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Abstract

Many run-to-run (RtR) control methods have been developed in recent years. Two
particular set-valued RtR control schemes based on the Dasgupta-Huang Optimal
Bounded Ellipsoid (DHOBE) algorithm are introduced. Compared to other RtR con-
trol schemes, the methods in this paper only need to know the bound of the noises,
and are easy to implement. The DHOBE algorithm, for each recursion, returns an
outer bounding ellipsoid of the estimated parameters. If the center of the ellipsoid
each time is taken as the model coefficients, the explicit model update is implemented
which leads to a model-reference method. If we choose the worst-case point which
maximizes the cost function in the set, then we can apply the set-valued worst case ap-
proach. These two methods were compared with two other main RtR control schemes:
the Exponentially Weighted Moving Average (EWMA) method and the Optimizing
Adaptive Quality Controller (OAQC) method. Simulation results showed the superior
performance of the RtR controllers based on the DHOBE algorithm. Furthermore this
paper showed that it is necessary to apply nonlinear models to compensate for severe
nonlinear processes.

1 Introduction

In industries like semiconductor manufacturing, specifications or changing conditions impose
a need for adjusting process parameters on a run-to-run (RtR) basis. This need has originated
a collection of techniques called RtR control [1]-[8]. RtR control is a form of discrete process
and equipment control in which the product recipes with respect to a particular equipment

∗This work was supported by the Center for Satellite and Hybrid Communication Networks, under NASA
cooperative agreement NCC3-528
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process are modified ex-situ, i.e. between equipment “runs”, so as to minimize the effects
of process drifts, large shifts, and other variabilities to keep the outputs at the prescribed
target values.

Generally the RtR controller is designed in the following way: First, it performs process
control based only on post-process measurements. Then it responds to the measurements
by updating models of the process between runs. Finally it provides a new recipe for use in
the next run of the process. It does not modify the recipe during a run. The reason why it
generates new recipes from the post-process measurements on a run-to-run basis is, on one
hand, lack of online sensors for the process. On the other hand, frequent changes of inputs
to the process may increase the variability of the process’s output. Sometimes dead-band is
utilized in order to make the change less frequent.

The process models of a RtR controller need to take into account of the process variations
throughout the whole process, providing enough accuracy for control without adjusting too
many parameters. The initial models are derived from former off-line experiments such as
using the response surface models. When the controller is online, the model within the
controller is updated using the new measurements of the process from run to run. Different
model updating methods usually lead to different kinds of controllers.

A typical block diagram of a RtR controller is illustrated in Figure 1. Normally the goal
of the RtR controller is to reduce the variability of the process’s output as measured by the
mean squared deviation (MSD) from the target.

Currently there are three main RtR control schemes available: The Exponentially Weighted
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Moving Average (EWMA) RtR controller, the Optimizing Adaptive Quality Controller
(OAQC), and the set-valued RtR controller.

1. The EWMA RtR controller was first developed by E. Sachs et al. from MIT [1]. It
mainly compensates for slowly drifting processes that can be represented by linear(affine)
models. The controller only updates the offset term in the process. The EWMA controller
gives less and less weight to data as they get older and older . To control a process, it is
convenient to forecast where the process will be in the next instance of time. Then if the
forecast shows that a future deviation from target is too large, some remedial control actions
from the controller or the process operator will compel the forecast to equal the target. The
EWMA controller has been shown to improve the performance of semiconductor manufac-
turing processes. But a key problem with this method is that it is unable to adequately
control processes which are poorly represented by linear models.

2. The OAQC controller is a form of model-referenced RtR controller [2], [5]. It can
act both as an optimizer and a controller. In its optimizing mode, it updates the model
at every run and in the controller mode, it uses a quadratic cost function to maintain the
response of the process at the desired target with regards to the variation of the tunable
parameters. It integrates the multivariate control chart as a dead-band to the controller
in order to erase outliers, which are harmful to the control and optimizing actions. This
method can be applied to light nonlinear models as well. Simulations have been done for
second order Hammerstein models of the CMP process.

3. The set-valued RtR control method was proposed by J.S.Baras and N.S.Patel [4]. It
is also a model-based method. However, the set-valued controller considers the uncertainty
of the model identification. This uncertainty exists because normally the updated models
can not be accurate due to model errors, measurement noises and other restrictions such as
choice of the cost functions. What can be identified more reliably is the set of the model
parameters in which the real process model resides. We could be quite certain that the model
is somewhere in this set, but due to the randomness of the process, the exact position is
unknown. In [4], they used the optimal volume ellipsoid (OVE) algorithm [9], [10] to obtain
the parameter sets. Then they selected an estimate of model parameters from the set which
makes the cost function the largest (worst case). Using these model parameters, the recipe
that will optimize the cost function in the worst case will be found. However this recipe is
somewhat conservative.

In this paper we are going to apply a more general ellipsoid algorithm, the Dasgupta-
Huang Optimal Bounded Ellipsoid (DHOBE) algorithm in the realization of the RtR con-
troller [8]. The DHOBE algorithm was first developed in 1987 by Dasgupta and Huang
[12]. It modified the OBE algorithm of Fogel and Huang [11] by introducing a forgetting
factor. It was further developed by Rao and Huang in 1993 [13] by introducing the res-
cue procedure. This algorithm belongs to a class of bounded-error estimation algorithms
termed set-membership parameter estimation algorithms, which is different from the OVE
algorithm.
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The largest benefit of this algorithm is that unlike other recursive algorithms, the DHOBE
algorithm discerns if the new measurement contains any fresh information. This reduces sig-
nificantly the computation load for estimation. The only knowledge required from the real
process is the strict bound of the noise instead of the detailed property (e.g. distribu-
tion) of the noise. Another improvement is the introduction of the rescue procedure. The
semiconductor manufacturing process usually undergoes abrupt shifts (due to equipment
maintenance) and modeling errors (considered as big shift at the startup). This normally
causes other model identification methods to return an empty set for the parameters. The
rescue procedure greatly improves the performance of the algorithm under this circumstance
and accordingly that of the controller. Therefore the DHOBE algorithm based controller
works well for large step disturbances and model errors, which are hard for other methods
to compensate for.

The DHOBE algorithm also gives us the freedom of applying the model-reference method
or the worst-case method. Because for each recursion, the returned result is not a single
model (point) but an outer bounding ellipsoid of the estimated parameters. If, according to
the algorithm, the center of the ellipsoid each time is taken as the model coefficients, the
explicit model update is implemented which leads to a model-reference method. If we choose
the worst-case point which maximizes the cost function in the set, then we can apply the set-
valued worst case approach. We will call them DHOBE-MR and DHOBE-SV respectively
in the later part of this paper.

2 The RtR Controller Based on the DHOBE algorithm

2.1 The DHOBE Algorithm

The main idea of the DHOBE algorithm is to recursively obtain the ellipsoidal outer bounds
to the membership set. It can be applied to linear-in-the-parameters models like the Ham-
merstein model which ensures that the algorithm can be used to estimate the parameters of
quadratic models.

Assume that the scalar process model is of the following form:

yt = θ∗Tut + vt (1)

where yt is the scalar output of the process, θ∗ ∈ <N is the true parameter vector and ut is
the input vector. vt is the noise term which is bounded by γ, i.e.,

|vt| ≤ γ. (2)

Suppose that at time instance t-1, the membership set of the parameters of the model is
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Figure 2: Recursive Formation of the Bounding Ellipsoid [12]

bounded by the ellipsoid Et−1. It can be defined by its center θt−1, its orientation from the
positive definite matrix P−1

t−1 and its size from the uncertainty parameter σ2
t−1:

Et−1 = {θ ∈ <N : [θ − θt−1]
TP−1

t−1[θ − θt−1] ≤ σ2
t−1} (3)

On the next time instance t, we have an observation of the process yt. Then we can
utilize it to obtain the set St that the process will reside under the constraints of the noises
as follows:

St = {θ ∈ <N : [yt − θ
Tut]

2 ≤ γ2}. (4)

St will intersect with Et−1 which will enable us to recursively enclose the intersection of
the two sets by a new ellipsoid Et as follows:

Et = {θ ∈ <N : (1− λt)[θ − θt−1]
TP−1

t−1[θ − θt−1] + λt[yt − θ
Tut]

2

≤ (1− λt)σ
2
t−1 + λtγ

2}, (5)

where the updating gain λt is introduced. The gain λt is positive and time varying.
We can also consider (1 − λt) as the forgetting factor. λt is chosen to minimize σ2

t at each
time instance in order to decrease the size of the ellipsoid from run to run. The recursive
formation of the ellipsoid is illustrated in a 2-dimensional example in Figure 2.

The DHOBE algorithm can be generalized as the following steps:
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step 1. Compute an error residual

δt = yt − u
T
t θt−1 (6)

step 2. If
σ2
t−1 + δ2

t ≤ γ2 (7)

then it is thought as a small noise disturbance and there is no update of the ellipsoid,
otherwise go to step 3.

step 3. Compute two intermediate scalar variables:

step 3a.
Gt = uTt Pt−1ut (8)

step 3b.
βt = (γ2 − σ2

t−1)/δ
2
t (9)

step 4. Compute the update factor λt. Here 1− λt is the forgetting factor. It is confined
to the range 0 ≤ λt < 1.

λt = min(λmax, υt) (10)

where

υt =



λmax if δ2
t = 0

(1− βt)/2 if Gt = 1

1−

√
Gt

1+βk(Gt−1)

1−Gt
if βk(Gt − 1) > −1

λmax if βk(Gt − 1) ≤ −1

(11)

where λmax is a user-determined “design factor” which controls the rate of convergence of
the algorithm. It is confined into the range of (0,1). In practice it was found that in the
range from 0.05 to 0.10, λmax usually results in rapid and well-behaved convergence.

step 5. Update the parameter uncertainty factor

σ2
t = (1− λt)σ

2
t−1 + λtγ

2 −
λt(1− λt)δ2

t

1− λt + λtGt

(12)

step 6. This is the rescue procedure. It was developed by Rao and Huang in [13]. It
is particularly necessary when there is a large jump in the parameters of the model. In
such cases, the algorithm might return an empty set and thus there is no bounding ellipsoid
generated. This is because when the parameters change abruptly in a step, the intersection of
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Figure 3: The DHOBE Algorithm Rescue Procedure Illustration

Et−1 and St will be void as illustrated in Figure 3. At this time the calculation of the σ2
t will

become negative which is an indication that there will be no bounding ellipsoid. Then the
rescue procedure is called at this time to enlarge the size of Et−1 so that the intersection of
St and the enlarged ellipsoid Et−1 will no longer be void. This rescue procedure will migrate
the center of the ellipsoid to the real parameter vector θ∗ which will reduce the parameter
estimation error:

When σ2
t > 0, proceed to step 7; otherwise, compute

κ =

{
δ2
t + γ2 − 2γ|δ| if λt 6= λmax

λmax[
δ2t

1−λmax+λmaxGt
− γ2

1−λmax
] if λt = λmax

(13)

Reset the uncertainty parameter for time t-1

σ2
t−1 = κ+ ζ (14)

then return to step 3b. Here ζ is called “inflation parameter”. It is user-specified and usually
set as 1 [14]. In simulation it was found that the rescue procedure is not often taken.

step 7. Update the ellipsoid parameters.

P−1
t = (1− λt)P

−1
t−1 + λtutu

T
t (15)

Pk =
1

1− λt
[Pt−1 −

λtPt−1utu
T
t Pt−1

1− λt + λtGt

] (16)

θt = θt−1 + λtPtutδt (17)
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The initial conditions of the DHOBE algorithm can usually be set as σ2
0 = 100,P−1

0 = I
to include the optimal estimation point.

In this paper the DHOBE algorithm is applied to both the model-reference RtR controller
and the set-valued controller with the worst case approach.

2.2 The Model-Reference RtR Controller Based on the DHOBE
Algorithm

In model-reference RtR controller, the DHOBE algorithm is used to implement RtR model
parameter estimation. The recipes are generated using the minimization of the squared error
between the model’s predictive output and the target value. Figure 4 illustrates the basic
flow chart of the controller.

The first step is to set the parameters related to the internal process model. This includes
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the following:

• Building the initial model which might be obtained from off-line experiments.

• Setting the target value of the process outputs.

• Setting the constraints of the inputs.

• Setting the initial recipes of the equipment which might be the nominal value of the
inputs.

The second step is to set parameters related to the controllers. This parameter setting is not
easy as it is equivalent to the tuning of the controllers. But after some off-line simulations
are completed, the recommended values can be available. These parameters include:

• Setting the strict noise bound γ.

• Setting the updating factor’s (λ) upperbound λmax.

• Setting the rescue step length ζ which is normally set to 1.

• Setting the ellipsoid’s orientation matrix P which is normally set to I at the start.

The choice of the noise bound is the most important. When γ is chosen to be larger than
the actual bound, the tracking ability of the algorithm will be increased. But from step
2 of the DHOBE algorithm, it is easy to see that when the noise bound is too large, the
update of the model will not happen until the model’s output significantly deviates from
the target. This is not expected especially when the process is undergoing small drifts. The
sensitivity of the controller will be decreased because of this larger noise bound. In our
simulations, the process noise and measurement noise are combined to a white noise and the
normal distribution has zero mean and variance σw. We took 3σw as the noise bound and it
is shown that this bound is appropriate enough for the simulated circumstances.

The setting of the maximum value of the updating factor (λmax) is also important. It
controls the rate of convergence of the algorithm. If it is very small, convergence of the
algorithm is slow. If it is too large, the size of the ellipsoid (σ2) may change so rapidly
that the ellipsoid’s boundary excludes the real process parameter (θ∗). If θ∗ ends up too
far outside the ellipsoid, the result is usually an ellipsoid which collapses to the empty set
and invokes the rescue procedure. The re-inflated ellipsoid can then miss θ∗ again at the
next update cycle and so on resulting in a non-converging oscillation of the ellipsoid. In our
simulations, we use 0.4 as the maximum value and by selecting the proper re-inflation step
ζ , satisfactory control results can be achieved.

After having a model estimation for each run, the recipe can be calculated for the next
run by minimizing a predefined cost function. The cost function normally takes the form of
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squared error between target value and the model’s output using the current model estima-
tion. When there is only one response the form might be

min
u

(T − θTu) (18)

where T is the target value.

If there are multiple responses, the cost function might take the form

min
u

(T − θTu)TW (T − θTu), (19)

where W is the weight diagonal matrix assigned for each response. The value of each element
represents the priority of each response. The most important output is assigned the largest
weight, which is used in order to keep the output value as close to its target value as possible.
T is the target vector.

If the change of recipes incurs large costs, then this change should also be taken into
consideration by adding an additional term into the cost function as in [2]:

min
ut
{w1(T − θ

Tut) + w2(ut − ut−1)
TΓ(ut − ut−1)} (20)

where Γ is the weight diagonal matrix assigned to each input of the recipe. If the cost for
changing a certain tunable input is higher, then we can assign larger weight to that particular
input so that by optimizing the cost function, it is kept as close to the previous run’s value
as possible. wi are the weight terms also.

The minimization is achieved by finding the optimal recipe during each run through line
searching. The calculated inputs should also satisfy the constraints that are essential for
equipment and process requirements. These constraints are normally in the form of ranges
which are quite natural and easy to get. They guarantee that the optimal recipe is feasible
physically and reasonable to the equipment.

After the recipe is calculated, the equipment tunable inputs are adjusted accordingly,
which might cause the output of the real process to change. Measurements are then fed back
to the controller as new information. Then according to the DHOBE algorithm, the residual
error δ(t) between the current measurement and the model’s output will be calculated and
used to estimate the next run’s model.

At this time, the controller will decide if the updating is necessary by the following
criterion:

δ2 + σ2 ≤ γ2

If the inequality is satisfied, the controller uses the previous model for the next run and the
cycle restarts; otherwise, the update of the process model is implemented.
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2.3 The Set-Valued Worst-Case RtR Controller Based on the DHOBE
algorithm

The set-valued worst-case RtR controller based on the DHOBE algorithm is similar to the
model-referenced one except for the part of optimization of the cost function and generation
of recipes. The model updating still uses the centers of the ellipsoids as the model param-
eter estimates, recursively. But after the outer bounds of the ellipsoids are generated, the
optimization selects the model from these ellipsoids (sets) and tries to find the min-max of
the cost function [4].

Suppose at run t, the ellipsoid is generated by the DHOBE algorithm with the parameters:
center of ellipsoid θ∗t , orientation Pt and size σ2

t . The optimization of the cost function is
implemented as

min
u∈U

max
y
t
≤y≤ȳt

l(y) (21)

where l is the cost function and U is the feasible set of inputs; U can be achieved by imposing
constraints according to the requirements from the process, and

y
t
= θ∗Tt u−

√
uT
Pt

σ2
t

u−
√
γ (22)

ȳt = θ∗Tt u+

√
uT
Pt
σ2
t

u+
√
γ (23)

y
t
and ȳt define the inner maximization scope. In order to simplify the calculation, we impose

the restriction that the cost function is convex. Then the maximization will only appear on
either of the two points.

For multiple responses process, just like the model-reference controller, we used the
Pareto-optimal method so that different weights are selected for different responses and
then sum them together. The worst case treatment is to select the largest one of the cost
functions between the upper and lower bounds of the response among all the responses and
sum the weighted sub-functions together.

3 Simulations

The process models were derived from experiments or practical semiconductor processes.
The models are in polynomial forms and can be linear, quadratic or of any higher order,
which are subject to various disturbances that can happen. The measurements are also
simulated as corrupted by noise. For simpleness it was assumed that the noises are normally
distributed with definite variance and zero mean and uncorrelated (Other forms of noises
are also simulated and the results are similar to the normally distributed one).
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Figure 5: Comparison of the DHOBE-MR Controller with the EWMA Controller: Linear
Perfect Model under Drifts

In the comparisons of the simulation results between the DHOBE algorithm based RtR
controllers and other RtR controllers, the following statistical measures are used to evaluate
the performance of the control action:

• ȳi is the mean of the sampling values from the real process ith output.

• Syi is the standard deviation of the process ith output.

• MSD(yi−Ti) is the square root mean square deviation of the process ith output from
its target value.

3.1 Comparison of the DHOBE-MR and DHOBE-SV Controller
with the EWMA controller

The process model we used is the chemical mechanical planarization (CMP) process [5],
where the units are dropped for simpleness:

y[n] = −1382.60 + [50.18,−6.65, 163.4, 8.45]× uT (n) + w[n] + δn (24)

where n is the run number, w[n] is normally distributed white noise with variance 665.64, δ
is the drift noise added to the process. Here δ = −17. First let us assume that there is no
model error exist. The weight of the EWMA controller is selected as 0.6 in this case. The
simulation results are illustrated in Figure 5 and Figure 6 respectively for the comparison of
the DHOBE-MR and DHOBE-SV method with the EWMA method.

From Table 1, it can be seen that the compensation effect of the DHOBE algorithm based
controllers has no big difference with that of the EWMA controller as measured by the MSE
and standard deviation.
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Figure 6: Comparison of the DHOBE-SV Controller with the EWMA Controller: Linear
Perfect Model under Drifts

Method ȳ Sy MSD

EWMA 1674.4 36.7 44.8
DHOBE-MR 1664.6 36.9 51.5
DHOBE-SV 1669.9 35.1 46.4

Table 1: Comparison of the EWMA Controller, the DHOBE-MR Controller and the
DHOBE-SV Controller for Linear Perfect CMP Model
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Figure 7: Comparison of the DHOBE-MR Controller and the EWMA Controller for Linear
Imperfect Model under Drifts
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Figure 8: Comparison of the DHOBE-SV Controller and the EWMA Controller for Linear
Imperfect Model under Drifts

But when model error exists, which is common in real applications, the DHOBE-MR and
DHOBE-SV controlled processes have faster convergence characteristics (as seen from Figure
7 and 8). The output of the process changed significantly at the beginning for this case as
the process model was taken as 80% of each parameters of the real process. The weight of
the EWMA controller is 0.3 in this case. The DHOBE-MR and DHOBE-SV controllers are
shown to track the target much faster than the EWMA controller under this circumstance.

This is also illustrated in Table 2 by considering the STD and MSD.

Simulations were also performed for the case when there is a large step disturbance (shift)
at run 10. The step disturbance in the simulation was obtained by changing the model
parameters of the real process significantly. The resulted shifting value equals to the target
value + 350. The weight for the EWMA controller is selected as 0.43. The simulation results
(Figure 9 and 10) also show that the DHOBE-MR and DHOBE-SV controller are better than
the EWMA controller because the EWMA controller is suitable for slowly changing processes.
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Method ȳ Sy MSD

EWMA 1742.9 219.7 223.9
DHOBE-MR 1672.5 90.9 95.1
DHOBE-SV 1685.7 90.0 91.3

Table 2: Comparison of the EWMA controller, the DHOBE-MR Controller and the DHOBE-
SV Controller for Linear Imperfect CMP Model
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Figure 9: Comparison of the DHOBE-MR Controller and the EWMA Controller for Linear
Perfect Model under Step Disturbance

It is hard for it to compensate for large variance in several runs.

The simulation data for this case are shown in Table 3. Therefore the performance of the
DHOBE-MR and the DHOBE-SV controller is better or comparable to that of the EWMA
controller. There is no big difference between the two controllers based on the DHOBE
algorithm.

Method ȳ Sy MSD

EWMA 1717.1 97.9 100.8
DHOBE-MR 1708.9 67.0 68.1
DHOBE-SV 1710.9 68.6 69.8

Table 3: Comparison of the EWMA Controller, the DHOBE-MR Controller and the
DHOBE-SV Controller for CMP Model under Step Disturbance
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Figure 10: Comparison of the DHOBE-SV Controller and the EWMA Controller for Linear
Perfect Model under Step Disturbance

3.2 Comparison of the DHOBE-MR and DHOBE-SV Controller
with the OAQC Method

Detailed introductions about the OAQC method can be found in [2]. The process models
obtained from experiments are considered as real process models with drifts and the models
that we are going to use to approximate the real models are in almost-linear, fully quadratic
or linear forms respectively. Performance was evaluated according to different kinds of
approximate models. This provides us an opportunity to test the controller’s robustness to
model errors. There are two forms of the model with regards to the number of parameters
to be tuned: CMP4x2 model and CMP3x2 model.

3.2.1 CMP 4 × 2 almost-linear Model

1) Process Model Considered as “Real”

The underlying “real” process is [2]:

y1 = 1563.5 + 159.3u1 − 38.2u2 + 178.9u3 + 24.9u4 − 67.2u1u2 − 46.2u2
1

−19.2u2
2 − 28.9u2

3 − 12u1t
′ + 116u4t

′ − 50.4t′ + 20.4t′2 + ε1,t (25)

y2 = 254 + 32.6u1 + 113.2u2 + 32.6u3 + 37.1u4 − 36.8u1u2 + 57.3u4t
′

−2.42t′ + ε2,t (26)

where
t′ = (t− 53)/53, ε1,t ∼ N(0, 602), ε2,t ∼ N(0, 302) ,and
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Figure 11: CMP4x2 Scenario 1 Controlled by the DHOBE-MR Controller

y1 is the removal rate; its target value is 2000.
y2 is the with-in wafer non-uniformity; its target value is 100.
u1 is the platen speed.
u2 is the back pressure.
u3 is the polishing downforce.
u4 is the profile.

It is a rather complex form as it includes both the quadratic and two factor interaction
terms. All controllable factors u1 − u4 are scaled to [-1,1] range. The target values for y1

and y2, 2000 and 100 may be unrealistic. These values are set in order to evaluate the
performance of the algorithm. For y1, the larger value the better; and for y2, the smaller the
value the better.

2)Approximate Initial Models – Quadratic Models (Scenario 1)
The above “real” process model is unknown to us. So we have to use some models to
approximate the ‘real’ process model. First, the fully quadratic model used in the controller
is of the following form:

y1 = 1600 + 150u1 − 40u2 + 180u3 + 25u4 − 30u2
1 − 20u2

2

−25u2
3 − 60u1u2 − 0.9t (27)

and
y2 = 250 + 30u1 + 100u2 + 20u3 + 35u4 − 30u1u2 + 0.05t (28)

We can see that there is a big model error when compared with the real process model for
both parameters and drifts.

3)Approximate Initial Models – Linear Models (Scenario 2)
If the quadratic and interaction terms are dropped then the above model is changed to a
linear model.The constraints for the input and output are the same as in the quadratic
model.
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Figure 12: CMP4x2 Scenario 1 Controlled by the DHOBE-SV Controller
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Figure 13: CMP4x2 Scenario 2 Controlled by the DHOBE-MR Controller

y1 = 1600 + 150u1 − 40u2 + 180u3 + 25u4 − 0.9t (29)

y2 = 250 + 30u1 + 100u2 + 30u3 + 35u4 + 0.05t (30)

As the real process model is not severely nonlinear, the control effect with the linear
model is good (Figure 13 and 14).

4) Quadratic Models with Step Disturbance (Scenario 3)
The DHOBE algorithm was also tested when abrupt disturbances (shifts) happened. In this
case the quadratic initial model was used and the constraints were the same as before. The
abrupt shift for the first response happened at t = 20 with magnitude -100 and for the second
response the shift happened at t = 30 with magnitude 50. The simulation results are shown
in Figure 15 and Figure 16.

5) Performance Analysis
The OAQC method was simulated in [2] under exactly the same circumstances for the above
3 scenarios. The final results with regards to the statistical variance analysis were listed in
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Figure 14: CMP4x2 Scenario 2 Controlled by the DHOBE-SV Controller
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Figure 15: CMP4x2 Scenario 3 Controlled by DHOBE-MR
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Figure 16: CMP4x2 Scenario 3 Controlled by DHOBE-SV
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Scenario Method ȳ1 ȳ2 Sy1 Sy2 MSD1 MSD2

1 OAQC 1719.7 168.4 70.4 40.1 288.9 79.2
DHOBE-MR 1754.7 157.3 84.5 35.0 259.7 67.5
DHOBE-SV 1787.7 168.1 82.8 34.7 228.2 76.9

2 OAQC 1718.2 165.7 72.1 42.0 291.0 78.2
DHOBE-MR 1781.9 165.0 84.5 36.1 234.2 74.8
DHOBE-SV 1807.4 177.5 85.9 36.1 211.9 86.1

3 OAQC 1661.2 189.2 89.2 43.5 350.2 99.2
DHOBE-MR 1741.4 189.1 108.7 35.6 280.8 96.0
DHOBE-SV 1747.0 190.8 109.2 37.5 275.9 98.3

Table 4: Performance Measure of the OAQC Method, the DHOBE-MR and the DHOBE-SV
Controllers for CMP 4x2 Models

Table 4. There might be some factors from the tuning of the controller but we can see the
tendency, and thus prove the feasibility of the new controller.

Table 4 shows that for response 1, the mean values of the DHOBE algorithm based RtR
controllers are normally better than the OAQC controller, but their standard deviations are
larger than OAQC controller. For the second response, the mean values of the DHOBE
algorithm based RtR controllers are larger but the standard deviations are better than the
OAQC controller.

3.2.2 CMP Nonlinear 3 × 2 Model

In this section, the second CMP process model is used. It has only 3 controllable factors
and the responses are removal rate (y1) and within-wafer standard deviation (y2).
1) Underlying “Real” Process Model

y1 = 276.5 + 574.6u1 + 616.3u2 − 126.7u3 − 1109.5u2
1 − 286.1u2

2 + 989.1u2
3

−52.9u1u2 − 156.9u1u3 − 550.3u2u3 − 10t+ ε1,t (31)

and

y1 = 746.3 + 62.3u1 + 128.6u2 − 152.1u3 − 289.7u2
1 − 32.1u2

2 + 237.7u2
3

−28.9u1u2 − 122.1u1u3 − 140.6u2u3 + 1.5t+ ε2,t (32)

where ε1,t ∼ N(0, 602), ε2,t ∼ N(0, 302).

Controllable factors are back pressure downforce (u1), platen speed (u2) and slurry con-
centration (u3). They are all scaled to [-1,1] range and the target values for y1 and y2 are
2200 and 400 respectively. These models are fitted to the results of a 32-wafer experimental
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Figure 17: CMP3x2 Scenario 1 Controlled by the DHOBE-MR Controller

design and they served as “real” process model in the simulation. They are hard to control
using a linear model controller as they contain large second-order coefficients. This model
also shows the necessity of adopting the nonlinear controller.

2) Approximate Initial Models–Quadratic Models (Scenario 1)

The models we used to approximate the “real” process models at the beginning of runs
are:

y1 = 2500 + 400u1 + 500u2 − 100u3 − 800u2
1 − 200u2

2 + 1000u2
3 − 40u1u2

−100u1u3 − 350u2u3 − 7t (33)

y2 = 600 + 50u1 + 100u2 − 100u3 − 200u2
1 − 50u2

2 + 300u2
3 − 30u1u2 −

100u1u3 − 100u2u3 + 3t (34)

The simulation results are shown in Figure 17 and Figure 18.

3) Approximate Initial Models–Linear Models (Scenario 2)
The following simulations used a linear model to compensate for the nonlinear process model.
This also represents the case that using linear models may not be adequate for nonlinear
processes.

The linear models we used are:

y1 = 2500 + 400u1 + 500u2 − 100u3 − 7t (35)

y2 = 600 + 50u1 + 100u2 − 100u3 + 3t (36)
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Figure 18: CMP3x2 Scenario 1 Controlled by the DHOBE-SV Controller
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Figure 19: CMP3x2 Scenario 2 Controlled by the DHOBE-MR Controller
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Figure 20: CMP3x2 Scenario 2 Controlled by the DHOBE-SV Controller

22



Scenario Method ȳ1 ȳ2 Sy1 Sy2 MSD1 MSD2

1 OAQC 2069.9 478.8 143.8 53.5 193.5 95.0
DHOBE-MR 2005.5 490.5 139.7 41.2 235.9 98.6
DHOBE-SV 2002.8 490.4 141.4 42.7 238.9 98.9

2 OAQC 1950.4 595.0 430.7 99.6 543.9 220.4
DHOBE-MR 1921.5 663.9 457.0 99.9 568.4 271.9
DHOBE-SV 1921.8 659.6 381.6 71.6 499.0 256.8

Table 5: Performance Measure of the OAQC Method, the DHOBE-MR and the DHOBE-SV
Controllers for CMP3x2 Models

The simulation results are shown in Figure 19 and Figure 20.

The final results with regards to the statistical variance analysis were listed in Table 5.
Still we can see that the performance of the three controllers are comparable to each other.

From Table 5 it can be seen that when using the nonlinear model as the controller’s model
to compensate for the severe nonlinear processes, the mean value of response, standard
deviation and mean square deviation are in the acceptable range. But when the internal
model is linear, the compensation result is not good as expected. This also illustrates that
the nonlinear internal model is necessary for such kind of cases no matter for which kind of
control method.

4 Conclusions

We introduced two set-valued RtR control schemes based on the DHOBE algorithm. Apply-
ing the DHOBE algorithm reduces significantly the computation load for estimation. The
only knowledge required from the real process is the strict bound of the noise instead of
the detailed statistical properties of the noise. Moreover the rescue procedure ensures that
under large disturbances the controller will return the process to target in a short number
of runs. Finally, the control schemes in this paper are easy to implement. The DHOBE-MR
controller is much simpler than the DHOBE-SV controller in general. Therefore in most
cases we recommend the DHOBE-MR controller.

By simulation, it shows that the two controllers are robust to model and sensor errors. In
comparison with the EWMA controller and the OAQC controller, they have comparative or
better performance under various conditions. Furthermore it was shown that it is necessary
to apply nonlinear RtR controllers for severe nonlinear processes by simulation. Future
work will be done on the improvement of the estimation algorithm and application of the
controllers on real processes.
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