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Chapter 1: Trading Option Model Parameters

1.1 Introduction

Over a span of few decades, there has been an explosive increase in option trading and

other derivatives. We now find up to 3000 options being traded each day for an index option.

This has led to a vast literature on option pricing models. To adequately describe the variation

in option prices in strike and maturity, models can require numerous parameters that need to be

calibrated to the market data. Examples of popular models are stochastic volatility ([1], [2]),

local volatility ([3]), jump-diffusion ([4], [5]) and pure jump models ([6], [7]). The day to day

evolution of model parameters is an important consideration in knowing how the options surface

behaves.

In this chapter, we are interested in constructing portfolios that are sensitive to only one

specific parameter for any given option pricing model. We want the value of such a portfolio

to change in the same direction as a change in the selected parameter while being resistant to

changes in the rest. This method can be used to develop a trading strategy assuming we can

accurately predict the moves of the model parameters. In addition it can also provide an important

tool to hedge against large deviations in parameters.

We study two ways of constructing these portfolios: a regression based approach and one

based on using the score functions of the risk neutral density. We restrict ourselves to two models:
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Variance Gamma [6] and Bilateral Gamma model [7]. Both methods use Lévy processes as a

model for the underlier and are examples of a pure jump model. Pricing under both models can

be efficiently using the fast Fourier method [8].

1.2 Option pricing models

1.2.1 Lévy Processes

We use Lévy processes to model the dynamics of the underlying asset. Lévy processes

are stochastic processes with independent and stationary increments that generalize the notion of

Brownian motion. Every Lévy process has a càdlàg modification and we always work with such

a version of the process.

Definition 1.2.1. A càdlàg stochastic process {Xt, t ≥ 0} on a probability space (Ω,F ,P) with

X0 = 0 is called a Lévy process if it satisfies:

1. For any n ∈ N and 0 < t1 < t2 < . . . < tn, the increments Xt0 , Xt2 − Xt1 , . . . , Xtn −

Xt(n−1)
are independent.

2. For any s, t ∈ (0,∞) the distribution of Xt+s −Xs does not depend on t.

3. For every t ∈ (0,∞) and ε > 0 it holds that lims→t P(|Xt −Xs| > ε) = 0.

Lévy processes have the important property that for any t ∈ (0,∞), Xt has an infinitely

divisible distribution.

Definition 1.2.2. A random variable X has an infinitely divisible distribution if for all n ∈ N,

2



there exist i.i.d random variables X(1/n)
1 , . . . , X

(1/n)
n such that

X =law X
(1/n)
1 + . . .+X(1/n)

n

Equivalently, let φX(u) := E[eiuX ] be the characteristic function of X . Then X has an infinitely

divisible distribution if for all n ∈ N there exists a random variable X(1/n) such that

φX(u) = (φX(1/n)(u))n .

For a Lévy process {Xt, t ≥ 0}, infinite divisibility implies that for any t ∈ (0,∞), it holds

that

φXt(u) = (φX1(u))t.

Another important property of Lévy processes is their representation via the Lévy-Khintchine

formulation.

Theorem 1. Let {Xt, t ≥ 0} be a Lévy process. Then there exists a triplet (b, c2, ν), with b ∈ R,

c2 ∈ R≥0 and a measure ν with the property that ν({0}) = 0 and
∫
R(1 ∧ |x|2)ν(dx) such that it

holds that

E[eiuXt ] = E[etiuX1 ] = exp

(
t

(
ibu− u2c2

2
+

∫
R
(eiux − 1− iux1|x|<1)ν(dx)

))
.

The Lévy-Khintchine formula allows us to decompose a Lévy process into three indepen-

dent parts: a linear deterministic drift with rate b, a Brownian motion with volatility c and a pure
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jump process with Lévy measure ν(dx). The Lévy measure dictates how jumps occur, i.e., jumps

of size in the set A occur according to a Poisson process with intensity
∫
A
ν(dx).

In this study, we will model the underlier with processes without a diffusion component.

[9] suggest that while price processes must have a jump component, the diffusion component is

not necessary. A Lévy process with infinite activity, i.e.,
∫
R ν(dx) =∞ is able to account for the

frequent small moves that are typically modelled by a diffusion.

1.2.2 Using Lévy processes to model underlier

We can model the process of the underlying asset using a Lévy process. In the same spirit

as the Black-Scholes model, we assume that the log returns of an underlying {St, t ≥ 0} are

Lévy:

St = S0e
Xt .

In order to price derivatives, we must use the representation of St under the risk-neutral measure.

In contrast to Black-Scholes, the market is incomplete under Lévy models (with the exception of

Poisson process). This means that there is no unique risk-neutral measure.

One convenient way of obtaining a risk-neutral measure is by mean correcting the expo-

nential of Lévy process so that the expectation of the forward at any time is simply the spot price.

Hence it holds that the risk-neutral dynamics of {St, t ≥ 0}, with spot S0, interest rate r and

dividend yield q, under a Lévy process {Xt, t ≥ 0} is given by

St = S0e
(r−q)t−ω+Xt

where ω := lnE[eiuXt ] = lnφXt(−i).

4



1.2.3 Variance Gamma model

The variance gamma process [6] is a three parameter pure jump process with infinite ac-

tivity. It is defined by time changing a Brownian motion with drift θ and volatility σ by an

independent gamma process with unit mean rate, and variance rate ν. More precisely, let W (t)

be a standard Brownian motion and let G(t; ν) be an independent gamma process with unit mean

rate and ν variance rate. Then the variance gamma process XV G(t;σ, θ, ν) is defined as

XV G(t;σ, θ, ν) = θG(t; ν) + σW (G(t; ν)).

The characteristic function for XV G(t;σ, θ, ν) is given by

φV G(u;σ, θ, ν, t) =

(
1− iuθν +

σ2u2

2
ν

)− t
ν

.

Let Γ(z) denote the Gamma function and letKν(z) be the modified Bessel function of the second

kind defined as

Kν(z) =
Γ(ν + 1

2
)(2z)ν

√
π

∫ ∞
0

cos(t)

(t2 + z2)ν+ 1
2

dt.

Then, the density function for XV G(t;σ, θ, ν), defined for x ∈ (−∞,∞) is given by

fV G(x;σ, θ, ν, t) =
2 e

θx
σ2

ν
t
ν Γ( t

ν
)σ
√

2π

(
x2

2σ2

ν
+ θ2

) t
2ν
− 1

4

K( t
ν
− 1

2
)

(
1

σ2

√
x2(

2σ2

ν
+ σ2)

)
.

The variance gamma model is flexible enough to capture the skewness and excess kurtosis found

in market data and is hence able to provide much better fits compared to Black-Scholes.
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1.2.4 Bilateral Gamma model

The Bilateral Gamma process introduced in [7] is another pure jump Levy process, char-

acterized by four parameters, that is the difference of two independent Gamma subordinators.

[10] show that the upwards and downwards motion of the stock are significantly different and

recommend using the bilateral Gamma process as it gives control over the speed of the up and

down moves.

The characteristic function for a variable with bilateral Gamma distribution at time t,

φBG(u; bp, cp, bn, cn, t) is given by

φBG(u; bp, cp, bn, cn, t) = (1 + ibnu)−cnt(1− ibpu)−cpt.

Let Wλ,µ(z) denote the Whittaker function given by

Wλ,µ(z) =
zλe−

z
2

Γ(µ− λ+ 1
2
)

∫ ∞
0

tµ−λ−
1
2 e−t(1+ t

2)
µ+λ− 1

2

dt

where µ − λ > 1
2
. The density fBG(x; bp, cp, bn, cn, t) for a bilateral Gamma random variable at

time t is defined on x ∈ (0,∞) as

fBG(x; bp, cp, bn, cn, t) =
b
−cpt
p b−cntn

( 1
bp

+ 1
bn

)
1
2

(cpt+cnt) Γ(cpt)
x

1
2

(cpt+cnt)−1 e
−x

2
( 1
bp
− 1
bn

)

×W 1
2

(cpt−cnt), 12 (cpt+cnt−1)

(
x

(
1

bn
+

1

bp

))
.

6



fBG(x; bp, cp, bn, cn, t) can be extended to (−∞, 0) using the symmetry relation

f(x; bp, cp, bn, cn, t) = f(−x; bn, cn, bp, cp, t).

1.2.5 Pricing using Fast Fourier transform

Pricing options under the variance gamma and bilateral gamma model using their density

is computationally expensive and becomes infeasible when calibrating option surfaces. However,

they both posses simple characteristic functions which makes option pricing possible by Fourier

inversion. We use the Carr-Madan [8] formula to write the price of a call option in terms of

the characteristic function. The Fast-Fourier Transform [11] can then be used to compute the

integrals which prices options on multiple strikes in one run, making it especially useful during

model calibration.

Let K be the strike and let k = ln(K). Let φ(u;T ) and q(x;T ) be the characteristic

function and risk neutral density of ln(ST ) respectively. The risk neutral price CT (k) of a call

option at strike k is given by

CT (k) = e−rT
∫ ∞
−∞

(ex − ek)q(x;T )dx.

The function CT (k) is not square integrable, which is necessary for Fourier inversion. Therefore,

for α ∈ (0,∞) we introduce a dampening factor eαk and define the modified call price c(k;T ) to

be

c(k;T ) = eαk CT (k;T ).
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The Fourier transform Fc(u) of c(k;T ) can hence be computed as

Fc(u) =

∫ ∞
−∞

eiukc(k;T ) dk

= e−rT
φ(u− i(α + 1);T )

α2 + α− u2 + iu(2α + 1)

Therefore, we can express C(k;T ) as

C(k;T ) =
e−αk

π

∫ ∞
0

eiukFc(u)du.

Let {0, η, 2η, . . . , (N − 1)η} be an N points grid that we use to approximate the integral using

simpson’s rule. The integral can be approximated by

C(k, T ) ≈ e−αk

π

N∑
j=1

e(−iujk)F(uj)
η

3

(
3 + (−1)j − δj−1

)
, uj := η (j − 1).

To calculate option prices on multiple strikes, we let the log strike k range from −b to b on N

grid points given by

kn = −b+ λ(n− 1), n = 1, . . . , N

where λ = 2b/N . By choosing λ and η to be λη = 2π/N and N to be a power of 2 we can

express as (1.2.5) as

C(kn, T ) ≈ e−αkn

π

N∑
j=1

e−
2πi
N

(j−1)(n−1) eibujF(uj)
η

3

(
3 + (−1)j − δj−1

)
.

which can readily be solved using the Fast Fourier Transform. In our experiments we take N =

212, α = 1.5 and η = 0.25.
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1.3 Building parameter sensitive portfolios

We now consider the problem of building portfolios that are sensitive to moves in only one

model parameter. This means we need the partial derivative of the portfolio value to be positive

for a chosen parameter and zero for all other parameters. We explore two such methods and apply

them to the variance gamma and bilateral gamma models.

1.3.1 Regression based approach

LetM(θ) be an option pricing model characterized by m model parameters θ ∈ Rm. Let

w(θ) ∈ Rn be a collection of n vanilla options (calls and puts) that are priced underM(θ). Let

α ∈ Rn denote the weight of each option in a portfolio. Then the value of the portfolio under

M(θ) is given by αT · w(θ).

For a specific model parameter θi ∈ R, we wish to find weights αi ∈ Rn with the property

that

∂

∂θj

(
αTi · w(θ)

)
= δi,j, j ∈ {1, . . . ,m}.

We can do this by considering A = [α1, α2, . . . , αm]T ∈ Rn×m to be an n ×m matrix with the

property that

A
∂w

∂θ
= I, with

∂w

∂θ
=


∂w1

∂θ1
. . . ∂w1

∂θm

... . . .

∂wn
∂θ1

∂wn
∂θm

 ∈ Rn×m.

This ensures that each αi in A corresponds to the weights of a portfolio that is only sensitive to

9



θi. A can then be easily computed by

A =

(
∂w

∂θ

T ∂w

∂θ

)−1
∂w

∂θ

T

.

1.3.2 Score function based approach

In this method we first seek a terminal payoff c which is sensitive to changes in only one

model parameter. By replicating this payoff using hedging instruments we are then able to get the

desired portfolio. Our approach is similar to the Gram-Schmidt orthogonalization. We assume

that we have an explicit representation of the risk neutral density in the form of f(x; θ), where

θ ∈ Rm are m model parameters. For a given claim with a discounted payoff c at maturity, it’s

present value w(θ) is given by

w(θ) = E[c] =

∫
c(x)f(x; θ)dx.

Taking the partial derivative with respect to some θi it holds that

∂w

∂θi
=

∫
c(x)

∂f(x; θ)

∂θi
dx

=

∫
c(x)

∂ ln f(x; θ)

∂θi
f(x; θ)dx

= E
[
c(x)

∂ ln f(x; θ)

∂θi

]
.

where the interchange of the derivative and integral is justified by the assuming that f(x; θ) is

continuously differentiable locally for each θi. Note that for a payoff c(x) = ∂ ln f(x;θ)
∂θi

(known as

the score function) the expectation is always non-negative which implies that the value w(θ) for

10



such a payoff always moves in the same direction as a change in θi.

In order for w(θ) to be resistant to changes in other parameters we seek c(x) such that

E
[
c(x)

∂ ln f(x; θ)

∂θi

]
= 1 and E

[
c(x)

∂ ln f(x; θ)

∂θj

]
= 0, ∀j 6= i. (1.1)

Let c(x) be of the form

c(x) =
m∑
j=1

βj
∂ ln f(x; θ)

∂θj
, βj ∈ R.

We can re-frame (1.3.1) as a system of equations to find coefficients {βj}mj=1 that satisfy

m∑
j=1

βjE
[
∂ ln f(x; θ)

∂θj
· ∂ ln f(x; θ)

∂θi

]
= δi,j.

The value of the resulting payoff c(x) therefore moves in the same direction as θi and does not

change with respect to any other parameter. We can formalize the above arguments using the

proposition below.

Proposition 1.3.1. Let f(x; θ) be the risk neutral density of an m-parameter modelM(θ). Let

I ∈ Rm×m be the identity matrix and let B = {β(i)
j } ∈ Rm×m be a matrix that satisfies

B · E
[
∂ ln f(x; θ)

∂θ
⊗ ∂ ln f(x; θ)

∂θ

]
= I. (1.2)

Let c(i) be a function that represent the discounted terminal payoff of a contingent claim given by

c(i)(x) =
m∑
j=1

β
(i)
j

∂ ln f(x; θ)

∂θj

11



Then the value w(i)(θ) of such a payoff satisfies

∂w(i)

∂θi
= 1 and

∂w(i)

∂θj
= 0 (1.3)

Proof. The proof is straightforward by observing that for any i, (1.2) implies that

m∑
j=1

β
(i)
j E

[
∂ ln f(x; θ)

∂θi
· ∂ ln f(x; θ)

∂θj

]
= δi,j.

and the expectation of the corresponding payoff c(i) satisfies the conditions (1.3).

Any portfolio that replicates c will have the same properties. Therefore, since we have

assumed c to be continuous we can replicate it via a hedging portfolio consisting of a bond, stock

and a series of vanilla out of money options i.e.

c(x) = α0 + α1x+
N∑
i=2

αiCi(x)

where Ci is the payoff of options and {αi}Ni=0 are the weights of the portfolio. By discretizing x

on a grid we can compute the weights {αi}Ni=0 using regression.

1.4 Results

1.4.1 Payoff profiles

We calibrate the Variance Gamma and Bilateral Gamma model daily on each maturity using

options on S&P500. Our calibration procedure involves running the global Differential Evolution

algorithm [12] for a few iterations to arrive at a suitable neighborhood of the global minimum. We

12



then use the result of this global search as a starting point for our local optimizer. For each model

we plot the payoff profiles at maturity of the portfolios resulting from both methods. For the

regression approach we use 20 calls and 20 puts with strikes going up to 30% out of the money.

The derivatives are computed using a central difference scheme evaluated at the parameter value

for that day and we take the step size to be 1% of the parameter value. All option prices are

computed using the Fast Fourier method. For the score function method, we obtain the resulting

payoff from the procedure described in Proposition 1.3.1. We observe that the payoff profile for

both methods are similar. In addition we did not observe any significant change from varying the

maturity.

Moreover, we observe how the value of the sensitive portfolios moves if we change the

value of each parameter. In almost all cases we see that the parameter specific portfolio moves

linearly only when corresponding parameter changes and is resistant to changes from all the

others.

1.4.2 Trading strategy

We develop a trading strategy by assuming that we know how the parameters will change

the next day. This admittedly is an unrealistic assumption, however, we are primarily interested

in knowing how well such a strategy would work in the best case scenario.

We calibrate the parameters for each day and for each parameter we compute the respective

weights for a portfolio of 20 calls and 20 puts. We then go long the portfolio if the parameter

increases the next day and short it if it falls. The next day we liquidate our positions.

The performance for such a strategy is plotted along with the daily change in the portfolio

13



Figure 1.1: Payoff of sensitive portfolios (VG) at maturity from regression

Figure 1.2: Payoff of sensitive portfolios (VG) at maturity from score function
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Figure 1.3: Change in portfolio values with different VG parameters (regression)

Figure 1.4: Change in portfolio values with different VG parameters (score function)
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Figure 1.5: Payoff of sensitive portfolios (BG) at maturity from regression

Figure 1.6: Payoff of sensitive portfolios (BG) at maturity from score function
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Figure 1.7: Change in portfolio values with different BG parameters (regression)

Figure 1.8: Change in portfolio values with different BG parameters (score function)
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value. We observe that this strategy is only viable for certain parameters and not all parameters

can be traded. Specifically, the parameters with the highest sensitivity; σ for variance gamma and

bn for bilateral gamma are good candidates.

1.5 Conclusions and Future Research

This study leaves us with a number of avenues for future research. First, an important

question is whether the two approaches described in this study are equivalent. This would mean

that the regression based method will approach the score function payoff as we consider options

over a continuum of strikes.

Second, we would like to develop a way to predict the movement of parameters the next

day. A possible method is to regress the daily changes in option values given by ∆wi against the

matrix of partial derivatives ∂wi
∂θj

to get the expected change in parameter values for the next day.

That is, we wish to find ∆θ such that

∆w =
∂w

∂θ
∆θ.

We can compare our results to the actual changes in parameters to assess quality of this predictor.

Lastly, we observe large variability in parameter values during calibration. The reason

being that model calibration is an ill-posed inverse problem. One possible solution is to add a

regularization term. [13] suggest to add a relative entropy with respect to some prior as a penalty

term. The prior can be chosen to be the previous day’s parameters. The parameters from this

calibration can then be used in our study to see if they result in any improvements. Lastly, we

can also extend this method to other kinds of models and examine their performance.
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Figure 1.9: Trading sigma sensitive portfolio
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Figure 1.10: Trading theta sensitive portfolio
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Figure 1.11: Trading bn sensitive portfolio
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Figure 1.12: Trading bp sensitive portfolio
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Chapter 2: Pricing Cliquets using Martingale Optimal Transport

2.1 Introduction

According to the first fundamental theorem of asset pricing, the no arbitrage condition is

equivalent to the existence of a probability measure under which the underlying process is a

martingale. The choice of such a measure is the subject of a wide range of models that date back

to Black and Scholes. In their seminal work, Black and Scholes [14] and Merton [15] model the

dynamics of the underlying asset by a geometric Brownian motion and derive an option pricing

formula by dynamically replicating a vanilla pay-off. The assumptions made under the Black

Scholes model, such as normality of log returns, do not hold empirically and many models have

since been proposed that are more realistic and relax some of the restrictive assumptions (see

Chapter 1 for a list). Most of these models are parametric that can be calibrated to the market

data and are able to fit vanilla options with a high degree of accuracy. As a result, the dynamics

of the underlying process implied by these models have similar marginal distributions.

However, these models do not agree on the prices of exotic options. As demonstrated

by Schoutens et al. [16] pricing exotics under different models can lead to values that differ

substantially even though they provide the same price for vanilla options. The reason being

that exotics depend on factors such as forward volatility and forward skew which are modelled

differently by different models. This motivates the use of model-independent methods that have
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gained popularity since the work of Hobson [17]. Hobson provides bounds on the price of exotic

derivatives, specifically Lookback options, using call prices. They do not make any assumptions

on the dynamics of the underlying asset and hence the bounds are model-free. The appeal of such

methods is that they are resistant to model mis-specification.

These results can be extended to a larger class of exotic options by using tools from Opti-

mal Transport. The problem of optimal transport deals with finding a transport plan that moves

a mass from one location to another while minimizing a cost function. Put differently, it can

be considered as finding an optimal joint distribution that fit pre-specified marginals and where

optimality is defined under some objective function. That is, let µ and ν be two probability dis-

tributions on R. Let Π(µ, ν) be the set of all probability measures P (termed as transport plans)

that satisfy

P[A× R] = µ(A) and P[R× A] = ν(A), for all A ∈ B(R).

Given a function c : R× R→ R, optimal transport seeks to minimize

EP[c(x, y)]

over all P ∈ Π(µ, ν). The optimal transport was first introduced by Monge in 1781 [18] and then

given its current formulation by Kantorovich [19] in 1948. Kantorovich showed that this problem

admits a dual formulation and he proved the duality result that

inf
P∈Π(µ,ν)

EP[c(x, y)] = sup
(φ,ψ)∈Φc

∫
R
φ dµ+

∫
R
ψ dν,
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where Φc ⊂ L1(R, µ) × L1(R, ν) is the set of all functions (φ, ψ) that satisfy for µ-almost all x

and ν-almost all y

φ(x) + ψ(y) ≤ c(x, y).

Since then optimal transport has found applications in diverse fields such as image processing,

machine learning and economics. We refer to [20] by Villani for an excellent monograph on the

topic.

Beiglböck et al. [21] introduced a new research area, Martingale Optimal Transport where

they study transport plans that are also martingales. Specifically, they consider minimizing the

expected cost EP[c(S1, S2)] over

M(µ, ν) := {P ∈ Π(µ, ν) : EP[S2|S1] = S1},

where S1 and S2 denote the value of the underlier at two points in the future. This allows one to

compute model-independent bounds for a large class of exotics using infinite dimensional linear

programming methods ((2.1)) and can be easily extended to the multi-period case. They establish

a dual formulation of the problem that has a natural financial interpretation in terms of semi-static

hedging (Theorem 2). Therefore, one can easily create a portfolio that leads to arbitrage should

the price of the exotic exceed these bounds.

In practice however, these bounds are much too wide for practical use. The resulting prob-

ability measures for any cost function are sparsely supported and not appropriate for pricing.

We therefore turn our attention to finding a suitable measure that can price exotics using as

few assumptions as possible. This leads us to replacing the cost function with the Kullback-
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Leibler divergence (i.e., relative entropy) with respect to some reference measure and minimiz-

ing over all martingales consistent with given marginals. This problem is similar to the one used

by Guyon [22] and is termed as the Martingale Schrödinger problem. They are interested in

jointly calibrating the S&P 500 and the VIX and their problem involves probability measures on

(R>0 × R>0 × R>0) with additional constraints. Henry-Labordère [23] consider the martingale

optimal transport problem over all measures that are not too far off from a prior measure in the

entropic sense. That is, they minimize the expected cost over all P such that P ∈ M(µ, ν) and

H(P|P0) < λ, where P0 is the prior measure and λ ∈ [0,∞].

In this chapter we are mainly interested in pricing cliquets (see (2.18) for the definition of

cliquet) and comparing them to market data. Our approach is applicable to any exotic whose

value depends on the value of the underlying at finitely many time points. Our contribution is

two-fold. First, we prove a duality result for the martingale Schrödinger problem (Theorem 3)

and provide an explicit form for the minimizing distribution. Then, we show that it can computed

iteratively by using Sinkhorns algorithm (2.11) and provide a convergence result (Proposition

2.4.6). Second, we propose different reference measures and compare the pricing performance

of the resulting distributions to real data. We price different kinds of cliquets with varying rolling

periods. To the best of our knowledge, this is the first study that compares models generated from

optimal transport with market data. We demonstrate that we get good fits using certain reference

measures. Therefore our approach shows how to obtain exotic prices consistent with observed

data, using information from just the marginals.
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2.2 Setting

Let Ω := R>0 × R>0 be the sample space and let B(Ω) be the Borel σ-algebra on Ω. Let

P(Ω) be the set of all probability measures on (Ω,B(Ω)). Let S : {1, 2} × Ω → R>0 be a

coordinate process with the property that for all (s1, s2) ∈ Ω it holds that

S1(s1, s2) = s1 and S2(s1, s2) = s2.

We will let S represent the underlying asset with S1 and S2 denoting its value at two maturities

0 < t1 < t2 and let S0 be the current spot price. We assume zero interest rate and dividends for

simplicity unless stated otherwise.

Given two probability distributions µ, ν on (R>0,B(R>0)) define the set of transport plans

Π(µ, ν) ⊆ P(Ω) to be the set of all probability measures with marginals µ and ν. More explicitly,

π ∈ Π(µ, ν) if and only if π is a non-negative measure satisfying

π(A× R>0) = µ(A) and π(R>0 ×B) = ν(B)

for all measurable A,B ∈ B(R>0).

We assume that there are vanilla options with maturities t1 and t2 that imply the existence

of two risk neutral distributions µ1 and µ2 on (R>0,B(R>0)) (due to Breeden et al. [24]) with the

property that

Eµ1 [S1] = Eµ2 [S2] = S0.

Lastly, we introduce the shorthand notation that for arbitrary functions u1, u2 : R>0 → R

27



and h : R>0 → R we denote ∀(x, y) ∈ R>0:

(u1 ⊕ u2)(x, y) = u1(x) + u2(y) and h⊗(x, y) = (y − x)h(x)

2.3 Martingale Optimal Transport

2.3.1 Primal Problem

Let c : Ω → R be the payoff of a contingent claim that depends on the value of an under-

lying asset S at two time points, S1 and S2. An example of such a claim is a forward start option

with the payoff, c(s1, s2) =
(
s1
s2
− 1
)+

. In order to determine the fair value under no-arbitrage,

we postulate a model Q ∈ P(Ω) under which S is a martingale adapted to the natural filtration.

The fair value for c is then given by

EQ[c] =

∫
Ω

c(s1, s2)dQ(s1, s2).

We assume that the model is calibrated to vanilla options with maturities t1 and t2. Hence, the

one dimensional marginals of Q satisfy

Q ◦ S−1
i = µi for i ∈ {1, 2}.

Moreover we assume absence of calendar arbitrage which is equivalent to µ1 and µ2 being in

convex order, i.e., for any convex function φ : R→ R it holds that

Eµ1 [φ] ≤ Eµ2 [φ].
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LetM(µ1, µ2) ⊆ Π(µ1, µ1) be the set of all transport plans that satisfy the martingale condition

such that Eµ[S2|S1] = S1 for all µ ∈ M(µ1, µ2). By Strassen’s theorem [25] M(µ1, µ2) is

non-empty if and only if µ1 and µ2 are in convex order.

The no-arbitrage lower bound price P for c is hence given by Martingale Optimal Transport

primal problem:

P = inf{Eµ[c(s1, s2)] : µ ∈M(µ1, µ2)}

We can explicitly compute the lower bound by reframing this as a linear program

inf
µ

∫
c(s1, s2)µ(ds1, ds2)

subject to
∫
µ(s1, ds2) = µ1(s1) ∀s1 ∈ R>0∫
µ(ds1, s2) = µ2(s2) ∀s2 ∈ R>0∫
(s2 − s1)µ(s1, ds2) = 0 ∀s1 ∈ R>0.

(2.1)

2.3.2 Dual Problem

The dual to martingale optimal transport corresponds to an upper bound on the value of

a sub-replicating portfolio for c. Let U be the collection of portfolios (u1, u2,∆) defined by

U := L1(R>0, µ1) × L1(R>0, µ2) × Cb(R>0) where Cb(R>0) is the space of all continuous and

bounded functions. Let Uc ⊆ U be the set of sub-replicating portfolios of c with the property that

for all (s1, s2) ∈ Ω it holds that

c(s1, s2) ≥ (u1 ⊕ u2)(s1, s2) + ∆⊗(s1, s2). (2.2)
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The dual problem is given by:

D = sup{Eµ1 [u1(s1)] + Eµ2 [u2(s2)] : ∃ ∆ s.t. c(s1, s2) ≥ (u1 ⊕ u2)(s1, s2) + ∆⊗(s1, s2)}.

The dual provides an upper bound D by considering the highest value of a sub-replicating port-

folio of c that consists of two vanilla options u1, u2 with maturities t1, t2 and a position in the

forward given by ∆.

We can formally derive the dual by introducing Lagrange multipliers and using a minimax

argument to switch the supremum and infimum:

inf
µ∈M(µ1,µ2)

Eµ[c(s1)]

= inf
µ∈P(Ω)

sup
u∈U

{
Eµ[c(s1, s2)] + (Eµ1 [u1(s1)]− Eµ[u1(s1)])

+ (Eµ2 [u2(s2)]− Eµ[u2(s2)])− Eµ[∆⊗(s1, s2)]
}

= sup
u∈U

{
Eµ1 [u1(s1)] + Eµ2 [u2(s2)]

+ inf
µ∈P(Ω)

{
Eµ[c(s1, s2)− u1(s1)− u2(s2)−∆⊗(s1, s2)]

}}
= sup

u∈Uc
Eµ1 [u1(S1)] + Eµ2 [u2(S2)].

The last equality is true because the infimum over P(Ω) goes to −∞ if the expression inside is

negative and (2.2) does not hold. These arguments can be made rigorous to prove the absence of

a duality gap, i.e., P = D.
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2.3.3 Absence of Duality gap

Beiglböck et al. [21] show that under mild assumptions on the payoff c, the primal and dual

values are equal. In particular they prove:

Theorem 2. Assume thatM(µ1, µ2) is nonempty. Let c : R×R→ R be a lower semi-continuous

function such that

c(s1, s2) ≥ −K · (1 + |s1|+ |s2|)

for some constant K. Then, there is no duality gap i.e.,

P = inf
µ∈M(µ1,µ2)

Eµ[c(s1, s2)] = sup
(u1,u2,∆)∈Uc

Eµ1 [u1(s1)] + Eµ2 [u2(s2)] = D.

Moreover, the primal value P is attained, i.e., there exists a minimizing martingale measure

µ ∈M(µ1, µ2) such that P = Eµ[c]. The dual supremum in general is not attained.

It is sufficient to consider u1, u2 that are linear combinations of finitely many call options

and ∆ is be taken to be continuous and bounded. A similar result holds by switching the infimum

to a supremum in the primal and by assuming that c is upper semi-continuous.

Corollary 2.1. Assume that M(µ1, µ2) is nonempty. Let c : R × R → R be an upper semi-

continuous function such that

c(s1, s2) ≤ K · (1 + |s1|+ |s2|)
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for some constant K ∈ R. Then there is no duality gap

sup
µ∈M(µ1,µ2)

Eµ[c(s1, s2)] = inf
(u1,u2,∆)∈Uc

Eµ1 [u1(s1)] + Eµ2 [u2(s2)]

and the supremum is attained, i.e., there exists a maximizing martingale measure.

The martingale optimal transport allows us to compute model-free lower and upper bounds

for any given payoff c given by

sup
µ∈M(µ1,µ2)

Eµ[c(1, S2)] and inf
µ∈M(µ1,µ2)

Eµ[c(S1, S2)].

In practice however, these bounds are often too wide and not appropriate for pricing such claims.

Moreover, for any given function c, the optimal joint distribution is payoff dependent and has

sparse support which implies that S2 is largely determined by S1 which is an unrealistic assump-

tion. Henry-Labordère et al. [26] show that for a payoff satisfying ∂s1,s2,s2c(s1, s2) > 0 the

optimal joint distribution is supported on two graphs. Similarly, based on numerical experiments,

De March [27] conjecture that the optimal coupling for any c(s1, s2) is supported on at most two

graphs. Therefore, any objective function that is linear in probability is unsuitable for pricing.
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Figure 2.1: Optimal joint distribution from maximizing the payoff c(s1, s2) = (S2

S1
− 1)+.

Figure 2.2: Upper and Lower bound for c(s1, s2) = (S2

S1
− 1)+ compared to market prices under

Optimal Transport.
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2.4 Martingale Schrödinger Problem

Our goal is to find a suitable objective function with which we can obtain a joint distribution

that prices claims consistent with market data. As such, we look for a function that is non-linear

in probability. Natural candidates include Shannon entropy and the Kullback-Leibler relative

entropy. We consider minimizing the relative entropy with respect to some reference measure.

Given two probability measures µ and ν, the relative entropy H(µ|ν) of µ with respect to

ν is defined as:

H(µ|ν) :=


Eµ
[
ln dµ

dν

]
if µ� ν

+∞ otherwise

Under this objective function, the problem of finding a pricing measure can be formulated as

inf
µ∈M(µ1,µ2)

H(µ|µ̄),

where µ̄ is a given reference measure. Following Guyon [22] we term this as the Martingale

Schrödinger problem. Unlike the martingale optimal transport, here we are interested in finding

an optimal measure as opposed to the lower and upper bounds of a given claim. This problem

is strictly convex and assuming that there exists µ ∈ M(µ1, µ2) such that H(µ|µ̄) < ∞, it

holds that the infimum is uniquely attained. The modern interpretation of the original problem

as proposed by Schrödinger ([28], [29]) involves finding a probability measure over the path

space that matches given marginal densities and minimizes the relative entropy with respect to

the Wiener measure. A detailed survey on the Schrödinger problem is provided by [30] and [31].

Similar to the martingale optimal transport, we can formally derive the dual for the martin-
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gale Schrödinger problem by observing that,

inf
µ∈M(µ1,µ2)

H(µ|µ̄)

= inf
µ∈P(Ω)

sup
(u1,u2,∆)∈U

{
H(µ|µ̄) + (Eµ1 [u1(s1)]− Eµ[u1(s1)])

+ (Eµ2 [u2(s2)]− Eµ[u2(s2)])− Eµ[∆⊗(s1, s2)]
}

= sup
(u1,u2,∆)∈U

{
Eµ1 [u1(s1)] + Eµ2 [u2(s2)]

+ inf
µ∈P(Ω)

{
H(µ|µ̄)− Eµ[(u1 ⊕ u2)(s1, s2) + ∆⊗(s1, s2)]

}}

The inner infimum can be computed explicitly (see [23], Proposition 7.3) using the proposition

below.

Proposition 2.4.1. Let µ and µ̄ be two probability measures such that µ� µ̄. LetX be a random

variable with the property that Eµ̄[eX ] < +∞. Then it holds that

inf
µ∈P(Ω)

H(µ|µ̄)− Eµ[X] = − lnEµ̄[eX ].

The infimum is attained at µ(ds1, ds2) = µ̄(ds1, ds2) eX

Eµ̄[eX ]
.

Proof. Define a probability measure νX given by the density dνX
dµ̄

= eX

Eµ̄[eX ]
. Then it holds that

H(µ|µ̄)− Eµ[X] = Eµ
[
ln

dµ

dνX
+ ln

dνX
dµ̄

]
− Eµ[X]

= H(µ|νX) + Eµ
[
ln
dνX
dµ̄
−X

]
= H(µ|νX)− lnEµ̄[eX ].
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Since H(µ|µ̄) ≥ 0 from Jensen’s inequality, it holds that

inf
µ∈P(Ω)

H(µ|µ̄)− Eµ[X] = − lnEµ̄[eX ]

and the infimum is attained when µ = νX .

Therefore, the dual can be framed as,

inf
µ∈M(µ1,µ2)

H(µ|µ̄) = sup
(u1,u2,∆)∈U

Eµ1 [u1(s1)] + Eµ1 [u2(s2)]

− lnEµ̄
[
e(u1⊕u2)(s1,s2)+∆⊗(s1,s2)

]

2.4.1 Duality

We now prove the absence of a duality gap. Guyon [22] proves a similar result under

additional VIX constraints.

Theorem 3. Let µ̄ ∈ P(Ω) be a reference measure that satisfies µ̄ ∼ µ1⊗µ2 andH(µ1⊗µ2|µ̄) <

∞. Then it holds that

inf
µ∈M(µ1,µ2)

H(µ|µ̄) = sup
(u1,u2,∆)∈U

Eµ1 [u1(s1)] + Eµ1 [u2(s2)]

− lnEµ̄
[
e(u1⊕u2)(s1,s2)+∆⊗(s1,s2)

] (2.3)

If the problem is finite, then the infimum is uniquely attained, i.e., there exists a unique µ∗ ∈

M(µ1, µ2) such that

H(µ∗|µ̄) = inf
µ∈M(µ1,µ2)

H(µ|µ̄).
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Furthermore, suppose that the supremum is attained and let (u∗1, u
∗
2,∆

∗) ∈ U be the maximizer.

Then the problem is finite and the unique minimal probability measure µ∗ ∈ M(µ1, µ2) for the

primal is given by

µ∗(ds1, ds2) = µ̄(ds1, ds2)
e(u∗1⊕u∗2)(s1,s2)+∆∗⊗(s1,s2)

Eµ̄[e(u∗1⊕u∗2)(s1,s2)+∆∗⊗(s1,s2)]
µ̄− a.s. (2.4)

The proof of Theorem 3 relies mainly on two results: a duality result for the Schrödinger

problem without the martingale constraint and Sion’s minimax theorem which allows us to inter-

change the infimum and supremum.

Theorem 4. ([32]. Theorem 3.2). Assume the same setting as in Theorem 3. Then it holds that

inf
π∈Π(µ1,µ2)

H(µ|µ̄) = sup
u1∈L1(µ1),u2∈L1(µ2)

Eµ1 [u1(s1)] + Eµ2 [u2(s2)]− lnEµ̄[e(u1⊕u2)(s1,s2)].

Theorem 5. (Sion’s minimax theorem [33], Corollary 3.3). Let X and Y be convex subsets of a

linear topological space. Let X be compact and let f : X × Y → R be a functions such that

1. For all x ∈ X , f(x, ·) is upper semi-continuous and quasi-concave on Y .

2. For all y ∈ y, f(·, y) is lower semi-continuous and quasi-convex on X .

Then it holds that

inf
x∈X

sup
y∈Y

f(x, y) = sup
y∈Y

inf
x∈X

f(x, y).

Theorem 5, can be justified by the following two propositions.

Proposition 2.4.2. ([21], Lemma 2.2). Let c : R2 → R be continuous and assume there exists a
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constant K > 0 such that for all (x1, x2) ∈ R2 it holds that

|c(x1, x2)| ≤ K(1 + |x1|+ |x2|).

Then for any π ∈ Π(µ, ν), the mapping π 7→
∫
R2 c(x1, x2)dπ is continuous on Π(µ, ν).

Proposition 2.4.3. ([34], Theorem D.13). Let µ, ν ∈ P(R). Then the mapping µ 7→ H(µ|ν) is

lower semi-continuous in the weak topology.

Lastly, the following two auxiliary results are also required for the proof.

Proposition 2.4.4. ([21], Lemma 2.3). Let Π(µ, ν) be the set of all probability measures on R×R

with marginals µ and ν. Let π ∈ Π(µ, ν). Then the following are equivalent:

1. π ∈M(µ, ν)

2. For every continuous and bounded function ∆ : R→ R it holds that

∫
R2

∆(x1)(x2 − x1)dπ(x1, x2) = 0 (2.5)

Lemma 2.4.1. Let µ̄ ∈ P(Ω). Let c : R>0 ×R>0 → R be a function with the property that there

exists a constantKc ∈ R such that it holds for all (s1, s2) ∈ Ω that c(s1, s2) ≤ Kc ·(1 + s1 + s2).

Then it holds that

inf
µ∈Π(µ1,µ2)

H(µ|µ̄)− Eµ[c(s1, s2)]

= sup
u1∈L1(µ1), u2∈L1(µ2)

Eµ1 [u1(s1)] + Eµ2 [u2(s2)]− lnEµ̄[e(u1⊕u2)(s1,s2)+c(s1,s2)]
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Proof. We first prove for the case when Eµ̄[ec(s1,s2)] < ∞. Let µ̄c ∈ P(Ω) be a density defined

through

dµ̄c
dµ̄

=
ec(s2,s2)

Mc

µ̄− a.s.,

where Mc := Eµ̄[ec(s2,s2)] is the normalizing constant. Then it holds that

inf
µ∈Π(µ1,µ2)

H(µ|µ̄)− Eµ[c(s1, s2)] = inf
µ∈Π(µ1,µ2)

H(µ|µ̄c)− lnMc.

Applying Theorem 4 to H(µ|µ̄c) it holds that

inf
µ∈Π(µ1,µ2)

H(µ|µ̄c)− lnMc

= sup
u1∈L1(µ1),u2∈L1(µ2)

Eµ1 [u1(s1)] + Eµ2 [u2(s2)]− lnEµ̄c [e(u1⊕u2)(s1,s2)]− lnMc

= sup
u1∈L1(µ1),u2∈L1(µ2)

Eµ1 [u1(s1)] + Eµ2 [u2(s2)]− lnEµ̄[M−1
c e(u1⊕u2)(s1,s2)+c(s1,s2)]− lnMc

= sup
u1∈L1(µ1),u2∈L1(µ2)

Eµ1 [u1(s1)] + Eµ2 [u2(s2)]− lnEµ̄[e(u1⊕u2)(s1,s2)+c(s1,s2)].

Let ĉ : R>0×R>0 → R, be a function with the property that ĉ(s1, s2) = c(s1, s2)−Kc(2+s1+s2).

Clearly, ĉ(s1, s2) ≤ 0 for all (s1, s2) ∈ Ω. Since Eµ̄[eĉ(s1,s2)] < ∞, we can apply the first part of

the lemma to show that

inf
µ∈Π(µ1,µ2)

H(µ|µ̄)− Eµ[ĉ(s1, s2)]

= sup
u1∈L1(µ1), u2∈L1(µ2)

Eµ1 [u1(s1)] + Eµ2 [u2(s2)]− lnEµ̄[e(u1⊕u2)(s1,s2)+ĉ(s1,s2)]
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We conclude the proof of the lemma by observing that

inf
µ∈Π(µ1,µ2)

H(µ|µ̄)− Eµ[ĉ(s1, s2)]

= inf
µ∈Π(µ1,µ2)

H(µ|µ̄)− Eµ[c(s1, s2)] + Eµ1 [Kc(1 + s1)] + Eµ2 [Kc(1 + s2)].

(2.6)

Similarly, it holds that

sup
u1∈L1(µ1),u2∈L1(µ2)

Eµ1 [u1(s1)] + Eµ2 [u2(s2)]− lnEµ̄[e(u1⊕u2)(s1,s2)+ĉ(s1,s2)]

= sup
u1∈L1(µ1),u2∈L1(µ2)

Eµ1 [u1(s1)] + Eµ2 [u2(s2)]− lnEµ̄[e(u1⊕u2)(s1,s2)+c(s1,s2)−Kc(2+s1+s2)].

Note that for i ∈ {1, 2} it holds ui(si)−Kc(1 + si) ∈ L1(µi). We can rewrite the above as

sup
u1∈L1(µ1),u2∈L1(µ2)

Eµ1 [u1(s1)] + Eµ2 [u2(s2)]− lnEµ̄[e(u1⊕u2)(s1,s2)+c(s1,s2)]

+ Eµ1 [Kc(1 + s1)] + Eµ2 [Kc(1 + s2)].

(2.7)

The result follows from observing the equality between equations (2.6) and (2.7).

The proof of Theorem 3 now follows.
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Proof. It holds that

inf
µ∈M(µ1,ν2)

H(µ|µ̄) = inf
µ∈Π(µ1,µ2)

sup
∆∈Cb

H(µ|µ̄)− Eµ[∆⊗(s1, s2)]

= sup
∆∈Cb

inf
µ∈Π(µ1,µ2)

H(µ|µ̄)− Eµ[∆⊗(s1, s2)]

= sup
∆∈Cb

sup
u1∈L1(µ1),u2∈L1(µ2)

Eµ1 [u1(s1)] + Eµ2 [u2(s2)]

− lnEµ̄[e(u1⊕u2)(s1,s2)+∆⊗(s1,s2)]

= sup
(u1,u2,∆)∈U

Eµ1 [u1(s1)] + Eµ2 [u2(s2)]

− lnEµ̄[e(u1⊕u2)(s1,s2)+∆⊗(s1,s2)].

(2.8)

The first equality follow from Proposition 2.4.4. The second equality uses Sion’s Minimax the-

orem (Theorem 5) where we let X = Π(µ1, µ2), equipped with the weak topology induced by

bounded continuous functions on R and Y = Cb, equipped with the sup norm. Both are convex

sets and Π(µ1, µ2) is a compact subset of finite Borel measures under the weak topology. Let

fµ̄ : Π(µ1, µ2)× Cb → R be a function defined by

fµ̄(µ,∆) := H(µ|µ̄)− Eµ[∆⊗(s1, s2)].

For any ν ∈ P(Ω) it holds that H(·|ν) is strictly convex and is lower semi-continuous in

Π(µ1, µ2) by Proposition 2.4.3. Furthermore, the mapping µ 7→ Eµ[∆⊗(s1, s1)] is convex and

continuous by Proposition 2.4.2. Therefore for all ∆ ∈ Cb, fµ̄(·,∆) is lower semi-continuous and

convex on Π(µ1, µ2). Likewise, for all µ ∈ Π(µ1, µ2), fµ̄(µ, ·) is linear and continuous and hence

also upper semi-continuous and concave on Cb. Therefore we can justify switching the supremum

and infimum in the second equality. Lastly, the third equality follows from Lemma 2.4.1. This

41



proves the duality result (2.3).

Suppose that the problem (2.3) is finite. It follows from the compactness of M(µ1, µ2) ([21],

Proposition 2.4 ) and the lower semi-continuity of µ 7→ H(µ|µ̄) that the infimum is attained. In

addition, it is unique due to the strict convexity of H(µ|µ̄).

The proof of (2.4) is similar to [22], Theorem 22. Let Dµ̄ : U → R be a function with the

property that for all (u1, u2,∆) ∈ U it holds that

Dµ̄(u1, u2,∆) = Eµ1 [u1(s1)] + Eµ1 [u2(s2)]− lnEµ̄
[
e(u1⊕u2)(s1,s2)+∆⊗(s1,s2)

]
(2.9)

Now suppose that there exist (u∗1, u
∗
2,∆

∗) ∈ U such that it holds

Dµ̄(u∗1, u
∗
2,∆

∗) = sup
(u1,u2,∆)∈U

Dµ̄(u1, u2,∆).

It is easy to see that Dµ̄(u∗1, u
∗
2,∆

∗) ≥ 0. Hence it follows that

Eµ̄
[
e(u1⊕u2)(s1,s2)+∆⊗(s1,s2)

]
<∞

which in turn implies that Dµ̄(u∗1, u
∗
2,∆

∗) ≤ ∞ and that the problem is finite. Therefore the

infimum is attained and there exists a unique µ∗ ∈M(µ1, µ2) such that

H(µ∗|µ̄) = Eµ1 [u∗1(s1)] + Eµ1 [u∗2(s2)]− lnEµ̄
[
e(u∗1⊕u∗2)(s1,s2)+∆∗⊗(s1,s2)

]
.
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It holds that

lnEµ̄
[
e(u∗1⊕u∗2)(s1,s2)+∆∗⊗(s1,s2)

]
≥ lnEµ̄

[
1{ dµ∗

dµ̄
>0}e

(u∗1⊕u∗2)(s1,s2)+∆∗⊗(s1,s2)
]

= lnEµ̄
[
1{ dµ∗

dµ̄
>0}

dµ∗

dµ̄
e(u∗1⊕u∗2)(s1,s2)+∆∗⊗(s1,s2)−ln dµ∗

dµ̄

]
= lnEµ∗

[
e(u∗1⊕u∗2)(s1,s2)+∆∗⊗(s1,s2)−ln dµ∗

dµ̄

]
≥Eµ∗

[
(u∗1 ⊕ u∗2)(s1, s2) + ∆∗⊗(s1, s2)− ln

dµ∗

dµ̄

]
=Eµ1 [u∗1(s1)] + Eµ2 [u∗2(s2)]−H(µ∗|µ̄)

= lnEµ̄
[
e(u∗1⊕u∗2)(s1,s2)+∆∗⊗(s1,s2)

]
.

Therefore, we get the equality:

Eµ̄
[
e(u∗1⊕u∗2)(s1,s2)+∆∗⊗(s1,s2)

]
= Eµ̄

[
1{ dµ∗

dµ̄
>0}e

(u∗1⊕u∗2)(s1,s2)+∆∗⊗(s1,s2)
]
,

which implies that dµ∗

dµ̄
> 0, µ̄ − a.s. and that µ∗ ∼ µ̄, i.e., the two measures are equivalent.

Moreover, it holds that

lnEµ∗
[
e(u∗1⊕u∗2)(s1,s2)+∆∗⊗(s1,s2)−ln dµ∗

dµ̄

]
= Eµ∗

[
ln
(
e(u∗1⊕u∗2)(s1,s2)+∆∗⊗(s1,s2)−ln dµ∗

dµ̄

)]

By Jensen’s inequality and strict concavity of the logarithm, it holds that (u∗1 ⊕ u∗2)(s1, s2) +

∆∗⊗(s1, s2)− ln dµ∗

dµ̄
must by constant µ∗ − a.s.. Hence it follows that

µ∗(ds1, ds2) = µ̄(ds1, ds2)
e(u∗1⊕u∗2)(s1,s2)+∆∗⊗(s1,s2)

Eµ̄[e(u∗1⊕u∗2)(s1,s2)+∆∗⊗(s1,s2)]
µ̄− a.s.
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2.4.2 Solving the Dual using Sinkhorn’s Algorithm

Let Dµ̄ : U → R be as defined in (2.9). The dual formulation (2.3) effectively transforms

the problem of minimizing H(µ|µ̄) over a constrained set M(µ, ν) to a problem of maximiz-

ing a strictly concave function Dµ̄ over an unconstrained set. Solving the dual is usually less

computationally expensive than finding the primal. Under a discrete setting, the primal involves

computing an N ×N matrix whereas the dual is an N × 3 matrix.

Note that for any x0 ∈ R it holds that

Dµ̄(u1, u2,∆) = Dµ̄(u1 + x0, u2,∆).

Hence, if (u∗1, u
∗
2,∆

∗) maximizes sup(u1,u2,∆)∈U Dµ̄ then so does (u∗1 + c, u∗2,∆
∗). Therefore by

taking x0 = −Eµ̄[e(u∗1⊕u∗2)(s1,s2)+∆∗⊗(s1,s2)] we can always work with a normalized form of the

minimizing measure µ∗ given by

µ∗(ds1, ds2) = µ̄(ds1, ds2)e(u∗1⊕u∗2)(s1,s2)+∆∗⊗(s1,s2) µ̄− a.s. (2.10)

The maximizing dual variables (u∗1, u
∗
2,∆

∗) satisfy

∂Dµ̄

∂u1(s1)

∣∣∣
u1=u∗1

=
∂Dµ̄

∂u2(s2)

∣∣∣
u2=u∗2

=
∂Dµ̄

∂∆(s1)

∣∣∣
∆=∆∗

= 0.

This yields a system of equations provided by the following proposition.
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Proposition 2.4.5. Let (u∗1, u
∗
2,∆

∗) be the maximizing dual variables to (2.3). Then they satisfy

the system of equations

u1(s1) = lnµ1(s1)− ln

∫
µ̄(s1, ds2)eu2(s2)+(s2−s1)∆(s1), for all µ1 − a.a. s1,

u2(s2) = lnµ2(s2)− ln

∫
µ̄(ds1, s2)eu1(s1)+(s2−s1)∆(s1), for all µ2 − a.a. s2,

0 =

∫
µ̄(s1, ds2)(s2 − s1)eu2(s2)+(s2−s1)∆(s1), for all µ1 − a.a. s1.

The proof is a straightforward adaptation of [22], Proposition 44 and is hence omitted. The above

equations can be solved iteratively using an extension of Sinkhorn’s algorithm which is a fixed

point method that iterates over the computation of one-dimensional gradients to approximate the

optimizer. Sinkhorn’s algorithm [35] was popularised by Cuturi [36] in the context of quickly

solving optimal transport problems. More recently it’s been used by [37] to build arbitrage free

smile interpolations and by [22] to jointly calibrate the S&P 500 and VIX smile. Starting from

an initial guess u(0) =
(
u

(0)
1 , u

(0)
2 ,∆(0)

)
, we can define u(n+1) using u(n) by

u
(n+1)
1 (s1) = lnµ1(s1)− ln

∫
µ̄(s1, ds2)eu

(n)
2 (s2)+(s2−s1)∆(n)(s1)

u
(n+1)
2 (s2) = lnµ2(s2)− ln

∫
µ̄(ds1, s2)eu

(n+1)
1 (s1)+(s2−s1)∆(n)(s1)

0 =

∫
µ̄(s1, ds2)(s2 − s1)eu

(n+1)
2 (s2)+(s2−s1)∆(n+1)(s1)

(2.11)

till we get convergence. ∆(n+1) is defined implicitly and can be solved using a one-dimensional

root solver. We now prove that the density µ(n) defined using
(
u

(n)
1 , u

(n)
2 ,∆(n)

)
converges to µ∗.

Lemma 2.4.2. Given
(
u

(0)
1 , u

(0)
2 ,∆(0)

)
∈ U , define

(
u

(n)
1 , u

(n)
2 ,∆(n)

)
recursively as in (2.11).
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Let µ(0) := µ̄ ∈ P(Ω) and let µ(3n), µ(3n+1), µ(3n+2) ∈ P(Ω) for n ∈ N be defined as

µ(3n)(ds1, ds2) = µ̄(ds1, ds2) eu
(n)
1 (s1)+u

(n)
2 (s2)+(s2−s1)∆(n)(s1) (2.12)

µ(3n+1)(ds1, ds2) = µ̄(ds1, ds2) eu
(n+1)
1 (s1)+u

(n)
2 (s2)+(s2−s1)∆(n)(s1) (2.13)

µ(3n+2)(ds1, ds2) = µ̄(ds1, ds2) eu
(n+1)
1 (s1)+u

(n+1)
2 (s2)+(s2−s1)∆(n)(s1). (2.14)

Then for all n ∈ N it holds that

H
(
µ(3n)|µ(3n−1)

)
= 0,

H
(
µ(3n+1)|µ(3n)

)
= Eµ1

[
u

(n+1)
1 − u(n)

1

]
,

H
(
µ(3n+2)|µ(3n+1)

)
= Eµ2

[
u

(n+1)
2 − u(n)

2

]
.

Proof. Observe that (2.12) - (2.14) correspond to densities satisfying exactly one constraint of the

martingale Schrödinger problem. That is, the first marginal of µ(3n+1) is µ1, the second marginal

of µ(3n+2) is µ2 and µ(3n) satisfies the martingale condition.

It holds that

H
(
µ(3n)|µ(3n−1)

)
=

∫
ln

(
eu

(n)
1 (s1)+u

(n)
2 (s2)+(s2−s1)∆(n)(s1)

eu
(n)
1 (s1)+u

(n)
2 (s2)+(s2−s1)∆(n−1)(s1)

)
dµ(3n)

=

∫
(s2 − s1)dµ(3n)

= 0.
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Similarly,

H
(
µ(3n+1)|µ(3n)

)
=

∫
ln

(
eu

(n+1)
1 (s1)+u

(n)
2 (s2)+(s2−s1)∆(n)(s1)

eu
(n)
1 (s1)+u

(n)
2 (s2)+(s2−s1)∆(n)(s1)

)
dµ(3n+1)

=

∫
u

(n+1)
1 − u(n)

1 dµ(3n+1)

= Eµ1

[
u

(n+1)
1 − u(n)

1

]
Using a similar argument we conclude that

H
(
µ(3n+2)|µ(3n+1)

)
= Eµ2

[
u

(n+1)
2 − u(n)

2

]
.

Proposition 2.4.6. Let µ∗ ∈ M(µ1, µ2) be the solution to the martingale Schrödinger problem

under a reference measure µ̄ ∈ P(Ω). It holds for all n ∈ N that

H(µ∗|µ(n)) = H(µ∗|µ̄)−
n−1∑
i=0

H(µ(i)|µ(i−1))− Eµ1

[
u

(0)
1

]
− Eµ2

[
u

(0)
2

]
. (2.15)

In particular, H(µ∗|µ(n)) is decreasing in n.

Proof. From Lemma (2.4.2) it holds that

3n∑
i=0

H(µ(i)|µ(i−1)) = Eµ1

[
u

(3n)
1 − u(0)

1

]
+ Eµ2

[
u

(3n)
2 − u(0)

2

]
. (2.16)
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Observe that,

H(µ∗|µ̄)−H(µ∗|µ(3n)) = Eµ∗
[
ln

(
dµ(3n)

dµ̄

)]
= Eµ∗

[
u

(3n)
1 + u

(3n)
2 + (s2 − s1)∆(3n)

]
= Eµ1 [u

(3n)
1 ] + Eµ2 [u

(3n)
2 ]

Substituting (2.16), it holds that

H(µ∗|µ(3n)) = H(µ∗|µ̄)−
3n∑
i=0

H(µ(i)|µ(i−1))− Eµ1

[
u

(0)
1

]
− Eµ2

[
u

(0)
2

]
.

We obtain a similar result by replacing 3n with 3n+ 1 and 3n+ 2. Hence (2.15) follows. Finally,

observe that H(·|·) ≥ 0 and so H(µ∗|µ(n)) is decreasing in n.

2.5 Bilateral Gamma Sato marginals

Pricing cliquets requires the marginal distributions of the underlier at specific maturities.

One practical issue is that there may not be any option expiring at the required maturities. To

circumvent this, we fit a Bilateral Gamma Sato process to the nearest two maturities for which

we have data and use it to obtain the distribution for the specific maturity.

2.5.1 Bilateral Gamma Process

The Bilateral Gamma process has been described in Chapter 1.
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2.5.2 Sato Process

Sato processes [38] allow for the modelling of option prices across strikes and maturities.

They are related to self-decomposable laws which are a sub-class of infinitely divisible distribu-

tions. The distribution of a random variable X is self-decomposable ([39], page 90, Definition

15.1) if for any constant c ∈ (0, 1), there exists an independent random variable X(c) such that

X =law cX +X(c),

i.e., it has the same distribution as the sum of a scaled down version of itself (cX) and an in-

dependent residual random variable (X(c)). Self-decomposable laws are suitable candidates for

the return distribution because they are unimodal, infinitely divisible and can be characterized as

limit laws.

A self-similar process {Ys, s ≥ 0} is a stochastic process with the property that for any

α > 0 there exists β(α) such that for all s > 0 it holds that

Yαs =law β(α)Ys. (2.17)

It can be proven that β(α) = αγ for some γ ≥ 0. Such a process is called self-similar with index

γ.

An additive process is a process with inhomogeneous and independent increments. The

Levy process is a special case of an additive process with homogeneous increments. Sato ([40])

showed that a distribution is self-decomposable if and only if it is the distribution of a self-similar
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additive process at unit time. In other words, if X is a self-decomposable law then there exists

a self-similar additive process Ys, s ≥ 0 such that Y1 =law X . Such a process is called a Sato

process. Taking α = t and s = 1, it follows that the law of a Sato process at time t is given by

Yt =law tγX.

2.5.3 Bilateral Gamma Sato Process

Let X be a random variable with bilateral Gamma distribution with the characteristic func-

tion φX(u) and density fX(x). It can be shown that X is self-decomposable and hence we can

construct a bilateral Gamma Sato process Y = {Yt, t ≥ 0}. It holds that the characteristic

function φYt(u) is given by

φYt(u) = E[exp(iuYt)]

= E[exp(iutγX)]

= φX(utγ)

= (1 + ibnut
γ)−cn(1− ibputγ)−cp ,

and the density fYt(x) is

fYt(x) = fX

( x
tγ

) 1

tγ
.

2.6 Discretizing schemes for marginals

In practice, the marginal distributions need to be decomposed over a finite dimensional ba-

sis. It is important for the quantization scheme to preserve the convex ordering of the marginals in
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order for the problem to remain feasible. Alfonsi et al ([41], Corollary 2.2) provide a useful result

that gives necessary and sufficient conditions for two probability measures with finite support to

be in the convex order.

Proposition 2.6.1. Let µ =
∑I

i=1 µiδxi and ν =
∑J

j=1 νjδyj be two probability measures on

R. Let Fµ(x) = µ((−∞, x]) denote the cumulative distribution and let φµ(t) =
∫ t
−∞ Fµ(x)dx.

Without loss of generality, assume that x1 < . . . < xI , y1 < . . . < yJ and µ1µIν1νJ > 0. Then it

holds that µ ≤cx ν if and only if

1. y1 ≤ x1 and xI ≤ yJ

2. for all j ∈ {1, . . . , I} such that x1 ≤ yj ≤ xI it holds that φµ(yj) ≤ φν(yj)

3.
∑I

i=1 µixi =
∑J

j=1 νjyj

We apply the Dual Quantization scheme as introduced by Pagès et al. ([42]) to discretize

the marginals distributions. This method assumes that the probability has bounded support which

is easily achieved by truncating the tails. Other discretization schemes that preserve convex

ordering include ([41], [43], [44]).

Let {xi}Ii=1 ∈ R be a set of grid points with x1 < . . . < xI and suppose µ and ν are two

probability distributions in increasing convex order (µ ≤cx ν) with bounded support in [x1, xI ].

The dual quantization of µ is defined by

µ̂ := µ({x1})δx1 +
I−1∑
i=1

∫
(xi,xi+1]

x− xi
xi+1 − xi

µ(dx)δxi+1
+

∫
(xi,xi+1]

xi+1 − x
xi+1 − xi

µ(dx)δxi .
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This is equivalent to the law

X̂ := X1X=x1 +
I−1∑
i=1

1X∈(xi,xi+1]

(
xi+11

U≤ X−xi
xi+1−xi

+ xi1U> X−xi
xi+1−xi

)
,

where U is uniformly distributed on [0, 1] independent of X. Following [41] it can be shown that

dual quantization preserves convex ordering. Let φ : R → R be a convex function and define

φ̂ : [x1, xI ] → R by φ̂(x) = x−xi
xi+1−xiφ(xi+1) + xi+1−x

xi+1−xiφ(xi) for x ∈ [xi, xi+1], i = 1, . . . , I − 1.

This is a convex function and it holds that

Eµ̂[φ(x)] = Eµ[φ̂(x)] ≤ Eν [φ̂(x)] = Eν̂ [φ(x)].

2.7 Implementation Details

2.7.1 Forward starting options and Cliquets

Forward starting call and put options with strike K are options with the payoff

(
S2

S1

−K
)+

and
(
K − S2

S1

)+

(resp.) (2.18)

Valuing such a payoff requires the risk neutral joint distribution of (S1, S2) which can be com-

puted using the martingale Schrödinger problem if the marginal distributions of S1 and S2 are

known. However, forward starts are not traded and we only have market data on cliquets which

are essentially a series of forward starting options.

We consider two types of cliquets. Rolling cliquets consist of a series of forward starts with
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increasing maturities and a given strike K, where the return from the earlier option rolls onto the

next one. Given a set of maturities 0 < T1 < T2 < . . . < Tn, let S1, S2, . . . Sn be the value of the

underlier at each maturity. The payoff for a rolling cliquet (call) is given by

n−1∑
i=1

(
Si+1

Si
−K

)+

.

We can price a cliquet by obtaining n− 1 joint distributions Qi(Si+1, Si) and thereby computing

n−1∑
i=1

EQi(Si+1,Si)

[(
Si+1

Si
−K

)+
]
.

We also consider at the money cliquets with a local cap (LC) and a global floor (GF ) that are

defined by a payoff

max

(
n−1∑
i=1

min

(
Si+1 − Si

Si
, LC

)
, GF

)
.

These can be priced using Monte Carlo methods once we have computed the joint distribution.

2.7.1.1 Description of market data

Cliquet prices are obtained using the Totem service by IHS Markit. Totem provides con-

sensus based prices for a variety of over the counter derivatives. In this study we look at cliquets

on the S&P500 (SPX) with a 1 year maturity. We consider market prices of cliquets on six days

in 2019: 20-03-2019, 18-04-2019, 19-06-2019, 22-07-2019, 19-09-2019, 17-12-2019. In total

the data consisted of 180 options.

The rolling cliquets were rolled after 1-month, 3-month and 6-month gaps and the strikes

ranged from 0.86 to 1 for puts and 1 to 1.14 for calls. On each day there are 3 rolling puts and 3
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rolling calls. The cliquets with local cap/global floor consisted of 9 options with a global floor of

0 and local cap ranging from 1% to 3% for a 1-month rolling period and 2% to 6% for 3-months.

2.7.2 Computing discrete marginal densities

The marginal densities are obtained by fitting the bilateral Gamma Sato model for each of

the 12 maturities ti ∈ { 1
12
, 2

12
, . . . , 1} on S&P500 (SPX) out of the money vanilla options. In

case there are no options for a specific maturity ti, we calibrate the model to the nearest available

maturities above and below ti.

Assuming non-zero interest rate and dividends, let Si and Fi represent the underlier and

forward at maturity ti. Let Xi := Si
Fi

and let fXi(x) denote the bilateral Gamma Sato risk neutral-

density. For all i ∈ {1, . . . , 12} it holds that

EfXi [Xi] = 1.

For any Xi, Xj , i < j a joint density µ(Xi,Xj)(xi, xj) is a martingale if and only if

Eµ(Xi,Xj) [Xj|Xi] = Xi

or alternatively, for all xi ∈ R>0 it holds

∫
(xj − xi)µ(Xj ,Xj)(xi, xj)dxj = 0.

A non-uniform grid is used to discretize the densities with N = 100 points. Compared to a
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uniform grid, the non-uniform grid is desirable in modelling as it gives a higher resolution at a

given location, which is near the spot S0 in our case. We follow Mijatović and Pistorius [45] to

construct the grid. Let a be the lower bound and b the upper bound of the state space and let g be

a density parameter that controls how closely packed the grid points are around S0. Let

c1 = arcsinh

(
a− S0

g

)
c2 = arcsinh

(
b− S0

g

)

Let k ∈ {1, . . . , N/2}. The lower half of the grid is then defined as

sk = S0 + g sinh

(
c1

(
1− k − 1

N/2− 1

))

and the upper half as

sk+N/2 = S0 + g sinh

(
c2

k

N/2

)
.

The densities fXi(x) are defined over the entire interval R and must be truncated before they

can be discretized using Dual Quantization. For a given fXi and an interval [ai, bi], define the

truncated density f̂Xi to be

f̂Xi(x) =
1

N
fXi

(
x
M

N

)
1x∈[ai NM ,bi

N
M ]
M

N
,

where N :=
∫ b
a
f(x)dx and M :=

∫ b
a
xf(x). It is easy to see that f̂Xi(x) is a density with mean 1

over a compact support. We take a1 = 0.6 and b1 = 1.4 for the support ofX1 and keep expanding

the support for each successive Xi so that for all i < j, supp(Xi) ⊂ supp(Xj).
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2.7.3 Computing discrete joint densities

The discrete marginals allow us to run the optimization problem and obtain the joint density

required for pricing cliquets. For the cliquets with 1-month gaps we compute 11 separate joint

densities corresponding to the 11 marginal density pairs (Xi, Xi+1), i ∈ {1, . . . 11}. Likewise,

there are 4 joint densities for the 3-month cliquets using the pairs {(X1, X3), (X3, X6), (X6, X9), (X9, X12)}

and 2 joint densities for the 6-month cliquets i.e., {(X1, X6), (X6, X12)}.

By linearity, the price of rolling cliquets can be decomposed into a sum of forward contracts

whose value can be computed individually. In contrast, the cliquets with a global floor cannot be

separated as individual contracts and must therefore be computed using Monte Carlo methods.

We use N = 214 realizations in our experiments.

2.7.4 Choice of reference measure

Given (Xi, Xj) for i < j, with marginals µi(xi), µj(xj), the reference measure typically

used in entropic optimal transport is the product measure (µi ⊗ µj)(xi, xj). This is equiva-

lent to maximizing the joint Shannon entropy. However, (µi ⊗ µj)(xi, xj) implies independent

marginals which is an unrealistic assumption in finance. Using a similar approach to [22] we seek

a reference measure µ̄(xi, xj) that is a martingale and matches µi. We vary µ̄(xi, xj) for each

(Xi, Xj) and hence each optimization has its own reference measure. Therefore, let µ̄(xi, xj) =

µi(xi)T (xj|xi), where T (xj|xi) is a transitional kernel satisfying for all xi,
∫
xjT (xj|xi)dxj =

xi. For a fixed xi, let T (xj|xi) be the distribution of xiR, where R is a random variable with unit

mean. Four different reference measures are constructed by choosing the distribution of R to be:

1. Xi, the BG-Sato marginal at maturity ti (denoted by BGS - t1).
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2. Xj , the BG-Sato marginal at maturity tj (denoted by BGS - t2).

3. X 1
12

the BG-Sato marginal at maturity t = 1
12

(denoted by BGS - t0).

4. Lognormal, as exp
(
σ
√
TN − 1

2
σ2T

)
with N ∼ N (0, 1), T = 1

12
and σ = 20 (denoted

by Lognorm - 20).

We consider two additional reference measures: µi ⊗ µj (denoted by Max - Ent) and following

Madan [46], computing two joint densities that maximize and minimize the expected squared log

return, i.e., E[(log S2

S1
)2] and using their average as a reference measure denoted by Log - Sq.

2.8 Results

We compare the cliquet market prices with the ones generated from the six reference mea-

sures in the following figures. The average pricing error (APE) given by

1

mean option price

N∑
i

|modeli −marketi|
N

is reported for each day.
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Date Max Ent. BGS T2 BGS T1 GBM 20

03-20 0.13 0.056 0.054 0.146

06-19 0.131 0.061 0.05 0.12

09-19 0.116 0.058 0.038 0.124

12-17 0.109 0.078 0.084 0.161

Table 2.1: APE for 1 month rolling cliquets

Date Max Ent. BGS T2 BGS T1 GBM 20

03-20 0.143 0.027 0.043 0.139

06-19 0.152 0.039 0.025 0.131

09-19 0.096 0.024 0.075 0.169

12-17 0.069 0.099 0.159 0.216

Table 2.2: APE for 3 month rolling cliquets

Date Max Ent. BGS T2 BGS T1 GBM 20

03-20 0.082 0.029 0.122 0.148

06-19 0.085 0.019 0.111 0.151

09-19 0.07 0.022 0.111 0.169

12-17 0.083 0.115 0.177 0.215

Table 2.3: APE for 6 month rolling cliquets
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Date Max Ent. BGS T2 BGS T1 BGS T0 GBM 20

03-20 0.556 0.416 0.386 0.102 0.542

04-18 0.552 0.383 0.345 0.076 0.54

06-19 0.591 0.473 0.444 0.164 0.584

07-22 0.596 0.455 0.414 0.02 0.581

09-19 0.608 0.482 0.438 0.118 0.581

12-17 0.584 0.434 0.4 0.046 0.566

Table 2.4: APE for 1 month at the money cliquets with Local Cap

Date Max Ent. BGS T2 BGS T1 BGS T0 GBM 20

03-20 0.231 0.044 0.025 0.075 0.217

04-18 0.23 0.041 0.039 0.109 0.21

06-19 0.275 0.11 0.045 0.051 0.268

07-22 0.277 0.128 0.044 0.094 0.276

09-19 0.269 0.094 0.013 0.125 0.25

12-17 0.241 0.045 0.019 0.089 0.225

Table 2.5: APE for 3 month at the money cliquets with Local Cap
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Figure 2.3: Price comparison for 1 month and 3 month rolling cliquets (March)
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Figure 2.4: Price comparison for 1 month and 3 month rolling cliquets (September)
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Figure 2.5: Price comparison for 1 month and 3 month cliquets with varying local caps (March
and July)
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Figure 2.6: Price comparison for 1 month and 3 month cliquets with varying local caps (Septem-
ber and December)
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Figure 2.7: Dual variables for 1 month rolling cliquets at different maturities
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Figure 2.8: Dual variables for 3 month rolling cliquets at different maturities
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2.9 Conclusion and Further Research

Cliquets have been priced under a wide variety of models including Heston, local volatility,

and numerous Lévy and Sato models with a resulting wide range of prices computed. A basic

requirement on a model is that it must fairly accurately price the vanilla options at the traded

maturities and this dismisses the Black Scholes model as a candidate. Among the models meeting

the requirement of matching the marginals the possible range of cliquet prices is quite large and

no one knows which if any of these models is an acceptable candidate for a true model. Hence

it is recognized that cliquet prices are not known and there is little interest in their value under

specific models.

Our study shows that the optimal joint distribution derived from the reference measures

BGS - t1 and BGS - t2 are able to provide a close fit to the market data and are clearly better than

the other measures. In the case of rolling cliquets, BGS - t2 provides the best fit for all rolling

periods. In the case of 3 month locally capped cliquets BGS - t1 has the better performance.

Our models did not price the 1 month local caps correctly and further work is needed in order to

determine the best pricing measure. It is important to note that our models are able to match the

price of exotics using information only from the marginal distribution.

We also report the shape of the dual variables that we obtain from using Sinkhorns algo-

rithm. As noted by [21] and [22], the dual variables u1 and u2 are similar to taking opposite

positions in call options.

A future direction of research involves turning this method into a fully model-free ap-

proach. In this study we assumed that the marginals were modelled using Bilateral Gamma

Sato process. Alternatively, we can replace the marginal constraints in the primal and dual by
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constraints using actual option prices. Given a collection of call options {C1
i } and {C2

j } with

maturities t1 and t2 respectively at different strikes, we replace the marginal constraint with the

constraints that

∀i, j, Eµ[(S1 −Ki)
+] = C1

i and Eµ[(S2 −Kj)
+] = C2

j .

For further examples using this approach see [22] and [23].

Another related problem that is a useful extension is considering constraints on the corre-

lation of the joint distribution. We have seen that the martingale condition imposes a correlation

structure on the optimal distribution. If we choose the reference measure to be µ1 ⊗ µ2 then we

can obtain an explicit distribution µent with maximal entropy. Initial experiments show that cor-

relation constraint must be greater than the correlation for µent for the problem to remain feasible.

Further work is needed to determine the lower bound on feasible correlation values. In addition

we can also change the reference measure and study how the lower correlation bounds changes.
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Chapter 3: Martingale Optimal Transport under Acceptability

3.1 Introduction

The price bounds under the Martingale Optimal Transport are based on the no arbitrage

principle. The bounds are computed by considering the maximum and minimum values of the

sub-replicating and super-replicating portfolios respectively. In complete markets it is possible

to obtain reasonable prices for any cash flow using exact replication. However, as we have seen

in Chapter 2, in incomplete markets where it is not possible to exactly replicate a payoff, the no

arbitrage bounds are far too wide for any practical use. By recognizing that exclusion of arbitrage

is too weak of an assumption, we can obtain narrower price bounds by removing additional

payoffs that are not arbitrages.

In order to define the payoffs we need to exclude, we use the concept of acceptable risks

introduced by Artzner et al. [47]. Acceptable risks are defined by a class of risk measures

called coherent risk measures. The set of acceptable risks is postulated to be a convex cone

that contains the set of all arbitrage opportunities. A critical result is that with each cone of

acceptable risks, there is a corresponding set of probability measures. A random variable belongs

to an acceptable cone if and only if it has non-negative expectation under each of the associated

probability measures.

Madan and Cherny [48] provide an explicit representation for the cone of acceptability that
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can be used for pricing claims. Specifically, they introduce an acceptability index with which

we can define a family of convex cones each representing payoffs acceptable at different lev-

els. For example, a non-negative random variable accessed at zero costs, represents an arbitrage

opportunity and will be acceptable at all levels.

In this chapter we introduce acceptability to the martingale optimal transport in order to

get narrower price bounds. Other authors have dealt with this problem by introducing additional

constraints. [23] calibrate their model to additional market instruments and impose a penalty

term if the model is too far from a prespecified prior distribution. [49] improve the bounds by

incorporating information about the variance of the underlying returns. Our approach is different

in that, we relax the requirement that the cash flow must always be greater than the sub-replicating

portfolio. Instead, we require the gap between the two to be acceptable. This is equivalent to

stating that the cash flow is greater than the sub-replicating portfolio on average in some sense.

Our main contribution is a duality theorem similar to Theorem 2 under acceptability. We

then use the explicit forms of acceptability given by [48] to provide an algorithm that numerically

computes the upper and lower acceptable bounds of cliquets. A similar study was conducted by

Madan [46] where they use related methods to compute bounds on forward start contracts.

3.2 Setting

Let (Ω,F ,P) be a probability space. A risk is defined as a random variable X : Ω → R

that represents possible future values of a portfolio currently held. Let P denote the set of all

probability measures on F that are absolutely continuous with respect to P. We assume zero

interest so that there is no discounting.

69



A set of risksA is convex if for any α ∈ [0, 1] andX, Y ∈ A, it holds that αX+(1−α)Y ∈

A. Moreover, a set of risks is a cone if for any c ∈ (0,∞) we have cX ∈ A.

3.3 Coherent measures and acceptability

A risk measure ρ : L1 → R is simply a functional that maps a random variable to a real

number. If X represents a random payoff that we receive at a future date, then ρ(X) is the

minimum cash position that needs to be added today for the payoff to be acceptable. Holding a

position with a larger risk corresponds to a larger ρ(X). If on the other hand X is non-negative in

all states, such as the case of holding an option, then ρ(X) is negative representing the maximum

amount that can be taken out of the future payoff for it to remain acceptable. In the classical

sense, this would correspond to the premium of an option.

Artzner et al [47] introduce the notion of acceptable risks using a class of risk measures

that satisfy a list of axioms. Such risk measures are termed as coherent risk measures.

Definition 3.3.1. A coherent risk measure ρ : A → R is a mapping on a convex cone of risks

that satisfies the following four properties:

1. (Translational Invariance): For all X ∈ A and c ∈ R we have ρ(X + c) = ρ(X) + c.

2. (Subadditivity): For all X, Y ∈ A we have ρ(X + Y ) ≤ ρ(X) + ρ(Y ).

3. (Positive Homogeneity): For all X ∈ A and c ∈ (0,∞) we have ρ(cX) ∈ A.

4. (Monotonicity): For all X, Y ∈ A such that X ≤ Y almost surely we have ρ(X) ≤ ρ(Y ).

Moreover, they show that ρ is a coherent measure if and only if there exists a set of non-
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empty probability measures D ⊂ P such that

ρ(X) = − inf
Q∈D

EQ[X]. (3.1)

The set D for a given risk measure ρ is not necessarily unique. However, there exists a largest set

given by

D(ρ) = {Q ∈ P : EQ[X] ≥ −ρ(X), ∀X ∈ L1}

and we term this as the set of supporting kernels for ρ.

We say that X is acceptable if ρ(X) ≤ 0. This is equivalent to X being acceptable if and

only if, for all Q ∈ D(ρ), we have EQ[X] ≥ 0. We introduce the cone of acceptability associated

with ρ as the set A(ρ) defined as

A(ρ) = {X : ρ(X) ≤ 0}.

For any coherent risk measure ρ, A(ρ) is clearly a convex cone as can be seen by the super-

additivity of the infimum. Furthermore it contains the set of all non-negative payoffs i.e., X ≥ 0

almost surely. This is equivalent to stating that all arbitrages are acceptable to the market.

The set of acceptable zero-cost cash flows does not remain static over a period of time.

Indeed, we would expect it to change depending upon the state of the market. Under additional

assumptions, Madan and Cherny [50] model the cone of acceptability using options on S&P500

and show that the cone contracted significantly during the 2008 financial crisis and opened up

after that. The cone is modelled by introducing, for x ∈ [0,∞] an increasing family of coherent

risk measures ρx (i.e, the map x 7→ ρx(X) is increasing for any X) that represent the market’s
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acceptability of cash-flows under different stress levels. Let Ax be the associated cone of accept-

able zero-cost cash flows and let Dx be the set of supporting kernels. It is easy to see that for

x′ < x, it holds that Ax ⊂ Ax′ and Dx′ ⊂ Dx. As mentioned earlier, for each x, Ax contains

the set of all non-negative random variables which represents the set arbitrage opportunities. An

explicit form for ρx and Dx is provided in Section 5 that allows for pricing under different levels

of acceptability.

3.4 Martingale optimal transport under acceptability

We assume the setting as in Chapter 2 with a measure space (Ω,B(Ω)) where Ω = R>0 ×

R>0. Let P be a probability measure on (Ω,B(Ω)) representing a physical measure with finite

moments and let P(Ω) be the set of all probability measures absolutely continuous with respect

to P. LetM(µ1, µ2) be the set of all martingales with the marginals µ1 and µ2. Let c(s1, s2) be

the terminal payoff whose upper and lower bounds we are interested in computing. In this section

we restrict ourselves to the lower bound. Results on the upper bounds can be adapted easily. Let

A := Aρ denote a the convex cone of acceptable zero-cost cash flows. Then it holds that there

exists D ⊂ P(Ω) such that

X ∈ A ⇐⇒ EQ[X] ≥ 0,∀Q ∈ D.

Recall that the lower bound for c(s1, s2) under the martingale optimal transport is essentially the

highest possible value of a semi-static sub-replicating portfolio. That is,

sup
(u1,u2,∆)∈U

Eµ1 [u1(s2)] + Eµ2 [u2(s2)]
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subject to

∀(s1, s2) ∈ Ω, c(s1, s2) ≥ u1(s1) + u2(s2) + (s2 − s1)∆(s1).

Note that this corresponds to the no arbitrage condition. In order to compute the lowest accept-

able bound for c(s1, s2), we relax this constraint and consider all such (u1, u2,∆) that satisfy

∀(s1, s2) ∈ Ω, c(s1, s2)− u1(s1)− u2(s2)− (s2 − s1)∆(s1) ∈ A.

which is equivalent to

∀Q ∈ D, EQ[c(s1, s2)− u1(s1)− u2(s2)− (s2 − s1)∆(s1)] ≥ 0.

In order to compute the lower bound for c(s1, s2) numerically, we must transform the dual to the

primal which is given by

inf
Q∈M(µ1,µ2)∩D

EQ[c(s1, s2)] (3.2)

The following proposition establishes the relation between the dual and primal formulation. We

will assume a weak topology on the set of measures P(Ω) that is addressed in the next section.

Proposition 3.4.1. Let D ⊂ P(Ω) be a weakly compact set of probability measures under a

suitable topology and letD∩M(µ1, µ2) be non-empty. Let L1
s(D) ⊂ L0 be the set of measurable

functions defined by

L1
s(D) =

{
X ∈ L0 : lim

n→∞
sup
Q∈D

EQ[|X|1|X|>n] = 0

}
.

Let c ∈ L1
s(D), let UD := L1

s(D) × L1
s(D) × Cb(R>0) and let Uc,D ⊂ UD denote the set of all
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(u1, u2,∆) ∈ UD such that for all Q ∈ D it holds that

EQ[c(s1, s2)− u1(s1)− u2(s2)− (s2 − s1)∆(s1)] ≥ 0.

Then it holds that

inf
Q∈M(µ1,µ2)∩D

EQ[c(s1, s2)] = sup
(u1,u2,∆)∈Uc,D

Eµ1 [u1(s2)] + Eµ2 [u2(s2)]. (3.3)

Proof. Observe that

sup
(u1,u2,∆)∈Uc,D

Eµ1 [u1(s2)] + Eµ2 [u2(s2)]

= sup
(u1,u2,∆)∈UD

Eµ1 [u1(s2)] + Eµ2 [u2(s2)]

+ inf
Q∈D

EQ[c(s1, s2)− u1(s1)− u2(s2)− (s2 − s1)∆(s1)]

Let fc : D × U → R be a function defined by

fc(Q, (u1, u2,∆)) =EQ[c(s1, s2)− u1(s1)− u2(s2)− (s2 − s1)∆(s1)]

+ Eµ1 [u1(s1)] + Eµ2 [u2(s2)].

We equip L1
s(D) with the L1 norm, Cb(R>0) with the sup norm and D is assumed to be compact

under some topology. For any Q ∈ D, fc(Q, ·) is continuous and concave on UD. Moreover we

have from the proof of Theorem 3.4 in [51] that for X ∈ L1
s(D) the map Q 7→ EQ[X] is weakly

continuous. Therefore it holds that for any (u1, u2,∆) ∈ UD, f(·, (u1, u2,∆)) is convex and

continuous in the weak topology. This justifies the use of Sion’s minimax theorem to interchange
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the supremum and infimum. Hence it holds that

sup
(u1,u2,∆)∈UD

Eµ1 [u1(s2)] + Eµ2 [u2(s2)]

+ inf
Q∈D

EQ[c(s1, s2)− u1(s1)− u2(s2)− (s2 − s1)∆(s1)]

= inf
Q∈D

EQ[c(s1, s2)] + sup
(u1,u2,∆)∈UD

{
Eµ1 [u1(s1)]− EQ[u1(s1)]

+ Eµ2 [u2(s2)]− EQ[u2(s2)]− EQ[(s2 − s1)∆(s1)]
}

The last equality implies that Q ∈ D must satisfy the following three constraints that for

any (u1, u2,∆) ∈ U it holds that

EQ[u1(s1)] = Eµ1 [u1(s1)], EQ[u2(s2)] = Eµ2 [u2(s2)], EQ[(s2 − s1)∆(s1)] = 0.

since otherwise we can scale (u1, u2,∆) ∈ UD to be arbitrarily large. Hence we conclude that

inf
Q∈D

EQ[c(s1, s2)] + sup
(u1,u2,∆)∈UD

{
Eµ1 [u1(s1)]− EQ[u1(s1)]

+ Eµ2 [u2(s2)]− EQ[u2(s2)]− EQ[(s2 − s1)∆(s1)]
}

= inf
Q∈M(µ1,µ2)∩D

EQ[c(s1, s2)].

3.5 Acceptability via distortions

In order to make the problem tractable, we need an explicit formulation for D. Following

[50] this can be achieved by making additional assumptions on the risk measure: law invariance
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and comonotone additivity.

Law invariance implies that acceptability only depends on the probability distribution of

the risk. That is, if X and Y and two risks such that X =law Y , then either both are acceptable

or neither is acceptable.

Secondly, two risks X and Y are said to be comonotone if they are driven by a single risk

factor. That is, there exists a random variable U on the unit interval such that

X = F−1
X (U) and Y = F−1

Y (U).

We assume that any two comonotone risks X and Y are additive, i.e., ρ(X) +ρ(Y ) = ρ(X+Y ).

Kusuoka [52] show that under these two additional conditions acceptability can be defined

through distorted expectations. That is, there exists an increasing concave distortion function

Ψ : [0, 1]→ [0, 1], with the property that Ψ(0) = 0 and Ψ(1) = 1 such that it holds

inf
Q∈D

EQ[X] =

∫ ∞
−∞

xdΨ(FX) (3.4)

where the distorted expectation is given by

∫ ∞
−∞

xdΨ(FX) := −
∫ 0

−∞
Ψ(FX)dx+

∫ ∞
0

(1−Ψ(FX))dx

Hence it holds that X is acceptable if and only if it has positive distorted expectation i.e.,∫∞
−∞ xdΨ(FX) ≥ 0. Results from Madan and Cherny, [48] show that the determining set of

76



measures D in (3.4) is given by

D =

{
Q ∈ P : E

[(
dQ

dP
− a
)+
]
≤ Φ(a) ∀a ∈ R>0

}
,

where Φ : R>0 → R is the convex conjugate of Ψ defined as

Φ(a) = sup
u∈[0,1]

(Ψ(u)− au)

Cherny [51] (see Example 2.10, and references therein) show thatD is a compact subset of P(Ω)

under the weak topology on L1 induced by L∞ functions. Recall that P(Ω) can be characterized

by Radon-Nikodyn derivatives with respect to P.

3.5.1 Choice of distortion function

We can parametrize different levels of acceptability by introducing a family of distortion

functions {Ψ(γ)}. In this study we use the minmaxvar distortion function Ψ(γ) : [0, 1] → [0, 1]

introduced in [48] defined for γ ∈ [0,∞] by

Ψ(γ)(u) = 1− (1− u
1

1+γ )1+γ

with the corresponding convex conjugate Φ(γ)(a) given by

Φ(γ)(a) = 1− a

(1 + a
1
γ )γ

.
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This distortion function allows us to define a family of acceptability cones Aγ and associated

set of supporting kernels Dγ that represent the state of the market at different stress levels γ. A

higher stress level implies a smaller cone Aγ and a larger set of kernels Dγ . As γ increases Aγ

shrinks to the set of arbitrages.

3.6 Numerical implementation

By defining acceptability through distortions, we are able to numerically compute the pri-

mal formulation via convex programming. In order to solve the numerical problem, we first must

re-frame the problem using densities. Let Z := dQ
dP

denote the density of Q w.r.t the base measure

P. Then the lower acceptable bound for c is computed via the following optimization problem

inf
Z

E[Zc(s1, s2)]

s.t.

∫
Z(s1, s2)P(s1, s2)ds2 = µ1(s1) ∀s1∫
Z(s1, s2)P(s1, s2)ds1 = µ2(s2) ∀s2∫
(s2 − s1)Z(s1, s2)P(s1, s2)ds2 = 0 ∀s1∫
(Z(s1, s2)− a)+P(s1, s2)ds1ds2 ≤ Φ(a) ∀a ∈ R+.

We use the CVXPY ([53], [54]) package to solve the convex program in Python. CVXPY uses

disciplined convex programming, which is a system for constructing expressions of known curva-

ture from base functions, to ensure that the optimization problems are convex. The optimization

is done using the Embedded Conic solver [55] and the Splitting Cone solver [56].

The results of the optimization at different stress levels are presented in the next section.
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We require a base measure that delivers prices close to the market quotes. The totem cliquet

prices are the market’s best candidate for a true price given the wide spreads observed across

models. We use BGS - t2 as the base measure since it provides the best fit to data. As higher

stress levels correspond to larger spaces of supporting kernels D we expect the the bounds to

approach the no arbitrage limits as γ increases and shrink to the base measure at smaller values.

It is a fairly safe conjecture that if one uses a base measure delivering cliquet prices far from

market then at low stress levels market prices will be outside the spread and at high stress levels

the spreads will again be too large.

We use the same methods described in Chapter 2 to obtain the discrete marginals. We

restrict ourselves to computing bounds on the 6-month rolling cliquets. In addition we discretize

Φ(a) on the grid [0.1, 2] with step size of 0.1.

3.7 Results

The results for the upper and lower price bounds for γ ∈ {0.1, 0.25, 4} are reported along

with the bounds from martingale optimal transport. We also show plots of the resulting joint

distributions at different strikes and stress levels.
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Figure 3.1: Acceptability bounds for 6 month rolling cliquets (March, June)
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Figure 3.2: Acceptability bounds for 6 month rolling cliquets (September, December)
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Figure 3.3: Maximizing joint distributions using 6-month and 12-month marginals
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3.8 Conclusion

In Chapter 2, cliquets prices were established using no arbitrage arguments assuming the

possibility of hedging using traded vanilla options. However, this approach delivers bounds that

are too wide. In this study, the bounds are narrowed using concepts of risk acceptability. We see

that under higher stress levels, corresponding to a higher γ, we obtain wider bounds. Similarly,

as γ → 0, the bounds become narrower and converge to the base measure. Our results show that

acceptability allows us to obtain narrow spreads for the market cliquet prices. This is contingent

on selecting a suitable base measure which was done in Chapter 2.

The plots of the joint distribution also show that the support of the optimal distribution

becomes sparser at higher stress levels. This is expected as the set of supporting kernels increases

and we are able to access more extreme measures.

The usefulness of the algorithm provided is the ability to deliver sensible spreads on a

wider range of cliquet underliers by learning how to reproduce the cliquet prices for the more

liquid underliers and then transferring the pricing technology to the markets for the less liquid

underliers.
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