
Runtime Coupling of Data-parallel Programs 1M. Ranganathan, A. Acharya, G. Edjlali, A. Sussman and J. SaltzDept. of Computer Science and UMIACSUniversity of Maryland, College Park MD 20742franga,acha,edjlali,als,saltzg@cs.umd.eduAbstractWe consider the problem of e�ciently coupling multiple data-parallel programs at runtime. We proposean approach that establishes a mapping between data structures in di�erent data-parallel programs andimplements a user speci�ed consistency model. Mappings are established at runtime and new mappingsbetween programs can be added and deleted while the programs are in execution. Mappings, or the identityof the processors involved, do not have to be known at compile-time or even link-time. Programs can be madeto interact with di�erent granularities of interaction without requiring any re-coding. A priori knowledgeof data movement requirements allows for bu�ering of data and overlap of computations between coupledapplications. E�cient data movement is achieved by pre-computing an optimized schedule. We describe ourprototype implementation and evaluate its performance for a set of synthetic benchmarks that examine thevariation of performance with coupling parameters. We demonstrate that the cost of the added
exibilitygained by our coupling method is not prohibitive when compared with a monolithic code that does the samecomputation.1 IntroductionIn the sequential programming world, inter-application data transfer facilities abound. Applications can usesimple abstractions such as sockets, pipes or shared memory segments to move data between address spaces.There are no restrictions on the programming language used to develop the communicating applications.This provides
exibility and recon�gurability for sequential applications. Similar facilities are not availablefor data parallel programs. The obvious technique of using a shared �le system is not e�cient.In this paper, we propose an approach that achieves direct application to application data transfer. Ourapproach is library-based and is independent of the programming language used to develop the communicat-ing applications. Programs written to use this approach are required to adhere to a certain discipline withrespect to the data structures involved in the interaction, but they do not need to know either the identityor the number of programs they interact with.Our approach is built around the notion of mappings between data structures in di�erent data-parallelprograms. Mappings are established at runtime. Every mapping has a consistency speci�cation which man-dates the logical frequency with which the mapped structures are to be made mutually consistent. Mappings,or the identity of the processors involved, do not have to be known at compile-time or even link-time. Apriori knowledge of the mapping speci�cation at run-time allows for overlapping execution of the interactingprograms by bu�ering the data. E�cient data movement is achieved by pre-computing an optimized plan(schedule) for data movement. Our prototype implementation uses a generalized data movement librarycalled Meta-Chaos [5] and is able to couple data-parallel programs written in di�erent languages (includ-ing High Performance Fortran (HPF) [4], C and pC++ [1]) and using di�erent communication libraries(including Multiblock PARTI [19] and CHAOS [12]).By coupling multiple concurrently executing data parallel applications, we gain the added bene�t ofcombining task and data parallelism. In contrast to other approaches that require language extensions toachieve this [7, 17, 18], our approach can work with o� the shelf compiler implementations as long as theimplementations provide certain query functions about the distributions of data structures [5].1This research was supported by NASA under grant NASA #NAG-1-1485 (ARPA Project Number 8874), by ARPA undergrant #F19628-94-C-0057 and by NSF under grant #ASC9318183. The Digital AlphaServer used for experiments was providedby NSF CISE Institutional Infrastructure Award #CDA9401151 and a grant from Digital Equipment Corporation.1

We have developed a prototype implementation based on this approach. Our implementation currentlyruns on a cluster of four-processor Digital Alpha Server 4/2100 symmetric multiprocessors. Our resultsindicate that data-parallel programs can be coupled together in a
exible fashion with acceptable overhead.2 Basic ConceptsCentral to our approach is the notion of mappings between individual data structures belonging to theprograms being coupled. A mapping binds a pair of data structures of equal size and identical shape,and has an associated consistency speci�cation that speci�es the frequency with which the mapped datastructures are to be made mutually consistent. Consider the example of a pair of simulations which workon neighboring grids and periodically exchange data at the boundary. In this case, the array sections inboth programs that correspond to the shared boundary would be mapped to each other. The consistencyspeci�cation would depend on the requirements of the physical process being simulated and the accuracydesired; the strongest consistency requirement would be exchange data every time-step and the weakestnever exchange data. For a di�erent kind of interaction, consider the coupling of a program that simulatesa physical process and a visualization program that displays its state. In this case, the mapping would bebetween the array containing the state and the array used to hold the data points for visualization. Theconsistency would depend on the closeness of monitoring desired - for instance, display every time-step, ordisplay as many frames as possible without slowing down the simulation.The frequency referred to above is logical. It refers to the number of times execution in either programcrosses speci�c user (or compiler) identi�ed synchronization points. In the example of interacting simulations,the synchronization points could be the bottom of the respective time-step loops; in the coupling betweena simulation and a visualization program, the synchronization points could be the bottom of the time-steploop in the simulation program and the end of the frame bu�er update in the visualization program.In the implementation we have developed, mappings are established at runtime and are maintained by aruntime library. New mappings may be added between programs in execution and existing mappings may bedeleted. For example, such a dynamic mapping addition feature may be useful for coupling a visualizationprogram to a long running simulation as it progresses.Our approach derives its e�ciency from bu�ering and asynchronous transfer of data, as well as precompu-tation of optimized schedules. A schedule consists of a plan for moving the data from the sending processorsto the receiving processors. Schedules are optimized to minimize the number of messages transmitted.While our approach is general enough for a variety of data structures, in this paper we restrict ourselvesto arrays and array sections. We do this for two reasons. First, at this stage in our research, we would like tofocus on maximizing
exibility and recon�gurability rather than on speci�cation of complex data structures.Restricting our focus to arrays allows us to use simple existing techniques to describe the data structuresof interest. Second, the primary data structures in most data-parallel programs in use today are arrays.Therefore the restriction does not signi�cantly limit the applicability of our approach.3 The Programming ModelThe programming model provides two primary operations: exporting individual arrays and establishing amapping between a pair of exported arrays. Arrays are exported by application writers, who use a setof primitives to identify exported arrays and to specify the points in the application program at whichconsistency operations can be safely applied. Mappings between exported arrays are established by userswho wish to couple the corresponding applications.3.1 Exporting arraysFour primitives are provided for exporting arrays : register() and unregister() to control the visibilityof the array outside the application and acquire() and release() to specify the points in the applicationcode at which consistency operations can be safely applied.The following are the primitives in our model : 2

� register(array;mode; name): binds array to the system-wide unique identi�er name and makes it"visible" to other applications. array is a "distributed array descriptor". It describes the distributionof the distributed array among the processors of the calling program. There are two possible valuesfor mode, in and out. Data can only be transferred into arrays that have been marked in. Similarly,data can only be transferred out of arrays which have been marked out. register returns a handlethat can be used to refer to the exported array in subsequent code.� unregister(handle): permanently hides the (previously exported) array associated with handle.� acquire(num handles; set of handles): All consistency operations involving an array for which theacquire call has been issued must be completed before the acquire call returns. For an array exportedin the in mode, all transfers into the array that are required for maintaining the desired consistencymust complete before the acquire returns. For an array exported in the out mode, all transfers out ofthe array that are required for maintaining the desired consistency must be complete before acquirereturns.� release(num handles; set of handles): For an array that has been exported in the out mode,release indicates that a new version of the array is now in place and will remain in place untilthe next acquire on it. For an array that has been exported in the in mode, release indicates thatit is now safe to change the data in the array.The acquire() and release() calls must be placed in the data parallel program such that each of theprocesses in the data-parallel program sees the same number of acquires and releases at a given logicalpoint in the program execution (implying a loosely synchronous SPMD execution model).3.2 Establishing mappings between data structuresAmapping consists of two parts - the names of the arrays (or array sections) being mapped and a speci�cationof the desired consistency. The general form of a mapping is:with consistency speci�cation farraysection1 = arraysection2gArrays are referred to by their external names and can be multi-dimensional. As was mentioned in theprevious section, external names are bound to arrays using the register primitive. Array sections arespeci�ed using an HPF-like syntax (i.e., array[init : final : stride]). For instance, x[1:100:2] speci�es asection of the one-dimensional array x consisting of every second point in the range 1 to 100. There can bemany active mappings connecting di�erent arrays in di�erent programs.A consistency speci�cation mandates the frequency with which the array sections are to be made mutuallyconsistent. The frequency is speci�ed logically, in terms of a version counter. Operationally, a zero-initializedcounter is associated with every exported array and is incremented on every release of the array. For anarray exported in the out mode, the counter contains the number of versions of that array that have beenmade available to other applications. For an array exported in the in mode, the counter contains the currentnumber of safe opportunities for data to be placed into the array.A consistency speci�cation consists of a pair of conditions, one for each array in the mapping. Themapped data structures must be consistent whenever (and as long as) both conditions hold. The generalform of a consistency condition is freq(array; init : final : stride).The value of init can be a non-negative integer or the special symbol current, with or without a positiveintegral o�set. The symbol current stands for the value of the version counter for the given array at thetime the mapping is established. The domain of final is the set of natural numbers and a special symbolforever (which is denoted in this paper by 1). If init is speci�ed as current , final may be speci�ed ascurrent plus an integer value. The value of stride can be a natural number or the wild-card symbol *. Thewild-card symbol stands for any natural number. The expression init:�nal:stride de�nes a (possibly in�nite)3

sequence of non-negative integers2. A consistency condition holds whenever (and as long as) the value ofthe counter associated with array belongs to the sequence de�ned by init:�nal:stride.We use the following terminology for the rest of the paper : The data parallel program where a givenexported array is de�ned is called the owner of the array. The owners of the exported arrays that appear ina mapping are the participants in the mapping. The owner of the Left Hand Side (LHS) of the assignmentappearing in the mapping is called the consumer and the owner of the Right Hand Side (RHS) of theassignment is called the producer for that mapping. The array (or array section) that appears on the RHSof a mapping is called the source array for the mapping and the one that appears on the LHS of a mappingis called the sink array for the mapping. We refer to the processes that constitute a data-parallel programin execution as data-parallel peer processes.Mappings can be speci�ed in two ways. For static couplings, in which all participants start executing atthe same time and the interactions between the applications do not change throughout the execution, themappings can be speci�ed in a con�guration database that can be read by all applications as a part of theirinitialization. For dynamic couplings, in which some participants may start executing after others or theinteractions between the participants change during execution, the mappings can be created or deleted asthe participants are in execution. The following primitives are provided for this :� is exported(name;mode): returns true if the external name name has been bound to an arrayexported in mode mode; returns false otherwise.� create mapping(mapping): parses the mapping, which is speci�ed as a string, and sets it up, return-ing a handle to the caller. Neither of the arrays being mapped need be exported by the application thatcalls create mapping. That is, a mapping can be established by a program that does not participate inthe mapping. This allows couplings to be established and/or controlled by other programs. A mappingcan be successfully established if and only if all the following conditions hold:1. Both arrays are currently exported and the two arrays (or array sections) being mapped are ofthe same size and shape with identical base data types,2. The source array is exported in out mode; the sink array is exported in the in mode.3. The consistency speci�cation associated with the mapping is satis�able. A consistency speci�ca-tion is not satis�able if the value of the init parameter for either array is a non-negative integerk and version k of that array is not available currently and will never become available in thefuture.If the mapping is successfully established, a handle is returned to the caller ; else an error is returned.� delete mapping(handle): dismantles the mapping corresponding to handle.3.3 A simple exampleIn this section, we illustrate the use of our system with a simple example. Consider the two programs inFigure 1. Data parallel program pgm1 registers its distributed array A giving it the global name A andgiving it "in" permission. Data parallel program pgm2 registers its distributed array B giving it the globalname B and giving it "out" permission. Independently of pgm1 and pgm2, indices 1 to 10 of A may beassociated with indices 10 to 20 of B with a mapping as shown in Figure 1.This mapping couples one section of the one-dimensional arrayA to another section of the one-dimensionalarray B and speci�es that for every time-step in the range 0 to 100, elements 1 to 10 of A must contain thesame values as elements 10 to 20 of B after the acquire completes in pgm1.In this example, the meanings of the acquire and release calls in pgm2 can be explained as follows:� Before the �rst acquire(b) - the mapping says that the producer will transmit values of B for everyversion of B starting at version 0. Thus, before the �rst acquire(b) completes, the zeroth version of Bis transmitted to the consumer pgm1.2We will discuss the di�erent kinds of sequences possible and their associated semantics in Section 3.4.4

Data Move

pgm1 pgm2

integer A(100)

a = register("A",A,"in")
while(TRUE) {
 acquire(a);
 compute using A;
 release(a);
}

b=register("B",B,"out");
while(TRUE){
 acquire(b);
 update B;
 release(b);
}

integer B(200)
initialize B;

Mapping Spec:
with freq(A,0:100:1) && freq(B,0:100:1) A[1:10:1] = B[10:20:1]

Figure 1: Pprogram text and mappings for example.� For any version t of array B, such that 0 < t � 100, the transfer from B corresponding to version(t� 1) must complete before acquire(b) returns.� In between acquire(b) and release(b), no transfers from B can occur.� When release(b) is executed, the version counter corresponding to B is incremented at the producer.Data transfer to consumers may commence at this point. The transfer of data out of B needs tocomplete before the next acquire(b) completes.Similarly, consider the state of variable A in pgm1 for the example above :� Before the �rst acquire(a) completes, there is no de�ned relationship between A and B.� After the �rst acquire(a) completes, values at locations [10:20] of version 0 of B have been copiedinto locations [1:10] of version 0 of A.� For any version t of Array A (such that 0 < t � 100), after acquire(a) completes, values at locations[10:20] of version t of B have been copied into locations [1:10] of version t of A.� In between acquire(a) and release(a) no transfers into array A may occur.� When release(a) is executed, the version counter for A is incremented and pending updates for A maybegin for the new version counter.As the programs are in execution, a new mapping may be added to the program with the followinginvocation :create mapping("with freq(A,current:current+100:1) && freq(B,current:current+100,1)A[20:30:1] = B[40:50:1]");This adds a new dynamic mapping between A and B which will remain active for 100 increments of theversion counters for A and B after the time the mapping is added. After the dynamic mapping is added,sections [20:30] of A are kept consistent with [40:50] of B for 100 iterations after the mapping goes intoe�ect. Existing mappings are not changed by the addition of the dynamic mapping.5

3.4 Informal semanticsThere are two major classes of consistency conditions - strided and wild-card. Strided conditions can take oneof two forms: freq(array; const1 : const2 : const3) or freq(array; const1 : 1 : const3). Strided conditionsare useful for specifying periodic interactions between coupled programs, e.g. a pair of interacting simulationsthat communicate after a �xed number of time-steps. Wild-card conditions can also take one of two forms: freq(array; const1 : const2 : �) or freq(array; const1 : 1 : �). Such conditions capture the consistencyrequirement for loosely coupled programs - for example a coupling between a simulation and a visualizationprogram that displays as many frames as possible without slowing down the simulation and forcing it to runat the same speed as the visualizer. In the rest of the paper, we shall use the general forms of both theseclasses, that is, freq(array; const1 : 1 : const3) for strided requests and freq(array; const1 : 1 : �) forwild-card requests.The primary synchronization primitives in the model are acquire and release. They are used assynchronization points for the user speci�ed consistency operations. The following consistency guaranteesare provided :1. Safe transfer guarantee: No data is transferred fromor to an array between a matching acquire/releasepair involving that array. Data can be transferred from or to an array any time between a registercall and the �rst acquire or between a release and the next acquire (or unregister).2. Single version guarantee: all data transferred to or from a single array in a single consistency actionbelongs to the same version. Note that this requirement does not necessarily imply explicit barriersynchronizations at every acquire and release.There are four classes of consistency speci�cations, each corresponding to a di�erent consistency model.They are fully-constrained, producer-constrained, consumer-constrained and free-running. In the followingdiscussion, k is a non-negative integer. constt symbols are used to denote integer constants � 0. Forsimplicity, we assume the upper limit of the consistency condition speci�cation is unbounded (1). For therest of this section, we assume a mapping of the form A = B where program P1 exports A and program P2exports B.A consistency speci�cation for a fully-constrained coupling is of the formwith freq(A; const1 :1 : const2) && freq(B; const3 :1 : const4) A = BIn this model, every constth4 version of B is copied into A on every constth2 acquire call involving A.More precisely the data contained in B at the (const3+k�const4)th release(B) call must be transferred toA. The data must be transferred out of B between the start of the (const3+k�const4)th call to release(B)and the completion of the following call to acquire(B) 3. This data must be transferred into A after the(const1 + (k � const2) � 1)th release(A) call has completed and before the following call to acquire(A)completes 4. The fully-constrained model is able to capture a wide range of consistency requirements forrelatively closely coupled programs.A consistency speci�cation for a producer-constrained coupling is of the formwith freq(A; const1 :1 : �) && freq(B; const3 :1 : const4) A = B.In this model, every constth3 version ofB is copied over to A. No data is transferred to A for the �rst const1calls to acquire(A). The data must be transferred out of B between the start of the (const3+ k� const4)thcall to release(B) and the completion of the following call to acquire(B). This data must be transferredintoA at a subsequent call to acquire(A) after the �rst const1 calls to release(A). The producer-constrainedmodel constrains only the producer and allows the consumer to run freely. It can be used to couple programsin which the producer runs much faster than the consumer and periodic consistency with a known period isnot needed.A consistency speci�cation for a consumer-constrained coupling is of the formwith freq(A; const1 :1 : const2) && freq(B; const3 :1 : �) A = BIn this model, no data is transferred into A for the �rst const1 calls to acquire(A). Subsequently, data3If const3 = 0, the �rst data transfer out of B must happen between the register(B) call and the �rst call to acquire(B).4If const1 = 0, the �rst data transfer into A must happen between the register(A) call and the �rst call to acquire(A).6

Coupling Type Coupling Speci�cation Versions seen by consumerfully-constrained freq(A,0,1,1) && freq(B,0,1,1) P1 sees each versionof B in increasing orderconsumer-constrained freq(A,0,1,1) && freq(B,0,1,*) P1 sees increasingversions of Bproducer-constrained freq(A,0,1,*) && freq(B,0,1,1) P1 sees non-decreasingversions of B.P2 sends every version of Bfree-running freq(A,01,*) && freq(B,0,1,*) P1 sees non-decreasingversions of B. If B isupdated P1, is guaranteedto see a new version of B.Table 1: Versions seen by consumer (P1) for di�erent consistency speci�cationsmust be transferred into A once every const2 calls to acquire(A). There is no restriction on the version ofB that can be copied over at each such transfer point, as long as the sequence of versions is monotonicallyincreasing starting at the constth3 version. That is, every transfer gets a new version of B. With this proviso,data can be transferred out of B between any call to release(B) after the constth3 call and the the followingacquire(A). The consumer-constrained model constrains only the consumer and allows the producer to runfreely. It can be used to couple programs in which the consumer runs much faster than the producer andperiodic consistency is not needed.A consistency speci�cation for a free-running coupling is of the formwith freq(A; const1 :1 : �) && freq(B; const3 :1 : �) A = BThis model provides the loosest coupling. In this model, there are four restrictions on data transfer. First,no data transfer takes place for the �rst const1 calls to acquire(A) and the �rst const3 calls to release(B).Second, at least one data transfer takes place. Third, monotonically increasing versions of B are transferred.That is, every transfer gets a new version of B. However, there may an arbitrary number of acquires ofA and releases of B between any data transfers. Finally, if B's version number has been changed sincethe last acquire of A, a consistent new version of B will be propagated to A. The free-running modelconstrains neither the producer nor the consumer. The consumer observes a trend of the producer's valuesas the producer progresses.The consistency speci�cations and version numbers that the consumer sees for di�erent consistencyspeci�cations are summarized in Table 1. For simplicity, we have chosen a unit stride in the consistencyspeci�cation.Since we allow a program to have multiple sources and multiple sinks we can form rather general in-terconnections between programs. However, this
exibility can also lead to deadlocks and in�nite bu�eringrequirements for certain con�gurations. These are not always detectable by looking at the mappings alone.In our implementation, we expect the programmer to be aware of these situations when building an inter-connection of applications. We address these issues in greater detail in a technical report [14].4 ImplementationWe have implemented our system on a network of four-processor SMP Digital Alpha Server 4/2100 work-stations. The nodes are connected by an FDDI network 5.The primary goals of our implementation were language independence,
exibility and e�ciency. Theconcern for language independence prompted the use of the Meta-Chaos library [5], which we introducebelow. There are several points to be made about our implementation. First, we used asynchronous, one5We are in the process of upgrading to an ATM switch providing 155 Megabits/sec links between processors on which weintend to re-evaluate our implementation. 7

10 11 12 13

10 11 12 13

get
get

consumer

Process 1

Process 2Figure 2: The problem with consumer initiated transfers for consumer constrained consistency.sided message-passing for inter-application data transfer with the goal being to overlap data transfer withcomputation. Second, we computed optimized messaging schedules for data transfer for each mapping andreused these schedules for all transfers for the given mapping. The goal here is to minimize the numberof messages transmitted thereby reducing the amount of time spent in communication. Third, we usedbu�ering to reduce idle time spent waiting for data. We now present further details as well as some problemswe encountered.4.1 Implementation of MappingsData transfer can be initiated by either the producer or the consumer data-parallel program in a mapping.A consumer initiated transfer is implemented by a "get" request to the producer, which is processed at anappropriate time in the producer's execution. A producer initiated transfer is implemented by the producerdispatching the necessary data in a "put" request. The data may be received asynchronously at the consumerand bu�ered for later consumption.The initiation scheme is speci�c to each mapping and depends only on the consistency model it im-plements. For mappings implementing the fully-constrained model or the producer-constrained model, datatransfer is initiated by the producer. This eliminates the need for a consumer initiated request message.Since the relative time when the data is to be supplied is known a-priori in these cases, a consumer initiatedrequest is unnecessary. For mappings implementing the consumer-constrained model or the free-runningmodel, the data transfer is initiated by the consumer. In the �rst two cases, the producer initiates the datatransfer at the end of the release call that generates the version to be transferred. In the last two cases,the consumer initiates the data transfer at the beginning of the appropriate acquire call.If the transfer is producer initiated, ensuring the Single Version guarantee (i.e., the guarantee that theconsumer sees a single consistent version of the distributed data) is simple. The peer processes of the data-parallel producer application may send their sections of the distributed array to the consumer on a release.Since the data is bu�ered and consumed in FIFO order at the consumer, and the loosely synchronous SPMDassumption holds for the producer, the Single Version Guarantee is ensured.If the transfer is consumer initiated, the problem is more complicated. This complication is caused bythe fact that di�erent peers of the data-parallel program can see the same request at di�erent logical pointsin their computation, as is illustrated in Figure 2. If the peers respond as soon as they see the "get" request,the consumer may see di�erent portions of the distributed array with di�erent version numbers therebyviolating the Single Version Guarantee. Some coordination between the producer peers is required to ensurethat this situation does not happen. A simple distributed protocol that guarantees that the consumer seesa consistent version of the source array has been implemented and is described in greater detail in [14].Next we consider dynamic addition of mappings. A mapping is safe for the producer i� all the versionsof the array it would transfer are available (either bu�ered or yet to be generated). Similarly, a mapping issafe for the consumer i� all the consistency operations speci�ed by the mapping can be performed, meaningthat execution has not passed the point at which the mapping would require a data transfer into an array.8

A mapping may be added if and only if both participants in the mapping agree that the mapping is safe.This is determined by shipping the mapping to both participants and getting their agreement. A distributedagreement algorithm is implemented to add a mapping dynamically. The details are omitted here for brevity.4.2 Data TransferFor inter-application data transfer, we use a library called Meta-Chaos. Meta-Chaos is able to manage datamovement between data-parallel programs written in di�erent languages (including HPF, C and pC++) andusing di�erent communication libraries (including Multiblock PARTI and CHAOS). Meta-Chaos operates bytransforming the di�erent distributed arrays into the same canonical representation and building a schedulefor data movement between the two arrays. Depending on the structure of the distributed data the canonicalrepresentation can be compact (e.g. block distributed arrays), but in the case of irregular distributions couldbe as large as the array. These canonical representations are mapped to each other, and a plan for datamovement between processors is computed based on this mapping. This plan is optimized to minimizethe number of messages between processors. Once the plan is computed, it is cached and re-used for laterinter-application data movements.To port our mappings library to work with di�erent data parallel languages and runtime libraries, theMeta-Chaos library must be portable. For this to be possible, the Meta-Chaos library relies on severalinquiry functions that must be made available by the runtime libraries or languages that are being coupled.These inquiry functions include queries on index ownership and location. In addition, functions need to beprovided to convert between global and local indices.The Meta-Chaos library, including descriptions of the necessary support functions that it requires fromthe data-parallel run-time library being linked, is described in greater detail in [5]. We have successfully im-plemented Meta-Chaos to test inter-operability between data-parallel programs written using HPF, CHAOS,Multiblock Parti and pC++.For the underlying messaging layer between applications, we used PVM [8]. Each data parallel programis assigned a distinct PVM group. Asynchronous data transfer is achieved by using a dedicated threadfor receiving messages. Since, PVM currently does not handle multiple threads concurrently performingpvm receive operations in the same process correctly, we assume that intra-program communication betweenthe peers of the data-parallel program will be done through some other means. This has not been anoperational problem for our experiments, since the Digital HPF compiler uses a proprietary version of theUDP protocol for communication between the peers of an HPF program.5 EvaluationWe �rst evaluated the overhead of our
exible coupling system when compared with hand-coded messagepassing. Next, we examined the performance of our system using mini-applications. Our experimentalscenarios were set up to examine the following aspects of our system :� The variation of producer and consumer performance with coupling granularity.� The performance of consumer-constrained coupling for data-parallel applications.� The performance of tightly constrained coupling applied to a class of computation that occurs frequentlyin scienti�c codes.Our experimental platform has already been described in the previous section. The application to appli-cation data transfer rate between two C applications on the network using connection oriented sockets andtransferring 40 KBytes of data per send averaged 24.4 Megabits/sec. Inter application data transfer betweennodes using PVM and transferring 40 KBytes per send, was measured at 23.5 Megabits/sec on average. Therated maximum transfer rate of the network is 100 Megabits/sec. We expect to repeat the experiments inthis section in the very near future, as soon as the ATM switch connecting the nodes is installed.9

Processors(Sender/Receiver) Direct Message Passing Mappings based coupling1 14.5 14.72 13.6 14.04 12.8 12.98 15.2 15.616 36.8 36.9Table 2: Comparison of transfer time for Mappings based coupling of 100x100 integer array and directmessage passing between applications (ms per send averaged over 1000 iterations).5.1 OverheadThe raw performance of the system is evaluated by comparing a mappings based linkage to a direct couplingusing send and receive calls with the schedules generated by Meta-Chaos. Once the schedules for datamovement have been built, the performance of Meta-Chaos is identical to what can be achieved by directmessage passing. Having a separate thread for handling data transfer requests adds very little overhead whencompared with hand coded sends and receives for tight coupling. The overhead of asynchronous transfersis caused by thread switching and locking, but is o�set to some extent by the fact that threads are kernelscheduled in the system and receives may be posted asynchronously by the dedicated thread that receivesmessages. The acquire and release calls add negligible overhead to a program when no mapping exists forthe array being acquired or released.Table 2 shows the overhead of using mappings to couple programs in comparison to hand coded sendsand receives for a 100x100 integer array being transferred between two data parallel programs. The timingsare averaged over 1000 iterations of the interacting programs.In the experimental setup, the producer and consumer each run on disjoint sets of 4 workstations each.The distribution of the processes constituting the data parallel applications over nodes in this experimentwas done in a round robin fashion over the nodes. Identical distributions were chosen for both the handcoded send/receive case and the mappings based coupling.The time to transfer the array decreases because of improved aggregate bandwidth as the number ofcommunicating nodes is increased. However, as we start to multi-task the nodes, the e�ect of contentionfor the network adapter becomes apparent and the throughput is seen to drop. The main point of thisexperiment is that coupling programs using our mappings approach does not add signi�cant overhead todirect application to application message passing.5.2 Performance impact of coupling granularityThe �rst of our mini-application experiments demonstrates the e�ect of changing the coupling strengthbetween applications. For this experiment, the producer is a process that runs an in�nite loop incrementingeach of the elements in a 100x100 exported integer array on each iteration. The consumer is a summingprocess that sums all the elements of its array on each iteration. Both producer and consumer are sequentialapplications that run on a separate node. Table 3 shows the variation of the average loop time for theproducer and the average wait time for the consumer as the strength of coupling is varied.Table 3 shows how weakening the coupling a�ects the performance of the producer and the consumer.In the fully-constrained case, a di�erence between the wait time and the producer loop time is seen due tothe bu�ering e�ect at the consumer. In the consumer-constrained case several producer loop iterations areallowed to run before a single consumer acquire is required to complete (the stipulation is that a new versionshould be supplied on each acquire but there is no stipulation on what the version is). In the producer-constrained case, consecutive acquires of A could get the same version - the stipulation here is that everyversion of B is seen by some loop iteration of Pgm1. Thus in this case the producer runs approximatelyat the same rate as the fully constrained case. Finally, in the free-running case, the coupling strength isthe weakest and the performance is the best. The only guarantee here is that the consumer will observe a10

Coupling Type Coupling Spec Producer Loop Time Consumer wait timefully-constrained freq(A,0:1:1) && freq(B,0:1:1) 14.7 8.7consumer-constrained freq(A,0:1:1) && freq(B,0:1:*) 1.5 190producer-constrained freq(A,0:1:*) && freq(B,0:1:1) 14.0 .41free-running freq(A,0:1:*) && freq(B,0:1:*) 1.5 .11Table 3: Producer Loop time and consumer wait time for di�erent consistency speci�cations (ms).
Visualizer

B

with freq(A,0:forever:1) && freq(B,0:forever:*)
 B[1:100:1,1:100:1] = A[1:100:1,1:100:1]A

Simulation

getFigure 3: Coupling a visualization "frame grabber" to a simulation"trend" of the producers values. For every acquire of A the consumer sees the same or a later version ofB, as compared to the previous acquire.5.3 Performance of consumer constrained couplingThis experiment is a demonstration of the utility of consumer-constrained coupling for a data-parallel pro-gram.Consider a simulation producing output to be fed into a visualizer. Assume that A is the exported arrayowned by the simulation program and B is the exported array owned by the visualizer. The relative speedof the producer and the consumer is not necessarily known in this case. The user wants to "sample" theprogress of the simulation interactively. Each array is is a 100 x 100 integer array. The scenario is shown inFigure 3.We implemented skeleton HPF applications to test the performance of this coupling. To measure theperformance of the system, we ran the visualizer in a tight loop doing only acquire and release and measuredthe average wait time for the acquire operation. Table 4 shows the result. The average wait time is anindication of the maximum rate at which the visualizer may grab frames from the simulation.In this experiment, the processors for the simulation were allocated in a "greedy" fashion. All processorson a given node are assigned before another node is added. The visualizer runs on a separate node.The relatively high average wait time for the consumer is a result of the fact that the rule is markedconsumer-initiated. Before the acquire completes, a get request has to be dispatched to the producer andthe producer nodes have to compute a version number corresponding to a consistent distributed snapshot ofthe source array before responding. The larger the number of peers in the consumer, the greater is the timespent in this operation. Also, with more peers, the possibility of skew between the version numbers is higher,thereby resulting in a higher average wait before the data can be dispatched to the consumer. The jump inProcessors Avg Consumer wait time Avg Producer Loop time1 190 16.32 196 8.474 211 4.548 310 2.8616 392 2.41Table 4: Timings for visualization example (ms).11

pgm1

pgm 2

Interpolation
grid 1

grid 2

pgm 3 (glue)

grid2’

grid1’

grid 3

Figure 4: Coupling simulations.wait time between 4 and 8 processors is due to network tra�c as a result of inter-node communication forprocessing the get request. If all the peers are on the same node, communication is much cheaper than ifthe peers have to use the network. The table also shows the producer loop time for this experiment. Wemeasured the loop time for the producer in the case when the producer was un-coupled and compared it withthe loop time when the producer was coupled. The di�erence in performance between a coupled producerand an un-coupled producer was not signi�cant.5.4 Fully Constrained CouplingIn this experiment we consider a tight coupling between two simulations written in HPF. Consider linkingtwo simulations that do computations by sweeping over a 3-dimensional grid doing local operations (nearestneighbor stencil computations) at each grid point. The loop doing the sweep is parallelized using an HPFforall statement. Such a sweep is representative of the computations in a large class of scienti�c applications,such as computational
uid dynamics codes and structural mechanics codes. The grids are connected attheir boundaries.Each of the coupled grids is 100x100x100 integers. We compared the performance of three cases :� A monolithic HPF program that sweeps over a grid that is 200x100x100 integers doing a nearestneighbor summation at each point with a single forall loop.� Coupling two grids with data exchange between the two grids at the boundary. This does the samecomputation as the monolithic grid but breaks the computation onto two grids. The computationsexchange data (�ll ghost cells) at the boundaries where the grids meet. The performance for thisscenario is shown in Figure 5 labelled "Coupled HPF simulations 1".� Coupling two grids by passing the data through a third "interpolation" program. The scenario isshown in Figure 4. In this �gure pgm1 and pgm2 are computing simulations on their grids. pgm3 iscomputing an interpolation on the connected faces of grid1 and grid2, which is then read back by pgm1and pgm2 on each iteration. The performance for this scenario is shown in Figure 5 labelled "CoupledHPF simulations 2". 12

]
1

2

3

4

5

6

7

8

0 5 10 15 20 25 30 35

S
w

ee
p

tim
e

(s
ec

)

Processors

Monolithic HPF simulation
Coupled HPF simulations 1
Coupled HPF simulations 2

Figure 5: Performance of coupled simulation vs. monolithic couplingEach simulation in our coupled simulation scenario runs on a di�erent set of nodes. In the third case,where there is a separate interpolation program between the simulations, the interpolation program runs onthe same set of nodes as one of the simulations in a multi-tasked fashion. In all cases, since our network hasa relatively high latency and the computation for each grid point is relatively inexpensive, there is not muchimprovement in the results past 8 processors. In fact, there is a slight degradation for 32 processors whencompared with 16 processors.The communication and the computation for both the HPF monolithic simulation and the coupled sim-ulation in the second case (without the interpolation program) is identical. The degradation in performancefor the coupled simulations can be explained by the fact that we are using PVM to couple applications. Inthe third case (with the interpolation program) there is additional communication, but the additional com-munication is between processes that run on the same node. This is true because the interpolation programruns on the same nodes as one of the simulation programs in a multi-tasked fashion. The interpolationprogram itself is very simple - just averaging the data values on grid1' and grid2' and writing the resultout to grid3. This generates no communication. Since intra-node communication is relatively cheap theinterpolation program does not add appreciable overhead to the coupling.The experiments indicate that performance is not degraded much by coupling data-parallel applicationsin a fully constrained manner.6 Related WorkOur approach is similar in some respects to the software bus approach used in Polylith [16]. A software busisolates and encapsulates run time interfacing concerns for applications. The software bus allows modulesto export interfaces and be invoked by remote processes. Our approach is data stream driven rather thanremote procedure call driven. Data parallel components can interact not only at their entry and exit pointsbut also concurrently when they are in execution. However, we do not provide a means for remotely invokingprocedures. Indeed, a software bus approach could complement our work extending it to allow this facility.The other alternative would be to use PVM to start tasks remotely, and then use our approach to connect thedata streams of the executing tasks. Polylith has also been extended to allow for dynamic re-con�gurationwhile the system is executing [11].Single address space operating systems such as Opal [3] o�er a uniform view of memory across allprocesses. All processes in Opal share the same address space and hence this facility could be used as ameans of sharing objects between applications.Linda [15] o�ers a tuple space oriented programming model which could be used to couple programs. Astream oriented model such as ours could be implemented on top of Linda. Given that our assumption isthat the source codes for the individual applications is not available at the time the applications are to be13

composed, the performance would probably not be as good as our implementation. External control and thesize of the data sets would probably present performance problems.The general topic of integrating task and data parallelism has received a lot of attention. Some re-search e�orts are working on enhancements of data parallel languages or task parallel languages in orderto integrate data parallelism and task parallelism. Fx [18] uses additional HPF directives to specify taskparallelism. Opus [10] is a set of HPF extensions that provides mechanism for communication and synchro-nization through a shared data abstraction (SDA). Fortran M [7, 2] makes extensions to Fortran77 for taskparallel computations, and also allows some data distribution statements. Braid [6] introduces data parallelextensions to the Mentat Programming Language [9].Communication libraries like PVM and MPI [13] may be used by the programmer to directly transfermessages from one data parallel task to another. However, such an approach burdens the programmer withhaving to understand low level details about data distributions and message passing. It is also "hard wired"in that support has to be developed for each instance of communicating data parallel programs. Once aprogram has been written in this fashion, it will have to be re-implemented if the components with which itinteracts are altered or if the "coupling strength" is altered.7 ConclusionsWe have demonstrated that it is possible to link data parallel applications in a
exible and recon�gurablefashion such that re-compilation is avoided and data movement between applications does not have to be handcoded. The fact that large amounts of data are being produced and consumed and the fact that the data isdistributed required us to invent a mapping speci�cation that indicates relative consumption and productionpatterns and data structure linkages. Using this information, we constructed a communication priori schedulethat optimized the
ow of data between applications. We characterized the mapping speci�cation into fourclasses and discussed how these classes might be useful for di�erent application interactions.We demonstrated the utility of our method by applying it to link HPF applications. Our method did notrequire any language extensions and we were able to implement our method using the Digital HPF compilerand intrinsics without any knowledge of compiler or runtime system internals. Our experiments indicatethat coarse grained parallel tasks may be linked in this fashion without much loss in performance.We are working on enhancing our system in various ways, including generalizing the mapping speci�-cation to allow arbitrary operations on the exported arrays, instead of just assignments. This would allowintermediate interpolation processes to be avoided. We are also working on improvements in the systemimplementation to get better performance.AcknowledgementsWe are grateful to Gagan Agarwal, Chialin Chang, and Shamik Sharma for several thought provokingdiscussions. Bill Pugh and Pete Keleher reviewed earlier drafts of this paper and pointed out inconsistenciesand ill-speci�ed semantics.References[1] Francois Bodin, Peter Beckman, Dennis Gannon, Srinivas Narayana, and Shelby X. Yang. Distributed pC++:Basic ideas for an object parallel language. Scienti�c Programming, 2(3), Fall 1993.[2] K. M. Chandy, I. Foster, K. Kennedy, C. Koelbel, and C.-W. Tseng. Integrated Support for Task and DataParallelism. Journal of Supercomputing Applications, 8(2), 1994. Also available as CRPC Technical ReportCRPC-TR93430.[3] Je�erey S. Chase, Henry M. Levy, Michael J. Feeley, and Edward D. Lazowska. Sharing and protection in asingle address space operating system. Technical Report 93-04-2, University of Washington at Seattle, January1994.[4] C.Koebel, D.Loveman, R.Schreiber, G.Steele Jr., and M.Zosel. The High Performance Fortran Handbook. TheMIT Press, 1994. 14

[5] Guy Edjlali et. al. Meta-chaos - An Inter-operability layer for Data-Parallel programs. Technical Report InPreparation., Center For Research on Parallel Computation.[6] E.West and A. Grishaw. Braid: Integrating Task and Data Parallelism. In Proceedings of the Fifth Symposiumon the Frontiers of Massively Parallel Computation, pages 211{219. IEEE Computer Society Press, February1995.[7] I. Foster, M. Xu, B. Avalani, and A. Choudhary. A Compilation System that Integrates High PerformanceFortran and Fortran M. In Proceedings of the 1994 Scalable High Performance Computing Conference. IEEEComputer Society Press, 1994.[8] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam. PVM 3 User's Guide and ReferenceManual. Technical Report ORNL/TM-12187, Oak Ridge National Laboratory, May 1993.[9] Andrew S. Grimshaw. The Mentat computation model data-driven support for object-oriented parallel process-ing. Technical Report CS-93-30, University of Virginia, May 93.[10] M. Haines, B. Hess, P. Mehrotra, J. Van Rosendale, and H. Zima. Runtime Support for Data Parallel Tasks. InProceedings of the Fifth Symposium on the Frontiers of Massively Parallel Computation, pages 432{439. IEEEComputer Society Press, February 1995.[11] Christine R. Hofmiester and James M. Purtilo. A framework for dynamic re-con�guration of distributed pro-grams. Technical Report CS-TR 3119, University of Maryland, Department of Computer Science and UMIACS,1993.[12] Yuan-Shin Hwang, Bongki Moon, Shamik D. Sharma, Ravi Ponnusamy, Raja Das, and Joel H. Saltz. Runtimeand language support for compiling adaptive irregular programs. Software{Practice and Experience, 25(6):597{621, June 1995.[13] Message Passing Interface Forum. Document for a Standard Message-Passing Interface. Technical Report CS-93-214, University of Tennessee, November 1993.[14] M.Ranganathan, A.Acharya, G.Edjlali, A.Sussman, and J.Saltz. Run-time coupling of Data-Parallel programs.Technical Report In Preparation., Center For Research on Parallel Computation.[15] N.Carriero and D.Gelertner. Linda in context. Communications of the ACM, 32(4), 1989.[16] James Purtillo. The Polylith software toolbus. Technical Report CS-TR-2469, University of Maryland, Depart-ment of Computer Science and UMIACS, March 1990.[17] J. Subhlok, D. O'Hallaron, and T. Gross. Task Parallel Programming in Fx. Technical Report CMU-CS-94-112,School of Computer Science, Carnegie Mellon University, 1994.[18] Jaspal Subhlok, James M. Stichnoth, David R. O'Hallaron, and Thomas Gross. Exploiting task and dataparallelism on a multicomputer. In Proceedings of the Fourth ACM SIGPLAN Symposium on Principles &Practice of Parallel Programming (PPOPP), pages 13{22, May 1993. ACM SIGPLAN Notices, Vol. 28, No. 7.[19] Alan Sussman, Gagan Agrawal, and Joel Saltz. A manual for the multiblock PARTI runtime primitives, re-vision 4.1. Technical Report CS-TR-3070.1 and UMIACS-TR-93-36.1, University of Maryland, Department ofComputer Science and UMIACS, December 1993.
15

