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Chaotic dynamical systems can exhibit a wide variety of motions, including

periodic orbits of arbitrarily large period. We consider the question of which

motion is optimal, in the sense that it maximizes the average over time of some
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and corresponding periodic orbit, and by carrying them out on a computer have

found them to work quite well in practice.
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Chapter 1

Introduction

Given a chaotic attractor A, we consider the problem of maximizing over all

trajectories {xn} in A the time average

〈F 〉 = lim
N→∞

1

N

N−1
∑

n=0

F (xn)

of some continuous function F : A→ R, which we call the performance function.

With mild assumptions, this problem is equivalent to finding an invariant measure

µ on A that maximizes

〈F 〉 =

∫

F (x)dµ(x).

In Chapter 2 we consider this problem for one-dimensional expanding maps

and Lipschitz performance functions. We present a method that rigorously con-

structs a subset S of A for which a trajectory is optimal if and only if it re-

mains within S. Then it finds a (generally unique) periodic orbit contained in

S. Though S cannot be determined exactly on a computer, by approximating

it we get rigorous upper and lower bounds on the optimal average and find that

in practice these bounds are very close to each other. For several examples, we

compare our results to the brute force approach of exhaustively searching all pe-

riodic orbits up to a given period. We find that the two approaches agree quite
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well and that our direct method is many times faster. Our method also applies

to expanding maps in higher dimensions.

In Chapter 3, we present a method that is more practical than that of Chapter

2 for higher dimensional systems and does not require the system to be expanding

in all directions, though it yields less rigorous information. The method involves

examining a trajectory and assigning a score to almost periodic pieces of the

trajectory. The piece with the highest score indicates a nearly periodic orbit that

is, if not optimal, at least close to optimal. For hyperbolic attractors, the score

is a rigorous lower bound on the optimal average. We give examples illustrating

the accuracy of the method for both hyperbolic and non-hyperbolic attractors.
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Chapter 2

One Dimension

2.1 Introduction

Consider the general problem of optimization on a chaotic attractor A. There are

many different definitions of chaos; here we assume at least that A is a compact

invariant set that contains a dense set of periodic orbits. By optimization, we

mean maximizing the time average

〈F 〉 = lim
N→∞

1

N

N−1
∑

n=0

F (xn) (2.1)

of some continuous function F : A→ R, over all trajectories {xn} in A for which

the limit exits. We call F the performance function. For a continuous dynamical

system xn+1 = h(xn), maximizing (2.1) is equivalent to maximizing the space

average

〈F 〉 =

∫

F (x)dµ(x).

over all invariant probability measures µ on A for the following reasons. Since A

is compact, the set of all invariant probability measures on A is weakly compact,

thus there must always be a maximizing measure. Furthermore, one can show [10]
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that a maximizing measure µ satisfies

∫

Fdµ = sup
x

lim sup
N→∞

1

N

N−1
∑

n=0

F (hn(x)).

It then follows from the Birkhoff ergodic theorem that almost every initial con-

dition with respect to µ yields an optimal trajectory.

Many attractors have the property that Lebesgue almost every initial condi-

tion in a neighborhood of the attractor yields the same time average 〈F 〉; this

is known to be true, e.g., for certain one-dimensional expanding maps [12] and

for Axiom A attractors [5, 17], and is believed to be true much more generally.

Maximizing a function that is constant almost everywhere may not seem to be of

practical importance; here we summarize two motivations given in [9] for studying

this problem.

Control of chaos. Unstable periodic orbits within a chaotic attractor can be

stabilized with a small amplitude feedback control [7]. Thus, if there is a function

measuring the instantaneous performance of the system and a certain unstable

periodic orbit is determined to be optimal (i.e., the orbit gives the best average

performance) then one can stabilize the system near this orbit and optimize

performance.

Chaotically forced systems. Suppose we have two systems B and C such that

the dynamics of system C is dependent on that of B:

dx

dt
= fB(x);

dy

dt
= fC(x, y).

If x evolves on a chaotic attractor, then stability of the y dynamics is influ-

enced by unstable orbits in the x attractor. Consider for example, the case

fC(x, y) = g(x)y. If the “transverse” Lyapunov exponent 〈g(x)〉 is negative for

all trajectories of a system B, then the manifold y = 0 is asymptotically stable.
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But if the transverse Lyapunov exponent is positive for some trajectory of system

B, then trajectories of the combined system that start arbitrarily close to y = 0

can diverge from it. Similar statements can be made in the case of nonlinear y

dynamics; see [1, 2]. In order to anticipate such a loss of stability as system pa-

rameters change, it is important to monitor the maximum transverse Lyapunov

exponent of all x trajectories, not just the transverse Lyapunov exponent of a

typical x trajectory.

Past work on optimal orbits has concentrated on the type of orbit that max-

imizes 〈F 〉, at least for ‘typical’ A and F . Several results, both rigorous and

numerical, suggest that typically the maximum of 〈F 〉 occurs on a periodic or-

bit [4, 6, 9, 14, 11, 10, 16, 13]. Our concern is instead with how to find an orbit

that yields the optimal average for a particular A and F . This may not be practi-

cal in cases where the ‘optimal orbit’ has high period or is non-periodic, though in

such cases we will still find rigorous bounds on the optimal average. Fortunately,

past work has shown that the answer is usually a periodic orbit with reasonably

low period, so we now review this work that provides the basis for our method.

Rigorous and numerical studies of this problem began independently around

the same time. Mañé [14] considered the related problem of minimizing the

Lagrangian for Lagrangian dynamical systems. Our interest is in the case that

the performance function F is independent of the dynamics. In this context, early

work centered around the following example, which we also took as our prototype

example: the doubling map (denoted here by the function hD : T
1 → T

1)

xn+1 = hD(xn) := 2xn (modulo 1), (2.2)

with the one-parameter family of performance function

Fω(x) = cos[2π(x− ω)]. (2.3)
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For a given ω, the question is which orbit of (2.2) gives the greatest value of 〈Fω〉.

For the example above, Jenkinson [11] conjectured that for Lebesgue almost

every ω, there is a unique optimal invariant measure supported on a periodic

orbit. This conjecture was proved by Bousch [4]. Meanwhile, Hunt and Ott [9]

studied numerically the same example, and other examples with different chaotic

maps and performance functions. They conjectured more generally that typically

there is an optimal periodic orbit, based on the observation that in the numerical

experiments, a low period orbit was optimal for most parameter values. The ex-

periments employed a ‘brute force’ approach, finding all periodic orbits of (2.2)

up to period 24 (there are ∼ 106 such orbits), then calculating and comparing

the value of 〈Fω〉 over each of these orbits to determine which one produced the

optimal average. While this method is likely to yield an optimal orbit, and other-

wise a near-optimal orbit, it requires finding all the periodic orbits of the system

up to a given period. This approach may be quite difficult and computationally

expensive for a general chaotic system, and yields no rigorous information about

whether the orbit found is actually optimal or how close to optimal it is.

In this paper we describe a method that, for continuous expanding maps of the

circle and Lipschitz performance functions, directly computes an optimal orbit in

a rigorous manner. Our method involves finding the fixed point of a contracting

functional operator, which we do in practice by iterating the operator. While

we cannot find the fixed point by any finite computation, we can still obtain a

rigorous bound an how close to optimal the orbit found is. By increasing the

resolution of our approximation to the functional operator, we can make this

bound as small as we like.

Figure 2.1 qualitatively compares our method at a moderate resolution to the
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aforementioned brute force method for the prototype example. For each of 10,000

equally spaced values for the parameter ω, we plotted the period of the orbit of (2)

that gave us the optimal average value of (3). Although these graphs do appear

to be somewhat different (for the higher period orbits in particular), our method

actually differs from the brute force method for only 0.01% of the parameter

values. Further details of these experiments will be discussed in Section 3.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

p

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

ω

p

Figure 2.1: Optimal period p for (2.2), (2.3) as a function of ω for 10,000 evenly

spaced values for the parameter ω, using our method (upper graph) with a grid

resolution of 20,000 grid points and the brute force method (lower graph), which

checks every periodic orbit up to period 24 for each parameter value.

The rest of the chapter shall proceed as follows. In Section 2, we present our

method and its rigorous basis. We discuss the implementation of our method

in Section 3 and compare our results to those of the ‘brute force’ method for a
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variety of systems. In Section 4 we give a brief summary.

2.2 Optimization Method and Justification

The essence of our method is as follows. Given a continuous map h, an invariant

set A for h, and a continuous function F from A to R, construct a continuous

function G such that

F̃ (x) = F (x) +G(x) −G(h(x)) (2.4)

is equal to its maximum value M on a large enough set to contain a trajectory of

h (equivalently, to support an invariant measure of h). Then M is the maximum

of 〈F̃ 〉, and every trajectory (or invariant measure) contained in the set where

F̃ (x) = M is optimal. These trajectories (measures) are optimal for 〈F 〉 because

〈F̃ 〉 = 〈F 〉 for all trajectories.

Although we may not be able to compute such a G and F̃ exactly, finding a

G for which the maximum value of F̃ is close to its maximum average can still

give good rigorous bounds on the 〈F 〉. The following proposition follows trivially

from the relation 〈F̃ 〉 = 〈F 〉.

Proposition 2.1. For any continuous function G, the maximum of 〈F 〉 is bounded

above by the maximum value of F̃ and below by its average over any periodic orbit.

In the case that h is an expanding map of the circle, we can generally obtain a

periodic orbit that yields a good lower bound by iterating h backward and always

choosing the pre-image that gives the larger value of F̃ .

The existence of a G for which the maximum of F̃ is equal to the maximum

average is guaranteed in a variety of settings (i.e., certain hypotheses on h, A, and
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F ) [4, 6, 13, 14, 16]. These statements are sometimes called “non-positive Livsic

Theorems.” In general, the statement of a such a theorem has the following form:

Theorem. With appropriate hypotheses on h, A, and F, if 〈F 〉 ≤ M for all

invariant measures on A, then there exists a continuous function G∗ such that

F (x) +G∗(x) −G∗(h(x)) ≤M (2.5)

for all x in A.

If h is the time-one map of a Lagrangian flow and if −F is the Lagrangian [14]

or if h is the doubling map and f is Lipschitz [4], then the function G∗ satisfying

(2.5) is Lipschitz. If F is Hölder continuous, then so is G∗ (possibly with a

different exponent) for C1+α expanding maps [6], C2 Anosov diffeomorphisms [13]

or Anosov flows [16].

Notice that G∗ is not uniquely determined by the conditions of such a the-

orem. In particular, if F̃ (x) = F (x) + G∗(x) − G∗(h(x)) < M , then G∗ can be

increased slightly near x without affecting (2.5). Our interest is in a practical

method to construct an appropriate G∗ for a given h and F and we describe here

such a method in the case that h and F are functions on the circle T
1 with h

(uniformly) expanding (that is, |h(x) − h(y)| ≥ C|x − y| for some C > 1 and

|x− y| sufficiently small) and F Lipschitz. If in addition h is C1+α, the existence

of a Hölder continuous G∗ is a result of Contreras, Lopes and Thieullen [6]. How-

ever, we found it impractical to compute G∗(x) according to their definition, since

it requires considering all backward trajectories from x. Instead, we determine

a Lipschitz G∗ as a fixed point of a contracting functional operator φ, thereby

generalizing Bousch’s technique [4], and compute G∗ by iterating φ.

We have the following result:

9



Proposition 2.2. Let h be a continuous expanding map on T
1, and let F : T

1 →

R be Lipschitz. Then the functional operator φ defined by

φ(G)(y) = max
h(x)=y

(G+ F )(x)

is contracting (not necessarily strictly) on the space C(T1,R) with the uniform

metric. Furthermore, φ has a fixed point in the quotient space of Lipschitz func-

tions from T
1 to R modulo constant functions; equivalently, there are a Lipschitz

function G∗ and a constant M such that φ(G∗) = G∗+M . This G∗ and M satisfy

(2.5) for all x ∈ T
1, and M is the maximum of 〈F 〉.

Proof. There are four parts to the proof. We show that:

a) The operator φ is a (not necessarily strict) contraction in the uniform metric;

b) For K sufficiently large, if G is K-Lipschitz (that is, Lipschitz with constant

K), then so is φ(G);

c) Factoring out the constant functions yields a compact space on which φ has

a fixed point;

d) The constant M = φ(G∗) −G∗ is the maximum of 〈F 〉.

For part (a), let ‖ · ‖ denote the L∞ norm, and consider continuous functions

G,G′ with ‖G−G′‖ = δ. Then for some y∗ ∈ T
1,

‖φ(G) − φ(G′)‖ = |φ(G)(y∗) − φ(G′)(y∗)|

= | max
h(x)=y∗

(G+ F )(x) − max
h(x)=y∗

(G′ + F )(x)|

= |G(x1) + F (x1) − (G′(x2) + F (x2))|

10



where x1 and x2 are (possibly equal) pre-images of y∗. Then

G(x1) + F (x1)−(G′(x2) + F (x2)) ≤

G(x2) + F (x2) − (G′(x2) + F (x2)) = G(x2) −G′(x2) ≤ δ

and

G(x1) + F (x1)−(G′(x2) + F (x2)) ≥

G(x1) + F (x1) − (G′(x1) + F (x1)) = G(x1) −G′(x1) ≥ −δ,

so that ‖φ(G) − φ(G′)‖ ≤ δ.

For part (b), let G be K-Lipschitz; we need to specify K so that this implies

φ(G) is K-Lipschitz. Let KF denote the Lipschitz constant of F . Choose y1, y2 ∈

T
1 and assume without loss of generality that φ(G)(y1) ≥ φ(G)(y2). Let x1 be

the pre-image of y1 at which φ(G)(y1) = F (x1) + G(x1). Since h is expanding,

there is a constant ch > 1 independent of y1 and y2 such that y2 has a pre-image

x2 with |y1 − y2| ≥ ch|x1 − x2|. Then φ(G)(y2) ≥ F (x2) +G(x2), and hence

|φ(G)(y1) − φ(G)(y2)| = φ(G)(y1) − φ(G)(y2)

≤ F (x1) +G(x1) − (F (x2) +G(x2))

≤ |F (x1) − F (x2)| + |G(x1) −G(x2)|

≤ KF |x1 − x2| +K|x1 − x2|

= (KF +K)|x1 − x2|

≤
(KF +K)

ch
|y1 − y2|.

Thus if G is K-Lipschitz with K = KF/(ch − 1), then φ(G) is K-Lipschitz too

because then (KF +K)/ch = K.

To show part (c), let W be the space of Lipschitz functions from T
1 to R,

and let W be the quotient space of W modulo the constant functions. Notice
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that W is a Banach space with the norm of G ∈ W being the infimum of all

Lipschitz constants for G. The K-Lipschitz functions form a compact subset of

W by the Ascoli-Arzelà Theorem. Since this set is also convex, by the Schauder

Fixed Point Theorem, φ has a fixed point G∗.

Let G∗ ∈ W be an element in the equivalence class of G∗. Then φ(G∗) =

G∗ +M for some constant M , or in other words

max
h(x)=y

(G∗ + F )(x) = G∗(y) +M (2.6)

for all y ∈ T
1. Then

G∗(x) + F (x) ≤ G∗(h(x)) +M

G∗ satisfies (2.5). Taking the average of (2.5) over any trajectory, we have 〈F 〉 ≤

M .

Finally, to establish that M is the maximum of 〈F 〉, we argue that there

is a nonempty invariant subset of the set nonempty S = {x : F (x) + G∗(x) −

G∗(h(x)) = M}; then every trajectory in this invariant subset has 〈F 〉 = M .

Notice that if y ∈ S, then by equation (2.6), it has a preimage x such that

G∗(x) +F (x) = G∗(y) +M = G∗(h(x)) +M ; that is, x ∈ S. By induction, there

is an infinite backward trajectory of h that remains in S. The limit set of this

backward trajectory is invariant and is contained in S since S is closed.

Therefore if F̃ (x) = F (x) + G∗(x) − G∗(h(x)) and M is the maximum value

of F̃ , we would like to find a trajectory of h that stays inside the set S = {x :

F̃ (x) = M}.

Our method proceeds as follows:

Step 1: Find an approximation to G∗. The iteration Gn+1 = φ(Gn) − Cn (where

Cn = min(φ(Gn)), so that each Gn has a minimum of zero) seems like a

12



reasonable procedure, but since φ is not a strict contraction, we run the

risk of obtaining a periodic sequence of Gn’s instead of a fixed point. To

increase our chances of converging to a fixed point, we replace φ with the

(still contracting) iteration Gn+1(x) = (φ(Gn(x)) + Gn(x))/2 − Cn again

choosing Cn to make min(Gn+1) = 0. We stop when Gn+1 is uniformly

within some pre-specified tolerance ǫ of Gn, and let Ĝ∗ = Gn+1 be our

approximation to G∗.

Step 2: Let F̃ (x) = F (x) + Ĝ∗(x) − Ĝ∗(h(x)) and iterate the map h backward,

always choosing the preimage for which F̃ is the largest. In other words,

we perform backward iteration in the set Sˆ = {x : F̃ (x) ≥ F̃ (z) whenever

h(x) = h(z)}. If Ĝ∗ were equal to G∗, then Sˆ would be the same as S

defined above.

Step 3: Obtain an “optimal” unstable periodic orbit. Since h is an expanding map,

this procedure will quickly converge to an unstable invariant set.

In practice we always found Step 3 to yield an unstable periodic orbit, and this

orbit is our method’s candidate for the optimal orbit. In addition, recalling

Proposition 1.1, the average M− of F over our candidate orbit is a lower bound

on M , and the maximum value M+ of F̃ is an upper bound on M . The more

accurately we approximate G∗, the closer these bounds will be.

2.3 Experimental Results

To see how our method works in practice, we compared it to the results from the

‘brute force’ method for several examples studied in [9]. We now make some gen-

eral remarks about comparisons with the brute force method. Unless otherwise

13



specified, we used a grid of 20,000 points for the calculation of the functions Gn,

and stopped when Gn and Gn+1 came within ǫ = 10−6 of each other. We also

varied these parameters in some cases to see their effect on the results. When we

require a value of Gn between grid points, we compute it with linear interpolation.

Let Mp be the maximum of 〈F 〉 over all periodic orbits of h with period at

most p. Notice that Mp ≤M , with equality if there is an optimal orbit of period

at most p. In each case, we compare the results of our method to M24 for a

one-parameter family {Fω} of performance functions using 10,000 evenly spaced

values of the parameter ω.

In cases when the two methods disagree, our method generally finds a different

periodic orbit with period less than 25, which we then know is not optimal. Given

that both methods find orbits with period much less than 25 for most values of

ω, we believe that we have found a true optimal orbit in virtually all cases that

the two methods agree.

2.3.1 Prototype Example

For the prototype example, the doubling map (2.2) with sinusoidal performance

function (2.3) we can qualitatively see the results of the experiment described

above in Figure 2.1 where we plot the optimal period found by both methods

versus the parameter ω. Notice that, the optimal orbit is constant over intervals

of parameter space. The only places where our method doesn’t agree with the

brute force method are close to transitions in parameter space from one optimal

period to another.

Our main results for this example are as follows:

• Our method’s result agrees with the brute force method for over 99% of
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the parameter values. By increasing N (the grid size for the Gn iteration),

we could obtain agreement for each of the parameter values that yielded a

discrepancy with a grid size of N = 20, 000 points.

• The orbit we obtained with our default values of N = 20, 000 and ǫ = 10−6

always yielded a value of 〈Fω〉 within 0.00003 of the optimal average found

by brute force, a more than adequate result for improving performance in

the controlling chaos scenario.

• For these particular experiments our method ran more than 50 times as

fast as the ‘brute force’ method (0.059 seconds per ω versus 3.8 seconds per

ω).

In Fig. 2.2, we compare for all ω the lower and upper bounds M− and M+

that we obtain with the brute force maximum average M24. When we plot the

differences M− −M24 and M+ −M24 we see some very small discrepancies. For

98.97% of the parameter values ω, both the upper and lower average come within

10−6 of the true optimal average. The lower bound M− is equal to M24 for 99.82%

of the parameter values.

We now explore the effect in this example of varying the threshold ǫ and the

grid size N used to calculate Ĝ∗. Of course a smaller ǫ and greater N will improve

the accuracy of our results, but also will increase the computation time. Tables

2.1 and 2.2 show the effect of varying N and ǫ on our method for the prototype

example. We don’t have a dramatic increase in computation time, nor do we gain

much in accuracy by decreasing the value of ǫ.

Varying the grid size N has a more significant effect on timing and accuracy.

The larger N is, the closer the region Ŝ in which we iterate h backward will be
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Figure 2.2: For the doubling map with performance function cos[2π(x− ω)] and

10,000 equally spaces values of the parameter ω, we compare of the lower and

upper bounds M− and M+ yielded by our method and the maximum average M24

found by brute force. The upper graph shows all three quantities as a function of

ω. On the given scale, these quantities are indistinguishable. In the lower graph,

we plot the differences M− −M24 and M+ −M24 between the upper and lower

bounds and the brute force average. The bounds are always within 0.00004 of

each other, and for most ω are much closer than that.
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ǫ % Agreement Max. (M+ −M−) Avg. Computation Time

10−4 99.70 0.00004997 0.037 sec/ω

10−6 99.82 0.00003015 0.059 sec/ω

10−8 99.84 0.00003015 0.072 sec/ω

Table 2.1: Varying the iteration threshold ǫ does not have as significant effect on

the accuracy our results compared to the results found by brute force. Each of

these trials was performed on the prototype example with 10,000 evenly spaces

values of the parameter ω and a grid size of N = 20, 000. The second column

gives the percentage of ω values for which both methods find the same orbit, and

thus M− and M24 agree. The third column gives the maximum value of M+−M−

over all ω, and the fourth column gives the average computer time per ω value

on a 2.8GHz Intel P4 Xeon processor.

to the correct region S = {x : F̃ (x) = M}. Even a small discrepancy can change

the orbit we find, especially in the case where the period of the optimal orbit is

high, because then it is more likely to have points close to the boundary of S.

As expected, we do see improvement in Table 2.2 as the grid size increases. The

computation time grows slightly faster than linearly with N .

2.3.2 Other Examples

Consider first the case of the doubling map with multi-humped performance func-

tion Fω(x) = cos[2π(x−ω)]+sin[6π(x−ω)]. Figures 2.3 and 2.4, show the optimal

period and error bound differences, respectively. Overall, the periods agree (and

M− = M24) for 99.86% of the values of ω. Thus we have accuracy similar to the

prototype example with this more complicated performance function.
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N % Agreement Max. (M+ −M−) Avg. Computation Time

80,000 99.96 0.00000246 0.32 sec/ω

40,000 99.90 0.00000739 0.15 sec/ω

20,000 99.82 0.00003015 0.059 sec/ω

5,000 99.60 0.00010379 0.011 sec/ω

1,000 98.60 0.00064012 0.0022 sec/ω

Table 2.2: The effect of N (the size of the grid used to calculate Ĝ∗) for the

prototype example. For all these trials we used 10,000 evenly spaced values for the

parameter ω. The max bound error column gives the larger of the upper bound

error and lower bound error over all ω and iteration threshold ǫ = 10−6. The

second, third, and fourth columns are as in Table 2.1. The average computation

time for the brute force method was 3.8 seconds/ω.
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Figure 2.3: The optimal period obtained from our method (upper graph) and the

brute force method (lower graph) for the doubling map using the performance

function Fω(x) = cos[2π(x− ω)] + sin[6π(x− ω)].
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Figure 2.4: Optimal average and differences, as in Fig. 2.2, for the doubling map

with the performance function Fω(x) = cos[2π(x− ω)] + sin[6π(x− ω)].

Consider next replacing the doubling map hD the tent map hT (x) = 1−|2x−

1|. Though not strictly expanding according to our definition in Section 2.2, the

proof of Proposition 2.2 still applies. Using the same performance function (2.3)

as in the prototype example, we see in Figure 2.5 that there are significantly

fewer parameter values with high period optimal orbits. The two methods agree

quite well, differing only at eight values of ω. The spikes seen around ω = 0.15

in Fig. 2.6 coincide to the beginning of the cascade in Fig. 2.5. Otherwise, even

the upper bound remains within 0.000002 of the optimal average. We summarize

the results of these variations in Table 2.3.

Next we consider the case of a chaotic map that is not uniformly expanding,

using the logistic map hQ(x) = 4x(1 − x). We estimated the optimal average
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Figure 2.5: The optimal period obtained from our method (upper graph) and the

brute force method (lower graph) for the tent map = 1−|2x−1| with performance

function Fω(x) = cos[2π(x− ω)].
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Figure 2.6: Optimal average and differences, as in Fig 2.2 for the tent map with

performance function Fω(x) = cos[2π(x− ω)].
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Map Perf. Function % Agreement Max. (M+ −M−)

cos[2π(x− ω)] 99.82 0.00003015

xn+1 = 2xn cos[2π(x− ω)] 99.86 0.00008874

+ sin[6π(x− ω)]

xn+1 = 1 − |2xn − 1| cos[2π(x− ω)] 99.92 0.00060700

Table 2.3: Results for other chaotic systems and performance functions. We use

the our standard values of N = 20, 000 and ǫ = 10−6 and 10,000 evenly spaced

values of the parameter ω.

in two ways. First, we directly used the method described in Section 1.2 on

hQ(x) = 4x(1 − x) using performance function Fω = cos[2π(x − ω)]. With this

approach, Proposition 2.2 does not guarantee convergence of the iteration that

produces Ĝ∗, but nonetheless we did find the iteration to converge in practice.

Regardless of the method we use to find Ĝ∗, Proposition 2.1 still applies and the

bounds M− and M+ we obtain are rigorous, up to the precision of the computer.

Secondly, by using the fact that the logistic map is conjugate to the tent

map, hT (x) = 1 − |2x− 1| , and transforming the performance function through

the conjugacy function, we applied the method to the tent map paired with

the transformed performance function. Specifically, with the function ψ(x) =

(1−cos πx)/2, we have hQ ◦ψ(x) = ψ ◦hT (x) and for every performance function

F ,

F ◦ hi
Q(x) = F ◦ (ψ ◦ hT ◦ ψ−1)i(x)

= F ◦ (ψ ◦ hi
T ◦ ψ−1)(x)

= (F ◦ ψ) ◦ hi
T (ψ−1(x)).
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Thus the average of F over a trajectory of hQ is the average of F ◦ ψ over

a trajectory of hT . So we apply the method to the tent program using the

performance function Fω ◦ ψ(x) = cos[π(1 − cos πx) − 2πω].
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Figure 2.7: The logistic map hQ yields a brute force optimal average (upper

graph) similar to that of the tent map hT (Fig. 2.6). The lower graph shows

the difference between the optimal average found by brute force and the upper

bound results from our two methods; the dashed curve is the result of using hT

and the transformed performance function, while the darker curve comes from

direct application of our method to hQ. In the former case, the largest value of

M+ −M24 is 2.11× 10−6. In both cases the periodic orbit we obtain agrees with

the brute force method, and thus M− = M24, for all ω.

Using both approaches, we found the same optimal orbit as the brute force

method for all values of ω; the optimal period was always at most 4. The differ-
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ence between the two ways in which we applied our method is the quality of upper

bounds we obtained, as seen in Fig. 2.7. While applying our method directly to

a non-expanding map can produce the correct optimal orbit, the upper and lower

bounds we obtain are not as close to each other as in the expanding case.

2.4 Conclusion

In this chapter we have described a practical, efficient method for optimizing the

time average of a function over trajectories of an expanding map on the circle. If

the optimal trajectory is a periodic orbit with relatively low period, our method

finds the orbit very quickly. While not proving the orbit to be optimal, it provides

a rigorous upper bound on the optimal average indicating that the orbit is at least

very close to optimal.

Our method can also find high period optimal orbits, when used with sufficient

computational resolution. Furthermore, it can be applied to chaotic maps that are

not uniformly expanding, though the rigorous bounds it obtains on the optimal

average are less precise.

While we have focused on one-dimensional maps, our method and Proposition

2.2 apply also to expanding maps in higher dimensions. However, iteration of the

functional operator φ becomes computationally more difficult and time consuming

as the dimension increases. For higher dimensional chaotic maps with a low-

dimensional attractor, a different approach seems more practical. We consider

this in Chapter 3.
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Chapter 3

Higher Dimensions

3.1 Introduction

In the previous chapter we concentrated on one-dimensional expanding maps.

Most of the physical systems where maximizing such an average is useful occur in

higher dimensions. Our one dimensional method is difficult to extend to systems

in higher dimensions that are not uniformly expanding, for a few reasons. Most

importantly, if the system has contracting directions, then the operator φ used in

our one-dimensional method either does not have fixed point, or the fixed point

is sufficiently non-smooth that it is difficult to approximate on the computer due

to finite resolution.

In this chapter we describe a higher dimensional method that is both efficient

and easy to use, yet has some theoretical foundation. The method uses only the

performance function and a finite-length trajectory, and thus can be used even

for experimental systems in which the exact dynamics are unknown. We obtain

at least an approximation to a near-optimal periodic orbit and, for hyperbolic

systems, a rigorous lower bound on the actual optimal average.
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Our method is as follows. Given a trajectory {z0, z1, . . . zn} on a chaotic

attractor and a Lipschitz performance function F , with Lipschitz constant M ,

compute for each trajectory segment {zn, zn+1, . . . zn+p} with 0 ≤ n < n+ p ≤ N

the “score”

S(n, p) =
1

p

[

p−1
∑

k=0

F (zn+k) −MC|zn − zn+p|

]

. (3.1)

(In practice we speed up computation by only considering values of p up to some

maximum value, specifically 20 for the results we show.) Here C is a constant

that depends on the attractor; in the case of a hyperbolic attractor, the Anosov

Closing Lemma implies that one can determine C such that if |zn − zn+p| is

sufficiently small, there is a period p orbit near {zn, . . . , zn+p−1} on which the

average of F is at least S(n, p). We then maximize S(n, p) to obtain a rigorous

lower bound on the optimal average. Our method suggests that the optimal orbit

has period p and lies close to the maximizing piece {zn, . . . , zn+p−1} of the given

trajectory. Even when the attractor is not hyperbolic, one can apply our method,

though it yields no rigorous information and the results depend on the choice of

the constant C.

In Section 2 we describe the rigorous basis of our method and give an example

of how to determine C for a hyperbolic attractor. In Section 3, we present results

of applying our method in both a hyperbolic case, the Kaplan-Yorke attractor an

a non-hyperbolic case, the Hénon attractor. In the latter case, we discuss how to

choose a reasonable value of C empirically.
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3.2 Method for Hyperbolic systems

The theoretical basis for our method is the Anosov Closing Lemma. The formu-

lation below is implied by the treatment of this result in [8].

Theorem (Anosov). A hyperbolic set for a diffeomorphism h has a neighborhood

V and a constants C, ǫ0 > 0 such that if hi(z) ∈ V , 0 ≤ i ≤ p, and ǫ =

|hp(z) − z| ≤ ǫ0, then there is a periodic point z∗ with period p (or some factor

of p) such that
∑p−1

k=0 |h
k(z) − hk(z∗)| ≤ Cǫ.

A hyperbolic set is a compact invariant set that, roughly speaking, has well-

defined contracting and expanding directions at each point. The constant C

depends on the constants that bound the contraction and expansion rates away

from 1, and the minimum angle between the contracting and expanding direc-

tions. Here we show how to determine C for a specific class of hyperbolic systems.

The systems we consider are hyperbolic on the entire space, so ǫ can be arbitrarily

large. They are not diffeomorphisms, but this is not an obstacle.

Specifically, we consider a map h on T
1 × R governed by the equations

xn+1 = µxn (mod1); (3.2a)

yn+1 = λyn + g(xn), (3.2b)

with µ > 1 a positive integer, 0 < λ < 1 and g a Lipschitz function with Lipschitz

constant L. Notice that by induction on k,

yn+k = λkyn +
k−1
∑

i=0

λig(xn+k−i−1).

Given a trajectory (x0, y0), (x1, y1) . . . of (3.2) the following proposition deter-

mines how close a segment (xn, yn), (xn+1, yn+1), . . . , (xn+p, yn+p) of the trajectory

is to a periodic orbit of period p.
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Proposition 3.1. For every n ≥ 0 and p ≥ 1, there is a period p orbit

{(x∗0, y
∗
0), (x

∗
1, y

∗
1), . . . (x

∗
p−1, y

∗
p−1)} such that

p−1
∑

k=0

(|xn+k − x∗k| + |yn+k − y∗k|) ≤ C1|xn+p − xn| + C2|yn+p − yn|

where C1 = [1 + L/(1 − λ)]/(µ− 1) and C2 = 1/(1 − λ).

Note: Whenever we take the absolute value of an x value, we mean its magnitude

modulo 1; that is, |x| means the distance from x to the nearest integer.

Proof. First choose δ as close to zero as possible such that

(µp − 1)δ = xn − xn+p (mod1),

then |δ| = |xn − xn+p|/(µ
p − 1). Let x∗0 = xn + δ and x∗k = µkx∗0 (mod1). Then,

x∗p = µpx∗0 = µpxn + µpδ = xn+p + xn − xn+p + δ = x∗0.

Next, setting

y∗0 =
1

1 − λp

p−1
∑

i=0

λig(x∗p−i−1),

and adopting the notation (x∗k, y
∗
k) = hk(x∗0, y

∗
0), we have

y∗p = λpy∗0 +

p−1
∑

i=0

λig(x∗p−i−1)

= λpy∗0 + (1 − λp)y∗0 = y∗0.

Thus (x∗0, y
∗
0) has period p.

Now let ǫ1 = |xn − xn+p| and ǫ2 = |yn − yn+p|. Then

|xn − x∗0| = |δ| =
1

µp − 1
ǫ1, (3.3)
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and

yn+p − y∗0 = λpyn − λpy∗0 +

p−1
∑

k=0

λkg(xn+p−k−1) −

p−1
∑

k=0

λkg(x∗p−k−1)

= λp(yn − y∗0) +

p−1
∑

k=0

λk[g(xn+p−k−1) − g(x∗p−k−1)].

Writing yn+p − y∗0 = (yn+p − yn) + (yn − y∗0), this implies

(1 − λp)(yn − y∗0) = yn − yn+p +

p−1
∑

k=0

λk[g(xn+p−k−1) − g(x∗p−k−1)]

so that

|yn − y∗0| ≤
1

1 − λp

[

ǫ2 +

p−1
∑

k=0

λk|g(xn+p−k−1) − g(x∗p−k−1)|

]

≤
1

1 − λp

[

ǫ2 + L|xn − x∗0|

p−1
∑

k=0

λkµp−k−1

]

=
1

1 − λp

[

ǫ2 +
Lµp−1ǫ1
µp − 1

p−1
∑

k=0

(

λ

µ

)k
]

=
1

1 − λp

[

ǫ2 +
Lµp−1ǫ1
µp − 1

(

1 − (λ/µ)p

1 − (λ/µ)

)]

=
ǫ2

1 − λp
+

L(µp − λp)

(1 − λp)(µp − 1)(µ− λ)
ǫ1. (3.4)

Equations (3.3) and (3.4) show us that when ǫ1 = |xn+p − xn| and ǫ2 =

|yn+p−yn| are small, we can be assured that |xn−x
∗
0| and |yn−y

∗
0| are small too.

Since periodic orbits in this system are unstable, we can’t expect to stay close to

the periodic orbit for long. Yet

p−1
∑

k=0

|xn+k − x∗k| ≤

p−1
∑

k=0

µk|xn − x∗0| =
µp − 1

µ− 1
|xn − x∗0| =

ǫ1
µ− 1

(3.5)

and

p−1
∑

k=0

|yn+k − y∗k| ≤

p−1
∑

k=0

(

λk|yn − y∗0| + L
k−1
∑

i=0

λi|g(xn+k−i−1) − g(x∗k−i−1)|

)
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≤

p−1
∑

k=0

(

λk|yn − y∗0| + L|xn − x∗0|µ
k−1

k−1
∑

i=0

(

λ

µ

)i
)

=
1 − λp

1 − λ
|yn − y∗0| + L|xn − x∗0|

p−1
∑

k=0

µk−1

(

1 − (λ/µ)k

1 − λ/µ

)

≤
1 − λp

1 − λ

1

1 − λp

(

ǫ2 + Lǫ1
µp − λp

(µp − 1)(µ− λ)

)

+
L|xn − x∗0|

µ− λ

p−1
∑

k=0

(

µk − λk
)

=
1

1 − λ

(

ǫ2 + Lǫ1
µp − λp

(µp − 1)(µ− λ)

)

+
Lǫ1

(µp − 1)(µ− λ)

p−1
∑

k=0

(

µk − λk
)

=
ǫ2

1 − λ
+ Lǫ1

µp − λp

(1 − λ)(µp − 1)(µ− λ)
+

Lǫ1
(µp − 1)(µ− λ)

(

µp − 1

µ− 1
−

1 − λp

1 − λ

)

=
ǫ2

1 − λ
+ Lǫ1

µp − λp − (1 − λp)

(1 − λ)(µp − 1)(µ− λ)
+

Lǫ1(µ
p − 1)

(µp − 1)(µ− λ)(µ− 1)

=
ǫ2

1 − λ
+

Lǫ1
(1 − λ)(µ− λ)

+
Lǫ1

(µ− λ)(µ− 1)

=
ǫ2

1 − λ
+

Lǫ1
(1 − λ)(µ− 1)

(3.6)

Adding (3.5) and (3.6) completes the proof.

From these relations, we see that ǫ1, ǫ2 small imply that the trajectory segment

{(xn, yn), . . . , (xn+p−1, yn+p−1)} is close to a period p orbit. Furthermore, for a

reasonably smooth performance function F , the average of F over this piece of

trajectory and the average of F on the nearby periodic orbit must be close to

each other.

To be precise, if the performance function F has Lipschitz constant M , then

∣

∣

∣

∣

∣

1

p

p−1
∑

k=0

F (xn+k, yn+k) −
1

p

p−1
∑

k=0

F (x∗k, y
∗
k)

∣

∣

∣

∣

∣

≤
1

p

p−1
∑

k=0

|F (xn+k, yn+k) − F (x∗k, y
∗
k)|

≤
M

p

p−1
∑

k=0

(|xn+k − x∗k| + |yn+k − y∗k|)

30



≤
M

p

[(

1

µ− 1
+

L

(1 − λ)(µ− 1)

)

ǫ1 +

(

ǫ2
1 − λ

)]

=
M

p
(C1ǫ1 + C2ǫ2) (3.7)

Thus for every n and p,

1

p

[

p−1
∑

k=0

F (xn+k, yn+k) −M(C1ǫ1 + C2ǫ2)

]

≤
1

p

p−1
∑

k=0

F (x∗k, y
∗
k)

That is, S(n, p) defined by

S(n, p) =
1

p

[

p−1
∑

k=0

F (xn+k, yn+k) −M(C1ǫ1 + C2ǫ2)

]

is a lower bound for the average of F over the periodic orbit starting at (x∗0, y
∗
0),

and therefore is a lower bound on the optimal average. Recall that ǫ1 = |xn+p−xn|

and ǫ2 = |yn+p − yn| are dependent on n and p. For a particular segment of a

trajectory, we refer to S(n, p) as its “score” andM(C1ǫ1+C2ǫ2)/p as its “penalty”.

The values of n and p that yield the highest score, will generally have a low penalty

value which means that the corresponding segment is close to a periodic orbit.

We denote by S− the largest lower bound on the optimal average we can obtain

from a given trajectory of length N :

S− = max
0≤n<n+p≤N

S(n, p). (3.8)

If our initial condition generates a trajectory that is dense in a chaotic attrac-

tor and if there is an optimal periodic orbit on the attractor, then as the length

N of the trajectory that we use increases to infinity, the trajectory will come

arbitrarily close to the optimal orbit. It follows that the maximum score S− will

approach the optimal average.
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3.3 Experimental Results

For a general map h : R
m → R

m and Lipschitz performance function F : R
m → R

with Lipschitz constant M , our method proceeds as follows for a given choice of

the penalty coefficient C in (3.1).

Step 1: Generate a trajectory {zk = hk(z)} of length N .

Step 2: For each value of n and p, calculate the score S(n, p) given by (3.1). In

a chaotic attractor, every periodic orbit is unstable, so we don’t expect

the trajectory to stay near a periodic orbit for too long. In our numerical

experiments we put a bound of 20 on the value of p, figuring that larger

period orbits are both unlikely to be optimal and unlikely to be visited

closely by trajectories of the lengths we considered.

Step 3: Maximize S(n, p) over n and p to obtain lower bound S− for the optimal

average. Our method predicts that the optimal periodic orbit lies close to

the trajectory segment {zn, . . . , zn+p−1} that optimizes the score. If the true

optimal period is less than our bound for p, then as described above we

expect S− to converge to the true optimal average as N approaches infinity.

In the results below, in addition to S− we also show the average Sˆ of F on the

maximizing trajectory segment. We find that Sˆ is generally a closer estimate

than S− to the optimal average S24 obtained by brute force. The size of the

penalty Sˆ − S− also plays a role as in deciding on an appropriate value of C

when one cannot determine it analytically.
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3.3.1 Kaplan-Yorke Map

Substituting µ = 2, λ = 0.4 and g(x) = 1
π

sin[2π(x − ω)] into (3.2), we have the

Kaplan-Yorke Map

xn+1 = 2xn (mod1); (3.9a)

yn+1 = 0.4yn +
1

π
sin(2πxn), (3.9b)

whose chaotic attractor is shown in Figure 3.1.
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Figure 3.1: The Kaplan-Yorke Attractor. This figure was generated by iterat-

ing the map (3.9) 50 times starting at (0.1, 0.1) and plotting the next 40,000

iterations.

Recall for a given n and p we set ǫ1 = |xn+p−xn| and ǫ2 = |yn+p−yn|. Taking

Fω(x) = cos[2π(x + y − ω)] as our performance function, and using the norm
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|(x, y)| = |x| + |y| we have M = 2π and L = 2 so (3.7) becomes

∣

∣

∣

∣

∣

1

p

p−1
∑

k=0

F (xn+k, yn+k) −
1

p

p−1
∑

k=0

F (x∗k, y
∗
k)

∣

∣

∣

∣

∣

≤
2π

p

[(

1 +
2

1 − 0.4

)

ǫ1 +
ǫ2

1 − 0.4

]

and the score is defined to be

S(n, p) =
1

p

[

p−1
∑

k=0

F (xn+k, yn+k) − 2π (C1ǫ1 + C2ǫ2)

]

, (3.10)

where C1 = 13
3

and C2 = 5
3
. Figure 3.2 shows the optimal average and period

obtained by brute force as a function of the parameter ω. Since the unstable part

of the Kaplan-Yorke Map is the doubling map (3.9a), it is not surprising that the

period verses parameter plot looks similar to that obtained from the doubling

map with performance function Fω(x) = cos[2π(x− ω)] (Fig. 2.1).

Over the next series of figures we show results for different trajectory lengths

N , different choices of initial condition, and finally different values of the penalty

coefficients C1 and C2. Each figure contains two graphs using 10,000 evenly

spaced values of the parameter ω. Each of the top graphs shows the parameter

versus optimal period for our method (the solid line) and for the brute force

method (the dotted line). The lower graph of each figure shows the difference

between our rigorous lower bound S− = maxS(n, p) and the brute force optimal

average S24 together with Sˆ −S24 where Sˆ is the average of Fω over the highest

scoring segment found by our method.

The trajectories were generated by choosing x0 and y0 at random from [0, 1]

and [−0.5, 0.5] respectively, iterating (3.9) for 50 iterations so we can be sure that

the trajectory is on the attractor, and then iterating N times more. For Figures

3.3 and 3.4 we use the same initial condition, but use 100,000 iterates for Fig.

3.3 and 500,000 for Fig. 3.4; we call this Trajectory 1.
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Figure 3.2: For the Kaplan-Yorke Map (3.9) with performance function

Fω(x, y) = cos[2π(x + y − ω)] we plot the maximum average S24 (upper graph)

and optimal period p (lower graph) found by brute force (considering all periodic

orbits up to period 24) for each of 10,000 evenly spaced values of ω.
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Ŝ

 −
 S

2
4

ω

Figure 3.3: For the first N = 100,000 points of Trajectory 1 of the Kaplan-Yorke

Map, and the performance function Fω(x) = cos[2π(x+y−ω)], for 10,000 evenly

spaced values of the parameter ω, we plot on the top graph the optimal period

obtained from our method (solid line) and brute force (dotted line) while on the

bottom graph we plot the differences between the results of our method and the

brute force average S24. The lower bound difference S− − S24 is the solid in the

bottom graph, while the approximate average difference Sˆ − S24 is the dotted

line.

Notice the different scales on the lower graphs of these figures. Like our one

dimensional method, this method usually agrees the brute force optimal period

when this period is low. However, there are more discrepancies, and generally we

fail to find periods over 10. For this initial condition, extending the trajectory

length from 100,000 to 500,000 increases the proportion of ω values at which our
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Ŝ

 −
 S

2
4

ω

Figure 3.4: Optimal period and differences as in Fig. 3.3, for Trajectory 1, but

now with length N = 500, 000.

method and brute force method agree from 70% to 89%. The first number is a

bit skewed due to the interval around ω = 0.9 in Fig. 3.3, where our method

finds a length two piece of the trajectory to be optimal. Those two points are

very close (within 0.0001) to the fixed point rather than the period two orbit. In

cases like this, our method locates the same periodic orbit as brute force, but the

highest scoring segment of the trajectory follows the orbit for twice the period.

Of course all the results discussed above depend on the particular trajectory.

In Fig. 3.5 we used a different initial condition to generate Trajectory 2 of length

N = 500, 000. In this case, the period we find agrees with the brute force period

for 87% of the parameter values.
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Figure 3.5: Optimal period and differences as in Fig. 3.3 using Trajectory 2 with

N = 500, 000. The results are qualitatively similar to those in Figure 3.4 for

Trajectory 1, but differ significantly at some values of ω.
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Figure 3.6: Optimal period and differences as in Fig. 3.3, using Trajectory 1

with penalty coefficients C1 = 13/6 and C2 = 5/6 in (3.10). These are half the

values used in Fig. 3.4. Notice that the vertical scale on the bottom graph is

quite different than in Fig. 3.4

.

Next, we vary the penalty in order to observe what happens when the penalty

is either higher than it needs to be or too low to produce a rigorous bound. Our

purpose is to help guide the choice of the penalty in cases when one cannot

determine a rigorous value.

In Figure 3.6 we reduce the penalty coefficients C1 and C2 from their rigorous

values by a factor of 2. In the lower graph, we see that S− is indeed no longer

a lower bound on S24. For values of ω near 0.15 and 0.85, the maximum score

occurs on a trajectory segment with a relatively large penalty; the penalty is the
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Figure 3.7: Optimal period and differences as in Fig. 3.3, using Trajectory 1

with penalty coefficients C1 = 26/3 and C2 = 10/3 in (3.10). These are twice the

values used in Fig. 3.4.

difference Sˆ − S− between the two curves. This means that the highest scoring

segment is not even close to being periodic. This is an observation one could

make without knowing S24, and one should take such an occurrence to indicate

that the penalty coefficients are too small.

On the other hand, when we double the penalty coefficients in Fig. 3.7, we

don’t see as much difference from Figure 3.4. For most values of ω, the value of

Sˆ is the same, indicating that the same trajectory segment maximizes the score.

Of course, the lower bound S− is better when the penalty is smaller.
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3.3.2 A Non-hyperbolic Case

Next we consider the Hénon map:

xn+1 = a+ byn − x2
n, (3.11)

yn+1 = xn.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
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Figure 3.8: The Hénon attractor with parameter values a = 1.4, b = 0.3. This

figure was generated by iterating the map (3.11) 50 times starting at (0.1,0.1)

and plotting the next 40,000 iterates.

For a = 1.4 and b = 0.3 this map appears numerically to produce a non-

hyperbolic chaotic attractor, shown in Fig 3.8. Though we cannot determine

in this case a score function that gives a rigorous lower bound on the optimal

average, we can compare the results we get for different penalty coefficients to a

brute force optimal average using the algorithm of [3] to find the periodic orbits.
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For performance function Fω(x) = cos[2π(x+y+2
4

−ω)], Fig. 3.9 shows the optimal

average S24 and period p obtained by brute force as a function of parameter ω.
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Figure 3.9: For the Hénon Map (3.11) with performance function Fω(x, y) =

cos[2π(x+y+2
4

−ω)] we plot the maximum average S24 (upper graph) and optimal

period p (lower graph) found by brute force (considering all periodic orbits up to

period 24) for each of 10,000 evenly spaced values of ω.

In Section 3.3.1, we used different penalty coefficients C1 and C2 to multiply

ǫ1 = |xn − xn+p| and ǫ2 = |yn − yn+p|. This was because in the Kaplan-Yorke

map, the y direction is the contracting direction at each point. For the Hénon

map, the expanding and contracting directions are not aligned with coordinate

axes, so we use a single penalty coefficient CH . With Fω(x) = cos[2π(x+y+2
4

−ω)]
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as our performance function, we have M = π/2 and our score function is then

S(n, p) =
1

p

[

p−1
∑

k=0

Fω(xn+k, yn+k) −
π

2
CH(|xn − xn+p| + |yn − yn+p|)

]

.

We could of course use the Euclidean distance between (xn, yn) and (xn+p, yn+p),

but this slows down the computation while not improving the results.

The choice of the constant CH is not obvious, but we can use what we learned

from varying the penalty constant in the previous section (Figs. 3.4, 3.6, 3.7).

Toward this end, we try several values of CH , reducing it until we see large values

of the penalty Sˆ − S− for the best scoring trajectory segment. This indicates

that we have reduced CH too far, and we return to the previous value.

We want to intelligently choose a starting value of CH . Recall that for the

hyperbolic system (3.2), we derived the penalty coefficients

C1 = [1 + L/(1 − λ)]/(1 − µ) and C2 = 1/(1 − λ) (3.12)

where µ was the expansion rate, λ was the contraction rate, and the constant L is

related (inversely) to the minimum angle between the expanding and contracting

directions. Although the Hénon attractor doesn’t have well-defined contracting

and expanding directions, we can use for µ and λ the computed Lyapunov num-

bers of (3.11). From the Dynamics program [15], we obtain Lyapunov numbers

1.5 and 0.2. A reasonable value for L is more problematic. Keeping in mind that

the periodic orbits within a chaotic attractor do generally have expanding and

contracting directions, and that among the low period orbits that are most likely

to be optimal the angle between these directions is not likely to get too close

to zero, we suggest that a moderate value of L may be reasonable in practice.

Substituting L = 1, µ = 1.5 and λ = 0.2 into (3.12) we have C1 = 4.25 and

C2 = 1.25. Thus we start in Fig. 3.10 with CH = 4.
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As in the previous section, we generate a trajectory of lengthN = 500, 000 and

maximize S(n, p) for 10,000 equally spaced values of the parameter ω. Figures

3.10 to 3.12 show the difference between S− = maxS(n, p) and the brute force

optimal average S24 together with Sˆ−S24, where Sˆ is the average of Fω over the

highest scoring segment found by our method. While S− is no longer a rigorous

lower bound on the optimal average, we find that for suitable values of CH that

it remains below S24 (which is itself a lower bound on the optimal average).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.0020

−0.0015

−0.0010

−0.0005

0   

0.0005

0.0010

S −
 −

 S
2

4
 , 

Ŝ
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Figure 3.10: Using penalty coefficient CH = 4.0, a trajectory length N = 500, 000

for the Hénon Map (3.11), and the performance function Fω(x) = cos[2π(x+y+2
4

−

ω)], for 10,000 evenly spaced values of the parameter ω, we plot the differences

of maximum score S− and estimated maximum average Sˆ with the brute force

average S24. The difference S−−S24 is the solid line, while Sˆ −S24 is the dotted

line.
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Figure 3.11: The same quantities as in Figure 3.10, but now with penalty coeffi-

cient CH = 2.0.

In Fig. 3.10, we don’t see regions of parameter space for which the penalty

Sˆ −S− is high. In Fig. 3.11, we reduce the value of CH from 4 to 2. Comparing

the two figures, we see that S− uniformly gets closer to S24 in Fig. 3.11, but

the penalty has begun to increase slightly around ω = 0.3. Reducing CH to 1

in Fig. 3.12, we see a large interval of parameter values for which the penalty

Sˆ−S− is quite large, indicating that the optimal segment of trajectory found by

our method is not close to being periodic. Furthermore, S− is no longer a lower

bound on the brute force maximum average. Thus we settle on the value CH = 2

for the penalty coefficient.

In Fig. 3.13, we show the length p of the trajectory segment that maximizes

the score S(n, p), compared with the brute force optimal period, as a function
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Figure 3.12: The same quantities as in Figure 3.10, but now with penalty coef-

ficient of CH = 1. The large penalty for an interval of values around ω = 0.3

indicates that this value of CH is too small.

of ω. We see significant improvement in the agreement between the methods

in going from the first 100,000 points of our trajectory to 500,000 points. The

remaining discrepancies are almost entirely at places where the highest scoring

trajectory segment has length twice the brute force optimal period. For these

parameter values, we checked that the trajectory segment stays close to the brute

force optimal orbit for two period. (This occurs more frequently than for the

Kaplan-Yorke map because the Hénon map is not orientation preserving. The

linearized map at the fixed point, for example, has a negative eigenvalue, so that

a trajectory segment of length 2 near the fixed point can have a smaller penalty

than any length 1 segment.) This example suggests that even in a non-hyperbolic
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case, with a well chosen penalty coefficient, our method typically is able to find

a trajectory segment in the vicinity of the optimal orbit with a sufficiently long

trajectory. Also, if the optimal orbit has reasonably low period, the trajectory

can be of moderate length.
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Figure 3.13: Comparison of the value of p that maximizes the score (solid curve)

with the optimal period found by brute force (dotted curve). For the top graph,

we maximized the score over the entire trajectory of length N = 500, 000, while

for the bottom graph we used only the first N = 100, 000 points. For both graphs

we used CH = 2, and the trajectory and other parameters as in Fig 3.10.
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3.4 Conclusion

We have described a method that indicates where on a chaotic attractor to look

for an optimal periodic orbit, given a scalar “performance function” whose time

average is to be maximized, and a trajectory on the attractor. The method is

most practical for systems with lower dimensional attractors, where a trajectory

of reasonable length can be expected to pass close to all the periodic orbits of the

attractor with relatively low period.

For hyperbolic systems, our method also yields a rigorous lower bound on

the optimal average. For non-hyperbolic systems, one must tune a parameter

C, the “penalty coefficient”, of the method. By example we have indicated how

to choose this parameter. Our analysis of the hyperbolic case suggests that in

general C should be comparable in size to (µ − 1)−1(1 − λ)−1, where µ and λ

are the expanding and contracting Lyapunov numbers of the attractor that are

closest to one. Values of C that are too small can produce unrealistic results

identifying a segment of the trajectory that is not even close to being periodic.

We suggest adjusting C just high enough to avoid such occurrences, not only

for the performance function of interest, but for a family of similar performance

functions. With this approach we found good agreement of our method with

brute force optimization over a large number of periodic orbits.
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