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Increased N inputs along with changes in population, land use, and climate have globally 

altered the N cycle. This alteration has been associated with increased food, energy, and 

fiber availability, but has also contributed to the degradation of human health conditions 

and diminishment of expected ecosystem services in many regions throughout the world. 

In this context, my research explored the impact of shifting anthropogenic N inputs and 

other environmental drivers on terrestrial N surpluses and linked changes in terrestrial 

surpluses to observed changes in N loss to aquatic systems. Working in both forested and 

mixed land use catchments in the eastern USA, I hypothesized that processes that reduced 

terrestrial N surpluses in catchments by 1) reducing N inputs, 2) increasing plant uptake, 

and/or 3) increasing gaseous efflux would result in decreased hydrologic N export. 

Identification of potential processes was accomplished by first generating long-term 

atmospheric, remote sensing, terrestrial, and hydrologic datasets for individual 

catchments. The first two components of my dissertation highlighted potential 

interactions between atmospheric N deposition, acidic deposition, climate, and 

disturbance in influencing terrestrial N availability, as indicated by N isotopes in tree 

rings, in forested catchments. Leveraging trend analysis and statistical models, I 

identified continued long-term declines in terrestrial N availability in forests, but this 

decline was likely being modified by disturbance and long-term reductions in acidic 

deposition. The final component of my dissertation involved developing a lumped 

conceptual model to explain water quality trends in three mixed land use catchments 

within the Chesapeake Bay watershed. This study assessed the relative influence of point 

source N loading, agricultural practices, and atmospheric N deposition on long-term 

trends in riverine N loss. Insights from the simple N loading model strongly suggested 

that declines in atmospheric N deposition and point source loading were key drivers of 

historical water quality improvement. Whether relying on quasi-mass balances or 

dendroisotopic records, findings from this research emphasize the usefulness of 

constructing proxy datasets of terrestrial N surpluses in identifying likely processes 

driving changes in hydrologic N loss in forested and mixed land use catchments. 
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Chapter 1: Processes driving the loss of N to surface waters: 

Opportunities and Challenges 

The release of excess nitrogen through fossil fuel combustion and activities 

associated with food production has altered the global nitrogen (N) cycle. Historically, 

the productivity of ecosystems was often limited by the supply of N, but humanity has 

applied energy-intensive measures to convert N2 into ammonia through the Haber-Bosch 

process. After factoring in the unintentional release of N from fossil fuel combustion, 

anthropogenic activities input ~190 Tg N yr-1 into the Earth’s atmosphere and biosphere 

(Galloway et al. 2008), whereas current estimates of N fixed through natural terrestrial 

processes stands at only ~127 Tg N yr-1 (Cleveland et al. 2013). The >100% increase in 

reactive N production has been associated with increased food, energy, and fiber 

availability (Galloway et al. 2003), but the majority of anthropogenically created N does 

not end up in food, fiber, or other products because it is transported to downwind or 

downstream systems (Houlton et al. 2013). Transport of excess N has contributed to 

eutrophication of surface waters (Carpenter et al. 1998, Conley et al. 2009), N enrichment 

of forests and grasslands (MacDonald et al. 2002, Simkin et al. 2016), hypoxia (Conley et 

al. 2009), smog (Haagen-Smit 1952), accumulation of atmospheric particulate matter 

(Zheng et al. 2005), and acidification of terrestrial and aquatic ecosystems (Bobbink et al. 

2010) over the past century. The degradation of human health conditions and 

diminishment of expected ecosystem services has prompted many nations to develop 

integrated management strategies to promote nitrogen use efficiency and decreased the 

release of nitrogen (Galloway et al. 2008, Sutton et al. 2011). Air and water quality 

improvements have been observed in industrial countries that have cut NOx emissions 

from stationary and vehicular sources (Eshleman et al. 2013, Garmo et al. 2014, 
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Eshleman and Sabo 2016), reduced TN flux from wastewater treatment plants through 

nutrient removal technologies (Mallin et al. 2005), and increased agricultural nitrogen use 

efficiency through increased crop yields and application of nutrient management 

strategies (Mueller et al. 2012, Velthof et al. 2014).  It is imperative to identify the 

relative influence of specific management and technological applications on air and water 

quality improvements in order to gauge and potentially enhance the assimilative capacity 

of N in ecosystems and reduce N loss to downwind or downstream areas (Sobota et al. 

2013).  

The hydrologic loss of N in large mixed land use basins throughout Europe, 

China, and North America is primarily driven by climate and anthropogenic nitrogen 

inputs (Boyer et al. 2002, Chen et al. 2016b). Riverine N exports generally rise as N 

inputs increase through fertilizer application, food imports, atmospheric NOy deposition, 

and cultivation of leguminous crops, but can also be attenuated with high rates of crop 

removal. The net difference in anthropogenically mediated input and removal processes 

is termed the net anthropogenic nitrogen input (NANI, (Howarth et al. 2012)). Increased 

riverine N export, however, can be attenuated by climatic forces that either promote 

greater denitrification or reduce riverine discharge (Boyer et al. 2002, Howarth et al. 

2012). Based on comparative catchment analyses, warmer catchments that have lower 

discharge are generally more retentive of N inputs then cooler catchments with higher 

discharge (Howarth et al. 2012). This suggests catchments inherently have a “baseline” 

assimilative capacity to either efflux or retain N inputs partly based on their 

hydroclimatology. Even though N inputs and discharge can generally explain global 

patterns of riverine N export, there is substantial variability in riverine N export among 
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catchments with similar annual discharges and N inputs. This variability is informative 

because it indicates riverine N export can be attenuated by not only reducing nitrogen 

inputs into the catchment, but by modifying atmospheric and terrestrial processes that 

may prevent hydrologic loss of N to downstream ecosystems (Hale et al. 2015, García et 

al. 2016). Since greatly reducing N inputs may be unfeasible in many mixed land use 

catchments throughout the globe (Doering et al. 2011, Sutton et al. 2011), identifying the 

primary drivers of N retention and N export is paramount to informing water quality 

restoration initiatives throughout the USA and elsewhere. 

Discerning the primary drivers of hydrologic N loss in smaller mixed land use 

basins is difficult due to uncertainty over the multiple sources that input N into the 

system and the variable influence that different land uses have on N retention (Howarth et 

al. 2012). Thus, much of the conceptual knowledge on the transport and transformation of 

N in ecosystems has stemmed from the study of “simpler” forested catchments (Likens 

2013). Focusing on forested catchments eliminates the issue of multiple land uses and 

reduces the number of N sources generally to three categories: biologically fixed 

nitrogen, atmospheric N deposition, and soil N reservoirs (Hedin et al. 1995). Similar to 

the insights stemming from the NANI studies, climate and N inputs play a large role in 

governing the annual hydrologic loss of N (Brookshire et al. 2011, Adams et al. 2014, 

Hwang et al. 2014). Generally, warmer temperate forested catchments on the east coast of 

the USA display greater retention of atmospheric N deposition and less N leaching to 

surface waters than cooler sites (Aber and Driscoll 1997, Eshleman et al. 2013). 

Processes that govern these regional retention patterns likely stem from the influence of 

temperature and precipitation on plant uptake and gaseous efflux. Warmer areas that 
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experience longer growing seasons are likely to be more productive and have a greater N 

demand relative to cooler sites (Hwang et al. 2014). The capacity of a forest to 

accumulate or efflux nitrogen determines its ability to retain atmospherically deposited 

nitrogen (Aber et al. 1989), in turn preventing nitrate leaching to surface water. The 

recently proposed conceptual model of kinetic N saturation by Lovett and Goodale 

(2011) describes the dynamic between source and sink rates of N in forests through a 

simple mass balance: 

Y=D−A−G  

1) 

where the N yield (Y) is determined by the amount of atmospherically deposited nitrogen 

(D) less the amount immobilized through net annual assimilation of N into forest 

vegetation and soil organic matter (A) and/or effluxed through various gaseous pathways 

(G). This conceptual model has been empirically supported in long-term observational 

studies, which have revealed that forested catchments generally retain or efflux a constant 

proportion (a) of atmospheric inorganic nitrogen (IN) deposition through time (Grigal 

2012, Eshleman et al. 2013). Based on this conceptual model, N yields, primarily in the 

form of nitrate, are responsive to changes in D if processes governing A and G are not 

greatly altered (Figure 1, left panel). Vegetative uptake can be offset by disturbances 

(Eshleman et al. 1998), drought (Kaushal et al. 2008), ozone damage (Ollinger et al. 

2002), successional processes (McLauchlan et al. 2007), and other factors, however. 

Storage of N in soil organic matter can also become saturated leading to enhanced 

mineralization/nitrification or altered via regime shifts (Aber et al. 1998, Webster et al. 

2016). Intense periods of rainfall or large snowmelts may cause activation of preferential 
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hydrologic pathways by which nitrate is flushed to streams prior to its processing (Piatek 

et al. 2005, Sabo et al. 2016a). Inter-annual variation in runoff also affects year to year 

variability in retention with higher annual runoff leading to diminished retention (Adams 

et al. 2014, Eshleman and Sabo 2016). Identifying the drivers that alter the net 

accumulation rates of atmospheric N deposition in forested catchments can help identify 

parallel processes that are likely important in governing the retention and loss of N in 

mixed land use catchments. 

 

Figure 1. Conceptual diagram illustrating the kinetic N saturation model in a forested catchment. If the 

atmospheric inputs and the net aggradation of N in soils/vegetation and gaseous efflux of N is steady 

through time, then hydrologic N loss to streams will be constant (left panel). These processes are often not 

constant in forests, however. One possible scenario is illustrated in the right panel where canopy 

disturbance by gypsy moth larvae results in a net negative accumulation of N in forest soils and vegetation 

resulting in elevated gaseous and hydrologic losses of N. 

The recent emergence of long-term datasets that estimate the flux of N in 

atmospheric, terrestrial, and hydrologic compartments of catchments potentially offer 

empirical insight into the predominant drivers of water quality changes in forested and 
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mixed land use catchments. Datasets that estimate changes in terrestrial N availability or 

mass balance are particularly useful for assessing the direct influence of N inputs, crop N 

uptake, and disturbance on potential N loss to surface waters. These datasets, unlike 

inference of N availability from water quality data, do not display 1) co-linearity with 

discharge or 2) lag issues associated with groundwater residence time (Hirsch et al. 2010, 

Chen et al. 2016a).  Thus, the relationships between identifiable processes (e.g., satellite-

based observations of forest disturbance or recorded changes in crop N removal) and 

changes in terrestrial N availability as inferred from impartial mass balances or 

dendroisotopic records can become firmly established. Establishing these relationships 

can subsequently informing efforts looking to assess the relative influence of specific 

management actions and technological applications (e.g., wastewater treatment upgrades) 

on observed water quality trends (Doering et al. 2011, Keisman et al. 2015). This 

approach is based on recent efforts to link changes in atmospheric N deposition with 

water quality improvement through a modified kinetic N saturation model (MKNSM), an 

adaptation of the kinetic N saturation model, in the Potomac River Basin (Eshleman and 

Sabo 2016). The findings of the study challenged conventional wisdom that agricultural 

best management practices and wastewater treatment plants were the primary drivers of 

water quality improvements in the Chesapeake Bay drainage (Shenk and Linker 2013). 

There is uncertainty, however, over parallel changes in other N sources and processes in 

the Potomac that has inspired further investigation. In my dissertation, I explored how 

changes in the inputs and the terrestrial transformation/flux of N impact hydrologic N 

loss in both forested and mixed land use catchments (Figure 1; Figure 2).  
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Figure 2. Simplified conceptual diagram highlighting major N fluxes for different land cover types in a 

mixed land use catchment. Generally, the kinetic N saturation model can be applied to all land use types, 

but additional fluxes need to be considered. These include net food transfers within a catchment (FI), 

cultivated biological N fixation (not illustrated), and manure/fertilizer N application to agricultural areas 

and urban landscapes (F). It should be noted gaseous emissions, if not in the form of N2 or N2O, likely 

partly contribute to atmospheric N deposition within a catchment (not illustrated). Red arrows highlight N 

inputs, green indicates gaseous efflux and soil/plant N removal, and orange highlights N loss to surface 

water. Steps to reduce inputs (red) or enhance A/G pathways (green) will result in decreased hydrologic N 

loss to surface waters (orange). 

I assessed temporal changes in terrestrial N availability in agricultural lands and 

forests, and attributed long-term temporal shifts in terrestrial N availability to changes in 

N inputs, disturbance, and crop N uptake. I hypothesize that processes that reduce N 

inputs, increase plant uptake, or increase gaseous efflux in catchments would result in 

reduced hydrologic N loss in both forested and mixed land use catchments. I predicted 

that reductions in atmospheric N deposition would decrease terrestrial N availability and 

nitrogen loss in forested catchments. This response, however, would be disrupted if 
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parallel processes that impact net vegetative uptake and soil aggradation (A) like 

disturbance, deposition of mineral acids, and drought were co-occurring within the 

forested catchment (Figure 1). I also predicted decreasing N inputs (e.g., fertilizer/manure 

or atmospheric N deposition) onto mixed land use catchments would result in decreased 

terrestrial N availability and TN loss to surface water. In addition, planting of more 

productive crop cultivars and technological upgrades to wastewater treatment plants 

would increase plant N uptake and gaseous efflux, respectively, in turn leading to less N 

vulnerable to being lost to surface waters (Figure 2). This dissertation accounted for the 

predominant N inputs and transformations into both forested and mixed land use 

catchments, in hopes of explaining past changes in terrestrial N availability and surface 

water TN loss. 

The dissertation consists of three studies that explored how shifts in the inputs and 

processing of N impact terrestrial N availability and hydrologic N loss in both forested 

and mixed land use catchments. The first two components of my dissertation highlighted 

potential interactions between atmospheric N deposition, acidic deposition, climate, and 

disturbance in influencing terrestrial N availability, as indicated by N isotopes in tree 

rings, in forested catchments. Leveraging trend analysis and statistical models, I 

identified likely drivers of shifting terrestrial N availability in forested catchments. The 

third primary component of this dissertation conceptually builds on research from 

chapters two and three but transitions to a quasi-mass balance approach to explain water 

quality trends in three mixed land use catchments in the Chesapeake Bay. This study 

developed a lumped, land use specific nitrogen loading model to assess the relative 

influence of point source N loadings, agricultural practices, and atmospheric N deposition 
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on long-term trends of total nitrogen loading. This chapter was the most applied and 

socially pertinent of the chapters because it will inform watershed managers and policy 

makers developing strategies to improve water quality in the Chesapeake Bay. I expected 

this research to highlight that shifts in N inputs are not necessarily the sole driver of 

terrestrial N surpluses and water quality trends in forested and mixed land use 

catchments.   
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Chapter 2: Watershed-scale changes in terrestrial nitrogen cycling 

during a period of decreased atmospheric nitrate and sulfur deposition 

(At the time of dissertation submission, this chapter has been published in a special 

edition of Atmospheric Environment titled “Watershed-scale changes in terrestrial 

nitrogen cycling during a period of decreased atmospheric nitrate and sulfur deposition”. 

I contributed substantially to the design and implementation of the study and was the lead 

author of this paper. Please also note some of the terminology differs from the rest of the 

dissertation (e.g., NO3-N instead of nitrate or watershed instead of catchment).) 

Abstract 
Recent reports suggest that decreases in atmospheric nitrogen (N) deposition 

throughout Europe and North America may have resulted in declining nitrate export in 

surface waters in recent decades, yet it is unknown if and how terrestrial N cycling was 

affected. During a period of decreased atmospheric N deposition, we assessed changes in 

forest N cycling by evaluating trends in tree-ring δ15N values (between 1980 and 2010; 

n = 20 trees per watershed), stream nitrate yields (between 2000 and 2011), and retention 

of atmospherically-deposited N (between 2000 and 2011) in the North and South 

Tributaries (North and South, respectively) of Buck Creek in the Adirondack Mountains, 

USA. We hypothesized that tree-ring δ15N values would decline following decreases in 

atmospheric N deposition (after approximately 1995), and that trends in stream nitrate 

export and retention of atmospherically deposited N would mirror changes in tree-ring 

δ15N values. Three of the six sampled tree species and the majority of individual trees 

showed declining linear trends in δ15N for the period 1980–2010; only two individual 

trees showed increasing trends in δ15N values. From 1980 to 2010, trees in the watersheds 

of both tributaries displayed long-term declines in tree-ring δ15N values at the watershed 

scale (R = −0.35 and p = 0.001 in the North and R = −0.37 and p <0.001 in the South). 

The decreasing δ15N trend in the North was associated with declining stream nitrate 

concentrations (−0.009 mg N L−1 yr−1, p = 0.02), but no change in the retention of 



11 

 

atmospherically deposited N was observed. In contrast, nitrate yields in the South did not 

exhibit a trend, and the watershed became less retentive of atmospherically deposited N 

(−7.3% yr−1, p < 0.001). Our δ15N results indicate a change in terrestrial N availability in 

both watersheds prior to decreases in atmospheric N deposition, suggesting that 

decreased atmospheric N deposition was not the sole driver of tree-ring δ15N values at 

these sites. Other factors, such as decreased sulfur deposition, disturbance, long-term 

successional trends, and/or increasing atmospheric CO2 concentrations, may also 

influence trends in tree-ring δ15N values. Furthermore, declines in terrestrial N 

availability inferred from tree-ring δ15N values do not always correspond with decreased 

stream nitrate export or increased retention of atmospherically deposited N. 
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Introduction 

Nitrogen and sulfur oxide emissions (NOx and SOx, respectively) from fossil fuel 

combustion have contributed to atmospheric acid deposition (defined herein as the wet 

and dry deposition of nitric and sulfuric acids) and the acidification and eutrophication of 

many terrestrial and aquatic ecosystems throughout Europe and North America for more 

than a century (Driscoll et al. 2001). To prevent further ecosystem deterioration and 

protect human health, regulations requiring NOx and SOx emission reductions were 

implemented in many industrialized nations, resulting in declines in acid deposition in 

recent decades (Vet et al. 2014). Observational studies indicate that resultant long-term 

declines in NO3-N deposition have sometimes occurred concomitantly with decreased 

NO3-N export in surface waters, suggesting potential declines in ecosystem N availability 

(Kothawala et al. 2011, Rogora et al. 2012, Waller et al. 2012, Eshleman et al. 2013). 

Catchment-scale clean roof experiments have also demonstrated that ecosystem N 

availability and stream NO3-N yields can decline in response to decreased N and S inputs 

(Corre et al. 2003, Corre and Lamersdorf 2004). Experimental approaches, however, 

cannot be easily replicated in multiple watersheds across broad spatial scales. In addition, 

factors such as forest succession (McLauchlan et al. 2007), changing denitrification rates 

(Morse et al. 2015), insect-caused defoliation (Eshleman et al. 1998), disturbance (Bernal 

et al. 2012), in-stream processes (Peterson et al. 2001), and timber harvest (Vitousek and 

Melillo 1979) can also influence stream NO3-N yields, which may make it difficult to 

detect a direct influence of declining NO3-N deposition on stream NO3-N yields or to 

infer changes in terrestrial N availability (Argerich et al. 2013, Kopáček et al. 2016). A 

proxy that captures information about past changes in N availability within catchments is 
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needed to help assess the influence of decreased NO3-N deposition on N cycling in 

terrestrial ecosystems (Tomlinson et al. 2016). 

Recent theoretical and empirical advances indicate that the nitrogen isotope 

(δ15N; 15N/14N ratio of a sample relative to a standard) values of tree rings provide an 

integrated metric of historical changes in soil N availability, defined as the supply of N 

relative to its demand by plants (McLauchlan et al. 2007, Gerhart and McLauchlan 2014, 

Howard and McLauchlan 2015). Tree-ring δ15N values record changes in multiple 

pathways that fractionate N isotopes, including gaseous N losses during denitrification 

and nitrification, nitrate leaching, and transfer of N to plants via mycorrhizal fungi 

(Craine et al. 2009). Overall, greater N availability tends to result in relatively low δ15N 

values in the N that is lost (e.g. through denitrification or nitrification followed by 

leaching of NO3-N), which results in more positive δ15N values within residual soil 

inorganic nitrogen (IN) pools, and thus more positive δ15N values in plant tissues. 

Furthermore, high N availability tends to cause plants to be less dependent on 

mycorrhizal fungi, which are known to provide them with N that has low δ15N values 

(Michelsen et al. 1998, Hobbie et al. 2000). High δ15N values typically occur in soil and 

leaves of forests with high rates of nitrification (Pardo et al. 2007), denitrification 

(Nadelhoffer et al. 1996, Templer et al. 2007), nitrate leaching (Pardo et al. 2006), and 

low input of N from mycorrhizal fungi (Pardo et al. 2006). 

Some of the recent declines in stream NO3-N yields attributed to decreased 

atmospheric N deposition in the northeastern US may be partly explained by declining 

terrestrial N availability (as recorded by tree-ring δ15N values) due to decreased inorganic 

nitrogen (IN) inputs. However, the relative importance of declining N deposition on 
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terrestrial N availability as recorded in plant δ15N values is uncertain (Gerhart and 

McLauchlan 2014). Declines in stream NO3-N yields and tree-ring δ15N values in a 

forested watershed in the northeastern United States over a 30 year period were attributed 

to successional processes that drove a decline in N availability (McLauchlan et al. 2007), 

suggesting that stream NO3-N export and tree-ring δ15N records may be complementary 

approaches that provide independent validation of each other in terms of changes in 

ecosystem N availability. However, species-specific tree ring δ15N trends have also been 

observed (Cairney and Meharg 1999, McLauchlan and Craine 2012), indicating that 

species may exhibit temporal variation in their partitioning of available forms of N due to 

changing factors such as nitrification rates, ammonium deposition, and/or changes on 

reliance of mycorrhizal fungi (Gerhart and McLauchlan 2014). Comparison of tree-ring 

δ15N and stream N datasets can help to disentangle the influence of local changes in 

terrestrial N cycling from larger, regional factors, such as decreased IN inputs via 

declines in atmospheric N deposition, to explain catchment-scale trends in terrestrial N 

availability and stream NO3-N yields (McLauchlan et al. 2007, Eshleman et al. 2013). 

We conducted a comparative analysis at two well-studied forested watersheds 

(North and South Tributaries of Buck Creek) in the Adirondack Mountains, New York, 

USA (Lawrence 2002, Ross et al. 2012). Hydrologic and stream water-quality monitoring 

have been carried out at these Buck Creek tributaries since the fall of 1999, along with 

periodic vegetative and soil surveys (Lawrence 2002, NYSERDA 2012, Ross et al. 

2012). Stream NO3-N yields in the North Tributary (North) are typical of other forests in 

New England and the Adirondacks (∼1.2 kg N ha−1 yr−1), whereas stream NO3-N yields 

in the South Tributary (South) are elevated (∼5.10 kg N ha−1 yr−1) relative to other 
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northeastern forests (Ross et al. 2012). Trends in acid deposition (1986–2011), δ15N in 

tree cores (1980–2010), and stream NO3-N export (2000–2011) were evaluated and 

compared. A multiple regression model was also constructed to assess the relationship 

between IN and sulfate deposition and stand-level tree-ring δ15N values. We 

hypothesized that tree-ring δ15N values would only begin to decline following decreased 

atmospheric N deposition (∼post-1995), and that trends in stream NO3-N export and 

retention of atmospherically deposited N would mirror changes in tree-ring δ15N values. 

Specifically, we expected watershed-scale tree-ring δ15N values to remain stable for the 

1980–1995 period, but decline due to declining N availability following declines in 

atmospheric IN deposition. We also hypothesized that stream NO3-N export would show 

a decline and thus coincide with a declining trend in tree-ring δ15N values between 2000 

and 2010. 

Methods 

Site description 

The North and South Tributaries of Buck Creek (referred to as North and South 

below; Figure 3) have been continuously gaged since October 1999. They have been the 

subject of multiple hydrobiogeochemical investigations assessing the impacts of acid 

deposition on Adirondack forests (Burns et al. 2009, Lawrence et al. 2011, Ross et al. 

2012). These mountainous catchments were last logged in the early 1900s, and currently 

contain mature forests typically found throughout the northeastern United States 

(NYSERDA 2012). The climate of the Buck Creek watershed (Figure 3) is characterized 

by cold winters and cool summers with mean monthly temperatures in January and July 

averaging −10 °C and 18 °C, respectively (Lawrence et al. 2004, PRISM 2015). Over the 

period of record (1986–2013), mean annual precipitation was ∼1300 mm according to 
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data extracted from NADP/PRISM gradient maps (NADP 2015, PRISM 2015). The 

typical growing season for the forest surrounding Buck Creek extends from late May to 

mid-September, and is followed by the development of a significant snowpack, which 

usually melts in mid-April. 

 

Figure 3. Map of tree coring sites and stream gages in the North and South Tributaries of the Buck Creek 

watershed. 

The mixed forest of the North watershed (27 ha) is dominated by red spruce 

(Picea rubens), American beech (Fagus grandifolia), and red maple (Acer rubrum) 
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with Sphagnum-dominated wetlands in the headwaters (Lawrence 2002, NYSERDA 

2012). There was a reported decrease in basal area in this catchment between 2005 and 

2010 due to (1) an unexplained red spruce decline across all size classes (DBH > 5 cm) 

and (2) beech bark disease, which is eliminating older beech trees in the watershed 

(NYSERDA 2012). Beech bark disease is a fungal infection that makes beech trees 

vulnerable to drought and insect infestations (Houston 1994). The North watershed 

contains well-drained Spodosol soils lying above metasedimentary rock and various 

forms of gneiss (Lawrence 2002). Fractured bedrock is exposed at the surface in many 

locations within the catchment, which may result in a loss of water to deep groundwater 

before exiting the watershed. The stream tends to dry up for a few weeks in late summer 

with flow restarting in September. Stream NO3-N yields in the North 

(∼1.2 kg N ha−1 yr−1) are close to the median values of forested watersheds in the 

northeastern U.S. (Ross et al. 2012). Potential mineralization and nitrification rates are 

also similar to those of other forests in the region, and nitrification potentially consumes 

up to ∼22% of the mineralized ammonium (Ross et al. 2012). 

American beech is the dominant tree species in the South watershed (52 ha). 

However, beech bark disease has infected virtually all beech trees in this catchment, with 

higher mortality rates among larger individuals (Ross et al. 2012). Despite the prevalence 

of beech bark disease, the total basal area of American beech increased from 2000 to 

2010 (NYSERDA 2012), because saplings increased in size to be included in the tree 

monitoring. The South contains well-drained Spodosol soils and generally has more till 

deposits than the North (Lawrence 2002). Stream NO3-N yields in the South 

(∼5.10 kg N ha−1 yr−1) are among the highest in the region, but potential mineralization 
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and nitrification rates in the South are consistent with those in other regional forests 

(Ross et al. 2012). Potential nitrification rates are higher in the South than North 

watershed, and nitrification consumes a relatively greater proportion (∼33%) of the 

mineralized ammonium in the South watershed (Ross et al. 2012). 

Dendroisotopic records 

Twenty mature trees were sampled in each watershed. The trees were randomly 

spread along transects that were perpendicular to the fall line and spaced approximately 

200 m apart (Figure 3). In the field, the largest tree nearest to the pre-selected sampling 

point was usually chosen to optimize time-series data per sampled tree, but trees that 

were apparently diseased or in decline (based on visual inspection of the bark) were not 

sampled; the next nearest healthy, co-dominant or dominant canopy tree was sampled 

instead. As a result of this sampling strategy, no beech trees were cored. Two cores were 

taken from opposite sides of each bole at breast height using a 5.15 mm incremental borer 

and stored in paper straws. The cores were returned to the lab, dried in an oven at 60 °C, 

sanded, and stored until ring widths were measured using CooRecorder software (Larsson 

2009). A detailed visual examination of each increment bore was used to assign ages to 

each ring. Individual annual increments were cut from one bore per tree using a razor 

blade and stored in 96-well plates prior to δ15N and %N analysis. 

Approximately 10 mg of wood from every other annual increment for the 1980–

2010 period was subsampled and used for δ15N and %N analysis. In cases where the 

annual rings were too narrow to yield ∼10 mg, multiple rings were aggregated (e.g., 

2002–2004) and the midpoint of the aggregated range (e.g., 2003) was used in subsequent 

statistical analyses. Prepared samples (n = 580) were analyzed for δ15N using a Carlo 
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Erba NC2500 elemental analyzer (CE Instruments, Milano, Italy) interfaced with a 

Thermo Delta V+ isotope ratio mass spectrometer (Bremen, Germany). A Carbosorb trap 

was used to remove CO2 and a magnesium perchlorate trap was used to remove water 

vapor after combustion in the elemental analyzer. The δ15N data were normalized to the 

AIR scale using a two-point normalization curve with internal standards calibrated 

against USGS40 and USGS41(Qi et al. 2003, Brand et al. 2014). The analytical precision 

among runs (1σ) of an internal wood standard was 0.3‰. 

Measurements of δ15N were normalized by subtracting the mean δ15N value of the 

1980–2010 period from the δ15N value of each sample from each bore such that each bore 

had a mean δ15N value of 0‰ (McLauchlan et al. 2007). Pearson correlation values were 

calculated to assess trends in normalized δ15N (n-δ15N) for the period of 1980–2010 for 

individual trees, species, watersheds, and both watersheds combined to facilitate 

comparison among sites, species, and scales. The significance of the correlation was 

evaluated using a block bootstrap and two-tailed significance test procedure in R (Tian et 

al. 2011). The procedure involved resampling time series of individual trees, species, 

watersheds, and both watersheds combined 10,000 times in blocks of three consecutive 

time periods (i.e., 1980–1981, 1982–1983, and 1984–1985) to generate a bootstrap 

distribution of Pearson correlation values. A two-tailed significance test was then used to 

assess if the correlation was still significant after accounting for temporal autocorrelation. 

In addition, trends for the 1980–1995 and 1995–2010 periods were assessed in both 

watersheds and the combined dataset. Complementing the correlation analysis, a simple 

arithmetic two-year mean of all 20 individual trees (1980–1981, 1982–1983, etc.) 

sampled in each watershed was used to scale up from individual tree observations to 
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further visualize trends in watershed-scale n-δ15N and δ15N values. Likewise, all 40 trees 

were used to calculate a two-year mean, combining the entire dataset. 

Stream NO3-N export and acid deposition 

The annual wet atmospheric deposition rates and precipitation-weighted mean 

concentrations of NO3-N, NH4-N, IN, and sulfur (S) for the Buck Creek watershed were 

extracted using geographic information software from wet deposition annual gradient 

maps published by the National Atmospheric Deposition Program (NADP 2015) for 

years 1986–2011. These continuous gradient maps are based on observations from the 

NADP National Trends Network and a high resolution precipitation model developed by 

the PRISM Climate Group (Latysh and Wetherbee 2012). Trends through time in the wet 

atmospheric NO3-N, NH4-N, and IN deposition rates (1986–1995 and 1995–2011) and 

wet atmospheric S deposition rate (1986–2011) were assessed using simple linear 

regression analysis. Time periods for regression analysis were determined a priori, based 

on the observation of decreased SOx emissions since the early 1970s following 

implementation of emissions reduction programs through the Clean Air Act of 1970 and 

implementation of NOx emission reduction programs following implementation of Phase 

1 of the Acid Rain Program in 1995 (Driscoll et al. 2003). 

In addition, a multiple regression model was developed to estimate average n-

δ15N through time for the combined watershed dataset (1980–2010) using annual NH4-N, 

NO3-N, and S deposition rates reported at Huntington Wildlife Monitoring Station 

(NY20), which is about ∼50 km from our study area. This dataset was used because it 

contains annual wet deposition values going back to 1980, whereas the NADP PRISM 

maps only extend to 1986. Similar deposition values and trends were found between 
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NADP PRISM maps and measured deposition rates from NY20 for S deposition 

(R2 = 0.88, y = 1.28x) and IN deposition (R2 = 0.77, y = 1.27x) for the 1986–2011 period 

(data not shown). The annual deposition data were aggregated by calculating the 2-year 

mean deposition rate (1980–1981, 1982–1983), thus allowing direct comparison with n-

δ15N data. Analysis for multi-collinearity and model building was carried out in R using 

the ltm, leaps, and car packages (Fox 2002, Rizopoulos 2006, Lumley and Miller 2009, 

R 2014). Model selection was based on variance inflation factor (VIF), the Bayes' 

Information Criterion (BIC), and adjusted R2. 

Flow and stream NO3-N concentration data for the North and South Tributaries 

were provided by the U.S. Geological Survey (USGS) and Adirondack Lake Survey 

Corporation (Lawrence 2002, Lawrence et al. 2008) for the 2000–2012 period. Periodic 

(every two weeks, year round) and episodic (high flows between April and November) 

stream sampling has been carried out since 2000. Based on a time series of daily 

estimated concentration and daily mean discharge, a statistical load estimator 

(LOADEST) developed by the USGS (Runkel et al. 2004) was calibrated with inputs of 

time, daily flow and NO3 concentration to estimate daily NO3-N yields (kg ha−1 d−1) for 

the same period. The same seven explanatory variables based on daily streamflow and 

time were used for each watershed. Observed daily concentrations were typically 

composed of an individual grab sample, but for days with multiple samples, a mean 

concentration was used to calibrate LOADEST to model daily NO3-N concentrations on 

days when no sampling occurred. Some summer samples collected in the North (n = 21) 

were not included in the calibration because no flow was measured in the stream. In total, 

394 and 455 daily concentrations for the North and South, respectively, were used to 



22 

 

parameterize the LOADEST model. Estimates of the daily yields were summed to 

produce monthly and annual yields (kg N ha−1 mo−1 and kg N ha−1 yr−1) and flow-

weighted mean concentrations (mg N L−1). For the dates when NO3-N measurements 

were made, the LOADEST model explained 89% and 86% of the variation of natural-log 

daily NO3-N yields in the South and North, respectively. Slopes of the graphs of observed 

versus predicted daily loads were 1.04 for the South and 1.08 for the North, which 

indicates only a small positive bias in the LOADEST estimates. Trends in annual NO3-N 

yield, retention of wet IN deposition (Yield/Wet Deposition), and flow-weighted mean 

concentrations were assessed using simple linear regression analysis. 

Results 

We observed declining n-δ15N trends between 1980 and 2010 for 21 of the 40 

sampled trees (Figure 4; Figure 5; Table 1; Table 2). Three of six sampled species 

displayed declining n-δ15N values over time in the two watersheds (Figure 6 and Table 

3). Both maple species (red maple, n = 8; sugar maple, A. saccharum, n = 12) and red 

spruce (n = 12) declined over the period of record. Yellow birch (Betula 

alleghaniensis, n = 6), balsam fir (Abies balsamea, n = 1) and eastern hemlock (Tsuga 

canadensis, n = 1) showed no trends over time. No species showed positive trends in n-

δ15N, and only two individual sugar maple trees in the South showed significant positive 

trends. Despite variation in n-δ15N trends observed at the individual tree level, watershed-

level n-δ15N was similar in the North and South watersheds for the 1980–2010 period, 

respectively (Figure 6; Table 4). At the watershed level, n-δ15N trends were both 

declining for the 1980–1995 period in the North and South (Table 4; Figure 4; Figure 5). 

Values of n-δ15N continued a decline in the 1995–2010 period in both watersheds, but the 

trends were more apparent in the South (p = 0.001) than the North (p = 0.0895). Despite 



23 

 

similar trends, average non-normalized δ15N values of the South were consistently higher 

than the North (Figure 5). 

Table 1. Results of δ15N bootstrap analyses for individual trees in the North, including Pearson correlation 

coefficient (r) and p values 

By individual tree   
Watershed Species Tree number r p-value 

North red spruce N1 0.60 0.065 

North red maple N2 0.04 0.46 

North red maple N3 -0.33 0.13 

North red spruce N4 -0.82 0.0063 

North red maple N5 -0.60 0.043 

North sugar maple N6 -0.53 0.046 

North red spruce N7 -0.24 0.23 

North E. hemlock N8 0.37 0.11 

North red spruce N9 -0.45 0.087 

North yellow birch N10 0.25 0.2 

North red maple N11 -0.06 0.38 

North red maple N12 -0.68 0.031 

North red spruce N13 -0.42 0.083 

North red maple N14 -0.03 0.45 

North red spruce N15 -0.69 0.034 

North balsam fir N16 -0.65 0.1 

North red spruce N17 -0.56 0.024 

North red maple N18 -0.74 0.0046 

North red spruce N19 -0.93 0.0011 

North red spruce N20 0.04 0.57 
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Table 2. Results of δ15N bootstrap analyses for individual trees in the North, including Pearson correlation 

coefficient (r) and p values 

By individual tree    
Watershed Species Tree number r p-value  

South sugar maple S1 -0.68 0.006  

South red spruce S2 -0.57 0.06  

South sugar maple S3 -0.02 0.49  

South sugar maple S4 -0.55 0.055  

South yellow birch S5 0.03 0.49  

South sugar maple S6 -0.55 0.02  

South yellow birch S7 -0.03 0.46  

South sugar maple S8 -0.64 0.028  

South sugar maple S9 -0.85 0.0058  

South sugar maple S10 -0.92 0.0043  

South yellow birch S11 -0.63 0.029  

South sugar maple S12 -0.07 0.38  

South sugar maple S13 0.58 0.036  

South red spruce S14 0.15 0.35  

South sugar maple S15 -0.91 < 0.001  

South sugar maple S16 -0.62 0.013  

South red spruce S17 -0.94 < 0.001  

South sugar maple S18 0.47 0.047  

South red maple S19 -0.68 0.0049  

South yellow birch S20 0.39 0.1485  
 

Table 3. Results of δ15N bootstrap analyses by tree species, including Pearson correlation coefficient (r) 

and p values 

By species  

Species r p-value 

balsam fir (n=1) -0.65 0.1022 

red maple (n=8) -0.43 0.0019 

sugar maple (n=12) -0.45 < 0.001 

yellow birch (n=6) -0.06 0.3524 

red spruce (n=12) -0.43 0.0016 

Eastern hemlock (n=1) 0.37 0.1212 

 

S deposition declined between 1986 and 2011, whereas no trend in precipitation 

amount was detected during this period (Figure 7). Deposition of IN declined during 

1995–2011 despite substantial variability in precipitation amount, but no IN deposition 

trend was observed during 1985–1995. Decreases in IN deposition were driven by 
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declining NO3-N deposition (data not shown). Deposition of NH4-N was constant 

throughout the period of record, and its proportion of total IN deposition increased from 

∼30 to ∼50% as NO3-N deposition declined (data not shown). 

Table 4. Results of δ15N bootstrap analyses for all trees in the study and by watershed, including Pearson 

correlation coefficient (r) and p values. 

Total dataset  

 
r p-value 

Time Period     

1980-2010 -0.36 < 0.001 

1980-1995 -0.26 0.002 

1995-2010 -0.21 0.0095 

      

   

By watershed  

Watershed (Time Period) r p-value 

North (1980-2010) -0.35 0.0013 

North (1980-1995) -0.26 < 0.001 

North (1995-2010 -0.14 0.0895 

South (1980-2010) -0.37 < 0.001 

South (1980-1995) -0.26 0.0084 

South (1995-2010) -0.30 0.001 
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Figure 4. Time series of watershed-level tree-ring δ15N values from the North (r = -0.35, p < 0.0013, n = 

20) and South (r=-0.37, p<0.0001, n = 20) watersheds at Buck Creek. 
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Figure 5. Time series of two-year mean δ15N values (± 1 S.E.) in the North (grey circles) and South (white 

circles). 
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Figure 6. A) Two-year mean n-δ15N values (±1 S.E.) in the North (grey triangles), South (white triangles), 

and both watersheds combined (black circles; along with the linear line of best fit). Species-specific time 

series of n-δ15N in coniferous (B) and deciduous trees (C) along with linear lines of best fit for significant 

negative correlations. 
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Figure 7. A) Precipitation and wet deposition of inorganic nitrogen (IN) and sulfur (S). Wet S deposition 

decreased during 1986–2011 (R2 = 0.83, p < 0.0001, n = 25) and IN deposition decreased during 1995–

2011 (R2 = 0.49, p < 0.01, n = 16). No trend in precipitation was observed in either period. B) Time series 

of predicted and observed combined watershed n-δ15N values; NH4-N and S deposition multiple regression 

model and simple NO3-N model (R2 = 0.83, p < 0.01, n = 30 and R2 = 0.51, p < 0.01, n = 30, respectively). 

Both SO4-S and NO3-N deposition rates from the NY20 NADP station displayed 

a positive relationship with the combined n-δ15N dataset (SO4-S: R2 = 0.78, p < 0.01; 

NO3-N: R2 = 0.54, p < 0.01), whereas NH4-N had little influence (R2 = 0.07, p = 0.76). 

Both SO4-S and NO3-N deposition were highly correlated and failed the VIF test 

(calculated value > 5), so these variables could not be included together in the same 

multiple-regression model. NH4-N deposition showed no issues of multi-collinearity with 

either SO4-S and NO3-N deposition variable. After model building, a combined NH4-N 
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and SO4-S deposition model generated the lowest BIC score and highest adjusted R2 of 

the seven models, with no issues of multi-collinearity among parameters (BIC = −22.38, 

R2 = 0.83; Figure 7; Table 5). This model demonstrated that lower annual n-δ15N values 

were associated with higher NH4-N deposition rates (β1 = −0.22, p = 0.03) and lower 

SO4-S deposition rates (β2 = 0.11, p < 0.01). A NO3-N and NH4-N deposition model was 

also applied (R2 = 0.48, BIC = −4.4), but NH4-N deposition was not a significant 

parameter in this model (p = 0.82, data not shown); furthermore, this model explained 

less variance in the combined Buck Creek watershed n-δ15N record than did a simplified 

NO3-N deposition model (R2 = 0.51, p < 0.01; Figure 7). Overall, annual n-δ15N values in 

the North and South were declining prior to declines in atmospheric N deposition. 

Table 5. Summary of evaluation criteria (R2 and BIC) and results from the variance inflation factors VIF 

test for all combinations of model parameters (S, NO3-N, NH4-N) in the model 

Model S, NH4* S, NO3, NH4 S S, NO3 NO3* NO3, NH4 NH4 

Adjusted R2 0.83 0.82 0.77 0.76 0.51 0.48 -0.064 

BIC -22 -20 -19 -17 -7.1 -4.4 5.4 

VIF Test Passed Failed NA Failed NA Passed NA 

 

During the 2000s, the North typically yielded 30% of IN deposition on an annual 

basis, whereas the South retained little IN deposition, and even yielded more NO3-N than 

wet-deposited IN in the latter half of the record (Figure 8). Stream-water mean annual 

flow-weighted NO3-N concentrations declined in the North (p = 0.02; Figure 8), whereas 

a weaker trend in concentration was observed in the South (p = 0.09; Figure 8). Stream 

NO3-N yields and runoff showed no trends in the North or South (Figure 8). Mean 

monthly flow-weighted concentrations were lowest during the growing season and 

highest in the late winter and early spring (Figure 9). Generally, the mean monthly flow-
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weighted concentrations for the dormant season in the North declined until ∼2005–2006, 

after which they stabilized during the latter half of the record (Figure 9). Monthly 

concentrations in the South displayed an initial decline (2000–2004) but peak dormant 

season concentrations have dramatically increased from ∼1.0 mg NO3-N L−1 in the mid-

2000s to 1.4 mg NO3-N L−1 after 2010 (Figure 9). 

 

Figure 8. A) Retention of wet IN deposition from 2000 to 2011. Retention has declined in the South 

(R2 = 0.68, p < 0.0001), but has remained constant in the North. B) Annual stream runoff, NO3-N yield, 

and mean flow-weighted concentration of NO3-N for the North and South watersheds. Mean annual flow-

weighted concentration of NO3-N in the North has declined since 2000 (R2 = 0.33, p = 0.02), but there was 

no trend in the South. 
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Figure 9. LOADEST estimated mean monthly flow-weighted NO3-N concentrations from the North and 

South Tributary of Buck Creek. 

Discussion 

Changes in terrestrial N cycling prior to declines in atmospheric IN deposition 

Despite differences in tree species composition, soil composition, N retention, 

terrestrial N availability relative to plant demand, and hydrology between the North and 

South (Burns et al. 2009, NYSERDA 2012), both watersheds demonstrated near 

equivalent declines in tree ring n-δ15N throughout the 30-year study period. The n-δ15N 

values began to decline prior to decreases in atmospheric N deposition, which is 

inconsistent with our hypothesis that terrestrial N availability would only decline 

following declines in atmospheric N deposition. Thus, factors other than declining 

atmospheric N deposition must have a greater relative influence on changes in terrestrial 

N availability (as inferred from tree-ring δ15N values) at Buck Creek. 
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Decreased mineral acid (i.e., H+) deposition, rather than N deposition, is one potential 

factor than may influence ecosystem N cycling in our study watersheds. For example, the 

clean-roof experiments of Corre et al. (2003) and Corre and Lamersdorf (2004) decreased 

the amount of both deposited N and acidity onto the catchments, so recovery from 

acidification may have at least partly driven the observed decline in N availability in the 

experimental catchment. Recovery of forests, soils, lakes, and streams from chronic acid 

deposition has been documented throughout the Adirondacks over the past three decades 

(Stoddard et al. 1999, Driscoll et al. 2003, Lawrence et al. 2013, Driscoll et al. 2016). At 

our study sites, decreases in soil aluminum (Al) mobilization as a result of decreased 

acidic deposition were indicated by pronounced decreases in exchangeable Al 

concentrations between 1997 and 2009–2010 in the North and between 1998 and 2014 in 

the South (Lawrence et al. 2015a). Thus, the forests in the North and South may be 

experiencing reduced Al toxicity and enhanced nutrient cation availability (Ca, Mg, K) as 

the systems continue to recover from terrestrial acidification (Driscoll et al. 2001, 

Oulehle et al. 2011, Battles et al. 2013, Sullivan et al. 2013). Alleviation of these 

ecosystem stressors would potentially 1) enhance carbon accumulation in aboveground 

biomass and soil organic matter, thus increasing N immobilization and inducing N 

limitation (Monteith et al. 2007) and/or 2) increase decomposition rates in soils, in turn 

causing a shift in available N (McLauchlan and Craine 2012, Sawicka et al. 2016). 

Factors other than decreases in acid deposition may also contribute to explaining 

the declines in tree-ring δ15N values in the North and South. Multiple studies have 

reported that the isotopic signature of atmospheric N deposition can be recorded in tree 

rings (Saurer et al. 2004, Savard et al. 2009, Doucet et al. 2012, Jung et al. 2013). Results 



34 

 

from the multiple regression analysis indicated that atmospheric NH4-N deposition was a 

significant and influential parameter when paired with SO4-S deposition. δ15N-

NH4 values are typically quite negative, ranging from about −1 to −20‰ (Garten Jr 1992, 

Jia and Chen 2010, Xiao et al. 2012), so it is possible that NH4-N deposition may be 

depositing more negative δ15N-NH4 into soil IN pools, thus influencing our observed 

tree-ring δ15N trends. Yet, deposition typically comprises only a small proportion of tree 

N uptake, so the potential influence of δ15N-NH4 on tree-ring δ15N values requires further 

study (Gerhart and McLauchlan 2014). Increased atmospheric CO2 concentrations during 

the period of our study may also influence δ15N trends by contributing to progressive N 

limitation through enhanced plant uptake and increased C:N ratios in plants and soils 

(McLauchlan et al. 2010, Norby et al. 2010). However, neither watershed has 

progressively increased its N retention, suggesting that progressive N limitation may not 

be occurring in these watersheds. A recent study reported a decrease in nitrogen pools 

and mineralization rates at Hubbard Brook (Durán et al. 2016), and the authors posited 

that declining terrestrial N pools may be driven by warming temperatures and reduced 

snow accumulation. Reduced snowpack and warming temperatures have also been 

observed in the Adirondacks, but other studies have indicated that climate change may 

actually increase or have a minimal impact on terrestrial N availability and stream NO3-N 

loss (Sebestyen et al. 2009, Brookshire et al. 2011) thus making the influence of climate 

change uncertain. 

Forest successional processes are another plausible explanation for the declining 

n-δ15N trends in the North and South. As forest succession proceeds, the N 

immobilization potential of a forest has been postulated to increase due to greater plant 
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uptake, organic matter accumulation, and coarse woody debris production thereby 

contributing to declining N availability (McLauchlan et al. 2007). Disturbances ranging 

from low intensity surface fires to canopy gap formations, however, have been shown to 

disrupt any trends in N availability that may be brought about by successional processes 

(Bukata and Kyser 2007, Beghin et al. 2011, Howard and McLauchlan 2015). In the 

North, beech bark disease and spruce decline have caused a decline in tree basal area 

during the study period, whereas beech bark disease has killed a large proportion of 

mature beech trees in the South (NYSERDA 2012). Disturbance has clearly happened in 

the North and South (as indicated by NYSERDA vegetative surveys from 2000 to 2010), 

yet n-δ15N values declined between 1980 and 2010 at the watershed level. The ongoing 

disturbance in both watersheds thus reduces the likelihood that n-δ15N trends observed in 

the North and South are being primarily driven by successional processes. 

Individual tree and species-specific δ15N trends 

Downscaling observations to the level of individual trees revealed substantial 

variability in δ15N trends. Only half of the trees exhibited long-term declines in δ15N 

values in our study, and two trees actually demonstrated increased tree-ring δ15N through 

time. Furthermore, some records displayed sudden and discordant positive peaks in δ15N, 

which suggests relatively rapid and transient increases in N availability as the result of 

local-scale processes. Such processes may override the drivers of the declining δ15N 

trends at the watershed scale. For example, the release of sub-canopy trees following 

canopy decline and/or mortality of dominant trees, due to disease or weather events, 

could increase access to nutrients due to 1) greater root production and coverage in the 

soil matrix and 2) possibly enhanced nutrient mineralization (White and Pickett 1985). If 

local disturbances mask long-term trends in tree-ring δ15N, then our results reinforce the 
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importance of designing field sampling efforts to include high sampling density, multiple 

species, and extensive spatial coverage to assess changes in terrestrial N cycling across a 

watershed. 

Our results also highlight the importance of understanding how species-specific 

characteristics influence changes in forest N cycling. The growth of some species in our 

watersheds, including yellow birch and American beech, is thought to be insensitive to N 

deposition (Thomas et al. 2010, Halman et al. 2014). The results for the six yellow birch 

trees sampled in our study support this understanding, because they showed relatively 

constant δ15N values over time despite significant decreases in N deposition. This lack of 

trend suggests that the amount of N available to yellow birch has not significantly 

changed through time. In contrast, other tree species, including the sugar maples in our 

study, may strongly respond to the reduced loss of base cations from soils and foliage as 

acid deposition declines (Lovett and Mitchell 2004, Huggett et al. 2007). For example, in 

the northeastern United States, trees in sugar maple-dominated plots treated with lime to 

remediate acidified soils showed increased plant growth, greater recruitment, and reduced 

mortality (Groffman et al. 2006, Halman et al. 2014), which ultimately led to decreased 

ammonium available for nitrification (Simmons et al. 1996, Groffman et al. 2006). Soils 

at Buck Creek show signs of recovery from acidification (Lawrence et al. 2015a), and 

similar declines in N availability may be occurring, at least for sugar maples, in the North 

and South. 

Differing trends in watershed N retention 

Declines in stream flow-weighted NO3-N concentrations in the North were 

consistent with long-term declines in terrestrial N availability as inferred from declining 
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watershed-scale tree-ring δ15N values. This result was expected since a decline in 

terrestrial N availability would be associated with “tighter” N cycling thus minimizing 

the loss of N to streams (Aber et al. 1998). Relative to the South, the North was 

apparently more retentive of wet atmospheric N deposition for the period of record, 

which is consistent with the North potentially having lower terrestrial N availability as 

indicated by dendroisotopic records (Figure 5). The North is consistent with other mid-

Atlantic forests that seem to retain a fixed proportion of wet deposited IN (∼70%) over 

time (Eshleman et al. 2013), despite the fact that wet atmospheric IN deposition ranged 

from 3 to 7 kg N ha yr−1. Although the hydrobiogeochemical mechanisms that can 

explain the relatively constant retention over time are uncertain (Grigal 2012, Eshleman 

et al. 2013), it is clear from the mass balance that less total N is being deposited and 

retained in the North over time on an absolute basis. Somewhat inconsistent with stream 

NO3-N trends in the North, however, was the negative but still not statistically significant 

δ15N trend for the 1995–2010 period. Ongoing spruce decline and beech bark disease has 

caused a decrease in stand-level basal area in the North, and this disturbance may be 

masking the influence of N deposition on the short-term δ15N trend by providing new 

sources of terrestrial N or depressing plant uptake of N in the North. 

Unlike the consistent N retention over time in the North, the South displayed 

decreasing retentiveness during a period of declining N deposition and N availability, as 

inferred from declining watershed-scale tree-ring δ15N values. These results indicate that 

dendroisotopic and stream NO3-N records may not always provide similar information 

about terrestrial N availability (McLauchlan and Craine 2012, Gerhart and McLauchlan 

2014, Tomlinson et al. 2016). The decline in N retention indicates that a source of N from 
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within the catchment is being mineralized but not being retained by plants and soils in the 

South. At Buck Creek, a possible source includes the decomposition of more recalcitrant 

material in soils recovering from acidification (Lawrence et al. 2011, Lawrence et al. 

2015a, Sawicka et al. 2016). The decline of beech trees could also explain decreased N 

retention as a result of diminishing rates of plant uptake and death of older trees. 

However, the total basal area of beech in the South actually increased by 16% between 

2000 and 2010 (NYSERDA 2012), which argues against this explanation. Many other 

forested watersheds have also shown reductions in retentiveness of N during periods of 

decreased N and acid deposition (Argerich et al. 2013, Kopáček et al. 2016), yet the 

relative importance of the various factors contributing to declining retention remain 

unclear. Besides changes in terrestrial biogeochemical cycling, higher dormant season 

flows and increased flood peak frequency may be enhancing NO3-N transport (Bernal et 

al. 2012). The inconsistency between declining tree-ring δ15N values and retention trends 

in the South could also originate from sampling bias during field collections of tree cores 

for δ15N analysis. The sampling protocol required the sampling of healthy, large trees, so 

no mature American beech trees were sampled in this study. The extensive coverage of 

diseased beech in the South raises the prospect that the other randomly sampled species 

may not completely represent changes in tree-ring δ15N values across the watershed. In 

previous studies, beech showed no particular sensitivity in growth or survival to 

atmospheric N deposition or calcium amendments (Thomas et al. 2010, Halman et al. 

2014); so, similar to yellow birch, the changes in acid deposition over time may not have 

greatly influenced tree-ring δ15N trends in beech. Thus, the apparent contradiction in the 
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South between the stream water NO3-N and watershed-level dendroisotopic data should 

be interpreted with caution. 

Conclusions 

We observed that changes in N availability, as inferred from declining watershed-

scale tree-ring δ15N values, were occurring prior to decreases in atmospheric N deposition 

(pre-1995) in the North and South Tributaries of Buck Creek. Declines in N deposition 

cannot fully explain these trends and thus other factors, such as declines in acid 

deposition, may have greater influence on terrestrial N cycling in forests. Our data also 

indicate that trends in wood δ15N values vary among tree species and individuals, and 

these differences may be due to species-specific sensitivity to acid deposition and local 

disturbance. Finally, decreased acid deposition and declining δ15N trends in tree rings do 

not necessarily translate into decreased NO3-N export in streams, as evidenced by the 

divergent trends in the North and South. The variable changes in ecosystem N cycling in 

the North and South highlight the need to further integrate terrestrial and stream datasets 

to comprehensively assess forest responses to decreased atmospheric pollution and other 

ongoing environmental changes. 
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Chapter 3: Drivers of wood δ15N decline, temporal variability, and 

correlation with stream nitrate in two temperate deciduous forests over 

a twenty-five-year period 

Abstract 

Productivity and export of nutrients from forested catchments may be constrained or 

enhanced by the influence of recent changes in climate, atmospheric chemistry, and 

disturbance on terrestrial nitrogen availability. A limitation to understanding drivers of 

long-term trends in terrestrial N availability and its subsequent influence on stream nitrate 

export is a general lack of long-term data on terrestrial and aquatic N cycling at 

comparable spatial scales. Here we analyze relationships between stream nitrate 

concentrations and wood δ15N records (n = 96 trees) across five neighboring headwater 

catchments in the Blue Ridge physiographic province and within a single catchment in 

the Appalachian Plateau physiographic province. Climatic, acidic deposition, and forest 

disturbance datasets were developed to elucidate the influence of these factors on 

terrestrial nitrogen availability through time. We hypothesized that spatial and temporal 

variation of terrestrial N availability, for which tree-ring δ15N records serve as a proxy, 

affects the variation of stream nitrate concentration across space and time. Across space 

at the Blue Ridge study sites, stream nitrate concentration increased linearly with 

increasing catchment mean wood δ15N. Over time, stream nitrate concentrations 

decreased with decreasing wood δ15N in five of the six catchments. Stream nitrate 

concentrations were also more responsive to changes in terrestrial nitrogen availability 

through time at more N-rich sites, likely due to the fact that the more N-limited sites had 

little to no nitrate present in the streams.  Wood δ15N showed a significant negative 

relationship with disturbance and acidic deposition. Disturbance likely exacerbated N 

limitation by inducing nitrate leaching and enhancing vegetative uptake. As observed 
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elsewhere, lower rates of acidic deposition and subsequent deacidification of soils may be 

increasing terrestrial N availability. Despite the ephemeral modifications of terrestrial N 

availability by these two drivers and climate, long-term declines in terrestrial nitrogen 

availability were robust and have likely driven much of the declines in stream nitrate 

concentration throughout the central Appalachians. 

Introduction 

Recent changes in climate, atmospheric chemistry, and disturbance have the 

potential to influence the productivity and export of nutrients from forested catchments 

by either constraining or enhancing nitrogen (N) availability (Elmore et al. 2016, 

McLauchlan et al. 2017, Peñuelas et al. 2017). For example, N availability could be 

enhanced from warming soils increasing mineralization rates, atmospheric N deposition 

adding N to soils, or changes in microbial communities increasing mineralization rates as 

acidified soils recover from decades of elevated acidic deposition (Aber et al. 1989, 

Rustad et al. 2001, Sinsabaugh et al. 2004, Sinsabaugh 2010, Brookshire et al. 2011, 

Oulehle et al. 2011, Lawrence et al. 2015b, Oulehle et al. 2017). On the other hand, 

greater N demand resulting from factors such as longer growing seasons or elevated 

atmospheric CO2 concentrations could reduce N availability (Ollinger et al. 2002, Norby 

et al. 2016). The latter is supported by evidence that N availability has declined in 

temperate forests during the past three decades inferred from foliar and wood chemistry 

and net mineralization and nitrification rates in North American forests (McLauchlan et 

al. 2010, Durán et al. 2016, Elmore et al. 2016, McLauchlan et al. 2017, Groffman et al. 

2018). Stream nitrate export has also declined since the mid-1990s throughout many 

forests of the eastern United States (Eshleman et al. 2013), which could result from 

declines in terrestrial nitrogen availability. However, few studies have co-located records 
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of terrestrial N availability and stream water chemistry with which to assess this 

hypothesis. 

A limitation to understanding drivers of long-term trends in terrestrial N 

availability and its subsequent influence on stream nitrate export is a general lack of long-

term data on terrestrial and aquatic N cycling at comparable spatial scales. For example, 

stream nutrient data are often only obtained for limited periods or measured only 

periodically (Argerich et al. 2013, Durán et al. 2016), and such snapshots may not be 

adequate for comparison with longer-term indicators of terrestrial N cycling, such as 

deduced from tree-ring δ15N records (Gerhart and McLauchlan 2014). While streamwater 

nutrient data are generally considered integrative of an entire watershed (Likens 2017), 

in-stream processing could lead to an incongruity between stream and terrestrial N 

datasets (Scanlon et al. 2010). Finally, long-term records of terrestrial N availability 

preserved in tree-ring δ15N data are typically normalized to the mean δ15N value of tree-

ring time series to focus on temporal patterns (McLauchlan et al. 2007), but doing so 

masks potential information about spatial variation in terrestrial N availability contained 

in non-normalized δ15N values. Catchments where long-term records of stream nutrient 

export exist and multiple tree-ring δ15N records of multiple species can be obtained 

represent promising locations for assessing the relationship between, and drivers of, 

stream nitrate export and terrestrial N availability. For example, Sabo et al. (2016) 

observed higher mean (non-normalized) δ15N tree-ring values across a catchment in the 

Adirondack Mountains with higher mean annual flow-weighted nitrate concentrations 

relative to an adjacent catchment with lower nitrate concentrations (n = 20 tree-ring δ15N 

records per catchment), as well as declines in δ15N values of tree rings and stream nitrate 
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concentrations for one of two subcatchments. However, a limitation of that study was that 

the water chemistry data spanned a period of only 11 years and that the most important 

tree species in one of the study catchments (Fagus grandifolia; American beech) could 

not be cored because it suffered from extensive disease and mortality (Sabo et al. 2016b). 

Thus, uncertainty remains about whether tree-ring δ15N records are representative of the 

relationship between terrestrial N availability and stream nitrogen export (Sabo et al. 

2016b). 

 To assess the relationship between terrestrial N availability and stream nitrogen 

export and to identify candidate drivers of the temporal variability of wood δ15N, we 

assembled dendroisotopic records for 96 trees and stream nitrate records for six small 

forested catchments in the central Appalachian Mountains. Rather than restricting our 

efforts to describing the temporal variability of δ15N for specific tree species, which may 

not ultimately be representative of catchment-wide changes in terrestrial nitrogen 

availability (Burnham et al. 2016), we used a randomized sampling design to capture 

forest wide changes in wood δ15N. Furthermore, we used absolute non-normalized δ15N 

values to explore the spatiotemporal variation in terrestrial nitrogen availability and its 

relationship with stream nitrate. Our objective was to test the hypothesis that spatial and 

temporal variation in terrestrial N availability observed in tree-ring δ15N records is 

associated with the spatial and temporal variation of stream nitrate concentration, 

respectively. To elucidate some of the potential drivers of terrestrial N availability, 

relationships among acidic deposition (nitrogen (N) + sulfur (S) deposition), 

precipitation, temperature, and forest disturbance on wood δ15N were also assessed. 
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Methods 

Site Description 

The Upper Big Run catchment (UBR, 1.63 km2) is located within the Appalachian 

Plateau physiographic province in the western panhandle of Maryland, USA (Figure 10, 

Figure S1). The underlying geology within the watershed consists of folded sedimentary 

rocks of Devonian through Mississippian age (Eshleman et al. 1998). Soils (Ultisols and 

Inceptisols) are primarily composed of stony loams of the Dekalb/Gilpin and Meckesville 

series (NRCS 2009). According to the National Vegetation Classification System, the 

two primary ecological forest systems that occur within the catchment are Northeastern 

Interior Dry-Mesic Oak Forest and Appalachian Hemlock-Hardwood Forest (GAP 2011). 

The watershed is 91% forested with the remainder consisting of meadows, roads, 

cropland, and a power-line right-of-way. Various silvicultural activities have been carried 

out in Upper Big Run since the 1970s and multiple insect defoliation events have been 

observed in the late-1980’s and mid-2000’s (Figure S1; Eshleman et al. 1998, Townsend 

et al. 2012). 
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Figure 10. Maps of Upper Big Run and the five headwater catchments of Paine Run subjected to tree 

coring. The five headwater catchments were labeled PR1000, PR2000, PR3000, PR4000, and PR5000 from 

west to east since they contain unnamed tributaries, and these site IDs corresponded with individual trees 

sampled in the respective catchments (Table S5). 

The Paine Run catchment (PR, 12.7 km2) is located on the Blue Ridge in 

Shenandoah National Park, Virginia (Figure 10, Figure S1). The watershed falls within a 
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designated wilderness area. Surficial geology of Paine Run is composed of phyllite, 

quartzite, and metasandstone. Soils (Ultisols and Entisols) are primarily composed of 

channery or stony loams of the Hartleton or Drall soil series. Numerous rubble islands are 

scattered throughout the catchment (NRCS 2009). Paine Run is composed of secondary 

growth forests that have not been logged since the early 20th century. Vegetation surveys 

from the 1980’s show that chestnut oak (Quercus prinus) and pine (Pinus spp.) were the 

dominant species. Widespread oak mortality in the early 1990’s was associated with 

repeated gypsy moth defoliation in the upper elevations of the watershed (Scanlon et al. 

2010). Today, common forest types that occur within the catchment are Southern and 

Central Appalachian Oak Forest and Southern and Central Appalachian Cover Forest 

along with scattered North-Central Appalachian Circumneutral Cliff and Talus systems 

(GAP 2011). The five headwater catchments of Paine Run subjected to study each 

contain unnamed tributaries to the mainstem. As such, the catchments were labeled 

PR1000, PR2000, PR3000, PR4000, and PR5000 from west to east. These labels 

corresponded to the individual trees sampled in the respective catchments (Table S5). 

Dendroisotopic records 

Thirty trees at UBR and 66 trees at PR were cored at randomly located plots (Figure 

10). In the field, 706.86 m2 circular plots were established at the sampling points at UBR, 

and 225 m2 square plots were established within the five PR subcatchments (e.g., 

PR1000, PR2000, etc.). Tree species composition surveys were completed during the fall 

and winter of 2014; all stems >5 cm diameter at breast height (dbh) within each plot were 

measured and identified. The bole of one individual of the species with the highest 

summed dbh in each plot was cored twice using a 5.15 mm incremental borer. The cores 
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were returned to the lab, dried in an oven at 60°C, sanded, and stored until ring widths 

were identified using CooRecorder software (Larsson 2009). Two to three-year 

increments were generally cut from one bore per tree using a razor blade and stored in 

96-well plates prior to δ15N analysis. Rings were cut along the grain in slices to ensure 

weighted sampling across years, thus representing a true weighted-average across each 

increment. 

Approximately 10 mg of wood from the two to three-year increments for the 1980-

2013 period was subsampled and used for δ15N and %N analysis. The midpoint of the 

aggregated range (e.g., 2003) was identified, and the preceding even year increment 

assigned, and results falling within 1986 to 2010 period were reported. Following the 

exact procedures described in Sabo et al. (2016), prepared samples (n = 1322) were 

analyzed for δ15N using a Carlo Erba NC2500 elemental analyzer (CE Instruments, 

Milano, Italy) interfaced with a Thermo Delta V+ isotope ratio mass spectrometer 

(Bremen, Germany). Following combustion in an elemental analyzer, a Carbosorb trap 

was used to remove CO2 and a magnesium perchlorate trap was used to remove water 

vapor. The δ15N data were normalized to the AIR scale using a two-point normalization 

curve with internal standards calibrated against USGS40 and USGS41 (Qi et al. 2003, 

Brand et al. 2014). The analytical precision among runs (1σ) of an internal wood standard 

was 0.3‰. Catchment-scale tree ring δ15N values were estimated by taking the arithmetic 

mean of all tree ring δ15N values in a given time period for all trees within a watershed 

(Sabo et al. 2016b).  
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Atmospheric deposition, water quality, disturbance, and climatic data 

Stream chemistry and discharge have been monitored at UBR and PR since 1990 

and 1992, respectively (Eshleman et al. 1998, Scanlon et al. 2010, Eshleman et al. 2013). 

Synoptic spring baseflow sampling in each of the five PR subcatchments was conducted 

from 1992-1994 period and, after a long cessation, was restarted in 2007 and repeated 

annually through 2016. All water samples were analyzed for nitrate concentrations using 

ion chromatography. The spatial relationship between mean catchment-scale δ15N and  

mean spring baseflow nitrate concentrations at PR for the period of observation was 

explored using linear regression. At UBR, mean annual flow-weighted concentrations, 

estimated using a multi-parameter loading model (Eshleman et al. 2013), were compared 

against one year lagged catchment-scale δ15N values at the UBR site using simple linear 

regression. The one year lagged values were used because there was an assumed lag 

between N available in a given growing season and subsequent flush in the following 

dormant season. Other lags were explored, but did not provide more robust relationships. 

Likewise, linear regression was used to test the relationship between spring baseflow 

nitrate concentrations and one year lagged catchment-scale δ15N values at UBR and the 

PR headwater catchments. Linear interpolation between catchment-scale δ15N time 

periods (e.g., between 1992 and 1994) was used to provide an annual record of 

catchment-scale δ15N values that is directly comparable to stream records since tree rings 

were analyzed in 2-3 year increments. For the Paine Run sites, this allowed three 

additional spring baseflow concentrations to be compared against catchment-scale δ15N 

(i.e., 1993, 2007, and 2009) and 10 additional spring baseflow and mean annual flow-

weighted concentration values at Upper Big Run. To clarify, the difference in the number 
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of spring baseflow samples between UBR and PR was due to the hiatus in sampling at 

PR. It should be further noted that the development of an observed annual catchment 

scale-δ15N time series would unlikely contain much value considering evidence that 

nitrogen translocates between adjacent growth rings (Burnham et al. 2016). Thus, the 

interpolated time series are likely representative of the true trajectory of terrestrial N 

availability akin to that of mean annual flow-weighted or spring baseflow concentration 

being ideal metrics for tracking changes in nitrogen loss to streams (Eshleman et al. 2013, 

Kline et al. 2016). Regardless, a parallel regression analysis was also carried out using 

non-interpolated data to confirm that the sign and magnitude of the slope estimates were 

consistent with the calibration using the interpolated time series (results reported in 

supplemental). 

Disturbance within 45m of the center of individual plots was described using the 

Disturbance Index (DI, (Healey et al. 2005) applied to Landsat 5, 7 and 8 

(TM/ETM+/OLI) data. As such, disturbance was quantified in 8 to 12% of the area in 

each catchment. All available tier I surface reflectance and quality assurance quality 

control (QAQC) data for Landsat 5, 7, and 8 were extracted for each cored plot and 

downloaded using the Google Earth Engine. Using the provided QAQC information, 

surface reflectance observations collected under suboptimal conditions (cloudy, cloud 

shadow, snow and ice, etc.) were removed from the data set. From the data that passed 

quality control, the six Landsat multispectral bands were reduced to three orthogonal 

indices of brightness (B), greenness (G), and wetness (W) through the tasseled cap 

transformation (DeVries et al. 2016). The Disturbance Index (DI) is a simple linear 

combination of these indices (DI = B-(G+W)), where greener and wetter pixels indicate 
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less disturbance and brighter, dryer, and browner pixels indicate greater disturbance. A 

continuous stable forest period (~5 to 15 years) for each individual plot was identified by 

referencing local logging maps provided by the Maryland State Forest Service and the 

North American Forest Dynamic data product, “Forest Disturbance History from 

Landsat, 1986-2010” (Figure S1). To standardize for sun-canopy-sensor geometry, we 

organized all “stable forest” DI observations by day of year and used locally weighted 

regression models (i.e., LOESS) to model the average DI phenology. From the LOESS 

fit, expected DI for each day of year was estimated that account for canopy phenology 

and sun angle effects that reoccur each growing season. The difference between the 

observed and modeled DI values (ΔDI) was calculated for all observations, representing 

disturbance above (positive values) or below (negative values) the mean DI during the 

stable period for any given day of year. A mean growing season (May 1st to September 

30th) ΔDI value was calculated using all Landsat observations that fell within the years 

corresponding to the cut tree ring segments. Similar approaches using various empirical 

models to describe Landsat phenology in forests have been applied elsewhere (e.g., (Zhu 

et al. 2012, Elmore et al. 2016) with the overall goal being to normalize for intra-annual 

variation so that inter-annual variation can be quantified. It should be clarified that mean 

catchment ΔDI was not quantified at the catchment scale (i.e., sampling all pixels within 

a watershed) and related to stream nitrate concentrations. This relationship has already 

been demonstrated in multiple studies (Townsend et al. 2004, McNeil et al. 2007, 

Eshleman et al. 2009, Townsend et al. 2012). My interest was ascertaining the effect of 

ΔDI on wood δ15N.  
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Annual wet deposition of inorganic N (IN) and sulfur (S) and precipitation for 

UBR and the PR sub-catchments was extracted for the locations of individual trees. Data 

sets used included wet deposition annual gradient maps published by the National 

Atmospheric Deposition Program for the 1980-2015 period and climate data published by 

the PRISM Climate group (Latysh and Wetherbee 2012). Annual temperature values 

were determined by averaging extracted monthly temperatures from PRISM climatic 

maps. Little to any intra-site variation at UBR and PR in the climatic and deposition 

variables was observed due to the coarse spatial resolution (~ 4 km), so only the site 

averages were reported. Annual values of temperature, precipitation, and wet deposition 

of N and S deposition corresponding with the cut tree ring segments were averaged by 

taking the simple arithmetic mean, and used in later statistical analyses to predict the 

inter-annual variation in tree-ring δ15N. 

Annual inorganic S and N wet deposition, ΔDI, mean annual temperature, and 

mean annual precipitation were used as predictor variables to explain the inter-annual 

variation in tree ring δ15N. To avoid multicollinearity and to gain greater confidence in 

causal relationships, the linear effect of time was assessed first, and then removed from 

both predictor and response variables associated with each individual tree. Thus, the 

residuals from the suite of predictor variables were leveraged to explain detrended tree-

ring δ15N residuals using multiple linear regression in SigmaPlot 14.0. Multicollinearity 

among the predictor variables was assessed using variance inflation factor (VIF; Graham 

2003).  
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Results 

 

Figure 11. Time series of (A) annual temperature, precipitation, (B) mean disturbance index (ΔDI) for the 

population of sampled trees in individual catchments, and (C) annual S and N deposition at Paine Run 

(PR) and Upper Big Run (UBR). For (B) only, the LOESS functions fit to all ΔDI observations that 

corresponded to individual tree ring segments within a catchment are shown (raw ΔDI data illustrated in 

Fig. S2-S7 in Appendix). 
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 No long-term trends in annual precipitation or temperature were observed at our 

study catchments over the 25-year analysis period (Figure 11A). LOESS curves of the 

annual change in disturbance index (ΔDI) of individual tree time series at UBR and PR 

suggested a period of disturbance from the mid-1980s to early 1990s for our population 

of trees (Figure 11B, Figure S1). ΔDI generally declined after the late 1980s and early 

1990s at all PR headwater catchments, which is consistent with remote sensing based 

disturbance classification products (using different methodologies) detecting disturbance 

in the late 1980s and early 1990s (Figure 11B, Figure S1). ΔDI at UBR declined 

throughout the 1990s following logging then increased after 2000, coincident with 

another round of logging activities and reported incidents of gypsy moth defoliations 

(Figure 11B, Figure S1; Townsend et al. 2012). S and N deposition declined nearly 50% 

throughout the period of record at both sites (Figure 11C). During this period, catchment-

scale δ15N significantly decreased (p<0.01) at all headwater catchments at PR and UBR 

throughout the period of record except for PR4000 (Figure 12, Table S1). Consistent with 

these aggregated values, 80 of the 96 individual trees showed linear declines in tree-ring 

δ15N of which twenty were significant (p < 0.05, Table S4-S5). Only 11 of the remaining 

16 trees with positive linear increases in tree ring δ15N were significant (p < 0.05). 
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Figure 12. Time series of catchment-scale δ15N for Upper Big Run (UBR) and the five Paine Run (PR) sub-

catchments and associated regression lines.  Simple linear regression results indicated significant declines 

in catchment-scale δ15N for all catchments except for PR4000(UBR: y = -0.017 +33.86, R2 = 0.65, p 

<0.001; PR1000: y = -0.056 +107.86, R2 = 0.68, p <0.001; PR2000: y = -0.055 +107.57, R2 = 0.70, p 

<0.001; PR3000: y = -0.032 +60.48, R2 = 0.47, p =0.003; PR4000: y = 0.013x – 26.65, R2 = 0.06, p = 

0.35; PR5000: y = -0.023 +43.81, R2 = 0.60, p <0.001). Raw tree-ring δ15N time series illustrated in the 

supplemental (Figure S2-S7). 

Across basins and over time at individual basins, catchment mean wood δ15N 

values were observed to have positive linear relationships with stream nitrate 

concentrations. Across 5 sub-basins at PR, mean spring baseflow nitrate concentrations 

(averaged across all years) increased linearly with increasing catchment mean wood δ15N 

(R2 = 0.86; P = 0.023, Table 6). The slope of this relationship equates to a gradient in 

spring base flow nitrate concentration from 0.09 to 0.73 mg N/L being associated with a 

gradient in catchment mean wood δ15N from -3.6 to -1.5 ‰ (Figure 13A). The portion of 

variance in nitrate concentration explained by the spatial gradient in mean wood δ15N 

observed at PR was removed by taking the difference between the mean predicted stream 

nitrate concentration from the observed nitrate concentration value in a given year. 
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Temporal variation in wood δ15N was a significant model effect on nitrate concentrations 

(Figure 13B), with a positive effect of catchment wood δ15N observed through time at 

four of the five Paine Run catchments (Table 7). The results from this analysis were 

consistent with the coefficient estimated using the non-interpolated catchment-scale δ15N 

data (Table S2). While the variance in stream nitrate concentrations explained was 

generally similar, the relationships were only significant in two of the four Paine Run 

catchments using the non-interpolated catchment-scale δ15N time series (Table S2). 

Estimates of slope coefficients generally increased with increasing mean wood δ15N (p > 

0.05, Figure 13C). Therefore, stream nitrate concentrations were least sensitive to annual 

variation in wood δ15N at sites with low wood δ15N (e.g., PR1000) and were most 

sensitive at sites with high wood δ15N at Paine Run (e.g., PR5000, Figure 13C). Like the 

findings from PR, mean annual flow-weighted nitrate and spring baseflow nitrate 

concentrations at UBR were positively correlated with catchment wood δ15N (R2=0.88; P 

<0.0001 and R2=0.43; P = 0.0017, respectively Figure 13B); and these relationships were 

robust when using the non-interpolated catchment-scale δ15N time series with equivalent, 

significant slope estimates (Table S2).  
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Figure 13.  A), Relationship between mean catchment-scale δ15N and spring baseflow nitrate concentrations across 

space over the period of record among the Paine Run (PR) and Upper Big Run (UBG) headwater catchments (y = 

0.35x + 1.29, R2= 0.86, p = 0.023 for data from PR). The error bars illustrate the standard error of the mean.  B) 

Relationships between 1-year lagged catchment scale δ15N and nitrate concentrations at individual PR headwater 

catchments and UBR; all regressions were significant except for PR4000 ( UBR FWC: y = 0.79x + 0.62, R2= 0.85, p < 

0.01; UBR SBC: y = 0.48x + 0.47, R2= 0.40, p < 0.01; PR1000: y = 0.14x + 0.55, R2= 0.67, p < 0.01; PR2000: y = 

0.25x + 0.53, R2= 0.67, p < 0.01; PR3000: y = 0.40x + 1.05, R2= 0.45, p =0.04; PR4000: y = 0.69x + 0.94, R2= 0.14, 

p < 0.32; PR5000: y = 2.11x + 4.23, R2= 0.91, p < 0.01 ). C) The linear relationship between mean catchment-scale 

δ15N and slope estimates based on the relationship between 1-year lagged catchment scale δ15N and nitrate 

concentrations for the PR catchments (y = 0.74x + 2.48, R2=0.19, p = 0.17). 

p = 0.17 
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Using the simple linear regression models (Table 7), catchment-scale δ15N was 

used to model the temporal variability in spring baseflow and mean annual flow-weighted 

nitrate concentrations from 1990 to 2010 for UBR and 1992 to 2010 for PR. The 1-year 

lagged catchment-scale δ15N regression models were effective in capturing peak nitrate 

concentrations in the early 1990s followed by a decline to the 2000s in five of the six 

catchments (Figure 14). Furthermore, the models were successful in generating the 

generally stable stream nitrate concentrations at UBR during the 2000s. Predicted nitrate 

concentration time series were generally smoother than the observed spring baseflow 

nitrate concentration time series (one sample per year), likely reflecting the interpolation 

of wood δ15N values between the measured 2 to 3-year increments, wood δ15N values 

being minimally affected by annual discharge, and the fact the nitrogen has the potential 

to translocate between adjacent tree rings.  

Table 6. Results from the linear regression analysis of 1-year lagged catchment-scale wood δ15N as a 

predictor of spring baseflow nitrate concentrations over the period of record among the five Paine Run 

(PR) headwater catchments. 

PR Spatial Model Coefficients Standard Error P-value R2 

Intercept 1.29 0.21 <0.01 0.86 

Slope 0.35 0.08 0.02 
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Table 7. Results from the linear regression analyses modeling the effect of 1-year lagged catchment scale 

wood δ15N on (1) observed mean annual flow-weighted and spring baseflow nitrate concentrations at 

Upper Big Run (UBR), (2) spring baseflow nitrate concentrations at individual Paine Run (PR) headwater 

catchments after factoring out the influence of the spatial gradient. 

UBR Mean Annual Flow-

Weighted Concentration 

Coefficients Standard Error P-value R2 

Intercept 0.62 0.03 <0.01 0.85 

Slope 0.79 0.07 <0.01 
 

UBR Spring Baseflow  

Concentration 

    

Intercept 0.47 0.05 <0.01 0.40 

Slope 0.48 0.13 <0.01 
 

PR1000     

Intercept 0.55 0.14 <0.01 0.67 

Slope 0.14 0.04 <0.01 
 

PR2000     

Intercept 0.53 0.18 0.03 0.67 

Slope 0.25 0.07 <0.01 
 

PR3000     

Intercept 1.05 0.46 0.06 0.45 

Slope 0.40 0.17 0.04 
 

PR4000     

Intercept 0.94 1.01 0.38 0.14 

Slope 0.69 0.64 0.32 
 

PR5000     

Intercept 4.23 0.50 <0.01 0.91 

Slope 2.11 0.25 <0.01 
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Figure 14. Predicted and observed mean annual flow-weighted nitrate concentrations at Upper Big Run 

(UBR) (panel A) along with predicted and observed spring baseflow nitrate concentrations for the five 

Paine Run (PR) headwater catchments and UBR (panel B-G). 

After removing the linear effect of time, all predictor variables except for 

temperature were significant in explaining the inter-annual variation in residual tree ring 



61 

 

δ15N (Table 8). Residual tree-ring δ15N increased with increased residual precipitation (P 

<0.001), but decreased with increased S and N deposition (P <0.001) and ΔDI residuals 

(P = 0.016). As such, higher rates of disturbance and acidic deposition decreased tree-ring 

δ15N, whereas higher rates of precipitation increased tree-ring δ15N. Of the significant 

predictor variables and after accounting for trends over time, S and N deposition was the 

most influential with the highest sum of squares, whereas ΔDI had the lowest sum of 

squares (Table 8). The multiple linear regression model, though significant (P <0.001), 

explained very little of the inter-annual variation of detrended tree-ring δ15N (R2=0.041). 

If using non-detrended data in a generalized linear model with a categorical variable of a 

tree identification code (i.e., the factor), the suite of predictor variables plus time 

explained upwards of 90% of the variance with similar slope coefficients as predicted by 

the multiple linear regression model (Table S3), but multi-collinearity amongst the 

predictor variables was identified (VIF > 14 for year and S and N deposition). 

Table 8. Results from the multiple linear regression analysis assessing the effects of detrended annual S 

and N deposition, disturbance (ΔDI), annual precipitation, and annual temperature on detrended tree ring 

δ15N (n =973). 

 
COEFFICIENT STANDARD 

ERROR 

SUM OF 

SQUARES 

  P  STANDARDIZED 

COEFFICIENT 
VIF 

INTERCEPT 0.0154 0.0317 
 

0.628 
  

S AND N DEPOSITION 

RESIDUAL 

-0.00352 0.00056 37.97 <0.001 -0.27 1.90

1 

ΔDI RESIDUAL -2.247 0.935 5.55 0.016 -0.077 1.04
6 

PRECIPITATION 

RESIDUAL 

0.0145 0.0032 19.59 <0.001 0.201 2.00

4 

TEMPERATURE 

RESIDUAL 

0.0503 0.0815 0.37 0.537 0.021 1.16

5 

REGRESSION    P <0.001 R2 = 0.041  
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Discussion 

Our results strongly suggest that spatiotemporal variability in stream nitrate 

concentrations is strongly correlated with a widely-used proxy for terrestrial N 

availability: wood δ15N. Positive relationships between catchment-scale δ15N and stream 

nitrate concentrations are consistent with our understanding that wood, foliar, and soil 

δ15N records are indicators of terrestrial nitrogen availability (Craine et al. 2009, Gerhart 

and McLauchlan 2014).  Across space at the PR headwater catchments, those catchments 

with higher mean wood δ15N exhibited higher stream nitrate concentrations. This result 

suggests that catchments with higher terrestrial N availability (i.e., N supply greater than 

plant demand) will have greater nitrate export. A similar observation was made in a 

comparative watershed study comparing mean annual flow-weighted nitrate 

concentrations and non-normalized catchment-scale δ15N values in the Adirondacks, but 

this analysis was not considered conclusive since one of the predominant species was not 

sampled due to disease (Sabo et al. 2016b). Moving beyond dendroisotopic records, 

forested catchments with corresponding lower foliar and soil C:N ratios also typically 

have higher stream nitrate concentrations throughout the Northeast (Aber et al. 1989, 

Aber et al. 1998). Further expanding this spatial analysis to include other catchments with 

stream nitrate and dendroisotopic records is needed to see if broader positive spatial 

relationships between stream and terrestrial nitrogen availability emerge (akin to global 

foliar [N] and δ15N gradient relationships, Craine et al. 2009). Such a relationship would 

be surprising to observe beyond localized scales due to differences in the underlying 

geology, forest management strategies, species composition, successional status, and 

topography among forest, however.  
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Over time, periods with higher wood δ15N were associated with periods of higher 

stream nitrate concentrations. Catchment-scale δ15N regression models also successfully 

described the decadal stability of mean annual flow-weighted nitrate concentrations at 

UBR and were generally predictive of spring baseflow nitrate concentrations in five of 

the six catchments. A similar linear model using a single species, tulip poplar 

(Liriodendron tulipifera), wood δ15N record was also recently used to explain the inter-

annual variation of stream nitrate concentrations at a catchment in Fernow Experimental 

Forest (Burnham et al. 2016). Other observational studies have suggested similar 

relationships through time (McLauchlan et al. 2007, Sabo et al. 2016b). In combination, 

our results and previous studies provide evidence that wood δ15N models can be used to 

fill in temporal gaps in, and potentially extend, water quality records back in time. 

At our sites, it was also observed that the sensitivity of stream nitrate 

concentrations to wood δ15N was not stable across space. Lower significant slope 

coefficient estimates (slope < 0.4) corresponded to catchments with lower mean 

catchment-scale δ15N (< -2.5‰) and nitrate concentrations over the period of record, 

suggesting the sensitivity of stream nitrate concentrations to changes in catchment-scale 

δ15N through time is partly a function of the amount of N available relative to plant 

demand at a site. This insight is consistent with evidence that forested catchments that 

retain minimal amounts of atmospherically deposited nitrogen (i.e., the most N rich sites) 

have the greatest absolute reduction in stream nitrate yields and flow-weighted 

concentrations following declines in atmospheric N deposition (Eshleman et al. 2013). As 

such, forested areas with higher nitrogen availability relative to plant demand will 

demonstrate a greater per unit decline in nitrate concentrations as wood δ15N declines, 
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evaluated on an annual basis. Whether this linear relationship holds outside the range of 

δ15N values observed at these catchments (-2.5 to 0‰) or reaches an inflection point (i.e., 

a phase shift) should be pursued in future research (Aber et al. 1989).  

Throughout the period of record, catchment-scale δ15N suggests that terrestrial 

nitrogen availability relative to plant demand generally declined through time, but trends 

at the scale of an individual tree were more variable. These clear declines in terrestrial 

nitrogen availability at the scale of the catchment and associated variability in individual 

tree-ring δ15N trends are consistent with other dendroisotopic studies reporting over a 

similar period throughout the eastern United States (Burnham et al. 2016, Elmore et al. 

2016, Sabo et al. 2016b, Mathias and Thomas 2018).  While species specific sensitivities 

to atmospheric N and S deposition (Horn et al. 2018), soil acidification status (Sabo et al. 

2016b), and disturbance (Howard and McLauchlan 2015) may modify the trajectory of N 

availability, it is clear that N availability for forest in general has declined. This decline in 

terrestrial nitrogen availability, described as “oligotrophication” (Elmore et al. 2016, 

McLauchlan et al. 2017, Groffman et al. 2018), may contribute to future declines in forest 

productivity, especially as atmospheric N deposition continues to decline and CO2 

concentrations continue to rise (Eshleman et al. 2013, Lloret and Valiela 2016, Wang et 

al. 2017). Although it is uncertain what the ultimate impacts of declining nitrogen 

availability will be on the terrestrial compartment, it is clear that less and less of the 

terrestrial nitrogen is reaching the already oligotrophic streams of Upper Big Run and 

Paine Run (Dodds et al. 1998). 

Our water quality analysis demonstrated that stream nitrate concentrations are 

largely driven by changes in terrestrial nitrogen availability, but what is driving longer-
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term trends and the general inter-annual variation in terrestrial nitrogen availability? 

Recent studies have applied a suite of statistical approaches to explain δ15N through time 

(Elmore et al. 2016, Mathias and Thomas 2018), but collinearity issues amongst potential 

predictor variables and time make it difficult to statistically attribute the influence of 

various environmental drivers on wood δ15N. We applied a conservative approach in 

which the linear correlation with time was removed from both the response and predictor 

variables to (1) better identify causal relationships between predictor and response 

variables by actually comparing unique information in the time series and (2) gain greater 

confidence in the sign and error of coefficient estimates by eliminating multicollinearity. 

Our resulting regression model was significant, but only explained a small portion (4%) 

of the detrended residual δ15N of the 96 trees. This low explanatory power speaks to the 

complexity of statistically modeling individual tree-ring δ15N responses using spatially 

coarse environmental datasets, particularly when trends over time are evaluated 

separately and removed from the time series. Furthermore, our decision to sample wood 

in 2-3 year segments rather than annual increments reduced our ability to explain 

variation at higher temporal frequencies. Leveraging sub-annual datasets like identifying 

maximum disturbance in a given year (Townsend et al. 2004) or spring timing (Elmore et 

al. 2016) or collapsing the variance of the detrended residual δ15N into catchment-scale 

δ15N, might improve the explanatory power, but generally would require data with higher 

temporal frequency or spatial density.  

Despite the aforementioned limitations, the significant coefficient estimates offer 

some insights into forest-wide drivers of terrestrial nitrogen availability. After removing 

the long-term trend of declining S and N deposition and declining wood δ15N, S and N 
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deposition exhibited a negative relationship with wood δ15N (Table 8), suggesting that 

lower rates of acidic deposition are associated with enhanced nitrogen availability on 

inter-annual scales. It has been observed in the lab and in the field that decreased soil pH 

and aluminum mobilization can lead to increased retention of soil organic matter and 

shifts in microbial activities (Sinsabaugh et al. 2004, Sinsabaugh 2010, Oulehle et al. 

2011, Oulehle et al. 2017). The predominantly deciduous forests of UBR and PR lie on 

poorly buffered, infertile soils and are likely experiencing deacidification as the soils 

regain base cations and limit toxic aluminum mobilization after decades of elevated rates 

of acidic deposition (Lawrence et al. 2015b, Kline et al. 2016, Groffman et al. 2018). 

Studies that have observed deacidification suggest that organic pools of carbon and 

nitrogen are now being mineralized and lost to streams at both experimentally 

manipulated and reference catchments (Oulehle et al. 2011, Johnson et al. 2014, Rosi-

Marshall et al. 2016, Oulehle et al. 2017). Ultimately, the magnitude and duration of this 

release of legacy nitrogen and its impact on terrestrial nitrogen availability and stream 

nitrate loss is likely conditional on forest growth responses to increased base cation 

availability (Battles et al. 2013), longer growing seasons (Elmore et al. 2016), increased 

CO2 (Norby et al. 2016), and improved air quality (Mathias and Thomas 2018). 

 At first it seems paradoxical that the net effect of increased S and N deposition 

would result in decreased terrestrial N availability relative to plant demand. Total 

nitrogen deposition directly contributes to labile nitrogen in forests (Lovett and Goodale 

2011) and rapid decreases in stream nitrate concentrations in many forested catchments 

throughout North America and Europe have been observed following decreases in 

atmospheric N and S deposition (Rogora et al. 2012, Eshleman and Sabo 2016). These 
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observations would create the expectation that the S and N deposition model effect on  

wood δ15N should be positive rather than negative (Sabo et al. 2016b).  In regards to the 

declines in stream nitrate, it should be kept in mind that the greatest observed decreases 

in stream nitrate concentrations have occurred during the dormant season when only soil 

sinks (though minimal) would be active to process atmospheric inputs and regenerated 

NH3 (Eshleman et al. 2013). Tree ring and catchment scale δ15N records may not 

necessarily capture this “bypass” of atmospheric and microbial nitrate inputs, which can 

be processed and leached during the dormant season (Sabo et al. 2016a).Therefore the 

rapid decline in nitrate in many forested catchments following declines in atmospheric N 

deposition are not necessarily contradictory to the current parameterization.  

Wood δ15N also declined in response to disturbance, suggesting that ephemeral 

disturbances (McNeil et al. 2007), consisting mainly of defoliation events and selective 

silvicultural activities, act to reduce N availability in these systems over the long-term. 

While it is apparent short-lived pulses are often observed immediately after a disturbance 

(Eshleman 2000), the loss of this nitrate may be insufficient to increase the isotopic 

signature of plant available nitrogen pools in the soils and it is unclear if this pulse of N is 

even available to defoliated plants. Furthermore, the enhancement of a long-term growth 

sink ultimately reduces N availability in the ecosystem. This speculation is consistent 

with a study carried out in UBR and the surrounding Savage River State Forest which 

reported that the nitrogen content of leaves was lower at sites that had experienced 

disturbance relative to undisturbed sites (McNeil et al. 2007).  Similar conclusions have 

also been reported based on soil δ15N data from forests of the Pacific Northwest (Perakis 

et al. 2015). In contrast to the negative effects of acidic deposition and disturbance on 
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wood δ15N, precipitation had a positive relationship. Increased precipitation likely helps 

maintain soil moisture throughout the growing season thereby promoting greater N 

mineralization rates throughout the summer (Rustad et al. 2001). Thus, increased 

precipitation may have promoted greater N supply relative to plant demand (Durán et al. 

2016, Sabo et al. 2016a). 

Declines in terrestrial nitrogen availability over the past 30 years drove reductions 

in stream nitrate concentration and loss at our study sites, consistent with reported 

declines in nitrate export from forested catchments throughout the mid-Atlantic and the 

Northeast over a similar time period (Kothawala et al. 2011, Eshleman et al. 2013). The 

impacts of decreased nitrate loss to streams may help diminish the occurrence of episodic 

acidification in headwater systems and chronic eutrophication in downstream rivers, 

lakes, and estuaries—welcomed improvements to these chronically impaired aquatic 

ecosystems. Overall, it’s clear that forest nitrogen availability has and will continue to 

impact downstream nitrogen availability, and that these trends can be monitored through 

dendroecological evaluation of wood δ15N. 
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Chapter 4: Point source loading and cleaner air decreases total nitrogen 

export from the Potomac to the Chesapeake Bay 

Abstract 

Future development of catchment-wide strategies to effectively reduce nitrogen loss to 

surface water is hampered by uncertainty over the effectiveness of specific management 

actions in contributing to water quality restoration. Recent emergence and compilation of 

annual long-term terrestrial, atmospheric, and aquatic datasets allowed for a novel, 

empirical approach in assessing the relative effects of cropland nitrogen use efficiency, 

NOx emission controls, and wastewater treatment plant upgrades on stream total nitrogen 

(TN) export in three mixed land use catchments of the Chesapeake Bay—Potomac River 

at Chain Bridge (POTW) and the North and South Fork Shenandoah Rivers. 

Parsimonious statistical models were constructed to explain the temporal variation in TN 

export with the effect of discharge removed to identify likely drivers of TN export for the 

1986-2012 period. A simple lumped, land use specific nitrogen loading (LLUS-N) model 

was also used as a means of attributing catchment TN export to point and non-point 

sources through time. Statistical analysis of the residual time series from the statistical 

model suggested that changes in point source loads and agricultural surpluses were the 

best predictors of temporal changes in TN export in all three catchments. These statistical 

insights were corroborated by modeled changes in point and non-point source loads using 

LLUS-N. Decreased non-point source loads from forested and agricultural areas of 

POTW, likely driven by decreasing atmospheric N deposition, explained the majority 

(60%) of the modeled improvement in water quality. Reductions in point source loads 

were responsible for 40% of the modeled declines in TN export rates in POTW over the 

period of record and declines in point source loading were the primary offsets to other 
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increasing sources of N inputs (e.g., manure) in the Shenandoah catchments. Based on 

these statistical and empirical modeling insights, management efforts should prioritize 

limiting the accumulation of surplus nitrogen in terrestrial compartments of the 

catchment and decrease point source loading to surface water to achieve future water 

quality restoration goals. 

Terminology 

Catchment export- The mass of total nitrogen (TN, kg N yr-1) discharged at the 

catchment outlet (��,�). 

Yields- Catchment export normalized by catchment area (kg N ha-1 yr-1) 

Net Inputs/Surpluses- The surplus anthropogenic nitrogen active in the terrestrial 

compartments after accounting for anthropogenically driven removal processes (e.g., crop 

removal on agricultural land) 

Retention- The proportion of agricultural surplus, urban N inputs, forest N inputs, point 

source loads not reaching the catchment outlet over a given time period. 
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Introduction 

Eutrophication of lakes and estuaries is caused by anthropogenically driven 

increases in riverine nutrient loads, particularly nitrogen (N), throughout the world 

(Vitousek et al. 1997, Galloway et al. 2008). Rapid urbanization and subsequent increases 

in human and industrial waste along with increased N inputs into agricultural systems and 

associated inefficiencies in its use have amplified point and non-point source loading to 

river and streams (Galloway et al. 2003). Furthermore, the release of N oxides and other 

reduced forms of N mainly through the combustion of fossil fuels or volatilization 

following application of synthetic fertilizers and excretion of livestock waste has also 

resulted in an unintentional redistribution of N across the landscape through atmospheric 

deposition (Shcherbak et al. 2014, van Grinsven et al. 2015, Lloret and Valiela 2016, 

Griffis et al. 2017). This input pathway appears to be a major driver of non-point source 

loads from urbanized and natural areas (Eshleman et al. 2013, Bettez et al. 2015). In 

China, point source loads, agricultural inputs, and atmospheric deposition have generally 

risen over the past three decades with corresponding increases in riverine N export (Gao 

et al. 2014, Chen et al. 2016a). In contrast, areas of western Europe and North America 

have begun to slowly reverse previous increases in N inputs/surpluses by increasing N 

use efficiency (NUE) in agricultural production, upgrading wastewater treatment plants 

with enhanced nutrient removal technologies, and enacting regulations to decrease NOX 

emissions from stationary and mobile sources (Doering et al. 2011, Sutton et al. 2011, 

Zhang et al. 2015b). Following these parallel efforts, riverine N export from many 

catchments in these regions has either stabilized or decreased (Garmo et al. 2014, Hale et 

al. 2015, Oelsner et al. 2017). Attributing the role of decreased atmospheric N deposition, 

agricultural surpluses, and point source loading to improvements in water quality, while 
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also accounting for potential changes in catchment-wide retention due to the 

implementation of other best management practices (e.g., stream restoration, riparian 

buffer planting, etc.), would provide valuable information to managers developing 

strategies to minimize N loss to downstream ecosystems (Keisman et al. 2015). 

 Application of lumped, input-output models could be a simple and effective 

method for attributing the influence of management actions on annual changes in water 

quality (Caraco and Cole 1999, Howarth et al. 2012, Chen et al. 2016b, Eshleman and 

Sabo 2016). Regardless of the specific formulation of equations or N input/surplus 

variables used, these models are fundamentally related in their implicit assumption of 

steady state where parameters are calibrated by linking N inputs/surpluses with observed 

catchment N export values (Dupas et al. 2017). The models have demonstrated strong, 

positive relationships between N export and N inputs/surpluses across space and time 

(Howarth et al. 2012, Chen et al. 2016b, Sinha and Michalak 2016, Hong et al. 2017), but 

catchment N export in each year was also found to be strongly dependent on discharge. 

Researchers have developed model structures that incorporate an interactive dependence 

of catchment N export on: 1) N inputs accounted via various budgeting techniques; and 

2) discharge by either directly incorporating observed discharge values or relevant 

climatic variables (e.g., annual precipitation) that are highly correlated with annual  

discharge (Sinha and Michalak 2016, Sinha et al. 2017).  

A commonly applied budgeting approach, the net anthropogenic N input (NANI), 

sums the contribution of agricultural N fixation, atmospheric deposition, fertilizer 

application, and net N import/export of food and feed in a catchment (Boyer et al. 2002, 

Sinha et al. 2017, Chen et al. 2018). The incorporation of NANI into various empirical 
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models has helped explain most of the spatiotemporal variation in dissolved inorganic N 

and total N (TN) export throughout the Yangtze river basin (Chen et al. 2016b), Europe 

(Howarth et al. 2012, Hong et al. 2017), and the contiguous United States (Howarth et al. 

2012, Sinha and Michalak 2016). Furthermore, these studies offered insight into what 

sources of anthropogenic N are driving increased N inputs and subsequent export in a 

catchment. However, NANI-based models are limited in their ability to attribute the role 

of changing non-point source N loads from specific land uses and point source loads 

(Chen et al. 2018).  

 It may be possible to apply NANI-based models or some other input-output 

models to catchments with homogenous land use (e.g., forest, urban) and subsequently 

use the results of such models to parameterize more complex models that can attribute 

TN export to specific land uses. However, this ideal approach is likely untenable 

considering the rather extreme differences in the input, retention, and loss of N in 

catchments with equivalent land use (Howarth et al. 2012, Argerich et al. 2013, Adams et 

al. 2014, Bettez et al. 2015). For example, in the central Appalachians of the United 

States, regional retention efficiencies of atmospheric N deposition in forested catchments 

range from close to 0% to near 95% (Eshleman et al. 2013, Sabo et al. 2016a). The 

degree to which the N-retentiveness of a single forested or urban catchment could 

adequately represent the mean retention of a particular land use across a region is 

unknown. While similar in principle, other research groups trying to develop moderately-

disaggregated, process-based models have instead relied on the literature to constrain the 

potential range of parameters during calibration. Following model optimization, the next 

step is to evaluate the uncertainty of the parameter estimates and the sensitivity of the 
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model to specific parameterizations in order to identify processes likely driving the inter-

annual variation in catchment TN export (Van Meter et al. 2017, Chen et al. 2018, Hu et 

al. 2018). 

Other empirical models more rooted in the conceptual model of kinetic N 

saturation have relied solely on using atmospheric N deposition as the N input variable 

and assumed that non-atmospheric inputs are static through time in mixed land use 

catchments (Lovett and Goodale 2011, Eshleman et al. 2013). This assumption allowed 

estimates of unique retention factors of atmospheric deposition and baseline loading 

factors (i.e., N load not influenced by atmospheric deposition) for both forest and non-

forested portions of 18 mixed land use catchments within the Chesapeake Bay watershed 

(Eshleman et al. 2013, Eshleman and Sabo 2016). Findings from these kinetic N 

saturation studies suggest that decreased atmospheric deposition, particularly onto non-

forested areas, was the primary driver of water quality improvement in the region 

(Eshleman and Sabo 2016). More deterministic modeling studies have suggested that 

increases in N use efficiency (NUE) in agricultural lands and wastewater treatment plant 

upgrades may have also driven water quality improvements during the same time in the 

Chesapeake region (Linker et al. 2013, Shenk and Linker 2013). However, the current 

suite of kinetic N saturation and NANI-based models in their current forms are incapable 

of testing such an assertion without further refinement since they do not simultaneously 

account for parallel changes in other N inputs onto specific land uses, point source loads, 

and/or N loads from specific land uses through time. 

To address these limitations, I: 1) explored a suite of statistical models; and 2) 

developed a lumped conceptual model capable of examining the potential roles of 
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hydroclimate and implementation of management actions on observed TN export 

variations. The first approach involved constructing parsimonious statistical models to 

explain temporal variations in TN export (with the effect of discharge removed) as a way 

of identifying likely drivers of TN export. The possible drivers evaluated included point 

source N loads, urban N inputs, agricultural N surpluses, and atmospheric N deposition 

onto forested land. Building on past NANI and kinetic N saturation studies, the lumped 

conceptual model developed in this study was fundamentally based on the idea that 

different land use contributions (i.e., agriculture, forest, urban) to catchment TN export 

can be modeled using land use-specific average N retention factors and N budgets, with 

the overall catchment TN response assumed to be additive across the different land uses. 

Like other lumped conceptual models, retention was allowed to vary as function of 

annual discharge so as to further explore the influence of both hydroclimate and N inputs 

and surpluses on the inter-annual variability of catchment TN export. In contrast to the 

statistical analysis, the lumped conceptual model was not constrained by a need for 

parsimony. Rather, the model put forward was considered a realistic, yet simple,  

conceptualization of the catchment capable of exploring the potential impact of varied 

inputs and N surpluses on observed catchment TN export through time. The 

parameterization of this model was subjected to further uncertainty and sensitivity 

analysis as a way of evaluating the primary drivers of modeled catchment TN export. 

Terrestrial N budgeting, catchment TN export, discharge, and land use data were 

acquired for the Upper Potomac River at Chain Bridge near Washington, D.C. (POTW) 

and two of its rural sub-catchments, North Fork Shenandoah (NFSR) and South Fork 

Shenandoah (SFSR), for the 1986-2012 period (Homer et al. 2015, Chanat et al. 2016).  
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POTW, the second largest tributary to the Chesapeake Bay, displayed significant declines 

in TN export during a period when fertilizer, point source loading, and atmospheric N 

deposition all decreased (Shenk and Linker 2013). The rural, contiguous sub-catchments 

of NFSR and SFSR offered an intriguing comparison because SFSR displayed declines in 

TN export, whereas the adjacent catchment of NFSR displayed an increase during the 

period despite similar agricultural practices and land use (Chanat et al. 2016, Eshleman 

and Sabo 2016, Oelsner et al. 2017). Ultimately, the objectives of this study were to:  1) 

examine if N retention has substantially changed over the period of record in the study 

catchments, 2) statistically identify the likely drivers of temporal trends in catchment TN 

export, and 3) attribute changes in catchment TN export to specific N sources and land 

uses.  

Methods 

Study sites: Site description and water quality data  

The POTW is situated within four physiographic provinces (Piedmont, Blue Ridge, 

Ridge and Valley, and Appalachian Plateau). The majority of the human population is 

located near the catchment outlet (Figure 15), but scattered urban centers are located 

throughout the catchment. Generally, POTW contains an urban, agricultural to forest 

gradient from east to west with distinct forested areas occurring in the mountains (Figure 

15).  SFSR and NFSR are predominantly located within the Ridge and Valley 

physiographic province, but the eastern boundary of the SFSR is made up of the Blue 

Ridge. SFSR and NFSR have similar proportions of forest within their catchments 

(~56%, Table 9), with the forested land generally situated along ridgelines in the 

Shenandoah, Massanutten, and Blue Ridge mountain ranges (Figure 15). The broad 

Shenandoah Valley itself is dominated by agriculture with dispersed urban centers 



78 

 

(Figure 15). Significant amounts of poultry production via concentrated animal feeding 

operations (CAFOs) and processing also occur in the valleys within NFSR and SFSR 

(Keisman et al. 2018). Only ~2 and ~3% of the agricultural land is cultivated cropland in 

SFSR and NFSR (i.e., non-pasture or hayfields), whereas ~7% of agricultural land is 

cultivated cropland in POTW (Homer et al. 2015). 

 

Figure 15. Map displaying the study catchments (Homer et al. 2015, Chanat et al. 2016). 
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Table 9. Site information for the study catchments. Land use data extracted from 2011 

National Land Cover Dataset (Homer et al. 2015).  

Station  USGS 

Station ID  

Area 

(km2) 

Forests/ 

Native Areas 

(%) 

Urba

n (%) 

Cropland 

(%) 

Pasture 

(%) 

Open 

Water 

(%) 

South Fork Shenandoah 

River at Front Royal, VA 

(SFSR) 
01631000 4231 55.6 10.8 2.9 29.9 0.6 

North Fork Shenandoah 

River near Strasburg, 

VA (NFSR) 
01634000 1998 58.5 7.0 2.3 31.8 0.4 

Potomac River at Chain 

Bridge, Washington, 

D.C. (POTW) 
01646580 29930 59.0 10.5 6.5 22.7 1.3 

 

Annual discharge and TN export values (1986-2012 water years) were acquired 

from the “Water Quality Loads and Trends at Non-Tidal Monitoring Stations in the 

Chesapeake Bay Watershed” data platform. Catchment TN export estimates were 

generated using the “Weighted Regressions on Time, Discharge, and Season” statistical 

load model (WRTDS; Hirsch et al. 2015). Outputs from WRTDS are considered the best 

estimates of the “true condition” export rates for evaluating long-term and short-term 

trends in water quality in the Chesapeake Bay due to lower bias and greater explanatory 

power for stations with longer water quality records (Chanat et al. 2016, Moyer 2016). 

Furthermore, the USGS and Bay managers have adopted WRTDS as their primary tool to 

evaluate long and short-term trends in water quality in the Chesapeake Bay region 

(Keisman et al. 2015, Chanat et al. 2016).  

Point and non-point source input datasets 

Monthly TN load and discharge data for wastewater treatment plants (WWTPs) in 

Virginia, West Virginia, Maryland, and Pennsylvania were acquired from the database 

developed for Bay Program Nutrient Point Source Data platform (CBP 2016). This 

database contains both modeled and monitored effluent discharge data for all facilities in 
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possession of a National Pollutant Discharge Elimination System (NPDES) permit. 

Monthly loads were extracted from the database and summed to calculate annual point 

source loads for each of the study catchments for calendar years 1986, 1990, 1995, 2000, 

2005, 2010, and 2012 to assess potential changes in point source N loads within the 

period of record. Linear interpolation was applied to fill in temporal gaps to generate a 

continuous annual time series for later modeling efforts (calendar year). Point source 

loads into stream networks are generally independent of climatic variation, so this 

interpolation scheme was assumed representative of the trajectories in point source loads 

as characterized by this database (CBP 2016). As such, the effects of combined sewage 

overflows, which do occur in certain jurisdictions in parts of POTW where sewer and 

storm drains are not separated, are not explicitly described in this research. It was decided 

to aggregate monthly point source loads by calendar year to ensure consistency with 

other non-point source input datasets described below. This introduces a three-month 

incongruency with WRTDS annual export values based on water years (October to 

September) and the input datasets (January to December). 

Agricultural fertilizer N application, manure N application onto cropland and 

pasture, excreted N, cultivated biological N fixation, and harvested crop N removal rates 

were extracted from the International Plant Nutrition Institute’s Nutrient Use Geographic 

Information System (Fixen et al. 2012). This dataset depends heavily on a combination of 

United States Department of Agriculture Agricultural Census, Association of American 

Plant Food Control Officials, and National Agricultural Statistic Service data, which 

provide raw data to estimate annual, county level fertilizer and manure N production rates 

along with crop harvest data. Annual N input and crop N removal rates have been 
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estimated for five separate years centering on the Agricultural Census with additional 

data coming from the National Agricultural Statistics Service (1987, 1992, 1997, 2002, 

2007, 2008, 2009, 2010, 2011, 2012) at the county and HUC-8 scale (Fixen et al. 2012). 

Linear interpolation was applied to fill in temporal gaps to generate a continuous time 

series for later modeling efforts (i.e., 1987-2012). Ideally, agricultural N flux data would 

be available on an annual basis, but no dataset currently exists. Thus, interpolated time 

series are assumed to follow the general trajectories of agricultural N fluxes through the 

different Agricultural Census sampling periods.  

Both NFSR and SFSR are HUC-8 catchments, so the data were directly extracted 

from the tabulated database. POTW consisted of nine HUC-8 drainages. Thus, 

agricultural fertilizer application, manure N application onto cropland and pasture, 

excreted N, cultivated biological N fixation, and harvested crop N removal rates from all 

nine HUC-8 basins were summed by mass for POTW. There is some additional 

uncertainty in the distribution of these application rates. Though these fluxes are 

restricted to agricultural areas throughout each county (Fixen et al. 2012, Homer et al. 

2015), watersheds do not always align with county boundaries. This misalignment may 

result in some of the agricultural fluxes being misattributed. However, issues of 

misattribution for our study sites would likely be minimal considering the size of POTW 

and the fact that the Shenandoah watersheds generally align with the county boundaries.  

Fertilizer application rates onto urban land were acquired from a USGS data 

platform that estimates county urban and agricultural fertilizer application rates across the 

country for the 1987 to 2012 period (Gronberg and Spahr 2012, Brakebill and Gronberg 

2017). This database relies on state reported sales data from the Association of American 
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Plant Food Control Officials (AAPFCO). State estimates are then allocated to the county 

level and are differentiated into farm and non-farm application in a weighting scheme 

using a combination of expenditure data from the Census of Agriculture and effective 

population densities. It should be noted agricultural fertilizer N application estimates 

from the IPNI NuGIS are equivalent to USGS estimates since both use the same data 

sources and allocation schemes (Fixen et al. 2012).  

 Total atmospheric N deposition estimates have been previously reported 

(Eshleman and Sabo 2016) and are based on wet nitrate and ammonium deposition 

gradient maps published by the National Atmospheric Deposition Program (NADP 

2015). The explicit assumption that “total N deposition = 2 x annual wet deposition” was 

used because the most recent and advanced total (i.e., wet + dry) deposition estimates 

(TDEP) that explicitly include dry N deposition only go back to 2000 (Eshleman and 

Sabo 2016). This assumption typically estimates total atmospheric N deposition 

(including organic N species) by 20 to 50% lower than TDEP in POTW, but the direction 

and magnitude of change in deposition using either dataset is equivalent (Figure S8). 

Estimates of uncertainty, especially of modeled dry deposition which is thought to be 

high (Bash et al. 2013), are currently lacking, however. In light of the incomplete record, 

uncertainty in total deposition estimates, and strong linear relationships between the 2x 

wet deposition and total deposition estimates, the 2x annual wet deposition assumption 

was used. Total N deposition onto agricultural, urban, surface water, and forested land 

uses was estimated by apportioning catchment total deposition (kg N yr-1) according to 

the proportion of each land use in the catchment.  
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Agricultural fertilizer application, manure N application onto cropland and 

pasture, cultivated biological N fixation, and harvested crop N removal rates extracted 

from the NuGIS database were used to calculate an annual partial N surplus (i.e., inputs 

(excluding N deposition) – outputs) on agricultural land. The total annual N surplus in 

agricultural lands includes 2x wet atmospheric N deposition. Thus, this surplus metric is 

calculated by taking the difference between the summed NuGIS inputs plus estimated 

atmospheric deposition and NuGIS outputs (crop N removal). Nitrogen use efficiency 

was calculated by dividing the annual crop N removal value by the summed NuGIS and 

atmospheric deposition input. It could be suggested that manure inputs should not be 

considered inputs in various mass balances since it is likely that some of the N 

requirement of the animal population is satisfied by sources internal to the catchment 

(Jordan and Weller 1996, Russell et al. 2008). It should be clarified that I am not seeking 

to calculate net catchment inputs, rather the amount of anthropogenically-mediated N 

remaining in fields and pasture in a given year (lumped). To further assuage concerns of 

double counting (though not completely eliminate the issue), the manure N application 

rate onto cropland and pasture is the estimated amount of N recovered from intensive 

livestock production operations (e.g., animal feedlots) and also accounts for losses during 

transport and volatilization. Ultimately, accounting for the manure input is imperative for 

accounting of agricultural surpluses and NUE (Sutton et al. 2011, Billen et al. 2013, 

Shenk and Linker 2013, Zhang et al. 2015b). 

Long-term linear trends in N export, atmospheric N deposition, fertilizer N 

application, manure N application, excreted N, cropland N fixation, crop N removal, and 

point source N loading rates were assessed through simple linear regression. Absolute 
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and relative changes in these individual N inputs/surpluses were then calculated to 

provide a summary assessment of how terrestrial N fluxes have generally shifted through 

time (Eshleman et al. 2013). If it was determined that linear regression was an 

inappropriate approach to deriving the best linear estimate of absolute and relative change 

for a specific N input/surplus, then a non-linear regression procedure was applied to 

confidently ascertain long-term linear changes (Hu et al. 2015, Chen et al. 2016b). As 

done in other catchment mass balance studies, 1000 values for each year of given input 

variable were generated using a Monte Carlo simulation assuming a normal distribution 

with a predefined coefficient of variation of 30% if no reliable estimates of uncertainty 

were reported (Sobota et al. 2013, Chen et al. 2016a, Chen et al. 2016b, Van Meter et al. 

2017). A distribution of linear slope and associated y-intercept estimates were determined 

by evaluating the 1000 unique time series. The 2.5, 50.0 and 97.5% intervals of the slope 

and intercept were identified to determine the upper, median, and lower estimates of 

change throughout the period of record (Hu et al. 2015).  

Factoring out the influence of annual discharge on catchment TN export and retention 

The relationship between annual discharge and catchment TN export was 

explored using simple linear regression. Time series of the model residuals (discharge 

model) were then visually assessed for temporal structure and were used later in the 

statistical modeling analyses described below (section Approach #1). Discharge is also 

known to influence the retention of N inputs and surpluses in a given year (Sinha and 

Michalak 2016, Chen et al. 2018). I specifically define retention as the proportion of 

agricultural surplus (��,�), urban N inputs (��,�), forest N inputs (��,�), and, point source 

loads (��,�) not exported (��,�) at the catchment outlet over a given time period  (i.e., 
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∑ ��, ,�!, ,�", �#, 

, Table 10). In addition, the relationship between catchment retention 

and annual discharge was assessed using simple linear regression. Residual time series 

were then generated to visually assess if retention (after removing the effect of annual 

discharge) was increasing, decreasing, or remaining constant through time. 

Approach #1: Statistical modeling of discharge model residuals 

The influence of potential drivers on the temporal variation in the discharge 

model residuals was explored using correlation and non-linear regression analyses. As 

described above, the linear effect of discharge was removed from WRTDS TN export 

values to explore the inter-annual variation in export independent of discharge. The 

Pearson correlation of all predictor variables, including urban nitrogen inputs (I',(, Table 

10), forest nitrogen inputs ()*,+, Table 10), annual N surplus in agricultural lands (��,�,  

Table 10), and annual discharge (,-,+,  Table 10) to the response variable, residual 

catchment TN export, was constructed and the significance of the associations was tested 

using the Pearson Product Moment Correlation tool in SigmaPlot 14.0 (SigmaPlot). A 

complete parallel correlation matrix of all variable combinations using non-interpolated 

time series was also constructed to evaluate the robustness of the correlation using non-

interpolated time series. 

The linear effect of annual discharge was first removed from all predictor 

variables before proceeding with the residual catchment TN export analysis by  

generating the residual time series using the simple linear regression model. This allowed 

the model to be fully specified with the mean value of all predictor variables centering on 

zero (same as the discharge model residual) and removing any linear correlation with 

discharge, thus allowing any variation independent of discharge to be compared. In 
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addition to reporting the standard statistical outputs, the Akaike information criterion 

(AICc) was also determined as a means of model selection (Akaike 1998). More 

parsimonious models that maximize goodness-of- fit relative to other models will have 

lower AICc; thus a model’s quality was ranked by their absolute difference to the model 

with the lowest AICc (ΔAICc). All linear combinations of predictor variables were 

evaluated using SigmaPlot 14.0. All model combinations that provided positive slope 

coefficient estimates and produced a ΔAICc < 2 were reported. Any models with ΔAICc 

> 2 were not considered meaningful and were not reported (Aho et al. 2014), while 

negative slope coefficients were considered spurious because the logic implies that 

increased inputs resulted in decreased catchment TN export. 

  



87 

 

Table 10. Reference table listing the parameters and the input, state, and output variables of the statistical 

model developed to explain the discharge model residuals (approach #1) and LLUS-N (approached #2) 

along with a summary of the method of determination. The definition and mathematical derivation of 

catchment retention is also described. 

Output 

Variable 

Description Determination 

��,� (kg N yr-1) Catchment TN export as modeled by 
LLUS-N 

.-,+ = )0,+  ∗ 20,-,+ + )4,+ ∗ 24,-,+ + )5,+ ∗ 25,-,+  + )*,+ ∗ 2*,-,+  

 

Input and 

State Variables 

  

��,� (kg N yr-1)  Point source TN loading within a 

catchment in a given year 

Estimates acquired from Bay Program Nutrient Point Source Data 

Platform 

��,� (kg N yr-1) Summed fertilizer application and total 
atmospheric deposition rates onto 

urban lands within a catchment in a 

given year 

1. Extracted urban fertilizer application rates from the USGS 
“County-Level Estimates of Nitrogen and Phosphorus from 

Commercial Fertilizer for the Conterminous United States, 1987-

2012” database  
2. Apportioned total deposition onto specific land uses based on the 

proportion of each land use in each catchment 

��,� (kg N yr-1) Total atmospheric deposition rates 

onto forested lands within a catchment 
in a given year 

1. Apportioned total deposition onto specific land uses based on the 

proportion of each land use in each catchment 

��,� (kg N yr-1) Annual N surplus in agricultural lands 

within a catchment in a given year 

1. Manure application, agricultural fertilizer application, cultivated 

biological N fixation, and harvested crop N removal estimates were 
extracted from the International Plant Nutrition Institute’s Nutrient 

Use Geographic Information System 

2. Apportioned total deposition onto specific land uses based on the 
proportion of each land use in each catchment 

3. Annual N surplus in agricultural lands is calculated by taking 

difference between the inputs (manure application, agricultural 
fertilizer application, cultivated biological N fixation, and total 

deposition) and outputs (crop N removal). 

6�,� (m yr-1) Annual discharge within a catchment 
in a given year, normalized by area 

Annual discharge estimates provided by the Chesapeake Bay 
Program Loads and Trends database 

Catchment 

Retention 

(unitless) 

The proportion of agricultural surplus, 

urban N inputs, forest N inputs, point 

source loads not reaching the 
catchment outlet over a given time 

period. 

∑ ��,� , ��,� , ��,���,� − ��,�
∑ ��,� , ��,� , ��,���,�

 

   

Parameters   

7�  (yr m-1) Scaling factor of the point source 

loading export coefficient (e.g., 

7�6�,�) 

Simultaneously determined along with parameters of other export 

coefficients via nonlinear regression on SigmaPlot 14.0, constraints 

to parameterization defined by literature 

7� (yr m-1) Scaling factor of the forest export 

coefficient (e.g., 7�6�,�) 

Simultaneously determined along with parameters of other export 

coefficients via nonlinear regression on SigmaPlot 14.0, constraints 

to parameterization defined by literature 

7� (yr m-1) Scaling factor of the agricultural 

export coefficient (e.g., 7�6�,�) 

Simultaneously determined along with parameters of other export 

coefficients via nonlinear regression on SigmaPlot 14.0, constraints 

were solved by difference based on observed retention values for the 
catchment and literature reported retention values for other N 

sources. 

7� (yr m-1) Scaling factor of the urban export 

coefficient (e.g., 7�6�,�) 

Simultaneously determined along with parameters of other export 

coefficients via nonlinear regression on SigmaPlot 14.0, constraints 
to parameterization defined by literature 
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Approach #2: Lumped conceptual model of catchment TN export 

The statistical analysis described above was complimented by the construction of 

a simple lumped conceptual model, the Lump Land Use Specific Nitrogen (LLUS-N) 

export model. Conception of this model was partly inspired by efforts to determine the 

importance of point source loads, atmospheric deposition, and fertilizer use on nitrate 

export in catchments across the globe (Caraco and Cole 1999). It was conceptualized that 

a fraction of watershed inputs ()-,+) and point source loads ()0,+) are exported from the 

catchment (.-,+) in a given year (all in kg N yr-1), but the retention of watershed inputs is 

a non-linear function of area-normalized discharge (,-,+, in m yr-1, referred to as annual 

discharge throughout ). This can be mathematically described as: 

.-,+ = 9- ∗ )0,+ + )-,+ ∗ 9- ∗ 2-,-,+
:- 

1) 

where 9-, 2-, and :- are (constant) model parameters (Caraco and Cole 1999). In-

stream retention processes were conceptualized to be captured by the 9- parameter and 

was assigned a literature value of 0.7 (Billen 1991), whereas the 2-, and :- parameters 

were used to represent the sensitivity of non-point source loads to annual discharge. 

These values were calibrated through optimization (Caraco and Cole 1999). Building on 

this conceptual framework, LLUS-N attempts to apportion the inter-annual variation in 

catchment TN export to changes in point and non-point source loads from urban, 

forested, and agricultural areas within the catchment—thus requiring a slightly more 

complex model than Eq. 1) to represent land use-specific average N retention and non-

point source loads:   
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)-,+ ∗ 9- ∗ 2-,-,+
:-  = )4,+ ∗ 24,-,+

:4 + )5,+ ∗ 25,-,+
:5  + )*,+ ∗ 2*,-,+

:* 

2) 

The )4,+, )5,+, and )*,+ terms represent annual time series of anthropogenic N inputs or 

surpluses (kg N yr-1) onto agricultural, urban, and forested areas within a catchment, 

respectively (Table 10) with the respective land-use specific scaling factors (i.e.,B’s)  and 

exponents (i.e., c’s) effectively replacing the Bw and Cw parameters in Eq. 1). The term, 

)4,+, is the annual N surplus onto agricultural lands which is the difference between N inputs 

onto agricultural land (atmospheric deposition, synthetic fertilizer, applied manure, 

cultivated biological N fixation) and N removed from the field following harvest. Annual 

urban inputs, )5,+, include lawn fertilizer and total atmospheric N deposition, whereas the 

forest N input term, )*,+, represents total atmospheric N deposition onto forest. The in-

stream retention term, 9-, is not explicitly listed in this derivation due to the fact that in-

stream retention varies as a function of discharge (Beaulieu et al. 2011, Miller et al. 2016), 

thus making the assignment of a fixed value suspect. The estimated net effect of in-stream 

retention would still be captured in the calibration of the scaling factors and exponents, but 

it ultimately cannot be separated from other retention processes through optimization, 

however. Along a similar line, the 9- interaction with point source loading inputs ()0,+) 

was substituted with a parallel non-linear export function to allow the retention of point 

source loads to vary with discharge (i.e., 20,-,+
:0).  Annual point source load estimates, 

)0,+, were extracted from Bay Program Nutrient Point Source Data platform as described 

above. Substituting equation 2) and the non-linear export function for the point source 

loading interaction into equation 1 results in:  
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.-,+ = 20,-,+
:0 ∗ )0,+ + )4,+ ∗ 24,-,+

:4 + )5,+ ∗ 25,-,+
:5  + )*,+ ∗ 2*,-,+

:* 

3) 

I preliminarily explored the use of the full power function representations of non-point 

loads (e.g., 24,-,+
:4, 25,-,+

:5) in LLUS-N, but encountered issues with equifinality 

(the number of model parameters increased from 4 to 8); in addition, these models 

increased AICc (> 2). Therefore, I simplified Eq. 3) by assuming all of the exponents 

were equal to unity.  As such, the final LLUS-N model formulation was: 

 

.-,+ = )0,+  ∗ 20,-,+ + )4,+ ∗ 24,-,+ + )5,+ ∗ 25,-,+  + )*,+ ∗ 2*,-,+  

4) 

Catchment TN export attributable to specific point and non-point sources was 

thus assumed to vary as a linear function of annual normalized discharge, ,-,+ (assumed 

nonvariant across the three land uses within each basin) Corresponding source specific 

scaling factors (B’s, n = 4) were simultaneously calibrated in SigmaPlot 14.0 using the 

custom equation non-linear regression tool (e.g., 24, 25, 2*,  and 20, Table 10). Ranges 

of scaling factors that could be used for parameterization were constrained by the 

literature (described in a paragraph below).  Another major assumption of LLUS-N was 

that there is no carryover of inputs from one year to the next. Some have reported that 

modeling legacy sources of N may be important for modeling the inter-annual variation 

in catchment TN export and forecasting future trajectories of TN export. However, others 

have concurrently developed models of similar predictive skill relying solely on annual N 

inputs within the same regions (Chen et al. 2016a, Van Meter et al. 2017, Chen et al. 
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2018, Hu et al. 2018). A final implicit assumption of LLUS-N worth noting is that the 

modeled retention of each land use to different inputs of N will be exactly the same, as 

have other lumped empirical models (Howarth et al. 2012, Chen et al. 2018). It has been 

suggested that the retention of atmospherically deposited N may differ from retention of 

other N sources (Jaworski et al. 1992, Eshleman and Sabo 2016, Sabo et al. 2016a), but 

empirical data to constrain such factors are currently unavailable.  

Rather than assume that a constant fraction of an input is exported in a particular 

year (Eshleman et al. 2013), N retention in LLUS-N varies  as a function of annual 

discharge (Chen et al. 2016b, Chen et al. 2018). The unitless product of the scaling factor 

and annual discharge (e.g.,  25,-,+, units are yr m-1 and m yr-1, Table 10) determines the 

proportion of the input/surplus exported from a specific land use or point source in a 

given year. As such the retention (A) of inputs/surpluses can be calculated by subtracting 

the proportion exported in each year from 1 (e.g., Au = 1 - 25,-,+). Since I am assigning 

constraints on the mean retention efficiencies to specific land uses and point sources for 

the period of record (listed below), the mean export efficiency (25,-,+,;<=>$?@;?
AAAAAAAAAAAAAAAAAAAAA)  can 

also be calculated (e.g., 1 – B5= 25,-,+,;<=>$?@;?
AAAAAAAAAAAAAAAAAAAAA). The mean annual discharge is known 

for all three catchments, so the scaling factor can be solved by rearranging the equation 

(e.g., 
C$B5AAAA

DE,;<=>F?@;?AAAAAAAAAAAAAAAAAAA = 25, Table 11). In the mid-Atlantic, Ba is far less constrained, but this 

parameter was effectively estimated by difference since we relied on the literature to 

constrain retention of other sources of N in the catchment.  

Long-term catchment input-output budgets along with other empirical modeling 

studies were used to constrain retention for urbanized areas (B5, 60-85%, Groffman et al. 

2004, Kaushal et al. 2008, Buda and DeWalle 2009, Bettez et al. 2015, Groffman et al. 
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2017, Hobbie et al. 2017) and forests (B*, 75-95% Eshleman et al. 2013, Eshleman and 

Sabo 2016). Recent work quantifying the role of in-stream processing in attenuating 

nitrate loads to stream network in the mid-Atlantic (specifically POTW) was used to 

constraint retention rates for point source loads (B0, 10-30%, Beaulieu et al. 2011, Miller 

et al. 2016).  

Parameter uncertainty for all model coefficients was also estimated in SigmaPlot 

14.0 concurrent with non-linear regression by first identifying the asymptotic standard 

error for the best-fit parameters and calculating 95% confidence intervals through the 

reduced chi-square method (all part of the SigmaPlot 14.0 non-linear regression tool). 

Model sensitivity to parameterization was evaluated by calculating the change in the 

Nash-Sutcliffe Coefficient (ΔNSE) and the proportional change in catchment TN export 

to proportional change in an individual scaling factor. Similar to other modeling studies 

(Chen et al. 2018, Hu et al. 2018, Sha et al. 2018), model performance was primarily 

evaluated using the NSE, but model residual time series were visually compared with the 

residual time series of the linear discharge model.  

Table 11. Pre-defined maximum and minimum scaling factor constraints (yr m-1 ) for the point source 

loading, urban, and forest (7�, 7� , GHI 7�) based on literature reported retention values (%, 
J�, J�, J�) . The agricultural scaling factor (7�) and retention value (J�) was solved by difference (since 

agriculture is the remaining source of N export). 

 
POTW SFSR NFSR REFERENCES 

25 

B5 

0.41-1.10 

85-60% 

0.43-1.15 

85-60% 

0.52-1.38 

85-60% 

Groffman et al. 2004, Kaushal et al. 2008, 

Buda and DeWalle 2009, Bettez et al. 2015, 

Groffman et al. 2017, Hobie et al. 2017 

20 

B0 

1.66-2.49 

30-10% 

1.73-2.59 

30-10% 

2.07-3.11 

30-10% 

Beaulieu et al. 2011, Miller et al. 2016 

2* 

B* 

0.14-0.69 

95-75% 

0.14-0.72 

95-75% 

0.17-0.86 

95-75% 

Eshleman et al. 2013, Eshleman and Sabo 

2016 

24 

B4 

1.07-1.55 

61-44% 

0.32-0.55 

88-80% 

0.54-0.77 

85-78% 

NA, solved by difference 
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Results 
 

Changes in the inputs, transformations, and surpluses of N 

Fertilizer N, manure N, and total atmospheric N deposition were consistently the 

largest sources of N inputs in all three catchments (Figure 16). Agricultural surpluses 

increased 51% and 66% from 1986 to 2012 at NFSR and SFSR, respectively. This 

increase in surplus N was primarily driven by increased manure application rates that 

exceeded increased crop harvest rates by >100% in both catchments over the period 

(Table 12, Figure 16). Declines in atmospheric N deposition and increased crop harvest 

resulted in nutrient use efficiency (~40%) remaining approximately constant throughout 

the period of record, however (Figure 16). While shifts in agricultural fluxes and 

surpluses were similar among the two adjacent Shenandoah catchments, differences in 

point source loads were apparent (Figure 17). Point source loads were three to four times 

larger at SFSR at the beginning of the record and dramatically declined (63% ±4%) over 

the period of record to 0.6 kg N ha-1 yr-1 (Figure 17), whereas point source loads actually 

increased at NFSR until the early 2000s before beginning to decline to rates lower than 

those observed in the 1980s.  
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Figure 16. Annual N input and crop N removal rates along with associated changes in agricultural surplus 

and nitrogen use efficiency for North Fork Shenandoah River (NFSR), South Fork Shenandoah River 

(SFSR), and Potomac River at Chain Bridge (POTW). For illustrative purposes, only data centering on the 

Agricultural Census are plotted. Partial Annual N Surplus excludes N deposition as an input into 

agricultural lands. 
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Figure 17. Time series of annual point source loading rates normalized by catchment area for North Fork 

Shenandoah River (NFSR), South Fork Shenandoah River (SFSR), and Potomac River at Chain Bridge 

(POTW).  

Total atmospheric N deposition and agricultural fertilizer application each 

declined by ~30% in POTW, whereas manure N applied to pastures and cropland, as well 

as urban fertilizer use, increased dramatically (i.e., 72% and 66%, respectively, Table 

12). The increase in manure and urban fertilizer application offset the decline in 

agricultural fertilizer use and atmospheric N deposition in POTW, resulting in total inputs 

being essentially equivalent in 1986 and 2012. However, harvested crop N removal 

increased 19% (±9.1%) in POTW. Annual N surplus on agricultural lands in POTW 

declined over the period of record (Table 12), but NUE increased by ~60% between 2002 

and 2012 (Figure 16). Generally, annual N surpluses and partial annual N surpluses 

(excluding N deposition as an input) in agricultural lands were increasing until ~2002, 

but declined throughout the latter part of the record--a period when atmospheric N 

deposition was also declining. While annual N surpluses on agricultural lands declined 

coincident with decreased atmospheric N deposition (Figure 16), partial annual N 

surpluses in agricultural lands in POTW did not change from 1987 to 2012 and remained 
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at ~7.5 kg N ha-1 yr-1 (Table 12). Point source loading strongly decreased by 39% 

(±7.8%), with declines beginning in the late 1990s (Figure 17, Table 12). Although this 

relative decline is impressive on a percentage basis, point sources loads are 5 to 10 times 

smaller than other nitrogen inputs onto the catchment (Figure 16 and Figure 17). 

Table 12. Linear estimates of absolute and relative changes for agricultural mass balances, N input, point 

source loading, and crop N removal rates during the 1986-2012 period along with associated 95% 

confidence intervals. Bold text indicates significant changes through time using simple linear regression 

(p<0.05) unless indicated otherwise. 
 NFSR SFSR POTW 

 

Absolute 

Change (95% 

C.I.) (kg N  
ha-1 yr-1) 

Relative Change 

(95% C.I.) (%) 

Absolute 

Change (95% 

C.I.) (kg N  ha-1 
yr-1) 

Relative Change 

(95% C.I.) (%) 

Absolute 

Change (95% 

C.I.) (kg N  
ha-1 yr-1) 

Relative Change 

(95% C.I.) (%) 

Annual N Surplus 

in Agricultural 
Lands 

11.1 

(9.2-13.0) 

50.8 

(42.2 – 59.5) 

12.0 

(9.9-14.1) 

65.6 

(54.4-77.0) 

-1.2 

(-2.8 – -0.4) 

-9.9 

(-23.2 – 3.3) 

Partial Annual N 

Surplus in 
Agricultural Lands 

12.1 

(10.4 – 13.9) 

64.8 

(55.3 – 74.3) 

13.2 

(11.3 – 15.1) 

88.7 

(76.0 – 101.4) 

0.0  

(-1.3 – 1.3) 

-0.4  

(-15.5 – 14.7) 

Manure N Applied 

to Pasture and 
Cropland 

15.8 

(12.7 -18.9) 

72.8 

(58.5-87.2) 

17.8 

(14.6 – 21.0) 

105.2 

(86.2 – 124.2) 

5.1 

(4.1 – 6.0) 

72.0 

(58.3 – 85.7) 

Agricultural 

Fertilizer 
Application 

2.6 

(0.5 – 4.7) 

34.2 

(6.1 – 62.3) 

-0.6 

(-2.2 – 1.0) 

-8.7 

(-31.4 -14.0) 
-3.4 

(-4.5 - -2.3) 

-31.7 

(-42.2 - -21.2) 

Cultivated 

Biological N 
Fixation 

0.5 

(-0.1 – 1.2) 

12.0 

(-2.9 – 27.0) 

0.1 

(-0.5 – 0.7) 

2.4 

(-13.3 – 18.0) 

-0.2 

(-0.74 – 0.28) 

-5.3 

(-17.1 – 6.4) 

Harvested crop N 

removal 
6.9 

(4.9 – 8.9) 

46.2 

(32.6 – 59.8) 

4.1 

(2.3 – 6.0) 

31.9 

(17.8 – 46.0) 

2.5 

(1.3 – 3.7) 

19.0 

(9.9 – 28.1) 

Point Source TN 

loading 
-0.51* 

(-0.7 – -0.3) 

-43.6* 

(-23.2 – 64.8) 

-1.3 

(-1.4 - -1.2) 

-63.1 

(-59.1 - -67.0) 

-0.5 

(-0.6 - -0.4) 

-37.7 

(-45.5 - -29.9) 

Total Atmospheric 
N Deposition  

-3.7 

(-5.9 - -1.5) 

-38.2 

(-60.8 - -15.7) 

-3.8 

(-5.8 - -1.9) 

-37.3 

(-56.0 - -18.5) 

-3.6 

(-5.7 - -1.6) 

-32.0 

(-50.0 - -14.0) 

Urban Fertilizer 

Application 
0.3 

(0.2 – 0.4) 

115.1 

(71.8 – 158.3) 

0.3 

(0.1 – 0.5) 

70.4 

(32.7 – 108.2) 

0.7 

(0.3 -1.1) 

65.5 

(26.0 – 105.1) 

* Linear estimates of absolute and relative changes were calculated using a non-linear regression 

procedure to better constrain uncertainty estimates for this more complex time series (Hu et al. 2015, Van 

Meter et al. 2017, Chen et al. 2018). 
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The relationship of observed catchment retention and export with annual discharge 

Catchment N export, illustrated as yield to facilitate comparison among all three 

catchments, increased with increased discharge (Figure 18). Annual discharge was 

observed to explain most of the inter-annual variation in catchment export in the three 

catchments. Further inspection of the residual time series revealed distinct temporal 

structures that could be potentially explained by other drivers (explored in sections 

below). Ignoring the 1986 data point (a very high flow year at the beginning of the 

WRTDS calibration dataset) at POTW, catchment yield residuals were generally constant 

from the mid-1980s through the mid-1990s, then steadily declined post-1996. My 

interpretation is that a process independent of discharge appears to be driving declines in 

TN export at POTW after the mid-1990s. Likewise, residuals were consistently positive 

at SFSR from 1987 to 1994. Thereafter, residuals were generally more negative at SFSR. 

Residuals became progressively more positive until the early 2000s at NFSR and began 

to decline after 2004. It should be noted, after evaluating the standardized residuals from 

the regression analysis, the TN export values from 1986 at POTW and from 2012 at 

SFSR were flagged as outliers and are not representative of their respective population 

trends. This was not entirely unexpected, since interpreting the tail ends of WRTDS runs 

should be done with caution. Both residual values (i.e., 1986 for POTW and 2012 for 

SFSR) were excluded from subsequent statistical analysis. 
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Figure 18. A) Scatterplot displaying the relationship between annual discharge (6�,�) and catchment yield 

(
%&, 
KLM�, catchment export normalized by catchment area). This is the discharge model. Catchment export 

increased with increased discharge in all three catchments (for Potomac River at Chain Bridge (POTW): y 

= 26.0x -1.7, r2=0.99, p <0.01; for North Fork Shenandoah River (NFSR): y = 23.5x -0.8, r2=0.98, p 

<0.01; for South Fork Shenandoah River (SFSR): y = 19.3x – 1.1, r2=0.98, p <0.01 ). B) Residual time 

series of catchment yield after removing the linear effect of annual discharge. C) Scatterplot displaying the 

relationship between annual discharge and retention (i.e.,  
∑ ��, ,�!, ,�", �#, $%&, 

∑ ��, ,�!, ,�", ,�#, 
) of nitrogen inputs (��,�, ��,�, 

and ��,�) and point source loading (��,�). Retention decreased with increased discharge (For POTW: y = -

1.1x + 1.01, r2=0.93, p <0.01; for NFSR: y = -0.7x + 1.01, r2=0.95, p <0.01; for SFSR: y = -0.6x + 1.02, 

r2=0.91, p <0.01). D) Residual time series of catchment retention after removing the linear effect of annual 

discharge. 

Using the observed terrestrial N flux, point source loading, and WRTDS export 

time series, I assessed the inter-annual variation in observed retention efficiencies after 

removing the linear effect of discharge. From 1986 to 2012, POTW retained 62% of net 

inputs and point source loads, whereas NFSR and SFSR had retention values of 80 and 

81%, respectively. Retention decreased with increased discharge, however (Figure 18). 

After removing the linear effect of discharge, retention efficiencies in POTW generally 



99 

 

varied ± 10% through time (note that retention values are shown in unitless proportions). 

POTW demonstrated a sudden negative shift in retention efficiency of 10% from 2009 to 

2010 (a particularly wet year with a major rain on snow driven flood in late winter), 

however (Figure 18). This negative residual was not present after 2010. Outside of 2010, 

retention is mostly stable over the period of record at POTW. In contrast, retention was 

consistently lower at SFSR and NFSR from 1986 to 1994. It should be noted that only the 

population of negative residuals for the 1986 to 1994 period were considered 

significantly different from 0 only for SFSR (p<0.01, one tailed t-test), however. After 

1994, retention residuals stabilized at NFSR (bounced around zero) but became 

consistently positive at SFSR. These results suggest that retention was 3 to 4% higher 

post-1995 relative to the 1986-1994 period at SFSR. 

Approach #1: Potential drivers of discharge model residuals 

Time series of the discharge model residuals were further examined to elucidate 

the drivers of catchment TN export. Through time, residual catchment export was 

observed to be positively correlated with point source loading in all three catchments, but 

this correlation was only significant in POTW (Table 13). Significant positive 

correlations (p < 0.05) between annual N surplus in agricultural lands and residual 

catchment export were detected in both NFSR and POTW. Positive correlations between 

predictor and response variables leveraging the interpolated time series were consistent 

with correlations using non-interpolated time series (Table S6). Furthermore, forest 

inputs, annual N surplus in agricultural lands, and point source loads were highly 

correlated, but not statistically significant (r > 0.5, Table S6). Negative correlations 

between predictor and response variables suggest a negative relationship between inputs 

and residual catchment export through time. These negative correlations likely capture 
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input and export residual trends moving in opposite direction (e.g., forest N inputs going 

down but export residuals increasing at NFSR) and likely indicates the input variable 

does not greatly influence the inter-annual variability in catchment N export residuals.  

Table 13. Pearson correlation coefficients between predictor variables and the discharge model residuals. 

Bold indicates a significant correlation (p < 0.05). Correlation among predictor variables and the 

discharge model residuals using non-interpolated time series is reported in the Appendix (Table S6). 

 
Catchment Export 

Residuals  
POTW 

Catchment Export 

Residuals  
SFSR 

 Catchment Export 

Residuals  
NFSR 

Urban Inputs ()5,+) -0.05 -0.36  -0.15 

Annual N Surplus in 

Agricultural Lands ()4,+) 
0.54 -0.26  0.41 

Forest Inputs ()*,+) 0.34 0.16  -0.35 

Point Source Loading ()0,+) 0.58 0.30  0.35 

After removing the linear effect of discharge from the predictor variables, all 

linear combinations of predictor variables explaining residual catchment export were 

evaluated using ΔAICc. All model combinations generating positive slope coefficients 

and ΔAICc < 2 were reported (Table 14). At NFSR and POTW, the “agricultural surplus 

and point source model” were identified as effective models in explaining residual 

catchment export from the discharge model (Table 14). Slope coefficients of annual N 

surplus in agricultural lands ()4,+) were similar in both catchment (~0.06), but coefficient 

estimates for point source loading varied three-fold between the catchments (0.33 vs. 

1.04, Table 14). The slope coefficient estimates for point source loading were 

consistently greater than 1.0 for POTW in both the point source and agricultural surplus 

and point source models. Parameter values greater than 1.0 means that the change in total 

catchment export exceeded the change in point source load. As such, another source of N 

to catchment export covaries with point source loads. This parameterization suggests that, 

while the statistical correlation between point sources loads and catchment TN export is 

strong, the decline in point source loading cannot fully account for the decline in 
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catchment TN export at POTW on a per-unit-mass basis. The top performing models for 

NFSR and POTW were highly effective in modeling the trajectory of catchment TN 

export (Figure 19) and explained a moderated amount of the variance (R2 > 0.3, Table 

14). Furthermore, they were generally found to be unbiased as R2 and NSE were found to 

be equivalent. In contrast, the best model for SFSR (i.e., the “point source model”) 

explained little of the variance in catchment export residuals (Table 14, R2 = 0.09) and 

was unable to model the sudden negative shift in residuals after 1995 (Figure 19). It 

should be noted that identified predictor variables and their sign were similar using the 

same model selection procedure and the non-interpolated time series centered on the 

Agricultural Census (Table S7). 

Table 14. For all model combinations generating ΔAICc < 2 and positive slope coefficients, statistical 

outputs of the exploratory modeling analysis used to explain temporal patterns in the discharge model 

residuals (kg N ha-1 yr-1) as a function of inputs (kg N ha-1 yr-1). Coefficient estimates along with 95% C.I. 

were reported. Bolded text indicates coefficient estimate was significantly different from zero, a blank 

indicates the parameter was not included in the model. 

 

  

Catchmen

t 

Model 

Reference 

Urban 

Inputs 

()5,+) 

Annual N 

Surplus in 

Agricultur

al Lands 

()4,+) 

Forest 

Inputs 

()*,+) 

Point 

Source 

Loading 

(NO,P) 

ΔAICc R2 NSE 

NFSR 

Agricultural 
Surplus and 

Point Source 

 0.05 ± 0.04  0.33 ± 0.28 0.00 0.30 0.30 

SFSR 
Point Source    0.25 ± 0.31 0.00 0.09 0.08 

Forest   0.06 ± 0.12  1.72 0.03 0.02 

POTW 

Point Source    1.38 ± 0.69 0.00 0.38 0.38 

Agricultural 

Surplus and 

Point Source 

 0.07 ± 0.11  1.04 ± 0.85 0.63 0.40 0.39 



102 

 

  

 

Figure 19. Scatterplots of predicted vs. observed catchment export residuals (A, C, E) along with time 

series of export residuals and predicted export from the most efficient models as identified by ΔAICc (B, D, 

F). 
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Approach #2: LLUS-N Results 

Literature values for N retention were used to constrain point source export and 

non-point source exports from forested and urban lands. By difference, the range of 

agricultural retention was then predefined to fully constrain all the individual scaling 

factors in LLUS-N, and these parameters along with associated uncertainty were 

evaluated through non-linear regression. All model iterations successfully converged and 

best model fit solutions explained 96% of the variance in catchment TN export using the 

custom non-linear regression tool in SigmaPlot 14.0. Issues of equifinality were 

highlighted in the parameter uncertainty analysis since all possible parametrizations fell 

within the 95% confidence intervals (Table 15), thus indicating that a variety of 

parametrizations within the predefined parameter constraints were possible at generating 

similarly performing models.  

In order to then better elucidate the sensitivity of the model to parameterization, 

scaling factors were individually adjusted ±50% to determine the proportional impact of 

parameterization on catchment export (S) and model performance as measured by the 

difference in the best fit model NSE (Nash-Sutcliffe efficiency) and the adjusted model 

(ΔNSE, Table 16). Catchment export was most sensitive to the retention of annual N 

surplus in agricultural lands with a 10% change in 24 resulting in a >7.5% change in 

catchment export in POTW and NFSR. While catchment export was most sensitive to 

changes in 24 at SFSR (41%, Table 16), 25 and 2* were also influential. This greater 

influence was likely reflective of SFSR having the highest point source loads (after 

normalizing by area) for most of the record among the three catchments (Figure 17). 

Changes in 24 consistently produced the greatest changes in NSE (0.4 – 0.79, Table 16). 
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Thus, constraining the retention of agricultural surpluses in all three catchments was 

imperative for limiting bias and maintaining explanatory power. 

Table 15. Resulting parameterization and long-term retention values along with predefined constraints for 

individual sources of catchment TN export of LLUS-N using non-linear regression. After evaluating the 

parameter uncertainty, all possible parameterizations within the predefined range of parameter constraints 

were within 95% confidence bounds thus indicating issues of equifinality.  
 

  Urban (25)  Agriculture (24) Forest (2*) Point (20) NSE 

NFSR Parameter 0.52 (0.52 – 1.38) 0.69 (0.54 – 0.77) 0.32 (0.17 – 0.86) 2.58 (2.07 – 3.11) 0.96 

Retention 85% (60 – 85%) 80% (78 – 85%) 91% (75 – 95%) 26% (10 – 30%) 
 

SFSR Parameter 0.43 (0.43-1.15) 0.41 (0.32-0.55) 0.62 (0.14 – 0.72) 2.59 (1.73 – 2.59) 0.96 

Retention 85% (60 – 85%) 86% (80 – 88%) 78% (75 – 95%) 10% (10 – 30%) 
 

POTW Parameter 0.62 (0.41–1.10) 1.42 (1.07–1.55) 0.16 (0.14–0.69) 2.49 (1.66–2.49) 0.96 

Retention 78% (60 – 85%) 49% (44 – 61%) 94% (75 – 95%) 10% (10 – 30%) 
 

 

Table 16. The proportional change in catchment TN export relative to the proportional change in 

individual parameterization (S) along with the absolute change in model performance as measured by the 

difference in Nash-Sutcliffe coefficient between the originally calibrated models and models with individual 

parameters adjusted ±50% (ΔNSE).  

 POTW SFSR NFSR 
 S* ΔNSE S* ΔNSE S* ΔNSE 

20 (±50%) 0.14 -0.01 0.34 -0.08 0.10 -0.02 

2* (±50%) 0.05 -0.002 0.21 -0.06 0.10 -0.01 

25 (±50%) 0.04 -0.002 0.04 -0.001 0.04 -0.001 

24 (±50%) 0.78 -0.793 0.41 -0.40 0.76 -0.74 

*Sensitivity is proportional change of variable y, relative to baseline yb, divided by the proportional change in 

parameter x, relative to the baseline value xb (i.e., when simplified S = Q(R$RS)∗TS
(T$TS)∗RS

Q). As such, if a 10% change in x 

results in a 10% change in y then S = 1. 

LLUS-N explained much of the inter-annual variation in catchment TN export 

(Figure 20). This result was not unexpected considering the strong linear correlation 

between catchment export and annual discharge (Figure 18A). All observed WRTDS 

catchment export values fell within the 95% prediction intervals of LLUS-N. This 

observation is somewhat impressive, considering the discharge-concentration 

relationships in WRTDS can vary through time (Zhang 2018), whereas the LLUS-N is a 

fixed effect model (akin to LOADEST). As such, it seems likely the discharge-
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concentration relationships have not substantially changed at POTW, NFSR, and SFSR 

for the period. Further inspection of the residual time series revealed short periods of 

consistent over- or under-prediction during the record, however. The most apparent 

among all three catchments is during the 1999-2002 drought period where LLUS-N 

consistently overpredicted catchment TN export (negative residuals, Figure 20). 

Likewise, LLUS-N generally underpredicted catchment export in the late 1980s and early 

1990s in SFSR and NFSR that was followed by a period of overprediction that generally 

decayed towards the end of the record.  

After model calibration and evaluation, LLUS-N was leveraged to attribute trends 

in catchment TN export by modeling catchment export along with point and non-point 

source export contributions to TN export under mean discharge conditions (Figure 21). 

Linear slope and intercept estimates of individual point and non-point source loads were 

then used to estimate linear changes in catchment TN export along with point and non-

point source export over the period of record. Consistent with insights from the statistical 

analysis of the discharge model residuals, declines in agricultural N surpluses and point 

source loads were the primary drivers of decreased catchment TN export at POTW 

(Figure 21B). Even relying on the maximum range of the parameter constraints in LLUS-

N, modeled declines were different from zero in POTW, with a TN export decline of 11 

to 17% over the period of record. Also, consistent with insights from the statistical 

analysis, point source loads and increases in agricultural surpluses were primarily 

responsible for the 24% increase in TN export at NFSR (15 to 24% increase overall if 

relying on the max and minimum parameter range). SFSR displayed little to no change in 

TN export over the period of record, however, with observed declines in the point source 
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load and non-point source load from forested areas just offsetting increases in export 

associated with an increase in the agricultural N surplus.  

The modeled net effect of NOx emission controls on improving catchment TN 

export was also further explored. I applied a scenario where the observed declines in 

atmospheric N deposition did not occur in all three catchments (Figure 21). If the mean 

atmospheric deposition rate for the 1986 to 1996 period is used to replace all observed 

annual values to all land uses for the 1997 to 2012 period, the 13% modeled decline in 

catchment TN export (Figure 21) would have been reduced by ~75% at POTW (i.e., only 

a 3% decline, Figure 21). Likewise, the modeled increase in catchment TN export at 

NFSR would have increased from 24 to 40%. Rather than experiencing a weak decline in 

export, catchment TN export would have actually increased 10% at SFSR if not for 

reductions in atmospheric N deposition. 
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Figure 20. Time series of predicted (black line) and observed WRTDS (red dots) catchment export values 

(reported as yield) along with a time series of LLUS-N model residuals.  
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Figure 21. A) Time series of predicted catchment TN export (illustrated as yield to facilitate comparison 

among catchments) under mean annual discharge conditions, along with an applied scenario where 

observed declines in atmospheric N deposition did not occur (dashed lines). The mean atmospheric N 

deposition for the 1986 to 1996 period replaced all observed values from 1997 to 2012. B) Linear change 

estimates in point and non-point source load contributions to catchment TN export (illustrated as yield), 

asymmetric error bars represent the range of change if relying on the range of maximum and minimum 

scaling factors of LLUS-N. 

Discussion 

 Both the statistical and lumped conceptual modeling analyses provide new 

support for the interpretation that declining atmospheric N deposition was likely the 

primary cause of declining catchment TN export in POTW (Eshleman and Sabo 2016). 

This inference is based on the following observations from the modeling work: 1) 

declining atmospheric N deposition was the primary driver of decreasing N export from 

urban, forested, and agricultural areas; 2) partial annual N surpluses in agricultural lands 

were equivalent in 1986 and 2012 (~7.5 kg N ha yr-1, grey bars in Figure 16F) due to 

increases in crop removal and decreases in fertilizer inputs being largely offset by 

increased manure inputs; and 3) despite the observation of partial annual N surpluses 

remaining constant in POTW, agricultural N surpluses declined by 1.2 kg N ha-1 yr-1 due 

mostly to corresponding reductions in atmospheric N deposition decreasing agricultural 

inputs by 3.6 kg N ha-1 yr-1 (black bars and pink line in Figure 16F). From a kinetic N 

saturation perspective (Lovett and Goodale 2011), a decline in N input would result in a 

corresponding decrease in catchment TN export if discharge-retention relationships are 
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constant through time (Zhang 2018). Thus, based on simple accounting from the model, 

the reductions in atmospheric deposition decreased inputs and surpluses across the 

POTW thereby decreasing modeled non-point source loads across the catchment. This 

principle is clearly illustrated in the “without NOX emission reductions” scenario that 

essentially eliminated modeled declines in non-point source loads in POTW (dashed 

black lines, Figure 22). While reductions in non-point source loads were the primary 

driver of water quality improvement, reduction in point source loads was also an 

important factor for POTW (~40%).  

The importance of atmospheric N deposition in offsetting further degradation of 

modeled water quality at NFSR and SFSR is apparent (Figure 22). Declining atmospheric 

N deposition was the primary driver of decreasing modeled N export from forested and 

urban portions of these basins. It also offset modeled water quality degradation brought 

about by increased agricultural surpluses by decreasing inputs by 3.8 kg N ha-1 yr-1. The 

influence of atmospheric N deposition on catchment TN export is not as large as it is in 

POTW for LLUS-N, however, due to the high retentiveness of agricultural lands (~80%) 

and extremely high annual agricultural surpluses in the Shenandoah catchments (40 to 90 

kg N ha-1 yr-1 if normalized by agricultural area). Also unlike in POTW, declines in 

atmospheric N deposition, even if diminished to background levels (< 2 kg N ha-1 yr-1), 

would not have been capable of offsetting increases in agricultural surpluses brought 

about increased fertilizer/manure inputs. The magnitude of difference in N sources within 

these catchments highlight that further efforts to attenuate atmospheric N deposition will 

have minimal impact unless catchment NUE dramatically increases or manure transport 

programs are implemented to reduce N inputs (Keisman et al. 2018, Swaney et al. 2018).  



110 

 

These modeling insights are admittedly rooted in a simple model relying on 

coarse, catchment-scale nitrogen budgets that likely cannot be corroborated with 

observations at the field scale. In order to conclusively state that reductions in 

atmospheric deposition were instrumental in decreasing agricultural surpluses and 

subsequent contributions to catchment TN export, long-term field monitoring data 

documenting changes in N pools along the hydrologic continuum are needed (e.g., trends 

in soil NO3, groundwater NO3, to tile line drainage NO3). To my knowledge, the 

availability of such time series capable of capturing catchment-wide changes in NO3 

levels and leaching rates from agricultural areas do not exist across POTW. Furthermore 

it is uncertain even if small changes in annual N surpluses relative to the large legacy N 

pool present in soils could even alter catchment TN export (Sanford and Pope 2013, Chen 

et al. 2018). Many recently forwarded empirical models have indicated that catchments 

would rapidly respond to changes in N inputs and surpluses at the catchment scale (Stets 

et al. 2015, Chen et al. 2016b, Eshleman and Sabo 2016, Sinha and Michalak 2016, Sinha 

et al. 2017), while other empirical modeling work highlights the importance of capturing 

legacy N effects in soils and groundwater in explaining catchment TN export trends 

(Chen et al. 2014, Chen et al. 2016a, Van Meter et al. 2017, Chen et al. 2018, Hu et al. 

2018). Deploying a probabilistic sampling design and implementing experimental 

reductions of N inputs and surpluses to assess field response times is likely not feasible 

(at the scale of the catchment). Thus, future modeling and catchment monitoring work 

should prioritize comparing catchment wide responses to changes in N inputs and 

surpluses across many sites to better inform management strategies and set expectations 
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for the public when setting water quality goals (Keisman et al. 2015, Keisman et al. 

2018). 

Catchment-wide retention at POTW was observed to be 18% lower and more 

sensitive to discharge than its nested sub-catchments of NFSR and SFSR. This 

observation indicates that other areas in the POTW must have retention values less than 

66% and have even greater sensitivity to increased discharge (i.e., slopes > 1.01, Figure 

18). This inference is consistent with the observations of northern sub-catchments (e.g. 

Antietam, Upper Monocacy) having reported mean TN yields at least twice as large as 

those in SFSR and NFSR despite similar or sometimes even lower agricultural N 

surpluses (Chanat et al. 2016). This lower retention and greater yield is likely due to the 

fact that there is a much larger proportion of agricultural land being cultivated for crops 

in the Great Valley and Piedmont regions of POTW (primarily in Maryland and 

Pennsylvania) compared to the Shenandoah sub-catchments in Virginia (Table 9). At the 

field scale, retention of N surpluses on cropland are significantly lower than pasture 

(Billen et al. 2013). Other studies have also reported that more cropland dominated 

catchments have lower retention than other mixed land use catchments (David et al. 

1997, Hong et al. 2013). Since grazing land is less likely to be tilled, it’s possible that 

greater amounts of soil carbon and microbial/root biomass along with greater cover of the 

grass forage throughout the year promote greater retention of nitrogen inputs (Billen et al. 

2013). Another reason why retention is significantly higher in the Shenandoah 

catchments may be due to that the fact the primary source of N comes from manure. 

Some have speculated that the increased availability of carbon from manure application 

may enhance denitrification (Weier et al. 1993), but other field studies comparing the 
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influence of manure vs. inorganic nitrogen fertilizer on nitrate and ammonium loss in 

cropland report more variable findings, however (Jokela 1992, Smith et al. 2007).    

Based on visual inspection, retention of N inputs and point source loads were 

found to be generally stable throughout the period of record after removing the effect of 

annual discharge in two of the three catchments. This finding provides general support of 

the steady state assumption for calibration procedures of lumped empirical models 

parameterizing a single catchment retention factor (Dupas et al. 2017). Furthermore, the 

general stability of retention at NFSR and POTW suggests that best management 

practices designed to attenuate non-point source pollution did not have an apparent 

catchment-wide effect over the period. This finding does not necessarily dismiss the 

effectiveness of BMPs specifically designed to attenuate surplus nitrogen (e.g., stream 

restoration, riparian buffer planting, cover cops, etc.), but it does emphasize that the 

major drivers of TN export in larger catchments were likely driven more by high order 

input and removal processes during the observation period as well as climate in our study 

catchments (Howarth et al. 2012, Sinha and Michalak 2016).  

 Retention was consistently 3 to 4% lower at SFSR over the 1986-1994 period 

relative to the latter part of the record. As such, a catchment-wide retention factor cannot 

be confidently calibrated and applied throughout the period of record (Dupas et al. 2017). 

A more complex model would be needed. It is possible that the sudden change in 

catchment retention may have responded to forest N retention being compromised by 

acute and widespread disturbance brought about by gypsy moth (Lymantria dispar 

dispar) in the late 1980s and early 1990s (Eshleman et al. 1998, Eshleman 2000).  The 

latter explanation is particularly relevant in SFSR (and partly in NFSR) because it 
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suggests that some of the perceived improvement in water quality attributable to 

management actions may be partly an artifact of increased forest loads to stream 

networks due to disturbance-induced N leakage near the beginning of the record. 

Disturbance-induced N leakage typically dissipates within five to seven years of peak 

disturbance for catchments in the Blue Ridge (Eshleman 2000), thus the disturbance 

signal may have mostly ended around the mid-1990s. Another possible explanation for 

the shift in retention is that the predominant N source in the catchment has changed, 

which would ultimately modify mean catchment retention. This mechanism was further 

explored in the statistical and LLUS-N analyses discussed further below. 

Catchment TN export was highly correlated with annual discharge, but 

subsequent statistical analysis of the discharge model residual time series suggested that 

changes in point source loads and agricultural surpluses were the best predictors of 

temporal trends in all three catchments when using both interpolated and non-interpolated 

predictor variable datasets (as assessed by AICc). This responsiveness was not surprising 

considering point source and agricultural loading have been identified as two of the 

primary drivers of catchment TN export in mixed land use catchments of the Chesapeake 

region and elsewhere (Shields et al. 2008, Shenk and Linker 2013, Hale et al. 2015). In 

addition, the strong influence of point source loads and agricultural surpluses on variation 

in catchment TN export was also reflected in the parameter sensitivity analysis of LLUS-

N, which indicated that point source loading and non-point source loads from agricultural 

lands had the highest relative influence on TN export (Figure 18). 

This statistical analysis identified likely drivers of TN export at sites with only 

small incremental changes in point source loads and N inputs/surpluses through time. 
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Others have reported significant linear and non-linear relationships without removing the 

effect of discharge on export when both N inputs and TN export have greatly increased 

(>100% in some cases) (Chen et al. 2014, Chen et al. 2016b), but removing the linear 

effect of discharge on export and subsequent analysis of residuals is a simple and 

intuitive method for evaluating trends and identifying likely drivers of those trends 

through time at sites with less dramatic changes in inputs and export. This analysis 

provided evidence that a signal from management actions can be detected following 

removal of the effect of discharge and provided confidence that changes in agricultural 

surpluses and point source loads are influencing trends in catchment TN export. 

The statistical insights into possible drivers of water quality trends in POTW and 

the Chesapeake Bay region at large further support conclusions of other empirical and 

more deterministic modeling efforts in the basin. Modeled reductions in TN loading to 

the Chesapeake Bay between the 1985 and 2009 scenarios of the Chesapeake Watershed 

Model (Phase 5.3) were mainly attributed to 1) regulated sources of atmospheric 

deposition and wastewater and 2) reductions in agricultural loading (Shenk and Linker 

2013). However, there was uncertainty over the potential driver of decreased agricultural 

loading between the different scenarios since combined inputs of fertilizer and manure 

were generally constant from 1985 to 2009. Similar reductions in loading to the 

Chesapeake Bay have been suggested using statistical, NANI based models (Sinha and 

Michalak 2016), but it was unclear whether or not decreased NANI or lower precipitation 

rates were driving the decline. Past research in POTW suggested that the majority of the 

observed decrease in TN export could be attributed to reductions in atmospheric N 

emissions and subsequent declines in atmospheric deposition using a modified kinetic N 
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saturation model (Eshleman and Sabo 2016, Lloret and Valiela 2016). This study did not 

explore parallel changes in other N sources (e.g., increased manure production) or N 

removal (e.g., wastewater treatment plant upgrades or increased crop N removal) that 

may have also driven water quality trends, thus further work was needed to address these 

uncertainties. 

Before expounding on insights provided by LLUS-N, it should be acknowledged 

that LLUS-N was not capable of eliminating all temporal patterns in the residual time 

series. LLUS-N performance was particularly poor 1) during the 1999-2002 drought 

period where it consistently overpredicted catchment TN export and 2) consistently 

underpredicted export in early 1990s in the Shenandoah catchments. Whether or not the 

inter-annual variation in yield residuals are ultimately meaningful is unclear, however, 

considering that the slightly shifting discharge-concentration relationships of WRTDS are 

only beginning to be explored (Zhang 2018). 

The importance of annual discharge in driving the inter-annual variability in 

catchment TN export was instrumental in maintaining LLUS-N model performance. 

Discharge primarily determines the transport of terrestrial nitrogen pools into the stream 

network, in turn altering the residence time and flow paths of nitrogen and other elements 

traveling to the catchment outlet (Kirchner et al. 2000, Kirchner and Neal 2013). 

Discharge is also important in the fact that it carries the “memory” of climatic conditions 

of previous years, so the response of annual discharge to a given year’s precipitation is 

variable given antecedent moisture conditions and the slow input of older groundwater 

(Kirchner et al. 2000, Kirchner and Neal 2013). Ultimately discharge or relevant 

variables to model discharge are keys to modeling the inter-annual variation in TN 
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export, but discharge alone was incapable of explaining reported trends in TN export at 

our sites.  

LLUS-N performed well in modeling catchment TN loads and generated similar 

estimates of long-term changes in catchment TN export compared to other flow-based 

statistical loading models designed to remove the effect of discharge (Zhang et al. 2015a, 

Chanat et al. 2016). LLUS-N catchment TN export rates declined ~13% during the 1986-

2012 period in POTW, respectively. This decline is within the confidence limits of the 

11% decrease in POTW reported from a WRTDS flow-normalized TN trends analysis 

(Hirsch et al. 2015, Chanat et al. 2016). The modeled increase of TN export at NFSR 

(24%) was also equivalent to the increase in TN export reported in other USGS studies 

(Chanat et al. 2016, Oelsner et al. 2017). Modeled declines in TN export at SFSR were 

minimal and were consistent with weak flow-normalized trends (Chanat et al. 2016, 

Oelsner et al. 2017). Consistency in loading trends suggest that changes in land use 

specific nitrogen inputs and surpluses in each of the study catchments were capable of 

explaining long-term shifts in TN loading, consistent with findings from other up-scaled 

NANI studies (Chen et al. 2016a, Goyette et al. 2016). Furthermore, the importance of 

land management actions (essentially NOx emission controls) and declining point source 

loads can be interpreted as one of the more likely drivers of TN export trends in these 

catchments due to the fact that no long-term trend in discharge has been observed over 

the study period (Eshleman and Sabo 2016). 

In order to attribute catchment TN loading from forests, urban areas, and point 

sources in LLUS-N, best available estimates of retention available from the literature 

were leveraged to constrain model parameterization. Following calibration, it was found 
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that individual scaling factors for these N sources were highly uncertain and that any 

values within the predefined range of scaling factors would have been sufficient to 

maintain model performance (i.e., equifinality). Similar parameter dependency and 

equifinality issues have been highlighted for other more deconvolved semi-empirical 

models (Chen et al. 2014, Chen et al. 2018, Hu et al. 2018). It is possible that a larger 

calibration dataset could have yielded more constrained parameter estimates, but more 

than likely, the signal of these individual N sources is too small relative to the inter-

annual variability in TN export to overcome parametrization dependencies during 

calibration.  Further supporting this concern, modeled catchment TN export was much 

less sensitive to relative changes in 20, 25, and 2* with a 1% change in these individual 

scaling factors resulting in less than 0.15% shift in catchment TN export at NFSR and 

POTW. The uncertainty in parameterization and general insensitivity speaks to the 

relatively low importance of point source loads and non-point source loads from urban 

and forest areas in explaining the inter-annual variation of catchment TN export at 

POTW and NFSR. As such, non-point source loads from agricultural areas in both 

POTW and NFSR, modeled by capturing the agricultural surplus and annual discharge 

interaction, is likely the predominant driver of the inter-annual variation in catchment TN 

export. It should be noted, however, that the weak influence of non-agricultural sources 

on the inter-annual variation in TN export does not justify dropping these factors from 

LLUS-N. The small incremental changes in modeled N loads from urban, forest, and 

wastewater treatment plants played an instrumental role in generating modeled trends. 

Furthermore, modeled fluxes from these sources provide a reasonable approximation of 
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the potential influence of these sources on catchment TN export and are thus valuable to 

watershed management strategies (Keisman et al. 2015).  

The importance of point and non-point source load contributions to catchment TN 

export varied as nitrogen inputs and surpluses changed through time. As such the mean 

retentiveness and loading rates of a catchment shifted in response to changing N 

inputs/surpluses across the landscape. Through time, catchment retention at SFSR, as 

modeled by LLUS-N under mean discharge conditions, increased from 78 to 83% over 

the period due to the sources of N shifting more towards agricultural surpluses rather than 

point source loads. Similarly, retention decreased from 81 to 78% from the mid-80s to 

early 2000s at NFSR and then recovered as point source loads began to decrease. Even 

though point source loads are small relative to the agricultural surplus, the low 

retentiveness of point source loads result in a higher per unit decline in TN loss to the 

stream outlet relative to N left on agricultural lands. Changes in the mean retentiveness of 

the catchment can help explain the observation of more negative retention residuals in the 

earlier part of the record shifting towards more generally positive values. Even with this 

change in retention, however, LLUS-N still underpredicted catchment TN export during 

the 1986-1994 period at NFSR and SFSR. Thus, it may be worthwhile to further 

incorporate the role of forest disturbance in influencing catchment TN export in future 

research if a basin-wide disturbance index could be incorporated as an additional 

interaction term for forests loss (Townsend et al. 2004). 

Based on modeled insights from the LLUS-N, corroborated by the statistical 

analysis of the discharge model residuals, succinct narratives on the drivers of water 

quality improvement and degradation can be offered for each of the study catchments. I 
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speculate shifts or possible declines in industrial production in SFSR resulted in dramatic 

reductions in point source loading since the 1980s. Reductions in point source loading 

combined with a 41% decrease in atmospheric deposition 1) offset water quality 

degradation brought about by increasing agricultural surpluses (driven primarily by 

increased manure inputs) and 2) resulted in slightly decreased catchment TN export rates 

for the period of record. As discussed above, however, some of this improvement may be 

driven by lower catchment-wide retention in the earlier part of the record. In contrast, 

point source loading in NFSR was significantly smaller than SFSR and point source 

loading was actually increasing until the late 1990s whereupon it began to decline after 

the early 2000s. Increased point source loads are attributed to the growth of poultry 

processing and a newly launched wastewater treatment plant failing to meet discharge 

pollutant standards. This treatment plant progressively came into compliance throughout 

the 2000s and eventually reduced point source loads in the catchment to levels below 

those observed in the 1980s (AP 1999, Blankenship 2000). Decreases in point sources 

and atmospheric deposition partly counteracted water quality degradation brought about 

by increasing agricultural mass balances in NFSR, resulting in a modeled 24% increase in 

catchment TN export. In both NFSR and SFSR, insights from the nitrogen inventories 

and LLUS-N highlight an urgent need to increase NUE and decrease agricultural 

surpluses. Through time, the influence of atmospheric deposition and point source 

loading reductions on catchment TN export rates will wane if agricultural mass balances 

continue to increase in the future. 

In contrast to the Shenandoah catchments, all three of the primary management 

actions—increased  NUE, decreased NOx emission, and point source loading 
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reductions—contributed  to the modeled decline in catchment TN loading rates in 

POTW. Over the entire1986-2012 period, efforts to increase NUE have contributed little 

to the improvement in N loads (as evidenced by a weak decline in partial annual N 

surpluses). However, that is partly due to an initial rise in partial N surpluses in 

agricultural lands from the 1980s to the early 2000s. Since ~2002 partial annual N 

surpluses on agricultural lands have seemingly begun to decline alongside increased 

NUE, decreased atmospheric deposition, and decreased fertilizer use in POTW. The 

timing of this improvement coincided with the legislation of the Nutrient Management 

Law in Maryland (Dotterer 2017), which required all major farm operations to have 

certified nutrient management plans. If the trend in NUE continues, TN loading rates 

should continue to decline further even if decreases in point source loading and 

atmospheric deposition begin to taper. As mentioned at the beginning of the discussion, 

declines in atmospheric N deposition are potentially responsible for most of the declines 

in non-point source loads throughout POTW. Point source loads also declined after the 

late 1990s, and this decline coincides with concerted statewide efforts in Maryland to 

upgrade its municipal wastewater treatment facilities (Maryland 2004), but large declines 

in point source loads were also occurring in SFSR prior to this period.  

The narratives listed above were based on the results of a simple LLUS-N model. 

The model can easily be operationalized in other catchments, though some adjustment of 

the model structure or calibration procedure may be needed based on relevant local 

processes. For at least two of the three study catchments, however, modeled changes in 

discharge, nitrogen inputs/surpluses on specific land uses, and point source loading were 

found to be the primary drivers of observed long-term changes in non-point and point 
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source TN loading. For the study period, remedial efforts to increase the retentiveness of 

these large catchments seem secondary to changes in terrestrial N surpluses and decreases 

in point source loading. Declines in annual terrestrial surplus were largely driven by 

decreased rates of atmospheric N deposition in POTW, but increased surpluses in SFSR 

and NFSR were observed due to increased manure application rates. This insight strongly 

suggests that management efforts should prioritize limiting the accumulation of surplus 

nitrogen in terrestrial compartments of the catchment and decrease point source loading 

to surface water where effectual to achieve future water quality restoration goals. 
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Chapter 5: Conclusions 

 Long-term monitoring efforts of surface water nitrogen loading indicate dramatic 

shifts in the inputs, transport, and transformation of nitrogen in forested and mixed land 

use catchments throughout the globe (Rogora et al. 2012, Argerich et al. 2013, Chen et al. 

2016a). Identifying the drivers of these changes is difficult because of the collinearity 

between catchment nitrogen loading and discharge along with potential lag issues 

associated with groundwater residence time (Hirsch et al. 2010, Chen et al. 2016a).  

Thus, the noise induced by climatic variation and hydrology make it difficult to ascertain 

proximal and distal drivers of water quality improvement and degradation. To circumvent 

this issue, I constructed proxy records of terrestrial N availability using either 

dendroisotopic records and quasi-mass balances to assess changes in terrestrial N 

surpluses. Assumedly, terrestrial N surpluses would not be as strongly correlated with 

discharge and could be related to trends in hydrologic N export. Thus, the relationships 

between identifiable processes that potentially increase terrestrial N surpluses like 

disturbance detected through remote sensing or increased manure application onto 

cropland based on livestock census data could be identified and related to water quality 

trends. This information could then be used to inform efforts looking to assess the 

relative influence of specific management actions and technological applications (e.g., 

NOX emission controls) on observed trends in terrestrial surpluses and water quality 

(Doering et al. 2011, Keisman et al. 2015).  

 Linking changes in terrestrial N surpluses to surface water nitrogen loading can be 

accomplished by generating hypotheses through the lens of the kinetic N saturation 

conceptual model (Lovett and Goodale 2011). From the logical framework of kinetic N 
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saturation, I developed testable and falsifiable hypotheses to link specific processes to 

changes in the net atmospheric input, soil sink, vegetative uptake, and gaseous efflux 

rates in catchments. All three of the studies described in this dissertation accomplished 

this task. For example, the trends analysis of dendroisotopic and water quality records at 

Buck Creek provided evidence that the decline in atmospheric N deposition rates was not 

the predominant driver of declining terrestrial N surpluses at Buck Creek (Figure 6). In 

contrast to my expectations, terrestrial N surpluses were relatively constant in the North 

Tributary during the 1995-2010 period (Figure 5) and retention of atmospherically 

deposited nitrogen was actually decreasing in the South Tributary (Figure 8). These 

results highlight that decreased N inputs do not necessarily result in decreased terrestrial 

surpluses or hydrologic N export. 

At Upper Big Run and Paine Run, statistical support was garnered to suggest that 

disturbance detected by remote sensing resulted in a decline in terrestrial N surpluses 

(Table 8). Changes in terrestrial N surpluses at these sites also strongly coincided with 

water quality changes (Figure 13). There was also statistical evidence that declining 

acidic deposition rates may offset general long-term declines in terrestrial N availability 

(Table 8). Despite the ephemeral modifications of terrestrial N availability by 

disturbance, acidic deposition, and climate, long-term declines in terrestrial nitrogen 

availability were robust and have likely driven much of the declines in stream nitrate 

concentration throughout the central Appalachians. Finally, I was able to identify 

retention values for specific land uses in the literature to calibrate a simple lumped 

conceptual model for three mixed land use catchments in the Chesapeake Bay (Figure 

20). Leveraging quasi-mass balances and discharge, I was able to attribute shifts in 



125 

 

catchment TN loads to changes in the input and removal of nitrogen from the landscape 

(Figure 21).  

Whether relying on quasi-mass balances or dendroisotopic records, my findings 

demonstrated the usefulness of constructing proxy datasets of terrestrial N surpluses in 

identifying likely processes driving changes in hydrologic N loss in forested and mixed 

land use catchments. Furthermore, rather than solely relying on more complex 

mechanistic models to attempt to explain past water quality changes, this research firmly 

establishes that relatively simple statistical and conceptual modeling approaches can be 

applied to attribute past changes in terrestrial N surpluses and water quality to specific 

proximal and distal drivers.   
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Appendix 

Chapter 3: Supplementary Figures and Tables 

 

Figure S1. (A) Study site locations within the mid-Atlantic of the United States, (B) illustration of the areal 

extent of logging activities at Upper Big Run since 1970 (Overlapping red polygons represent more recent 

logging activities), (C, D) Maps of Upper Big Run and the five headwater catchments of Paine Run 

subjected to tree coring along with detected periods of disturbance recorded by the North American Forest 

Dynamic data product, “Forest Disturbance History from Landsat, 1986-2010”.  Logging map is courtesy 

of the Maryland State Forest Service. 
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Figure S2. Mean ΔDI values corresponding to the tree-ring segments and tree-ring δ15N values at UBR  

Figure S3. Mean ΔDI values corresponding to the tree-ring segments and tree-ring δ15N values at PR1000. 

Figure S4.. Mean ΔDI values corresponding to the tree-ring segments and tree-ring δ15N values at PR2000. 
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Figure S5. Mean ΔDI values corresponding to the tree-ring segments and tree-ring δ15N values at PR3000. 

 

Figure S6. Mean ΔDI values corresponding to the tree-ring segments and tree-ring δ15N values at PR4000. 

 

  
Figure S7. Mean ΔDI values corresponding to the tree-ring segments and tree-ring δ15N values at PR5000. 
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Table S1. Statistical output of the simple linear regression analysis of the relationship between time and 

catchment-scale δ15N. 

  
Coefficient Std. Error t    P  Model R2 

UB Constant 33.859 6.716 5.042  <0.001 0.62 

Time -0.0171 0.00337 -5.085  <0.001  

PR1000 Constant 107.856 19.372 5.568  <0.001 0.68 

Time -0.0557 0.00971 -5.74  <0.001  

PR2000 Constant 107.568 19.395 5.546  <0.001 0.68 

Time -0.0551 0.00972 -5.668  <0.001  

PR3000 Constant 60.475 16.723 3.616  0.003 0.47 

Time -0.0317 0.00838 -3.778  0.002  

PR4000 Constant -26.651 25.945 -1.027  0.322 0.0 

Time 0.0125 0.013 0.964  0.352  

PR5000 Constant 43.81 9.336 4.692  <0.001 0.60 

Time -0.0229 0.00468 -4.891  <0.001  
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Table S2. Using the non-interpolated wood δ15N dataset, results from the linear regression analyses 

modeling the effect of 1-year lagged catchment scale wood δ15N on (1) observed mean annual flow-

weighted and spring baseflow nitrate concentrations at UBR, (2) spring baseflow nitrate concentrations at 

individual PR headwater catchments after factoring out the influence of the spatial gradient. 

 

UBR Mean Annual Flow-Weighted 

Concentration 
Coefficients Standard Error P-value R2 

Intercept 0.613 0.0295 <0.001 0.88 

Slope 0.793 0.0843 <0.0001   

UBR Spring Baseflow Concentration     

Intercept 0.48 0.0593 <0.001 0.521 

Slope 0.559 0.17 0.008   

PR1000     

Intercept 0.378 0.066 0.011 0.843 

Slope 0.0859 0.0181 0.018   

PR2000     

Intercept 0.842 0.271 0.053 0.473 

Slope 0.219 0.102 0.122   

PR3000     

Intercept 1.507 0.515 0.061 0.548 

Slope 0.446 0.184 0.094   

PR4000     

Intercept 1.984 1.76 0.341 0 

Slope 0.855 1.17 0.518   

PR5000     

Intercept 5.014 0.931 0.013 0.832 

Slope 2.164 0.474 0.02   
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Table S3. Statistical output of the general linear model analysis of the relationship among time, 

precipitation, disturbance temperature, and S and N deposition vs. tree ring δ15N. 

ANALYSIS OF VARIANCE FOR THE EQUAL SLOPES MODEL 
 

 

SOURCE OF 

VARIATION 

DF SS MS F P VIF 

TREE_ID 95 2084.288 21.94 69.399 <0.001 Variable 

PRECIPITATION 1 7.711 7.711 24.391 <0.001 5.6 

DISTURBANCE 1 1.095 1.095 3.463 0.063 1.8 

S AND N DEPOSITION 1 12.284 12.284 38.856 <0.001 16.6 

YEAR 1 32.464 32.464 102.688 <0.001 14.1 

RESIDUAL 872 275.676 0.316 -- --  

TOTAL 971 3190.428 3.286 -- --  

R=0.956  Rsq=0.914 Adj 

Rsq= 

0.904 

   

       

 

 

 

 

 

 

  



132 

 

Table S4. Statistical output of the general linear model analysis of the relationship between time and tree-

ring δ15N. 

Analysis of Variance for 

the Interaction Model: 

     

Source of Variation   DF  SS   MS    F    P  

Tree_ID 95 115.741 1.218 5.459 <0.001 

Year 1 58.27 58.27 261.088 <0.001 

Tree_ID x Year 95 117.061 1.232 5.521 <0.001 

Residual 781 174.304 0.223 -- -- 

Total 972 3191.185 3.283 -- -- 

R = 0.972 Rsqr = 0.945 Adj 

Rsqr = 

0.932 
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Table S5. Slope coefficient outputs the general linear model analysis of the relationship between time and 

tree-ring δ15N. 
Tree_ID Coefficient 95%Conf-L 95%Conf-U P Tree_ID Coefficient 95%Conf-L 95%Conf-U P 

BR26 -0.0368 -0.0412 -0.0323 <0.001 PR1023 -0.02866 -0.0301 0.0464 0.676 
BR10I 0.0331 0.0415 0.0984 <0.001 PR1025 -0.1294 -0.137 -0.0482 <0.001 

BR11II 0.0026 -0.00636 0.0852 0.091 PR1027 -0.0654 -0.0729 0.0158 0.207 

BR12II -0.0773 -0.08 -0.00087 0.045 PR1028 -0.03514 -0.0336 0.0369 0.926 
BR13I -0.0825 -0.0843 -0.00705 0.021 PR1031 -0.0511 -0.0546 0.0261 0.488 

BR14I -0.0112 -0.0131 0.0643 0.194 PR2001 -0.05 -0.0604 0.034 0.583 

BR15I -0.0668 -0.0765 0.0166 0.207 PR2003 -0.0647 -0.0701 0.0142 0.193 
BR16II -0.03592 -0.0345 0.0363 0.961 PR2004 0.0318 0.0193 0.118 0.006 

BR17I 0.0272 0.0128 0.115 0.014 PR2005 -0.0674 -0.0649 0.00369 0.08 

BR18I -0.03929 -0.0297 0.0247 0.857 PR2006 0.0294 0.0125 0.12 0.016 
BR19II -0.019 -0.0183 0.0538 0.334 PR2008 -0.0774 -0.0749 -0.00631 0.02 

BR20II -0.0234 -0.0281 0.0548 0.527 PR2009 -0.0593 -0.0705 0.0256 0.359 

BR21I -0.0159 -0.0225 0.0642 0.345 PR2010 -0.0701 -0.0772 0.0106 0.137 
BR22II -0.0059 -0.023 0.0849 0.261 PR2011 -0.0088 -0.0107 0.0668 0.156 

BR23II -0.0018 -0.00185 0.0719 0.063 PR2012 -0.0327 -0.0305 0.0388 0.816 

BR24II -0.03195 -0.0307 0.0404 0.789 PR2013 -0.0885 -0.0954 -0.00805 0.02 
BR25II -0.0064 -0.0181 0.0789 0.219 PR5013 0.0579 0.0447 0.145 <0.001 

BR27I -0.03131 -0.0351 0.046 0.79 PR3003 -0.03742 -0.0451 0.0439 0.978 

BR28II -0.03582 -0.0372 0.0392 0.96 PR3004 0.0062 -0.011 0.0969 0.118 
BR29II -0.03889 -0.0448 0.0406 0.923 PR3005 -0.0618 -0.0593 0.00935 0.154 

BR2I -0.0044 0.00165 0.0632 0.039 PR3006 -0.0697 -0.0816 0.0157 0.185 

BR30I -0.0732 -0.0781 0.00538 0.088 PR3007 -0.0862 -0.0938 -0.00511 0.029 
BR31I -0.03117 -0.0322 0.0435 0.77 PR3008 -0.03292 -0.0372 0.045 0.853 

BR3I -0.03566 -0.0326 0.0349 0.947 PR3009 -0.03539 -0.0544 0.0572 0.961 
BR4II 0.0032 -0.00085 0.0809 0.055 PR3010 0.0101 0.00901 0.0848 0.015 

BR5I 0.0267 0.0245 0.102 0.001 PR3011 -0.0874 -0.0849 -0.0163 0.004 

BR6II -0.03848 -0.0457 0.0423 0.94 PR3012 -0.0337 -0.0757 0.0819 0.939 
BR7I -0.0595 -0.058 0.0125 0.206 PR1019 -0.1111 -0.113 -0.0356 <0.001 

BR8I -0.0436 -0.0371 0.0235 0.659 PR4001 -0.02868 -0.0458 0.0621 0.768 

BR9I -0.1162 -0.128 -0.0309 0.001 PR4002 0.2852 0.24 0.404 <0.001 
PR1002 -0.0726 -0.0769 0.00535 0.088 PR4003 -0.1131 -0.113 -0.0392 <0.001 

PR1003 -0.1052 -0.105 -0.032 <0.001 PR4006 -0.0808 -0.0918 0.0039 0.072 

PR1005 -0.0213 -0.0311 0.0621 0.514 PR4007 0.0303 0.0254 0.109 0.002 
PR1006 -0.0521 -0.0553 0.0248 0.455 PR5001 -0.1356 -0.132 -0.0655 <0.001 

PR1007 -0.0841 -0.109 0.0141 0.131 PR5002 -0.0053 -0.0185 0.0815 0.216 

PR1008 0.0142 0.0108 0.0912 0.013 PR5004 -0.0137 -0.0141 0.0603 0.223 
PR1009 -0.04099 -0.0518 0.0434 0.863 PR5005 -0.066 -0.0683 0.00981 0.142 

PR1010 -0.08 -0.0859 -0.00051 0.047 PR4000 -0.0515 -0.0578 0.0283 0.502 

PR1011 -0.0839 -0.0876 -0.00668 0.022 PR5007 -0.04417 -0.0404 0.0257 0.662 
PR1012 -0.1388 -0.14 -0.064 <0.001 PR5008 0.0037 -0.0111 0.0921 0.124 

PR1013 -0.0612 -0.0683 0.0195 0.276 PR5009 -0.0089 -0.00798 0.0639 0.127 

PR1014 -0.1121 -0.121 -0.0292 0.001 PR5010 -0.0082 -0.0154 0.0726 0.202 
PR1015 0.0015 -0.00315 0.0797 0.07 PR5011 -0.0904 -0.0992 -0.00808 0.021 

PR1016 -0.0226 -0.0263 0.0546 0.493 PR5012 0.0312 0.0284 0.108 <0.001 

PR1017 -0.052 -0.0879 0.0575 0.681 PR5014 -0.0228 -0.0207 0.0487 0.428 
PR1018 -0.0711 -0.0799 0.0113 0.14 PR5015 -0.0143 -0.0118 0.0568 0.199 

PR1021 -0.0999 -0.0987 -0.0276 <0.001 PR5016 -0.0579 -0.0666 0.0245 0.364 

PR1022 -0.0748 -0.0861 0.01 0.121 PR5017 -0.018 -0.0155 0.0531 0.282 
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Chapter 4: Supplementary Figures and Tables 

 

 

Figure S8. Linear relationship between modeled total deposition rates (TDEP, available 2000 to present) 

and the 2x wet deposition assumption (available, 1985 to present). During the period in which the datasets 

overlap, atmospheric deposition was projected to have linearly declined 26 to 29%. 
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Table S6. Correlation matrix displaying Pearson correlation coefficients between predictor variables and 

the discharge model residuals relying on non-interpolated time series. Bold indicates a significant 

correlation (p < 0.05).  

SFSR 
 

)5,+ )4,+ )*,+ )U,+ .-,+V  

6�,� -0.291 -0.668 0.374 0.329 9.25E-16 

��,� 
 

0.76 -0.717 -0.97 -0.926 

��,� 
  

-0.595 -0.83 -0.665 

��,� 
   

0.784 0.594 

�W,� 
    

0.898 

NFSR 
 

     

6�,� -6.78E-02 -4.47E-01 9.61E-02 -0.583 -1.18E-15 

��,� 
 

0.0946 0.814 0.248 -0.653 

��,� 
  

-0.416 0.124 0.26 

��,� 
   

0.105 -0.827 

�W,�  
   

0.305 

POTW 
 

     

6�,� -0.168 -0.727 -0.187 -0.103 -6.06E-16 

��,�  0.111 -0.546 -0.436 -0.0968 

��,�  
 

0.353 0.679 0.646 

��,�  
  

0.54 0.107 

�W,�  
  

0.865 
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Table S7. Statistical outputs of the exploratory modeling analysis looking to explain temporal patterns in 

the discharge model residuals. All model combinations generating ΔAICc < 2 were reported. 

Catchmen

t 

Model 

Reference 

Urban 

Inputs 

()5,+) 

Annual N 

Surplus 

in 

Agricultu

ral Lands 

()4,+) 

Forest 

Inputs 

()*,+) 

Point 

Source 

Loading 

(NO,P) 

ΔAICc  R2 

NFSR 

Agricultural 

Surplus 
 0.03 ±0.15   0 0.08 

Point Source    1.41 ±7.28 0.23 0.05 

SFSR Point Source    0.70 ± 

0.26 
0 0.9 

POTW 
Agricultural 

Surplus 
 0.47 ± 

0.20 
  0 0.88 
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