, where precursor solitons are produced that advance ahead of the debris,

resides between the subcritical and supercritical velocity limits. In the transcritical
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(a) Instantaneous Plasma Response (b) Time Varying Plasma Response

Figure 3.11: Precursor solitons created by 2.5 cm radius charged debris
in High LEO Region 2 of Table 3.1. The debris is in a circular orbit,
Φp,n = −0.96, and κ coefficients.

regime, the velocity of the debris that can produce precursor solitions is usually

referenced in literature as 1− 1.5x the velocity of the medium [9, 57]. This estimate

can be refined by deriving the velocity limits at the subcritical and supercritical

boundaries. The velocity thresholds required for soliton production can be derived

from Eqn 3.17, by solving for µ, the velocity of the plasma medium moving over

a static disturbance. The derivation also applies to a static plasma medium and a

moving disturbance, or in general, the relative velocity between the plasma and the

disturbance [44].

Since we are looking for solitary wave solutions of Eqn 3.17, the wave must

satisfy boundary conditions U(x = ±∞) = U ′(x = ±∞) = 0. By direct integra-

tion of Eqn 3.17, all solutions to the ordinary differential equation boundary value

problem can be written as [44]:

44



U(x) =


− 3µ

2α
sech2

√
−µ
4β

(x− L+) x > 0

− 3µ
2α

sech2
√
−µ
4β

(x− L−) x < 0

(3.52)

where L+ and L− are constants [44]. The forcing term requires a jump discontinuity

for U ′(x) at x = 0:

U ′(0+)− U ′(0−) =
A

2β
(3.53)

where the area of the Gaussian forcing disturbance is:

A = |Φp,n|G
√
π (3.54)

Recall that the spatial domain, x, and the debris width, G, are normalized

by the Debye length according to Eqn 3.4 and Eqn 3.35. The normalized plasma

potential,Φp,n, is nondimensionalized by the electron temperature, according to Eqn

3.33.

Rewriting Eqn 3.53 using Eqn 3.52 demonstrates that the given conditions

hold for a nonzero force only if L+ 6= L−, requiring that L+ = −L− [44]. The result-

ing expression leads to a relationship between the area of the forcing disturbance,

steepening coefficient, and dissipation coefficient [44, 64] for the supercritical limit:

Vsup = 1 +

(
3(α/2)2A2

16β

)1/3

(3.55)

At the subcritical limit, the boundary conditions become U(x = −∞) =
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U ′(x = −∞) = 0, and U(x) ≡ 0 when x ≤ 0 [44]. Thus, the relationship for the

velocity at the subcritical limit becomes:

Vsub = 1−

(
3(α/2)2A2

4β

)1/3

(3.56)

Thus, for a 0.5 cm radius debris in High LEO Region 1 and Debye length of

1.38 cm, the supercritical velocity limit is Vsup = 1.33Via. Note that the velocity

threshold is proportional to the area of the forcing function. Smaller debris will have

a smaller transcritical velocity range, and larger debris will have a larger transcritical

velocity range. For debris with 0.25 cm radius in High LEO Region 1, Vsup = 1.20Via

and Vsub = 0.68Via. The supercritical and subcritical velocities for the regions in

Table 3.1 and Table 3.2 are listed in Table 3.6 and Table 3.7. For GEO and Polar

LEO 1, the dominant ion could be oxygen or hydrogen depending on solar activity,

so Via is included for both species.

In Table 3.6 and Table 3.7, the transcritical velocity limits are listed in units

of the ion acoustic velocity. For V > Via, the debris is traveling faster than the ion

acoustic velocity, along the same direction. For 0 < V < Via, the debris is traveling

slower than the ion acoustic velocity, along the same direction. For V < 0, the

debris is traveling in the opposite direction as the ion acoustic velocity. Examples

of soliton generation with V < 0 are provided in Fig 3.12. In the left figure, solitons

are generated by charged debris with 2.5 cm radius. The debris is traveling to the

left along the x axis, Vd = −0.25Via and Φp,n = −1.08. In the right figure, solitons

are propagating from charged debris with 5 cm radius. The debris is traveling to
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Table 3.6: Normalized plasma potential, Φp,n, and orbital velocity range required
for 5 cm, 2.5 cm, 0.5 cm, 2.5 mm, and 0.5 mm radius debris to produce precursor
solitons in the mid-latitude ionosphere.

Low LEO High LEO 1 High LEO 2 GEO
Altitude (km) 700 1,200 1,400 35,786
Latitude (deg) 0-55 0-55 0-55 0-90

λD (cm) 0.83 1.38 4.36 23,504.00
Vd (Via) 6.16 1.26 1.24 0.04 / 0.01

5 cm radius debris
Φp,n -1.77 -1.20 -1.02 -0.92

Vsup (Via) 4.25 2.79 1.74 1.00
Vsub (Via) -4.16 -1.84 -0.18 1.00

2.5 cm radius debris
Φp,n -1.68 -1.08 -0.96 -0.92

Vsup (Via) 2.98 2.05 1.45 1.00
Vsub (Via) -2.14 -0.67 0.28 1.00

0.5 cm radius debris
Φp,n -1.40 -0.94 -0.92 -0.92

Vsup (Via) 1.60 1.33 1.15 1.00
Vsub (Via) 0.05 0.48 0.76 1.00

2.5 mm radius debris
Φp,n -1.35 -0.93 -0.92 -0.92

Vsup (Via) 1.37 1.20 1.09 1.00
Vsub (Via) 0.41 0.68 0.85 1.00

0.5 mm radius debris
Φp,n -1.33 -0.92 -0.92 -0.92

Vsup (Via) 1.12 1.07 1.03 1.00
Vsub (Via) 0.80 0.89 0.95 1.00
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Table 3.7: Normalized plasma potential, Φp,n, and orbital velocity range required
for 5 cm, 2.5 cm, 0.5 cm, 2.5 mm, and 0.5 mm radius debris to produce precursor
solitons in the high-latitude ionosphere.

Polar LEO 1 Polar LEO 2 Polar LEO 3
Altitude (km) 600 600 950
Latitude (deg) 55-90 55-90 55-90

λD (cm) 7,432.00 3.72 13.91
Vd (Via) 0.1 / 0.02 6.20 1.28

5 cm radius debris
Φp,n -0.92 -1.51 -0.94

Vsup (Via) 1.00 2.08 1.33
Vsub (Via) 0.99 -0.71 0.48

2.5 cm radius debris
Φp,n -0.92 -1.41 -0.93

Vsup (Via) 1.00 1.65 1.20
Vsub (Via) 1.00 -0.03 0.68

0.5 cm radius debris
Φp,n -0.92 -1.34 -0.92

Vsup (Via) 1.00 1.21 1.07
Vsub (Via) 1.00 0.66 0.86

2.5 mm radius debris
Φp,n -0.92 -1.33 -0.92

Vsup (Via) 1.00 1.13 1.04
Vsub (Via) 1.00 0.79 0.93

0.5 mm radius debris
Φp,n -0.92 -1.33 -0.92

Vsup (Via) 1.00 1.05 1.01
Vsub (Via) 1.00 0.93 0.98
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the left along the x axis, Vd = −0.25Via and Φp,n = −1.20.

(a) 2.5 cm radius debris (b) 5 cm radius debris

Figure 3.12: Solitons are generated from charged debris traveling in the
opposite direction as the plasma, left along the x axis, in High LEO
Region 1.

Orbital debris in High LEO with circular and elliptical orbits will fall within

the transcritical velocity threshold for a range of sub-centimeter debris sizes. For

example, the velocity of debris in circular orbit at 1,200 km altitude is 1.26Via. For

debris in an elliptical orbit with 1,200 km apogee and 200 km perigee, Vd = 1.22Via

at 1,200 km. Precursor solitons are expected for the subset of elliptical orbits that

fall within the supercritical and subcritical velocity limits in Table 3.6, with a wider

range of orbits falling within the velocity limits in the High LEO 1 region than other

altitude regions for mm-cm size debris. The soliton generation will be limited by

the amount of time the debris spends in the H+ dominated plasma.

Numerical simulations show that sub-centimeter orbital debris produces pinned

solitons in mid-latitude Low LEO regions. For circular orbits, the debris velocity

is much larger than the ion acoustic velocity in Low LEO. The debris velocity is
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comparable to the ion acoustic velocity for circular orbits in the High LEO region,

thus the creation of precursor solitons is possible in High LEO.

3.7 Precursor Soliton Characteristics

In order to evaluate the feasibility of detecting small orbital debris via soliton

detection, it is necessary to understand the properties of the generated solitons as

a function of debris size and speed. These properties include soliton height, width,

velocity, and generation interval. Solitons retain their velocity and shape in an

undamped system and the product of the amplitude with the square of its width

remains constant. Additionally, the generation interval is predictable depending on

the amplitude of the source [2, 44], potentially allowing for characterization of the

force that created them.

Dimensionless simulations were conducted to model the orbital debris soliton

amplitude, speed, width, and generation intervals in the Earth’s plasmasphere. Sim-

ulations were conducted for 21 dimensionless debris sizes ranging from G = 3.623 -

0.072 and 16 orbital debris velocities, expressed in terms of the supercritical velocity

of that debris size, ranging from V = 0.48Vsup to 1Vsup. Note that each debris size

has its own supercritical velocity. Computational parameters for the simulations are

as follows: N = 51,200, L = 800, dt = 0.001. The soliton properties were modeled

with biharmonic interpolation, with the data interpolated linearly along the veloc-

ity vector at 0.01 increments. The 3D fit for soliton speed is shown in Fig 3.13.

The accuracy of the 3D fit models was confirmed through comparison to solitons
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generated with absolute velocities.

Figure 3.13: Precursor soliton speed as a function of debris size and
velocity. Points represent data, and the surface represents a 3D fit.

Fig 3.14, Fig 3.15, and Fig 3.16 show the amplitude, width, speed, and time

to generate precursor solitons as a function of dimensionless debris size and veloc-

ity relative to the debris’ supercritical velocity. Table 3.8 shows dimensionalized

example debris sizes using High LEO Region 1 and High LEO Region 2 plasma

parameters from Table 3.1. As the plasma density increases, the Debye length de-

creases, allowing for a better resolved debris force and a wider transcritical range.

As shown in Fig 3.14, as the debris size decreases, the time required to generate a

precursor soliton becomes significantly longer and the transcritical velocity range is

smaller. As shown in Fig 3.15 and Fig 3.16, as the debris size decreases, the soliton
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speed and amplitude decrease, while the width increases. In Fig 3.14 - Fig 3.16,

the lower limit of velocities that produce precursor solitons varies from case to case

since the debris is traveling slower than the plasma and the solution can become

numerically unstable. Time units (TU) are defined by the plasma frequency. As an

example of time units, in High LEO Region 1, one TU = λD/Via = 2.4x10−6 s.

As shown in Fig 3.14, the time between precursor solitons ranges from 10−1000

TU, corresponding to a frequency of 0.4− 4 kHz, which is within the range of other

electromagnetic wave phenomena in the Earth’s plasmasphere caused by naturally

occurring energy transfer between hot or streaming plasma or man-made activity.

These wave phenomena include ion cyclotron whistlers, ELF hiss, LHR noise, elec-

tron whistlers, and UHR noise. Both ion cyclotron whistlers and electron whistlers

travel along magnetic field lines, LHR/UHR noise occur near the plasmapause, and

the ELF hiss is observed throughout the plasmasphere at all local times [65].

(a) First Soliton Generation Time (b) Intersolitonic Interval

Figure 3.14: (a) Time required to produce the first precursor soliton as
a function of debris size and velocity relative to the debris supercritical
velocity. (b) Time between generation of subsequent precursor solitons.
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(a) Soliton Amplitude (b) Soliton Width

Figure 3.15: (a) Precursor soliton amplitude as a function of debris size
and velocity relative to the debris’ supercritical velocity, where amplitude
is the perturbation of the ion density normalized by the unperturbed ion
density. (b) Precursor soliton width as a function of debris size and
velocity.

Fig 3.17 shows that as the absolute velocity of the debris increases, the am-

plitude of the soliton increases. Fig 3.18 shows that as the absolute velocity of the

debris increases, the speed of the soliton also increases. Note that this trend is only

valid for velocities below the supercritical velocity. Additionally, as the debris size

increases, the amplitude and speed of the soliton also increases. While Fig 3.14 -

Fig 3.16 show the soliton properties as a function of debris size and velocity relative

to the debris supercritical velocity, Fig 3.17 - Fig 3.21 show the soliton properties

as a function debris size for one absolute velocity. For a debris radius of 5 cm in

High LEO 1, G = 0.362. For a debris velocity of 1.1449Via, the soliton width is 4.5

cm, and the soliton speed is 1.57Via, and the normalized amplitude of the precursor

soliton is 1.74, which equates to a wave density of 2.74x105 cm−3, compared to the

background density of 105 cm−3.
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Figure 3.16: Precursor soliton speed as a function of debris size and
velocity relative to the debris supercritical velocity.

An important distinction between Fig 3.16 and Fig 3.18 can be seen when

comparing to the 3D plot in Fig 3.13. Fig 3.16 shows slices of Fig 3.13, taken at

varying values of G. However, since Fig 3.18 has an absolute velocity axis, it is

best represented as a slice of Fig 3.13 at an angle between the relative velocity and

debris width, where the absolute velocity at each debris size is a different relative

velocity with respect to the debris supercritical limit. Fig 3.18 is meaningful when

evaluating the feasibility of precursor soliton generation from debris in actual orbits,

since orbital velocity is independent of debris size.

For the regions in High LEO where precursor solitons can be generated, Via =

5.75 km/s, λD = 1 − 5 cm, and one TU ranges from 10−5 − 10−6 s. Therefore, the
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Table 3.8: Example debris sizes for Fig 3.14, Fig 3.15, and Fig 3.16 using the Debye
length for High LEO Region 1 (1.38 cm) and High LEO Region 2 (4.36 cm) from
Table 3.1.

G Debris Size (cm) Debris Size (cm)
in High LEO 1 in High LEO 2

0.072 0.100 0.314
0.178 0.246 0.776
0.180 0.249 0.785
0.181 0.250 0.789
0.199 0.275 0.868
0.254 0.350 1.107
0.362 0.500 1.578
0.725 1.000 3.161
0.906 1.250 3.950

generation of the first precursor soliton, as shown in Fig 3.20, occurs in a fraction

of a second. One can expect that precursor solitons will be generated as soon as

the debris enters the precursor generation region. Results in Fig 3.20 - Fig 3.21 are

consistent with the prediction that the time to generate solitons will become expo-

nentially longer as the debris velocity approaches the transcritical velocity limits.

(a) V = 1.1449Via (b) V = 1.0304Via

Figure 3.17: Precursor soliton amplitude in High LEO Region 1 as a
function of debris size for one velocity.
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(a) V = 1.1449Via (b) V = 1.0304Via

Figure 3.18: Precursor soliton speed as a function of debris size for one
velocity in High LEO Region 1.

(a) V = 1.1449Via (b) V = 1.0304Via

Figure 3.19: Precursor soliton width as a function of debris size for one
velocity in High LEO Region 1.
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(a) V = 1.1449Via (b) V = 1.0304Via

Figure 3.20: Time required to produce the first precursor soliton as a
function of debris size for one velocity in High LEO Region 1.

(a) V = 1.1449Via (b) V = 1.0304Via

Figure 3.21: Time between subsequent precursor solitons as a function
of debris size for one velocity in High LEO Region 1.
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3.8 Global Precursor Soliton Generation Trends

After investigating the size, charge, and speed of debris that will generate

precursor solitons for the nominal plasma conditions in Table 3.1 and Table 3.2, we

investigated precursor soliton generation using a global ionosphere plasma model

in order to find the limiting altitude and latitude for precursor soliton generation.

Using the global model, we queried plasma parameters at varying altitudes and

latitudes to find the range of possible debris orbital velocities and eccentricities

that would produce precursor solitons. From this investigation, we characterize the

percentage of each altitude where precursor solitons can be generated, as a function

of debris size.

3.8.1 Ionospheric Data

Ionospheric data was downloaded from the International Reference Ionosphere

(IRI) model [17], hosted on NASA’s Community Coordinated Modeling Center web-

site, in order to explore seasonal and diurnal variations in soliton production. The

IRI is an international project sponsored by the Committee on Space Research

(COSPAR) and the International Union of Radio Science (URSI) to produce an

empirical standard model of the ionosphere, based on all available data sources. For

a given location, time and date, IRI provides averages of the electron density, elec-

tron temperature, ion temperature, and ion composition in the ionospheric altitude

range from 60 km - 2000 km. The major data sources are the worldwide network of

ionosondes, incoherent scatter radars (Jicamarca, Arecibo, Millstone Hill, Malvern,

58



St. Santin), ISIS and Alouette topside sounders, and in situ instruments flown on

many satellites and rockets [17].

IRI data is available below 2000 km altitude. We downloaded ionosphere

properties at 200 km - 2000 km altitude in 100 km increments, and -90 to 90 degrees

latitude at 10 degree increments, for July 1, 2000 and January 1, 2000 to represent

plasma conditions in the summer and winter, respectively. For each date, the data

was downloaded at zero degree longitude for eight different local times: 12am/pm,

3am/pm, 6am/pm, and 9am/pm.

We interpolated between the altitudes and latitudes to calculate the ion acous-

tic velocity, the dominant ion species, and Debye length at each altitude/latitude

location. Then, for a range of sub-centimeter debris sizes, the supercritical and

subcritical velocities were calculated at each altitude/latitude queried according to

Eqn 3.55 and Eqn 3.56.

3.8.2 Corotation

The Earth’s plasmasphere rotates with the Earth in a rigid corotation [51, 53,

66]. The corotation velocity at a given altitude and latitude is given by:

Vco =
2π(RE +Ralt)cos(θlat)

tsd
(m/s) (3.57)

where Vco is in the eastward direction, RE is the radius of the Earth, Ralt is the

orbital altitude, θlat is the orbital latitude, and tsd = 86164 s is the number of

seconds in a sidereal day. The production of precursor solitons depends on the
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speed of the debris relative to the background plasma. If the orbital debris velocity

is parallel to the corotation direction, then the debris velocity relative to the ion

acoustic velocity is Vr = Vd − Vco. If the orbital debris velocity is at an angle with

respect to the corotation direction, then one must rotate both the debris velocity and

the corotation velocity to the same coordinate system, and calculate the magnitude

of the corotation velocity in the debris velocity direction. A precursor soliton will

be generated if:

Vsub ≤
Vd − ~Vco · V̂d

Via
≤ Vsup (3.58)

The angle between the debris velocity vector and the corotation velocity vector

determines the contribution of the corotation velocity in the debris velocity direction:

~Vco · V̂d = Vcocos(θco) (3.59)

Thus, Eqn 3.58 becomes:

VsubVia ≤ Vd − Vcocos(θco) ≤ VsupVia (3.60)

When corotation is included in the relative debris velocity, the range of valid

transcritical velocities is increased, allowing for precursors to be created in a larger

range of altitudes and latitudes. In general, in LEO, the ion acoustic velocity is less

than the velocity of a circular orbit. For example, for High LEO with Via = 5.75

km/s, the circular orbit velocity for debris is Vd,circ = 7.07 km/s at 1600 km alti-
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tude. When corotation is not included in the relative debris velocity, only elliptical

orbits with the debris at apoapsis are possible when Vd = Via, which may result in

periapsis below the Earth’s surface. The corotation speed is Vco = 0.58 km/s at 0◦

latitude at 1600 km altitude, so Vr = 6.49 km/s, assuming that the debris velocity

and corotation velocity are parallel. Since the circular orbit velocities in LEO are

typically higher than the ion acoustic velocity, and the transcritical velocity limits

are on the order of the ion acoustic velocity, the corotating ions in the background

plasma effectively increase the number of valid elliptical and circular orbits that

produce solitons.

For each orbit and queried altitude/latitude, if the relative debris velocity falls

within the supercritical and subcritical velocity limits for the debris size, precursor

solitons can be generated and the location is referenced in the subsequent figures as

a ‘precursor generation region’.

3.8.3 Orbits

For each debris size and altitude/latitude queried, a range of ten velocities

between the Vsup and Vsub was used to calculate the valid orbits at that point, using

Eqn 3.60. We define ‘valid orbits’ as orbits with an eccentricity 0 ≤ e < 1, periapsis

greater than the radius of the Earth (Rp > RE), and the magnitude of the flight

path angle less than 90◦. To find the range of eccentricities for real orbits that create

precursor solitons, we need to consider orbits for all orbital elements. To consider

a range of orbital debris velocity directions, the corotation velocity unit vector was
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defined in the IJK coordinate system, then rotated about each of the three axes in

30◦ increments, to represent potential orbital debris unit vectors. The angle between

the position and debris velocity vectors defines the flight path angle, γF:

sin(γF) = r̂ · V̂d (3.61)

where the magnitude of the position vector is r = RE +Ralt.

In order to determine the range of eccentricities that produce precursor soli-

tons, we combine the relationships for orbital angular momentum, h, and semilatus

rectum, p.

h = rVdcos(γF) =
√
µEp (3.62)

p = a(1− e2) (3.63)

Substituting Eqn 3.63 into Eqn 3.62 leads to an expression for eccentricity:

e =
(

1− (rVdcos(γF ))2

µEa

)1/2

(3.64)

where µE is the Earth’s gravitational parameter, and the semi-major axis, a, is given

by the vis-viva equation:

a =
(2

r
− V 2

d

µE

)−1

(3.65)
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3.8.4 Resulting Debris Velocity and Eccentricity

Precursor soliton generation regions were identified using the IRI ionospheric

data, the supercritical and subcritical velocity limits from Eqn 3.55 - Eqn 3.56,

and the orbital limits described in 3.8.3. Each altitude, latitude, date, and time

represents a grid point for which transcritical velocity limits and orbital parameters

were calculated. For all of the IRI data, Fig 3.22 shows the minimum and maximum

velocities as a function of debris size, that produce precursor solitons. Fig 3.23 shows

the resulting minimum and maximum eccentricities. Precursor generation regions

are shown in Fig 3.24 for 0.5 cm radius debris during the winter at 6am UTC on

January 1 2000, with the reader at the Sun. Altitude increases outward from the

Earth. The minimum and maximum debris velocities, Vd, for valid orbits shown in

Fig 3.24 are shown in Fig 3.25.

Fig 3.26 shows the plasma characteristics for the simulation in Fig 3.24, which

illustrates the requirements for the plasma conditions that must be met in order

to produce precursors in LEO. In general, the location of the precursor generation

region is first defined by the location of the dominant hydrogen ions, since the

ion acoustic velocity will be comparable to the orbital velocity. Next, the precursor

generation region will be defined by ratio of debris size to the Debye length, since the

dimensionless debris size defines the transcritical velocity threshold in that region.

Finally, the ion acoustic velocity is defined by the ion temperature, which increases

with increasing altitude.
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Figure 3.22: Minimum and maximum debris velocities, Vd, for valid
orbits in LEO as a function of debris size.

3.8.5 Likelihood of Soliton Generation

For all of the IRI simulation data downloaded (described in 3.8.1), the min-

imum and maximum latitude and altitude for precursor soliton generation were

calculated as a function of debris size, as shown in Fig 3.27. The plasma parame-

ters change dynamically due to corotation, diurnal variations, and the intersection

between the Earth’s rotational and magnetic axes, causing some asymmetry in the

precursor generation regions along the altitude and latitude lines, as shown in Fig

3.24 - Fig 3.27. The intersection between the rotational and magnetic axes is not

located at the center of the Earth. Since the center points do not coincide, ge-

64



Figure 3.23: Minimum and maximum eccentricities for valid orbits in
LEO as a function of debris size and altitude.

ographic and geomagnetic coordinates do not coincide, with differences shown in

[67]. Due to the difference in axes, the inner radiation belt reaches low altitudes,

down to 200 km, in a region known as the South Atlantic Anomaly. This region

spans from −50◦ ≤ θlat ≤ 0◦ geographic latitude and −90◦ ≤ θlat ≤ 40◦ geographic

longitude, and is more susceptible to high energy particles reaching low altitudes of

the ionosphere.

Since the plasmasphere corotates with the Earth, it is exposed to the same

diurnal alternation as the Earth’s surface. There is zero ionization in the plasmas-

phere at night, and ionization increases during the day [54]. While recombination

is low during the day, it increases at night. Additionally, at latitudes greater than
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approximately θlat = ±60◦ and altitudes above 2000 km, plasma is trapped along

closed magnetic field lines, which are filled by plasma traveling outward from the

ionosphere. The plasma is more dense on the morning side, after the recombina-

tion occurring at night. As a result, the plasmasphere on the night side extends to

6−7RE, while the maximum altitude on the day side plasmasphere is typically 4RE

[54]. In general, the plasma density is higher during the summer when compared to

winter, and higher during the day when compared to night, as shown in [41]. The

plasma density influences the transcritical velocity range, since the radius of the de-

bris is normalized by the Debye length, which depends on density. A higher density

will result in a larger transcritical velocity range, while a lower density will result in

a smaller range. The difference in precursor generation regions for summer/winter

and day/night using the IRI simulation results are shown in Fig 3.28.

The likelihood of precursor soliton generation was also calculated as a function

of altitude. For all of the IRI simulation data results, a grid of points at a given

altitude and latitude were generated. For eight different local times, 37 altitudes

between 200 - 2000 km, and 37 latitudes between −90◦ − 90◦, there are a total of

10,952 grid points for one day. For one altitude at all latitudes, there are a total of

296 grid points for one day. Two days, January 1, 2000, and July 1, 2000, were used

to represent two different seasons. For each grid point, a range of velocities between

the transcritical limits were considered, and the number of grid points for which

valid orbits are produced were counted. If a grid point produced a precursor soliton

for one or more velocities, it was counted once in the total number of grid points for

which precursor solitons are produced. The number of grid points where precursor
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solitons are generated for one altitude, divided by the total number of grid points for

that altitude, is referred to as the ‘percent of altitude’ where precursor solitons are

generated. Fig 3.29 shows the percentage of the grid points at a given altitude where

precursor solitons are created as a function of debris size for July 1, 2000. As the

debris size decreases, the transcritical velocity range decreases. The circular orbit

velocity decreases as the altitude increases and approaches the ion acoustic velocity,

allowing for debris with a small transcritical velocity range to produce precursor

solitons. Additionally, the plasma density is higher at equatorial latitudes than at

polar latitudes. The higher plasma density results in a smaller Debye length, which

increases the transcritical velocity range. Thus, small debris are more likely to

produce precursors at high altitudes and equatorial latitudes. Precursor solitons are

more likely to be generated in summer when compared to winter. For 0.5 cm radius

debris and considering all latitudes, 28% of the grid points with 2000 km altitude

produce precursor solitons in the summer. When considering the equator only, 0◦

latitude, 63% of the equator grid points at 2000 km altitude produce precursors for

0.5 cm radius debris in the summer.

As shown in Table 3.6, debris much smaller than the Debye length will have

Vsup = Vsub = Via. Therefore, even the smallest debris will produce precursor solitons

if the debris velocity equals the ion acoustic velocity. There are some regions in the

IRI simulation data where the ion acoustic velocity exceeds 6.5 km/s, approaching

the velocity of a circular orbit. These regions mostly occur during the Summer

at 9am and 3pm UTC, at altitudes greater than 1850 km and latitudes between

−60◦ ≤ θlat ≤ 40◦. After querying the IRI simulation data with the incorporation of
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corotating plasma as described in 3.8.2 and the orbital limits described in 3.8.3, the

range of valid orbital velocities is 6.42 − 6.88 km/s, and the range of eccentricities

is 0.03 − 0.22, where Vsup = Vsub = Via. At 2000 km altitude, these regions occur

in 10% of all latitudes and 18.75% of equatorial latitudes. When the ion acoustic

velocity approaches the velocity of a circular orbit, debris of any size will produce

precursor solitons. While there is no lower limit to the debris size that will produce

precursor solitons in these regions, the low amplitude of solitons produced by very

small debris may not be detectable with existing technology.

3.9 Debris Precursor Solitons in other Plasma Environments

After identifying the minimum and maximum altitudes and latitudes where

precursor solitons are generated in LEO in 3.8, we extend the analysis to other plan-

etary bodies, medium Earth orbit (MEO), and geosynchronous orbit (GEO) inside

the Earth’s plasmasphere wake. Additionally, we discuss extending the precursor

soliton simulations in 3D space, with two spatial dimensions and one wave amplitude

dimension.

3.9.1 Precursor Solitons about other Planetary Bodies

In addition to detecting orbital debris at Earth, there is also an interest in

detecting small, charged grains (e.g., dust ejected from a surface) at other planetary

bodies. We investigate the ability for sub-centimeter grains to produce precursor

solitons in other plasma environments. Solar wind plasma will interact with aster-
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oids and other planetary bodies, producing plasma sheath around airless bodies,

ionospheres around bodies with magnetic fields, and exospheres around bodies with

atmospheres. Generally, the ion temperature in an ionospheric or exospheric envi-

ronment will be lower than that of the free stream solar wind plasma, creating an

ion acoustic velocity within the regime of orbital velocities for solar system bodies.

Precursor solitons will be produced for a range of orbital velocities on the same

order as the ion acoustic velocity. In the case of Ceres, the dominant ion is water

in regions near the outgassing of water vapor from its surface, with an exospheric

density of 10 cm−3 that extends for several Debye lengths [68]. Ceres is one of the

asteroids most likely to produce solitons because since its large mass allows for a

fast circular orbit velocity, and the water vapor outgassing allows for the slowest

ion acoustic velocity. In the case of the Moon, an exosphere is present with den-

sity of approximately 10 cm−3 at 10 m altitude, and the exosphere extends to 50

m altitude [69]. The dominant ion in the lunar exosphere could be argon, neon,

or helium, depending on surface composition interaction with the solar wind [70].

For Europa, which has a magnetic field to confine the plasma and thus increase the

plasma density, the dominant ion is carbon dioxide, with densities of 5x103 cm−3 at

50 km altitude and 2x103 cm−3 at 200 km altitude [71].

Assuming a circular orbit, the minimum debris radius which can produce pre-

cursor solitons can be found by equating the orbital velocity to the transcritical

velocity limits in Eqn 3.55 - Eqn 3.56, which results in the following expressions for

debris radius, a, at the subcritical limit:
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a =


−4
√

3βλD
√

(Via − Vd)3/(βV 3
ia)/(3

√
πα|Φp,n|) if Via < Vd

4
√

3βλD
√

(Via − Vd)3/(βV 3
ia)/(3

√
πα|Φp,n|) if Via > Vd

(3.66)

Similarly, the minimum debris radius at the supercritical limit is:

a =


4
√

3βλD
√
−(Via − Vd)3/(βV 3

ia)/(3
√
πα|Φp,n|) if Via < Vd

−4
√

3βλD
√
−(Via − Vd)3/(βV 3

ia)/(3
√
πα|Φp,n|) if Via > Vd

(3.67)

Fig 3.30 shows the resulting minimum debris radii that can produce precursor

solitons as a function of electron temperature for Europa. The electron temperature

influences both the Debye length and ion acoustic velocity. For the cases of Ceres

and the Moon, assuming an electron temperature greater than 5 eV, objects must

have at least a meter radius to produce precursor solitons. Since the exosphere alti-

tudes about Ceres and the Moon are also on the order of meters, it is not expected

that precursor solitons will be generated. Since Ceres represents the best case for

precursor soliton production about asteroids, it is not expected that precursor soli-

tons will be produced about other asteroids. However, for electron temperatures on

the order of 1 eV, it is possible for sub-cm orbital debris to produce precusor soli-

tons about Europa. For an electron temperature of 10 eV at Europa, the minimum

debris radius for soliton generation is tens of centimeters.
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3.9.2 Precursor Soliton Generation in Medium Earth Orbit

The small debris population in MEO, which is defined at altitudes between

2000 - 38268 km (6RE), is not well understood, and NASA believes that previous in

situ measurements in LEO underestimate the amount of debris at higher altitudes

[6]. The ability for ground based radar to detect small debris objects decreases

rapidly with altitude. Currently, the minimum sized object that can be detected

with ground based radar and optical methods is 1 meter in diameter at 5000 km[72].

With the increase in number of satellites planned for MEO orbits, the likely increase

in debris objects in MEO will drive the need for understanding the growing debris

population in order to reduce the risk for satellite failure.

The transition between the oxygen to hydrogen dominated regions in plasma-

phere occurs below 2000 km altitude [36, 37, 38], with the transition region modeled

in the IRI data used in 3.8.4. While the IRI data is limited to 2000 km altitude,

precursor generation will likely extend above 2000 km altitude assuming that the

plasma density gradually changes at the same rate as the plasma in the topside

ionosphere, without geomagnetic disturbances [54]. The density of the plasmas-

phere extending into MEO depends on solar activity [73]. For our simulations we

assume the density of the quiet pre-disturbance plasmasphere. To examine the like-

lihood of precursor soliton generation in MEO, plasma density was assumed to vary

gradually as shown in [73], with a linear transition from 104 − 102 cm−3 between

2000 - 38268 km (6RE) altitude [54, 73] for latitudes −50◦ ≤ θlat ≤ 50◦. For polar

latitudes, it was assumed that the density decreases by 10 percent, and ranges from
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103−101 cm−3 between 2000 - 38268 km (6RE) altitude. Results were modeled with

typical ion temperatures in MEO of Te = Ti = 1 eV [54].

Given these plasma conditions, the potential for precursor generation extends

into MEO for sub-centimeter debris. Similar to the LEO results shown in 3.8.4, the

maximum altitude where precursor solitons are generated is shown in Fig 3.31. The

minimum altitude for all cases is 2000 km, which is the limiting altitude for MEO.

Precursor solitons are generated at all latitudes. A grid of points for 73 altitudes

between 2000 - 38268 km and 37 latitudes between −90◦ to 90◦ was used to calculate

the likelihood of soliton generation as a function in MEO, for a total of 2701 grid

points. For one altitude, there are 37 grid points for all latitudes. The number of

grid points where precursor solitons are generated for one altitude, divided by the

total number of grid points for that altitude, is referred to as the ‘percent of altitude’

where precursor solitons are generated. The percentage of altitude in MEO where

precursor solitons are generated as a function of debris size is displayed in Fig 3.32,

assuming Te = Ti = 1 eV. The minimum and maximum orbital eccentricity for a 0.5

cm radius debris is shown in Fig 3.33. The ion acoustic velocity is Via = 9.79 km/s

for Te = 1 eV, which is greater than circular orbit velocities in MEO. Therefore, the

resulting valid orbits for which precursor solitons are created have a high eccentricity.

Note that at 2000 km altitude, typically Te = Ti = 0.35 eV in the IRI data, in

contrast to the Te = Ti = 1 eV assumed in our calculations for MEO. Lower plasma

temperatures will decrease the ion acoustic velocity, thereby bringing it closer to the

circular orbit velocity, resulting in a larger precursor generation region and greater

range of eccentricities than predicted here.
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3.9.3 Precursor Soliton Generation inside the Earth Plasmasphere in

Geosynchronous Orbit

We also consider debris in geosynchronous orbit about the Earth. The debris

will cross into the Earth’s plasmasphere on the wake side of the Earth, which extends

to six Earth radii [54, 73]. The dominant ion in this plasma is hydrogen, with a

density of 10 cm−3, electron temperature of 1 eV [54, 73], and Debye length of 2.35

m. For geosynchronous orbit in the Earth’s plasmasphere, using Eqn 3.66-Eqn 3.67,

the object radius must be at least 92.5 cm in size to produce precursor solitons.

Thus, the dimensionless force width is G = 0.39, which is captured in our numerical

model.

3.9.4 Future Work: Soliton Propagation Direction and Distance

In this investigation, we have considered the propagation of plasma solitons

in a uniform, constant plasma environment. However, the plasma environment

changes with time of day and location. Future work will investigate the dissipation

of solitons produced by orbital debris as those solitons encounter varying plasma

environments. Solitons will propagate without collisional damping until they reach

an area of turbulence or a higher energy kappa distribution, which could have a

different α or β, and γ > 0. Additionally, the forcing function will change in width

due to the changing Debye length at varying altitudes. Future work will investigate

the propagation of solitons in regions where the damping coefficient transitions from
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γ = 0 to γ > 0.

Typically, the Boussinesq equations [44] are used to describe full water wave

theory, which allow for wave propagating in multiple directions, and wave influence

in the transverse direction as well. However, the KdV approximation is a simplifi-

cation of the Boussinesq equations and only admits waves traveling in one direction

[2, 44, 57]. From the dispersion relation, it is shown that the wave is dispersive and

propagates in only one direction, since there is only one sign for a given wavenumber.

Using the KdV approximation, it is expected that solitons generated from orbital

debris will propagate unidirectionally from the debris location [44]. Our current re-

sults model the solitons generated at the peak height of the Gaussian forcing term,

but it is possible that solitons will also be generated along the width of the Gaussian

as the height decreases, similar to the semicircular shape observed in [16] and recent

ocean wave simulations [74]. To understand the 3D (2+1) propagation of solitons,

with two spatial dimensions and one wave amplitude dimension, future work will

employ the forced Kadomtsev-Petviashvili (KP) equation, which extends the forced

KdV equation into three dimensions [75, 76]. The KP equation has been used to

model ion-acoustic waves in weakly magnetized or unmagnetized, cold, Maxwellian

plasmas [77, 78, 79].

3.10 Conclusions

An on-orbit, non-collisional method to detect sub-centimeter debris at a range

of altitudes would advance our understanding of the small debris population. For
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the first time, we have applied the forced KdV equation to charged orbital debris

using conditions defined by the Earth’s plasma environment, and simulated the

resulting plasma density solitons which propagate along the debris velocity vector.

We have demonstrated that small charged orbital debris can create pinned solitons

in the O+ dominated regions of mid-latitude low LEO, up to 800 km altitude, and

precursor solitons in H+ dominated high LEO, between 800 km - 2,000 km altitude.

Pinned solitons can be detected from ground sensors using the same techniques

used to measure plasma density irregularities. Precursor solitons could be detected

using on-orbit Langmuir probes, since the solitons advance ahead of the debris.

These solitons can be used to map previously non-trackable sub-centimeter orbital

debris, providing a new capability to characterize the small orbital debris population.

Results show that 0.5 cm radius debris can produce precursor solitons at altitudes

down to 1000 km, 0.5 mm radius debris can produce precursor solitons at altitudes

down to 1700 km, and micron sized debris can produce precursor solitons at altitudes

down to 1850 km. Precursor solitons are more likely to occur in mid-latitude regions,

which cannot be observed by current ground based radar and optical methods. We

have also developed equations for the maximum and minimum debris velocities that

will produce precursor solitons. Precursor soliton properties such as the amplitude,

width, speed, and frequency are predicted as a function of debris size, velocity and

location. The properties of precursor solitons that are outlined here enable the

design of orbital debris detection methods.
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Figure 3.24: Precursor soliton generation region (orange) for 0.5 cm
radius debris during Winter at 6am UTC. Distance outward includes
the Earth’s radius, 6378 km. The reader is located at the Sun. Left:
Longitude is 180◦. Right: Longitude is 0◦.
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Figure 3.25: Minimum and maximum debris velocities, Vd, for valid or-
bits of 0.5 cm radius debris during Winter 6am UTC time at 0◦ longitude.
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Figure 3.26: Precursor soliton generation region and plasma parameters
for a 0.5 cm radius debris during Winter 6am UTC time. Left: Longitude
is 180◦. Right: Longitude is 0◦. First row: Precursor generation region.
Second row: location of the dominant hydrogen ion region and the Debye
length in meters. Third row: the ratio of electron temperature to ion
temperature.
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Figure 3.27: Minimum and maximum altitude and latitude in LEO
where precursor solitons are generated as a function of debris size. The
limiting altitude in the ionospheric model used is 2000 km.
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Figure 3.28: Minimum and maximum altitude and latitude in LEO
where precursor solitons are generated as a function of debris size. Top
subplots shows the difference in altitude between July 1 2000 (summer)
and January 1 2000 (winter). The bottom subplots show the difference
between day and night.
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Figure 3.29: Percentage of altitude in LEO where precursor solitons are
generated as a function of debris size.
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Figure 3.30: Minimum debris radius that can produce precursor soli-
tons in the plasma environment about Europa, as a function of electron
temperature.
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Figure 3.31: Maximum altitude in MEO where precursor solitons are
generated as a function of debris size.
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Figure 3.32: Percentage of altitude in MEO where precursor solitons are
generated as a function of debris size.
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Figure 3.33: Minimum eccentricity for valid precursor-generating orbits
in MEO for 0.5 cm radius debris. The maximum eccentricity is 1 for all
cases.
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Chapter 4: Simulating Damped Solitons from Orbital Debris in One

Spatial Dimension

Assuming a uniform environment, solutions to the fKdV equation will result

in solitons that propagate forever without damping. However, a nonuniform envi-

ronment or kinetic collisions between solitons and ions or electrons in the plasma

could cause the solitons to dampen. Damped solitons will travel a finite distance,

which will define their detectability. In Chapter 4, we investigate the propagation

distance of orbital debris solitons in the presence of damping processes.

The content of this chapter has been accepted for publication as Truitt and

Hartzell, “Simulating Damped Ion Acoustic Solitary Waves from Orbital Debris,”

Journal of Spacecraft and Rockets, 2020. [80]

4.1 Damped Forced Korteweg–de Vries Equation

Since the ions in the Earth’s plasma environment are colder than the electrons,

we can approximate the ion motion with a plasma fluid model. The Boltzmann

equation is used to derive the plasma fluid equations. In the absence of damping

processes, the forced KdV (fKdV) equation has been derived from first principles

from the plasma fluid equations to describe perturbations in the ion density as a
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result of charged debris. Solitons are wave solutions to this equation when the

steepening and dispersion forces are balanced. This derivation is covered in more

detail in Chapter 3.

For IASWs, the coefficients to the KdV equation have been derived in literature

for complex plasmas with strong magnetic fields, dust, and superthermal electrons

with κ−distributions using a damped KdV (dKdV) equation as shown in Eqn 4.1.

The spatial and temporal variables, ξ and τ , are the derived stretched coordinates

of the initial boundary-value problem. The ξ domain is in units of the Debye length,

and τ is in units of Debye length divided by the ion acoustic velocity. One time unit

(TU) is λD/Via. The damped unforced KdV equation is:

∂U

∂τ
+ αU

∂U

∂ξ
+ β

∂3U

∂ξ3
+ γU = 0 (4.1)

Similarly, the damped forced KdV equation is:

∂U

∂τ
+ αU

∂U

∂ξ
+ β

∂3U

∂ξ3
+ γU =

1

2

∂f

∂ξ
(4.2)

In our normalized system, the soliton amplitude displayed is the perturbed ion

density normalized by the unperturbed ion density, U = (n− n0)/n0. For example,

a soliton with an amplitude of 2 corresponds to 3x the unperturbed ion density.

The increase of local ions is driven by the electrostatic potential surrounding the

debris. The KdV equation is widely used in the theory of long internal waves and

describes nonlinear waves, even when their amplitudes are not small, as long as the

amplitude is smaller than the wavelength [81, 82, 83]. The coefficients α and β
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define the weighting of the steepening and dispersion terms, and γ is the coefficient

for the additional damping term [45, 46, 47, 48]. We assume a cold plasma with

negligible dust density and a weak magnetic field. The velocity distributions of space

plasmas typically have a suprathermal tail and are best modeled with a kappa (κ)

distribution instead of a Maxwellian model [49, 50]. Applying the kappa distribution

estimated from recent Earth magnetospheric models (κ = 100) [52], the coefficients

are derived as α = 1.0051, and β = 0.4925 in Chapter 3.

Orbital debris with radius, a, will become charged due to the flow of electrons

and ions in the plasma environment, and create a perturbation in the electric po-

tential and density of the surrounding plasma. The forcing term, f , in the fKdV

equation is estimated as a Gaussian shape with Vd as the debris velocity. The debris

surface potential, Φs, defines the plasma potential, Φp, at a distance, r, away from

the debris, so that Φp = Φsexp(−r/λD). The normalized plasma potential is divided

by the electron temperature, Φp,n = Φp(e/kBTe), to represent the force amplitude,

and a/λD is the full width at half maximum [57]:

f(ξ, τ) = Φp,nexp
[
−
(ξ − Vdτ
a/λD

)2]
(4.3)

The ability for orbital debris to produce pinned or precursor solitons depends

on the relative velocity between the debris and the plasma medium. Pinned solitons

travel with the debris, at the same speed as the debris, and occur above the super-

critical limit where U(0) = U(∞). No solitons are produced below the subcritical

limit, where U(0) = U(∞) = 0. The transcritical region, where precursor solitons
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are produced, resides between the subcritical and supercritical limits, and can be de-

rived from Eqn 4.2 by solving for the relative velocity between the force and plasma

medium [44]. Precursor solitons advance ahead of the force. The velocity of the

force at the supercritical and subcritical limit, in units of the ion acoustic velocity,

Via, is defined as [44]:

Vsup = 1 +
(3(α/2)2A2

16β

)1/3

(4.4)

Vsub = 1−
(3(α/2)2A2

4β

)1/3

(4.5)

where the area of the Gaussian force is [57]:

A = |Φp,n|
√
πa/λD (4.6)

4.2 Numerical Methods

The Chan & Kerkhoven (CK) [27] pseudospectral scheme was used to simulate

the solitons. There are few examples that describe the application of a pseudospec-

tral method to the forced KdV equation, and we implement the Fourier transform

of the forcing function as outlined by Shen [44]. The method was written in Mat-

lab and applied to known analytic solutions to the fKdV [2, 57, 58]. Comparisons

between our simulations and undamped analytic solutions are provided in Chapter

3.
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In a pseudospectral scheme, the spatial domain [−L,L] is discretized into N

equidistant points and is normalized to [0, 2π]. Now, ∆ξ = 2π
N

and ξ = s(x + L),

where s = π
L

so that the solution is periodic from 0-2π.

For the Chan & Kerkhoven (CK) method, the finite difference approximation

is applied to the time derivative, and a leapfrog method is used for the spatial

derivatives, which reduces the number of Fourier transforms required for each time

step. Thus, Chan-Kerkhoven is recognized as the fastest method to date for solving

the KdV equations [28].

The numerical solution for the damped forced KdV equation becomes:

Un+1 = F−1
[ 1

1−∆tβis3k3
((1 + ∆tβis3k3)F (Un−1)−∆tαiskF (Un)2

−∆tγF (Un) + ∆tiskF (f))
] (4.7)

where F is the Fourier transform, F−1 is the inverse Fourier transform, and super-

scripts for U are in the temporal domain. Thus, n+1 = τ +∆τ and n−1 = τ −∆τ .

To implement the scheme in Matlab, we first initialized the space by defining

the input parameters α, β, N , L, Vd, f , ∆τ , τ0, and τfinal. Next, we defined the mesh

space, ξ, and the wave numbers, k. To reduce computation times for narrow forcing

functions that required a larger N to resolve the force, we defined a smaller L and

non-periodic boundary so that the wave solution does not wrap from the right to

left spatial boundaries.
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4.3 Damping Processes

After validating our pseudospectral scheme for the undamped KdV equation

in Chapter 3, both forced and unforced, we proceeded to incorporate damping pro-

cesses into the KdV equation, both forced and unforced. Typical damping processes

introduced into the damped KdV equation include (a) magnetosonic waves damped

by electron-ion collisions, (b) ion sound waves damped by ion-neutral collisions, (c)

ion sound waves with Landau damping, and (d) shallow water waves damped by

viscosity [48]. We will show in Section 4.3.1 that magnetic field effects on ion acous-

tic solitons created from orbital debris are negligible, so (a) does not apply. Since

(d) is specific to shallow water waves, the remaining damping sources that apply to

electrostatic ion acoustic solitons in plasma are ion-neutral collisions and Landau

damping.

In the case of ion-neutral collisions, where ϑ is the rate of ion-neutral collisions,

the damping coefficient, γ, is [46, 48]:

γ =
ϑ

2
(4.8)

In the case of Landau damping, the energy of particles in the plasma may

resonate with the energy of the ion acoustic wave, if the velocity of the particle is

comparable to the velocity of the wave, causing the particle to dampen the wave

[84]. For Landau damping, γ is defined by the principal component of the perturbed

distribution function [48]:
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γ =
P

2

∫ ∞
−∞

∂n

∂ξ′
dξ′

ξ − ξ′
(4.9)

4.3.1 Collisional Damping

It is necessary to compare the magnitude of the ion plasma frequency, ωpi, to

the ion cyclotron frequency, ωBi to see if kinetic collisions or magnetic field effects will

have an influence on the coefficients or velocity of the normalized forcing function,

[45, 46].

ωpi =

√
e2ni
εomi

(4.10)

ωBi =
eB

mi

(4.11)

where the Earth’s magnetic field strength, B, is 3x10−5 Tesla at the equator. In

Low LEO, the dominant ion is oxygen, with a mass of 2.67x10−26 kg, and a nominal

density of 2x105 cm−3 at 700 km altitude [34]. In High LEO, the dominant ion is

hydrogen, with a mass of 1.67x10−27 kg, and a nominal density of 105 cm−3 at 1200

km altitude [34]. Since ωBi � ωpi, the effect of the magnetic field is negligible and

1D ion acoustic wave solutions are sufficient. Similarly, for the electron cyclotron

frequency, ωBe = eB/me, and the electron plasma frequency, ωpe =
√

(e2ne)/(εome),

ωBe � ωpe. Thus, we can ignore magnetic field effects [53]. Future efforts should

incorporate the magnetization of electrons in the electron distribution function for

regions where the electrons are magnetized.
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To consider the influence of ion-neutral collisions on soliton production, we

consider the ion-neutral collision frequency in Eqn 4.12, taking into account the

number of neutrals, nn, the ion acoustic velocity, Via, and the velocity-dependent

cross section, σ(V ). The ion-neutral collision frequency, νin, is normalized by the

ion plasma frequency in our dimensionless system, so that ϑ = νin/ωpi in Eqn 4.1

and Eqn 4.8.

νin = nnViaσ(V ) (4.12)

To calculate the damping coefficient for ion-neutral collisions in Eqn 4.8, the

ion-neutral collision frequency in Eqn 4.12 is divided by twice the plasma frequency.

At altitudes below 400km, the neutral density exceeds the electron density [35, 54],

causing ion-neutral collisions [53], so γ > 0. However, above 400km, nn/ne decreases

[35], ion-neutral collisions are negligible and γ = 0. Since the plasmasphere is fully

ionized [54], nn/ne << 1 and γ = 0. Since the dissipation coefficient γ = 0,

we assume that solitons will propagate without collisional damping in a uniform

environment.

4.3.2 Landau Damping

Earth’s ionospheric plasma is a multi-component plasma containing positive

oxygen, hydrogen, and helium ion species, and negative electrons. To understand

the effects of Landau damping in the Earth’s plasma environment, we adopt Arshad

et al.’s model for Landau damping of ion acoustic waves due to electrons and ions
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in a kappa-distributed multi-ion plasma [85]. In the long wavelength limit and

assuming the same ion temperature, Tα1 = Tα2 = Ti, the damping rate normalized

by the wave frequency, ωr, is given as [85]:

γ

ωr
= −

√
π

8

Γ(κ+ 1)

Γ(κ− 1/2)

√
N12

0

23/2(κ− 1/2)3/2

[√
me

mi1

+
(n0i1

n0e

)
β3/2

[
1 +

βN12
0

2(2κ− 1)
+

3δ

(2κ− 3)N12
0

]−κ−1

+
(n0i2

n0e

)
β3/2

√
mi2

mi1

[
1 +

βN12
0

2(2κ− 1)
+

3δ

(2κ− 3)N12
0

mi2

mi1

]−κ−1
] (4.13)

where β = Te/Ti is the ratio of electron to ion temperature, N12
0 =

[
n0i1

n0e
+ n0i2

n0e

mi1

mi2

]
and δ =

[
n0i1

n0e
+ n0i2

n0e
(mi1

mi2
)2
]

are relationships between the dominant ion density,

n0i1, secondary ion density, n0i2, electron density, n0e, dominant ion mass, mi1,

and secondary ion mass, mi2. Normalized damping rates
∣∣∣ γωr

∣∣∣ as a function of

β = Te/Ti electrostatic ion acoustic waves are shown in Fig 4.1 for a plasma with

dominant/secondary ions O+/H+, representing Low LEO. A plasma with H+/He+,

representing High LEO, is shown in Fig 4.2. Results are provided for different ratios

of secondary ion density to total electron density. While not included here, Landau

damping estimates can be further refined by considering the time evolution effects

of localized electric fields on the velocity distribution function [86].
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Figure 4.1: Normalized damping rates
∣∣∣ γωr

∣∣∣ vs β = Te/Ti for different

ratios of secondary ion density to total electron density. The dominant
ion species is O+ and the secondary ion species is H+.

4.4 Decay Time for Solitons

To calculate the propagation distance for damped solitons, which propagate

along the debris velocity vector, we apply the known analytic expressions for the

damping of soliton features. It can be shown analytically that in the presence of

damping, soliton amplitude decays as A(t) = A0e
−2γt/3, soliton speed decays as

V (t) = V0e
−2γt/3, and soliton width grows as W (t) = W0e

γt/3 [2, 46]. To estimate

the amount of time it would take for a soliton to decrease to half of its initial

amplitude, we set A(t) = A0/2:
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Figure 4.2: Normalized damping rates
∣∣∣ γωr

∣∣∣ vs β = Te/Ti for different

ratios of secondary ion density to total electron density. The dominant
ion species is H+ and the secondary ion species is He+.

A(t) = A0/2 = A0e
−2γt/3 (4.14)

t50% =
3

2

ln(2)

γ
(4.15)

Similarly, the time for a soliton amplitude to decrease to 1% of its initial

amplitude is:

t1% =
3

2

ln(100)

γ
(4.16)
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where t50% and t1% are in units of 1/ωpi in our normalized coordinate system.

To derive the propagation distance of a damped precursor soliton, we integrate

the damped soliton speed over t1%:

x(t) =

∫ t%1

0

V0e
−2γt/3dt (4.17)

xt1% = −3

2

V0

γ

(
e−2γt1%/3 − 1

)
(4.18)

where V0 is the undamped soliton speed.

These decay times and propagation distances assume that solitons are prop-

agating in an unforced system. We will numerically calculate the decay times for

pinned and precursor solitons in the presence of a persistent force.

4.5 Application of Damping to Analytic Solutions

After validating our undamped fKdV equation in Chapter 3, and calculating

the damping coefficients in Section 4.3, we applied the damping coefficient to the

analytic solutions for forced and unforced solitons tested previously in Chapter 3,

and evaluated their damping against the analytic expressions for soliton damping in

Section 4.4. We observe that the analytic expressions for soliton damping apply to

unforced solitons and precursor forced solitons, however, pinned solitons damp at a

slower rate due to the presence of a persistent force.

Damping is applied to an unforced analytic solution from [1], which is a three
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soliton system of the form in Eqn 4.19 [59], with N = 3.

U(x, 0) = N(N + 1)sech2(x) (4.19)

A forcing term is not introduced to create the solitons, but an initial wave cre-

ates the system, U0 = 12sech2(x), with α = 6 and β = 1. The three solitons advance

ahead of the initial solution, and can be considered precursor solitons. As shown in

Fig 4.3, the three solitons decay according to the analytical damping solutions. For

γ = −0.5 and t = 2.1 TU, the analytical solution for damped soliton amplitude,

A, when compared to its initial amplitude, A0, is A/A0 = 0.4966, from Eqn 4.14.

For γ = −0.25, A/A0 = 0.7047. The analytical solution for the damped soliton

location is calculated from Eqn 4.18. Results for the analytical soliton amplitude

and location are plotted along with the damped simulations.

Next, a pinned soliton solution was modeled from Wu [2], and the results are

shown in Fig 4.4. The force is f(x) = 2b1sech(Kx)2, where b1 = −0.1250 and

K = 0.6124. The pinned soliton is initialized at U0 with its solution of U(x) =

asech(Kx)2, where a = 0.5. The estimated time to decay the soliton amplitude

to 1% for a given γ = −0.5 is 13.8 TU, from Eqn 4.14. Fig 4.4 shows the pinned

soliton after 13.8 TU in the presence of the persistent force, with and without the

damping coefficient applied. Results show that the pinned forced soliton does not

decay according to Eqn 4.16.

Thus, it has been shown that pinned forced solitons retain their amplitude

longer than what is estimated from Eqn 4.14, due to the presence of a persistent
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Figure 4.3: Reproduction of three soliton solution from [1]. Solitons are
in the presence of a persistent force at 2.1 TU, with and without the
damping coefficients applied and compared to analytical solutions.

force. However, the decay time for unforced solitons and precursor forced solitons

can be accurately predicted from Eqn 4.14. In the case of precursor forced soli-

tons, it is expected that a series of precursor solitons can be generated, and each

soliton will decay according to its own lifetime. Additionally, it may be possible

to generate precursor solitons from pinned solitons in a damped and forced system,

as demonstrated in literature for other damped and forced systems [87]. Ghai et

al. investigated shock structures evolving from an initial IASW in the presence of

Landau damping, motivated by observations in the Earth’s magnetosphere by the

Geotail spacecraft [87]. We will assess whether pinned solitons from orbital debris
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Figure 4.4: Reproduction of Wu [2] pinned soliton solution. The pinned
soliton is in the presence of a persistent force is displayed at 13.8 TU,
with and without the damping coefficient γ = −0.5 applied.

in Low LEO can create precursor solitons in the presence of Landau damping in 4.6.

4.6 Damped Solitons in Nominal Plasma Conditions

After evaluating our pseudospectral method for damped precursor solitons

using Eqn 4.2, we downloaded a global ionospheric model in order to estimate the

propagation distances for damped precursor solitons in LEO. In Chapter 3, plasma

properties in LEO were downloaded from the International Reference Ionosphere

(IRI) data [17] to predict the altitudes, latitudes, and local times where precursor

solitons are generated for a variety of debris sizes. From the IRI data, the normalized
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damping rate γ
ωr

in Eqn 4.13 can be estimated. The primary and secondary ion

masses and temperature, as well as the electron density and temperature, are used

to calculate β, N12
0 , δ, and ωpi. For all figures in this section, the x domain is in units

of the Debye length, and time is units of Debye length divided by the ion acoustic

velocity. One time unit (TU) is λD/Via.

To apply the damping rate in our normalized system, we multiply the Eqn

4.13 by the wave frequency, ωr, and divide by the ion plasma frequency, ωpi, so that

the damping coefficient applied to the system is γ/ωpi. For the case of precursor

solitons, the wavelength is the distance between subsequent solitons. The wave

frequency is the inverse of the time between subsequent solitons, t12, which depends

on the force amplitude and speed. In our normalized system, where ωpi = Via/λD,

the normalized wave frequency for precursor solitons is:

ωr,n =
ωpi
t12

(4.20)

4.6.1 Pinned Solitons

Damped pinned solitons were simulated using the IRI data for January 1, 2000,

at 6pm UTC, 500 km altitude, 0◦ latitude. In this region, oxygen is the dominant

ion and the orbital debris travels much faster than the velocity threshold where

precursor solitons are generated. Debris sizes ranging from 1mm-1cm were tested

for a circular orbit. Additional damping coefficients were tested for each simulation,

including the estimated γ/2, γ, and 2γ. For all simulations of the damped, pinned
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soliton, the damping did not lead to precursor solitons.

Intuitively, one can predict that precursor solitons due to orbital debris will

not be produced from pinned solitons with the additional presence of Landau damp-

ing. Pinned solitons are created when the steepening and dissipation forces were

balanced. In order to generate precursor solitons from a pinned soliton, the steepen-

ing forces will need be greater than the dispersion and dissipation forces. However,

with the addition of Landau damping, the dissipation and dispersion forces are now

greater than the steepening force.

Through all of the damped pinned solitons simulations, the pinned solitons

do not experience significant damping due to the presence of the persistent debris

force at the soliton location, with an average difference in amplitude between the

undamped and damped pinned soliton of 0.7%. Thus, it is expected that pinned

solitons will continue to propagate until the debris enters a region where pinned

solitons cannot be created.

Small scale plasma irregularities are frequently studied with ground based

radar [60], ionosondes [61], and space-based sensors [62, 63]. The amplitude of the

density waves that can be detected is as small as 0.001% of the unperturbed den-

sity [63]. Damped pinned solitons from sub-centimeter orbital debris are above the

detection threshold, with amplitudes between 1.04 − 1.14 times the unperturbed

background density for debris sizes between 1mm-1cm radius. The spatial resolu-

tion of these sensors will need to also be considered in the future design of soliton

detection methods.
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4.6.2 Precursor Solitons

Fig 4.5 shows an example of a precursor soliton due to 1 cm radius orbital

debris in LEO, in a circular orbit at 2000 km altitude. Plasma parameters are from

IRI data [17] at 0◦ longitude, 6pm UTC on July 1, 2000. The Debye length is

λD = 3.63 cm, and the ion plasma frequency is ωpi = 1.46x105 s−1. The soliton

speed is V0 = 1.38Via, and the time between solitons is t12 = 45.7 TU. The wave

frequency is ωr = 3.7x103 s−1. The estimated normalized damping coefficient is

γ/ωr = −0.039, with γ/ωpi = −9.9x10−4, and t1% = 6.9x103 TU, for a propagation

distance xt1% = 405 m. Results are shown at 500 TU for zero damping in blue

and γ 6= 0 in red. As displayed, for precursor solitons advancing ahead of the

force, soliton amplitude decays as A(t) = A0e
−2γt/3 and soliton width grows as

W (t) = W0e
γt/3 [2, 46]. The difference between each of the seven precursor solitons

and the damped analytical solution was calculated. The average difference between

the analytical and the numerical predictions of for the damped soliton amplitude is

0.025, which is 2% of the undamped soliton amplitude. The hydrogen ion density

from the IRI dataset is 1.23x104 cm−3, so the density uncertainty corresponds to

531 cm−3. The average difference between the analytical soliton and the numerical

simulation for the damped soliton location is 0.013. In this example, the location

uncertainty corresponds to 0.05 cm.
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Figure 4.5: Precursor soliton due to 1 cm radius orbital debris in LEO,
in a circular orbit at 2000 km altitude. Results are shown at 500 TU for
zero damping in blue and γ in red.

4.7 Global Model of Damped Precursor Solitons

In order to calculate typical propagation distances for orbital debris precursor

solitons in LEO, we applied the calculated damping coefficients from the global iono-

spheric model in 4.6 to a variety of debris sizes and velocities. Precursor generation

regions were identified using the IRI ionospheric data, as well as the supercritical

and subcritical velocity limits from Section 4.1. The resulting orbital debris veloci-

ties were then filtered to identify the velocities for which real orbits could exist, with

an eccentricity less than 1 and periapsis greater than the radius of the Earth [34].

Next, we calculated the minimum, median, and maximum propagation distance for
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the damped precursor solitons in order to evaluate the detectability of the solitons

with existing sensor technology. Since the amplitude of the density waves that can

be detected is as small as 0.001% of the unperturbed density [63], we propagate the

plasma waves to xt1% using Eqn 4.18, the distance where the amplitude decays to

1% of the initial amplitude.

As shown in Eqn 4.18, damped soliton propagation distance depends on the

soliton speed and amplitude. The normalized damping coefficient, as shown in Eqn

4.13, depends on the soliton generation interval or wave frequency, as well as the

mass, temperature, and density of the ion species in the plasma. It has been shown

that as the debris size decreases, the time required to generate a precursor soliton

becomes exponentially longer and the transcritical velocity range is smaller. Also,

as the debris size decreases, the soliton speed and amplitude decrease, while the

width increases [34]. Calculating the damped soliton propagation distance requires

prior knowledge of the undamped soliton. Thus, the damped soliton propagation

distance in Eqn 4.18 requires the undamped soliton speed and amplitude, and the

damping coefficient Eqn 4.13 requires the soliton wave frequency.

To efficiently estimate soliton propagation distances in the global model, we

created dimensionless 3D models for undamped soliton speed, amplitude, width,

and frequency as a function of debris size and velocity. Simulations were conducted

for 21 dimensionless debris sizes ranging from a/λD = 3.623 - 0.072 and 16 orbital

debris velocities, expressed in terms of the supercritical velocity of that debris size,

ranging from V = 0.48Vsup to 1Vsup. Note that each dimensionless debris size has

its own supercritical velocity. The soliton properties were modeled with biharmonic
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interpolation [34].

Plasma conditions were downloaded from the International Reference Iono-

sphere (IRI) model [17] in order to identify regions where precursor solitons could

be generated in Chapter 3. IRI data is limited to 2000 km altitude. We down-

loaded data collected from 200 km - 2000 km altitude at 100 km increments, and

−90◦ to 90◦ latitude at 10◦ increments, on two dates to represent plasma conditions

during summer and winter: July 1, 2000, and January 1, 2000. For each date, we

downloaded data at 0◦ longitude at eight difference local times: 12am/pm, 3am/pm,

6am/pm, and 9am/pm. We created a grid of plasma parameters in altitude, lati-

tude, and time. There are 10,952 grid points for each date, and 296 grid points per

altitude per date.

Using the dimensionless 3D models for soliton generation interval and soliton

speed, we calculated the normalized soliton wave frequency, which is required for

Eqn 4.13. Along with the plasma conditions provided by the IRI model at each

grid point, we calculated the damping coefficient from Eqn 4.13. Finally, with the

dimensionless 3D model for soliton speed as a function of debris size and debris

velocity, we calculated the propagation distance for each soliton using Eqn 4.18.

The resulting propagation distances shown in Fig 4.6 for a 0.5 cm radius

debris. In general, the location of the precursor generation region is found in the

region of dominant H+ ions, since the ion acoustic velocity will be comparable

to the orbital velocity. Since the transcritical velocity threshold is defined by the

dimensionless debris size, the precursor generation region will be defined by ratio

of debris size to the Debye length. Finally, the ratio of the electron temperature to
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the ion temperature will inform the damping coefficient according to Eqn 4.13.

For all of the IRI simulation data, the minimum, median, and maximum pre-

cursor soliton propagation distances in the presence of Landau damping, x(t1%), were

identified as a function of debris size, as shown in Fig 4.7. For debris radius 0.5 mm,

the minimum precursor propagation distance is 6 km, the median is 10 km, and the

maximum is 49 km. The maximum propagation distances for each radii occurred

in small regions of the IRI datasets where the plasma density was much lower than

the surrounding regions.

In order to assess feasibility of detecting damped precursor solitons, the like-

lihood of precursor solitons to be created and propagate over 1 km, 5 km, and 10

km was also calculated as a function of altitude. Each altitude, latitude, date and

local time represents one grid point that was queried as a function of debris size.

For each grid point and debris size, a range of velocities between the transcritical

limits were considered, and the number of grid points for which valid orbits are

produced were counted. If a grid point produced a precursor soliton for one or more

velocities, it was counted once in the total number of grid points for which precursor

solitons are produced. For all of the IRI simulation data results, Fig 4.8 shows the

percentage of grid points for a given altitude where precursor solitons are created

and propagate over 1 km, 5 km, and 10 km as a function of debris size according to

Eqn 4.18, for July 1, 2000. For 0.5 mm radius debris, 20% of the grid points with

2000 km altitude and all latitudes produce precursor solitons that propagate over 5

km. When considering the equator only, results show that 50% of grid points along

the equator at 2000 km altitude produce precursors for 0.5 mm radius debris that
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propagate over 5 km.

4.8 Global Variations in Landau Damping

Landau damping, as calculated in Section 4.3, depends on the relative tem-

perature between the electrons and ions. It has been shown that the temperature

difference between electrons and ions in the ionosphere depends on the season and

time of day, with Te − Ti ≈ 1300K, 900K at 500km altitude in the summer during

day and night, respectively, and Te − Ti ≈ 1000K, 400K at 500km altitude in the

winter during day and night, respectively [88].

For the IRI data [17] used in this study, variations in β and |γ/ωr| are dis-

played in Fig 4.9 - Fig 4.11. For the mid-latitude and high altitude regions where

precursor solitons can be generated, on average β is lower during the summer when

compared to winter, and lower during the day when compared to night. Therefore,

|γ/ωr| is also lower during the summer when compared to winter, and lower dur-

ing the day when compared to night, resulting in a lower damping coefficient and

larger propagation distances. Typically, over all sub-centimeter debris sizes, solitons

propagate 1-2km farther in the summer when compared to winter, and day when

compared to night.

4.9 Influence of Plasma Variations on Propagation Distance

The steepening and dispersion coefficients of the KdV equation, α and β,

are defined by the kappa-distribution of the Earth’s plasmasphere, and will remain
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constant within the plasmasphere. With the addition of the damping coefficient,

γ, we will assess whether the damping coefficient and/or forcing term will change

over a precursor soliton’s propagation distance. If so, it will be necessary to use the

variable KdV equation [89], which accounts for changing coefficients.

Using the propagation distance calculated using Eqn 4.18 for each queried

altitude/latitude and radius in the global simulation results displayed in Section

4.7, we calculated the variation in plasma properties, in increments of one Debye

length, over the maximum propagation distance. Since the forcing term is normal-

ized by the Debye length, a change in the Debye length would change the width of

the normalized force. Additionally, since β = Te/Ti, ne, and ni drive the damping

coefficient (γ), a change in these plasma properties would change the damping co-

efficient. With the data downloaded from IRI, we are able to model variations in

plasma parameters in radial and latitudinal propagation directions. However, lon-

gitudinal variation cannot be modeled since we have downloaded data at only eight

local times. Future efforts could conduct the longitudinal variation measurements

with a similar methodology.

For each queried altitude/latitude and maximum propagation distance, xt1%

from Eqn 4.18, incremental changes in the plasma properties were calculated in the

radial and latitudinal directions, both inward/outward for radial propagation, and

northward/southward for latitudinal propagation. For radial propagation, the lati-

tude remains constant, θlat,1 = θlat,0, and the altitude changes according to Eqn 4.21-

4.22. For latitudinal propagation, the altitude remains constant, and the latitude

changes according to Eqn 4.23-4.24. The geometry for latitudinal propagation is an
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isosceles triangle with base xt1% and leg r. Due to limitations in altitude/latitude

from the IRI data, propagation was bounded by altitude r = [200, 2000] km.

r1+ = r0 + xt1% (4.21)

r1− = r0 − xt1% (4.22)

θlat,1+ = θlat,0 + 2arcsin

(
xt1%
2r0

)
(4.23)

θlat,1− = θlat,0 − 2arcsin

(
xt1%
2r0

)
(4.24)

We calculate the percentage of propagating solitons that experience more than

a 1% variation in plasma parameters. For each radius, altitude, latitude, and local

time queried, a maximum soliton propagation distance has been calculated for each

grid point. The variation in plasma parameters across that distance was observed

for all grid points where precursors are produced. The percentage of grid points

where precursors are produced, and propagate radially across a distance where the

Debye length changes by more than 1%, is displayed as a function of debris radius

in Fig 4.12. For latitudinal propagation, no cases were found where the Debye

length changed more than 1%. As shown, fewer than 1% of the predicted solitons

experience significant variations in the plasma environment. Thus, the variable KdV

is not required to accurately model the precursor soliton propagation.
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Figure 4.6: Precursor soliton generation region and propagation dis-
tance, xt1% , for a 0.5 cm radius debris on January 1, 2000, at 6am UTC
and 0◦ longitude.

111



Figure 4.7: Minimum, median, and maximum soliton propagation dis-
tance by orbital debris size generated across all plasma environments in
the IRI model data detailed in Section 4.7.
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Figure 4.8: For July 1, 2000, the percentage of grid points for a given
altitude in LEO where the precursor solitons propagation distance is
greater than 1 km (left), 5 km (center), and 10 km (right), as a function
of debris size.
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Figure 4.9: Average β and |γ/ωr| for all IRI data across different local
times, as a function of altitude and latitude.

Figure 4.10: Difference in β at each grid point for Average Winter -
Average Summer (left) and Average Night - Average Day (right).
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Figure 4.11: Difference in |γ/ωr| at each grid point for Average Winter
- Average Summer (left) and Average Night - Average Day (right).

Figure 4.12: As a function of debris size, the percent of grid points where
the median and maximum change in Debye length is greater than 1%,
assuming radial propagation.
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4.10 Conclusions and Future Work

We derived the propagation distance of orbital debris precursor solitons in the

presence of Landau damping. The median propagation distance for these solitons

is 10 km for 0.5 mm radius debris, and 6 km for 0.5 cm radius debris. Propagation

distances are influenced by seasonal and diurnal effects, with longer propagation

distances during the summer when compared to winter, and day when compared to

night. We have shown that the plasma properties do not change more than 1% over

the maximum propagation distances, thus the KdV coefficients will remain constant

and the variable KdV equation is not needed for accurate modeling of these solitons.

These propagation distances are necessary to assess the detectability of precursor

solitons via satellite or ground observations, the time required to map detectable

debris, and the number of sensors needed for mapping in a given mission window.

116



Chapter 5: Simulating Damped Solitons from Orbital Debris in Three

Spatial Dimensions

Chapter 3 demonstrates that one dimensional simulations are sufficient to

model the orbital debris solitons, which propagate along the debris velocity vec-

tor. However, in order to fully understand the soliton signatures in a 3D spatial

environment, it is necessary to extend the dfKdV model to three spatial dimen-

sions. In Chapter 5, as submitted for publication, we will apply the Damped Forced

Kadomtsev-Petviashvili Equation (dfKP), which is a natural extension for waves

described by the dfKdV equation.

The content of this chapter has been submitted for publication as Truitt and

Hartzell, “3D Kadomtsev-Petviashvili Damped Forced Ion Acoustic Solitary Waves

from Orbital Debris,” Journal of Spacecraft and Rockets, 2020.

5.1 Damped Forced Kadomtsev-Petviashvili Equation

The Kadomtsev-Petviashvili (KP) equation was first written in 1970 Boris

Kadomtsev and Vladimir Petviashvili as a natural two-dimensional generalization of

the one-dimensional KdV equation, which was derived by Korteweg and De Vries in

1895 [21]. The KP equation intuitively describes the stability of 1D solitons against
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transverse perturbations [90], and requires that the wave propagation direction is

in the X direction, with only minimal variations of solutions in the Y direction.

As a result, oscillations in the Y direction tend to be of small deviation [91]. The

KP equation has been used to describe the behavior of ion acoustic waves in space

plasma [78, 92], with analytic solutions studied in [76, 90]. To understand the

application of the Damped Forced KP equation to orbital debris, we start with the

one dimensional Damped Forced KdV equation.

The Damped Forced KdV equation in 5.1 was derived from the plasma fluid

equations for ion acoustic solitary waves, U, created by the presence of a charged

orbital debris force, f, [34]:

∂U

∂τ
+ αU

∂U

∂ξ
+ β

∂3U

∂ξ3
+ γU =

1

2

∂f

∂ξ
(5.1)

where α, β, and γ are the steepening, dispersion, and damping coefficients, respec-

tively.

The system is normalized so that the soliton wave is the perturbed ion density

normalized by the unperturbed ion density, U = (n − n0)/n0. The spatial and

temporal variables, ξ and τ , are the stretched coordinates of the initial boundary-

value problem [34]. The ξ domain is in units of the Debye length, and the time

domain τ is in units of plasma frequency, ωpi (Debye length, λD, divided by the

ion acoustic velocity, Via). Solitons are wave solutions to this equation when the

steepening and dispersion forces are balanced.

The one dimensional Damped Forced KdV equation with Landau damping
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extends to 3D as the Damped Forced Kadomtsev-Petviashvili equation [93]:

∂

∂ξ

(
∂U

∂τ
+ αU

∂U

∂ξ
+ β

∂3U

∂ξ3
+ γU

)
+ µ

(
∂2U

∂η2
+
∂2U

∂ζ2

)
=

1

2

∂2f

∂ξ2
(5.2)

where µ is the dispersion coefficient for all transverse directions, and η and ζ are

the stretched coordinates in the Y and Z directions, respectively.

The steepening and dispersion coefficients are dependent on the plasma ve-

locity distribution. Earth’s space plasma is best modeled as a kappa (κ = 100)

distribution instead of a Maxwellian model due to a suprathermal tail of high en-

ergy electrons [49, 50]. The coefficients are derived as α = 1.0051, and β = 0.4925,

according to Eqn 5.3-5.5 [34, 45, 46], where n0i and n0e are the unperturbed ion and

electron densities, and zi is the ion charge state.

α =
3aκ(1/ρ

1/2)− 2bκ(ρ
1/2/zi)

2a
3/2
κ

(5.3)

β =
ρ1/2

2a
3/2
κ

(5.4)

where

aκ =
2κ− 1

2κ− 3
bκ =

4κ2 − 1

2(2κ− 3)2
ρ =

z2
i n0i

n0e

(5.5)

In Chapter 4, we identified that Landau damping was the dominant damping
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process, and applied Arshad et al.’s model for Landau damping of ion acoustic

waves due to electrons and ions in a kappa-distributed multi-ion plasma. In the

long wavelength limit and assuming the same ion temperature, Tα1 = Tα2 = Ti, the

damping rate normalized by the soliton wave frequency, ωr, is given as [85]:

γ

ωr
= −

√
π

8

Γ(κ+ 1)

Γ(κ− 1/2)

√
N12

0

23/2(κ− 1/2)3/2

[√
me

mi1

+
(n0i1

n0e

)
β3/2

[
1 +

βN12
0

2(2κ− 1)
+

3δ

(2κ− 3)N12
0

]−κ−1

+
(n0i2

n0e

)
β3/2

√
mi2

mi1

[
1 +

βN12
0

2(2κ− 1)
+

3δ

(2κ− 3)N12
0

mi2

mi1

]−κ−1
] (5.6)

where β = Te/Ti is the ratio of electron to ion temperature, N12
0 =

[
n0i1

n0e
+ n0i2

n0e

mi1

mi2

]
and δ =

[
n0i1

n0e
+ n0i2

n0e
(mi1

mi2
)2
]

are relationships between the dominant ion density,

n0i1, secondary ion density, n0i2, electron density, n0e, dominant ion mass, mi1, and

secondary ion mass, mi2. To apply the damping coefficient to the normalized system,

we multiply Eqn 5.6 by the soliton wave frequency, ωr, and divide by the plasma

frequency, ωpi. While not included here, Landau damping estimates can be further

refined by considering the time evolution effects of localized electric fields on the

velocity distribution function [86].

The surface potential, Φs, of orbital debris with radius, a, will create a pertur-

bation in the surrounding plasma density. The plasma potential, Φp, at a distance

r away from the debris is calculated as Φp = Φsexp(−r/λD). The debris force de-

fined by the surface potential of the debris, a negative charge which will attract
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an increased number of ions. The debris surface potential force is described as a

Gaussian [57] in Eqn 5.7 with an amplitude equal to plasma potential normalized

by the by the electron temperature, Φp,n = Φp(e/kBTe) [34]:

f(ξ, τ) = Φp,nexp
[
−
(ξ − Vdτ

G

)2]
(5.7)

where Vd is the debris speed in units of Via, λD is the Debye length, and G = a/λD.

The creation of solitons produced in a system described by Eqn 5.1 depends

on the relative speed of the force with respect to the fluid medium. In our case,

it depends on the relative speed of the debris with respect to the plasma ions.

When the relative speed falls above the supercritical limit, pinned solitons will be

produced, which travel with the debris at the debris speed. When the relative

speed falls below the subcritical limit, no solitons will be produced. When the

relative speed is between the subcritical and supercritical limits, precursor solitons

are produced, which advance ahead of the debris along the debris velocity vector.

The velocity of the debris at the supercritical and subcritical limit, in units of the

ion acoustic velocity, Via, is defined as [44]:

Vsup = 1 +
(3(α/2)2A2

16β

)1/3

(5.8)

Vsub = 1−
(3(α/2)2A2

4β

)1/3

(5.9)

where the area of the Gaussian force is [57]:
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A = |Φp,n|
√
πG (5.10)

The coefficient for dispersion in the transverse directions, µ, is dependent on

the wave phase speed, Vp, due to the kappa distributed electrons [46, 78, 79]:

µ =
Vp
2

=
1

2
√
K

= 0.4975 (5.11)

where K = 2κ−1
2κ−3

= 1.01.

In the orbital debris system, the debris will propagate along ξ, with no velocity

along η or ζ. Understanding that the soliton signatures with be identical in all

transverse directions, and in an effort to reduce numerical computation times, we

simplify Eqn 5.2 to two dimensions:

∂

∂ξ

(
∂U

∂τ
+ αU

∂U

∂ξ
+ β

∂3U

∂ξ3
+ γU

)
+ µ

(
∂2U

∂η2

)
=

1

2

∂2f

∂ξ2
(5.12)

The 2D forcing function then becomes:

f(ξ, η, τ) = Φp,nexp
[
−
(ξ − Vdxτ
ax/λD

)2

−
(η − Vdyτ
ay/λD

)2]
(5.13)

where ax and Vdx are the debris radius and speed in the ξ direction, ay and Vdy = 0

are the debris radius and speed in the η direction. We will apply 5.12 to orbital

debris solitons in order to characterize transverse perturbations.
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5.2 Numerical Methods

Throughout literature, it is recognized that numerical challenges exist for solv-

ing the KP equation. The time step size for explicit schemes have a strict stability

limit, and implicit schemes often do not converge due to the third spatial derivative.

A common solution is to integrate the KP equation with respect to ξ and employ

the Fourier multiplier, ∂−1
x = − i

k
[94]:

(
∂U

∂τ
+ αU

∂U

∂ξ
+ β

∂3U

∂ξ3
+ γU

)
+ µ∂−1

x

(
∂2U

∂η2

)
=

1

2

∂f

∂ξ
(5.14)

With this approach, we are able to use the numerical scheme applied to the

KdV in [34, 80], and modify it to introduce the second derivative in the η direction.

For the KdV equation, the Chan & Kerkhoven (CK) [27] pseudospectral scheme was

used to simulate the solitons, where the finite difference approximation is applied to

the time derivative and a leapfrog method is used for the spatial derivatives. The

method was written in Matlab and applied to known analytic solutions to the fKdV

in Chapter 3, and analytic solutions to soliton damping in Chapter 4.

The ξ spatial domain [−L,L] is discretized into N equidistant points and is

normalized to [0, 2π]. Now, ∆ξ = 2π
N

and ξ = s(x + L), where s = π
L

so that the

solution is periodic from 0-2π.

Since the soliton waves are propagating along the ξ direction, we assume that

they are non-periodic along η and apply the finite difference method for the spatial

derivative in this direction [95]. In Eqn 5.15, i is in the index in the ξ direction and
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j is the index in the η direction. Superscripts for U are in the temporal domain.

Thus, n+ 1 = τ + ∆τ and n− 1 = τ −∆τ .

∂2Un
i,j

∂η2
=
Un
i,j+1 − 2Un

i,j + Un
i,j−1

∆η2
(5.15)

The numerical solution for the Damped Forced KP equation becomes:

Un+1 = F−1

[
1

1−∆tβis3k3
((1 + ∆tβis3k3)F (Un−1)−∆tαiskF (Un)2

−∆tγF (Un) + 2∆tµ

(
i

k

)
F

(
∂2Un

∂η2

)
+ ∆tiskF (f))

] (5.16)

where F is the Fourier transform, F−1 is the inverse Fourier transform.

5.3 Validation

After deriving the expression for the wave, U, in the pseudospectral scheme of

Eqn 5.16, it was tested against known anayltic solutions of the KP equation. The

2D analytic line soliton solution in Eqn 5.17 [76] was tested, with α = 6, β = 1,

γ = 0, µ = 3. The analytic solution for the wave, U, is:

Ut0 = 0.5a2sech(0.5a(X − bY − wt/a))2 (5.17)

where a = 0.5, b = −0.02, kx = a, ky = −ab, and w = (µk2
y + βk4

x)/kx.

The comparison between the numerical results and analytical solution are

shown in Fig 5.1 at t = 10 TU. The difference between the numerical and analytical
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results is on the order of dt/10 = 10−4, in agreement with the accuracy of the 1D

KdV numerical simulations in Chapter 3. The simulation parameters are ∆t =

0.001, Nx = 1024, Ny = 256, Lx = 50, Ly = 12.5.

(a) Numerical Simulation of 2D Line Soliton (b) Difference between Numerical and Analyti-
cal Solution

Figure 5.1: Numerical simulation of analytical solution at t = 10 TU.
The simulation parameters are ∆t = 0.001, Nx = 1024, Ny = 256,
Lx = 50, Ly = 12.5.

5.4 2D Debris Results

After deriving the KP equation and testing it against a known analytic solution

in Section 5.3, it was applied to the generation of pinned and precursor solitons in

Earth’s plasma environment due to orbital debris. Plasma parameters were used

from the International Reference Ionosphere (IRI) model data [17]. The subcritical

and supercritical debris velocity thresholds, which define the generation locations

for pinned and precursor solitons, were previously identified in Eqn 3.55-3.56.
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5.4.1 Pinned Solitons

To simulate 2D pinned solitons, a region in the IRI data was chosen where

pinned solitons can be created for debris sizes ranging between G = 0.25− 1. Data

was downloaded for January 1, 2000 at 6pm UTC, 500 km altitude, 0◦ longitude,

and 0◦ latitude. The dominant ion is oxygen, the Debye length is 0.23 cm, and

the ion acoustic velocity is 1.36 km/s. In Fig 5.2 - 5.3, the debris size is 0.17 cm,

G = 0.75, Vsup = 1.70Via, Vd = 5.2Via, at t = 20 TU. The domain parameters

are Nx = 1360, Ny = 86, Lx = 112, and Ly = 8. In our normalized numerical

simulation, where Via = 0, the relative velocity between the debris and the ions is

Vrel = (Vd − 1)/(Vsup − 1) ≈ 6. As shown in Fig 5.2 - 5.3, no additional solitons

are produced in the transverse directions. As the wave dampens along the debris

propagation direction, a depression zone of decreased density is created in its wake

region.

Results are shown in Fig 5.2 - 5.3 for two different debris sizes and speeds.

Fig 5.2 shows the pinned soliton produced by a 0.23 cm size debris, G = 1, with

a supercritical velocity of Vsup = 1.87Via, debris velocity Vd = 2.73Via, at t = 20

TU. The domain parameters are Nx = 784, Ny = 50, Lx = 64, and Ly = 4. In

our normalized numerical simulation, where Via = 0, the relative velocity between

the debris and the ions is Vrel = (Vd − 1)/(Vsup − 1) ≈ 2. As shown in Fig 5.2, no

additional solitons are produced in the transverse directions.

Since the damping coefficient, γ, is applied to the X domain, the wave prop-

agation direction, and not the transverse directions, the wave widens along X as

126



it decays, and does not widen in the transverse directions. Consequently, the ra-

tio of the width of the pinned soliton along X to Y increases with increasing γ, as

shown in Fig 5.4. However, pinned solitons do not experience significant damping

due to the presence of the persistent debris force at the soliton location, with an

average difference in amplitude between the undamped and damped pinned soli-

ton of 0.7% Chapter 4. Therefore, pinned solitons will continue to propagate until

the debris enters a region where the plasma characteristics prevent the creation of

pinned solitons.

Figure 5.2: Contour plot of pinned soliton created by debris size G =
0.75, debris speed Vrel = 6, at t = 20 TU.
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Figure 5.3: Pinned soliton created by debris size G = 0.75, debris speed
Vrel = 6, at t = 20 TU.

(a) Damping Coefficient (b) Ratio of width in X and Y

Figure 5.4: (a) Damping coefficient, γ, as a function of debris size and
speed, as calculated in Chapter 4. (b) Ratio of pinned soliton width in
the X domain to soliton width in the Y domain.
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5.4.2 Precursor Solitons

To simulate 2D precursor solitons, a region in the IRI data was chosen where

precursor solitons can be created for debris sizes ranging between G = 0.25 − 1.

Data was downloaded for July 1, 2000 at 6pm UTC, 1600 km altitude, 0◦ longitude,

and 0◦ latitude. The dominant ion is hydrogen, the Debye length is 2.81 cm, and

the ion acoustic velocity is 6 km/s. Results are shown in Fig 5.5 two different debris

sizes and speeds. On the top is the results for debris size 1.4cm, G = 0.5, with a

supercritical velocity of Vsup = 1.4Via, debris velocity Vd = 1.17Via Vrel = 0.425, at

t = 67.64 TU. The domain parameters are Nx = 1360, Ny = 86, Lx = 112, and

Ly = 8. On the bottom of Fig 5.5, the debris size is 2.11 cm, G = 0.75, Vsup =

1.5457Via, Vd = 1.08Via, Vrel = 0.1375, at t = 79.8 TU. The domain parameters are

Nx = 1168, Ny = 74, Lx = 96, and Ly = 6. As shown in Fig 5.5, in addition to the

precursor solitons that propagate from the center of the debris and advance ahead

along the debris velocity vector on the X axis, precursor solitons are created across

the width of the debris, and also advance ahead of the debris. The relationship

between the frequency and distribution of the transverse solitons extended across

the width of the debris is predictable. Transverse solitons have been observed in

other 2D Kadomtsev-Petviashvili systems with negative bottom topography, where

the production of the transverse solitons is dependent on the bottom topography

size and speed [96, 97].

The profile of precursor solitons in the presence of positive bottom topography

will aid in understanding the formation of precursor solitons in the presence of
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(a) G = 0.5 (b) G = 0.75

Figure 5.5: 2D simulation results for precursor solitons for two different
debris sizes and speeds. (a) G = 0.5, Vrel = 0.425, at t = 67.64 TU. (b)
G = 0.75, Vrel = 0.1375, at t = 79.8 TU.

negative bottom topography. A positive forcing function will produce stable soliton

density curves that advance ahead across the width of the debris. An example is

shown in Fig 5.6, at t = 20 TU. The force is a Gaussian as described in Eqn 5.13,

with Φp,n = 1, Vdx = Vdy = 0, ax/λD = 3, and ay/λD = 6. Stable curves are

produced for both positive and negative KP coefficients. For Fig 5.6, α = −6,

β = −1, and µ = −3. In contrast, a system containing a negative forcing function

can be thought of as unstable, and will not product stable soliton density curves,

however the transverse solitons produced will have the same amplitude and speed

of a soliton density curve at the same location when compared to solitons created

by a positive forcing function.

In the 2D KP orbital debris system, the amplitude, width, and speed of the

transverse precursor solitons can be predicted by applying the 1D KdV solution at

the given transverse distance away from the debris center. Fig 5.7 shows the results
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Figure 5.6: Precursor soliton density curves created by a positive Gaus-
sian force as described in Eqn 5.13, with A = 1, Vd = 0, Gx = 3, and
Gy = 6, at t = 20 TU.

of simulating a 1D system along the width of the debris for one example debris size,

for G = 0.75, Vrel = 0.1375, at t = 79.8 TU, as shown in Fig 5.5. The 2D results

are displayed as contour plot, and the peaks of sample offset 1D simulations are

overplotted. The difference between the 1D and 2D simulations at the transverse

soliton locations is on the order of dt = 10−3, with an example shown in Fig 5.7.

Figure Fig 5.8 shows the relationship between the normalized damping coeffi-

cient, γ, as calculated in Chapter 4, the debris size, and debris speed. In order to

improve on computation efficiency, the number of samples along X and Y in each

simulation displayed, Nx and Ny, were calculated based on the debris speed, size,
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(a) G = 0.75 contour (b) G = 0.75 y = 0.162

Figure 5.7: (a) Contour plot of 2D results for G = 0.75, with 1D simu-
lations overplotted at sample Y offsets. (b) Difference between 1D and
2D results at y = 0.162.

and estimated time to generate two precursor solitons. As an example, for debris

size G = 0.5 and debris speed Vrel = 0.425, Nx = 1360 and Ny = 86, Lx = 112,

and Ly = 8. For debris size G = 0.75 and debris speed Vrel = 0.1375, Nx = 1168,

Ny = 74, Lx = 96, and Ly = 6.

The distance between transverse solitons appears to be independent of debris

speed, and does not follow the trend of the normalized damping coefficient. In order

to rule out the influence of different sample sizes on transverse soliton distance,

additional simulations were run where Nx and Ny remained the same for all the

debris sizes and speeds tested in Fig 5.8. To expedite these tests, the time increment

was increased to dt = 0.01. For the first test, Nx = 3712, Ny = 232, Lx = 176,

and Ly = 12. For all debris sizes and speeds, the transverse soliton distance was

∆y = 0.103. For the second test, Nx = 2032, Ny = 2032, Lx = 96, and Ly = 96. For

all debris sizes and speeds, the transverse soliton distance was ∆y = 0.09449. For
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the final test Nx = 2032, Ny = 2540, Lx = 96, and Ly = 120. For all debris sizes

and speeds, the transverse soliton distance was again ∆y = 0.09449. It is possible

that the true transverse soliton distance for each debris size and speed may require

higher computing capacity. Further investigation is required to predict the distance

between transverse solitons.

(a) Damping Coefficient (b) Y distance between transverse solitons

Figure 5.8: Damping coefficient, γ, as a function of debris size and speed,
as calculated in Chapter 4. Distance between transverse solitons in the
Y domain.

5.5 3D Debris Results

After simulating orbital debris solitons in two spatial dimensions, we extended

the visualization to three dimensions in order to understand the full signature of or-

bital debris solitons in an Earth orbiting reference frame. It is critical to understand

the fully 3D soliton signature in order to design detection technology.

According to Eqn 5.2, the dispersion coefficient, µ, is applied uniformly in all

transverse directions [91, 94]. Thus, we can assume that the transverse perturbations
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in the Y domain will be identical to the perturbation in the Z domain, and all angles

in the Y-Z plane about the X axis. To create a visualization with three spatial

dimensions and one amplitude dimension, we rotated the 2D results about the X

axis at one degree increments and replicated the transverse perturbations in the Y-Z

plane. Results are shown in Fig 5.9 for the soliton shown in Fig 5.5 for two different

debris sizes and speeds. For G = 0.75 and Vrel = 0.1375, a visualization is created to

the scale of the debris size in Fig 5.10. The precursor solitons created at the center

of the debris remain the highest amplitude and frequency solitons. The transverse

solitons along the width of the debris create soliton rings in the Y-Z plane that

advance ahead of the debris along the debris velocity vector in the X domain. Three

dimensional soliton rings have been observed in other fluid media, to include Fermi

gas [98], laser media [99], shallow water vortex rings created by dolphins [100], and

Bose-Einstein condensates and nonlinear optics [101].

(a) G = 0.5 (b) G = 0.75

Figure 5.9: 3D simulation results for precursor solitons for two different
debris sizes and speeds. Top: G = 0.5, Vrel = 0.425, at t = 67.64 TU.
Bottom: G = 0.75, Vrel = 0.1375, at t = 79.8 TU.
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Figure 5.10: 3D simulation results in the equal axis scale for precursor
solitons G = 0.75, Vrel = 0.1375, at t = 79.8 TU.
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5.6 Orbital Energy

The results of this research leads to a question of whether soliton energy will

influence orbital debris energy. We conduct a preliminary calculation based on

orbital debris with radius a = 0.5 cm in a circular orbit of Vd = 7.26 km/s at 1200

km altitude, in the region of High LEO 1 in as described in Table 3.1. The Debye

length is λD = 1.38 cm, the plasma density is n0 = 1011m−3, and the electron

temperature is Te = 0.35 eV. Soliton amplitude for sub-centimeter debris ranges

from 1-2x the background density, and the soliton width ranges from 5-20x the

Debye length. We will assume that the soliton amplitude is ns = 1.5n0, the soliton

width is w = 10λD, the soliton speed is Vs = 8.26 km/s. The volume of the soliton

becomes xs = 2πw3 = 0.0165m3.

As discussed in Chapter 3, the surface potential of spherical debris in hydrogen

dominated plasma is Φs = −2.51kbTe/e = −0.88 eV in the thick sheath domain,

which is when the debris is smaller than the Debye length. The charge of the debris

becomes QD = 4πε0aΦs. Therefore, potential energy of the debris in the presence

of the background plasma is UE0 = 1/4πε0
∑n0xs

i=1 QDqi/λD = −4x10−9J. Similarly,

the potential energy of the debris in the presence of the background plasma and a

precursor soliton is UE1 = UE0 + 1/4πε0
∑nsxs

i=1 QDqi/λD = UE0 + 1.5UE0 = 2.5UE0 .

The change in potential energy is ∆UE = UE1 − UE0 = 1.5UE0 = −6.9x10−9J.

The kinetic energy of the spherical debris is KEd
= 1/2mdV

2
d , where the

assumed density of the debris is nd = 2 g/cm−3 and the mass of the debris is

md = 4/3πa3nd = 10−3kg. The mass of the soliton is calculated assuming a packet
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of hydrogen ions with ion mass equal to the proton mass mi = mp = 1.67x10−27kg.

Then, the mass of the soliton is ms = nsxsmi = 2.76x10−18kg. Therefore, the debris

kinetic energy is KEd
= 2.6x104J and the soliton kinetic energy is KEs = 9x10−11J.

It is assumed that the soliton kinetic energy is negligible and the soliton poten-

tial energy can cause a change in total orbital debris energy, where E = −(µ/2r)md.

The debris will decrease in orbital altitude as the total energy, E, decreases. To cal-

culate the amount of time for the debris to decrease from 1200 km altitude to 1000

km altitude, we calculate the total energy for the number of precursor solitons pro-

duced at each orbit. Ns is the number of precursor solitons produced in a single

orbit, which decreases exponentially as the debris velocity approaches the super-

critical limit. The 0.5 cm debris in this example produces Ns = 6.6x106 precursor

solitons at 1200 km altitude, Ns = 2.9x106 precursor solitons at 1000 km altitude,

and pinned solitons below 1000 km altitude. For debris with mass md = 1 g, the

orbital energy at 1200 km altitude is 27.57 kJ, and the orbital energy at 1000km

altitude is 28.31 kJ. Assuming an exponential decrease in the number of precursors

solitons produced as the altitude decreases, as detailed in Chapter 3 and shown in

Figure 3.14, the total estimated time for the debris to decrease in altitude from 1200

km to 1000 km is 5.29 years. Similarly, the time for 0.5 cm debris at an 2000 km

altitude would descend to 1000 km altitude in 10.95 years. This estimation largely

depends on the the velocity of the debris relative to the supercritical velocity of the

debris in the current plasma environment.

These calculations are for the precursor solitons that propagate from the center

of the debris, which have a higher density and frequency when compared to the
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precursor solitons produced along the width of the debris and described in Chapter

5. For orbital debris in the presence of pinned solitons, Ns = 1, and the change in

energy per orbit is again UE0 = −6.9x10−9J. Therefore, the generation of precursor

solitons will act as a drag force on the debris, causing it to decrease in altitude, until

it enters a region where pinned solitons are produced. It is theorized that orbital

debris will become grouped at altitudes defined by their previous precursor soliton

generation. For debris originating at altitudes and latitudes within the regions

identified for precursor soliton generation in Figure 3.27, the precursor solitons will

cause a decrease in altitude until the minimum altitude is reached for the given

debris size and plasma environment.

5.7 Conclusion

In Chapters 3-4, we identified the orbital altitudes and latitudes where solitons

can be created from orbital debris, which have amplitudes above the threshold of

detectability from current ground and space sensors [60, 61, 62]. We modeled the

soliton altitude, latitude, width, frequency, and propagation distance as a function of

debris size and speed. Now, we conclude that precursor solitons will be accompanied

by 3D ring solitons, which will propagate along the debris velocity vector at radii

defined by the debris width and at predictable intervals. These transverse solitons

will allow for additional opportunity to measure previously undetectable orbital

debris, in a region where the characteristics of the sub-centimeter debris population

are largely uncertain.
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Chapter 6: Conclusions and Future Work

Currently, the small orbital debris concentrations in High LEO are not well

understood. NASA’s small orbital debris estimations are largely based on in-situ

measurements during the Space Shuttle mission at altitudes lower than 600 km,

and it is expected that these measurements underestimate the amount of debris at

higher altitudes [6]. With the increase in frequency of satellite launches, the gap

in understanding the small debris population only worsens the risk for catastrophic

failure to satellites. As stated by Nicholas Johnson, the former NASA chief scientist

for orbital debris, “The greatest risk to space missions comes from non-trackable

debris,” [102].

We have demonstrated that charged orbital debris can create pinned solitons

in the O+ dominated regions of mid-latitude low LEO, at altitudes below 800 km,

and precursor solitons in H+ dominated high LEO, at altitudes above 800 km.

Debris with radius 0.5 cm can produce precursor solitons at altitudes down to 1000

km, 0.5 mm radius debris can produce precursor solitons at altitudes down to 1700

km, and micron sized debris can produce precursor solitons at altitudes down to

1850 km. When compared to the SSN estimates for orbital debris as illustrated in

Figure 2.1, precursor solitons will be produced in the regions above 800km altitude
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where orbital debris density is the highest. Precursor solitons are more likely to

occur in mid-latitude regions, which cannot be observed by current ground based

radar and optical methods. Further, as opposed to ground based radar, where the

object detection size decreases rapidly with altitude, we are able to measure even

smaller sized objects with increasing altitude, and will be able to measure undetected

objects in the 1400-1600 altitude range. Models were generated to predict the

amplitude and width of solitons, and frequency of soliton production, in order to

assess the detectability of the signal and enable on-orbit mapping of sub-centimeter

orbital debris. This research can be further refined by extending simulations beyond

the fKdV equation, which invokes the long wavelength assumption, and using the

fully nonlinear set of fluid equations. As shown in [57], the fKdV equation is in

agreement with the fully nonlinear equations for waves of where the amplitude is

smaller than the wavelength, but starts to diverge as the forcing function velocity

increases and approaches the supercritical velocity limit. Additionally, we assumed

that the electron distribution can be modeled by the Boltzmann equation. A more

accurate representation will include the effects of magnetized electrons on the plasma

density.

The propagation distance of solitons was calculated, which is necessary in order

to assess the detectability of precursor solitons via satellite or ground observations,

the time required to map detectable debris, and the number of sensors needed for

mapping in a given mission window. We demonstrated that kinetic collisions will not

produce damping above 400 km altitude. In the presence of Landau damping, the

median propagation distance for precursor solitons is 10 km for 0.5 mm radius debris,
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and 6 km for 0.5 cm radius debris. We show that precursor soliton propagation

distances are influenced by seasonal and diurnal effects, with longer propagation

distances during the summer when compared to winter, and day when compared

to night. While the plasma environment is dynamic, we show that the plasma

properties do not change more than 1% over the maximum propagation distances,

thus the KdV coefficients will remain constant and the variable KdV equation is

not needed for accurate modeling of these solitons. Pinned solitons in low LEO will

not experience significant Landau damping due to the presence of the persistent

debris force, and will continue to propagate until entering an area where pinned

solitons cannot be produced. Additional damping processes should be considered

moving forward, to include the time evolution effects of localized electric fields on

the velocity distribution function [86].

In 3D space, precursor solitons will be accompanied by 3D ring solitons in the

transverse plane, which will advance ahead of the debris along the debris velocity

vector. The density and frequency of the soliton rings are defined by the debris

width and speed. The predictions for 1D propagation of both pinned and precursor

solitons are in agreement with the 2D and 3D projections. The 1D KdV numerical

simulation, combined with the 2D and 3D KP transverse soliton spacing trends,

provide the characteristics needed to evaluate the feasibility of soliton detection

with existing sensors or design new detectors. With additional transverse solitons,

the determination of the originating debris can be refined with fewer detections.

More simulations are required with a higher number of samples in order to predict

the transverse soliton spacing distance as a function of debris size and speed.
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Further research is necessary to assess the feasibility of estimating the origi-

nating debris’ size and speed from the characteristics of the soliton produced. In

order to identify a soliton, more than one detection is required to verify that the

soliton maintains its shape and speed during propagation [23], differentiating it

from other plasma perturbations. Once detected, the soliton would need to be fit

to existing models of soliton width, amplitude, velocity, and damping rate in order

to identify a range of valid debris sizes and speeds which potentially created the

soliton. Additional detections of soliton amplitude and frequency in the transverse

directions will help to confirm the initial estimate for debris size and speed. As

a proof of concept, existing ion density data can be queried to identify pinned or

precursor solitons from known tracked debris objects. Once soliton detection tech-

niques are designed, solitons will allow for mapping of sub-centimeter orbital debris

in LEO, providing a capability to characterize the orbital debris population with

existing sensor technology, in a region where orbital debris estimations are not fully

understood.
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