ABSTRACT

Title of Document: THE LATTICE PROJECT: A MULTI-MODEL
GRID COMPUTING SYSTEM

Adam Bazinet, Master of Science, 2009
Directed By: Professor Michael Cummings

Center for Bioinformatics and Computational Biology
Affiliate Professor, Department of Computer Science

This thesis presents The Lattice Project, a system that sembiultiple models of
Grid computing. Grid computing is a paradigm for leveraging meltghtributed
computational resources to solve fundamental scientific problemsetipaite large
amounts of computation. The system combines the traditional Semeidel of Grid
computing with the Desktop model of Grid computing, and is thus capable of
utilizing diverse resources such as institutional desktop computedicated
computing clusters, and machines volunteered by the general public tocadva
science. The production Grid system includes a fully-featuredinisgface, support

for a large number of popular scientific applications, a robust-léviel scheduler,

and novel enhancements such as a Grid-wide file caching schemebstantial

amount of scientific research has already been completed Tagd attice Project.

THE LATTICE PROJECT: A MULTI-MODEL GRID COMPUTING SYSTEM

By

Adam Bazinet

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, College Park, in partial fulfillment
of the requirements for the degree of
Master of Science
2009

Advisory Committee:

Prof. Michael Cummings, Chair
Prof. Alan Sussman

Prof. Chau-Wen Tseng

© Copyright by
Adam Bazinet
2009

Foreword

Some of the material in this thesis has been previously published, and
appropriate citations of that work have been made. Initial developroént
GSBL (section 5.1.3) and the Globus-BOINC adapter (section 6.2) wagaiotig
by Daniel Myers and me, and the original version of the GSGidgeb.1.8) was
developed by John Fuetsch. | have been the primary developer of Tice Patfject
since late 2004, and during this time | have been responsible focotitewued
development of GSBL, the GSG, and the Globus-BOINC adapter. Inaddithave
led the development of the command line user interface and web nrapitools
(sections 4.1.1-4.1.3), have been responsible for the hardware and software
configuration of the core Grid infrastructure (sections 4.2.1 and 4.2.2),lédhe
technical effort to integrate all the Grid resources, includetgp and administration
of the Lattice BOINC Project (section 4.2.3), have developed n&rg services
(section 5.1.1), have designed and implemented a data managerheniesc
(section 5.2) and Grid meta-scheduler (section 5.3), have developeatietbads of
porting BOINC applications (section 6.5.1), have worked on novel user peerfa
prototypes (section 7.2.1), and have been solely responsible for supportthg all

research projects that have used the production Grid system (Appendix B).

Acknowledgements

First and foremost, | would like to thank my advisor, Michael @umgs, for
all of his support during my time here at the University of N&arg, and for his
steadfast commitment to the development of The Lattice Prejgbtut which none

of this would have been possible.

Second, | would like to thank Daniel Myers and John Fuetsch for their
contributions to the design and development of the project when it Was s
infancy. | would also like to thank Stephen McLellan and Christophdirdsi] who
assisted with project development at an early and critical;stagigew Younge, who
recently helped upgrade the Globus-BOINC adapter; and JonathandHamehDeji

Akinyemi, who authored a few Grid services.

| thank Fritz McCall, director of computing facilities at UMIS, for
supporting our laboratory since the inception of the project. | hawerateived
support from Mike Landavere and Meldavid Manela in the Collegehehtical and
Life Sciences, where many researchers that use the sgstefrom. | also thank the
Office of Information Technology (OIT) for their contribution adspurces to the

project, and particularly Kevin Hildebrand for his technical expertise.

Last, but certainly not least, | would like to thank my famdy &ll of their

love and support.

Table of Contents

Foreword

... ii
F o LoV F=To (o =T 0 =T o | £ ii
TabIe Of CONIENLSeii e e e e e e e e e e e e eeeeeananne)Y
LISt OF T@DIES ...ttt ettt e e e e e e e e e e e as Vi
IS o T[S Vil
(@ gF=T o] (= g I 101 o To [1 [£ o] o PRSPPI 1

1.1 OVBIVIBW ...ttt ettt ettt e e e e e e e e e e e e e e e s ettt b bttt ettt et et e e e e e e eeeeeeesesnaannnnnnes 1
1.2 Motivation and PhiloSOPNYccooiiiiiiieeee e 2
1.2.1 Computational RESOUICESccciiiiiiiiiiiiiiiiaiee e et a e 3
1.2.2 Software DeVEIOPMENT...........uuuiiiiiii e e e e e e e e e e e eeeaeannns 4
1.2.3 USEI INTEITACEeeeiiieiiiieee ettt 4
1.3 Models of Grid COMPULINGooiiieieee et 5
Chapter 2: Related WOTKcooiiiiiiecc et e e e e e e e e e e e eaees 8
2.1 SEIVICE GIIUS .. uuutttiiieitieie et e ettt ettt e e e e e e e e e e e e e e e s bbb bbb e e e eees 8
A A B 1] o] o I €] [0 K TP 8
2.3 Combining Service and DesKIOP GridS..........cuuuuuuuriiiiiiiiieeeeeeeeeeeeeeeeeeevens 9
Chapter 3: MiddIeware SYSIEMSuuuiiiiiiiiiiie e e e et e e e e e e e e aaeeeeeeennnne 11
G 700 €] (o o 11 1RO PPPUPUPUPPPTRT 11
B2 BOINC ..ttt e e e e e e e 12
IR 0o] 8 To [o] U PP PP 14
i P B S ettt e et e et e e e e e e e e e e e e e a i rrrr e 14
Chapter 4: The LattiCe ProJECEuiii i 16
4.1 FRAMUIES ...ttt e e e e e e e e e e e e e e et e e e e renna 16
o O R Lo T 1Y/ o = PSP 16
4.1.2 JOD SUDIMISSION ...ttt e e e e e e e e e 17
4.1.3 Job Monitoring and Managementooveveeieiiiiiiiiiieeee e eeeeeeeeeeeeeeenenenens 18
4.2 Architecture and INfrastrUuCtUreooooiiiiiiiiiii e 21
4.2. 1 Grid CHENE oottt e e e e e e e e e e e s 22
A.2.2 GIIl SBIVET ..ttt ettt et e e e e e e e e e e e 23
4.2.3 Grit RESOUICESceiiiiitiiiiiaae e e e e e ettt a s e e e e e e e e e e e e e e e eeseesban e e e as 24
Chapter 5: Core FUNCHONAIILYuuuuiiiiieee e e e e e e e e e e e e e eeaanenennnnes 31
5.1 Gril SBIVICES .. .utttttiiiieiiitte et e e ettt ettt et e e e e e e e e e e e e s s e s bbb b e eeeees 31
5.0.0 OVBIVIEW ..ottt e e e et e et ettt e et et bbb e e e e e e e e e e e eeeeeeeeeenennnnnnns 31
5.1.2 The Challenges of Working with GIObUScccoovviiiiiiiiiiiii, 34
5.1.3 Grid Services Base Librarycccceceeiiiiiiiie e 35
5.1.4 Initial configuration of client-service interactionccccceeeeiiiieieeeeeeennn. 36
5.1.5 Argument PrOCESSINGcvvvuuiiiiiiiiiiaieeeeeeeeeeeeeeeeeeaassasinas s s e e eeeaaaeaneeeeensnnnnes 37

5.1.6 File TranSTerSooiiiiiieii it 39
5.1.7 Creating and Monitoring GRAM JODS............uuuiiiiiiiii e 40

5.1.8 Grid SErviCeS GENEIALONcciiiie i e e eeiieieeeeeeiiii e 41
5.2 Data ManagEMENTcoouiiiiiiie it e et et e e e e e e e a e 42
5.3 Meta-SCREUUIET ... 46
5.3.1 Scheduling AlQOrtNmMooii s 47
5.3.2 Scheduler Implementationcceeiiiiiiee e 49
Chapter 6: Combining Globus- and BOINC-based Systems...........ccccovvvvviiieeeeeeennnnnn. 50
6.1 Challenges in Combining Globus and BOINCcoooiiiiiiiiiiiii e 50
6.1.1 JOD SUDMISSION ..euiiiiiiiiiiiiiiiii e 50
6.1.2 JOD SPECITICALION ... 51
6.1.3 Data and Executable Stagingcccoooiiiiiiiiiiiii e 51
6.1.4 Reporting Of RESUILScoiiiiiei e e 51
6.2 GlODUS-BOINC AGAPLET ...veeiiiiieieee ettt 52
6.2.1 JOD SUDMISSION vt 52
6.2.2 JOD SPECITICALIONccc i 53
6.2.3 Data and Executable Stagingcccooooiiiiiiiiiiii e 55
6.2.4 Reporting Of RESUILSccooiiiii e 57
6.3 Other CusStomM COMPONENTS.....cciiiiiieeeeeeeeeeeeeei e e e e e e e e e e e e e e s 58
B.4 EXAMPIES ... r b 59
6.4.1 Portable BatCh SYStemcooiiiiiiiie e 59
6.4.2 BOINC-based DeSKIOP GFiduuuuuiiiiiiiiieeeeeeeeeeeeeeeevssn e e e e e e e e 60
6.5 Running Applications 0N BOINCuiiiiiii e 61
6.5.1 BOINC APPHCALIONS.....cceiiiiiiiiiiiiiiieee ettt e e e e e eeeeeeennnens 61
6.5.2 HOomogeneous REAUNUANCYuuvuuiuiiiiiiiieeeeeeeee et e e e e e e e e e e eees 63
6.5.3 GPU-enabled APPlICALIONSoiiiiiiiieeeiiieeeeeeeii e 64
Chapter 7: CONCIUSION.coiiiie ettt e e e e e e e e e e e e eeeeeeneeees 66
7.1 SUMMArY Of RESUILS ..euviiiiiic e e e e e e e 66
7.2 FULUIE WOTK ..ottt e e e e e e e e e e e e e eeeeeeennnees 66
7.2.1 User Interface DevelopmMEeNtcooouiiiiiiiiiiiiaiee e 67
7.2.2 Meta-Scheduler DevelopmeNntuuviieiiiiiiiie e 70
Y o] o 1= Lo [To =3 U PPPPPPTPPPPPPRTRRR 71
Appendix A: A Brief History of The Lattice Project...........cccccovvviiiiiiiiiiiinineeeeee, 71
Appendix B: Research Projects Using the Grid............ccccovvvviiviiiiiiiciiiie e, 73
Phylogenetic AnalysiS — GARLIuuuiiiiiiii e 74
Protein Sequence Comparison — HMMPfam..........ccooiiiiiiiiii 77
Conservation Reserve Network Design — MARXANccoovviiviiveviiiiiiiineeennn 78
Older RESEAICN PrOJECEScceviiiiiiiiiiieee ettt e e e e e e eeeeeeeeeenanna 80
Appendix C: A Pitch for Grid Computing at the University of Maryland 81
2]] o Te =1 o] 0 /2SS 84

4.1

4.2

4.3

5.1

5.2

List of Tables

Current computational resources — four Condor pools, three PBS clusters, one

210 N[O o o o) 27
Prospective computational resources — three Condor pools, one cluster 27
Retired computational resources — two Condor pools, one cluster........ 28

A short description of our Grid SErviCesScovvieiieiieiieeiiiiiieiiaiannnn. 32

A list of our Grid services, the platforms to which they have been ported, and
a measure (in CPU Years) of how much they have been used in production 33

Vi

List of Figures

4.1 A screenshot from the Lattice intranet showing the current status of jobs 16
4.2 A screenshot from the Lattice intranet showing a number of job seanch. fite

4.3 As shown in the diagram, data generally flows from leftdbtrand back
again through the system, i.e., from client to server to resourcbaakd
Despite the fact that they are represented separately dimgvam, the Grid
service and the Grid scheduler are both located on the Grid server in our

current Production SYSTEIMttt it et e e e ens 22
4.4 Grid client SOftWAre STACKvi et it e e e e e e e e e e e e 23
4.5 Grid server SOftWare StaCKccooeoie i, 24

4.6 A live snapshot of our Grid resources, available at
http://lattice.umiacs.umd.edu/reSOUICES/c.vviieiiiiie e 25

4.7 Any member of the general public with a computer may gaates in The
Lattice Project by signing up at our web site (http://boinc.umiacs.umd.edu)
and downloading BOINC client SOftware ..o 26

6.1 The BOINC client software includes a “core client” that executes apiphs

and interacts with them through a runtime systemcooiiiiiiin e, 61
6.2 The BOINC client manager, showing the progress of one running task 63
7.1 The Bio-STEER workflow compositiontoolc.ccoeeiieeen... 69

vii

Chapter 1: Introduction

1.1 Overview

Grid computing is a relatively recent formulation of distributethputing,
and although there are more formal definitions [40], we use the faljpene: Grid
computing is a model of distributed computing that uses geogradghiaad
administratively disparate resources. In Grid computing, individuab use access
computers and data transparently, without having to consider location tirogpera
system, account administration, and other details. In Grid computingeta#s are
abstracted, and the resources are virtualized [15].

The Lattice Project is a Grid computing research project anduption
system. Among its aims are to unite heterogeneous computingraesomto a
computational Grid system, so that resources are uniformly uaabl@ddressable.
Our Grid is composed of institutional resources, such as duater workstations,
and resources that are volunteered by users running Berkeley i@@estriucture for
Network Computing (BOINC — http://boinc.berkeley.edu/) software, whicters/ed
from the SETI@home project [4]. We have made a special effanhite traditional
Grid computing with what is known as desktop or volunteer computing, andookir w
has benefited greatly as a result. Since this research andmleesit work is coming
out of the Laboratory of Molecular Evolution, most of our Grid-enabledicgijgns
to date have been associated with the life sciences, althoughghabinut the system

design precludes other scientific domain applications from running on the Grid.

There are some important characteristics that make Thecd a&roject
unique. Whereas most BOINC projects concern themselves with oneulaart
problem, biological or otherwise, we set out to create a genel&izd system using
Globus [18], BOINC, and Condor (http://www.cs.wisc.edu/condor/) that would be
capable of running many different applications simultaneously. Mostthef
applications we run were not originally written with the ideaGoid computing in
mind, which presents a unique set of challenges. Since thisuitydefatured Grid
system, we have also spent time developing user interfacegyatitig many
different resource types (of which BOINC is one), and working etility to improve

other aspects of the system.

1.2 Motivation and Philosophy

As the size and complexity of scientific data has increasedhasothe
sophistication and computational complexity of data analysis. For example, \wihin t
life sciences entire data types that did not exist a relatsigort time ago (e.qg.,
complete genome sequences, large-scale microarray experingiits,relarge
multi-locus genotypes) now constitute much of data that is generated.
Correspondingly, estimation and inference lead to combinatorial optionz
problems and other challenges that have been dealt with using ctonaiba
intensive methods (e.g., stochastic simulation, machine learning alpespac
Bayesian analysis, Markov-chain Monte Carlo sampling). As a qaesee, the
computational demands of scientific research continue to incréasesfore, some
scientific researchers are turning to Grid computing to nie@t tomputing resource

needs, which is well suited to academic institutions in gen&sdl However, there

are several barriers to widespread use of Grid computing in ar@ag of scientific
research, including the lack of Grid-enabled applications and theuttyff of
producing them, the deficit of Grid computing resources availaleeSearch, and
the difficulty of using Grid computing effectively. Severaltbése barriers to the use
of Grid computing are being addressed [9, 23, 32, 33, 36].

Our ongoing Grid computing research and development efforts have bee
motivated in large part by the computational demands of our own chsé@ar
computational biology and bioinformatics. This research program decum
problems in molecular evolution and genetics, which often require approthetes
are computationally intensive. Our need for computer resources foravkried to
the development of a simple Grid computing system using commodity [®dls
which was used for a large-scale simulation study [14]. Our qubsé work has
made use of the Globus Tool&ind BOINC, and has focused on expanding the reach
of Grid computing by creating a system that combines these two models [36, 7].

Some of the basic perspectives guiding The Lattice Project are des@kied n

1.2.1 Computational Resources

With regard to including resources, our approach is simple: wevieethat
there is a place for every computer to participate in a Ghd.approximate number
of computers at the University of Maryland alone is estimated ®00, and most of
these computers are idle the majority of the time. It ishallenge to convince
individuals and organizations within the institution to join the Grid anldwer the
barriers to doing so.

We feel that the large heterogeneity in types of researchegpnshk best met

with heterogeneous computational resources. For example, some praobbyns
require a closely coupled parallel computing environment (e.g., techgh low
latency, high bandwidth interconnections between nodes). Other probleeasdye
atomized into wholly independent processes, the results of whichecamited to
form a composite result (e.g., a parameter sweep). Theseoftae called
“embarrassingly parallel” problems, and are appropriately hantieddesktop
computing resources. Hence, we designed the system to includeety wh these

resource types.

1.2.2 Software Development

With regard to software development, our approach has been to use
source tools when possible, and to create software that is modkeiélef and able
to adroitly incorporate upgrades to the Globus and BOINC toolkitsaldkgl and
robustness are also important, especially in Grid computing. Wewwaked hard to
make sure the Grid architecture scales to thousands of simulthnaegusng jobs,
and have also made sure the system is robust enough to run someahaitn@usly
and predictably. One can imagine that as a Grid system gnoeamplexity, there

are many possible points of failure that need to be identified and safegagedest.

1.2.3 User Interface

With regard to using the Grid, we approach it from the perspeatigeuser
familiar with the applications, but not necessarily familiathwiGrid computing.
Therefore we have striven to make the system easy to usestaionthe point of
making it seem like one is running applications as they would ondheirsystem.

Most of the analytical applications that scientific reseaschee familiar with employ

4

open

a command line interface, and we have attempted to provide a smeidace to our
Grid services. (Note: in the context of The Lattice Projedciantific application
enabled to run on the Grid is called a Grid service.) Thus, invokpagtaecular Grid
service with a particular string of arguments might exaciiyic the standard use of
the application, except that upon hitting return, the Grid takes thgrgmo
executable, input files, and job description, and sends it off to aeaesdurce. The

person submitting the job is not concerned about where the job is actually running.

1.3 Moddls of Grid Computing

At present, Grid computing systems can be broadly classified vmbo t
models. The first model is the Service Grid, which is considered'dlssical”
computational Grid system used by the scientific research cortyn8ervice Grids
provide rich feature-sets (e.g., resource discovery services aniti-user
authentication) and tend to concern themselves primarily with providiogsa to
large-scale, intra- and inter-institutional level resources @scltlusters or large
multiprocessors.

The second model of Grid computing systems is the Desktop Grid, an whi
cycles are scavenged from idle desktop computers. The powektdplegstems has
increased dramatically in recent years, and there has beerc@ritamt shift away
from centralized client/server computing to a decentralized moéighough
individual desktops remain inferior to “big iron” machines in manysvée.g.,
typically in terms of available memory, amount of mass g&rand interprocessor
latency and bandwidth), the combined power of hundreds to millions ofogeskt

systems united in a Desktop Grid represents a substantial compasagrce.

Desktop Grids excel at pleasingly parallel problems, and these Hmecome
particularly popular in the natural sciences where they have Umh in research
areas as diverse as radio astronomy [4], phylogenetics [37, frditusal
biochemistry (http://folding.stanford.edu/), and anti-HIV drug discovery
(http://fightaidsathome.scripps.edu/).

In contrast to classical scientific research Grid systdigisweight Desktop
Grids provide only a thin layer of abstraction over the resourcgsrtheage. This is
largely a function of their origins: systems such as SETI@hdir@rd its relatives
and descendants) were initially conceived to solve immediatanss problems, not
as objects of study themselves. Note that we specificalljuagxc Condor
(http://www.cs.wisc.edu/condor/) and similar systems from our dieimaf Desktop
Grids. Although Condor is a distributed computing system that uséssdyom idle
computers, the individual computers typically reside wholly within a singleutisti
and administrative domain. (As we will describe later, Condor cangslamportant
role in Grid computing systems, as it does in The Lattice Project.)

Many computational biology and other scientific problems are wékd to
processing by Desktop Grids for two main reasons. First, maewptgic research
problems require considerable CPU time to solve (e.g., largeneser sweeps), and
provisioning a cluster or symmetric multiprocessor to provide rebmmasponse
times for a large number of such jobs can be prohibitively expeasigelead to
massive over-provisioning during periods when demand for the resaudaght.
Second, many scientific computing algorithms exhibit extrencagrse-grained

parallelism, and many existing applications do not take advantagiee ofpecial

features of parallel hardware (e.g., multithreading on symmetuidtiprocessor
systems). In these cases, the fast interconnect of a syimmmtltiprocessor or
cluster is simply wasted. Hence, many scientific computing enoblwould be well
suited to Desktop Grid systems if they could be made available and easy to use.
Thus, we have two largely separate models of Grid computing. One provides a
rich feature set for accessing large-scale resourcesptliee provides a minimal
feature set but can utilize resources as informal as personguters in private
residences. Ideally, we would like the best of both worlds: we wikddd apply the

features of the first model over the scope of the latter.

Chapter 2: Related Work

2.1 Service Grids

Service Grids are what one normally thinks of when they thinikGod
computing: heavyweight, feature-rich Grid systems that federasege number of
institutional computing resources. Service Grids may be internationall@) seeh as
with the Enabling Grids for E-scienckE (EGEE - http://www.eeeegrg/) project or
the Open Science Grid (OSG - http://www.opensciencegrid.org/), omaiplsy
national, as with the TeraGrid (http://www.teragrid.org/). Usualhe computing
resources remain under the ownership and control of participating institutions, and the
rights to use those resources are established by some kind oftconsdhese Grids
exist primarily to advance various domains of science, and Hiegeare built with
similar underlying middleware, they often interoperate, shatorgpute cycles and
data with one another. Typically, researchers must requestoaatan to use such
Grid systems, or be involved with a large project that ajrdws an active resource
allocation. The Grids mentioned here are much larger in scope thathatiie

Project, although are built with similar middleware technology.

2.2 Desktop Grids

Desktop Grids, as we define them, are composed primarily of personal
computers volunteered by the general public. These machines rumtapcbhgram
that allows them to receive work from a centralized server tdoeymunicate with

periodically.

BOINC is the most widely used client/server software for settpng Desktop
Grid system. Most BOINC projects are strongly associatéa avparticular scientific
domain or problem, such as climate prediction (http://climatepredioet/) or
protein folding (http://boinc.bakerlab.org/). A distinguishing charadterd many of
these projects is that they have a vast supply of work that isderaous in nature,
and thus can easily satisfy the expectations of those who choasticgppte. We set
out to see if we could include a Desktop Grid in a comprehensives§stém for
scientific analysis. Therefore, participants in our BOINC grbjmay receive work
from a wide variety of different scientific applications. Tlgsa bit of a public
relations challenge since people do not always know what kind of behaagpect
from the application they may be running, but it is well worth mgethat challenge
to include the vast numbers of volunteers that are willing to Gwéri their

computers to the advancement of science.

2.3 Combining Service and Desktop Grids

Aside from The Lattice Project, which was the first projextcombine
Service and Desktop Grids, there have been very few projects daomilogsomething
similar. The only one of any note is the Enabling Desktop Gridsef8cience
(EDGeS - http://ledges-grid.eu/) project, which has come along s@headently.
Here is the abstract from a recent book chapter, EDGeS: ThenQuorBoundary

Between Service and Desktop Grids:

Service grids and desktop grids are both promoted by their supportive

communities as great solutions for solving the available compute power

problem and helping to balance loads across network systems. itk
however, has been undertaken to blend these two technologies toethes.
paper we introduce a new EU project, that is building technolobraiges to
facilitate service and desktop grid interoperability. We providexartomy and
background into service grids, such as EGEE and desktop grids or volunteer
computing platforms, such as BOINC and XtremWeb. We then describe our
approach for identifying translation technologies between sermidedasktop
grids. The individual themes discuss the actual bridging technslegigloyed

and the distributed data issues surrounding deployment. [5]

It appears they have been relatively successful in their enddawoifar. However,
their middleware is interoperable with gLite-based [31] Ser@ces, whereas our
system is the only one known to successfully integrate Desktiols Gith Globus.
Next we provide some additional detail about the middleware systemse in The

Lattice Project.

10

Chapter 3: Middleware Systems

3.1 Globus

The Globus Toolkit [18]represents the current state of the art in Grid
middleware. It is the focus of much of the ongoing research in @npating, and
we can expect to see continued support and development for it welhanfature.
Based on a web services architecture, Globus provides &ilir the execution and
management of jobs on remote resources, resource monitoring aodedys file
transfer, authentication and authorization, and encryption of mesdagieg. the
Globus Toolkit, it is possible to build large, highly distributed, and robust
computational grids.

The Globus Toolkit is the paradigmatic example of a heavyweigit G
system. Its Grid Security Infrastructure (GSI) provides ftong, distributed
authentication of mutually distrustful parties, and its Communitythduzation
Service (CAS) provides robust authorization capabilities. The Monitoand
Discovery System (MDS) allows for on-the-fly resource discpverhe Grid
Resource Allocation and Management (GRAM) service providedstnaation layer
that allows jobs to be submitted to computational resources withautkmowledge
of the underlying job submission and queuing systems used by thosecessd he
Grid File Transfer Protocol (GridFTP) and Reliable File TrangRFT) services
enable efficient data transfer, and the Replica Location SerfRLS) enables
efficient Grid-wide data management. Globus operates on a puslt modeis sent
from a submitting node to a computational resource, which thenptacead

processes the job, returning the results to the submitter. Moreoss, jthes can be

11

arbitrary: Globus resources are capable of executing usenedimalde. Input and
result files are typically transferred between a submitinge and a computing
resource.

Newer versions of Globus (version 3 and onward) support the concept of Grid
services, which are closely related to standard web serincé®th design and
implementation. Globus Toolkit 4 is compliant with the Web ServicesoiRee
Framework (WSRF), so its Grid services are, in fact, WSRFgtiant web services.
Grid services provide a clean way of representing operatioais the Grid can
perform on behalf of its users; they represent a higher ¢éaddstraction than that of
individual computational jobs, and they allow Globus-based Grids to serweie
than large queuing systems.

Over the past several years, our research has been aimedgathesGlobus
Toolkit, in combination with other Grid middleware, to create a comipuatt Grid
for scientific research. We began development with Globus Toolkit 3)(Gilhich
formed the backbone of our Grid system. Development continued untildiee flodly
functional production-level Grid system built around GT3. After sudakss
production use of this system, we focused our efforts on upgrading aastintture

to use Globus Toolkit 4 (GT4), which was released in early 2005.

3.2 BOINC

The Berkeley Open Infrastructure for Network Computing (BOINC
http://boinc.berkeley.edu/) is the direct descendant of the SETI@ poopect [4].
Developed by the same group at the University of California, Berkeley thabgdedel

SETI@home, BOINC is a generalized implementation of the niasidier,

12

Internet-scale model that SETI@home popularized. BOINC implemeant
public-computing Desktop Grid: it harnesses resources outside the boudidscof
institutional control. As in SETI@home, BOINC clients (i.e., persauwahputers)
retrieve jobs to execute from a server that acts as a kespasitory of work. In
contrast to Globus, which uses a push model, BOINC clphitsvork from a server.
Moreover, although BOINC is generalized in the sense that ithtamage any
arbitrary project, it is limited in that it expects to managemall number of very
large, well-defined projects: its aim is to allow individuadearch groups to manage
SETI@home-style projects without developing their own software [3].sAch,
BOINC does not provide mechanisms for executing arbitrary jobsherfly, for
determining which users may modify which jobs, or for any of therofunctions
one would expect a normal queuing system to provide.

Although BOINC does not support many of the features that Globus does, it
does provide the more limited functionality required by its model. é&x@mple,
BOINC can automatically match work to be processed with hogtshte to execute
it, taking into account estimated memory and disk requirementsvedls as
architecture and operating system constraints. Moreover, BOtN@ute clients are
expected to be unreliable; both in terms of returning a result in a timely maushier a
returning correct results. Therefore, BOINC includes support #urrdant
computing, in which multiple copies of the same computation are pedobye

different clients and then cross-checked for agreement.

13

3.3 Condor

The Condor project from the University of Wisconsin has been arfamnd
almost twenty years. Condor is not a Grid middleware topkitse, but rather a
middleware toolkit for distributed computing by means of cyclevesaging. The
software has proved to be extremely popular, robust, and useful. Wellgans&
Condor as a queuing system or a job scheduler for resource suledor pools)
comprised of computers in a single administrative domain. The Globokifl
includes a Condor scheduler adapter that enables a job submitte®AM @ run
on a Condor pool. This is the primary way that we make use of Condor; w
encourage various groups and departments on campus to federate theiemsto
Condor pools, and then we submit jobs to these pools via the Grid.

As a side note, our GT3-based production Grid system used Condor-&5[19]
the Grid meta-scheduler, or “master job queue”, although we etxdirthe need for
this component in the GT4 upgrade. Since the queuing systems on resoot€es
are sufficient to buffer jobs, the simple scheduling functionalityvigled by the
Condor matchmaking feature can be replaced by a more sophistichidlleng
algorithm, which is precisely what we have done by implementog own
Grid-level scheduler. However, Condor software continues to be ayahteeliable

part of the Grid system.

3.4 PBS

The Portable Batch System (PB3ittp://www.openpbs.org/) is software that
performs job scheduling on compute clusters. PBS runs on several diistercand

is the third resource manager type that we currently imterfgith; Condor and

14

BOINC are the other two. Other popular queuing systems thattepara similar
manner are Sun’s Grid Engine (SGE http://gridengine.sunsource.net/) and
Platform’s Load Sharing Facility (LSF http://www.platform.com/). It would be

possible to integrate resources running these other queuing systems, too.

15

Chapter 4. The Lattice Project

4.1 Features

We provide users with a command line interface for submitting and
monitoring jobs on a machine we call the "Grid Brick". After loggin, a user may
run commands that submit jobs to the Grid, monitor the status of jotesnowe jobs
from the system. By convention, the user's home directory isagmgtarea for Grid
input and output data. A user typically uploads input files to the 8rick and
organizes them in some manner before conducting their analysdsiAsompute
jobs complete, result files are automatically returned to thectdiry the job was
submitted from. We also make available web pages on the Latti@net for

monitoring job status (Figure 4.1).

4 "r) 'S &
#f .

The Lattice Pro'gct

¢/ Home Y BOINC Y Resources

Intranet 4 Home » Intranet » Job Status
The Grid Brick Job Status
Joining the B
ard
Jeb Description
Job History This page Is intended to help you monitor jobs that have been submitted to the Grid. Click the column header to sort the table.
cosas | | S N T e I e K |
ks A 133014790.3247100271688552 A.B0.62.deg.nocoS2.BS_b0 lepusers GARLI Running |2009-08-01 09:56:10| Not Finished
Sadiste s 20B454440.47723447219498605 A.80.62.123.nocoS2.BS_b0 lepusers GARLI Running |2009-08-01 09:56:53| Not Finished
29126330.4429337039572001 A.B0.62.deg.nocoS2.BS_bl lepusers GARLI Running |2009-08-01 09:59:26| Not Finished
123524480.02511847445169313 A.B0.62.123.nocoS2.BS_b1l lepusers GARLI Running |2009-08-01 10:00:14| Not Finished
B1812750.530381427644662 A.B0.62.deg.nocoS2.BS_b2 lepusers GARLI Running |2009-08-01 10:02:48| Not Finished
175735260.0259680977914659025| A.80.62.123.nocoS2.BS_b2 lepusers GARLI Running |2009-08-01 10:03:36| Not Finished
25789900.800253425911065 A.B0.62.deg.nocoS2.BS_b3 lepusers GARLI Running |2009-08-01 10:06:23| Not Finished
261177320.21352726427009794 A.80.62.123.nocoS2.BS_b3 lepusers GARLI Running |2009-08-01 10:07:11| Not Finished

Figure 4.1. A screenshot from the Lattice intrasteiwing the current status of jobs.

4.1.1 Job Types

Running a Grid-enabled application using our command line tools &lysu
very similar to using the original program, since most of theesaammand line

arguments will be present. Grid users are able to submit the jab MPI mode if

16

that is supported by the application, and are able to submit entiteebaif jobs with
a single command if that is supported by the Grid service. \We foand that a Grid
user often needs to submit many replicates of a particulatyjpdy so enabling
support for batch submission has been a high priority. Since somethatgorare
stochastic, some job batches will be completetynogeneous — i.e., the same
combination of program executable, input files, and parameters willpe different
results for each job replicate. Homogeneous job batches werevelglatasy to
implement and support, but it is easy to imagine any number of wayerageneous
job batch could be devised — using different input files with each plicaée, for
example, or varying program arguments to conduct a parametepsWe currently
support heterogeneous batches that use a different combination ofilegptdrfeach
job in the batch. Batch functionality is essential because it msdtesduling more
efficient, eliminates redundant data transfers, simplifiesrcekeeping, and generally
speeds up the flow of work through the system. The majority of oeangdsers make

use of batch submissions, so the utility of this feature has been proven.

4.1.2 Job Submission

Once a user has organized their input files and authenticatedetliemasing
their X.509 GSI certificate, they may use thece_submit script to submit a job
to the Grid. They may also require help to use various services,ths following

example, which shows the usage of the Structure [47] Grid service:

gridtest@valine:>lattice_submit Structure --help
Usage: Structure [OPTIONS]

-Kn Change the number of popula tions
-Ln Change the number of loci

-Nn Change the number of indivi duals

-e filename Read a different parameter input file

instead of 'extraparams’

17

-i filename Read a different input file

--jobname jobname The arbitrary name to assig n this job or
batch of jobs.
-m filename Read a different parameter input file
instead of 'mainparams'
-o filename Print results to a differen t output file
--replicates replica The number of times to exec ute this job.

All of the flags are optional. Default behavior is to search tineent working
directory for a file nameedhainparams and a file nameeéxtraparams , one of which
must specify the input data file. Thesplicates flag is used to submit batches of
jobs, either homogeneous or heterogeneous. In the case of agbe&es batch,
instead of specifying a single file, a directory of filesyn#e specified for the

following arguments:m, -e , and-i . Here is an example of a heterogeneous batch

submission:
gridtest@valine:>lattice_submit Structure --replica tes 10
-m mainparam_dir/ -e extraparams - i myinputfile

In this examplemainparam_dir ~ must have at least 10 differently named parameter

files in it (whose contents are also hopefully different; perlla@siser is varying a

parameter, renaming the output file, or varying the random se@dparams and

myinputfile stay constant and are used unchanged by each job replicate in the batch.
The Grid user does not have to specify the resource on which tie rjoiy;

this is for the Grid meta-scheduler to determine. Next wscrdee tools for

monitoring the status of submitted jobs.

4.1.3 Job Monitoring and Management
We have provided a utility callgeb_status that reports the status of jobs in
the system. This script uses a combination of command line arguments t@s$itiés r

and display them to the user. If no command line arguments aretgittea program,

18

it will list the jobs of the current user from the past 30 daiss Tist will include jobs
that are idle, running, completed, retrieved, and failed. Becausdighihas the
potential to get very long, it is recommended that the user m®adhe filters. For
example, issuing the commajod_status --user [username] will show only the

jobs submitted by a given user.

List View

The following is a sample run @éb_status that prints out a list of jobs
submitted by usefreed . Several fields are displayed when jobs are listed in this
manner. The JobID is a unique identifier for a specific job, amd bz used in

conjunction with theill_job script to remove a job from the system for any reason.

gridtestévaline:>job status --user freed

536740582.9558141272948417 freed 02714 13:15 MDIV Idle - khoisan

Total Jebs: 1 Running: 0 Idle: 1 Finished: 0 Retriewed: 0 Failed: 0

Information View

In addition to the listing viewpb_status also contains an "info" view that
lists more details about the job(s), which is activated with-ihie flag. This
information can be used to help resubmit jobs that fail, to discolierenjobs have

been scheduled, to inspect the command line that was used, and so forth.

gridtestévaline:>job status --jobid 536740582.9558141272948417 --info
JobKame: khodsan

JobID: 536740582.9558141272948417

Submitted by: freed

Submitted on: 2005-02-14 13:15:47

Finished:

Status: Idle

Scheduler: https://128.8.120.35:8443/warf/services/ManagedJobFactoryService
Resource: BOINC

BOINC Credit: None yet

Application: MDIV

Command line: —-steps 10000000 --maxT 5.0 --maxM 10.0 --model HEY --burnin 1000000 --random 2375625 MDIV-BG-MW.txt

19

Ordering Results

Jobs can be sorted by using theor --order flag. The output generated by
job_status IS sortable on eight values. A comma-separated list can bletausert
on more than one value. The sortable values are jobidD), {(ob start time
(start_time), user who submitted the jolusérid), current status of the job
(status), job finish time f{inish_time), name of the jobjdb_name), BOINC credit
assigned to the jolrredit), and the resource the job was assignedet@uice).
Thus, to sort first by user name, then by job status, then by @b tshe, the

following string would be useduserid,status,start_time" . For example:

gridtest@valine:>jcb status -u freed -o "status,start time”

JobID User Started App Status Finisghed Job Kame
536740582.9558141272948417 freed 02704 11:52 MDIV Retriewed 02/10 20:10 kheisan
2825874240.7911062768208433 freed 02704 11:53 MDIV Retrieved 02/07 09:38 khoisan
3678£170,.34100974924516145 freed 02704 11:54 MDIV Retrieved 02&/09 15:07 kheisan
£61021060.8170057331660435 freed 02704 11:58 MDIV Retriewed 02/07 09:38 kheisan
2655995320.5873708025896095 freed 02704 11:59 HDIV Retrieved 02707 09:38 khoisan
161120550.0304494240397306080 freed 02704 12:05 MDIV Retrieved 02&/07 09:38 kheisan

Viewing Old Jobs

When job_status is run without any arguments, some default values are
used. As discussed earligsh_status ~ assumes the user is only interested in their
own jobs. In addition to this assumption, "old" jobs are also filtered out automaticall
By default, only jobs that were started within the past 30 daypls that have not
yet completed) are shown whh_status is run. Jobs that were started more than
30 days ago can still be accessed via-dher --days flag, which can be combined
with other command line arguments. To check jobs ownegritigst that were

started in the past 10 days, one would issue the following command:

gridtest@valine:>job_status -u gridtest -d 10

20

The functionality provided byob_status

web interface (Figures 4.1 and 4.2).

has also been made available through a

5 & ‘A } > & *
*‘ € The Lattice Project
¥ ¥
’ *+ ——r e e
* " BOINC Y Resources
Intranet 4 Home » Intranet » Job Search
The Grid Brick |] b Searc h
Joining the _—
Grid
Search for a job or set of jobs containing any of the parameters below. The wildcard (%) can be used in the job name field to match any character.
Job History
Job Status Job Name Start Time Finish Time
Job Search
Grid Status Within the last
i At TOWP Y I [[
¥ (™ Show unfinished)
User Name Job Status Grid Service Resource
gtdadmin m Idle GARLI PBS
freed Running Complab BOINC
hellym Removed MDIV Condor
fushman Finished HMMPfam Fork
pknut?77 Failed Gsi
gridtest o Retrieved MARXAN o
demo - Failed Retrieve Structure v
frevee cpemammen | e
INTEL LINUX https:/f128.8.115.115:8443 /wsrf/services/ManagedlobFactoryService m
PPC WIN https:/f128.8.120.35:8443 fwsrf/services/ManagedlobFactoryService
05X https://131.118.1.37:8443 fwsrf/services/ManagedJobFactoryService
https:/f128.8.10.42:8443 fwsrf/services/ManagedlobFactoryService

Figure 4.2. A screenshot from the Lattice intrateiwing a number of job search filters.

4.2 Architecture and Infrastructure

This section discusses the general architecture of the systadn,also
provides a description of the infrastructure that currently maigeshe core Grid
system. The architecture of the system is a general clanersresource model; that
is, a Grid client invokes a Grid service in a particular way tasasfers data to the
server, which in turn schedules the job (or batch of jobs) to an agieopsource.
Figure 4.3 shows an architectural diagram of the system. Tlastinfcture required
to support the general architecture is modest but can be scalecheqeasary. (Here
we only describe the machines in our production system; we also ligvelapment

system intended for testing services and new functionality before it syeep)

21

BOINC clients dawnload workunits

. from the BOING server, compute,
‘ and retum the results
ts %

BOINC Server BOINC Client Pool

Client invokes & Grid senice with 3 Aqueveing system such as

particular set of arguments, thus N Grid serice submits job to Grid) Schaduler sends job to an - Condor o PBS distributes work
submitting a job to the Grid, scheduler on behall of client. appropriate Grid resource. ' to cluster nodes.
— I 1
= 0 . © N e ®
Grid Client Grid Service Grid Scheduler

Cluster Master Node

SMP

Figure 4.3. As shown in the diagram, data genefldlys from left to right and back again througle th
system, i.e., from client to server to resource badk. Despite the fact that they are represented
separately in the diagram, the Grid service and3tid scheduler are both located on the Grid server
in our current production system.

Cluster Nodes

4.2.1 Grid Client

The client in the architectural diagram and the “Grid Brickéntioned in
section 4.1 are the same entity. The original such machiine,umiacs.umd.edu ,
is an HP dual core Intel Xeon workstation running RHELS5 at 3.1 @itz 2 GB of
RAM and over 100 GB of disk space allocated for user home directOrfesse is
also currently one other Grid Brick in the College of Chemical lafed Sciences.)
These machines have sufficed to accommodate our small usesobi@sebut scaling
up will require more storage for user data and additional pointsbofission. Other
possibilities include a more ubiquitous command line interfacewabeainterface for
job submission and data management, which are discussed in Chapterifslof
Globus software, the Grid Brick needs to have GSI librariesaliadt for
authenticating Grid users, and it runs a GridFTP server in ordiemifer files to and

from the Grid server. It does not, however, need to run a Globus weilbese

container. Our own software, to be described later, makes calletbadibraries to

22

facilitate job submission and lifecycle management, and thusaspatsent on the

Grid Brick, along with various utility scripts (Figure 4.4).

Command-line Interface . Perl

. Java

* Service-specific templates and stubs are created by the Grid Service Generator
Figure 4.4. Grid client software stack.

4.2.2 Grid Server

The main Grid server issparagine.umiacs.umd.edu , and it is similar to the
Grid Brick except that its processors are 2.5 GHz and it has 4fGB\M. (Aside:
aspartate.umiacs.umd.edu , a sister server with 8 GB of RAM, powers the Lattice
BOINC Project.) The Grid server has an 80 GB disk partition rfamsitory job
storage. It runs the full Globus software stack, including a wefices container into
which Grid services are deployed (Figure 4.5). Since jobs areittedbmiirectly from
the Grid server to one of many computational resources, it is iampdHat firewalls
be configured to allow traffic on various ports (e.g., 8443-https, 2811-GrjdFTP

between the Grid server and remote resource. One can ieasgine a distributed,

23

decentralized model in which multiple Grid servers are actiftetgtioning, but so

far this has not been necessary.

Grid Service Hosting Environment, a.k.a. ‘the container” . Java

* Service-specific templates and stubs are created by the Grid Service Generator
Figure 4.5. Grid server software stack.

4.2.3 Grid Resources

On the Lattice web site we provide an up to the minute viewuofGrid
resources (Figure 4.6). There are currently eight distirsiurees where jobs can
run. We have compiled a table of current resources (Table 4.1), prespesources
(Table 4.2), and retired resources (Table 4.3). These tables incfadmation about
the size of the resources, the institution to which they belong, ratidduals to
contact for more information. Resource building is one of the princigalitees
associated with creating and expanding a Grid system, and ag kashbeen one of
our highest priorities. Beyond simply aggregating CPU power, resduritéing
usually involves collaboration between different people and organizatiunsh
people may not know anything about Grid computing, in which case wehtkiene
to explain the goals of the project, the benefits of being involv#d ity and the
technical details that enable these groups to effectively contritheie local

resources to the project. However, it is important to definetlgxabat constitutes a

24

local resource, how one can be created, and the kinds of policies andupescihat

govern its use, which we do next.

UMIACS Condor Pool . CLFS Condor Pool
Coppin Condor Pool _
191,35 CPU Years 8.62 CPU Years
. 8.42 CPU Years)
Lattice Jobs] Lattice Jobs
. Lattice Jobs .

Arch. & OS Idle Running Free CPUs i Arch. & OS5 Idle Running Free CPUs
Arch. & OS Idle Running Free CPUs

INTEL_LINUX i} 0 785 INTEL_WIN 0O 0 18
INTEL WIN 0O 0 106

a 0 2 FPC_OSX 1] 0 34
Disk wsed: 3.8G 7 13.46
sk wssar 19.1G f 91.2G Disk wssd: 11.2G 1 102.4G

show,/Mide condor_status
show) hide condor_status show,hide condor_status

Lattice on BOINC

Terpl:\ondor Condor Pool 16192.98 CPU Years Xseed
336,57 CPU Years Lattice Jobs 41.56 CPL Years
Lattice Jobs Arch. & OS Idle Running Free CPUs Lattice Jobs
Arch. & 0S Idie Running Free CPUs INTEL LINUX 630 6540 0 Arch. & 0S Idle Running Free CPUs
INTEL_WIN 0 0 82 PPC OSX O 0 0 PPC_LINUX O 0 400
Disk used: 0.1G / 59.BG INTEL WIN O 0 0 Disk used: 72.7G / 0.9T
Disk used: 6.2G [80.7G ¥seed Web Site | Ganglia

showyhide comdor_status
Lattice on BOINC Web Site

Deepthought SEIL Bluegrit
500,22 CPU Yaars 259.21 CPU Years 1.55 CPU Years
Lattice Jobs Lattice Jobs Lattice Jobs
Arch. & 0S8 Idle Running Free CPUs Arch. & 0S Idle Running Free CPUs | Arch. & 0S Idle Running Free CPUs
INTEL_LINUX 0 0 619 INTEL_LINUX © 0 152 PPC_LINUX O 0 100
Disk used: 50B.2G f 783.1G Disk ueed: 92.0G / 122.2G Disk used: 11.2G [104.6G
HPCC Web Site | Garglia | Stats HPCC Web Site | Ganglia | Stats Bluagrit Web Site

Total Lattice Jobs Idle 630 Running 5540

Total Free CPUs* Linux 2056 Windows 216 Mac OS5 X 34 2 Grand Tetal 2308

Grid Server Disk Used 1.0G/ 74.7G

=MNOTE: multi-core machines report each core as a separate CPU.

Figure 4.6. A live snapshot of our Grid resoureesilable at http://lattice.umiacs.umd.edu/resosltce

A local resource is defined as an established computing resource administered
in one domain and capable of functioning independently from a Grid systers.dfise
a local resource submit and monitor compute jobs using a local resmamtager
(LRM), often simply called a "scheduler". Pools of computers runr@uogdor
software or dedicated clusters running PBS software are conuuoahrésources. A

typical Grid system contains a meta-scheduler, which is distasdength in section

25

5.3. Meta-scheduling is the process of assigning computational jobstteabatithe
Grid level to an eligible local resource, where the job is theshegkiled locally. This
kind of hierarchical functionality is what makes Grid computing ajppgait is the
ability to use many different resources simultaneously andiesfflg, wherein the
Grid system handles user authentication and authorization, job schedmiihg
monitoring, and data placement. The Lattice Project provides tlese features,
thus enabling the student, scientist, or researcher to perforanga amount of
computation in a short amount of time without having to worry about ol le
details. In addition, the user gains access to computational resautséle of his or

her administrative domain. In the case of The Lattice Propeet of these resources

is a fully functional BOINC project capable of running Grid jobs (Figure 4.7).

e-Lattice Project
ter for Bioinformatics and Computational Biclogy

A -] T N
L == " Research Y Publications Y Personnel

The Lattice Project [Home
G LEE The Lattice Project
Applications
Create Account About The Lattice Project U £ the D
ser o e Da
B ® Background and introduction Y
Participant Profiles ® Research projects 4 UBT - bobuk
Questions & Answers * Applications Welcome to the profile of: UBT - bobuk an active participant with
Research Projects the UK BOINC Team.
Rules and Policies Join The Lattice Project
. See our Team website by...
Statistics 1. Read our rules and policies
Teams 2. Getting started .
e 3. Create account Project Status
Pl 4. Download BOING
Top Participants
5. When prompted, enter BOINC Server Results Users
Top Teams http:/ /boinc.umiacs.umd.edu/
Your Account Scheduler: running Results ready to send: 0 Total Users: 20738
Returning participants File Server: running Results in progress: 559 Total Hosts: 36542
weneo By | ® Your account Feeder: running Workunits in database: 31396
et ® Teams
B ll'IC [Detailed Status] [Workunit Graveyard]
=)o |
Community
® Participant profiles News
® Message boards
® Questions and answers August 1, 2009 = Workunit Errors
A number of GARLI jobs were accidentally released with an error in the configuration
iject totals and leader boards file that caused the job to termmar.e_ incorrectly; these jobs have been removed from
the system, and we apologize for this.
® Top participants
® Top computers June 11, 2009 - Web Site Update
® Top teams The update to the web site is basically done, so if you notice anything wrong, please
& Other statistics post about it. Thanks!
[Old News]
News is available as an RSS feed .

Figure 4.7. Any member of the general public wittoanputer may participate in The Lattice Project
by signing up at our web site (http://boinc.umiaosd.edu) and downloading BOINC client software.

26

Current Grid Resources

RESOURCE INSTITUTION APPROX. SIZE CONTACT
UMIACS UMCP 600 CPUs Fritz McCall
(Condor Pool) fmccall@umiacs.umd.edu
Terpcondor UMCP 230 CPUs ~ Josh Thornton
(Condor Pool) joshthor@umd.edu
CLFS UMCP 120 CPUs Meldavid Manela
(Condor Pool) mel@umd.edu
CSU Desktops Coppin State 700 CPUs Ahmed El-Haggan
(Condor Pool) aelhaggan@coppin.edu
Xseed Bowie State 448 CPUs Sadanand Srivastava
(PBS Cluster) ssrivastava@bowiestate.edu
Deepthought UMCP 1600 CPUs Kevin Hildebrand
(PBS Cluster) kevin@umd.edu
SEIL UMCP 300 CPUs Jeff McKinney
(PBS Cluster) kevin@umd.edu
Lattice on BOINC UMCP 3000+ CPUs Adam Bazinet

(BOINC Pool)

pknut777@umiacs.umd.eq

Table 4.1. Current computational resources — fandor pools, three PBS clusters, one BOINC pool.

Prospective Grid Resources

RESOURCE INSTITUTION |APPROX. SIZE CONTACT
Bowie State Bowie State unknown Marivic Weiss
(Condor Pool) MWeiss@bowiestate.edu

CSEE Desktops UMCP unknown Jeff McKinney
(Condor Pool) mckinney@umd.edu

RIT Desktops RIT unknown Gurcharan S Khanna
(Condor Pool) gskpop@rit.edu

Kansas Cluster University of Kansas unknown Dave Vieglais

(Cluster)

vieglais@ku.edu

Table 4.2. Prospective computational resourceseet@ondor pools, one cluster.

27

Retired Grid Resources

RESOURCE INSTITUTION | APPROX. SIZE CONTACT
Gridiron UMCP 100+ CPUs Kevin Hildebrand
(Condor Pool) kevin@umd.edu
USM Desktops USM 10 CPUs Suresh Balakrishnan
(Condor Pool) suresh@usmd.edu
Bluegrit UMBC 128 CPUs John Dorband
(PBS Cluster) dorband@umbc.edu

Table 4.3. Retired computational resources — twiadoo pools, one cluster.

We have attempted to be all-inclusive with regard to the tgpessources
that can be integrated into our system. Currently we support resdederated with
Condor, PBS, or BOINC. Once a scheduler is installed on a local cesabat
resource must be tied into the Grid system by installing Globua resource node
that has the capability to submit jobs using the local schedulee ®&lobus web
services container is running on that node, jobs may be submitted &stheae by
contacting the ManagedJobFactoryService at a

particular URLg., (

https://[host-IP]:8443/wsrf/services/ManagedJobFact oryService).
Installing Globus and configuring the necessary components is mviah t
task, but we have created detailed instructions to ease the prOresf these
components is called scheduler adapter (formerly job manager). There exists a
different scheduler adapter for each resource type. Thigisatly a collection of
scripts responsible for translating a generic job description @Ighus RSL or
JSDL format) into a resource-specific job description (e.€pador or PBS submit
file). The Globus Toolkit comes with several of these by defauliyto€h we have

customized and extended the Condor and PBS adapters. Our Globus-BOINC

interface includes, naturally, a BOINC scheduler adapter, wivehwrote from

28

scratch. Another important resource-specific component isdieluler provider,
which collects information about the current state of a resourag,-hember of free
CPUs, total RAM, total disk space, and so on. This information iseggtgd by the
Globus MDS service to produce a high-level view of the currene stétthe
computational resources on the Grid, which is summarily used fochsulsling and
monitoring. Once Globus is installed and configured, the resource shoaldebto
receive jobs from the Grid. We take measures to ensure tlthjoBsi do not interfere
with local use of the resource; some of this responsibility rmbytd the scheduler
itself, or things may be explicitly configured such that Goidlsj only backfill, or take
the lowest priority. Once a resource is configured, it gelyedakes not require much
additional maintenance as a result of its integration with the. @fe are currently
installing the most recent version of the Globus Toolkit in the 4.8ex IDf course,
these Globus installations may need to be periodically upgraded, dmityusnly

when a new major version of Globus is released.
Here are some facts about our resources:

e« We support three major platforms: Linux (both PowerPC and Intel-hased)
Windows, and Mac OS (both PowerPC and Intel-based). There isaalso
smattering of Solaris machines.

« Three different institutions are currently tied in to the GridM@P, Bowie
State University, and Coppin State University.

e Within UMCP, several groups have contributed resources: UMIACS, Ol
CLFS, PSLA, and ECE/ISR.

« We currently have four Condor pools, three dedicated clusters, and &CBOIN
project with a steadily growing number of participants.

e We currently have a total of 4000-5000 CPUs.

e A sizeable subset of our resources has R [48] installed, and we have
developed unique methods for running R code on Condor resources.

29

Given the growth and success of our BOINC project, it sedsas that our
resource building efforts going forward should primarily focus oniritegration of
dedicated, MPI-capable resources or resources with other spetiahpabilities to
complement the high throughput capability of BOINC. As users of tid <ystem
increase, so will demand for resources. The BOINC pool can eagilytgrmeet this
demand, but it will be necessary to continue to seek out other resamdenew
institutional partners. These resources are already paid tliey are simply
underutilized. In light of this, most people are receptive to the idea of joinimigla G

Participants sharing computing resources derive a number of tserefst
and foremost: if a group contributes computing resources to the Gydariheligible
to useall Grid resources. Therefore, they gain access to many owmguting
resources than they previously had access to, including a veeypaay of public
computing clients through the Lattice BOINC Project. Joining the @rght obviate
the need for future hardware purchases (e.g., a new clustenge participants do not
have a surplus of compute jobs, but instead have the opposite problenmatigey
purchased a cluster that is underutilized, and would like to incitsagidization rate.
By contributing such resources to the Grid system, they are ghiiem available to
many more people. In addition, we believe that compute resouree&ii system
with an intelligent scheduler are used more efficiently. Fangxe, jobs with large
memory requirements can be sent to clusters with large memorsg, rentte tightly
coupled jobs (e.g., MPI jobs) can be sent to clusters with fastconteects.
Pleasingly parallel jobs can be sent to Condor pools or to the BE&WEIC and so on.

In this manner, all computing resources are used more productively.

30

Chapter 5: Core Functionality

5.1 Grid Services

5.1.1 Overview

In the context of The Lattice ProjectGaid service usually refers to a single
application that has been Grid-enabled, a relatively involved prdbassve have
worked hard to streamline. However, it is worth stressing — irr éod@n application
to run on the Grid, a Grid service for that application must beenrdand deployed —
i.e., submission of arbitrary code is not currently supported at tddewel. We have
created 23 Grid services (see Table 5.1 for a brief descriptlan)gh many early
ones were for proof of concept, and so fewer than half have beero ranyt
appreciable extent (as reflected by their CPU year cresite Table 5.2). Grid users
may have a research project that requires the creation of one or more Goess&wi
frequently services are created on demand.

In keeping with standard web services procedures, we have designéddur
system with a generalized client-service architecture in nfintemote Grid client
invokes a set of operations that cause a particular applicationrtotm the Grid.
These operations are performed during job setup, submission, monitaridg,
cleanup, and they fall into the following areas: initial configora of Grid
client-service interaction, argument processing, transfer «f filfween client and
service, and submission and monitoring of Grid Resource Allocation and

Management (GRAM) jobs by the service.

31

BLAST (Basic Local Alignment Search Tool): a sequence databasé ggagram.
[1, 2]

Clustal W: a multiple sequence alignment program. [57]

CNS (Crystallography & NMR System): a program for molecularcstire
determination. [13]

GARLI (Genetic Algorithm for Rapid Likelihood Inference): a phylogenanalysis
program. [60]

gsi (Genealogical Sorting Index): a program for a statistical arsabfsvolutionary
trees. [16, 8]

IM (Isolation with Migration): a population genetics estimation program. [24]

LAMARC (Likelihood Analysis with Metropolis Algorithm using Random
Coalescence): a population genetics estimation program. [28-30]

MARXAN: a program used to design reserves for biodiversity conservifios6]

MDIV (Migration and Divergence), a population genetics estimation progeth. [

Migrate: a population genetics estimation program. [11, 12]

Modeltest: a program for evaluating the fit of evolutionary models. [45]

MrBayes: a phylogenetic analysis program. [53]

ms: a population genetics simulation program. [26]

MUSCLE: a multiple sequence alignment program. [17]

PAUP*: Phylogenetic Analysis Using Parsimony (*and other methods), a
phylogenetic analysis program. [56]

PHYML.: a phylogenetic analysis program. [22]

Pknots: an RNA structure prediction program. [52]

Seq-Gen: a sequence simulation program. [49]

Snn: a population genetics estimation program. [25]

SSEARCH: a pairwise sequence alignment program. [43, 55]

Structure: a population genetics inference program. [47]

Table 5.1. A short description of our Grid services

32

Application | Ported To BOINC Ported To CPU Year?
Linux X86 | Windows | Mac OS X
BLAST* No Yes | No No NIA
Clustal W Yes Yes Yes Yes N/A
CNS Yes Yes Yes No 25.43
Complall No Yes | Yes | Yes 6.66
GARLI Yes Yes Yes Yes 4912.76
gsf’ No Yes | Yes | Yes 142.45
HMMPfam Yes Yes Yes Yes 8193.54
IM Yes Yes Yes Yes 0.18
LAMARC Yes Yes Yes Yes N/A
MARXAN Yes No Yes No 5248.17
MDIV Yes Yes Yes Yes 13.25
Migrate-N Yes Yes Yes Yes 0.00
Modeltest Yes Yes Yes Yes N/A
MrBayes Yes Yes Yes Yes N/A
ms Yes Yes Yes Yes N/A
Muscle Yes Yes Yes Yes N/A
PAUP* No Yes | No No N/A
Phyml Yes Yes Yes Yes N/A
Pknots Yes Yes Yes Yes N/A
Seqg-gen Yes Yes Yes Yes N/A
Shn Yes Yes Yes Yes N/A
ssearch Yes Yes Yes Yes N/A
Structure Yes Yes Yes Yes N/A

®The Lattice Project has perform&8542.44CPU Years of computation.

!BLAST has not been ported to BOINC because it requires pre-staged databases.
“Complab has not been ported to BOINC because it is implemented in Java.

3gsi has not been ported to BOINC because it is implemented in R.

PAUP has not been ported to BOINC because of licensing restrictions.

Table 5.2. A list of our Grid services, the platfrto which they have been ported, and a measure (i
CPU Years) of how much they have been used in ptaxu

33

5.1.2 The Challenges of Working with Globus

As might be expected in research-grade software, there arempsohlith the
Globus Toolkit. First, the application programming interface (ARt Globus
provides for writing Grid services is a relatively low-levelepmand accomplishing
common tasks (such as transferring a file between two syst@msoften require a
lot of code. Writing a fully-featured application-based Gridsiser is not as easy as
we would like it to be.

Second, Globus uses an asynchronous, event-based model for programming
Grid services. Although such a model is well suited to Grid comgutwvhere one
may have to wait unknown lengths of time for operations to comf@aje between
submitting a job and receiving the results), it is not necesghilymost intuitive
programming model. In many cases the task of writing Grid ssvieill be
facilitated if it can be done using a procedural model with blockimgtion calls,
even if the underlying infrastructure is event-based.

Third, because the Globus Toolkit software is under continual development,
there is always the possibility that the API presented to &srdices will change
between versions. This is precisely what happened between GTGTahdA high
perceived probability of API change can make programmersahesibout writing
Grid services using the API. Finally, creating a new Geivise requires creating a
number of new files in a very specific directory structunel avith very specific
names, namespaces, and classes. This is a tedious and errgrrpoase at best, but
one we have to repeat each time we write a Grid serviceedver, because we are

interested in having our applications run in a general frameworljesgned our

34

Grid system around the idea that every Grid-enabled applicatiord eeupresented
as a Grid service. Thus, since we knew we would be building aisatihumber of
services, it was desirable to reduce the overhead associatdtiis/ihocess as much

as possible.

5.1.3 Grid Services Base Library

To address the above problems, we have written the Grid Servass B
Library (GSBL) [9], which provides a high-level, procedural ABt fvriting Grid
services. In our Grid system, GSBL is the API called bybmaty of Grid services; at
this level, no Globus code is invoked directly. Thus, in the eventhtbaBkobus API
changes, only GSBL will require updating. It should also be notedtbaGlobus
team tries to preserve concepts from version to version of thiatfaehich means
that high-level GSBL-supported operations should also migrate easily. This dudve
problem of a changing API.

Admittedly, we have not attempted to provide a friendly interfackde@ntire
Globus API or to support all possible operations. As a guiding principdeir API
design we have focused on making simple and common tasks easy émenpl
while leaving the programmer to the Globus API for more diffiemidd uncommon
tasks. We note, however, that after having built more than twenty qiraallGrid
services for life science applications, we have yet to encotlngereed to circumvent
GSBL to write custom Globus code. In the rest of this sectiordiseeiss the GSBL
APl and how it solves the problems associated with the low-leveht-based

programming model of Globus.

35

5.1.4 Initial configuration of client-service interaction

There are several steps that a Globus Grid client needs tontakeer to
establish communication with a Grid service. Because our Gridicesr are
implemented with the WS-Resource Framework (Web Services Resourc
Framework, WSRF), these services provide users with the ahlitgccess and
manipulate state (i.e., data values that persist across sendcactions). Following
standard GT4 conventions, each of our Grid services is composed of a Factaey servi
and an Instance service. When a client requests resourdrgreta contacts the
Factory service. When a client requests that an operation bempedf@an a specific
resource, it contacts the corresponding Instance service.

Thus, assuming the WS-Resource Factory pattern is in use, thefchbént
contacts a Factory service that in turn creates and inisabzeew resource. The
Factory service returns an endpoint reference to a WS-Resoumgaosed of an
Instance service and the recently created resource. The ¢ertenfathe Instance
service object has been defined in Web Services Description Lanf&dzl), and
the associated resource provides state for this particularsémtce Instance. This
process requires a significant amount of relatively dense cotdes thearly identical
between Grid services. Unfortunately, although the overall logic reroangtant, the
classes involved do change, because each Grid service is urtypesdy Moreover,
there is no supertype for the classes, and the names of theotfisntdi be called
depend on the name of the service (e.g, one has to call
get[SvcName]FactoryPortTypePort() and get[SvcName]PortTypePort()), SO

placing this logic into a library is not straightforward: neittsrbclassing nor

36

templating is effective.
In order to place this code in a library, we made use of the Raflection

APIs. The constructor for the Grid client base class takparasneters a Class object
representing the type of the class used to contact the Factergeseand a Class
object representing the type of the class used to contadhgtace service; using
these objects, it can create new instances of these claitisest prior knowledge of
their type. To call the creation method (whose name varies baséeé oame of the
Grid service), we use the reflection API to search the metbbtse locator object
for a method whose name and signature match that which is néleeledye obtain a
reference to this method and call it on the object. To reitesduen this initial setup
is complete, a new Grid resource will be created for thiscpdar job request and a
handle to an Instance service will be returned to the client. Thdléngs used to
contact the Grid service when performing the operations discusdbd imext few

sections.

5.1.5 Argument Processing

The applications most often used in our computational biology research ca
frequently accept a large number of command line arguments8HARCH, part
of the FASTA packagedp], has 24 arguments). The straightforward Globus solution
to representing these parameters in a Grid services comta#tl be to create a
complex type to hold them, and pass an instance of this complextypefe client
to the Grid service. Although this approach is adequate in mang, dasmes not
fully meet our needs. Defining a type to handle configuration petesis helpful,

but when such a type has dozens of fields, some sort of additional sisppeetied:

37

manually copying user input into and out of such a type becomes tedidus a
error-prone.

In order to provide more robust support for configuration parametars, w
chose to create a separate XML file describing the parasn&ach parameter has a
corresponding record in the file giving the name of the parametelescription, and
to facilitate understanding, the name of the flag that thenpeteat corresponds to in

the original program. A sample record appears as follows:

<argument key="dbSize">

<flag>z</flag>
<type>java.lang.Integer</type>
<description>Set the database size to

use when computing E-values.</description>
<takes>size</takes>
<optionalFlag>true</optionalFlag>
<optionalValue>false</optionalValue>
</argument>

The WSDL required to describe the complex type corresponding to the
arguments is automatically generated from this XML filengsbur Grid Services
Generator (see secti@nl.§. Perl scripts are also automatically generated that accept
the configuration parameters as command line arguments, Weta but to a
specifically-formatted file, and then execute the Grid serdliemt. GSBL provides a
class for the Grid service client that will read in this find initialize an Instance of
the custom type.

Finally, once the argument type has been sent to the Grid setwick need
to be converted back into an argument string to be passed to a G&AKard
ultimately to the original command line program). GSBL providekss that accepts
the argument type and, using the XML file described above, gesethe

corresponding argument string.

38

One might ask, why not simply convert the client command line angisne
a string, send that to the Grid service, and be done with it? Bygahe arguments,
we allow clients and services to make choices based on the wéltes arguments,
which is required for properly configuring GRAM jobs and helpful fatd&evel

parallelism.

5.1.6 File Transfers

Effective Grid computing requires easy, reliable, bidirectiorzaddfer of files
between Grid clients and Grid services. There are, howeverkey problems that
need to be solved. First, there is the question of how the fietodre transferred:
Globus provides a number of different mechanisms for transfertasg $econd, file
transfer is one of the areas in Grid computing in which the Glabyachronous
model is particularly important: subject to file sizes and nétvwspeeds, transferring
a file could easily take more time than the timeout of the underlying remote precedur
call libraries. Thus, we need to provide some mechanism by whglevknt-based
process can be made to look procedural.

Our original GT3-based Grid system used the Global Acce§&etondary
Storage (GASS) protocol to send files between the client ansetlrer, but we are
now using GridFTP in conjunction with the Reliable File TransfdfT(Rservice in
our GT4-based system. The GridFTP protocol provides for secure,rédmtsand
efficient transfer of data. The Globus Toolkit also provides tbhetrmommonly used
implementation of that protocol, composed of a server implementation and a
scriptable command line client. In our system, a GridFTP seorexr on both the

client and the service, thus enabling file transfer between .tHRRT is a

39

WSRF-compliant web service that provides scheduler-like functign&dit data
movement. Provided with a list of source and destination URLs (e.g.,
gsiftp://localhost/foo), the service writes the file transfer description into a
database and then moves the files on behalf of the user using Gri@iRTS®, in
summary, GSBL negotiates with the RFT service to initideetfansfers, which in
turn makes recourse to GridFTP for the actual data transfers.

In GSBL, theReliableFileTransferManager class is used to initiate and
monitor file transfers. It accepts a list of files, an uploadavnload operation, and a
local and remote endpoint. Once the transfer is initialized, onks ca
beginTransfer() to start the transfer in a separate thread. This call sHmeild
immediately followed by a call taaitComplete() , which will block until the file
transfer job object has issued its “transfer complete” ndiifica Using these two
simple function calls, file transfer can be made to look procedatato point do
developers have to concern themselves with event-handling. Aseanstd, the
ability to transfer a batch of files in one method call markargrovement over the
GT3-based system.

This file transfer code is used in two phases of a job lifeecyidie first phase
is uploading job input files from the Grid client to the Grid seramd the second

phase is uploading job output files from the server to the client.

5.1.7 Creating and Monitoring GRAM Jobs
Our Grid services need to submit GRAM jobs to remote computationa
resources on behalf of the client. These jobs may have to waitemote queuing

system for some period of time, and even once execution begins, prgoemsitake

40

a long time. As such, the Globus API for submitting GRAM jobs iasymchronous,
event-based construction.

The GSBLJobManager class for Grid services works much like the
ReliableFileTransferManager class does for file transfer: it provides methods for
starting a GRAM job and testing whether or not it completed successfully.

When a client callsunService() , passing along the complex argument type
discussed in sectidh 1.5 this Grid service method prepares to create the GRAM job
and returns immediately to the client, which may then terminaten Ehis point on,
the service is in charge of submitting and monitoring the job, andasr@sponsible
for transferring output files back to the client host when the job is finished.

Because of this design, it is necessary for job monitoring tonresn the
event that the Globus web services container is shut down andedsta otherwise
interrupted. We have provided mechanisms that Grid services cato usereate
GRAM job objects and check the status of jobs that were previoulstyited. These
mechanisms make use of persistent state information about jobs that Globus keeps on
disk, as well as a database that helps to determine which jobsibiayet finished.
This monitoring process resumes automatically as each Gricceseasviinitialized

when the web services container is restarted.

5.1.8 Grid Services Generator

In order to further streamline the creation of Grid servicesgu€iSBL, we
have written a program, the Grid Services Generator (GSQ)gémerates skeleton
implementations and build environments for Grid services based on rmekt

limited set of inputs (name of the service, package in whicheimg@htation classes

41

should reside, Extensible Markup Language [XML] description of ghmgram
arguments, and location in the web services container at \ileckervice will be
deployed). After running the program, the user will have client anmicselava class
templates that work with GSBL, a Web Services Descriptiorgliage (WSDL) file
for both the Factory service and the Instance service (both ohwahécbasic Globus
services), other required Globus configuration files, and build $itethat the code
can be easily compiled and deployed within a working directorgalse setting up
this development environment for each new Grid service is otherarse
extraordinarily tedious and error-prone task, we have found that 86 G
dramatically increases programmer productivity.

The Grid Services Generator was designed to ease the operedlss of
developing Grid services. In particular, it attempts to minintiieeamount of code a
programmer has to write by stamping out generic GSBL-basedtl#ms®s for a Grid
client and service. Afterward, a programmer simply compldiesnbn-templated
portions of these classes to customize the behavior of their xite. In this way,

it is possible to quickly develop a suite of application-based Grid services.

5.2 Data Management

We recently implemented a relatively sophisticated Grid-vdd&a caching
scheme, which saves on disk space and bandwidth throughout the systensid@he ba
idea is that an input data file cache is maintained on thes@érie&r and on each Grid
resource. Before any new file transfers are initiatedhgeifrom client to server or
from server to resource), the system checks with a central dir¢otseg if the file(s)

to be transferred already exist at the destination. This malyebease if a particular

42

input file has been used for a job previously, which we find happensaftatewith
certain services. Furthermore, program executables are adbed as part of this
scheme, which otherwise would be transferred repeatedly with each job submission.

We use the Globus Replica Location Service (RLS) to keep tradkeof
locations of files. RLS maintains and provides access to mappiognation from
logical names for data items to target names. Theset taegees may represent
physical locations of data items, or an entry in the RLS may to another level of
logical naming for the data item. RLS is intended to be oree sdt of services for
providing data replication management in a Grid. By itself, it dossguarantee
consistency among replicated data or guarantee the uniquenefkenaines
registered in the directory, but is intended to be used by highelr-Grid services
that provide these functionalities.

While we are not maintaining replicg&r se, the basic functionality RLS
provides is appropriate for our needs. A simple MD5 hash uniquely i@sntifi
particular file, which RLS calls a logical file nameHN). There is a one-to-many
mapping from an LFN to a physical file name (PFN), sinceséimee file may exist on
multiple resources. In our system, PFENs are GridFTP URL® iden example of an

LFN — PFN mapping:

2349ab6c2d32527b0c9dbcfa26e8690c¢ ->

gsiftp://128.8.141.68:2811/${GLOBUS_SCRATCH_DIR}/ca che/234/2349ab6c2d
32527b0c9dbcfa26e8690c/garli.conf

The PFN specifies the remote resource and the path to thenfitbe remote file

system. To handle the case of two files having identical contarttsdifferent

43

filenames, we keep only one physical copy and use symlinks to esatemthe
different filenames. For example, here is a subdirectory ofiltnedche on the Grid

server:

gtdadmin@asparagine:/export/grid_files/cache/559/55 9h4f8378046a6f9ed2
04fc5260160d> Is -

-rw-rw-r-- 1 gt4admin gt4admin 1147 Aug 1 19:22
559h4f8378046a6f9ed204fc5260160d

Irwxrwxrwx 1 gt4admin gt4admin 94 Aug 1 19:22 ga rlil67.conf ->
/export/grid_files/cache/559/559b4f8378046a6f9ed204 fc5260160d/559b4f8
378046a6f9ed204fc5260160d

Since these caches may grow to contain many thousands of filesake them
hierarchical (as can be seen from the URLs and paths in the previousedasipte
UNIX file systems have a limit on how many inodes a directory may contain.

Of course, it is necessary to avoid completely filling up the ipalysolume
the cache resides on. Our strategy is to periodically renil@gefifom a cache that is
becoming dangerously large. In order to achieve this, three thiagseaded. First,
resources must report disk usage statistics about the physigaleswhere the cache
resides. Second, the RLS database must be augmented with mistaéaizh file —
namely, a timestamp marking when the file was last "reqdésor use in a job, and
the file size in bytes. Third, the cleanup process must combisantiormation to
determine which files should be removedtually remove them somehow, and also
delete the corresponding RLS entries.

To report disk usage, each Globus scheduler provider is modified to guery f
two quantities: "disk used”, and "disk available". This information myafes back to

the central MDS database on the Grid server emamynutes (in our systenm = 3).

44

Once the information is aggregated, it can be displayed on the respage (Figure
4.6) and used in the cache cleanup algorithm.

Augmenting the RLS database with metadata about the filesnifios
involves a one-time addition of two string “attributes” (in RLSnt@ology)
associated with each PFNize (in bytes), andequested (a UNIX timestamp).
Code was added to GSBL to find the sizes of files and also todstes associated
with files as UNIX timestamps for the sake of easy comparislowever, there are at
least two conditions that need to be met before files can bg safebved: 1) no file
transfers (job submissions or result retrievals) should be imgg®@nd 2) only files
whose requested timestampolger than the oldest currently running job are eligible
for deletion. Thus, Grid activity is paused once nightly for a sibite to perform
cache cleanup and other maintenance.

To actually carry out the deletion, the following formula is autitgeused: if a
cache is > 80% full AND < 20G remain, remove files until taehe is < 75% full
OR > 25G remain. Note that it may not be possible to do thishforfollowing
reasons: 1) the cache on a remote resource is sharing the woilinfiees outside of
our control or 2) some files may be in use by jobs and not eliffibldeletion. The
algorithm chooses to delete the oldest files first and tmgnenough files to bring
disk usage under desired thresholds. However, it is still possibadbies to grow
very full of files that have not been requested recently, thus patttigiin on backup
systems because of the sheer number of files, even if they d&keaaipanuch space.
Thus, it has been necessary to layer on an additional policy ohdeliéts that were

last requested more thdrdays ago (where for examptes= 90). Eventually, it would

45

be nice to replace the current hand-picked, global values (i.e., Z6@ and 90
days) with auto-tuned, resource-specific settings based on recent usages patte

For each resource cache in need of cleanup, a GRAM job is subruitiesl t
proper scheduler on the remote resource (e.g., Condor, PBS, or BOING)ittég
a GRAM job is necessary in order for tkeeOBUS_SCRATCH_DIRariable to be
properly interpreted — otherwise, we could simply use the RFit@m®gram. These
are very simple jobs/Hin/true) with file cleanup directives that delete the
appropriate files, which correspond to LFN PFN mappings in the RLS database.
The RLS mappings are then deleted using dloeus-ris-cli command line
utility.

Since disk space on some resources is quite limited, in someveadesve
been able to greatly increase the number of concurrently rujobsdy eliminating
redundant copies of files. Another benefit is that because thene amecessary file
transfers, the job submission process is sped up and no bandwidth is
wasted. Naturally, these gains are only made when input feéeieased, but we find
this happens rather frequently. Furthermore, we can use the knowledtere the
data in the Grid currently resides to make more intelligentdsdimg decisions, since
moving the computation to the data is generally more efficient eandnverse (and

a popular paradigm nowadays, as in the Google File System [20]).

5.3 Meta-schedul er

The scheduling component of any Grid system is likely to be orfeeahbst
important and logically complex, since to a large extent ierd@hes the overall

efficiency of the system. This component is called a metadstdre because it

46

decides on which local resource a job should run; when a job reachesnmbie
resource, it is usually scheduled again in that local environmemhédsler must be
informed about the present state of remote resources, and thiatishe Monitoring
and Discovery Service (MDS) does. MDS is a default Globus compdhant
requires minimal configuration. For example, consider a Globus installatievhfoin
MDS has been configured to report about the status of a Condor pool. tasbahe
Condor scheduler provider will periodically parse the output of the Camtiomand
condor_status to discover the total number of nodes in the pool, the number of
nodes that are actually free (not bound to a machine owner or anothputational
process), and other information about the pool. This information is StoNgIL
format in the Globus container memory space and is valid only fepeaified
lifetime (in our system, 3 minutes).

The MDS database can be queried to retrieve various kinds of inionmat
such as the status of the Condor pool in the example above. Also,dimeatibn in
an MDS database can be periodically propagated to another MDSsgatabaing in
a different Globus container process. Using this mechanism, itsgfgoto centrally
aggregate all of the data about remote Grid resources, whpcecisely what we do:
we collect all the information about remote resources in theat€atid server MDS
database, and query it to make scheduling decisions. Next wbddbe scheduling

algorithm in detail.

5.3.1 Scheduling Algorithm

First of all, the scheduler needs to know which resources areingpdirta

remote installation goes offline, any jobs sent there will &0l we cannot safely

47

assume that our resources are always up and running. Insteadceéfage to receive
MDS information from a certain resource, we mark the resourcefisme” and
make sure no new jobs are scheduled there. Then the question beobries:
resources thaare reporting, which one do we send a particular job to? Well, the
simple fact is that not all jobs will run on all resources,h&dcheduler must match
on various attributes to narrow down the possibilities. For exan@esytstem keeps
track of which CPU architecture and operating system combirsagach application

is compiled for (e.g., Intel/Mac OS X), and compares this liatrat) the platforms
each resource is advertising. Then, if the job has a minimum memory reejiiyeve
filter out resources that do not meet the minimum memoryriomeOther resource
requirements are also considered if necessary, such as whettotrtioe resource is
MPI-capable, and whether or not it has additional software installedRg.@ne can
imagine any number of additional filtering and ranking criteeispecially around
complex issues likegpolicy — determining which users may access a particular
resource, which users have priority over other users, when a partigstairce may

be used and for how long, and so on. We have not yet placed any such policy
restrictions on resource use at the Grid level, though it reayebessary to do so in
the future. However, it is important to stress that when Grid johsat the local
resource level, they are always subject to whatever localigolgovern use of that
resource. From the final set of eligible resources, the schezthdeses the one with

the lightest load and submits the job there.

48

5.3.2 Scheduler Implementation

As previously mentioned, the GT3-based Grid system made use of Condor-G,
and specifically of its "matchmaking” feature. This simple loddrtng scheduler
was fed information by an older version of MDS. We abandoned Condoffa@an
of a custom scheduling framework, but retained some basic ifleas that
system. As things stand, our meta-scheduler is basically cochpifisecouple of Perl
scripts and a GSBL class. Thet_resource_info script periodically reaps the
central MDS database and stores a list of available rescamdetheir attributes in a
simplified plaintext format. Theget_resource script implements the scheduling
algorithm and is called by the GSBL class to pick a resowtwen a job is being

scheduled. Planned improvements to the scheduler are discussed in section 7.2.2.

49

Chapter 6: Combining Globus- and BOINC-based System

It is useful to define some BOINC-related terms that bélused throughout
this chapter. In BOINC, work unit defines a unit of computation to be executed. A
result unit is an instance of a work unit: i.e., due to redundant computing, a BOINC
server might create three result units for a given work unit. eTtleee (not yet
processed) result units are sent to clients, which process tmd teem. Once a
quorum is reached (e.g., two matching result units have been ret@medlients),
one result unit becomes the canonical result for the work unit. Fpligiyy we may
sometimes refer to “the result” of a work unit, in which the quorandaical

designation process is subsumed.

6.1 Challenges in Combining Globus and BOINC

As described previously, Globus and BOINC differ significantlytheir
assumptions regarding the need they seek to fill and in the fedbatethey provide.
Any attempt to join these two systems must thus reconcile thiéseences. Here, we

discuss some of the concrete challenges that must be overcome.

6.1.1 Job Submission

BOINC was designed to allow a single coordinated group to manage
large-scale distributed computing projects. As such, BOINC has aaruwf
assumptions about the way in which it will be used. In particulaiNBChas no
concept of users, and thus no concept of remote users: there is gisiptle local

entity that provides work for the system. Globus, on the other hapoessky allows

50

multiple distributed users to submit jobs. Thus, BOINC must somehaw ¢

multi-user functionality.

6.1.2 Job Specification

GRAM, the protocol Globus uses to manage jobs, was designed assuming
jobs would execute on conventional UNIX systems (i.e., systemdUMtK-like file
systems where programs are executed by specifying a pattmmand, and some
arguments). BOINC, on the other hand, has no concept of paths and todge
conception of a file system. Thus, a Globus job description document) (AiD
specify something like <executable>/usr/bin/foo</executable> ". In a Grid
system where this request could be tasked to a desktop computethesiWgndows
operating system withoubo installed, what is the meaning ofusr/bin/foo "2

This request needs to be mapped into the file-system-less BOINC universe.

6.1.3 Data and Executable Staging

Globus is able to stage both data and executable files from sunlgrsigstems
to the host on which the job executes. In particular, this mean&kblatis compute
resources are able to execute arbitrary, user-supplied codesthdrasjeeds to be a
mechanism to handle the staging of data all the way down to thé@BGients, and

the issue of arbitrary code execution on a Desktop Grid needs to be addressed.

6.1.4 Reporting of Results
Globus can also stage result data and program output back to thigisgbm
node from the compute node(s). Therefore, there needs to be some alkay fites

generated by BOINC clients and return them to the Globus sutgmitbde. In the

51

next section, we provide details of our solution that integrates BOINC and Globus.

6.2 Globus-BOINC Adapter

6.2.1 Job Submission

By design, Globus provides mechanisms and procedures for integrating n
types of resources: by placing an abstraction layer (GRAM) tseresources, it
reduces the task of integrating a new resource type to thairiing a
GRAM-compliant interface for that resource. Therefore, we havien a GRAM
scheduler adapter (commonly known as a job manager) for BOINColbhmegnager
in this case is more complicated than in others, however, bedau8©OINC model
is significantly different from more traditional queuing systems.

Globus provides a Perl base class from which job managers meag, dend
by extending this base class, BOINC gains the ability te@gobs from the outside
world, thus acquiring multi-user functionality. Although this achievesiymaf the
capabilities of a true multi-user system, it does not provide toprteduction-grade
authentication and authorization capabilities. Rather than graft awttenti and
authorization onto BOINC, we choose to leave these tasks to a Gadsoeduler
such as Condor-G, or in the case of our current system, a rhetdusar of our own
design. In either case, the component is tightly integrated ha&thGlobus Security
Infrastructure. We believe that this represents a much pedfeplution than forcing
the concept of “BOINC local users” onto BOINC or making BOINC @anaf Grid
credentials. Note, however, that our design does provide, through Globus,seult
authentication and authorization not heretofore available to BOINC.

The other three challenges require somewhat more complicatéiss] and

52

we discuss them next.

6.2.2 Job Specification

One of the primary tasks of a Globus job manager is to translatgol
description documents (JDD) used by GRAM into a native formatttieamanaged
resource can understand. In many cases, this can be a straighdfanapping
between corresponding fields. In our case, however, more work israeéqia
generate a BOINC work unit from a JDD.

Globus job description documents contain a few fields of particulaesitan
this context. First, there is the executable field, which spscihe program to
execute. This could be either a fully-qualified pathname or plsigxecutable name.
As discussed earlier, however, BOINC does not have a UNIX-likecution
environment, and it certainly does not have a shell capable of resodving
non-path-qualified name to a specific executable. Thus, the ekbxiitdd needs to
be mapped manually.

The closest BOINC concept to an executable file is an appircati
Essentially, each BOINC project is composed of one or more ajpmflisawhich
represent computations that clients may perform. Each applicatioturn is
composed of one or more application versions, which are executablemenfiley
the computation for specific client architectures. Thus, to esiald mapping
between the JDIexecutable field and the BOINGapplication name field, we remove
any path information from the executallield and look for a BOINC application
matching the remainder. If a match is found, it is designasdeitie application to use.

If a matching application cannot be found, the job submission is rejantean error

53

is returned to Globus. Note that this requires applications to begistered with the
BOINC server; user-supplied code is not allowed. Although userisdppdde could
be supported, our design specifically excludes this capability tdusecurity
concerns, as BOINC lacks mechanisms to protect clients from maliciouamsg

Resource limits constitute another set of difficult mappings f@obus to
BOINC. There are trivial mappings between certain resourodis] such as
maximum memory required. However, BOINC and Globus measure computing
requirements in fundamentally different ways. Globus measuresithemmutes of
CPU time, whereas BOINC measures them in number of floatind-pperations
required. Moreover, for Globus, CPU time limits are entirelyamati, whereas in
BOINC, operation counts rest at the core of the scheduling gg0&89OINC work
units have an “estimated number of floating point operations” field,hwikicised to
estimate how long the job will take to run on any given BOINEntli This allows
BOINC to only send work to those clients able to complete itrbefeedelay bound,
or maximum permissible elapsed wall-clock time, expiresif®stimated CPU time
is not correctly set, BOINC scheduling will work sub-optimabyrther complicating
the matter, the WS-GRAM job description schema has a fieldetomsximum
permissible CPU time, but it does not have one for expected CPU time.

Our solution is two-fold. First, using standard Globus extension meshs,
we introduce a new JDD parametestCpuTime , which is defined to be the
estimated CPU time (in minutes) required by the job on a canpapable of one
gigaflop. (Such a computer is identical to the reference compseet by BOINC

when calculating expected real execution times from themattd number of

54

required floating-point operations.) If this parameter is suppliesl used to compute
the number of floating point operations required by multiplyingyi6b x 10°. (We
chose to expressstCpuTime In minutes instead of in operations so as to maintain
consistency with the other Globus CPU time parameters)vafuge forestCpuTime

is not given, it defaults to one-half the maximum permissible CPU time.

The other JDD fields of particular interest are those rejab file staging, or
the copying of files to and from the submitting node. Those figdesl to be added as
<file info> and<file ref> sections to BOINC work units so that file staging can
be extended all the way through to the BOINC clients. We disdlesstaging in
more detail in section 6.2.3.

Once the various required parameters have been determined, a BOHKC
unit based on those data may be written and submitted to the B@dKCdatabase
using the BOINCcreate_work utility, which completes the translation from a

generic Globus job description to a resource native format.

6.2.3 Data and Executable Staging

File staging between the BOINC server and the submitting isduEndled by
standard Globus file transfer components. However, there is a needetad file
staging all the way down to the BOINC clients that actualyecute the
computations.

As expected, BOINC provides support for clients to exchange filistine
server, so we simply need to ensure that the right fileseareto the right places at
the right times. This is a two part problem: files need to beedofm the correct

locations on the BOINC server, and BOINC clients need to baiatstt to conduct

55

the correct sequence of uploads and downloads.

Globus jobs have a private working directory into which files sagesl in
from remote systems and out of which files are staged to eesystems. When a
Globus job is sent to the BOINC server, files specified in tHe dBto-be-staged-in
are automatically downloaded using Globus file transfer meananBOINC, on the
other hand, has two file staging directories shared by allgodsoy all clients (one
for staging files to clients — referred to as the “downloadéadory — and one for
staging files from clients — referred to as the “upload”dowy). Files staged to the
BOINC server by Globus thus need to be copied from the Globus stigeatpry to
the BOINC download directory, and they need to be renamed so as uxe ens
uniqueness, as BOINC requires all files to have unique names.abynilvhen
BOINC clients upload their results to the upload directory ofBABENC server, they
need to be uniquely named, but they need to be copied back to the Globug stagi
directory with the filenames that Globus expects them to have.

Our job description documents include a unique ID field that may\nalltyi
used to generate unique filenames for job files. This is suffide handle the
original name to unique name mapping required at job-submit time.ré&verse
mapping, required at job-completion time, is somewhat more difftculbandle,
however; it requires additional techniques discussed more fully in section 6.2.4.

Once BOINC has been provided the job files, clients are instructedrisfer
them by<file info> and<file ref> blocks in the work unit created for the job.

Finally, BOINC assigns the client an executable appropriate forchsecture.

56

6.2.4 Reporting of Results

Without the ability to return results from the BOINC serverthe Globus
submitting node, our combined-model Grid system would be of littleResirning
results comprises two distinct tasks: returning any required ouilest tb the
submitting Globus node, and returning any standard output and standard error
associated with the job to the submitting node.

First, Globus looks for the standard output of a job in a specificsiehy
simply copying the standard output file returned from the BOINEnNtlto that
location, we can utilize the normal mechanisms provided by Globusettrn
standard output to the submitting node. Note that this design does not support
real time streaming of standard output to the submitting node: staondgput is
buffered until the job terminates. Similarly, by copying outidas from the BOINC
upload directory to the Globus file staging directories, we cairzeaitthe default
Globus file staging mechanism. However, a problem now occurs: howedmew
the location to which we need to copy our files? The file capymust be
implemented by BOINC, not by the Globus job manager, as the Globusgnager
should not (as a design decision) have to access BOINC internattdatures to
locate these files. Moreover, BOINC will delete the work unit oufpes after it
detects that the work unit has finished and that the associamiugpleode has
executed. BOINC has no knowledge of Globus and thus no way of knowierg to
copy the data.

Our solution is as follows. When a job is first submitted, the NBDjob

manager writes out a Perl script containing the correct cowisng copy files from

57

the BOINC upload directory to the Globus locations (even though tHesedt not
yet exist); as part of Globus, the job manager has accelsss® lbcations. Cleanup
code on the BOINC server calls this Perl script when a workconipletes. Files are

thus placed in the correct locations at the correct times.

6.3 Other Custom Components

There are several other components that complete our Globus-BOINC
interface. First among these is the BOINC Scheduler Evenef@ator (SEG). In the
WS-GRAM framework, a SEG process runs for each local schealdepropagates
changes in job state to the Globus Job State Monitor (JSM). How it detectshrange
job state is left up to the implementation. For example, the $BS reaps log files
periodically, whereas our custom BOINC SEG periodically queties BOINC
MySQL database. Previous scheduler adapter implementations incustei¢)
method to achieve the same thing by querying the scheduler directlyforbut
efficiency and other reasons, this method has been deprecated iroffakier SEG
mechanism. As with our other supported resources (Condor and PBS)save a
developed a BOINC scheduler provider that gives a rough idea of how many
processors are currently available for each supported platform (M\vundows, and
Mac OS).

BOINC has a component called thalidator, which is responsible for
comparing results, determining which to grant credit for, andmé&iang how much
credit to grant. We extend and customize this component, which igwiittC++.
BOINC has another component called #@ssimilator, which handles output from

completed jobs. Our custom assimilator works closely with the BOs$si@duler

58

adapter to ensure that output is properly returned through the Grieimsytis

component is a mix of C++ and Perl.

6.4 Examples

Here, we present the flow of control for a job dispatched taoee rtypical
Globus resource, such as a cluster managed by PBS, and fodspalched to a
BOINC server as a Globus resource. As an example applicattonse SSEARCH
from the FASTA [42] suite of DNA and protein sequence analysigrams, which
are important bioinformatics applications. SSEARCH uses thehShaterman
algorithm [55] to search a library of DNA or amino acid sequefigeta in our

examples) for sequences similar to a query sequeeagée(in our examples).

6.4.1 Portable Batch System

1. Globus user executegibbusrun-ws -submit -Ft PBS -¢
lusr/bin/ssearch -O results.txt seq.fa lib.fa

2. A Globus job description file is generated and passed to the Globus
installation running on a PBS cluster node.

3. Globus copieseqg.fa andlib.fa from the submitting host to a job-specific
staging directory on the PBS cluster.

4. Submit method of the job manager executes: it writes a PB8estription
file from the supplied JDD and submits it usigb .

5. PBS eventually executes the job, and the job completes.
6. The PBS SEG recognizes that the job has completed and netutasxt

and any associated standard output to the submitting node. The jalh scrat
directory is removed from the PBS cluster.

59

6.4.2 BOINC-based Desktop Grid

1. Globus user executegibbusrun-ws -submit -Ft BOINC -c
/usr/bin/ssearch -O results.txt seq.fa lib.fa

2. A Globus job description file is generated and passed to the Globus
installation running on the BOINC server.

3. Globus copieseq.fa andlib.fa from the submitting host to a job-specific
staging directory on the BOINC server.

4. Submit method of the job manager executes:

a. Strips Tusr/bin/ " from “/usr/bin/ssearch " and checks to see if an
“ssearch " application exists. Exits with an error condition if not.

b. Determinesib.fa andseq.fa need to be staged to the BOINC client.
c. Determinesesults.txt needs to be staged back from the BOINC client.

d. Copieslib.fa andseqfa to the BOINC download directory, giving
them new names based on the unique ID present in the job description.

e. Writes a work unit containing the argumentsstearchn and the file
handling blocks fofib.fa , seq.fa , andresults.txt ; submits the work
unit to BOINC, which generates result units for redundant computation.

f. Writes a Perl script to be called on work unit completion thdtompy the
BOINC output files back to Globus-accessible directories.

5. Once per result unit: a BOINC client downloads the work umifa
seq.fa , and arssearch binary, caching the executable for future use.

6. Once per result unit: the BOINC client executgsarch and returns
results.txt to the server.

7. BOINC detects enough result units returned and designates oaaamscal.
It locates the callback script written out by the job manager and executes it

8. Files corresponding t@sults.txt andstdout in the BOINC server upload
directory are copied back to the locations and names expected by Globus.

9. BOINC deletes its copies of the result files associated with the work unit.
10.The BOINC SEG recognizes that the job has completed and returns

results.txt andstdout to the submitting node. The job scratch directory is
removed from the BOINC server.

60

6.5 Running Applications on BOINC

6.5.1 BOINC Applications
Porting applications to run on BOINC can be non-trivial because BOIN

expects applications that run in its framework to call its @& (Figure 6.1). The
BOINC API handles tasks such as notifying BOINC when an apialicatarts and
exits, mapping between application-expected filenames and BOIjN@O-@d unique
filenames, and checkpointing program state. The programs run on theé€eeichot
originally written with BOINC in mind; most are legacy apptions written by a
third party. Thus, porting an application to BOINC could require makktgnsive
changes to its source code, which can present a significant feedia deploying
applications on the BOINC-based Desktop Grid. Therefore, over the yeahave

employed different techniques for porting legacy applications to BOINC.

application

Host AP

runtime library

runtime
Manager \L S data
: | 1P corvers
GUIRPC Core client] e
Screensaver ™ cheduling

SEenvers

Figure 6.1. The BOINC client software includes ar&client” that executes applications and interact
with them through a runtime system.

61

First, we wrote compatibility libraries that allow programstten in C or
C++ to run under BOINC; these libraries wrap C library functispsthat the
requisite calls to the BOINC API are made automatically.agitindows, we used
the Microsoft Detours package [27], and existing binaries could dx wsmodified.
Under UNIX-like systems (such as Linux and Mac OS X), onlyinlkihg was
required. For more information on these procedures, see our technical report [35].

The compatibility library is no longer used because BOINC evdntual
developed something called the wrapper application (to which we coattibate).
The wrapper application can run unmodified legacy code as a childspraoed it
handles all communication with the BOINC client. It also supportskgeenting,
graphics, and multiple child tasks. Porting applications with thepenais relatively
straightforward.

However, it can be advantageous to rewrite source code to produce a native
BOINC application, which is something Nathan Edwards has done with Pifisiil
and Derrick Zwickl has done with GARLI, two of our primary Gridvsegs. The
source code is modified to make the required standard calls 8Qi¢C API, but
also to write checkpoints and update the progress bar periodicallykgoingmg is
nearly a requirement for jobs that run for any appreciabletHenf time, since
interruptions happen frequently when running on a PC. Without checkpointing, much
computation would be wasted. Updating the BOINC client manager psogegs
(Figure 6.2) is also important because it is the only feedbackanestn a BOINC
user has about how far along their jobs are. Our project volunteers prefer toivan nat

BOINC applications that have these features.

62

BOINC Manager - (localhost}

'€ Projects Tasks & Transfers [Messages [l Statistics & Disk |

Project |Applic;uion |Name ‘ CPU time |Progress |Tc completion |Renorl deadline Status
Commands The Lattice Project HMMPfam 5.04 2391172, --- 0.000 % 00:24:09 11/21/2007 16:46:24 Ready to start

The Lattice Project HMMPfam 5.04 2391172.. --- 0.000 % 00:24:09 11/21/2007 16:41:15 Ready to start

The Lattice Project HMMPfam 5.04 2391172.. 00:17:44 74.655 % 00:06:02 11/21/2007 16:41:14 Running
(Suspend The Lattice Project HMMPfam 5.04 2391172.. --- 0.000 % 00:24:09 11/21/2007 16:41:15 Ready to start
——— The Lattice Project HMMPfam 5.04 2391172, --- 0.000% 00:24:09 11/21/2007 16:41:15 Ready to start

-L- The Lattice Project HMMPfam 5.04 2391172, --- 0.000% 00:24:09 11/21/2007 16:46:25 Ready to start

The Lattice Project HMMPfam 5.04 2391172, --- 0.000 % 00:24:09 11/21/2007 16:46:25 Ready to start

Wab sites The Lattice Project HMMPfam 5.04 2391172.. --- 0.000 % 00:24:08 11/21/2007 16:46:25 Ready to start
The Lattice Project
€) FENS

& Connected to localhost (5.10.20}

Figure 6.2. The BOINC client manager, showing tregpess of one running task.

6.5.2 Homogeneous Redundancy

Most numerical applications produce different outcomes for a given work
depending on the CPU architecture, operating system, compiler, andesoftagjs.
For some applications these discrepancies produce only smaleddés in the final
output, and results can be validated using a “fuzzy comparison” functipallinas
for deviations of a few percent. Other applications are “divetgerthe sense that
small numerical differences lead to unpredictably large r@iffees in the final output.
For such applications it may be difficult to distinguish betwesnults that are correct
but differ because of numerical discrepancies, and results tharameous. The
“fuzzy comparison” approach does not work for such applications.

BOINC provides a feature calldbmogeneous redundancy (HR) to handle
divergent applications. HR divides hosts into “numerical equivalenceesfastwo
hosts are in the same class if they return identical refeults certain application. If

HR is activated, the BOINC scheduler will only send resultafgiven work unit to

63

hosts in the same equivalence class; this lets the BOINC tealidse strict equality
to compare redundant results.

Homogeneous redundancy in BOINC presents an interesting problem for
applications that were not originally written with BOINC in min@ftentimes,
random seeds, timestamps, or other program features cause paygram output to
vary. Therefore, running a program the same way multiple timgsyme&d output
files that could be identical with respect to the analytiealits of principal interest,
but might differ in some uninteresting or insignificant way, whiclkpiisblematic
because the standard BOINC validator only checks for identicplbuthus, one
could either write a custom validator for each application, or one coatiify the
application source code to remove timestamps or make the randotheezane for
each result unit in a work unit. We have found that it is usuafliestato modify the
application source code when it is available. However, validatisgltse from
applications programmed to run on a GPU (graphics processing isinitjore

difficult, and is discussed in the following section.

6.5.3 GPU-enabled Applications

In the BOINC model, projects implement a validation procedure tigires
some level of agreement between sets of results returned from paoivlputers. This
is a way of dealing with “untrusted resources” — if resutisnfdisparate hosts agree,
we assume there is only a minute probability they have been mkapéy falsified,
so we mark them valid. The current version of GARLI uses doubtgspya floating
point values, and largely because of this, the log-likelihood values ioutpet are

identical, even when the same job is run on very different opgrsystems and CPU

64

architectures. Thus, we have been able to use the default BOlN&tiea procedure
that simply tests if the output files are identical. Howeves, ave migrating to a
version of GARLI that uses single-precision floating point vahesause it will be
faster, both on modern GPUs and modern CPUs, and because it wiksiggel@ory.
This makes validation more difficult, however, because it isentikely that there
will be numerical discrepancies between hosts, especially wimenng on different
GPUs. Since there are currently no numerical equivalence ltss€&PUs, we will

have to use a different technique to validate results in this case.

65

Chapter 7: Conclusion

7.1 Summary of Results

We have presented The Lattice Project, a comprehensive Grignsyst
scientific analysis that integrates a BOINC-based Desktag @&th a feature-rich,
Globus-based Service Grid. Our system makes a number of sciamifications
available as Grid services through a UNIX-based command lireefane, and
provides tools for submitting and monitoring compute jobs. We have desdrbed,
detail, the features available to Grid users, the architectwrendrastructure of the
system, the composition and makeup of our computational resources, theibra
created for building Grid services, the functionality of our nseteeduler and data
caching scheme, and many components of the Globus-BOINC inteffhee.
appendices provide a brief history of The Lattice Project, a igésar of some
research projects that have used the Grid system, and some abditjumaents for

adopting Grid computing at the University of Maryland.

7.2 Future Work

Future development of The Lattice Project could take many diresstmuch
like our development to date, which has been simultaneously focused mon ma
different aspects of the project. Despite the fact that ngrilew Grid services,
porting applications, supporting users of the Grid and maintaining thensyakes
time away from new development, there are major areas sfttem that we would

like to develop, given the opportunity to do so. First and foremost amongishibse

66

user interface, which is discussed in section 7.2.1. Improving #ta-scheduler is
also a high priority, which is discussed in section 7.2.2. We would i&ksdd add
other features, assimilate new resources, and continue to impvevall system

performance.

7.2.1 User Interface Development

The current Grid interface is a mix of web tools and a commaadriterface.
Researchers are given an account on a Linux machine supplied witlrmsofpr
invoking our various Grid services. It is also on this machine thataheyiven a
workspace in which to store results of computation. This is theapyimterface for
job submission. The current web tools allow one to more easily thewstatus of
particular jobs and resources. These tools are also available in the commeand |
interface.

The command line interface is perfectly usable but may soneetiaie
getting used to, especially if the Grid user does not havergstNIX background.
Experienced UNIX users, on the other hand, will probably appreciatpdwer of
the command line interface and may actually prefer it to &ldaded interface. The
problem we currently face with our command line interface is aingcalability —
there are just a couple of machines that our Grid users $ham@uld be relatively
simple to add disk space to the existing machines, or add more Gris.Bklong
these lines, one idea that has been proposed is to extend the command line interface to
WAM and Glue machines throughout campus, and allow users to authenticate
themselves using their existing WAM/Glue accounts. This work waser

development for a while, but has been put on hold due to other OIT priorities.

67

Another user interface option is a web portal for accessing ke There are
already some web tools in the Lattice intranet, but a portal dvéasél more
fully-featured: it would contain all the functionality necesséoy a Grid user to
manipulate their file space, organize analyses, and submit antomjolis without
leaving their web browser. Our recently funded grant proposal reglire the
creation of a web-based interface for submitting certain gleyletic applications,
such as GARLIL To that end, an application-specific, user-friendlyalpéor job

submission will be developed in the near future.

Semantic Workflow System

Among the barriers to the widespread use of Grid computing in life sciences is
the difficulty of integrating Grid computing into everyday laboratprocedures.
Scientific research often involves connecting multiple applicatiogsther to form a
workflow. This process of constructing a workflow is complex. Wbembined with
the difficulty of using Grid services, composing a meaningfutkilow using Grid
services can present a challenge to life scientists. Thetisol proposed by
collaborators at Fujitsu Labs of America is a Semantic Wiled computing
environment, called Bio-STEER [32, 33]. In Bio-STEER, bioinformat@&sd
services are mapped to Semantic Web [10] services, descrnb@WL-S (Web
Ontology Language-Service). An ontology in OWL (Web Ontology Laggy to
model bioinformatics applications is also defined. A graphical in¢erface helps to
construct a scientific workflow by showing a list of servitleat are semantically
sound; that is, the output of one service is semantically compatitbiehe input of

the connecting service. Bio-STEER can help users take full ayantf Grid

68

services through a user-friendly graphical user interface, vaiictvs them to easily
construct needed workflows. After a workflow has been composedistresimply
presses play and watches the workflow execute. Our working ppetaigtually
submitted jobs to the Grid as the various steps in a non-trivial workfl
required. Bio-STEER was implemented as a Windows desktop appticati
(Figure 7.1), but a similar workflow manager could be integrated atweb
portal. With a powerful Grid system on the back-end, such a tool wowddttEmely

valuable.

=101 x|
Adton Edt e Larguage Help

ﬂE"E l’lﬂ!l STEEAM Tk Serch |

| Sereice Explorer ELEN- —

=+ Smr<ice = Save lask [?'ari'
=1 Cormumar

A (Conkack) inko Cotlaok, 5 mrvice Hames |m]J'D|‘!JbIﬂW|b'HﬁG'WD|‘|'ifM

Sardice Dastiplion |

Publeh Task

dacd (e dulbe] oo Caatook
Culats Scarred Cooama—t

[Local [Pamasivae
v Save Complets Descrphon [Longer bul male o]

o | o |
asily

ull_Chaizl fagu
ek

[Ferey
Chastallchz
ok
=) Trestance Froviding Servics
Cabauk BLOST Argumeris
Cufauk BLAST Irputf s
ot _Chostsl_Segumerts

Cafmk_Chstsl_Conusdt Ay gunm
Cuf sk _MrBayss _Argamerts

progress
Cefauk_Mawdo_Srgamorks

Domlaval_Chaetnl_Can
M.lﬁmm
Coefauk_Paian_Sigunees

Last Scanned Dacument
rMrfayasioha
Fusciedob
My i i ngm
. [y contact _— composition
;
[Propesty I"I:ﬂﬂ HE U5 2 Papl omma
(1K} Fep: (b, R, P b e com P ™

Savn Instarce

Hillmynslob
NEXUSEF sup Commisnd

Send Emal o
Tiame Oiefeuk_Chustal_Comeert_frgument:
Dortin e Interact only when
Saruice Dasacriprinn AL | Pl b2 JPoe ann B i o) ey L 52 . A
Zenir LD T necessary; otherwise
I-Em‘dl:abe Crestn Inzlsnce .
Suandnates automated execution
Oocovery Tine EEREI0E LG40 PN
Savce Type Insans Providng Sarace Fauploz
aGroundrg Twpe WIETL -
G LR Fep oA RoeE Lo Serean Tt . T
o M S rolunoe
DOeletatis e
Sphere 10 rock
o .
secpllin arckon 4 | Start mosnutn g pe task st Bl3JZ009 200504 P ax
nm| o Seanch Fssui s
START|FEED s thac b uftsiishs. comSTEE AT (S e wioeEreno tion) B456 3 £ gL 057 2o BolghrcB £ Pesformance | EI
STRAT|Rep s, Haep, huptmisb s, com STEE KT (S vioeExmo_tions 3406 3 £l 57 200 Roigh?c] £ Parformance2|
START| Rt par e, Bl p. fuitzulsh s, comSTEE RAT S e siceEcmoutbionaa Sd ool (520 2ol g9 4 Pesformance 2|
START| Rtk p . fhac p. fuftsuish s, com STEE RAT S woeErno tion 4262 0 gL 057 2o Bolghc £ Pasformance?|
STRAT|Fekp s, flacp, fultmuiabs, com S TEE KT (S e viosExmo_tion 3456 5 rgl 57 208 Roighnc] £ Pesformancez|
START| Rt v e, e p, gk =ubsh s, com ISTEE RETTS e viceEemo bon 304906 S cpl (52 2ol Bogh2d9 1 4 Pesformance 2|
4]]] | smarTibeep v, lacp. utsuish s, comfSTEE RUTS er viceErec iony 6 3d cal D7 2:8 Bogh P £ Pesfoamance| |

[Fiervioels| dicoowestoct 40 [

Figure 7.1. The Bio-STEER workflow composition tool

69

7.2.2 Meta-Scheduler Development

We have recently added the capability to adaptively schedule jobarto
BOINC framework, a procedure which takes into consideration the cotmoposft
our BOINC client base, thus enabling each platform represented BQINC pool
to be treated as a separate resource. There are severafeatinees that would

improve the meta-scheduler:

1. It would be helpful to rank resources based on overall perforn{pedeaps a
combination of CPU speed and other recent performance metridgtgobs

are sent to the fastest resources first.

2. The scheduler should divide work into batches on behalf of the user.

3. The scheduler should be able to reschedule jobs automatically inotase

failures, or be able to reassign jobs if a faster resource becomes availabl

4. Having the ability to break up long-running jobs into shorter, fixed-kengt
pieces would benefit the scheduling of jobs to BOINC, where it joitant

to provide accurate runtime estimates in advance.

70

Appendices

Appendix A: A Brief History of The Lattice Project

In 2003, Michael Cummings and Daniel Myers built a Grid systermgus
commodity tools" [37] to complete a large-scale analysis, soamaratory already
had some experience in this area. We conferred with some membgkIACS at
this point about building a new Grid system, both in terms of thentéogy that
should be employed and the infrastructure it would utilize. Some hagwachases
were made (and are still in use today) and research commengedsilgrinto the
workings of the Globus Toolkit. The Globus Toolkit is premier softwarpleyed by
many major Grids in the world today, so our choice to use it seyeaad ago turned
out to be a good one. From the outset, we also knew that we wantetlitteipublic
computing in our project, so we became familiar with BOINC. \&eetbped GSBL,
the GSG, and prototyped a basic system that included the abistibmit jobs to the
UMIACS Condor pool and a pool of BOINC clients. We also built up a copbus
Grid services that were popular in bioinformatics and molecular emouand for
which we anticipated some demand.

Eventually we had built a production Grid system with GT3, whicld use
Condor-G as the meta-scheduler. We also opened up the Lattice BRbj€ct to
the public during this “alpha” phase. The three Grid services tha b&ing used
most heavily at the time were CNS, IM, and MDIV, and all three of thesecappiis
were ported to BOINC. This early system completed more than P20 years of

computation over a period of several months. However, we knew t#aivGaT slated

71

for release, so we began to rebuild the system around GT4. WeaepCondor-G
with a custom scheduler and made other significant changes tgstieens but the
general architecture and many existing features remainednige sa

Our transition to GT4 was mostly complete by the start of 2006e Shen
we have been working to add some of the features already mentionatsdtd add
new resources at UMD and elsewhere. We currently have four Conds gl
three dedicated clusters integrated as Lattice-addresssduarces. Beyond simply
trying to increase capacity, we have also focused on commhuniging and
heightening awareness of The Lattice Project in an effomake the Grid system
multi-institutional. We have been assisted in this effort Sayesh Balakrishnan,
Deputy CIO and Assistant Vice Chancellor of the Universityt&ysof Maryland
(USM). This led to fruitful interactions, in particular, with Coppitat®é University
(CSU) and Bowie State University (BSU), who are now partmath us on a
three-year grant proposal that leverages the Grid systermcébtesate phylogenetic
research. As a result of this collaboration, we have integrated computatisoatces
at both institutions into The Lattice Project.

On our own campus, we organized a Grid Steering Committee that me
regularly for a few years. This committee served two pynfianctions: 1) to foster
discussion about Grid computing among interested parties on campus, amd 2) t
promote Grid computing as a priority within the Office of InforroatiTechnology
(OIT), hoping that OIT would be able to spearhead the Grid computiog en
campus. Tangibly speaking, our collaboration with OIT led to the iadddf two

Grid resources: the Gridiron Condor pool (now retired), and the Deepthdugterc

72

(which continues to grow). In addition, by collaborating with OIT a@EHSR, we
were able bring the SEIL cluster into the fold, a resource wiviab previously
severely underutilized. We have been happy to find a strong intere€rign
computing on campus, as well as willing volunteers and participants.

Several people have worked on developing The Lattice Project ovgedhs

in one way or another, and they are acknowledged at the beginning of this thesis.

Appendix B: Research Projects Using the Grid

Over the past several years, we have invited faculty, postdpaduate
students, and others at the University of Maryland to use the Ggidnsyfor their
research projects. The Lattice Project has now performegcesg of 18,000 CPU
years of computation! That is equivalent to keeping 18,000 processors coriinuous
busy for an entire year, which we consider to be a tremendouss/exiget. This
estimate is a rough one given that processor speeds vary and @mumnteagr methods
are not precise to the second, but it nevertheless representsde@isi amount of
computation.

Each research project that we have chosen to support has hapeshde
expand the capabilities of the system, as whatever Grid services neecteatled for
that project may present unique challenges. For example, aufarapplication may
not be easily ported to each of our supported platforms (Linux, WindowsQO8ac
and porting legacy applications to run on BOINC presents additiondérnpes (as
discussed in section 6.5.1). Related to code portability, some applicatende
scripts meant to run in an interpreted environment instead of congoitksd A good

example is theygs service, which runs inside the R environment. We thus made

73

special efforts to ensure R was pre-installed on a signifmamion of our resources,

since there is no easy way to push out the necessary R environment at runtime.
Working together with many different researchers, helping theanag and

submit their jobs, and listening to their feedback about the systernohésually

helped us improve it and has shown us where more work is needed. Takkartage

a whole, the body of projects we have supported is extremely diverse. What fsllows i

a description of the projects associated with three of our mosthheesad Grid

services: GARLI, HMMPfam, and MARXAN.

Phylogenetic Analysis — GARLI

The Cummings Laboratory and others are using GARLI [60] to infer
phylogenetic trees from nucleotide or amino acid data. Variodsatige, codon and
amino acid models are implemented for maximum likelihood (ML)nesgs.
Multiple searches for the ML tree as well as the calmniaof bootstrap support
values are parallelized at the level of individual heuristiardees — i.e., every
computing node has to carry out at least one complete heuristich.sédris
parallelization is particularly useful for large quantities wdlatively short
calculations, as is typical for nucleotide model bootstrap arelygk large numbers
of repetitions.

The LepTree project (http://www.leptree.net/) investigates ewawiaty
relationships within the insect order Lepidoptera (moths and butsgrfireparticular
of higher taxa, such as families, superfamilies and infra-ardems molecular
"backbone phylogeny" is based on the analysis of up to 26 protein codireamucl

genes (~19kb) for 123 taxa, but work on a matrix for 550 to 600 taxeelis

74

underway. The chief method of analysis used in this study is aotidelenodel ML
search in GARLI. The most commonly applied model is the generalreversible
model with a gamma distribution of rates and a proportion of invas#es
(GTR+G+Il). The LepTree project relies heavily on the computatioesburces
provided by The Lattice Project, as the sheer number of heusiséiches is not
feasible to run on an individual desktop machine. The bulk of these heseigtthes
consist of bootstrap replicates (up to 2,000 per analysis), but in additiotp the
heuristic nature of the search, multiple searches (up to 500)egtered for
confidence in having found the ML tree. For the LepTree projeatyraaalyses of
these types are carried out, e.g., for individual and combined genesysyus and
non-synonymous data partitions, and with and without topological constfamts
subsequent hypothesis testing [50].

Miriam Reyna-Fabian aims to solve the intra- and inter-geglaonships of
more than 15 species of rotifers, currently assigned to thdyfanachionidae.
Species of this family are free-living organisms and theypuos®a part of the
zooplankton in freshwater and marine systems. Variation in morphdlahiaeacters
has traditionally been used to differentiate species. Howeveitbadmic positions
of 3 species Brachionus patulus, B. macracanthus andB. polyacanthus — have been
controversial. A study based on scanning electron microscopy dafdpkRy [54]
proposed erecting these 3 species to a new gdfasonus. The phylogenetic
analyses of the familyBrachionidae were carried out with GARLI using genes
encoding cytochrome oxidase subunit 1 (Cox 1) and domains (D2-D3) of 286 rR

A total of 23 sequences, including 8 outgroups, were aligned. The phiege

75

derived from this study were used to evaluate the validity ofi¢inegenud?lationus.

The analyses support the hypothesis tationus patulus and P. macracanthus

compose a distinct clade froBrachionus and Platyias with high bootstrap
values [51].

The Neel lab is studying phylogenetic relationships among Nomler&an
members of the genudgalinis Raf. These species represent a taxonomically
challenging group and there have been extensive historicalomviat the species,
section, and subsection levels of classification. The genus contaiysrana species,
including the federally listed endangered speddgslinis acuta. In addition to
evaluating the degree to which historical classifications@asection and subsection
levels are supported by molecular data sampled from 79 individyakssesnting 29
Agalinis species, the monophyly of 27 species was assessed by sampltigem
individuals representing different populations of those species. Twastpfthese
species are of conservation concern in at least some part of their4dhge [

Silvana Marten-Rodriguez aims to understand the role of pollinatotise
evolution of floral traits and breeding systems in the Antilledre tGesnerieae by
combining phylogenetic approaches with ecological studies. The @&snerieae
includes species specialized for hummingbird or bat pollination els a8 some
generalized species pollinated by bats, hummingbirds and inseeismiRary
phylogenies suggest various independent pollination system trangitiaddition to
the evolution of reproductive assurance mechanisms (e.g., autonomous

self-pollination). Low frequencies of hummingbird visitation and high polle

76

limitation in specialized hummingbird pollinated species might dspansible for

these transitions [34].

Protein Sequence Comparison — HMMPfam

hmmpfam is a program in the HMMER (http://hmmer.janelia.org/) paeka
HMMER uses profile hidden Markov models (HMMs) to characteregions of
similar amino acid sequence in protein families, groups of proteitis similar
function found in related organisms. Theimpfam program searches the protein
sequences of proteins with unknown function against a carefully cseated HMM
models, called Pfam, from well-understood protein families. Proegiences are
assigned to one or more protein families on the basis of iatistdty significant

match to a Pfam HMM.

HMMPfam and RMIDb

The Edwards lab provides the Rapid Microorganism Identificationldaa&a
(RMIDb — http://www.RMIDb.org), a freely available web-oesce and database for
the identification of bacteria and viruses using mass spectynigtie RMIDb
searches protein sequences from all of the major protein seqepusitaries, plus
computational protein sequence predictions from sequenced bacterehege for
mass matches with experimental masses from mass sgeaitain sequences are
carefully categorized according to strain, species, and othmrdaxc groupings, and
according to protein function, cellular location, and biological proussg) the Pfam
assignments computed bymmpfam and their associated gene ontology (GO)
classifications. The functional classification of protein sequenugst be recomputed
using hmmpfam because each of the sources of protein sequence uses different,

77

sometimes conflicting, criteria for Pfam assignment, or proundeassignment at all.
Functional classification of protein sequences makes it podsildealyze only the
most likely to be observed proteins for mass matches, which desrsearch time

and increases the statistical significance of species identifications

HMMPfam for RMIDb on BOINC

The Edwards laboratory is using the HMMPfam service to compizen P
assignments for all bacterial, plasmid, and virus protein sequetoresSiiss-Prot,
TrEMBL, GenBank, RefSeq, and TIGR's CMR, plus an inclusive set ptalsible
Glimmer predictions from RefSeq bacterial genomes. Theseiprs¢quences, and
their Pfam assignments, are used in RMIDb. The HMMPfam ceiigi also being
used as a model for data-intensive bioinformatics applications ofetide as the
amount of input and output data associated with the program is considerable
Supporting this work was a significant part of the impetus forgdesy the data

caching scheme we now use routinely for all Grid services.

Conservation Reserve Network Design — MARXAN

MARXAN [6] is a decision support system for the design of conserva
reserve networks. It is useful for selecting a reserve reyBt@m a large number of
potential sites that satisfies various ecological, social egwhomic criteria. For
example, it may be required that certain species or consemnfatitures must be well
protected within the reserve system, or the reserve systetmaotusclude more than
a specified number of sites. The user translates their aritetd representation
targets for the conservation features to be protected (e.g., nompepulations of
each species or percentage of each habitat type to be inctuttexireserve system),

78

and optionally a cost threshold or desired level of site compactdédxXAN will
produce reserve network solutions that meet these design constvailes
simultaneously minimizing the cost of the design (e.g., number of reitgsred to
meet all representation targets).

Two researchers are studying problems involved in the designsefves
networks for biological conservation using MARXAN, and collectivéigve
consumed over 5000 CPU years using this Grid service. Maile Nesgliresa
conservation decisions based on one target type (e.g., rare spacteshe
consequences at another level (e.g., genetic diversity), and thesmitcwork builds
upon the theme of earlier work in this general area [38, 39]. Joanamal G National
Science Foundation Post Doctoral Fellow in Biological Informatitsdies the
consequences of biased and incomplete data in the design of consermrsive r

networks [21].

Biased Data and the Salection of Conservation Reserve Networ ks

Joanna Grand, Maile Neel, Michael Cummings (University of Maugy),
Taylor Ricketts (World Wildlife Fund), and Tony Rebelo (South €ri National
Biodiversity Institute) are collaborating on a project that usefRMAN to quantify
the impacts of basing the selection of conservation reserve kst@nrincomplete
and biased species distribution data. Most species distributionrddieased in some
way (e.g., higher sampling intensity closer to roads or withinentirreserves);
however, they are commonly used to select sites for inclusion emveesetworks

because they are considered to be the best data availablebilibe of reserve

79

networks to adequately protect biodiversity when sites are seéldoased on
incomplete and biased data is poorly understood.

The first set of analyses compared the quality of MARXANenes network
solutions generated from both biased and complete species datdatéhfom a
virtually exhaustive survey of the Proteaceae family of flawgeplants in the Cape
Floristic Region of South Africa was used as a baseline fomptete” data. To
produce a sufficient range of solutions for comparison with the complatiz
solution, 1000 biased and random incomplete datasets were samplethérduati
Proteaceae dataset. MARXAN was run 1000 times for each dathsestudy design
required 1.2002 x T0Oseparate MARXAN runs which was possible to complete in
only a few weeks by using the Grid system.

Current investigations are focused on how well reserve netwmkect
species when their design is based on species distribution data ighicomplete
and biased, versus coarser environmental data which is easierqireaand
unaffected by the issue of sampling bias. MARXAN solutions gésabravith
complete, biased, and random species data will be compared to thesateg with
environmental data (vegetation classes), and combinations of bothypesa This
analysis will require over 7.6 x i@eparate MARXAN runs and will again rely on

the Grid system to make this enormous amount of processing feasible.

Older Research Projects
There were several research projects that ran on our GT3-based Grid system.
The Fushman laboratory ran thousands of protein-protein docking simulations

using the CNS Grid service. When driven by experimentally déroanstraints,

80

these simulations help in modeling the structures of large subiimit proteins, and
the interactions of such proteins with various ligands. An examplealysas of the
structural determinants for recognition of a polyubiquitin chain [59]. The computati
for this problem was primarily done using BOINC, and the accuntulatecessing
time was approximately 12.4 CPU years.

Floyd Reed and Holly Mortensen from the Laboratory of Sarah Tichlkaok
run many analyses using the MDIV and IM Grid services. Tlesdyses are for
studies of human population genetics that use DNA sequence polymorghisms
estimate the times of divergence and migration rates among alynitverse
populations in Africa [58]. The computations were done using our
globally-distributed BOINC resources, and the accumulated progesisne was
approximately 13.1 CPU years.

Our own lab has made extensive use ofgsieGrid service to complete a
study demonstrating the application of the genealogical sorting igdésiatistic for
distinguishing species. Using coalescent theory-based simulationstg3®jodel
genetic samples drawn from diverging species, the Grid systssed to calculate
the statistic and assess its behavior. In addition, the probabift@sserved values
were estimated using permutation [16, 8]. The many millionsdif/idual analyses

required consumed over 94 CPU years.

Appendix C: A Pitch for Grid Computing at the University of Maryland

The Grid system is of immediate utility to a number of groupghat
University of Maryland, the primary ones being OIT, UMIACS, &id-S. We have

had extensive interaction with these groups about Grid computing vid.dthee

81

Project. The majority of on-campus Grid resources reside wiitleise organizations,
as do most of the researchers who have used the Grid system. SMi@<Ca long
history of supporting research using HPC/HTC; OIT, a somewhateshame; and
CLFS has shown both a need and an interest in this area, havindyrpoecttased a
new college computing cluster. As things stand, each of these draggheir own
user base, their own local computing resources, their own policieshamdown
infrastructure for support. We suggest that existing computatiosalurmees on
campus could be used more efficiently as part of the Grid system.

It is probably the case that the majority of existing HPC/HU<&rs in
UMIACS either run on private clusters or vie for use of the URIBACondor pool;
people registering with OIT get funneled to Deepthought, a monolithstec that
continues to increase in size; in CLFS, researchers may osskeof their own
resources or may utilize the new CLFS computing cluster, whielstisally part of
Deepthought due to OIT's attractive resource integration model €xplained
here). Plainly stated, the amount of competition for these largedsiheseurces
leaves some people waiting to use them, and this trend wily ldaitinue even as
more hardware purchases are made. The Lattice Projectmadepusers with access
to other resources outside their domain, thus helping to balance and distribute the load
more efficiently. One easy way to make a difference would be to eHaliausers of
shared resources to use the Grid system for their work. They smaaller jobs could
be distributed more evenly across the existing resource baseiaodto the BOINC
pool, thus keeping clusters free for more traditional HPC users awdnting any

one resource from becoming overwhelmed.

82

In addition to more intelligently distributing the workload, using ed
system fundamentally changes the way research is conducted in dy& W
increases the amount of resources available to any one udsg efdtem, and it
makes managing large amounts of work easier by performing atheswise tedious
functions on behalf of the user. Once an application is deployed on ttheaGrser
simply uploads their data and submits jobs without worrying aboute@irce on
which the job is actually running. Furthermore, having a large nuwibersources
available causes the researcher to reconsider the scope amdoéxteeir analyses
and may enable entirely new kinds of analyses to be conceived of and executed.

As it stands right now, The Lattice Project is in a stable ptoxmustate and
we are comfortable with all of the technologies employed. Als any system, there
remain improvements to be made, and we discuss some of these in
Chapter 7. However, we are confident that The Lattice Projecbeasf immediate

utility to a number of groups on campus.

83

Bibliography

. Altschul, S., Gish, W., Miller, W., Myers, E. & Lipman, D. J. (1990)siBa
local alignment search toal. Mol. Biol. 215:403-410.

. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, 4leMi
W. & Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: a new
generation of protein database search prograludeic Acids Res. 25:3389-
3402.

. Anderson, D. P. (2003). Public Computing: Reconnecting People to Science.
Conference on Shared Knowledge and the Web. Residencia de Estudiantes
Madrid, Spain. Nov. 17-19.

. Anderson, D. P., Cobb, J., Korpela, E., Lebofsky, M. & Werthimer, D. (2002).
SETI@home: An experiment in public-resource comput@gnmun. ACM
45(11):56-61.

. Balaton, Z. et al. (2008). EDGeS: The common boundary between Service
and Desktop Grids. pp. 37-48. 16rid Computing: Achievements and
Prospects (Gorlatch, S., Fragopoulou, P., & Priol, T., ed)ringer US.

. Ball, I. R. & Possingham, H. P. (2000). Marine Reserve DesigmgJ
Spatially Explicit Annealing, a Manual. MARXAN (V1.8.2).

. Bazinet, A. L., & Cummings, M. P. (2009). The Lattice Project: & Gr
research and production environment combining multiple Grid computing
models. pp. 2-13. InDistributed & Grid Computing - Science Made
Transparent for Everyone. Principles, Applications and Supporting
Communities (Weber, M. H. W., ed). Rechenkraft.net, Marburg. In press.

. Bazinet, A. L. & Cummings, M. P. Genealogical sorting indextvsarfe and
web site for quantifying the exclusivity of lineages. In preparation.

. Bazinet, A. L., Myers, D. S., Fuetsch, J. & Cummings, M. P. (2007). Grid
services base library: a high-level, procedural application prograg
interface for writing Globus-based Grid servicésiture Gener. Comp. Sy.
23:517-522.

10.Berners-Lee, T., Hendler, J. & Lassila, O. (2001). The Sem¥vio. Sci.

Am. 279.34-43.

11.Beerli, P. & Felsenstein, J. (1999). Maximum likelihood estimation of

migration rates and effective population numbers in two populations asing
coalescent approacBenetics 152:763-773.

84

12.Beerli, P. & Felsenstein, J. (2001). Maximum likelihood estimation of a
migration matrix and effective populations sizes isubpopulations by using
a coalescent approadPr.oc. Natl. Acad. Sci. USA 98:4563-4568.

13.Brunger, A. T., Adams, P. D., Clore, G. M., DeLano, W. L., Gros, P., &ross
Kunstleve, R. W., Jiang, J.-S., Kuszewski, J., Nilges, M., Pannu, N. S., Read,
R. J., Rice, L. M., Simonson, T. & Warren, G. L. (1998). Crystallography
NMR system: a new software suite for macromolecular strect
determinationActa Cryst. D54:905-921.

14.Cummings, M. P., Handley, S. A., Myers, D. S., Reed, D. L., Rokas, A. &
Winka, K. (2003). Comparing bootstrap and posterior probability values in the
four taxon caseSyst. Biol. 52:477-487.

15.Cummings, M. P. & Huskamp, J. C. (2005). Grid computiBQUCAUSE
Review 40:116-117.

16.Cummings, M. P., M. C. Neel & K. L. Shaw. (2008). A genealogical approach
to quantifying lineage divergendevolution 62:2411-2422.

17.Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high
accuracy and high throughptducleic Acids Res. 32:1792-1797.

18.Foster, I. & Kesselman, C. (1999). Globus: a toolkit-based Grid artiiéec
In The Grid: Blueprint for a New Computing Infrastructure (Foster, I. &
Kesselman, C., eds). pp. 259-278. Morgan-Kaufmann, Los Altos, CA.

19.Frey, J., Tannenbaum, T., Foster, I, Livny, M. & Tuecke, S. (2002).
Condor-G: a computation management agent for multi-institutionalsGri
Cluster Comput. 5:237-246.

20.Ghemawat, S., Gobioff, H., & Leung, S.-T. (2003). The Google File System
19th ACM Symposium on Operating Systems Principles, Lake George, NY.

21.Grand, J., Cummings, M. P., Rebelo, T., Ricketts, T. H. & Neel, M. C. (2007).
Biased data reduce efficiency and effectiveness of consamvaéserve
networks.Ecol. Lett. 10(5):364-374.

22.Guindon, S. & Gascuel, O. (2003). A simple, fast, and accurate algdothm
estimate large phylogenies by maximum likeliha®gt. Biol. 52:696-704.

23.Hashmi, N., S. Lee, & M. P. Cummings. (2004). Abstracting workflows:
unifying bioinformatics task conceptualization and specification through
Semantic Web services. W3C Workshop on Semantic Web for Liean&as.
Cambridge, Massachusetts USA.

85

24.Hey, J. & Nielsen, R. (2004). Multilocus methods for estimating population
sizes, migration rates and divergence time, with applicatotisetdivergence
of Drosophila pseudoobscura andD. persimilis. Genetics 167:747-760.

25.Hudson, R. R. (2000). A new statistic for detecting genetic diffiarteon.
Genetics 155:2011-2014.

26.Hudson, R. R. (2002). Generating samples under a Wright-Fisher neutral
model of genetic variatiorBioinformatics 18:337-338.

27.Hunt, G. & Brubacher, D. (1999). Detours: binary interception of Win32
functions. InProceedings of the 3rd USENIX Windows NT Symposium. pp.
135-143. Seattle, WA. USENIX.

28.Kuhner, M. K., Yamato, J. & Felsenstein J. (1995). Estimating effecti
population size and mutation rate from sequence data using
Metropolis-Hastings samplingenetics 140:1421-1430.

29.Kuhner, M. K., Yamato, J. & Felsenstein, J. (1998). Maximum likelihood
estimates of population growth rates based on the coalesGemdtics
149:429-434.

30.Kuhner, M. K., Yamato, J. & Felsenstein, J. (2000). Maximum likelihood
estimation of recombination rates from population dataenetics
156:1393-1401.

31.Laure, E. et al. (2006). Programming the Grid with gL@emput. Methods
i, Tech. 12(1).

32.Lee, S., Hashmi, N., Hendler, J. & Parsia, B. (2004). Bio-STEER: an
application of Task Computing — the Semantic Web Meets Grid Congputi
Technical Report FLA-PCR-TM-3, Pervasive Computing Research,s&uijit
Laboratories of America, Inc.

33.Lee, S., Wang, D., Hashmi, N. & Cummings, M. P. Bio-STEER: ragB¢ic
Web workflow tool for Grid computing in the life sciencésiture Gener.
Comp. Sy. 23:497-5009.

34.Marten-Rodriguez, S., Fenster, C. B., & Zimmer, L. A. Evolution of
pollination and breeding systems in Antillé@esneriaceae. To appear.

35.Myers, D. S. & Bazinet, A. L. (2004). Intercepting arbitrary functiams
Windows, UNIX, and Macintosh OS X platforms. Technical Report CS-TR
4585, UMIACS-TR-2004-28, Center for Bioinformatics and Computational
Biology, Institute for Advanced Computer Studies, University of Maryland.

86

36.Myers, D. S., Bazinet, A. L. & Cummings, M. P. (2008). Expanding taetre
of Grid computing: combining Globus- and BOINC-based systems. pp. 71-85.
In Grids for Bioinformatics and Computational Biology, Wiley Book Series on
Parallel and Distributed Computing (Talbi, E.-G. & Zomaya, A., edsjohn
Wiley & Sons, New York.

37.Myers, D. S. & Cummings, M. P. (2003). Necessity is the mother of
invention: a simple Grid computing system using commodity tdoRarallel
Distrib. Comput. 63:578-589.

38.Neel, M. C. & Cummings, M. P. (2003). Effectiveness of conservatigetsr
in capturing genetic diversitgonserv. Biol. 17:219-229.

39.Neel, M. C. & Cummings, M. P. (2003). Genetic consequences of ecalogic
reserve design guidelines: an empirical investigatiQonserv. Genet.
4:427-439.

40.Németh, Z. & Sunderam, V. (2003). Characterizing Grids: attributes,
definitions, and formalismg. Grid Comput. 1:9-25.

41.Nielsen, R. & Wakeley, J. (2001). Distinguishing migration from ismata
Markov chain Monte Carlo approadBenetics 158:885-896.

42.Pearson, W. R. (2000). Flexible sequence similarity searchinly the
FASTA3 program packagé&lethods Mol. Biol. 132:185-219.

43.Pearson, W. R. & Lipman, D. J. (1988). Improved tools for biological
sequence comparisoProc. Natl. Acad. Sci. USA 85:2444-2448.

44, Pettengill, J. and Neel, M. (2008). Phylogenetic patterns and coneervati
among North American members of the genus Agalinis (Orobanajacea
BMC Evol. Biol. 8:264.

45.Posada, D. & Crandall, K. A. (1998). Modeltest: testing the modelNA D
substitution Bioinformatics 14:817-818.

46.Possingham, H. P., Ball, I. R. & Andelman, S. (2000). Mathematicaladgth
for identifying representative reserve networks Quantitative Methods for
Conservation Biology (Ferson, S. & Burgman, M., eds). Pp. 291-305.
Springer-Verlag, New York.

47.Pritchard, J. D., Stephens, M. & Donnelly, P. (2000). Inference of population
structure using multilocus genotype d#&kanetics 155:945-959.

87

48.R Development Core Team (2008). R: A language and environment for
statistical computing. R Foundation for Statistical Computing, Vienna,
Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.

49.Rambaut, A. & Grassly, N. C. (1997). Seqg-Gen: an application for theevio
Carlo simulation of DNA sequence evolution along phylogenetic trees.
Comput. Appl. Biosci. 13:235-238.

50.Regier, J. C., Zwick, A., Cummings, M. P., Kawahara, A. Y., Cho, S., Welle
S. J., Roe, A. D., Baixeras-Almela, J., Brown, J. W., Parr, C. S., Iavie,,
Epstein, M. E., Hallwachs, W., Hausmann, A., Janzen, D. H., Kitching, I. J.,
Solis, M. A., Yen, S.-H., Bazinet, A., Mitter, C. Toward reconstngcthe
evolution of advanced moths and butterflies (Lepidoptera: Ditrysiaiiel
molecular studyBMC Evol. Bial. In press.

51.Reyna-Fabian, M., Laclette, J. P., Cummings, M. P., Sarma, S.S.S., &
Garcia-Varela, M. Molecular phylogeny of some species of gbrus
Brachionus and the systematic position Bfationus based on nuclear and
mitochondrial gene sequences. To appear.

52.Rivas, E. & Eddy, S. R. (1999). A dynamic programming algorithmRiSA
structure prediction including pseudoknatsMol. Biol. 285:2053-2068.

53.Ronquist, F. & Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phytagene
inference under mixed modeRBioinformatics 19:1572-1574.

54.Segers, H., Murugan, G., & Dumont, H. J. (1993). On the taxonomy of the
Brachionidae: description oPlationus n. gen. (Rotifera, Monogononta).
Hydrobiologia 268:1-8.

55.Smith, T. F. & Waterman, M. S. (1981). Identification of common molecular
subsequences. Mal. Biol. 147:195-197.

56.Swofford, D. L. PAUP*. Phylogenetic analysis using parsimonyn@*ather
methods), version 4. Sinauer Associates. Sunderland, Massachusetts, USA.

57.Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). Clustal W:
Improving the sensitivity of progressive multiple sequence aligimnmeough
sequence weighting, position-specific gap penalties and weighk rolatrice.
Nucleic Acids Res. 22:4673-4680.

58.Tishkoff, S. A., Gonder, M. K., Brenna M. Henn, B. M., Mortensen, H.,
Fernandopulle, N., Gignoux, C., Lema, G., Nyambo, T. B., Underhill, P. A,
Ramakrishnan, U., Reed, F. A. & Mountain, J. L. (2007). History of click-
speaking populations of Africa inferred from mtDNA and Y chromosome
genetic variationMol. Biol. Evol. 24(10):2180-2195.

88

59.Varadan, R., Assfalg, M., Raasi, S., Pickart, C. & Fushman, D. (2005).
Structural determinants for selective recognition of a Lysdéd
polyubiquitin chain by a UBA domaimnol. Cell 18:687-698.

60.Zwickl, D. (2006). Genetic Algorithm Approaches for the Phylogenet

Analysis of Large Biological Sequence Datasets under theinhlax
Likelihood Criterion. Ph.D. thesis, University of Texas at Austin.

89

