

ABSTRACT

Title of Document: THE LATTICE PROJECT: A MULTI-MODEL

GRID COMPUTING SYSTEM

 Adam Bazinet, Master of Science, 2009

Directed By: Professor Michael Cummings

Center for Bioinformatics and Computational Biology
Affiliate Professor, Department of Computer Science

This thesis presents The Lattice Project, a system that combines multiple models of

Grid computing. Grid computing is a paradigm for leveraging multiple distributed

computational resources to solve fundamental scientific problems that require large

amounts of computation. The system combines the traditional Service model of Grid

computing with the Desktop model of Grid computing, and is thus capable of

utilizing diverse resources such as institutional desktop computers, dedicated

computing clusters, and machines volunteered by the general public to advance

science. The production Grid system includes a fully-featured user interface, support

for a large number of popular scientific applications, a robust Grid-level scheduler,

and novel enhancements such as a Grid-wide file caching scheme. A substantial

amount of scientific research has already been completed using The Lattice Project.

THE LATTICE PROJECT: A MULTI-MODEL GRID COMPUTING SYSTEM

By

Adam Bazinet

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, College Park, in partial fulfillment

of the requirements for the degree of
Master of Science

2009

Advisory Committee:
Prof. Michael Cummings, Chair
Prof. Alan Sussman
Prof. Chau-Wen Tseng

© Copyright by
Adam Bazinet

2009

 ii

 Foreword

Some of the material in this thesis has been previously published, and

appropriate citations of that work have been made. Initial development of

GSBL (section 5.1.3) and the Globus-BOINC adapter (section 6.2) was done jointly

by Daniel Myers and me, and the original version of the GSG (section 5.1.8) was

developed by John Fuetsch. I have been the primary developer of The Lattice Project

since late 2004, and during this time I have been responsible for the continued

development of GSBL, the GSG, and the Globus-BOINC adapter. In addition, I have

led the development of the command line user interface and web monitoring tools

(sections 4.1.1–4.1.3), have been responsible for the hardware and software

configuration of the core Grid infrastructure (sections 4.2.1 and 4.2.2), have led the

technical effort to integrate all the Grid resources, including setup and administration

of the Lattice BOINC Project (section 4.2.3), have developed many Grid services

(section 5.1.1), have designed and implemented a data management scheme

(section 5.2) and Grid meta-scheduler (section 5.3), have developed new methods of

porting BOINC applications (section 6.5.1), have worked on novel user interface

prototypes (section 7.2.1), and have been solely responsible for supporting all the

research projects that have used the production Grid system (Appendix B).

 iii

 Acknowledgements

 First and foremost, I would like to thank my advisor, Michael Cummings, for

all of his support during my time here at the University of Maryland, and for his

steadfast commitment to the development of The Lattice Project, without which none

of this would have been possible.

 Second, I would like to thank Daniel Myers and John Fuetsch for their

contributions to the design and development of the project when it was still in its

infancy. I would also like to thank Stephen McLellan and Christopher Milliron, who

assisted with project development at an early and critical stage; Andrew Younge, who

recently helped upgrade the Globus-BOINC adapter; and Jonathan Howard and Deji

Akinyemi, who authored a few Grid services.

 I thank Fritz McCall, director of computing facilities at UMIACS, for

supporting our laboratory since the inception of the project. I have also received

support from Mike Landavere and Meldavid Manela in the College of Chemical and

Life Sciences, where many researchers that use the system are from. I also thank the

Office of Information Technology (OIT) for their contribution of resources to the

project, and particularly Kevin Hildebrand for his technical expertise.

 Last, but certainly not least, I would like to thank my family for all of their

love and support.

 iv

Table of Contents

Foreword ... ii

Acknowledgements .. iii

Table of Contents ... iv

List of Tables ... vi

List of Figures ... vii

Chapter 1: Introduction ... 1

 1.1 Overview ... 1

1.2 Motivation and Philosophy ... 2

1.2.1 Computational Resources .. 3

1.2.2 Software Development... 4

1.2.3 User Interface ... 4

1.3 Models of Grid Computing ... 5
Chapter 2: Related Work .. 8

 2.1 Service Grids ... 8

2.2 Desktop Grids ... 8

2.3 Combining Service and Desktop Grids... 9

Chapter 3: Middleware Systems ... 11

 3.1 Globus ... 11

3.2 BOINC .. 12

3.3 Condor... 14

3.4 PBS ... 14

Chapter 4: The Lattice Project .. 16

4.1 Features ... 16

4.1.1 Job Types ... 16
4.1.2 Job Submission .. 17

4.1.3 Job Monitoring and Management .. 18

4.2 Architecture and Infrastructure ... 21

4.2.1 Grid Client ... 22

4.2.2 Grid Server ... 23

4.2.3 Grid Resources ... 24

Chapter 5: Core Functionality ... 31

 5.1 Grid Services ... 31

 5.1.1 Overview .. 31

5.1.2 The Challenges of Working with Globus .. 34

5.1.3 Grid Services Base Library .. 35

5.1.4 Initial configuration of client-service interaction 36

5.1.5 Argument Processing ... 37

 v

5.1.6 File Transfers ... 39

5.1.7 Creating and Monitoring GRAM Jobs ... 40

5.1.8 Grid Services Generator ... 41

5.2 Data Management ... 42

5.3 Meta-scheduler .. 46

5.3.1 Scheduling Algorithm .. 47

5.3.2 Scheduler Implementation ... 49

Chapter 6: Combining Globus- and BOINC-based Systems 50

6.1 Challenges in Combining Globus and BOINC ... 50

6.1.1 Job Submission .. 50

6.1.2 Job Specification .. 51

6.1.3 Data and Executable Staging ... 51

6.1.4 Reporting of Results .. 51

6.2 Globus-BOINC Adapter ... 52

6.2.1 Job Submission .. 52

6.2.2 Job Specification .. 53

6.2.3 Data and Executable Staging ... 55

6.2.4 Reporting of Results .. 57

6.3 Other Custom Components ... 58

6.4 Examples ... 59

6.4.1 Portable Batch System ... 59
6.4.2 BOINC-based Desktop Grid .. 60

6.5 Running Applications on BOINC ... 61

6.5.1 BOINC Applications .. 61

6.5.2 Homogeneous Redundancy ... 63

6.5.3 GPU-enabled Applications .. 64

Chapter 7: Conclusion... 66

7.1 Summary of Results .. 66

7.2 Future Work .. 66

7.2.1 User Interface Development .. 67

7.2.2 Meta-Scheduler Development ... 70

Appendices .. 71

Appendix A: A Brief History of The Lattice Project .. 71

Appendix B: Research Projects Using the Grid .. 73

Phylogenetic Analysis – GARLI .. 74

Protein Sequence Comparison – HMMPfam .. 77

Conservation Reserve Network Design – MARXAN .. 78

Older Research Projects .. 80

Appendix C: A Pitch for Grid Computing at the University of Maryland 81

Bibliography ... 84

 vi

List of Tables

4.1 Current computational resources – four Condor pools, three PBS clusters, one
 BOINC pool ……….. 27

4.2 Prospective computational resources – three Condor pools, one cluster ……… 27

4.3 Retired computational resources – two Condor pools, one cluster ….....……… 28

5.1 A short description of our Grid services ………………………………………. 32

5.2 A list of our Grid services, the platforms to which they have been ported, and
 a measure (in CPU Years) of how much they have been used in production 33

 vii

List of Figures

4.1 A screenshot from the Lattice intranet showing the current status of jobs ……. 16

4.2 A screenshot from the Lattice intranet showing a number of job search filters . 21

4.3 As shown in the diagram, data generally flows from left to right and back
 again through the system, i.e., from client to server to resource and back.
 Despite the fact that they are represented separately in the diagram, the Grid
 service and the Grid scheduler are both located on the Grid server in our
 current production system ……………………………………………….....….. 22

4.4 Grid client software stack ……………………………………………………... 23

4.5 Grid server software stack …………………………………………………….. 24

4.6 A live snapshot of our Grid resources, available at
 http://lattice.umiacs.umd.edu/resources/ ….………………………….….…….. 25

4.7 Any member of the general public with a computer may participate in The
 Lattice Project by signing up at our web site (http://boinc.umiacs.umd.edu)
 and downloading BOINC client software ………... 26

6.1 The BOINC client software includes a “core client” that executes applications
 and interacts with them through a runtime system .…..………………………... 61

6.2 The BOINC client manager, showing the progress of one running task ……… 63

7.1 The Bio-STEER workflow composition tool …………………………………. 69

 1

Chapter 1: Introduction

1.1 Overview

Grid computing is a relatively recent formulation of distributed computing,

and although there are more formal definitions [40], we use the following one: Grid

computing is a model of distributed computing that uses geographically and

administratively disparate resources. In Grid computing, individual users can access

computers and data transparently, without having to consider location, operating

system, account administration, and other details. In Grid computing, the details are

abstracted, and the resources are virtualized [15].

The Lattice Project is a Grid computing research project and production

system. Among its aims are to unite heterogeneous computing resources into a

computational Grid system, so that resources are uniformly usable and addressable.

Our Grid is composed of institutional resources, such as clusters and workstations,

and resources that are volunteered by users running Berkeley Open Infrastructure for

Network Computing (BOINC – http://boinc.berkeley.edu/) software, which is derived

from the SETI@home project [4]. We have made a special effort to unite traditional

Grid computing with what is known as desktop or volunteer computing, and our work

has benefited greatly as a result. Since this research and development work is coming

out of the Laboratory of Molecular Evolution, most of our Grid-enabled applications

to date have been associated with the life sciences, although nothing about the system

design precludes other scientific domain applications from running on the Grid.

 2

There are some important characteristics that make The Lattice Project

unique. Whereas most BOINC projects concern themselves with one particular

problem, biological or otherwise, we set out to create a generalized Grid system using

Globus [18], BOINC, and Condor (http://www.cs.wisc.edu/condor/) that would be

capable of running many different applications simultaneously. Most of the

applications we run were not originally written with the idea of Grid computing in

mind, which presents a unique set of challenges. Since this is a fully-featured Grid

system, we have also spent time developing user interfaces, integrating many

different resource types (of which BOINC is one), and working diligently to improve

other aspects of the system.

1.2 Motivation and Philosophy

As the size and complexity of scientific data has increased, so has the

sophistication and computational complexity of data analysis. For example, within the

life sciences entire data types that did not exist a relatively short time ago (e.g.,

complete genome sequences, large-scale microarray experiment results, large

multi-locus genotypes) now constitute much of data that is generated.

Correspondingly, estimation and inference lead to combinatorial optimization

problems and other challenges that have been dealt with using computationally

intensive methods (e.g., stochastic simulation, machine learning approaches,

Bayesian analysis, Markov-chain Monte Carlo sampling). As a consequence, the

computational demands of scientific research continue to increase. Therefore, some

scientific researchers are turning to Grid computing to meet their computing resource

needs, which is well suited to academic institutions in general [15]. However, there

 3

are several barriers to widespread use of Grid computing in many areas of scientific

research, including the lack of Grid-enabled applications and the difficulty of

producing them, the deficit of Grid computing resources available for research, and

the difficulty of using Grid computing effectively. Several of these barriers to the use

of Grid computing are being addressed [9, 23, 32, 33, 36].

Our ongoing Grid computing research and development efforts have been

motivated in large part by the computational demands of our own research in

computational biology and bioinformatics. This research program focuses on

problems in molecular evolution and genetics, which often require approaches that

are computationally intensive. Our need for computer resources for our work led to

the development of a simple Grid computing system using commodity tools [37],

which was used for a large-scale simulation study [14]. Our subsequent work has

made use of the Globus Toolkit and BOINC, and has focused on expanding the reach

of Grid computing by creating a system that combines these two models [36, 7].

Some of the basic perspectives guiding The Lattice Project are described next.

1.2.1 Computational Resources

With regard to including resources, our approach is simple: we believe that

there is a place for every computer to participate in a Grid. The approximate number

of computers at the University of Maryland alone is estimated at 40,000, and most of

these computers are idle the majority of the time. It is a challenge to convince

individuals and organizations within the institution to join the Grid and to lower the

barriers to doing so.

We feel that the large heterogeneity in types of research problems is best met

 4

with heterogeneous computational resources. For example, some problems may

require a closely coupled parallel computing environment (e.g., a cluster with low

latency, high bandwidth interconnections between nodes). Other problems are easily

atomized into wholly independent processes, the results of which can be united to

form a composite result (e.g., a parameter sweep). These are often called

“embarrassingly parallel” problems, and are appropriately handled by desktop

computing resources. Hence, we designed the system to include a variety of these

resource types.

1.2.2 Software Development

With regard to software development, our approach has been to use open

source tools when possible, and to create software that is modular, flexible, and able

to adroitly incorporate upgrades to the Globus and BOINC toolkits. Scalability and

robustness are also important, especially in Grid computing. We have worked hard to

make sure the Grid architecture scales to thousands of simultaneously running jobs,

and have also made sure the system is robust enough to run somewhat autonomously

and predictably. One can imagine that as a Grid system grows in complexity, there

are many possible points of failure that need to be identified and safeguarded against.

1.2.3 User Interface

With regard to using the Grid, we approach it from the perspective of a user

familiar with the applications, but not necessarily familiar with Grid computing.

Therefore we have striven to make the system easy to use, almost to the point of

making it seem like one is running applications as they would on their own system.

Most of the analytical applications that scientific researchers are familiar with employ

 5

a command line interface, and we have attempted to provide a similar interface to our

Grid services. (Note: in the context of The Lattice Project, a scientific application

enabled to run on the Grid is called a Grid service.) Thus, invoking a particular Grid

service with a particular string of arguments might exactly mimic the standard use of

the application, except that upon hitting return, the Grid takes the program

executable, input files, and job description, and sends it off to a remote resource. The

person submitting the job is not concerned about where the job is actually running.

1.3 Models of Grid Computing

At present, Grid computing systems can be broadly classified into two

models. The first model is the Service Grid, which is considered the “classical”

computational Grid system used by the scientific research community. Service Grids

provide rich feature-sets (e.g., resource discovery services and multi-user

authentication) and tend to concern themselves primarily with providing access to

large-scale, intra- and inter-institutional level resources such as clusters or large

multiprocessors.

The second model of Grid computing systems is the Desktop Grid, in which

cycles are scavenged from idle desktop computers. The power of desktop systems has

increased dramatically in recent years, and there has been a concomitant shift away

from centralized client/server computing to a decentralized model. Although

individual desktops remain inferior to “big iron” machines in many ways (e.g.,

typically in terms of available memory, amount of mass storage, and interprocessor

latency and bandwidth), the combined power of hundreds to millions of desktop

systems united in a Desktop Grid represents a substantial computing resource.

 6

Desktop Grids excel at pleasingly parallel problems, and they have become

particularly popular in the natural sciences where they have been used in research

areas as diverse as radio astronomy [4], phylogenetics [37, 14], structural

biochemistry (http://folding.stanford.edu/), and anti-HIV drug discovery

(http://fightaidsathome.scripps.edu/).

In contrast to classical scientific research Grid systems, lightweight Desktop

Grids provide only a thin layer of abstraction over the resources they manage. This is

largely a function of their origins: systems such as SETI@home [4] (and its relatives

and descendants) were initially conceived to solve immediate research problems, not

as objects of study themselves. Note that we specifically exclude Condor

(http://www.cs.wisc.edu/condor/) and similar systems from our definition of Desktop

Grids. Although Condor is a distributed computing system that uses cycles from idle

computers, the individual computers typically reside wholly within a single institution

and administrative domain. (As we will describe later, Condor can play an important

role in Grid computing systems, as it does in The Lattice Project.)

Many computational biology and other scientific problems are well suited to

processing by Desktop Grids for two main reasons. First, many scientific research

problems require considerable CPU time to solve (e.g., large parameter sweeps), and

provisioning a cluster or symmetric multiprocessor to provide reasonable response

times for a large number of such jobs can be prohibitively expensive and lead to

massive over-provisioning during periods when demand for the resource is light.

Second, many scientific computing algorithms exhibit extremely coarse-grained

parallelism, and many existing applications do not take advantage of the special

 7

features of parallel hardware (e.g., multithreading on symmetric multiprocessor

systems). In these cases, the fast interconnect of a symmetric multiprocessor or

cluster is simply wasted. Hence, many scientific computing problems would be well

suited to Desktop Grid systems if they could be made available and easy to use.

Thus, we have two largely separate models of Grid computing. One provides a

rich feature set for accessing large-scale resources; the other provides a minimal

feature set but can utilize resources as informal as personal computers in private

residences. Ideally, we would like the best of both worlds: we would like to apply the

features of the first model over the scope of the latter.

 8

Chapter 2: Related Work

2.1 Service Grids

Service Grids are what one normally thinks of when they think of Grid

computing: heavyweight, feature-rich Grid systems that federate a large number of

institutional computing resources. Service Grids may be international in scale, such as

with the Enabling Grids for E-sciencE (EGEE – http://www.eu-egee.org/) project or

the Open Science Grid (OSG – http://www.opensciencegrid.org/), or primarily

national, as with the TeraGrid (http://www.teragrid.org/). Usually, the computing

resources remain under the ownership and control of participating institutions, and the

rights to use those resources are established by some kind of consortium. These Grids

exist primarily to advance various domains of science, and since they are built with

similar underlying middleware, they often interoperate, sharing compute cycles and

data with one another. Typically, researchers must request an allocation to use such

Grid systems, or be involved with a large project that already has an active resource

allocation. The Grids mentioned here are much larger in scope than The Lattice

Project, although are built with similar middleware technology.

2.2 Desktop Grids

Desktop Grids, as we define them, are composed primarily of personal

computers volunteered by the general public. These machines run a client program

that allows them to receive work from a centralized server they communicate with

periodically.

 9

BOINC is the most widely used client/server software for setting up a Desktop

Grid system. Most BOINC projects are strongly associated with a particular scientific

domain or problem, such as climate prediction (http://climateprediction.net/) or

protein folding (http://boinc.bakerlab.org/). A distinguishing characteristic of many of

these projects is that they have a vast supply of work that is homogeneous in nature,

and thus can easily satisfy the expectations of those who choose to participate. We set

out to see if we could include a Desktop Grid in a comprehensive Grid system for

scientific analysis. Therefore, participants in our BOINC project may receive work

from a wide variety of different scientific applications. This is a bit of a public

relations challenge since people do not always know what kind of behavior to expect

from the application they may be running, but it is well worth meeting that challenge

to include the vast numbers of volunteers that are willing to contribute their

computers to the advancement of science.

2.3 Combining Service and Desktop Grids

 Aside from The Lattice Project, which was the first project to combine

Service and Desktop Grids, there have been very few projects aiming to do something

similar. The only one of any note is the Enabling Desktop Grids for e-Science

(EDGeS – http://edges-grid.eu/) project, which has come along somewhat recently.

Here is the abstract from a recent book chapter, EDGeS: The Common Boundary

Between Service and Desktop Grids:

Service grids and desktop grids are both promoted by their supportive

communities as great solutions for solving the available compute power

 10

problem and helping to balance loads across network systems. Little work,

however, has been undertaken to blend these two technologies together. In this

paper we introduce a new EU project, that is building technological bridges to

facilitate service and desktop grid interoperability. We provide a taxonomy and

background into service grids, such as EGEE and desktop grids or volunteer

computing platforms, such as BOINC and XtremWeb. We then describe our

approach for identifying translation technologies between service and desktop

grids. The individual themes discuss the actual bridging technologies employed

and the distributed data issues surrounding deployment. [5]

It appears they have been relatively successful in their endeavor thus far. However,

their middleware is interoperable with gLite-based [31] Service Grids, whereas our

system is the only one known to successfully integrate Desktop Grids with Globus.

Next we provide some additional detail about the middleware systems we use in The

Lattice Project.

 11

Chapter 3: Middleware Systems

3.1 Globus

The Globus Toolkit [18] represents the current state of the art in Grid

middleware. It is the focus of much of the ongoing research in Grid computing, and

we can expect to see continued support and development for it well into the future.

Based on a web services architecture, Globus provides facilities for the execution and

management of jobs on remote resources, resource monitoring and discovery, file

transfer, authentication and authorization, and encryption of messages. Using the

Globus Toolkit, it is possible to build large, highly distributed, and robust

computational grids.

The Globus Toolkit is the paradigmatic example of a heavyweight Grid

system. Its Grid Security Infrastructure (GSI) provides for strong, distributed

authentication of mutually distrustful parties, and its Community Authorization

Service (CAS) provides robust authorization capabilities. The Monitoring and

Discovery System (MDS) allows for on-the-fly resource discovery. The Grid

Resource Allocation and Management (GRAM) service provides an abstraction layer

that allows jobs to be submitted to computational resources without prior knowledge

of the underlying job submission and queuing systems used by those resources. The

Grid File Transfer Protocol (GridFTP) and Reliable File Transfer (RFT) services

enable efficient data transfer, and the Replica Location Service (RLS) enables

efficient Grid-wide data management. Globus operates on a push model: work is sent

from a submitting node to a computational resource, which then accepts and

processes the job, returning the results to the submitter. Moreover, these jobs can be

 12

arbitrary: Globus resources are capable of executing user-supplied code. Input and

result files are typically transferred between a submitting node and a computing

resource.

Newer versions of Globus (version 3 and onward) support the concept of Grid

services, which are closely related to standard web services in both design and

implementation. Globus Toolkit 4 is compliant with the Web Services Resource

Framework (WSRF), so its Grid services are, in fact, WSRF-compliant web services.

Grid services provide a clean way of representing operations that the Grid can

perform on behalf of its users; they represent a higher level of abstraction than that of

individual computational jobs, and they allow Globus-based Grids to serve as more

than large queuing systems.

Over the past several years, our research has been aimed at using the Globus

Toolkit, in combination with other Grid middleware, to create a computational Grid

for scientific research. We began development with Globus Toolkit 3 (GT3), which

formed the backbone of our Grid system. Development continued until we had a fully

functional production-level Grid system built around GT3. After successful

production use of this system, we focused our efforts on upgrading our infrastructure

to use Globus Toolkit 4 (GT4), which was released in early 2005.

3.2 BOINC

The Berkeley Open Infrastructure for Network Computing (BOINC –

http://boinc.berkeley.edu/) is the direct descendant of the SETI@home project [4].

Developed by the same group at the University of California, Berkeley that developed

SETI@home, BOINC is a generalized implementation of the master/worker,

 13

Internet-scale model that SETI@home popularized. BOINC implements a

public-computing Desktop Grid: it harnesses resources outside the bounds of direct

institutional control. As in SETI@home, BOINC clients (i.e., personal computers)

retrieve jobs to execute from a server that acts as a central repository of work. In

contrast to Globus, which uses a push model, BOINC clients pull work from a server.

Moreover, although BOINC is generalized in the sense that it can manage any

arbitrary project, it is limited in that it expects to manage a small number of very

large, well-defined projects: its aim is to allow individual research groups to manage

SETI@home-style projects without developing their own software [3]. As such,

BOINC does not provide mechanisms for executing arbitrary jobs on the fly, for

determining which users may modify which jobs, or for any of the other functions

one would expect a normal queuing system to provide.

Although BOINC does not support many of the features that Globus does, it

does provide the more limited functionality required by its model. For example,

BOINC can automatically match work to be processed with hosts suitable to execute

it, taking into account estimated memory and disk requirements as well as

architecture and operating system constraints. Moreover, BOINC compute clients are

expected to be unreliable; both in terms of returning a result in a timely manner and in

returning correct results. Therefore, BOINC includes support for redundant

computing, in which multiple copies of the same computation are performed by

different clients and then cross-checked for agreement.

 14

3.3 Condor

The Condor project from the University of Wisconsin has been around for

almost twenty years. Condor is not a Grid middleware toolkit per se, but rather a

middleware toolkit for distributed computing by means of cycle scavenging. The

software has proved to be extremely popular, robust, and useful. We normally use

Condor as a queuing system or a job scheduler for resource subsets (Condor pools)

comprised of computers in a single administrative domain. The Globus Toolkit

includes a Condor scheduler adapter that enables a job submitted via GRAM to run

on a Condor pool. This is the primary way that we make use of Condor; we

encourage various groups and departments on campus to federate their machines into

Condor pools, and then we submit jobs to these pools via the Grid.

As a side note, our GT3-based production Grid system used Condor-G [19] as

the Grid meta-scheduler, or “master job queue”, although we eliminated the need for

this component in the GT4 upgrade. Since the queuing systems on remote resources

are sufficient to buffer jobs, the simple scheduling functionality provided by the

Condor matchmaking feature can be replaced by a more sophisticated scheduling

algorithm, which is precisely what we have done by implementing our own

Grid-level scheduler. However, Condor software continues to be an integral, reliable

part of the Grid system.

3.4 PBS

The Portable Batch System (PBS – http://www.openpbs.org/) is software that

performs job scheduling on compute clusters. PBS runs on several of our clusters and

is the third resource manager type that we currently interface with; Condor and

 15

BOINC are the other two. Other popular queuing systems that operate in a similar

manner are Sun’s Grid Engine (SGE – http://gridengine.sunsource.net/) and

Platform’s Load Sharing Facility (LSF – http://www.platform.com/). It would be

possible to integrate resources running these other queuing systems, too.

 16

Chapter 4: The Lattice Project

4.1 Features

We provide users with a command line interface for submitting and

monitoring jobs on a machine we call the "Grid Brick". After logging in, a user may

run commands that submit jobs to the Grid, monitor the status of jobs, or remove jobs

from the system. By convention, the user's home directory is the staging area for Grid

input and output data. A user typically uploads input files to the Grid Brick and

organizes them in some manner before conducting their analyses. As their compute

jobs complete, result files are automatically returned to the directory the job was

submitted from. We also make available web pages on the Lattice intranet for

monitoring job status (Figure 4.1).

Figure 4.1. A screenshot from the Lattice intranet showing the current status of jobs.

4.1.1 Job Types

Running a Grid-enabled application using our command line tools is usually

very similar to using the original program, since most of the same command line

arguments will be present. Grid users are able to submit the job in an MPI mode if

 17

that is supported by the application, and are able to submit entire batches of jobs with

a single command if that is supported by the Grid service. We have found that a Grid

user often needs to submit many replicates of a particular job type, so enabling

support for batch submission has been a high priority. Since some algorithms are

stochastic, some job batches will be completely homogeneous – i.e., the same

combination of program executable, input files, and parameters will produce different

results for each job replicate. Homogeneous job batches were relatively easy to

implement and support, but it is easy to imagine any number of ways a heterogeneous

job batch could be devised – using different input files with each job replicate, for

example, or varying program arguments to conduct a parameter sweep. We currently

support heterogeneous batches that use a different combination of input files for each

job in the batch. Batch functionality is essential because it makes scheduling more

efficient, eliminates redundant data transfers, simplifies record keeping, and generally

speeds up the flow of work through the system. The majority of our researchers make

use of batch submissions, so the utility of this feature has been proven.

4.1.2 Job Submission

Once a user has organized their input files and authenticated themselves using

their X.509 GSI certificate, they may use the lattice_submit script to submit a job

to the Grid. They may also require help to use various services, as in the following

example, which shows the usage of the Structure [47] Grid service:

gridtest@valine:>lattice_submit Structure --help
Usage: Structure [OPTIONS]
-K n Change the number of popula tions
-L n Change the number of loci
-N n Change the number of indivi duals
-e filename Read a different parameter input file
 instead of 'extraparams'

 18

-i filename Read a different input file
--jobname jobname The arbitrary name to assig n this job or
 batch of jobs.
-m filename Read a different parameter input file
 instead of 'mainparams'
-o filename Print results to a differen t output file
--replicates replica The number of times to exec ute this job.

All of the flags are optional. Default behavior is to search the current working

directory for a file named mainparams and a file named extraparams , one of which

must specify the input data file. The --replicates flag is used to submit batches of

jobs, either homogeneous or heterogeneous. In the case of a heterogeneous batch,

instead of specifying a single file, a directory of files may be specified for the

following arguments: -m, -e , and -i . Here is an example of a heterogeneous batch

submission:

gridtest@valine:>lattice_submit Structure --replica tes 10
 -m mainparam_dir/ -e extraparams - i myinputfile

In this example, mainparam_dir must have at least 10 differently named parameter

files in it (whose contents are also hopefully different; perhaps the user is varying a

parameter, renaming the output file, or varying the random seed). extraparams and

myinputfile stay constant and are used unchanged by each job replicate in the batch.

The Grid user does not have to specify the resource on which the job is run;

this is for the Grid meta-scheduler to determine. Next we describe tools for

monitoring the status of submitted jobs.

4.1.3 Job Monitoring and Management

We have provided a utility called job_status that reports the status of jobs in

the system. This script uses a combination of command line arguments to filter results

and display them to the user. If no command line arguments are given to the program,

 19

it will list the jobs of the current user from the past 30 days. This list will include jobs

that are idle, running, completed, retrieved, and failed. Because this list has the

potential to get very long, it is recommended that the user provide some filters. For

example, issuing the command job_status --user [username] will show only the

jobs submitted by a given user.

List View

The following is a sample run of job_status that prints out a list of jobs

submitted by user freed . Several fields are displayed when jobs are listed in this

manner. The JobID is a unique identifier for a specific job, and can be used in

conjunction with the kill_job script to remove a job from the system for any reason.

Information View

In addition to the listing view, job_status also contains an "info" view that

lists more details about the job(s), which is activated with the --info flag. This

information can be used to help resubmit jobs that fail, to discover where jobs have

been scheduled, to inspect the command line that was used, and so forth.

 20

Ordering Results

Jobs can be sorted by using the -o or --order flag. The output generated by

job_status is sortable on eight values. A comma-separated list can be used to sort

on more than one value. The sortable values are job ID (id), job start time

(start_time), user who submitted the job (userid), current status of the job

(status), job finish time (finish_time), name of the job (job_name), BOINC credit

assigned to the job (credit), and the resource the job was assigned to (resource).

Thus, to sort first by user name, then by job status, then by job start time, the

following string would be used: "userid,status,start_time" . For example:

Viewing Old Jobs

When job_status is run without any arguments, some default values are

used. As discussed earlier, job_status assumes the user is only interested in their

own jobs. In addition to this assumption, "old" jobs are also filtered out automatically.

By default, only jobs that were started within the past 30 days (or jobs that have not

yet completed) are shown when job_status is run. Jobs that were started more than

30 days ago can still be accessed via the -d or --days flag, which can be combined

with other command line arguments. To check jobs owned by gridtest that were

started in the past 10 days, one would issue the following command:

gridtest@valine:>job_status -u gridtest -d 10

 21

The functionality provided by job_status has also been made available through a

web interface (Figures 4.1 and 4.2).

Figure 4.2. A screenshot from the Lattice intranet showing a number of job search filters.

4.2 Architecture and Infrastructure

This section discusses the general architecture of the system, and also

provides a description of the infrastructure that currently makes up the core Grid

system. The architecture of the system is a general client, server, resource model; that

is, a Grid client invokes a Grid service in a particular way and transfers data to the

server, which in turn schedules the job (or batch of jobs) to an appropriate resource.

Figure 4.3 shows an architectural diagram of the system. The infrastructure required

to support the general architecture is modest but can be scaled up as necessary. (Here

we only describe the machines in our production system; we also have a development

system intended for testing services and new functionality before it is deployed.)

 22

Figure 4.3. As shown in the diagram, data generally flows from left to right and back again through the
system, i.e., from client to server to resource and back. Despite the fact that they are represented
separately in the diagram, the Grid service and the Grid scheduler are both located on the Grid server
in our current production system.

4.2.1 Grid Client

The client in the architectural diagram and the “Grid Brick" mentioned in

section 4.1 are the same entity. The original such machine, valine.umiacs.umd.edu ,

is an HP dual core Intel Xeon workstation running RHEL5 at 3.1 GHz with 2 GB of

RAM and over 100 GB of disk space allocated for user home directories. (There is

also currently one other Grid Brick in the College of Chemical and Life Sciences.)

These machines have sufficed to accommodate our small user base so far, but scaling

up will require more storage for user data and additional points of submission. Other

possibilities include a more ubiquitous command line interface, or a web interface for

job submission and data management, which are discussed in Chapter 7. In terms of

Globus software, the Grid Brick needs to have GSI libraries installed for

authenticating Grid users, and it runs a GridFTP server in order to transfer files to and

from the Grid server. It does not, however, need to run a Globus web services

container. Our own software, to be described later, makes calls to Globus libraries to

 23

facilitate job submission and lifecycle management, and thus is also present on the

Grid Brick, along with various utility scripts (Figure 4.4).

Figure 4.4. Grid client software stack.

4.2.2 Grid Server

The main Grid server is asparagine.umiacs.umd.edu , and it is similar to the

Grid Brick except that its processors are 2.5 GHz and it has 4 GB of RAM. (Aside:

aspartate.umiacs.umd.edu , a sister server with 8 GB of RAM, powers the Lattice

BOINC Project.) The Grid server has an 80 GB disk partition for transitory job

storage. It runs the full Globus software stack, including a web services container into

which Grid services are deployed (Figure 4.5). Since jobs are submitted directly from

the Grid server to one of many computational resources, it is important that firewalls

be configured to allow traffic on various ports (e.g., 8443–https, 2811–GridFTP)

between the Grid server and remote resource. One can easily imagine a distributed,

 24

decentralized model in which multiple Grid servers are actively functioning, but so

far this has not been necessary.

Figure 4.5. Grid server software stack.

4.2.3 Grid Resources

On the Lattice web site we provide an up to the minute view of our Grid

resources (Figure 4.6). There are currently eight distinct resources where jobs can

run. We have compiled a table of current resources (Table 4.1), prospective resources

(Table 4.2), and retired resources (Table 4.3). These tables include information about

the size of the resources, the institution to which they belong, and individuals to

contact for more information. Resource building is one of the principal activities

associated with creating and expanding a Grid system, and as such it has been one of

our highest priorities. Beyond simply aggregating CPU power, resource building

usually involves collaboration between different people and organizations. Such

people may not know anything about Grid computing, in which case we take the time

to explain the goals of the project, the benefits of being involved with it, and the

technical details that enable these groups to effectively contribute their local

resources to the project. However, it is important to define exactly what constitutes a

 25

local resource, how one can be created, and the kinds of policies and procedures that

govern its use, which we do next.

Figure 4.6. A live snapshot of our Grid resources, available at http://lattice.umiacs.umd.edu/resources/.

A local resource is defined as an established computing resource administered

in one domain and capable of functioning independently from a Grid system. Users of

a local resource submit and monitor compute jobs using a local resource manager

(LRM), often simply called a "scheduler". Pools of computers running Condor

software or dedicated clusters running PBS software are common local resources. A

typical Grid system contains a meta-scheduler, which is discussed at length in section

 26

5.3. Meta-scheduling is the process of assigning computational jobs submitted at the

Grid level to an eligible local resource, where the job is then rescheduled locally. This

kind of hierarchical functionality is what makes Grid computing appealing: it is the

ability to use many different resources simultaneously and efficiently, wherein the

Grid system handles user authentication and authorization, job scheduling and

monitoring, and data placement. The Lattice Project provides these basic features,

thus enabling the student, scientist, or researcher to perform a large amount of

computation in a short amount of time without having to worry about low level

details. In addition, the user gains access to computational resources outside of his or

her administrative domain. In the case of The Lattice Project, one of these resources

is a fully functional BOINC project capable of running Grid jobs (Figure 4.7).

Figure 4.7. Any member of the general public with a computer may participate in The Lattice Project
by signing up at our web site (http://boinc.umiacs.umd.edu) and downloading BOINC client software.

 27

Current Grid Resources

RESOURCE INSTITUTION APPROX. SIZE CONTACT

UMIACS
(Condor Pool)

UMCP 600 CPUs Fritz McCall
fmccall@umiacs.umd.edu

Terpcondor
 (Condor Pool)

UMCP 230 CPUs Josh Thornton
joshthor@umd.edu

CLFS
(Condor Pool)

UMCP 120 CPUs Meldavid Manela
mel@umd.edu

CSU Desktops
(Condor Pool)

Coppin State 700 CPUs Ahmed El-Haggan
aelhaggan@coppin.edu

 Xseed
(PBS Cluster)

Bowie State 448 CPUs Sadanand Srivastava
ssrivastava@bowiestate.edu

Deepthought
(PBS Cluster)

UMCP 1600 CPUs Kevin Hildebrand
kevin@umd.edu

SEIL
(PBS Cluster)

UMCP 300 CPUs Jeff McKinney
kevin@umd.edu

Lattice on BOINC
(BOINC Pool)

UMCP 3000+ CPUs Adam Bazinet
pknut777@umiacs.umd.edu

Table 4.1. Current computational resources – four Condor pools, three PBS clusters, one BOINC pool.

Prospective Grid Resources

RESOURCE INSTITUTION APPROX. SIZE CONTACT

Bowie State
(Condor Pool)

Bowie State unknown Marivic Weiss
MWeiss@bowiestate.edu

CSEE Desktops
(Condor Pool)

UMCP unknown Jeff McKinney
mckinney@umd.edu

RIT Desktops
(Condor Pool)

RIT unknown Gurcharan S Khanna
gskpop@rit.edu

Kansas Cluster
(Cluster)

University of Kansas unknown Dave Vieglais
vieglais@ku.edu

Table 4.2. Prospective computational resources – three Condor pools, one cluster.

 28

Retired Grid Resources

RESOURCE INSTITUTION APPROX. SIZE CONTACT

Gridiron
(Condor Pool)

UMCP 100+ CPUs Kevin Hildebrand
kevin@umd.edu

USM Desktops
(Condor Pool)

USM 10 CPUs Suresh Balakrishnan
suresh@usmd.edu

Bluegrit
(PBS Cluster)

UMBC 128 CPUs John Dorband
dorband@umbc.edu

Table 4.3. Retired computational resources – two Condor pools, one cluster.

We have attempted to be all-inclusive with regard to the types of resources

that can be integrated into our system. Currently we support resources federated with

Condor, PBS, or BOINC. Once a scheduler is installed on a local resource, that

resource must be tied into the Grid system by installing Globus on a resource node

that has the capability to submit jobs using the local scheduler. Once a Globus web

services container is running on that node, jobs may be submitted to the resource by

contacting the ManagedJobFactoryService at a particular URL (e.g.,

https://[host-IP]:8443/wsrf/services/ManagedJobFact oryService).

Installing Globus and configuring the necessary components is not a trivial

task, but we have created detailed instructions to ease the process. One of these

components is called a scheduler adapter (formerly job manager). There exists a

different scheduler adapter for each resource type. This is typically a collection of

scripts responsible for translating a generic job description (e.g., Globus RSL or

JSDL format) into a resource-specific job description (e.g., a Condor or PBS submit

file). The Globus Toolkit comes with several of these by default, of which we have

customized and extended the Condor and PBS adapters. Our Globus-BOINC

interface includes, naturally, a BOINC scheduler adapter, which we wrote from

 29

scratch. Another important resource-specific component is the scheduler provider,

which collects information about the current state of a resource – e.g., number of free

CPUs, total RAM, total disk space, and so on. This information is aggregated by the

Globus MDS service to produce a high-level view of the current state of the

computational resources on the Grid, which is summarily used for job scheduling and

monitoring. Once Globus is installed and configured, the resource should be able to

receive jobs from the Grid. We take measures to ensure that Grid jobs do not interfere

with local use of the resource; some of this responsibility may fall to the scheduler

itself, or things may be explicitly configured such that Grid jobs only backfill, or take

the lowest priority. Once a resource is configured, it generally does not require much

additional maintenance as a result of its integration with the Grid. We are currently

installing the most recent version of the Globus Toolkit in the 4.2.x line. Of course,

these Globus installations may need to be periodically upgraded, but usually only

when a new major version of Globus is released.

Here are some facts about our resources:

• We support three major platforms: Linux (both PowerPC and Intel-based),
Windows, and Mac OS (both PowerPC and Intel-based). There is also a
smattering of Solaris machines.

• Three different institutions are currently tied in to the Grid: UMCP, Bowie

State University, and Coppin State University.

• Within UMCP, several groups have contributed resources: UMIACS, OIT,
CLFS, PSLA, and ECE/ISR.

• We currently have four Condor pools, three dedicated clusters, and a BOINC
project with a steadily growing number of participants.

• We currently have a total of 4000-5000 CPUs.

• A sizeable subset of our resources has R [48] installed, and we have
developed unique methods for running R code on Condor resources.

 30

Given the growth and success of our BOINC project, it seems clear that our

resource building efforts going forward should primarily focus on the integration of

dedicated, MPI-capable resources or resources with other specialized capabilities to

complement the high throughput capability of BOINC. As users of the Grid system

increase, so will demand for resources. The BOINC pool can easily grow to meet this

demand, but it will be necessary to continue to seek out other resources and new

institutional partners. These resources are already paid for; they are simply

underutilized. In light of this, most people are receptive to the idea of joining a Grid.

Participants sharing computing resources derive a number of benefits. First

and foremost: if a group contributes computing resources to the Grid, they are eligible

to use all Grid resources. Therefore, they gain access to many more computing

resources than they previously had access to, including a very large pool of public

computing clients through the Lattice BOINC Project. Joining the Grid might obviate

the need for future hardware purchases (e.g., a new cluster). Some participants do not

have a surplus of compute jobs, but instead have the opposite problem: they have

purchased a cluster that is underutilized, and would like to increase its utilization rate.

By contributing such resources to the Grid system, they are making them available to

many more people. In addition, we believe that compute resources in a Grid system

with an intelligent scheduler are used more efficiently. For example, jobs with large

memory requirements can be sent to clusters with large memory nodes, and tightly

coupled jobs (e.g., MPI jobs) can be sent to clusters with fast interconnects.

Pleasingly parallel jobs can be sent to Condor pools or to the BOINC pool, and so on.

In this manner, all computing resources are used more productively.

 31

Chapter 5: Core Functionality

5.1 Grid Services

5.1.1 Overview

In the context of The Lattice Project, a Grid service usually refers to a single

application that has been Grid-enabled, a relatively involved process that we have

worked hard to streamline. However, it is worth stressing – in order for an application

to run on the Grid, a Grid service for that application must be written and deployed –

i.e., submission of arbitrary code is not currently supported at the Grid level. We have

created 23 Grid services (see Table 5.1 for a brief description), though many early

ones were for proof of concept, and so fewer than half have been run to any

appreciable extent (as reflected by their CPU year credit – see Table 5.2). Grid users

may have a research project that requires the creation of one or more Grid services, so

frequently services are created on demand.

In keeping with standard web services procedures, we have designed our Grid

system with a generalized client-service architecture in mind. A remote Grid client

invokes a set of operations that cause a particular application to be run on the Grid.

These operations are performed during job setup, submission, monitoring, and

cleanup, and they fall into the following areas: initial configuration of Grid

client-service interaction, argument processing, transfer of files between client and

service, and submission and monitoring of Grid Resource Allocation and

Management (GRAM) jobs by the service.

 32

BLAST (Basic Local Alignment Search Tool): a sequence database search program.
[1, 2]

Clustal W: a multiple sequence alignment program. [57]

CNS (Crystallography & NMR System): a program for molecular structure
determination. [13]

GARLI (Genetic Algorithm for Rapid Likelihood Inference): a phylogenetic analysis
program. [60]

gsi (Genealogical Sorting Index): a program for a statistical analysis of evolutionary
trees. [16, 8]

IM (Isolation with Migration): a population genetics estimation program. [24]

LAMARC (Likelihood Analysis with Metropolis Algorithm using Random
Coalescence): a population genetics estimation program. [28-30]

MARXAN: a program used to design reserves for biodiversity conservation. [6, 46]

MDIV (Migration and Divergence), a population genetics estimation program. [41]

Migrate: a population genetics estimation program. [11, 12]

Modeltest: a program for evaluating the fit of evolutionary models. [45]

MrBayes: a phylogenetic analysis program. [53]

ms: a population genetics simulation program. [26]

MUSCLE: a multiple sequence alignment program. [17]

PAUP*: Phylogenetic Analysis Using Parsimony (*and other methods), a
phylogenetic analysis program. [56]

PHYML: a phylogenetic analysis program. [22]

Pknots: an RNA structure prediction program. [52]

Seq-Gen: a sequence simulation program. [49]

Snn: a population genetics estimation program. [25]

SSEARCH: a pairwise sequence alignment program. [43, 55]

Structure: a population genetics inference program. [47]

Table 5.1. A short description of our Grid services.

 33

Application Ported To BOINC
Ported To

CPU Years0
Linux X86 Windows Mac OS X

BLAST1 No Yes No No N/A

Clustal W Yes Yes Yes Yes N/A

CNS Yes Yes Yes No 25.43

Complab2 No Yes Yes Yes 6.66

GARLI Yes Yes Yes Yes 4912.76

gsi3 No Yes Yes Yes 142.45

HMMPfam Yes Yes Yes Yes 8193.54

IM Yes Yes Yes Yes 0.18

LAMARC Yes Yes Yes Yes N/A

MARXAN Yes No Yes No 5248.17

MDIV Yes Yes Yes Yes 13.25

Migrate-N Yes Yes Yes Yes 0.00

Modeltest Yes Yes Yes Yes N/A

MrBayes Yes Yes Yes Yes N/A

ms Yes Yes Yes Yes N/A

Muscle Yes Yes Yes Yes N/A

PAUP*4 No Yes No No N/A

Phyml Yes Yes Yes Yes N/A

Pknots Yes Yes Yes Yes N/A

Seq-gen Yes Yes Yes Yes N/A

Snn Yes Yes Yes Yes N/A

ssearch Yes Yes Yes Yes N/A

Structure Yes Yes Yes Yes N/A

 0 The Lattice Project has performed 18542.44 CPU Years of computation.
 1 BLAST has not been ported to BOINC because it requires pre-staged databases.
 2 Complab has not been ported to BOINC because it is implemented in Java.
 3 gsi has not been ported to BOINC because it is implemented in R.
 4 PAUP* has not been ported to BOINC because of licensing restrictions.

Table 5.2. A list of our Grid services, the platforms to which they have been ported, and a measure (in
CPU Years) of how much they have been used in production.

 34

5.1.2 The Challenges of Working with Globus

As might be expected in research-grade software, there are problems with the

Globus Toolkit. First, the application programming interface (API) that Globus

provides for writing Grid services is a relatively low-level one, and accomplishing

common tasks (such as transferring a file between two systems) can often require a

lot of code. Writing a fully-featured application-based Grid service is not as easy as

we would like it to be.

Second, Globus uses an asynchronous, event-based model for programming

Grid services. Although such a model is well suited to Grid computing, where one

may have to wait unknown lengths of time for operations to complete (e.g., between

submitting a job and receiving the results), it is not necessarily the most intuitive

programming model. In many cases the task of writing Grid services will be

facilitated if it can be done using a procedural model with blocking function calls,

even if the underlying infrastructure is event-based.

Third, because the Globus Toolkit software is under continual development,

there is always the possibility that the API presented to Grid services will change

between versions. This is precisely what happened between GT3 and GT4. A high

perceived probability of API change can make programmers hesitant about writing

Grid services using the API. Finally, creating a new Grid service requires creating a

number of new files in a very specific directory structure and with very specific

names, namespaces, and classes. This is a tedious and error-prone process at best, but

one we have to repeat each time we write a Grid service. Moreover, because we are

interested in having our applications run in a general framework, we designed our

 35

Grid system around the idea that every Grid-enabled application would be presented

as a Grid service. Thus, since we knew we would be building a significant number of

services, it was desirable to reduce the overhead associated with this process as much

as possible.

5.1.3 Grid Services Base Library

To address the above problems, we have written the Grid Services Base

Library (GSBL) [9], which provides a high-level, procedural API for writing Grid

services. In our Grid system, GSBL is the API called by our body of Grid services; at

this level, no Globus code is invoked directly. Thus, in the event that the Globus API

changes, only GSBL will require updating. It should also be noted that the Globus

team tries to preserve concepts from version to version of the toolkit, which means

that high-level GSBL-supported operations should also migrate easily. This solves the

problem of a changing API.

Admittedly, we have not attempted to provide a friendly interface to the entire

Globus API or to support all possible operations. As a guiding principle of our API

design we have focused on making simple and common tasks easy to implement,

while leaving the programmer to the Globus API for more difficult and uncommon

tasks. We note, however, that after having built more than twenty production Grid

services for life science applications, we have yet to encounter the need to circumvent

GSBL to write custom Globus code. In the rest of this section, we discuss the GSBL

API and how it solves the problems associated with the low-level, event-based

programming model of Globus.

 36

5.1.4 Initial configuration of client-service interaction

There are several steps that a Globus Grid client needs to take in order to

establish communication with a Grid service. Because our Grid services are

implemented with the WS-Resource Framework (Web Services Resource

Framework, WSRF), these services provide users with the ability to access and

manipulate state (i.e., data values that persist across service interactions). Following

standard GT4 conventions, each of our Grid services is composed of a Factory service

and an Instance service. When a client requests resource creation, it contacts the

Factory service. When a client requests that an operation be performed on a specific

resource, it contacts the corresponding Instance service.

Thus, assuming the WS-Resource Factory pattern is in use, the client first

contacts a Factory service that in turn creates and initializes a new resource. The

Factory service returns an endpoint reference to a WS-Resource composed of an

Instance service and the recently created resource. The interface of the Instance

service object has been defined in Web Services Description Language (WSDL), and

the associated resource provides state for this particular Grid service Instance. This

process requires a significant amount of relatively dense code that is nearly identical

between Grid services. Unfortunately, although the overall logic remains constant, the

classes involved do change, because each Grid service is uniquely typed. Moreover,

there is no supertype for the classes, and the names of the functions to be called

depend on the name of the service (e.g., one has to call

get[SvcName]FactoryPortTypePort() and get[SvcName]PortTypePort()), so

placing this logic into a library is not straightforward: neither subclassing nor

 37

templating is effective.

In order to place this code in a library, we made use of the Java Reflection

APIs. The constructor for the Grid client base class takes as parameters a Class object

representing the type of the class used to contact the Factory service, and a Class

object representing the type of the class used to contact the Instance service; using

these objects, it can create new instances of these classes without prior knowledge of

their type. To call the creation method (whose name varies based on the name of the

Grid service), we use the reflection API to search the methods of the locator object

for a method whose name and signature match that which is needed; then we obtain a

reference to this method and call it on the object. To reiterate, when this initial setup

is complete, a new Grid resource will be created for this particular job request and a

handle to an Instance service will be returned to the client. This handle is used to

contact the Grid service when performing the operations discussed in the next few

sections.

5.1.5 Argument Processing

The applications most often used in our computational biology research can

frequently accept a large number of command line arguments (e.g., SSEARCH, part

of the FASTA package [42], has 24 arguments). The straightforward Globus solution

to representing these parameters in a Grid services context would be to create a

complex type to hold them, and pass an instance of this complex type from the client

to the Grid service. Although this approach is adequate in many cases, it does not

fully meet our needs. Defining a type to handle configuration parameters is helpful,

but when such a type has dozens of fields, some sort of additional support is needed:

 38

manually copying user input into and out of such a type becomes tedious and

error-prone.

In order to provide more robust support for configuration parameters, we

chose to create a separate XML file describing the parameters. Each parameter has a

corresponding record in the file giving the name of the parameter, its description, and

to facilitate understanding, the name of the flag that the parameter corresponds to in

the original program. A sample record appears as follows:

<argument key="dbSize">
<flag>Z</flag>
<type>java.lang.Integer</type>
<description>Set the database size to
use when computing E-values.</description>
<takes>size</takes>
<optionalFlag>true</optionalFlag>
<optionalValue>false</optionalValue>
</argument>

The WSDL required to describe the complex type corresponding to the

arguments is automatically generated from this XML file using our Grid Services

Generator (see section 5.1.8). Perl scripts are also automatically generated that accept

the configuration parameters as command line arguments, write them out to a

specifically-formatted file, and then execute the Grid service client. GSBL provides a

class for the Grid service client that will read in this file and initialize an Instance of

the custom type.

Finally, once the argument type has been sent to the Grid service, it will need

to be converted back into an argument string to be passed to a GRAM job (and

ultimately to the original command line program). GSBL provides a class that accepts

the argument type and, using the XML file described above, generates the

corresponding argument string.

 39

One might ask, why not simply convert the client command line arguments to

a string, send that to the Grid service, and be done with it? By parsing the arguments,

we allow clients and services to make choices based on the values of the arguments,

which is required for properly configuring GRAM jobs and helpful for Grid-level

parallelism.

5.1.6 File Transfers

Effective Grid computing requires easy, reliable, bidirectional transfer of files

between Grid clients and Grid services. There are, however, two key problems that

need to be solved. First, there is the question of how the files are to be transferred:

Globus provides a number of different mechanisms for transferring files. Second, file

transfer is one of the areas in Grid computing in which the Globus asynchronous

model is particularly important: subject to file sizes and network speeds, transferring

a file could easily take more time than the timeout of the underlying remote procedure

call libraries. Thus, we need to provide some mechanism by which this event-based

process can be made to look procedural.

Our original GT3-based Grid system used the Global Access to Secondary

Storage (GASS) protocol to send files between the client and the server, but we are

now using GridFTP in conjunction with the Reliable File Transfer (RFT) service in

our GT4-based system. The GridFTP protocol provides for secure, robust, fast and

efficient transfer of data. The Globus Toolkit also provides the most commonly used

implementation of that protocol, composed of a server implementation and a

scriptable command line client. In our system, a GridFTP server runs on both the

client and the service, thus enabling file transfer between them. RFT is a

 40

WSRF-compliant web service that provides scheduler-like functionality for data

movement. Provided with a list of source and destination URLs (e.g.,

gsiftp://localhost/foo), the service writes the file transfer description into a

database and then moves the files on behalf of the user using GridFTP. Thus, in

summary, GSBL negotiates with the RFT service to initiate file transfers, which in

turn makes recourse to GridFTP for the actual data transfers.

In GSBL, the ReliableFileTransferManager class is used to initiate and

monitor file transfers. It accepts a list of files, an upload or download operation, and a

local and remote endpoint. Once the transfer is initialized, one calls

beginTransfer() to start the transfer in a separate thread. This call should be

immediately followed by a call to waitComplete() , which will block until the file

transfer job object has issued its “transfer complete” notification. Using these two

simple function calls, file transfer can be made to look procedural; at no point do

developers have to concern themselves with event-handling. As a side note, the

ability to transfer a batch of files in one method call marks an improvement over the

GT3-based system.

This file transfer code is used in two phases of a job life cycle. The first phase

is uploading job input files from the Grid client to the Grid server, and the second

phase is uploading job output files from the server to the client.

5.1.7 Creating and Monitoring GRAM Jobs

Our Grid services need to submit GRAM jobs to remote computational

resources on behalf of the client. These jobs may have to wait in a remote queuing

system for some period of time, and even once execution begins, processing can take

 41

a long time. As such, the Globus API for submitting GRAM jobs is an asynchronous,

event-based construction.

The GSBLJobManager class for Grid services works much like the

ReliableFileTransferManager class does for file transfer: it provides methods for

starting a GRAM job and testing whether or not it completed successfully.

When a client calls runService() , passing along the complex argument type

discussed in section 5.1.5, this Grid service method prepares to create the GRAM job

and returns immediately to the client, which may then terminate. From this point on,

the service is in charge of submitting and monitoring the job, and is also responsible

for transferring output files back to the client host when the job is finished.

Because of this design, it is necessary for job monitoring to resume in the

event that the Globus web services container is shut down and restarted, or otherwise

interrupted. We have provided mechanisms that Grid services can use to recreate

GRAM job objects and check the status of jobs that were previously submitted. These

mechanisms make use of persistent state information about jobs that Globus keeps on

disk, as well as a database that helps to determine which jobs have not yet finished.

This monitoring process resumes automatically as each Grid service is initialized

when the web services container is restarted.

5.1.8 Grid Services Generator

In order to further streamline the creation of Grid services using GSBL, we

have written a program, the Grid Services Generator (GSG), that generates skeleton

implementations and build environments for Grid services based on an extremely

limited set of inputs (name of the service, package in which implementation classes

 42

should reside, Extensible Markup Language [XML] description of the program

arguments, and location in the web services container at which the service will be

deployed). After running the program, the user will have client and service Java class

templates that work with GSBL, a Web Services Description Language (WSDL) file

for both the Factory service and the Instance service (both of which are basic Globus

services), other required Globus configuration files, and build files so that the code

can be easily compiled and deployed within a working directory. Because setting up

this development environment for each new Grid service is otherwise an

extraordinarily tedious and error-prone task, we have found that the GSG

dramatically increases programmer productivity.

The Grid Services Generator was designed to ease the overall process of

developing Grid services. In particular, it attempts to minimize the amount of code a

programmer has to write by stamping out generic GSBL-based Java classes for a Grid

client and service. Afterward, a programmer simply completes the non-templated

portions of these classes to customize the behavior of their Grid service. In this way,

it is possible to quickly develop a suite of application-based Grid services.

5.2 Data Management

We recently implemented a relatively sophisticated Grid-wide data caching

scheme, which saves on disk space and bandwidth throughout the system. The basic

idea is that an input data file cache is maintained on the Grid server and on each Grid

resource. Before any new file transfers are initiated, (either from client to server or

from server to resource), the system checks with a central directory to see if the file(s)

to be transferred already exist at the destination. This may be the case if a particular

 43

input file has been used for a job previously, which we find happens quite often with

certain services. Furthermore, program executables are also cached as part of this

scheme, which otherwise would be transferred repeatedly with each job submission.

We use the Globus Replica Location Service (RLS) to keep track of the

locations of files. RLS maintains and provides access to mapping information from

logical names for data items to target names. These target names may represent

physical locations of data items, or an entry in the RLS may map to another level of

logical naming for the data item. RLS is intended to be one of a set of services for

providing data replication management in a Grid. By itself, it does not guarantee

consistency among replicated data or guarantee the uniqueness of filenames

registered in the directory, but is intended to be used by higher-level Grid services

that provide these functionalities.

While we are not maintaining replicas per se, the basic functionality RLS

provides is appropriate for our needs. A simple MD5 hash uniquely identifies a

particular file, which RLS calls a logical file name (LFN). There is a one-to-many

mapping from an LFN to a physical file name (PFN), since the same file may exist on

multiple resources. In our system, PFNs are GridFTP URLs. Here is an example of an

LFN → PFN mapping:

2349ab6c2d32527b0c9dbcfa26e8690c ->

gsiftp://128.8.141.68:2811/${GLOBUS_SCRATCH_DIR}/ca che/234/2349ab6c2d
32527b0c9dbcfa26e8690c/garli.conf

The PFN specifies the remote resource and the path to the file on the remote file

system. To handle the case of two files having identical contents but different

 44

filenames, we keep only one physical copy and use symlinks to enumerate the

different filenames. For example, here is a subdirectory of the file cache on the Grid

server:

gt4admin@asparagine:/export/grid_files/cache/559/55 9b4f8378046a6f9ed2
04fc5260160d> ls -l

-rw-rw-r-- 1 gt4admin gt4admin 1147 Aug 1 19:22
559b4f8378046a6f9ed204fc5260160d

lrwxrwxrwx 1 gt4admin gt4admin 94 Aug 1 19:22 ga rli167.conf ->
/export/grid_files/cache/559/559b4f8378046a6f9ed204 fc5260160d/559b4f8
378046a6f9ed204fc5260160d

Since these caches may grow to contain many thousands of files, we make them

hierarchical (as can be seen from the URLs and paths in the previous examples), since

UNIX file systems have a limit on how many inodes a directory may contain.

Of course, it is necessary to avoid completely filling up the physical volume

the cache resides on. Our strategy is to periodically remove files from a cache that is

becoming dangerously large. In order to achieve this, three things are needed. First,

resources must report disk usage statistics about the physical volume where the cache

resides. Second, the RLS database must be augmented with metadata for each file –

namely, a timestamp marking when the file was last "requested" for use in a job, and

the file size in bytes. Third, the cleanup process must combine this information to

determine which files should be removed, actually remove them somehow, and also

delete the corresponding RLS entries.

To report disk usage, each Globus scheduler provider is modified to query for

two quantities: "disk used", and "disk available". This information propagates back to

the central MDS database on the Grid server every n minutes (in our system, n = 3).

 45

Once the information is aggregated, it can be displayed on the resources page (Figure

4.6) and used in the cache cleanup algorithm.

Augmenting the RLS database with metadata about the files it contains

involves a one-time addition of two string “attributes” (in RLS terminology)

associated with each PFN: size (in bytes), and requested (a UNIX timestamp).

Code was added to GSBL to find the sizes of files and also to store dates associated

with files as UNIX timestamps for the sake of easy comparison. However, there are at

least two conditions that need to be met before files can be safely removed: 1) no file

transfers (job submissions or result retrievals) should be in progress and 2) only files

whose requested timestamp is older than the oldest currently running job are eligible

for deletion. Thus, Grid activity is paused once nightly for a short while to perform

cache cleanup and other maintenance.

To actually carry out the deletion, the following formula is currently used: if a

cache is > 80% full AND < 20G remain, remove files until the cache is < 75% full

OR > 25G remain. Note that it may not be possible to do this for the following

reasons: 1) the cache on a remote resource is sharing the volume with files outside of

our control or 2) some files may be in use by jobs and not eligible for deletion. The

algorithm chooses to delete the oldest files first and then only enough files to bring

disk usage under desired thresholds. However, it is still possible for caches to grow

very full of files that have not been requested recently, thus putting a strain on backup

systems because of the sheer number of files, even if they do not take up much space.

Thus, it has been necessary to layer on an additional policy of deleting files that were

last requested more than d days ago (where for example, d = 90). Eventually, it would

 46

be nice to replace the current hand-picked, global values (i.e., 75%, 20G, and 90

days) with auto-tuned, resource-specific settings based on recent usage patterns.

For each resource cache in need of cleanup, a GRAM job is submitted to the

proper scheduler on the remote resource (e.g., Condor, PBS, or BOINC). Submitting

a GRAM job is necessary in order for the GLOBUS_SCRATCH_DIR variable to be

properly interpreted – otherwise, we could simply use the RFT client program. These

are very simple jobs (/bin/true) with file cleanup directives that delete the

appropriate files, which correspond to LFN → PFN mappings in the RLS database.

The RLS mappings are then deleted using the globus-rls-cli command line

utility.

Since disk space on some resources is quite limited, in some cases we have

been able to greatly increase the number of concurrently running jobs by eliminating

redundant copies of files. Another benefit is that because there are no unnecessary file

transfers, the job submission process is sped up and no bandwidth is

wasted. Naturally, these gains are only made when input files are reused, but we find

this happens rather frequently. Furthermore, we can use the knowledge of where the

data in the Grid currently resides to make more intelligent scheduling decisions, since

moving the computation to the data is generally more efficient than the converse (and

a popular paradigm nowadays, as in the Google File System [20]).

5.3 Meta-scheduler

The scheduling component of any Grid system is likely to be one of the most

important and logically complex, since to a large extent it determines the overall

efficiency of the system. This component is called a meta-scheduler because it

 47

decides on which local resource a job should run; when a job reaches the remote

resource, it is usually scheduled again in that local environment. A scheduler must be

informed about the present state of remote resources, and this is what the Monitoring

and Discovery Service (MDS) does. MDS is a default Globus component that

requires minimal configuration. For example, consider a Globus installation for which

MDS has been configured to report about the status of a Condor pool. In that case the

Condor scheduler provider will periodically parse the output of the Condor command

condor_status to discover the total number of nodes in the pool, the number of

nodes that are actually free (not bound to a machine owner or another computational

process), and other information about the pool. This information is stored in XML

format in the Globus container memory space and is valid only for a specified

lifetime (in our system, 3 minutes).

The MDS database can be queried to retrieve various kinds of information,

such as the status of the Condor pool in the example above. Also, the information in

an MDS database can be periodically propagated to another MDS database running in

a different Globus container process. Using this mechanism, it is possible to centrally

aggregate all of the data about remote Grid resources, which is precisely what we do:

we collect all the information about remote resources in the central Grid server MDS

database, and query it to make scheduling decisions. Next we describe the scheduling

algorithm in detail.

5.3.1 Scheduling Algorithm

 First of all, the scheduler needs to know which resources are reporting. If a

remote installation goes offline, any jobs sent there will fail, so we cannot safely

 48

assume that our resources are always up and running. Instead, if we cease to receive

MDS information from a certain resource, we mark the resource as “offline” and

make sure no new jobs are scheduled there. Then the question becomes: of the

resources that are reporting, which one do we send a particular job to? Well, the

simple fact is that not all jobs will run on all resources, so the scheduler must match

on various attributes to narrow down the possibilities. For example, the system keeps

track of which CPU architecture and operating system combinations each application

is compiled for (e.g., Intel/Mac OS X), and compares this list against the platforms

each resource is advertising. Then, if the job has a minimum memory requirement, we

filter out resources that do not meet the minimum memory criterion. Other resource

requirements are also considered if necessary, such as whether or not the resource is

MPI-capable, and whether or not it has additional software installed (e.g., R). One can

imagine any number of additional filtering and ranking criteria, especially around

complex issues like policy – determining which users may access a particular

resource, which users have priority over other users, when a particular resource may

be used and for how long, and so on. We have not yet placed any such policy

restrictions on resource use at the Grid level, though it may be necessary to do so in

the future. However, it is important to stress that when Grid jobs run at the local

resource level, they are always subject to whatever local policies govern use of that

resource. From the final set of eligible resources, the scheduler chooses the one with

the lightest load and submits the job there.

 49

5.3.2 Scheduler Implementation

 As previously mentioned, the GT3-based Grid system made use of Condor-G,

and specifically of its "matchmaking" feature. This simple load balancing scheduler

was fed information by an older version of MDS. We abandoned Condor-G in favor

of a custom scheduling framework, but retained some basic ideas from that

system. As things stand, our meta-scheduler is basically comprised of a couple of Perl

scripts and a GSBL class. The get_resource_info script periodically reaps the

central MDS database and stores a list of available resources and their attributes in a

simplified plaintext format. The get_resource script implements the scheduling

algorithm and is called by the GSBL class to pick a resource when a job is being

scheduled. Planned improvements to the scheduler are discussed in section 7.2.2.

 50

Chapter 6: Combining Globus- and BOINC-based Systems

It is useful to define some BOINC-related terms that will be used throughout

this chapter. In BOINC, a work unit defines a unit of computation to be executed. A

result unit is an instance of a work unit: i.e., due to redundant computing, a BOINC

server might create three result units for a given work unit. These three (not yet

processed) result units are sent to clients, which process and return them. Once a

quorum is reached (e.g., two matching result units have been received from clients),

one result unit becomes the canonical result for the work unit. For simplicity, we may

sometimes refer to “the result” of a work unit, in which the quorum/canonical

designation process is subsumed.

6.1 Challenges in Combining Globus and BOINC

As described previously, Globus and BOINC differ significantly in their

assumptions regarding the need they seek to fill and in the features that they provide.

Any attempt to join these two systems must thus reconcile these differences. Here, we

discuss some of the concrete challenges that must be overcome.

6.1.1 Job Submission

BOINC was designed to allow a single coordinated group to manage

large-scale distributed computing projects. As such, BOINC has a number of

assumptions about the way in which it will be used. In particular, BOINC has no

concept of users, and thus no concept of remote users: there is simply a single local

entity that provides work for the system. Globus, on the other hand, expressly allows

 51

multiple distributed users to submit jobs. Thus, BOINC must somehow gain

multi-user functionality.

6.1.2 Job Specification

GRAM, the protocol Globus uses to manage jobs, was designed assuming

jobs would execute on conventional UNIX systems (i.e., systems with UNIX-like file

systems where programs are executed by specifying a path, a command, and some

arguments). BOINC, on the other hand, has no concept of paths and only a loose

conception of a file system. Thus, a Globus job description document (JDD) will

specify something like “<executable>/usr/bin/foo</executable> ”. In a Grid

system where this request could be tasked to a desktop computer using the Windows

operating system without foo installed, what is the meaning of “/usr/bin/foo ”?

This request needs to be mapped into the file-system-less BOINC universe.

6.1.3 Data and Executable Staging

Globus is able to stage both data and executable files from submitting systems

to the host on which the job executes. In particular, this means that Globus compute

resources are able to execute arbitrary, user-supplied codes. Thus, there needs to be a

mechanism to handle the staging of data all the way down to the BOINC clients, and

the issue of arbitrary code execution on a Desktop Grid needs to be addressed.

6.1.4 Reporting of Results

Globus can also stage result data and program output back to the submitting

node from the compute node(s). Therefore, there needs to be some way to take files

generated by BOINC clients and return them to the Globus submitting node. In the

 52

next section, we provide details of our solution that integrates BOINC and Globus.

6.2 Globus-BOINC Adapter

6.2.1 Job Submission

By design, Globus provides mechanisms and procedures for integrating new

types of resources: by placing an abstraction layer (GRAM) over its resources, it

reduces the task of integrating a new resource type to that of writing a

GRAM-compliant interface for that resource. Therefore, we have written a GRAM

scheduler adapter (commonly known as a job manager) for BOINC. The job manager

in this case is more complicated than in others, however, because the BOINC model

is significantly different from more traditional queuing systems.

Globus provides a Perl base class from which job managers may derive, and

by extending this base class, BOINC gains the ability to accept jobs from the outside

world, thus acquiring multi-user functionality. Although this achieves many of the

capabilities of a true multi-user system, it does not provide robust, production-grade

authentication and authorization capabilities. Rather than graft authentication and

authorization onto BOINC, we choose to leave these tasks to a Grid meta-scheduler

such as Condor-G, or in the case of our current system, a meta-scheduler of our own

design. In either case, the component is tightly integrated with the Globus Security

Infrastructure. We believe that this represents a much preferred solution than forcing

the concept of “BOINC local users” onto BOINC or making BOINC aware of Grid

credentials. Note, however, that our design does provide, through Globus, multi-user

authentication and authorization not heretofore available to BOINC.

The other three challenges require somewhat more complicated solutions, and

 53

we discuss them next.

6.2.2 Job Specification

One of the primary tasks of a Globus job manager is to translate the job

description documents (JDD) used by GRAM into a native format that the managed

resource can understand. In many cases, this can be a straightforward mapping

between corresponding fields. In our case, however, more work is required to

generate a BOINC work unit from a JDD.

Globus job description documents contain a few fields of particular interest in

this context. First, there is the executable field, which specifies the program to

execute. This could be either a fully-qualified pathname or a simple executable name.

As discussed earlier, however, BOINC does not have a UNIX-like execution

environment, and it certainly does not have a shell capable of resolving a

non-path-qualified name to a specific executable. Thus, the executable field needs to

be mapped manually.

The closest BOINC concept to an executable file is an application.

Essentially, each BOINC project is composed of one or more applications, which

represent computations that clients may perform. Each application in turn is

composed of one or more application versions, which are executables implementing

the computation for specific client architectures. Thus, to establish a mapping

between the JDD executable field and the BOINC application name field, we remove

any path information from the executable field and look for a BOINC application

matching the remainder. If a match is found, it is designated as the application to use.

If a matching application cannot be found, the job submission is rejected and an error

 54

is returned to Globus. Note that this requires applications to be pre-registered with the

BOINC server; user-supplied code is not allowed. Although user-supplied code could

be supported, our design specifically excludes this capability due to security

concerns, as BOINC lacks mechanisms to protect clients from malicious programs.

Resource limits constitute another set of difficult mappings from Globus to

BOINC. There are trivial mappings between certain resource limits, such as

maximum memory required. However, BOINC and Globus measure computing

requirements in fundamentally different ways. Globus measures them in minutes of

CPU time, whereas BOINC measures them in number of floating-point operations

required. Moreover, for Globus, CPU time limits are entirely optional, whereas in

BOINC, operation counts rest at the core of the scheduling process. BOINC work

units have an “estimated number of floating point operations” field, which is used to

estimate how long the job will take to run on any given BOINC client. This allows

BOINC to only send work to those clients able to complete it before the delay bound,

or maximum permissible elapsed wall-clock time, expires. So, if estimated CPU time

is not correctly set, BOINC scheduling will work sub-optimally. Further complicating

the matter, the WS-GRAM job description schema has a field to set maximum

permissible CPU time, but it does not have one for expected CPU time.

Our solution is two-fold. First, using standard Globus extension mechanisms,

we introduce a new JDD parameter, estCpuTime , which is defined to be the

estimated CPU time (in minutes) required by the job on a computer capable of one

gigaflop. (Such a computer is identical to the reference computer used by BOINC

when calculating expected real execution times from the estimated number of

 55

required floating-point operations.) If this parameter is supplied, it is used to compute

the number of floating point operations required by multiplying it by 60 × 109. (We

chose to express estCpuTime in minutes instead of in operations so as to maintain

consistency with the other Globus CPU time parameters). If a value for estCpuTime

is not given, it defaults to one-half the maximum permissible CPU time.

The other JDD fields of particular interest are those relating to file staging, or

the copying of files to and from the submitting node. Those fields need to be added as

<file info> and <file ref> sections to BOINC work units so that file staging can

be extended all the way through to the BOINC clients. We discuss file staging in

more detail in section 6.2.3.

Once the various required parameters have been determined, a BOINC work

unit based on those data may be written and submitted to the BOINC work database

using the BOINC create_work utility, which completes the translation from a

generic Globus job description to a resource native format.

6.2.3 Data and Executable Staging

File staging between the BOINC server and the submitting node is handled by

standard Globus file transfer components. However, there is a need to extend file

staging all the way down to the BOINC clients that actually execute the

computations.

As expected, BOINC provides support for clients to exchange files with the

server, so we simply need to ensure that the right files are sent to the right places at

the right times. This is a two part problem: files need to be copied to the correct

locations on the BOINC server, and BOINC clients need to be instructed to conduct

 56

the correct sequence of uploads and downloads.

Globus jobs have a private working directory into which files are staged in

from remote systems and out of which files are staged to remote systems. When a

Globus job is sent to the BOINC server, files specified in the JDD as to-be-staged-in

are automatically downloaded using Globus file transfer mechanisms. BOINC, on the

other hand, has two file staging directories shared by all jobs and by all clients (one

for staging files to clients – referred to as the “download” directory – and one for

staging files from clients – referred to as the “upload” directory). Files staged to the

BOINC server by Globus thus need to be copied from the Globus staging directory to

the BOINC download directory, and they need to be renamed so as to ensure

uniqueness, as BOINC requires all files to have unique names. Similarly, when

BOINC clients upload their results to the upload directory on the BOINC server, they

need to be uniquely named, but they need to be copied back to the Globus staging

directory with the filenames that Globus expects them to have.

Our job description documents include a unique ID field that may be trivially

used to generate unique filenames for job files. This is sufficient to handle the

original name to unique name mapping required at job-submit time. The reverse

mapping, required at job-completion time, is somewhat more difficult to handle,

however; it requires additional techniques discussed more fully in section 6.2.4.

Once BOINC has been provided the job files, clients are instructed to transfer

them by <file info> and <file ref> blocks in the work unit created for the job.

Finally, BOINC assigns the client an executable appropriate for its architecture.

 57

6.2.4 Reporting of Results

Without the ability to return results from the BOINC server to the Globus

submitting node, our combined-model Grid system would be of little use. Returning

results comprises two distinct tasks: returning any required output files to the

submitting Globus node, and returning any standard output and standard error

associated with the job to the submitting node.

First, Globus looks for the standard output of a job in a specific file, so by

simply copying the standard output file returned from the BOINC client to that

location, we can utilize the normal mechanisms provided by Globus to return

standard output to the submitting node. Note that this design does not support

real time streaming of standard output to the submitting node: standard output is

buffered until the job terminates. Similarly, by copying output files from the BOINC

upload directory to the Globus file staging directories, we can utilize the default

Globus file staging mechanism. However, a problem now occurs: how do we know

the location to which we need to copy our files? The file copying must be

implemented by BOINC, not by the Globus job manager, as the Globus job manager

should not (as a design decision) have to access BOINC internal data structures to

locate these files. Moreover, BOINC will delete the work unit output files after it

detects that the work unit has finished and that the associated cleanup code has

executed. BOINC has no knowledge of Globus and thus no way of knowing where to

copy the data.

Our solution is as follows. When a job is first submitted, the BOINC job

manager writes out a Perl script containing the correct commands to copy files from

 58

the BOINC upload directory to the Globus locations (even though these files do not

yet exist); as part of Globus, the job manager has access to these locations. Cleanup

code on the BOINC server calls this Perl script when a work unit completes. Files are

thus placed in the correct locations at the correct times.

6.3 Other Custom Components

There are several other components that complete our Globus-BOINC

interface. First among these is the BOINC Scheduler Event Generator (SEG). In the

WS-GRAM framework, a SEG process runs for each local scheduler and propagates

changes in job state to the Globus Job State Monitor (JSM). How it detects changes in

job state is left up to the implementation. For example, the PBS SEG reaps log files

periodically, whereas our custom BOINC SEG periodically queries the BOINC

MySQL database. Previous scheduler adapter implementations included a poll()

method to achieve the same thing by querying the scheduler directly, but for

efficiency and other reasons, this method has been deprecated in favor of the SEG

mechanism. As with our other supported resources (Condor and PBS), we also

developed a BOINC scheduler provider that gives a rough idea of how many

processors are currently available for each supported platform (Linux, Windows, and

Mac OS).

BOINC has a component called the validator, which is responsible for

comparing results, determining which to grant credit for, and determining how much

credit to grant. We extend and customize this component, which is written in C++.

BOINC has another component called the assimilator, which handles output from

completed jobs. Our custom assimilator works closely with the BOINC scheduler

 59

adapter to ensure that output is properly returned through the Grid system. This

component is a mix of C++ and Perl.

6.4 Examples

Here, we present the flow of control for a job dispatched to a more typical

Globus resource, such as a cluster managed by PBS, and for a job dispatched to a

BOINC server as a Globus resource. As an example application, we use SSEARCH

from the FASTA [42] suite of DNA and protein sequence analysis programs, which

are important bioinformatics applications. SSEARCH uses the Smith-Waterman

algorithm [55] to search a library of DNA or amino acid sequences (lib.fa in our

examples) for sequences similar to a query sequence (seq.fa in our examples).

6.4.1 Portable Batch System

1. Globus user executes: globusrun-ws -submit -Ft PBS -c
/usr/bin/ssearch -O results.txt seq.fa lib.fa

2. A Globus job description file is generated and passed to the Globus

installation running on a PBS cluster node.

3. Globus copies seq.fa and lib.fa from the submitting host to a job-specific
staging directory on the PBS cluster.

4. Submit method of the job manager executes: it writes a PBS job description

file from the supplied JDD and submits it using qsub .

5. PBS eventually executes the job, and the job completes.

6. The PBS SEG recognizes that the job has completed and returns results.txt
and any associated standard output to the submitting node. The job scratch
directory is removed from the PBS cluster.

 60

6.4.2 BOINC-based Desktop Grid

1. Globus user executes: globusrun-ws -submit -Ft BOINC -c
/usr/bin/ssearch -O results.txt seq.fa lib.fa

2. A Globus job description file is generated and passed to the Globus

installation running on the BOINC server.

3. Globus copies seq.fa and lib.fa from the submitting host to a job-specific
staging directory on the BOINC server.

4. Submit method of the job manager executes:

a. Strips “/usr/bin/ ” from “ /usr/bin/ssearch ” and checks to see if an

“ssearch ” application exists. Exits with an error condition if not.

b. Determines lib.fa and seq.fa need to be staged to the BOINC client.

c. Determines results.txt needs to be staged back from the BOINC client.

d. Copies lib.fa and seq.fa to the BOINC download directory, giving
them new names based on the unique ID present in the job description.

e. Writes a work unit containing the arguments to ssearch and the file

handling blocks for lib.fa , seq.fa , and results.txt ; submits the work
unit to BOINC, which generates result units for redundant computation.

f. Writes a Perl script to be called on work unit completion that will copy the

BOINC output files back to Globus-accessible directories.

5. Once per result unit: a BOINC client downloads the work unit, lib.fa ,
seq.fa , and an ssearch binary, caching the executable for future use.

6. Once per result unit: the BOINC client executes ssearch and returns

results.txt to the server.

7. BOINC detects enough result units returned and designates one as canonical.
It locates the callback script written out by the job manager and executes it.

8. Files corresponding to results.txt and stdout in the BOINC server upload

directory are copied back to the locations and names expected by Globus.

9. BOINC deletes its copies of the result files associated with the work unit.

10. The BOINC SEG recognizes that the job has completed and returns
results.txt and stdout to the submitting node. The job scratch directory is
removed from the BOINC server.

 61

6.5 Running Applications on BOINC

6.5.1 BOINC Applications

Porting applications to run on BOINC can be non-trivial because BOINC

expects applications that run in its framework to call its own API (Figure 6.1). The

BOINC API handles tasks such as notifying BOINC when an application starts and

exits, mapping between application-expected filenames and BOINC-required unique

filenames, and checkpointing program state. The programs run on the Grid were not

originally written with BOINC in mind; most are legacy applications written by a

third party. Thus, porting an application to BOINC could require making extensive

changes to its source code, which can present a significant hindrance to deploying

applications on the BOINC-based Desktop Grid. Therefore, over the years we have

employed different techniques for porting legacy applications to BOINC.

Figure 6.1. The BOINC client software includes a “core client” that executes applications and interacts
with them through a runtime system.

 62

First, we wrote compatibility libraries that allow programs written in C or

C++ to run under BOINC; these libraries wrap C library functions so that the

requisite calls to the BOINC API are made automatically. Under Windows, we used

the Microsoft Detours package [27], and existing binaries could be used unmodified.

Under UNIX-like systems (such as Linux and Mac OS X), only re-linking was

required. For more information on these procedures, see our technical report [35].

The compatibility library is no longer used because BOINC eventually

developed something called the wrapper application (to which we contributed code).

The wrapper application can run unmodified legacy code as a child process, and it

handles all communication with the BOINC client. It also supports checkpointing,

graphics, and multiple child tasks. Porting applications with the wrapper is relatively

straightforward.

However, it can be advantageous to rewrite source code to produce a native

BOINC application, which is something Nathan Edwards has done with HMMPfam

and Derrick Zwickl has done with GARLI, two of our primary Grid services. The

source code is modified to make the required standard calls to the BOINC API, but

also to write checkpoints and update the progress bar periodically. Checkpointing is

nearly a requirement for jobs that run for any appreciable length of time, since

interruptions happen frequently when running on a PC. Without checkpointing, much

computation would be wasted. Updating the BOINC client manager progress bar

(Figure 6.2) is also important because it is the only feedback mechanism a BOINC

user has about how far along their jobs are. Our project volunteers prefer to run native

BOINC applications that have these features.

 63

Figure 6.2. The BOINC client manager, showing the progress of one running task.

6.5.2 Homogeneous Redundancy

Most numerical applications produce different outcomes for a given work unit

depending on the CPU architecture, operating system, compiler, and compiler flags.

For some applications these discrepancies produce only small differences in the final

output, and results can be validated using a “fuzzy comparison” function that allows

for deviations of a few percent. Other applications are “divergent” in the sense that

small numerical differences lead to unpredictably large differences in the final output.

For such applications it may be difficult to distinguish between results that are correct

but differ because of numerical discrepancies, and results that are erroneous. The

“fuzzy comparison” approach does not work for such applications.

BOINC provides a feature called homogeneous redundancy (HR) to handle

divergent applications. HR divides hosts into “numerical equivalence classes”: two

hosts are in the same class if they return identical results for a certain application. If

HR is activated, the BOINC scheduler will only send results for a given work unit to

 64

hosts in the same equivalence class; this lets the BOINC validator use strict equality

to compare redundant results.

Homogeneous redundancy in BOINC presents an interesting problem for

applications that were not originally written with BOINC in mind. Oftentimes,

random seeds, timestamps, or other program features cause normal program output to

vary. Therefore, running a program the same way multiple times may yield output

files that could be identical with respect to the analytical results of principal interest,

but might differ in some uninteresting or insignificant way, which is problematic

because the standard BOINC validator only checks for identical output. Thus, one

could either write a custom validator for each application, or one could modify the

application source code to remove timestamps or make the random seed the same for

each result unit in a work unit. We have found that it is usually easiest to modify the

application source code when it is available. However, validating results from

applications programmed to run on a GPU (graphics processing unit) is more

difficult, and is discussed in the following section.

6.5.3 GPU-enabled Applications

In the BOINC model, projects implement a validation procedure that ensures

some level of agreement between sets of results returned from public computers. This

is a way of dealing with “untrusted resources” – if results from disparate hosts agree,

we assume there is only a minute probability they have been independently falsified,

so we mark them valid. The current version of GARLI uses double-precision floating

point values, and largely because of this, the log-likelihood values in the output are

identical, even when the same job is run on very different operating systems and CPU

 65

architectures. Thus, we have been able to use the default BOINC validation procedure

that simply tests if the output files are identical. However, we are migrating to a

version of GARLI that uses single-precision floating point values because it will be

faster, both on modern GPUs and modern CPUs, and because it will use less memory.

This makes validation more difficult, however, because it is more likely that there

will be numerical discrepancies between hosts, especially when running on different

GPUs. Since there are currently no numerical equivalence classes for GPUs, we will

have to use a different technique to validate results in this case.

 66

Chapter 7: Conclusion

7.1 Summary of Results

We have presented The Lattice Project, a comprehensive Grid system for

scientific analysis that integrates a BOINC-based Desktop Grid with a feature-rich,

Globus-based Service Grid. Our system makes a number of scientific applications

available as Grid services through a UNIX-based command line interface, and

provides tools for submitting and monitoring compute jobs. We have described, in

detail, the features available to Grid users, the architecture and infrastructure of the

system, the composition and makeup of our computational resources, the library we

created for building Grid services, the functionality of our meta-scheduler and data

caching scheme, and many components of the Globus-BOINC interface. The

appendices provide a brief history of The Lattice Project, a description of some

research projects that have used the Grid system, and some additional arguments for

adopting Grid computing at the University of Maryland.

7.2 Future Work

Future development of The Lattice Project could take many directions, much

like our development to date, which has been simultaneously focused on many

different aspects of the project. Despite the fact that writing new Grid services,

porting applications, supporting users of the Grid and maintaining the system takes

time away from new development, there are major areas of the system that we would

like to develop, given the opportunity to do so. First and foremost among these is the

 67

user interface, which is discussed in section 7.2.1. Improving the meta-scheduler is

also a high priority, which is discussed in section 7.2.2. We would also like to add

other features, assimilate new resources, and continue to improve overall system

performance.

7.2.1 User Interface Development

The current Grid interface is a mix of web tools and a command line interface.

Researchers are given an account on a Linux machine supplied with programs for

invoking our various Grid services. It is also on this machine that they are given a

workspace in which to store results of computation. This is the primary interface for

job submission. The current web tools allow one to more easily view the status of

particular jobs and resources. These tools are also available in the command line

interface.

The command line interface is perfectly usable but may sometimes take

getting used to, especially if the Grid user does not have a strong UNIX background.

Experienced UNIX users, on the other hand, will probably appreciate the power of

the command line interface and may actually prefer it to a GUI-based interface. The

problem we currently face with our command line interface is one of scalability –

there are just a couple of machines that our Grid users share. It would be relatively

simple to add disk space to the existing machines, or add more Grid Bricks. Along

these lines, one idea that has been proposed is to extend the command line interface to

WAM and Glue machines throughout campus, and allow users to authenticate

themselves using their existing WAM/Glue accounts. This work was under

development for a while, but has been put on hold due to other OIT priorities.

 68

Another user interface option is a web portal for accessing the Grid. There are

already some web tools in the Lattice intranet, but a portal would be more

fully-featured: it would contain all the functionality necessary for a Grid user to

manipulate their file space, organize analyses, and submit and monitor jobs without

leaving their web browser. Our recently funded grant proposal will require the

creation of a web-based interface for submitting certain phylogenetic applications,

such as GARLI. To that end, an application-specific, user-friendly portal for job

submission will be developed in the near future.

Semantic Workflow System

Among the barriers to the widespread use of Grid computing in life sciences is

the difficulty of integrating Grid computing into everyday laboratory procedures.

Scientific research often involves connecting multiple applications together to form a

workflow. This process of constructing a workflow is complex. When combined with

the difficulty of using Grid services, composing a meaningful workflow using Grid

services can present a challenge to life scientists. The solution proposed by

collaborators at Fujitsu Labs of America is a Semantic Web-enabled computing

environment, called Bio-STEER [32, 33]. In Bio-STEER, bioinformatics Grid

services are mapped to Semantic Web [10] services, described in OWL-S (Web

Ontology Language-Service). An ontology in OWL (Web Ontology Language) to

model bioinformatics applications is also defined. A graphical user interface helps to

construct a scientific workflow by showing a list of services that are semantically

sound; that is, the output of one service is semantically compatible with the input of

the connecting service. Bio-STEER can help users take full advantage of Grid

 69

services through a user-friendly graphical user interface, which allows them to easily

construct needed workflows. After a workflow has been composed, the user simply

presses play and watches the workflow execute. Our working prototype actually

submitted jobs to the Grid as the various steps in a non-trivial workflow

required. Bio-STEER was implemented as a Windows desktop application

(Figure 7.1), but a similar workflow manager could be integrated into a web

portal. With a powerful Grid system on the back-end, such a tool would be extremely

valuable.

Figure 7.1. The Bio-STEER workflow composition tool.

 70

7.2.2 Meta-Scheduler Development

We have recently added the capability to adaptively schedule jobs to our

BOINC framework, a procedure which takes into consideration the composition of

our BOINC client base, thus enabling each platform represented in the BOINC pool

to be treated as a separate resource. There are several other features that would

improve the meta-scheduler:

1. It would be helpful to rank resources based on overall performance (perhaps a

combination of CPU speed and other recent performance metrics) so that jobs

are sent to the fastest resources first.

2. The scheduler should divide work into batches on behalf of the user.

3. The scheduler should be able to reschedule jobs automatically in case of

failures, or be able to reassign jobs if a faster resource becomes available.

4. Having the ability to break up long-running jobs into shorter, fixed-length

pieces would benefit the scheduling of jobs to BOINC, where it is important

to provide accurate runtime estimates in advance.

 71

Appendices

Appendix A: A Brief History of The Lattice Project

In 2003, Michael Cummings and Daniel Myers built a Grid system "using

commodity tools" [37] to complete a large-scale analysis, so our laboratory already

had some experience in this area. We conferred with some members of UMIACS at

this point about building a new Grid system, both in terms of the technology that

should be employed and the infrastructure it would utilize. Some hardware purchases

were made (and are still in use today) and research commenced, primarily into the

workings of the Globus Toolkit. The Globus Toolkit is premier software employed by

many major Grids in the world today, so our choice to use it several years ago turned

out to be a good one. From the outset, we also knew that we wanted to include public

computing in our project, so we became familiar with BOINC. We developed GSBL,

the GSG, and prototyped a basic system that included the ability to submit jobs to the

UMIACS Condor pool and a pool of BOINC clients. We also built up a corpus of

Grid services that were popular in bioinformatics and molecular evolution, and for

which we anticipated some demand.

Eventually we had built a production Grid system with GT3, which used

Condor-G as the meta-scheduler. We also opened up the Lattice BOINC Project to

the public during this “alpha” phase. The three Grid services that were being used

most heavily at the time were CNS, IM, and MDIV, and all three of these applications

were ported to BOINC. This early system completed more than 120 CPU years of

computation over a period of several months. However, we knew that GT4 was slated

 72

for release, so we began to rebuild the system around GT4. We replaced Condor-G

with a custom scheduler and made other significant changes to the system, but the

general architecture and many existing features remained the same.

Our transition to GT4 was mostly complete by the start of 2006. Since then

we have been working to add some of the features already mentioned, but also to add

new resources at UMD and elsewhere. We currently have four Condor pools and

three dedicated clusters integrated as Lattice-addressable resources. Beyond simply

trying to increase capacity, we have also focused on community-building and

heightening awareness of The Lattice Project in an effort to make the Grid system

multi-institutional. We have been assisted in this effort by Suresh Balakrishnan,

Deputy CIO and Assistant Vice Chancellor of the University System of Maryland

(USM). This led to fruitful interactions, in particular, with Coppin State University

(CSU) and Bowie State University (BSU), who are now partners with us on a

three-year grant proposal that leverages the Grid system to accelerate phylogenetic

research. As a result of this collaboration, we have integrated computational resources

at both institutions into The Lattice Project.

On our own campus, we organized a Grid Steering Committee that met

regularly for a few years. This committee served two primary functions: 1) to foster

discussion about Grid computing among interested parties on campus, and 2) to

promote Grid computing as a priority within the Office of Information Technology

(OIT), hoping that OIT would be able to spearhead the Grid computing effort on

campus. Tangibly speaking, our collaboration with OIT led to the addition of two

Grid resources: the Gridiron Condor pool (now retired), and the Deepthought cluster

 73

(which continues to grow). In addition, by collaborating with OIT and ECE/ISR, we

were able bring the SEIL cluster into the fold, a resource which was previously

severely underutilized. We have been happy to find a strong interest in Grid

computing on campus, as well as willing volunteers and participants.

Several people have worked on developing The Lattice Project over the years,

in one way or another, and they are acknowledged at the beginning of this thesis.

Appendix B: Research Projects Using the Grid

Over the past several years, we have invited faculty, postdocs, graduate

students, and others at the University of Maryland to use the Grid system for their

research projects. The Lattice Project has now performed in excess of 18,000 CPU

years of computation! That is equivalent to keeping 18,000 processors continuously

busy for an entire year, which we consider to be a tremendous achievement. This

estimate is a rough one given that processor speeds vary and our accounting methods

are not precise to the second, but it nevertheless represents a considerable amount of

computation.

Each research project that we have chosen to support has helped test and

expand the capabilities of the system, as whatever Grid services need to be created for

that project may present unique challenges. For example, a particular application may

not be easily ported to each of our supported platforms (Linux, Windows, Mac OS),

and porting legacy applications to run on BOINC presents additional challenges (as

discussed in section 6.5.1). Related to code portability, some applications may be

scripts meant to run in an interpreted environment instead of compiled code. A good

example is the gsi service, which runs inside the R environment. We thus made

 74

special efforts to ensure R was pre-installed on a significant portion of our resources,

since there is no easy way to push out the necessary R environment at runtime.

Working together with many different researchers, helping them organize and

submit their jobs, and listening to their feedback about the system has continually

helped us improve it and has shown us where more work is needed. Taken together as

a whole, the body of projects we have supported is extremely diverse. What follows is

a description of the projects associated with three of our most heavily used Grid

services: GARLI, HMMPfam, and MARXAN.

Phylogenetic Analysis – GARLI

The Cummings Laboratory and others are using GARLI [60] to infer

phylogenetic trees from nucleotide or amino acid data. Various nucleotide, codon and

amino acid models are implemented for maximum likelihood (ML) estimates.

Multiple searches for the ML tree as well as the calculation of bootstrap support

values are parallelized at the level of individual heuristic searches – i.e., every

computing node has to carry out at least one complete heuristic search. This

parallelization is particularly useful for large quantities of relatively short

calculations, as is typical for nucleotide model bootstrap analyses with large numbers

of repetitions.

The LepTree project (http://www.leptree.net/) investigates evolutionary

relationships within the insect order Lepidoptera (moths and butterflies), in particular

of higher taxa, such as families, superfamilies and infra-orders. This molecular

"backbone phylogeny" is based on the analysis of up to 26 protein coding nuclear

genes (~19kb) for 123 taxa, but work on a matrix for 550 to 600 taxa is well

 75

underway. The chief method of analysis used in this study is a nucleotide model ML

search in GARLI. The most commonly applied model is the general time reversible

model with a gamma distribution of rates and a proportion of invariant sites

(GTR+G+I). The LepTree project relies heavily on the computational resources

provided by The Lattice Project, as the sheer number of heuristic searches is not

feasible to run on an individual desktop machine. The bulk of these heuristic searches

consist of bootstrap replicates (up to 2,000 per analysis), but in addition, due to the

heuristic nature of the search, multiple searches (up to 500) are required for

confidence in having found the ML tree. For the LepTree project, many analyses of

these types are carried out, e.g., for individual and combined genes, synonymous and

non-synonymous data partitions, and with and without topological constraints for

subsequent hypothesis testing [50].

Miriam Reyna-Fabián aims to solve the intra- and inter-genus relationships of

more than 15 species of rotifers, currently assigned to the family Brachionidae.

Species of this family are free-living organisms and they compose part of the

zooplankton in freshwater and marine systems. Variation in morphological characters

has traditionally been used to differentiate species. However, the taxonomic positions

of 3 species – Brachionus patulus, B. macracanthus and B. polyacanthus – have been

controversial. A study based on scanning electron microscopy of the trophy [54]

proposed erecting these 3 species to a new genus: Plationus. The phylogenetic

analyses of the family Brachionidae were carried out with GARLI using genes

encoding cytochrome oxidase subunit 1 (Cox 1) and domains (D2-D3) of 28S rRNA.

A total of 23 sequences, including 8 outgroups, were aligned. The phylogenies

 76

derived from this study were used to evaluate the validity of the new genus Plationus.

The analyses support the hypothesis that Plationus patulus and P. macracanthus

compose a distinct clade from Brachionus and Platyias with high bootstrap

values [51].

The Neel lab is studying phylogenetic relationships among North American

members of the genus Agalinis Raf. These species represent a taxonomically

challenging group and there have been extensive historical revisions at the species,

section, and subsection levels of classification. The genus contains many rare species,

including the federally listed endangered species Agalinis acuta. In addition to

evaluating the degree to which historical classifications at the section and subsection

levels are supported by molecular data sampled from 79 individuals representing 29

Agalinis species, the monophyly of 27 species was assessed by sampling multiple

individuals representing different populations of those species. Twenty-one of these

species are of conservation concern in at least some part of their range [44].

Silvana Marten-Rodriguez aims to understand the role of pollinators in the

evolution of floral traits and breeding systems in the Antillean tribe Gesnerieae by

combining phylogenetic approaches with ecological studies. The tribe Gesnerieae

includes species specialized for hummingbird or bat pollination as well as some

generalized species pollinated by bats, hummingbirds and insects. Preliminary

phylogenies suggest various independent pollination system transitions in addition to

the evolution of reproductive assurance mechanisms (e.g., autonomous

self-pollination). Low frequencies of hummingbird visitation and high pollen

 77

limitation in specialized hummingbird pollinated species might be responsible for

these transitions [34].

Protein Sequence Comparison – HMMPfam

hmmpfam is a program in the HMMER (http://hmmer.janelia.org/) package.

HMMER uses profile hidden Markov models (HMMs) to characterize regions of

similar amino acid sequence in protein families, groups of proteins with similar

function found in related organisms. The hmmpfam program searches the protein

sequences of proteins with unknown function against a carefully curated set of HMM

models, called Pfam, from well-understood protein families. Protein sequences are

assigned to one or more protein families on the basis of a statistically significant

match to a Pfam HMM.

HMMPfam and RMIDb

The Edwards lab provides the Rapid Microorganism Identification Database

(RMIDb – http://www.RMIDb.org), a freely available web-resource and database for

the identification of bacteria and viruses using mass spectrometry. The RMIDb

searches protein sequences from all of the major protein sequence repositories, plus

computational protein sequence predictions from sequenced bacterial genomes, for

mass matches with experimental masses from mass spectra. Protein sequences are

carefully categorized according to strain, species, and other taxonomic groupings, and

according to protein function, cellular location, and biological process using the Pfam

assignments computed by hmmpfam and their associated gene ontology (GO)

classifications. The functional classification of protein sequences must be recomputed

using hmmpfam because each of the sources of protein sequence uses different,

 78

sometimes conflicting, criteria for Pfam assignment, or provides no assignment at all.

Functional classification of protein sequences makes it possible to analyze only the

most likely to be observed proteins for mass matches, which decreases search time

and increases the statistical significance of species identifications.

HMMPfam for RMIDb on BOINC

The Edwards laboratory is using the HMMPfam service to compute Pfam

assignments for all bacterial, plasmid, and virus protein sequences from Swiss-Prot,

TrEMBL, GenBank, RefSeq, and TIGR's CMR, plus an inclusive set of all plausible

Glimmer predictions from RefSeq bacterial genomes. These protein sequences, and

their Pfam assignments, are used in RMIDb. The HMMPfam service is also being

used as a model for data-intensive bioinformatics applications on the Grid, as the

amount of input and output data associated with the program is considerable.

Supporting this work was a significant part of the impetus for designing the data

caching scheme we now use routinely for all Grid services.

Conservation Reserve Network Design – MARXAN

MARXAN [6] is a decision support system for the design of conservation

reserve networks. It is useful for selecting a reserve system from a large number of

potential sites that satisfies various ecological, social and economic criteria. For

example, it may be required that certain species or conservation features must be well

protected within the reserve system, or the reserve system must not include more than

a specified number of sites. The user translates their criteria into representation

targets for the conservation features to be protected (e.g., number of populations of

each species or percentage of each habitat type to be included in the reserve system),

 79

and optionally a cost threshold or desired level of site compactness. MARXAN will

produce reserve network solutions that meet these design constraints while

simultaneously minimizing the cost of the design (e.g., number of sites required to

meet all representation targets).

Two researchers are studying problems involved in the design of reserve

networks for biological conservation using MARXAN, and collectively have

consumed over 5000 CPU years using this Grid service. Maile Neel examines

conservation decisions based on one target type (e.g., rare species) and the

consequences at another level (e.g., genetic diversity), and this current work builds

upon the theme of earlier work in this general area [38, 39]. Joanna Grand, a National

Science Foundation Post Doctoral Fellow in Biological Informatics, studies the

consequences of biased and incomplete data in the design of conservation reserve

networks [21].

Biased Data and the Selection of Conservation Reserve Networks

Joanna Grand, Maile Neel, Michael Cummings (University of Maryland),

Taylor Ricketts (World Wildlife Fund), and Tony Rebelo (South African National

Biodiversity Institute) are collaborating on a project that uses MARXAN to quantify

the impacts of basing the selection of conservation reserve networks on incomplete

and biased species distribution data. Most species distribution data are biased in some

way (e.g., higher sampling intensity closer to roads or within current reserves);

however, they are commonly used to select sites for inclusion in reserve networks

because they are considered to be the best data available. The ability of reserve

 80

networks to adequately protect biodiversity when sites are selected based on

incomplete and biased data is poorly understood.

The first set of analyses compared the quality of MARXAN reserve network

solutions generated from both biased and complete species data. The data from a

virtually exhaustive survey of the Proteaceae family of flowering plants in the Cape

Floristic Region of South Africa was used as a baseline for “complete” data. To

produce a sufficient range of solutions for comparison with the complete data

solution, 1000 biased and random incomplete datasets were sampled from the full

Proteaceae dataset. MARXAN was run 1000 times for each dataset. This study design

required 1.2002 x 107 separate MARXAN runs which was possible to complete in

only a few weeks by using the Grid system.

 Current investigations are focused on how well reserve networks protect

species when their design is based on species distribution data which is incomplete

and biased, versus coarser environmental data which is easier to acquire and

unaffected by the issue of sampling bias. MARXAN solutions generated with

complete, biased, and random species data will be compared to those generated with

environmental data (vegetation classes), and combinations of both data types. This

analysis will require over 7.6 x 107 separate MARXAN runs and will again rely on

the Grid system to make this enormous amount of processing feasible.

Older Research Projects

There were several research projects that ran on our GT3-based Grid system.

The Fushman laboratory ran thousands of protein-protein docking simulations

using the CNS Grid service. When driven by experimentally derived constraints,

 81

these simulations help in modeling the structures of large multi-subunit proteins, and

the interactions of such proteins with various ligands. An example is analysis of the

structural determinants for recognition of a polyubiquitin chain [59]. The computation

for this problem was primarily done using BOINC, and the accumulated processing

time was approximately 12.4 CPU years.

Floyd Reed and Holly Mortensen from the Laboratory of Sarah Tishkoff have

run many analyses using the MDIV and IM Grid services. These analyses are for

studies of human population genetics that use DNA sequence polymorphisms to

estimate the times of divergence and migration rates among ethnically diverse

populations in Africa [58]. The computations were done using our

globally-distributed BOINC resources, and the accumulated processing time was

approximately 13.1 CPU years.

Our own lab has made extensive use of the gsi Grid service to complete a

study demonstrating the application of the genealogical sorting index (gsi) statistic for

distinguishing species. Using coalescent theory-based simulations [35] to model

genetic samples drawn from diverging species, the Grid system was used to calculate

the statistic and assess its behavior. In addition, the probabilities of observed values

were estimated using permutation [16, 8]. The many millions of individual analyses

required consumed over 94 CPU years.

Appendix C: A Pitch for Grid Computing at the University of Maryland

The Grid system is of immediate utility to a number of groups at the

University of Maryland, the primary ones being OIT, UMIACS, and CLFS. We have

had extensive interaction with these groups about Grid computing via The Lattice

 82

Project. The majority of on-campus Grid resources reside within these organizations,

as do most of the researchers who have used the Grid system. UMIACS has a long

history of supporting research using HPC/HTC; OIT, a somewhat shorter one; and

CLFS has shown both a need and an interest in this area, having recently purchased a

new college computing cluster. As things stand, each of these groups has their own

user base, their own local computing resources, their own policies, and their own

infrastructure for support. We suggest that existing computational resources on

campus could be used more efficiently as part of the Grid system.

It is probably the case that the majority of existing HPC/HTC users in

UMIACS either run on private clusters or vie for use of the UMIACS Condor pool;

people registering with OIT get funneled to Deepthought, a monolithic cluster that

continues to increase in size; in CLFS, researchers may make use of their own

resources or may utilize the new CLFS computing cluster, which is actually part of

Deepthought due to OIT’s attractive resource integration model (not explained

here). Plainly stated, the amount of competition for these large shared resources

leaves some people waiting to use them, and this trend will likely continue even as

more hardware purchases are made. The Lattice Project can provide users with access

to other resources outside their domain, thus helping to balance and distribute the load

more efficiently. One easy way to make a difference would be to enable HTC users of

shared resources to use the Grid system for their work. Their many smaller jobs could

be distributed more evenly across the existing resource base and out onto the BOINC

pool, thus keeping clusters free for more traditional HPC users and preventing any

one resource from becoming overwhelmed.

 83

In addition to more intelligently distributing the workload, using the Grid

system fundamentally changes the way research is conducted in two ways: it

increases the amount of resources available to any one user of the system, and it

makes managing large amounts of work easier by performing many otherwise tedious

functions on behalf of the user. Once an application is deployed on the Grid, a user

simply uploads their data and submits jobs without worrying about the resource on

which the job is actually running. Furthermore, having a large number of resources

available causes the researcher to reconsider the scope and extent of their analyses

and may enable entirely new kinds of analyses to be conceived of and executed.

As it stands right now, The Lattice Project is in a stable production state and

we are comfortable with all of the technologies employed. As with any system, there

remain improvements to be made, and we discuss some of these in

Chapter 7. However, we are confident that The Lattice Project can be of immediate

utility to a number of groups on campus.

 84

Bibliography

1. Altschul, S., Gish, W., Miller, W., Myers, E. & Lipman, D. J. (1990). Basic
local alignment search tool. J. Mol. Biol. 215:403-410.

2. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller,

W. & Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: a new
generation of protein database search programs. Nucleic Acids Res. 25:3389-
3402.

3. Anderson, D. P. (2003). Public Computing: Reconnecting People to Science.

Conference on Shared Knowledge and the Web. Residencia de Estudiantes,
Madrid, Spain. Nov. 17-19.

4. Anderson, D. P., Cobb, J., Korpela, E., Lebofsky, M. & Werthimer, D. (2002).
SETI@home: An experiment in public-resource computing. Commun. ACM
45(11):56-61.

5. Balaton, Z. et al. (2008). EDGeS: The common boundary between Service

and Desktop Grids. pp. 37-48. In Grid Computing: Achievements and
Prospects (Gorlatch, S., Fragopoulou, P., & Priol, T., eds). Springer US.

6. Ball, I. R. & Possingham, H. P. (2000). Marine Reserve Design Using

Spatially Explicit Annealing, a Manual. MARXAN (V1.8.2).

7. Bazinet, A. L., & Cummings, M. P. (2009). The Lattice Project: a Grid
research and production environment combining multiple Grid computing
models. pp. 2-13. In Distributed & Grid Computing - Science Made
Transparent for Everyone. Principles, Applications and Supporting
Communities (Weber, M. H. W., ed). Rechenkraft.net, Marburg. In press.

8. Bazinet, A. L. & Cummings, M. P. Genealogical sorting index: software and
web site for quantifying the exclusivity of lineages. In preparation.

9. Bazinet, A. L., Myers, D. S., Fuetsch, J. & Cummings, M. P. (2007). Grid
services base library: a high-level, procedural application programming
interface for writing Globus-based Grid services. Future Gener. Comp. Sy.
23:517-522.

10. Berners-Lee, T., Hendler, J. & Lassila, O. (2001). The Semantic Web. Sci.

Am. 279:34-43.

11. Beerli, P. & Felsenstein, J. (1999). Maximum likelihood estimation of
migration rates and effective population numbers in two populations using a
coalescent approach. Genetics 152:763-773.

 85

12. Beerli, P. & Felsenstein, J. (2001). Maximum likelihood estimation of a
migration matrix and effective populations sizes in n subpopulations by using
a coalescent approach. Proc. Natl. Acad. Sci. USA 98:4563-4568.

13. Brunger, A. T., Adams, P. D., Clore, G. M., DeLano, W. L., Gros, P., Grosse-

Kunstleve, R. W., Jiang, J.-S., Kuszewski, J., Nilges, M., Pannu, N. S., Read,
R. J., Rice, L. M., Simonson, T. & Warren, G. L. (1998). Crystallography &
NMR system: a new software suite for macromolecular structure
determination. Acta Cryst. D54:905-921.

14. Cummings, M. P., Handley, S. A., Myers, D. S., Reed, D. L., Rokas, A. &
Winka, K. (2003). Comparing bootstrap and posterior probability values in the
four taxon case. Syst. Biol. 52:477-487.

15. Cummings, M. P. & Huskamp, J. C. (2005). Grid computing. EDUCAUSE

Review 40:116-117.

16. Cummings, M. P., M. C. Neel & K. L. Shaw. (2008). A genealogical approach
to quantifying lineage divergence. Evolution 62:2411-2422.

17. Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high

accuracy and high throughput. Nucleic Acids Res. 32:1792-1797.

18. Foster, I. & Kesselman, C. (1999). Globus: a toolkit-based Grid architecture.
In The Grid: Blueprint for a New Computing Infrastructure (Foster, I. &
Kesselman, C., eds). pp. 259-278. Morgan-Kaufmann, Los Altos, CA.

19. Frey, J., Tannenbaum, T., Foster, I., Livny, M. & Tuecke, S. (2002).

Condor-G: a computation management agent for multi-institutional Grids. J.
Cluster Comput. 5:237-246.

20. Ghemawat, S., Gobioff, H., & Leung, S.-T. (2003). The Google File System.

19th ACM Symposium on Operating Systems Principles, Lake George, NY.

21. Grand, J., Cummings, M. P., Rebelo, T., Ricketts, T. H. & Neel, M. C. (2007).
Biased data reduce efficiency and effectiveness of conservation reserve
networks. Ecol. Lett. 10(5):364-374.

22. Guindon, S. & Gascuel, O. (2003). A simple, fast, and accurate algorithm to

estimate large phylogenies by maximum likelihood. Syst. Biol. 52:696-704.

23. Hashmi, N., S. Lee, & M. P. Cummings. (2004). Abstracting workflows:
unifying bioinformatics task conceptualization and specification through
Semantic Web services. W3C Workshop on Semantic Web for Life Sciences.
Cambridge, Massachusetts USA.

 86

24. Hey, J. & Nielsen, R. (2004). Multilocus methods for estimating population
sizes, migration rates and divergence time, with applications to the divergence
of Drosophila pseudoobscura and D. persimilis. Genetics 167:747-760.

25. Hudson, R. R. (2000). A new statistic for detecting genetic differentiation.

Genetics 155:2011-2014.

26. Hudson, R. R. (2002). Generating samples under a Wright-Fisher neutral
model of genetic variation. Bioinformatics 18:337-338.

27. Hunt, G. & Brubacher, D. (1999). Detours: binary interception of Win32

functions. In Proceedings of the 3rd USENIX Windows NT Symposium. pp.
135-143. Seattle, WA. USENIX.

28. Kuhner, M. K., Yamato, J. & Felsenstein J. (1995). Estimating effective

population size and mutation rate from sequence data using
Metropolis-Hastings sampling. Genetics 140:1421-1430.

29. Kuhner, M. K., Yamato, J. & Felsenstein, J. (1998). Maximum likelihood

estimates of population growth rates based on the coalescent. Genetics
149:429-434.

30. Kuhner, M. K., Yamato, J. & Felsenstein, J. (2000). Maximum likelihood

estimation of recombination rates from population data. Genetics
156:1393-1401.

31. Laure, E. et al. (2006). Programming the Grid with gLite. Comput. Methods

Sci. Tech. 12(1).

32. Lee, S., Hashmi, N., Hendler, J. & Parsia, B. (2004). Bio-STEER: an
application of Task Computing – the Semantic Web Meets Grid Computing.
Technical Report FLA-PCR-TM-3, Pervasive Computing Research, Fujitsu
Laboratories of America, Inc.

33. Lee, S., Wang, D., Hashmi, N. & Cummings, M. P. Bio-STEER: a Semantic

Web workflow tool for Grid computing in the life sciences. Future Gener.
Comp. Sy. 23:497-509.

34. Marten-Rodriguez, S., Fenster, C. B., & Zimmer, L. A. Evolution of

pollination and breeding systems in Antillean Gesneriaceae. To appear.

35. Myers, D. S. & Bazinet, A. L. (2004). Intercepting arbitrary functions on
Windows, UNIX, and Macintosh OS X platforms. Technical Report CS-TR-
4585, UMIACS-TR-2004-28, Center for Bioinformatics and Computational
Biology, Institute for Advanced Computer Studies, University of Maryland.

 87

36. Myers, D. S., Bazinet, A. L. & Cummings, M. P. (2008). Expanding the reach
of Grid computing: combining Globus- and BOINC-based systems. pp. 71-85.
In Grids for Bioinformatics and Computational Biology, Wiley Book Series on
Parallel and Distributed Computing (Talbi, E.-G. & Zomaya, A., eds). John
Wiley & Sons, New York.

37. Myers, D. S. & Cummings, M. P. (2003). Necessity is the mother of

invention: a simple Grid computing system using commodity tools. J. Parallel
Distrib. Comput. 63:578-589.

38. Neel, M. C. & Cummings, M. P. (2003). Effectiveness of conservation targets

in capturing genetic diversity. Conserv. Biol. 17:219-229.

39. Neel, M. C. & Cummings, M. P. (2003). Genetic consequences of ecological
reserve design guidelines: an empirical investigation. Conserv. Genet.
4:427-439.

40. Németh, Z. & Sunderam, V. (2003). Characterizing Grids: attributes,

definitions, and formalisms. J. Grid Comput. 1:9-25.

41. Nielsen, R. & Wakeley, J. (2001). Distinguishing migration from isolation: a
Markov chain Monte Carlo approach. Genetics 158:885-896.

42. Pearson, W. R. (2000). Flexible sequence similarity searching with the

FASTA3 program package. Methods Mol. Biol. 132:185–219.

43. Pearson, W. R. & Lipman, D. J. (1988). Improved tools for biological
sequence comparison. Proc. Natl. Acad. Sci. USA 85:2444-2448.

44. Pettengill, J. and Neel, M. (2008). Phylogenetic patterns and conservation

among North American members of the genus Agalinis (Orobanchaceae).
BMC Evol. Biol. 8:264.

45. Posada, D. & Crandall, K. A. (1998). Modeltest: testing the model of DNA

substitution. Bioinformatics 14:817-818.

46. Possingham, H. P., Ball, I. R. & Andelman, S. (2000). Mathematical methods
for identifying representative reserve networks. In Quantitative Methods for
Conservation Biology (Ferson, S. & Burgman, M., eds). Pp. 291-305.
Springer-Verlag, New York.

47. Pritchard, J. D., Stephens, M. & Donnelly, P. (2000). Inference of population

structure using multilocus genotype data. Genetics 155:945-959.

 88

48. R Development Core Team (2008). R: A language and environment for
statistical computing. R Foundation for Statistical Computing, Vienna,
Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.

49. Rambaut, A. & Grassly, N. C. (1997). Seq-Gen: an application for the Monte

Carlo simulation of DNA sequence evolution along phylogenetic trees.
Comput. Appl. Biosci. 13:235-238.

50. Regier, J. C., Zwick, A., Cummings, M. P., Kawahara, A. Y., Cho, S., Weller,

S. J., Roe, A. D., Baixeras-Almela, J., Brown, J. W., Parr, C. S., Davis, D. R.,
Epstein, M. E., Hallwachs, W., Hausmann, A., Janzen, D. H., Kitching, I. J.,
Solis, M. A., Yen, S.-H., Bazinet, A., Mitter, C. Toward reconstructing the
evolution of advanced moths and butterflies (Lepidoptera: Ditrysia): an initial
molecular study. BMC Evol. Biol. In press.

51. Reyna-Fabián, M., Laclette, J. P., Cummings, M. P., Sarma, S.S.S., &

García-Varela, M. Molecular phylogeny of some species of the genus
Brachionus and the systematic position of Plationus based on nuclear and
mitochondrial gene sequences. To appear.

52. Rivas, E. & Eddy, S. R. (1999). A dynamic programming algorithm for RNA

structure prediction including pseudoknots. J. Mol. Biol. 285:2053-2068.

53. Ronquist, F. & Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic
inference under mixed models. Bioinformatics 19:1572-1574.

54. Segers, H., Murugan, G., & Dumont, H. J. (1993). On the taxonomy of the

Brachionidae: description of Plationus n. gen. (Rotifera, Monogononta).
Hydrobiologia 268:1-8.

55. Smith, T. F. & Waterman, M. S. (1981). Identification of common molecular

subsequences. J. Mol. Biol. 147:195-197.

56. Swofford, D. L. PAUP*: Phylogenetic analysis using parsimony (*and other
methods), version 4. Sinauer Associates. Sunderland, Massachusetts, USA.

57. Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). Clustal W:

Improving the sensitivity of progressive multiple sequence alignment through
sequence weighting, position-specific gap penalties and weight matrix choice.
Nucleic Acids Res. 22:4673-4680.

58. Tishkoff, S. A., Gonder, M. K., Brenna M. Henn, B. M., Mortensen, H.,
Fernandopulle, N., Gignoux, C., Lema, G., Nyambo, T. B., Underhill, P. A.,
Ramakrishnan, U., Reed, F. A. & Mountain, J. L. (2007). History of click-
speaking populations of Africa inferred from mtDNA and Y chromosome
genetic variation. Mol. Biol. Evol. 24(10):2180-2195.

 89

59. Varadan, R., Assfalg, M., Raasi, S., Pickart, C. & Fushman, D. (2005).
Structural determinants for selective recognition of a Lys48-linked
polyubiquitin chain by a UBA domain. Mol. Cell 18:687-698.

60. Zwickl, D. (2006). Genetic Algorithm Approaches for the Phylogenetic

Analysis of Large Biological Sequence Datasets under the Maximum
Likelihood Criterion. Ph.D. thesis, University of Texas at Austin.

