
ABSTRACT

Title of dissertation: RECOGNIZING OBJECTS AND
REASONING ABOUT THEIR INTERACTIONS

Aniruddha Kembhavi
Doctor of Philosophy, 2010

Dissertation directed by: Professor Larry S. Davis
Department of Electrical and Computer Engineering

The task of scene understanding involves recognizing the different objects present

in the scene, segmenting the scene into meaningful regions, as well as obtaining a holis-

tic understanding of the activities taking place in the scene. Each of these problems has

received considerable interest within the computer vision community. We present contri-

butions to two aspects of visual scene understanding.

First we explore multiple methods of feature selection for the problem of object

detection. We demonstrate the use of Principal Component Analysis to detect avifauna in

field observation videos. We improve on existing approaches by making robust decisions

based on regional features and by a feature selection strategy that chooses different fea-

tures in different parts of the image. We then demonstrate the use of Partial Least Squares

to detect vehicles in aerial and satellite imagery. We propose two new feature sets; Color

Probability Maps are used to capture the color statistics of vehicles and their surroundings,

and Pairs of Pixels are used to capture captures the structural characteristics of objects.

A powerful feature selection analysis based on Partial Least Squares is employed to deal

with the resulting high dimensional feature space (almost 70,000 dimensions). We also

propose an Incremental Multiple Kernel Learning (IMKL) scheme to detect vehicles in

a traffic surveillance scenario. Obtaining task and scene specific datasets of visual cate-

gories is far more tedious than obtaining a generic dataset of the same classes. Our IMKL

approach initializes on a generic training database and then tunes itself to the classification

task at hand.

Second, we develop a video understanding system for scene elements, such as bus

stops, crosswalks, and intersections, that are characterized more by qualitative activities

and geometry than by intrinsic appearance. The domain models for scene elements are not

learned from a corpus of video, but instead, naturally elicited by humans, and represented

as probabilistic logic rules within a Markov Logic Network framework. Human elicited

models, however, represent object interactions as they occur in the 3D world rather than

describing their appearance projection in some specific 2D image plane. We bridge this

gap by recovering qualitative scene geometry to analyze object interactions in the 3D

world and then reasoning about scene geometry, occlusions and common sense domain

knowledge using a set of meta-rules.

RECOGNIZING OBJECTS AND
REASONING ABOUT THEIR INTERACTIONS

by

Aniruddha Kembhavi

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2010

Advisory Committee:
Professor Larry S. Davis, Chair/Advisor
Professor Rama Chellappa
Professor Min Wu
Professor David Jacobs
Professor John J. Benedetto

c© Copyright by
Aniruddha Kembhavi

2010

Acknowledgments

Most Ph.D. students would agree that graduate life is full of drastic ups and downs.

While my experiences were not quite as oscillating as the ones shown in Figure 1, I did

have my share of highs and lows during my years at the University of Maryland (surpris-

ingly, these were strongly correlated with paper acceptances and rejections). It was the

support and encouragement of a large number of people that motivated me through the

tougher periods and made my graduate experience a memorable one.

Figure 1: ‘Piled Higher andDeeper’ by Jorge Cham.www.phdcomics.com

First and foremost, I thank my advisor Prof. Larry Davis, who was a constant source

of strength and support. While his guidance helped define my research directions, he also

provided me with a lot of freedom to develop my own ideas. I will forever cherish the

countless discussions with him over the past few years. I also thank David Harwood with

whom I have worked very closely, ever since the beginning of my graduate studies. In-

teracting very closely with David has taught me the value of taking a pragmatic approach

to solving problems. His strong emphasis on data visualization and his attention to detail

have rubbed off on me, and I hope will hold me in good stead throughout my career.

Prof. Rama Chellappa served as my advisor during the early stages of my graduate

ii

studies. I thank him for his advice and encouragement throughout my graduate program.

I also thank Prof. Ramani Duraiswami and Prof. David Jacobs for their guidance and

interesting discussions regarding my research. They were both very accessible to me,

and I often stopped by their offices to gain a different perspective about my research. I

also thank Prof. Min Wu and Prof. John Benedetto for generously sparing their time and

agreeing to serve on my dissertation committee.

Most importantly, I owe my deepest gratitude to my parents and my wife. They

have served as my inspiration throughout this journey. Their love and continued belief in

me has been incredible. My wife Pratibha has been the person I have turned to the most.

Whenever I would make any progress in my research, I could not wait to tell her about it

(and probably bored her with endless technical details). At the same time she was always

there to encourage me when things got tough.

My dear friends and colleagues: Vlad, Ryan, Behjat, Abhinav and William(s) de-

serve a special mention. They provided me with the utmost support throughout these

years, especially during theHardTimes. In addition, many of the ideas in this thesis re-

sulted out of the long and interesting discussions I had with them, often into the wee hours

of the morning. I also thank my colleagues Shiv, Vinay, James, Antonio, Brandyn, Tom,

Afshin, Arpit, Zhe, Zhuolin, Son, Sernam, Mohamed, Radu and Balaji for making this a

fun as well as creative learning environment. My friends outside of school, Jayant, Rahul

and Johanna made these last few years a memorable and enjoyable experience. Thank

you so much for showing me that there existed a life outside graduate school.

There are of course many other people that I have not named, who have each been

part of this journey. I thank all of you.

iii

Table of Contents

List of Figures vi

1 Introduction 1
1.1 Feature Selection for Object Detection1

1.1.1 Detecting avifauna:
Feature selection using principal component analysis3

1.1.2 Detecting vehicles:
Feature selection using partial least squares5

1.1.3 Detecting vehicles:
Feature selection using multiple kernel learning8

1.2 Scene understanding using probabilistic logic models12

2 Detecting Avifauna using Principal Components Analysis 15
2.1 Introduction .15
2.2 A Three Stage Approach .17

2.2.1 Initial Pixel Classification .18
2.2.2 Pixelwise Background Model Selection22
2.2.3 Evaluation and Final Classification23

2.3 Computational Considerations .23
2.4 Experimental Evaluation .25

3 Vehicle Detection using Partial Least Squares 29
3.1 Introduction .29
3.2 Feature Extraction .32

3.2.1 Color Probability Maps .33
3.2.2 Histograms of Oriented Gradients34
3.2.3 Pairs Of Pixels .36

3.3 Partial Least Squares .38
3.3.1 Visualization of PLS factors .43

3.4 Feature Selection .45
3.4.1 Ordered Predictors Selection (OPS)45
3.4.2 Multi-Stage Multi-Resolution Analysis47

3.5 Experiments .50
3.5.1 Google Earth San Francisco Dataset50
3.5.2 Feature Extraction and Evaluation51
3.5.3 Feature Selection: OPS .54
3.5.4 Feature Selection: Downsampling58
3.5.5 Performance: Google Earth San Francisco dataset61
3.5.6 Speedup using Feature Selection66
3.5.7 Overhead Imagery Research Data Set68

iv

4 Detecting Vehicles using Incremental Multiple Kernel Learning 72
4.1 Introduction .72
4.2 An Incremental Solution .74

4.2.1 The Multiple Kernel Learning Problem74
4.2.2 Karush-Kuhn-Tucker Conditions75
4.2.3 Algorithm .77

4.3 Object Recognition Framework .80
4.4 Experiments .84

4.4.1 Kernel Matrices .86
4.4.2 Analysis .87

5 Scene Understanding 93
5.1 Introduction .93
5.2 Related Work .93
5.3 Image Analysis .95

5.3.1 Detection and Tracking .96
5.3.2 Zone Segmentation .97
5.3.3 Scene Geometry Analysis .99

5.3.3.1 Surface Layout .99
5.3.3.2 Proximity Measures99
5.3.3.3 Zone Transitions .101
5.3.3.4 Directionality .103

5.3.4 Zone Occlusion Relationships103
5.3.5 Event Generation .104

5.4 Knowledge Base .104
5.4.1 Knowledge Representation .105
5.4.2 Scene Element Models .106
5.4.3 Meta-Rules .107

5.5 Inference using Markov Logic Networks107
5.5.1 Local Inference Procedures .108

5.6 Experiments .109

6 Conclusions 115

Bibliography 117

v

List of Figures

1 ‘Piled Higher andDeeper’ by Jorge Cham.www.phdcomics.com. ii

1.1 Satin Bowerbird (Ptilonorhynchus violaceus). A perched male Satin Bower-
bird (above right) and two frames taken from overhead courtship videos. .4

1.2 (a) Two image patches showing the performance of our system. Both
image patches were extracted from a much larger image (5007 × 7776
pixels) which is displayed in its entirety in (b) and at a higher resolution
in Figure 3.22. The top figure (region marked in green) shows the high
detection accuracy of our system in the presence of a large number of
vehicles. The bottom image (region marked in red) shows the low false
alarm rate of our system in a region that has many rectilinear structures.
Typical vehicle detection systems often produce false alarms in the pres-
ence of such structures.c© 2009 Google 7

1.3 Sample result frames showing varying illumination conditions. Our incre-
mental framework (IMKL) tunes itself to the scene by updating itself with
images of objects in commonly observed poses and images of the vary-
ing background. Thus, it outperforms a static detector built on a generic
training set. 9

1.4 Two bus stops observed from different viewpoints. In Scenario 1, all
activities associated with a typical bus stop model are observable. In Sce-
nario 2, the bus occludes people departing and entering the bus.13

2.1 Module 1: Initial Pixel Classification.19
2.2 Module 2: Pixelwise Background Model Selection. Module 3: Evalua-

tion and Final Classification. .20
2.3 Overall Accuracy. Cumulative distribution of accuracy of every video is

shown by faint lines. Overall accuracy is shown by the solid line. Red
dotted line denotes the accuracy (in terms of centroid detection error)
required by the biologists. .25

2.4 Percentage within Tolerance. Per-video percentage of centroids within
the biologists specified tolerance. .26

2.5 Target detection for a sequence with stark illumination changes.28
2.6 Target detection for a sequence with poor contrast between target and

background. .28

3.1 Color Probability Maps. Pixels extracted from negative training image
patches are clustered to obtain models of typical colors observed in the
background. Given a new image patch, kernel density estimation is then
used to obtain a probability map corresponding to each color cluster. . . .35

3.2 The structure of a typical car and its surrounding regions can be described
using pairwise relationships between the highlighted regions. Regions
that are marked with the same color typically have the same color and
texture properties. This information is captured by the PoP feature.37

vi

3.3 POP Schemes. Scheme 1 captures differences between pairs of pixels
that lie symmetrically across the central vertical axis of the image patch.
Scheme 2 captures differences between pairs of pixels that lie in the same
row and column. .37

3.4 Projection of data points from a 69,552 dimensional feature space onto a
2 dimensional subspace. In this illustration 80% of the training dataset is
used to obtain the subspaces, and the remaining 20% of the data from each
class are used as the testing samples. The left column shows the subspace
extracted using PLS. The right column shows the subspace extracted us-
ing PCA. Clearly, PLS extracts a subspace that is more discriminating
than PCA. .43

3.5 Visualization of multiple PLS factors. The effect of thenth PLS factor
can be visualized by plotting it against the composite factor obtained by
combining the firstn− 1 PLS factors.44

3.6 Example images from the Google Earth San Francisco dataset. Top image
shows a test image from the dataset, looking down on an urban scene, with
overlaid detections using our vehicle detector. Bottom image shows a few
training images patches from both classes.c© 2009 Google 51

3.7 Mean classification error obtained after 3 iterations of 5-fold cross valida-
tion on the Google Earth San Francisco training dataset. The error plot is
shown for each class of features individually, as well as their combination.52

3.8 The first 5 PLS latent vectors. The components of the latent vectors corre-
sponding to the Color Probability Maps and Pairs of Pixels feature classes
are displayed. The images shown for the color probability maps directly
correspond to the latent vectors. The images displayed for the PoP feature
correspond to accumulator matrices.(best viewed in color). 53

3.9 Basic feature selection using VIP. The error plot is shown for the original
set of features and for a subset of features using the VIP criterion. VIP>
1 is thethumb ruleusually applied in PLS analysis.55

3.10 Basic feature selection using all four informative vectors. The regression
vector, B, when used as an informative vector, outperforms the typically
used VIP informative vector. The CVP vector performs very poorly on
our dataset. .56

3.11 Feature selection using the B informative vector. The number of PLS
factors used to calculate B (θ), is varied. The error is seen to reduce asθ
is increased and it saturates beyond 11.57

3.12 Results of the OPS feature selection approach on the original training set
and the downsampled set. The errors represent the mean misclassification
error after cross validation. (Refer to the text for more details).58

3.13 Mean classification error obtained using downsampling. No feature se-
lection is used. The performance decreases very slightly as images are
reduced to a smaller size. .59

3.14 Mean misclassification error at downsampling factor of 2. The error rates
drop after the feature selection process. The informative vector combina-
tion VIP-then-B outperformsV IP > 1. 59

vii

3.15 Performance of the five vehicle detectors on the Google Earth San Fran-
cisco dataset. Our vehicle detector outperforms the other ones.64

3.16 Performance of the proposed vehicle detector compared to detectors com-
posed of the proposed features and SVMs as classifiers.65

3.17 Sample vehicle detection results from the Google Earth San Francisco
dataset. .66

3.18 Performance of the 2 stage vehicle detector compared to the performance
of the detector when only the the high resolution stage (Stage 2) is used. .67

3.19 Sample images taken from the OIRDS dataset. We divide this dataset into
three parts based on the degree of difficulty.69

3.20 Performance of the three vehicle detectors on the OIRDS 1 dataset.70
3.21 Performance of the three vehicle detectors on the OIRDS 2 dataset.70
3.22 Performance of our vehicle detector on a large panoramic image over-

looking the parking lot of the San Francisco Giants stadium.c© 2009
Google .71

4.1 Categorization of the data points and kernels. The image on the left shows
the values of the Lagrange multipliers (α′s) and the output of the system
(g′s) for each of the sets:L, S andE. It also shows the conditions that are
checked to detect a set transition. (Notation:gi(+, 0) denotes the value of
gi changing from a positive value to 0.) The image on the right shows the
two kernel sets, the corresponding values of the weights (d′s) and their
Lagrange multipliers (µ′s) and the set change conditions.79

4.2 A 2-class classification example. Points in class 1 are shown in orange
and points in class 2 are shown in blue. Points in setS are marked with a
black border. Points in setL are solid colored while points in setE are not
filled with color. Kernel 1 (weight shown by the brown bar) captures the
similarity between the y-coordinates of the points, while Kernel 2 (green
bar) captures the similarity between the x-coordinates. The left figure
shows the effect of adding a new point (shown in red) on the original
points and the weights. A change in set membership is observed for some
points. The figure on the right shows the final classifier after adding 7
new points close to the first new point.80

4.3 Object recognition framework. .81
4.4 Representation of thelocalnegative training set using two sampling meth-

ods to update the training set. For this display, all image patches in the
set are added together at the appropriate locations in the scene. Thus
brighter regions corresponds to more patches in that portion of the scene,
black regions indicate that no image patches represent that portion of the
scene. (Left) High probability criteria - Only certain portions of the scene
are represented. (Right) High probability + high entropy criteria - Most
portions of the scene are represented equally.84

viii

4.5 Snapshots of the training set at 4 time instants. Top row shows the initial
training set. The next 3 rows show sample images added tolocal over
time. The illumination change is noticeable at each time instant. The
dataset gets updated with many objects in similar poses and representative
background patches. .85

4.6 (a) shows the evaluation of the individual kernels, combination using SoK
and combination using MKL. MKL outperforms all other schemes. The
best performing individual kernel is GB. (b) and (c) show the Precision-
Recall curves for thebusandcar classes respectively. Using our incre-
mental object detector consistently increases performance in both cases.
(d) compares the processing time of our incremental approach to retrain-
ing the MKL system at every step using all available images.87

4.7 Kernel combination weights sampled at multiple time instants. Results
shown forBusesclass.(see text for details) 89

4.8 Sample results from a video sequence showing the ability of our system
to adapt to gradual illumination changes.90

4.9 Performance comparison of object detectors over time for a single video
for Busesclass.(see text for details). 92

5.1 Overview of the scene understanding system95
5.2 Components of the image analysis module. (a) Background image for

Scene I. (b) Car and human trajectories (Section 5.3.1). (c) Zone segmen-
tation (Section 5.3.2). (d) Horizon line estimate (Section 5.3.3).97

5.3 Surface layout estimates before and after inference by our system. The
road visible in the far distance is erroneously labeled as a vertical sur-
face (in (a)), but corrected after inference (in (b)), due to the presence of
objects passing over it. .100

5.4 Schematic relating image plane distances to ground plane distances. . . .102
5.5 Examples of proximal zones based on zone transition matrices. (a) Vehi-

cles travel from red zones onto yellow zones within a short time span. (b)
People walk from blue zones onto yellow within a short time span.102

5.6 First order logic rules representing a crosswalk model.107
5.7 Scene element labels determined by our system for Scene I along with a

representative image from the scene. .112
5.8 Scene element labels determined by our system for Scene II along with a

representative image from the scene. .112
5.9 Scene element labels determined by our system for Scene III along with

a representative image from the scene.113
5.10 Scene element labels determined by our system for Scene IV along with

a representative image from the scene.113
5.11 Scene element labels determined by our system for Scene V along with a

representative image from the scene. .114

ix

Chapter 1

Introduction

Scene understanding is one of the fundamental objectives of computer vision. This

task involves recognizing the different objects present in the scene, segmenting the scene

into meaningful regions, as well as obtaining a holistic understanding of the activities

taking place in the scene. Each of these problems has received considerable interest within

the computer vision community.

We present contributions to two aspects of visual scene understanding. First we

explore multiple methods of feature selection for the problem of object detection, which

help to improve the efficiency and performance of detectors for single images as well as

video. Second, we develop a video understanding system for scene elements, such as bus

stops, crosswalks, and intersections, that are characterized more by qualitative geometry

and the activities of overlying objects than by intrinsic appearance.

1.1 Feature Selection for Object Detection

With the ability of modern computers to store and process datasets with hundreds

of thousands of variables, a fair amount of research over the last few years has focused on

the problem of feature selection. Feature/variable selection is a very relevant problem in

the computer vision community. Standard video streams often have an image resolution

of 640× 480 pixels. Given a standard frame-rate of 30 frames/sec, this requires the need

1

to process over 9.2 million pixels per second. With the ever increasing resolution of

cameras, the amount of data that needs to be processed is tremendous. Feature selection

can help deal with such large datasets.

There are many advantages of feature selection [34]. Reducing the number of fea-

tures reduces the effect of thecurse of dimensionality. It also leads to a speed-up of

commonly used classifiers with regards to the training as well as the testing times. Fea-

ture selection often reduces the number of noisy variables, leading to an improvement

of the generalization capability of the system, which in turn, leads to an improved per-

formance. Furthermore, reducing a large dataset to one with just a few variables, helps

tremendously with data visualization and understanding.

Feature selection methods can be broadly classified into two categories:Feature

RankingandFeature Subset Selection. Feature Rankinginvolves ranking features based

on a metric (which often depends on the given application), and then discarding the fea-

tures that are assigned a low score. This, however, is a suboptimal approach and can lead

to the selection of redundant variables.Feature Subset Selectionattempts to select a sub-

set of variables that have good prediction capabilities as opposed to ranking variables by

their individual predictive powers. This can lead to a more optimal selection of variables.

However, in the process of removing redundant variables,Feature Subset Selectionmay

remove several relevant variables. For a more extensive review ofFeature Rankingand

Feature Subset Selectionmethods, we refer the reader to [34] and [6].

We present a few feature selection strategies for the problem of object detection in

several computer vision applications. First, we demonstrate the use of Principal Com-

ponent Analysis to detect avifauna in field observation videos. Second, we use a Partial

2

Least Squares selection strategy to detect vehicles and humans in single images. Third,

we use an Incremental Multiple Kernel Learning (IMKL) scheme to detect vehicles in a

traffic surveillance scenario.

1.1.1 Detecting avifauna:

Feature selection using principal component analysis

Sociobiology seeks to understand the social behaviors of a given species by con-

sidering the evolutionary advantages these behaviors may have. To observe these social

behaviors in their natural setting, biologists conduct a substantial portion of their research

in the field, recording observations on videotapes. While fieldwork is very demanding,

videotape analysis is truly exhausting. The corpus of video footage must be viewed in

its entirety, during which time copious notes and qualitative observations are taken. Our

collaborators add more than 2000 hours of video annually to a growing total of more than

30,000 hours. They desperately need computational video analysis tools.

The approach we have developed addresses the challenges inherent in detecting and

tracking animals in their native outdoor habitats. Characteristics of these field observa-

tion videos include: poor image quality; drastic illumination changes, some rapid due to

varying cloud-cover overhead, others slow and spatial due to shadows cast by the rising

sun; targets that are motionless for long stretches of time; and non-stationary background,

such as vegetation swaying in the wind and also ground clutter kicked or shifted around

by the animals being observed. Conventional computer vision techniques are not yet able

to handle all of these challenges simultaneously.

3

Figure 1.1: Satin Bowerbird (Ptilonorhynchus violaceus). A perched male Satin Bower-

bird (above right) and two frames taken from overhead courtship videos.

Since our goal is to make the Biologist’s video analysis much easier, there are sev-

eral advantages in our favor. First, the video analysis will take place offline. This enables

us to utilize all the information in the video’s entire space-time volume. Second, we know

a priori how many target objects need to be tracked. Third, domain-specific information

about the target’s appearance is available in the form of a coarse target model.

Our framework leverages these advantages and overcomes many of these problems.

Our main contribution is a staged approach for target detection. We first use spatio-

temporal volumes to isolate potential target regions. Our algorithm then combines target-

specific information with local scene features to tailor individual models for different

parts of the scene. Emphasis is thus given to those features which locally distinguish the

target of interest.

We demonstrate our framework on an extensive data set of 24 videos comprising a

total of more than 200,000 frames where we achieve 82.89% tracking accuracy. These

4

videos contain courtships of the Satin Bowerbird (Ptilonorhynchus violaceus) and were

collected by our collaborators, Jean-François Savard and Gerald Borgia.

Researchers in Prof. Borgia’s lab study sexual selection (how various traits and

behaviors influence mating success) in various species of the Bowerbird family [19, 68] ,

generally found in Australia, New Zealand and Southeast Asia. Male Bowerbirds attract

mates by constructing a bower, a structure built from sticks and twigs, and decorating

the surrounding area. Females visit several bowers before choosing a mating partner and

returning to his bower. In part, because both courtship and mating occurs at this known

location, Bowerbirds are a particularly good bird in which to study sexual selection. Of

particular interest are the adjustments made by the male during courtship in response to

the female. Their most recent study [76] evaluates how the male modulates his display

(measured as distance from the female) based on the response cues given by a robotic

female. An early prototype of our system was very valuable in facilitating the spatial

tracking of the courting male, greatly reducing the days of work that would be required

for manually tracking so many frames.

1.1.2 Detecting vehicles:

Feature selection using partial least squares

Several commercial earth observation satellites, such as IKONOS, GeoEye and

QuickBird, provide publicly available imagery at a ground sampling distance (GSD) of 1

meter. High resolution images of a small number of locations are publicly available via

Google Earth at an astonishing GSD of 0.15 meter. We consider the problem of detect-

5

ing vehicles from such high resolution aerial and satellite imagery; this problem has a

number of applications. Images of road networks, along with the distribution of vehicles

in different regions, can provide information for urban planning and traffic monitoring.

Detecting and tracking vehicles in aerial videos is also an important component in visual

surveillance systems. In spite of the increasing availability of high resolution aerial and

satellite images, vehicle detection still remains a challenging problem. In urban settings

especially, the presence of a large number of rectilinear structures, such as trash bins,

electrical units and air conditioning units on the tops of buildings can cause many false

alarms. Figure 1.2(a) shows an example of an image patch for which previously published

vehicle detectors produce a large number of false alarms.

Our proposed vehicle detector improves upon previous systems [61, 18, 22, 104, 33,

38, 77] by incorporating a much larger and richer feature set than previous approaches.

First, a novel set of image descriptors are proposed that capture the color properties of an

object and its surrounding, calledColor Probability Maps (CPM). Then, the commonly

used Histograms of Oriented Gradients (HOG) feature is incorporated to capture the spa-

tial distribution of edge orientations. Finally a very simple yet powerful image descriptor,

namedPairs Of Pixels (PoP), is proposed to capture the structural properties of objects.

The concatenation of these three classes of features leads to a very high dimensional fea-

ture vector (approximately 70,000 elements). In contrast, the number of samples that

we have to train our vehicle detector is much smaller, rendering many popular machine

learning techniques unusable. Furthermore, our features are extracted from neighbor-

ing pixels within a detection window, which greatly increases their multi-collinearity. We

take advantage of the nature of our problem by employing a classical statistical regression

6

(a) (b)

Figure 1.2: (a) Two image patches showing the performance of our system. Both image
patches were extracted from a much larger image (5007×7776 pixels) which is displayed
in its entirety in (b) and at a higher resolution in Figure 3.22. The top figure (region
marked in green) shows the high detection accuracy of our system in the presence of a
large number of vehicles. The bottom image (region marked in red) shows the low false
alarm rate of our system in a region that has many rectilinear structures. Typical vehicle
detection systems often produce false alarms in the presence of such structures.c© 2009
Google

analysis technique called Partial Least Squares (PLS). Our PLS analysis extracts a low di-

mensional subspace within which we can use a simple quadratic discriminant classifier to

classify image patches into vehicles and background.

Using such a large number of features greatly increases the computational cost of

the vehicle detector. A common approach to speed up detectors using a large number

of features is to use a boosting algorithm along with a rejection cascade as in [90]. We

reduce the computational cost of our system using a dual feature selection approach. First,

a recently proposed feature selection method called Ordered Predictors Selection, which

combines a number of informative vectors that rank features based on their predictive

7

performance, is used. This is coupled with multi-stage, multi-resolution image analysis,

where a large number of image windows are discarded at an early stage of processing

(processing at lower resolutions) and only a small fraction of image patches are analyzed

at the highest image resolution (second stage). Our feature selection approach not only

increases the speed of our system but also its performance.

We demonstrate our proposed vehicle detector on two datasets. The first consists of

color images collected from a satellite and obtained via Google Earth. This is a set of 40

high resolution images over the city of San Francisco. The second dataset is the publicly

available Overhead Imagery Research Data Set which consists of a large number of aerial

images, annotated with vehicles [85]. We compare our approach to several previously

proposed object detection approaches including the Histograms of Oriented Gradients

approach of Dalal et al. [20], the Spatial Pyramidal Matching algorithm [52] incorporating

SIFT features, the recently proposed Intersection Kernel Support Vector Machines using

HOG features [58] and a vehicle detector proposed in [61]. Our solution obtains favorable

results as compared to previous approaches.

1.1.3 Detecting vehicles:

Feature selection using multiple kernel learning

The problem of visual category recognition has received considerable interest over

the past few years. The most common approach consists of three major components:

interest point detection, interest region description and classification. A recent focus has

been on improving region descriptors. This has led to a number of powerful descriptors

8

rotcete
D tcejb

O L
K

MI
rotcete

D tcejb
O cirene

G

Figure 1.3: Sample result frames showing varying illumination conditions. Our incremen-

tal framework (IMKL) tunes itself to the scene by updating itself with images of objects

in commonly observed poses and images of the varying background. Thus, it outperforms

a static detector built on a generic training set.

being proposed such as Histograms of Oriented Gradients [20], Geometric Blur [5] and

Pyramidal Histogram of Visual Words [9]. While each of these descriptors provides good

classification accuracies for different object classification tasks, combining information

from such multiple sources has been shown to be more reliable [8, 102, 89]. Varma et

al. [89] proposed combining multiple descriptors using Multiple Kernel Learning (MKL)

and showed impressive results on varied object classification tasks.

Using such a set of powerful descriptors, along with a nonlinear classifier such as

9

a Support Vector Machine (SVM), can lead to a boost in classification performance. But

it is equally important to have a good set of training images, representative of the test

images that are expected in the given application. Collecting large number of images

and forming a generic training dataset for commonly seen objects is relatively easy us-

ing an internet search engine such as Google. Furthermore for many standard objects

such as cars, training datasets are already available, such as the UIUC Car Database [1].

However, obtaining a representative training database for a given application is not as

straightforward, as it requires a fair amount of manual labor.

Consider a camera at a traffic intersection detecting and classifying vehicles such as

shown in Figure 1.3. First, the location of the camera in this scene and typical paths tra-

versed by the vehicles, restricts the observed poses. Second, the camera position restricts

the images representing the negative class (in our case, the background images) for this

classification task. Third, images corresponding to vehicles as well as background also

change over time, due to factors such as illumination changes and shadows cast by the

nearby buildings. Obtaining such scene specific examples of the object classes and the

background class would clearly benefit the visual classifier, but would require a tedious

manual annotation procedure.

Our Incremental Multiple Kernel Learning (IMKL) approach uses an easily ob-

tained generic training database as input, and then tunes itself to the classification task at

hand. It simultaneously updates the training examples to tailor them towards the objects

in the scene. It also updates the weights that determine the optimal combination of differ-

ent information sources, while allowing different feature combinations to be chosen for

different object classes. Finally, it tunes the classifier to the updated training dataset. As

10

the scene changes over time, a feedback loop updates our training dataset with detections

from all object classes. The incremental procedure is then invoked to update the kernel

combination weights as well as the classifier. Our final system is obtained by combining

the outputs of this online classifier with the high probability outputs of the original offline

classifier trained on the generic training database. This enables us to tune the classifier to

the given scene, while reducing the number of misclassifications on rarely seen objects.

We can also remove images from our training database over time. This is useful when

dealing with gradual illumination changes, for example.

We first describe the MKL formulation of Bach et al. [71], known as SimpleMKL,

which we use to obtain a classifier for the initial training database. SimpleMKL carries

out this optimization in an SVM framework to simultaneously learn the SVM model

parameters as well as kernel combination weights. Our incremental procedure for MKL

is an exact online solution that allows us to update the Lagrangian multipliers of the

training points, as well as the kernel combination weights, one new point at a time. The

central idea is to add a new data point to the solution and update its Lagrangian multiplier

while maintaining the Karush-Kuhn-Tucker conditions on all the current data points in

the solution. We derive our IMKL procedure in Section 4.2.

We demonstrate our visual categorization framework on the task of vehicle detec-

tion and classification. The dataset we use consists of video sequences collected from a

camera overlooking a traffic intersection. We initialize our training database with a set

of images collected from Google and update it incrementally to improve the classifica-

tion performance over time. The dataset also shows a significant change in illumination

conditions in the scene as day transitions into night. Our system is able to update itself

11

over time to handle this transition. We compare our algorithm with OPTIMOL [55], an

incremental model learning approach, recently proposed for the task of automatic object

dataset collection.

1.2 Scene understanding using probabilistic logic models

We build on recent research in appearance-based object recognition and track-

ing [20, 78, 49, 43], recovery of qualitative scene geometry from images and video [40,

39, 32], and probabilistic relational models for integrating common sense domain mod-

els with uncertain image analysis [88], to develop a video understanding system that can

identify scene elements (cross walks, bus stops, traffic intersections), characterized more

by qualitative geometry and activity than by intrinsic appearance. The domain models

we use are naturally specified by humans, and characterize scene elements in terms of

geometric relationships (sidewalks are found along roads and are parallel to roads) and

activity relationships (people walk on sidewalks, wait and possibly queue for a bus).

These domain models are related to image analysis (appearance, tracking, motion)

by representing them as probabilistic logical models (Markov Logic Networks). These

logical models describewhat typically happensin the scene and notwhat is visiblein

some video of that scene. We bridge this gap using two methods. First, we recover qual-

itative scene geometry to analyze object interactions in the 3D world rather than the 2D

image plane. Second, we utilize a set of meta-rules that capture general rules about scene

geometry and occlusion reasoning and fuse them with common sense domain knowledge

to detect these scene elements in videos taken from arbitrary viewpoints. This involves

12

People get into the bus. Bus departs.

People gather. Bus departs. People have disappeared.

Sc
en

ar
io

 1
Sc

en
ar

io
 2

Bus arrives. People not visible.

People gather. Bus approaches.

Figure 1.4: Two bus stops observed from different viewpoints. In Scenario 1, all activities
associated with a typical bus stop model are observable. In Scenario 2, the bus occludes
people departing and entering the bus.

reasoning about unobserved events and inferring their occurrence based on other obser-

vations.

As an example, consider a model for a bus-stop. This model might indicate that

people wait and queue at a bus stop, a bus stops at the bus stop, the doors to the bus open,

people leave the bus through the doors, then the people waiting enter the bus through the

doors, the doors close, and finally the bus leaves. From the viewpoint in Scenario 1 (refer

to Figure 1.4), all of the activities associated with this bus stop model are observable.

Scenario 2 shows a bus stop seen from another viewpoint, in which the bus occludes the

people waiting to board, and the bus doors are not visible. In this case, our system reasons

about this occlusion, and determines that what we expect to observe are that the people

waiting for the bus will be gone when the bus leaves, and that new people will be seen

after the bus leaves.

We demonstrate our video understanding framework on a dataset of videos of public

13

spaces. These video sequences were collected using cameras overlooking scenes from

varying viewpoints. Each contains multiple scene elements of interest, such as bus stops,

traffic intersections, stop signs, crosswalks, garage entrances, etc. Our system is able to

correctly identify a large number of these scene elements described by the human elicited

domain models.

14

Chapter 2

Detecting Avifauna using Principal Components Analysis

2.1 Introduction

Sociobiology seeks to understand the social behaviors of a given species by consid-

ering the evolutionary advantages these behaviors may have. Biologists conduct a sub-

stantial portion of their research in the field, recording observations on videotapes. While

fieldwork is very demanding, videotape analysis is truly exhausting. Our collaborators,

Jean-François Savard and Gerald Borgia at the Biology department at the University of

Maryland, add more than 2000 hours of video annually to a growing total of more than

30,000 hours. They desperately need computational video analysis tools.

The first step towards achieving the biologist’s objectives is to accurately track the

animal or animals they are observing. While traditionally done by hand, our goal is to

automate the tracking process. A typical method used in computer vision to find and

track subjects moving within a scene is background subtraction. A sample of representa-

tive work includes algorithms based on Gaussian mixture models (Stauffer and Grimson

[81]), non-parametric models (Elgammal et al. [23]), and local binary patterns (Heikkilä

and Pietik̈ainen [35]). Typically, background subtraction algorithms are designed for on-

line and sometimes even real-time analysis. These constraints are unnecessary for our

purposes, hence affording the flexibility to use all available temporal information in a

video, not just information from the recent past.

15

Recent work by Parag et al. [67] takes a similar approach to background modeling,

selecting distinctive features on a pixel-by-pixel basis. A crucial advantage of our tech-

nique, however, is that we not only pick features that are distinctive for a given location

in the scene, we choose the features which most effectively differentiate the target object

of interest from that part of the scene.

While many effective background subtraction approaches have been and continue

to be proposed, to our knowledge, they all encounter difficulties in handling all of the

issues of natural outdoor environments such as those in our dataset. The general approach

to dealing with background changes such as varying global illumination is to allow the

model to evolve, discounting evidence from the more distant past in favor of that just ob-

served. The primary difficulty with this method stems from its inability to simultaneously

handle foreground objects that become stationary for some period of time (eg. a sleeping

person [87]), instead absorbing them into the background.

Efforts have been made to provide tools in support of field research. HCI re-

searchers have recently built digital tools that allow biologists to integrate various ob-

servations and recordings while in the field [98]. In searching for the Ivory-billed Wood-

pecker, various teams have successfully employed semi-supervised sound analysis soft-

ware to analyze the large volumes of recordings [29, 37] obtained in the field. However,

there remains a need for automated tools capable of analyzing video recordings in natural

outdoor environments.

We are aware of at least two projects that have previously focused on tracking an-

imals. The Biotracking project at Georgia Tech’s Borg Lab has conducted extensive re-

search on multi-target tracking of ants [46] and bees [45, 65] and also tracking larger

16

animals such as rhesus monkey [47]. The SmartVivarium project at UCSD’s Computer

Vision Lab has investigated techniques for tracking and behavior analysis of rodents

[13, 14]. Their research also includes closely related work on supervised learning of

object boundaries [21]. However, in these experiments the animals were observed in cap-

tivity, generally under laboratory conditions. While [47] used Stauffer and Grimson’s

background modeling technique, we have found this method to work very poorly in the

Bowerbird courtship videos.

2.2 A Three Stage Approach

Our approach has three major phases: initial pixel classification, pixelwise back-

ground model selection and evaluation/final classification. In the first phase, the biologist

provides a coarse initial model of the target (a male Bowerbird in our case) that he/she

wishes to track throughout the video. This model is used to segment each frame of the

video, extracting possible target pixels (in reality some target, some background), ide-

ally leaving behind a set of only background pixels1. Here, we use information from all

previous and all future frames of the video to take decisions (as opposed to just a few

frames from the past). This helps us overcome the problem of the Bowerbird often being

stationary for hundreds, even thousands of frames at a time.

A key characteristic of unconstrained outdoor videos is the variation of the back-

ground scene, both from video to video as well as from one part of the image to another.

Our second phase accounts for this. Here, we use the sets of background and target pixels

1We define background pixels to be all those pixels that are not part of the target indicated by the

biologist.

17

and Principal Component Analysis (PCA) on a bag of features, to choose different fea-

tures at different locations in the image, which can be used to build robust models. Our

bag of features includes some that incorporate neighborhood information.

In the third phase, we use non-parametric Kernel Density Estimation (KDE) to

build a background model for each individual image location (pixel). We then evaluate

this pixel’s value over all frames in the video, determining the probability in each frame

that the pixel belongs to this model. We explain these three phases in greater detail in the

following subsections.

2.2.1 Initial Pixel Classification

Many of the videos in our dataset are affected by drastic changes in global illumina-

tion. These are caused by varying levels of cloud cover and by sunlight filtering through

the canopy and foliage above. The automatic gain control setting on the camera also pro-

duces sudden global changes in the color and brightness of the video. To deal with such

global illumination changes, we transform every image from RGB color space into a one

dimensional rank-ordered space, equivalent to performing histogram equalization on the

grayscale image. The rank feature space assumes that the feature distribution changes

very little, instead just shifting due to a change in the overall illumination. It disregards

the absolute brightness of a pixel in the scene, rather considering only its value relative

to all the pixels in the image. It is invariant to multiplicative and additive global changes

and thus is largely unaffected by these effects we have observed.

In order to tune our system to track the target, we require an initialization by the

18

Initia
l p

er-
fra

me c
las

sifi
cat

ion
 of

 p0
500

1000
1500

2000
2500

3000

D
o
t

Pr
o
d
u
ct

Fra
me N

umber

Dot
Product

Foreground
Model

Patch
 H

isto
gra

m
s

fo
r p

ixel p

Ran
k I

mag
e P

atc
hes

for
 p

Rank Image Patch

for pixel p

Rank Image

Original Image

Fra
mes

of
Orig

inal
Video

Module 1: Initial Pixel Classi�cation

Figure 2.1: Module 1: Initial Pixel Classification.

biologist. Before a video is processed, the biologist analyzes a small number of frames

chosen randomly, and for each frame marks out the region enclosing the Bowerbird if it is

present in that frame. These pixels are used to build a smoothed histogram which serves

as a coarse initial model of the target. This model is used to classify every pixel in the

video into one of two sets - “potential” target pixels and “high confidence” background

19

pixels.

At each image location, the feature that is used for this initial pixel classification is a

neighborhood histogram of rank intensity. While most traditional background subtraction

approaches have relied on the information contained at a single pixel to build background

and target models, we rely more on neighborhood information for the following reasons.

First, it reduces the chance of noisy pixels being classified as target pixels. Second, while

some background pixels might closely fit the target model, neighboring pixels around it

are less likely to simultaneously fit the model as well. Third, our use of regional informa-

tion allows us to “see through” occluding surfaces such as branches and foliage when the

target is passing beneath them.

Module 2: Pixelwise Background Model Selection Module 3: Evaluation and Final Classi�cation

Fin
al

per-
fra

me c
las

sifi
cat

ion
 of

 p

Final Classification:
Identify the frames
where foreground is
present at pixel p

Project Feature Vectors
into the PCA subspace

Build Non-parametric
Model (KDE) and

Evaluate Probabilities

High Confidence

 of Pure Background

Potentially contains

 Foreground

Obtain
subsets by
sampling

Per
-fr

am
e l

ab
elin

g of
 p

Perform
Principle Component

Analysis (PCA) Eigenvectors

(obtained by PCA)

True Foreground

Misclassified Background

True Background

Figure 2.2: Module 2: Pixelwise Background Model Selection. Module 3: Evaluation
and Final Classification.

Consider a tube of pixelspij = {pt
ij}, where(i, j) denote the spatial location and

20

t ∈ {1, 2, .., T} denotes the frame number in the video sequence. We calculate a his-

togram of the neighboring patch at every time step to obtain a sequence of patch his-

tograms as shown in Figure 2.1. Every histogram in this set is projected onto the target

model to obtain a 1-D time series as shown in Figure 2.1. A high response at certain

times indicates probable presence of the target at those times in the neighborhood of pixel

(i, j). This process is repeated for every pixel location(i, j). In summary, we identify

pixels whose neighborhoods, at times, change to more closely resemble the target model.

Using all patches, both the past and the future frames, has its advantages. In the videos

in our dataset, the Bowerbird jumps suddenly from one location to another, and then of-

ten waits at a single location for a lengthy period of time, sometimes even thousands of

frames. Using a small quantile of the time series to model the response of background

patches, we are able to easily identify frames when the bird might have visited the imme-

diate neighborhood.

We take great care not to allow target to be mixed with the background. This hy-

persensitivity in initial classification reduces the number of false negative target classifi-

cations at the cost of marginally increased false positive rates. At each pixel this gives us

two sets,Fij andBij, consisting of the frame numbers that are respectively classified as

potential target and high confidence background pixels. In essence, we obtain anover-

background-subtractedsequence of images. We can now use the reliable setBij to build

more complex and robust background models.

21

2.2.2 Pixelwise Background Model Selection

Traditional background subtraction techniques rely on a fixed set of features to build

their background and foreground models (R,G,B and gray values, gradients, edges and

even texture measures). However in outdoor videos, such as the ones in our dataset, the

background varies greatly in different parts of the scene as well as across different videos.

Furthermore, the additional knowledge we have about the appearance of the target object

should play an important role in determining which features would be most effective at

different places in the image. For example, sometimes the bird walks over grass-filled

regions, where color might be an important cue. At other times, it walks over bright sunlit

areas, where a histogram of neighborhood intensities might differentiate it. For highly

textured targets, a bank of oriented filters might be appropriate. We utilize information

about pixels from both sets, potential target and high confidence background, and choose

the most appropriate features for every pixel location from a “bag of features”.

Consider pixelpt
ij. At every time stept, we concatenate multiple features to form

a joint feature vectorf t
ij. These could include any pixel-based or neighborhood-based

features. We next determine which elements of the feature vectors are most important for

distinguishing target and background pixels at location(i, j) for timest = {1, 2, .., T}.

The set of potential target pixels has a large number of background pixels in it, because of

the conservative thresholds we choose for the initial pixel classification. This prevents us

from using a standard hard classifier to label the pixels as target and background. Instead,

we use PCA to project our feature vectors onto a subspace that maximizes the variance,

and KDE to classify them. This probabilistic framework allows us to remove many of

22

the falsely classified pixels from the potential target set. We only use a small sample of

feature vectors from the target setFij and from the background setBij to obtain a reduced

subspace, as shown in Figure 2.2. Projecting the entire feature setfij onto this subspace

gives us the setrij, in the reduced space. The reduced dimensionality ofrij helps to

drastically reduce the time required to build background models.

2.2.3 Evaluation and Final Classification

For every pixel we build a background model using Kernel Density Estimation on

our reduced feature set and evaluate probabilities at all time frames that were initially

classified as potential targetFij. Suitably thresholding these probabilities allows us to

further break down the setFij into a set of target pixels and pixels that were misclassified

as target by the first module of our system. Fort ∈ Bij (background),s ∈ Fij (potential

target) and kernelK, we obtain:

P (rs
ij) =

1

Nσ1..σd

∑
t∈Bij

d∏
y=1

K

(
rs
ij,y − rt

ij,y

σy

)
(2.1)

This gives us a target silhouette at every frame of the video sequence, from which we are

able to calculate the centroid of the detected region at every time step. We compare these

centroid locations to ground truth provided to us by the biologists, and present our results

in the following section.

2.3 Computational Considerations

Our implementation of the framework described in Section 2.2 incorporates highly

optimized algorithms to facilitate the processing of these large videos. We utilize Integral

23

Histograms [70] both to generate the patch histograms used in pixel classification and

to generate features for background model selection. Further, to optimize the evaluation

stage, we build KDEs and determine probabilities using the Improved Fast Gauss Trans-

form (IFGT) [72, 97]. The framework is implemented in MATLAB, with computation-

and memory-intensive algorithms such as Integral Histograms and IFGT implemented in

C++ and compiled as mex routines. In addition to these algorithmic optimizations, we

also employed many workstations2 (a subset of thevnodecluster funded through NSF

Infrastructure Grant CNS 04-3313) to process multiple videos in parallel.

A key strength of our background modeling approach is the use of a large spatio-

temporal window. We consider image statistics, both in a large region around a given

pixel and also over a large temporal interval (the entire video). Computing statistics for

each image pixel over this large temporal window requires a tremendous amount of data

storage. The amount of memory needed to store a single byte per pixel over 10,000

VGA sized frames is 2.86GB. We compute feature vectors per pixel that would require

about 100 or more bytes of memory per pixel (25 or more floating-point features). If

this entire structure were to be in memory at one time, it would require 100s of GB of

memory, rendering this task impossible for even a modern PC. We are further-constrained

by the memory limits of a 32-bit version of MATLAB (only about 1.2GB are available

for variables).

These considerations led us to implement our processing using data-decomposition

as is frequently done in high performance scientific computing (though we process a given

video serially on a single machine where a distributed system would run in parallel). We

2Workstations have dual 3.0Ghz Intel Xeon processors, 8GB RAM

24

utilize two kinds of data-structures,tubesandchunks. Tubes refer to spatial subdivisions

of the video (entire space-time volume), such that all frames for a particular subregion of

the image fit simultaneously in memory. Chunks are temporal subdivisions, a contigu-

ous set of frames in time that simultaneously fit into memory. These tubes and chunks

must be created for not only the original image frames of the video but also for the large

data structures that we accumulate during processing. At different stages, our algorithm

requires reading in all the data, on a tube-by-tube or a chunk-by-chunk basis.

2.4 Experimental Evaluation

0 5 10 15 20 25 30 35 40 45

100

 90

 80

 70

 60

 50

 40

 30

 20

 10

 0

P
er

ce
n

ta
ge

 o
f

ce
n

tr
oi

d
s

Error (pixels)

Figure 2.3: Overall Accuracy. Cumulative distribution of accuracy of every video is
shown by faint lines. Overall accuracy is shown by the solid line. Red dotted line denotes
the accuracy (in terms of centroid detection error) required by the biologists.

Particularly with such a large amount of data, we want to identify metrics that quan-

titatively assess the quality of our framework. While hand-labeling ground truth target

centroids for 200,000 frames is infeasible, we are fortunate to have what we consider a

25

Videos

100

 90

 80

 70

 60

 50

 40

 30

 20

 10

 0

P
er

ce
n

ta
ge

 o
f

A
cc

ep
ta

b
le

 C
en

tr
oi

d
s

T
O
T
A
L

Figure 2.4: Percentage within Tolerance. Per-video percentage of centroids within the
biologists specified tolerance.

close second. In their study [76], our collaborators used an application implementing a

very early prototype of our software. The application included a provision to manually

correct the automatic tracking results. On some videos, the results were almost entirely

satisfactory, while on a few very difficult videos, manual tracking was required for a fair

number of frames. Thus the biologists went through and refined the automatic tracking

results such that the centroids were within the acceptable tolerance of 4.5cm in the real

world (about 15 pixels in the image).

Given this “ground truth”, we seek to evaluate our approach using the following

metrics: overall accuracy, per-video percentage within the biologist-specified tolerance,

and false-positive and false-negative rates. In Figure 2.3, we present a cumulative dis-

tribution of overall accuracy. All videos are superimposed and the required tolerance is

shown by the red dotted line. The overall cumulative distribution is shown by the solid

line. Figure 2.4 shows the per-video percentage of centroids within the specified tol-

26

erance. Overall, we are able to track the target within the biologists error tolerance in

82.89% of the frames in our dataset. For most of our videos this number goes beyond

90%. Having to hand label thousands of frames of data for every video in their biological

study, biologists often spend days just tracking the object of interest. An accuracy of over

90% represents a very significant reduction in the time required for this process. We ob-

tain an overall false positive detection rate and false negative detection rate of 4.8% and

3.44% respectively. Our false positive detections are primarily caused by moving shad-

ows cast by the overlying trees, and our false negative detections are primarily seen to be

caused by severe occlusions by large branches and shrubs in the scene. It is often easier

to manually correct false positives as compared to false negatives. The biologist can mark

out a sequence of frames when the target is not present in the scene and all false positives

within that range can be ignored. Fig.2.4 shows poor results for three of the videos in the

dataset. These are caused by severe occlusions by large shrubs in the scene, making it

very difficult to locate the target accurately.

Fig.2.5a shows a few frames from one of the videos in the database, sampled ap-

proximately every 300 frames. The stark illumination changes from one part of the video

to another can be clearly seen. Fig.2.5b and Fig.2.5c show the results of the two mod-

ules in our staged approach to target detection. Some of the videos also had a very poor

contrast between the target and background pixels, due to the dark shadows cast by the

overlying trees, and the dark color of the male bowerbird. Fig.2.6 shows an example

frame and detection results from one such video.

27

(a) Frames from one of the videos in the database showing the male
bowerbird to be tracked. Notice the stark illumination and color changes
in the sequence.

(b) Initial pixel classification by Module 1 for the above frames. The
shaded pixels are classified as potential target pixels. They include a large
number of background pixels as well due to the conservative thresholds
set in Module 1.

(c) Final results for the above frames. The detected centroid of the target
is marked with a green dot, and the ground truth is shown in red.

Figure 2.5: Target detection for a sequence with stark illumination changes.

Figure 2.6: Target detection for a sequence with poor contrast between target and back-
ground.

28

Chapter 3

Vehicle Detection using Partial Least Squares

3.1 Introduction

Several commercial earth observation satellites, such as IKONOS, GeoEye and

QuickBird, provide publicly available imagery at a ground sampling distance (GSD) of

1 meter. High resolution images of a small number of locations are publicly available

via Google Earth at an astonishing GSD of 0.15 meter. We consider the problem of de-

tecting vehicles from such high resolution aerial and satellite imagery. Object detection

systems have typically used image descriptors such as Scale Invariant Feature Transform

(SIFT) [57] and Geometric Blur [5], calculated at a number of interest points within the

image. These image descriptors are then combined using various aggregating approaches

such as Bags-Of-Words [103] and Spatial Pyramids [52] to provide a rich description of

the object. However, such approaches have not been extensively used for the problem of

vehicle detection, due to the low resolution of traditional aerial images and the need of

many commonly used image descriptors for a sufficiently large support region.

Vehicle detection has been previously treated as a template matching problem, and

several algorithms have been proposed that construct templates in 2D as well as 3D. Moon

et al. [61] propose an approach to optimally detect two dimensional shapes. They derive

an optimal one dimensional step edge detector which minimizes the noise power and

mean squared error between the input and filter output. This turns out to be the derivative

29

of the double exponential (DODE) function. The DODE filter is then extended along the

shape’s boundary contour to obtain a shape detector. The problem of vehicle detection

is then equivalent todetecting parallelograms. They show impressive results on images

of vehicle parking lots. A comprehensive analysis of this vehicle detector under a wide

range of operating environments was carried out in [62]. A mathematical analysis was

provided to quantify the degradation of the vehicle detector with decreasing illumination

and acquisition angle.

Choi et al. [18] use a mean shift based clustering algorithm to extract candidate

blobs that exhibit symmetry properties of typical vehicles. Each candidate is then clas-

sified using geometric and radiometric characteristics of the blob. Eikvil et al. [22] pro-

pose a similar two stage strategy for vehicle detection in satellite images. The first stage

consists of segmenting regions into potential vehicles, roads, vegetation, etc. They also

leverage multi-spectral information to identify regions of vegetation and Geographical In-

formation System (GIS) data to obtain the road network. The second stage then consists

of a region classification algorithm using geometrical properties such as area, moments,

etc. Zheng et al. [105] obtain vehicle candidates using a morphological pre-processing

stage, which are then classified using a neural network. Such two stage approaches typ-

ically suffer from errors obtained in the segmentation stage of the system. Furthermore,

geometric properties of blobs are not powerful enough to detect vehicles with high accu-

racy in urban settings, where the presence of a large number of rectilinear structures cause

many false alarms.

Zhao et al. [104] pose the vehicle detection problem as a 3D object recognition

problem. They used human knowledge to model the geometry of a typical vehicle. Psy-

30

chological tests revealed that human subjects most often used cues such as the rectangular

shape of the car, layout of windshields and presence of shadows to detect cars. Such cues

were then integrated using a Bayesian network. They also made use of camera calibra-

tion and illumination information to predict shadow cues. While effective, their algorithm

cannot be easily extended to build other object detection systems, due to the large amount

of human modeling that is required. Similar 3D models were also used to model vehicle

geometries for the purpose of car detection and counting in aerial images by Hinz [38]

and Schlosser et al. [77].

Grabner et al. [33] propose an online version of boosting to efficiently train their ve-

hicle detector. Their algorithm avoids building large pre-labeled training datasets by mak-

ing use an active learning framework. They use three classes of features - Haar wavelets,

Histograms of Oriented Gradients and Local Binary Patterns, all of which can be very

efficiently calculated using Integral Images and Integral Histograms. Their detection re-

sults are further improved by segmenting the image into streets, buildings, trees, etc. and

then discarding vehicle detections that are not present on the street segments.

More recently, vehicle analysis has been extended from single images to video

sequences. Yue et al. [99] propose a system for vehicle verification in airborne video

sequences. The vehicle of interest may leave the field of view for a while or may be

obscured. When a new vehicle is observed, verification is needed to confirm whether it

was the previously detected vehicle. A homography based view synthesis method is used

to generate novel views of the exemplars that are provided during training. This enables

the system to be robust to large aspect angle variations of the test sequence. The synthe-

sized novel view and testing object are then compared using a weighted combination of a

31

rotationally invariant color matcher and a spatial feature matcher.

Our proposed vehicle detector improves upon previous systems by incorporating a

much larger and richer feature set than previous approaches. A new feature set called

Color Probability Mapsis used to capture the color statistics of vehicles and their sur-

roundings, along with theHistograms of Oriented Gradientsfeature and a simple yet

powerful image descriptor that captures the structural characteristics of objects, named

Pairs of Pixels. The combination of these features leads to an extremely high dimen-

sional feature set (approximately 70,000 elements). Partial Least Squares is first used to

project the data onto a much lower dimensional subspace. Then, a powerful feature se-

lection analysis is employed to improve performance, while vastly reducing the number

of features that must be calculated.

We demonstrate our proposed vehicle detector on two datasets. The first consists of

color images collected from a satellite and obtained via Google Earth. This is a set of 40

high resolution images over the city of San Francisco. The second dataset is the publicly

available Overhead Imagery Research Data Set which consists of a large number of aerial

images, annotated with vehicles [85]. We compare our approach to several previously

proposed object detection approaches [20, 52, 58, 61] and obtain favorable results.

3.2 Feature Extraction

We use three classes of features in our proposed solution: Color Probability Maps,

Histograms of Oriented Gradients and Pairs-of-Pixels (PoP) features.

32

3.2.1 Color Probability Maps

Vehicles often lie on homogeneously colored backgrounds such as asphalt, cement,

dirt roads, etc. Sometimes, the immediate neighborhood of a vehicle might be composed

of multiple surfaces (a vehicle parked on the side of the road has an asphalt surface on

three sides and a cement sidewalk on the fourth side). Thus, an image patch containing

typical vehicle colors towards the center and colors representing typical backgrounds to-

wards the periphery is likely to contain a vehicle. Color Probability Maps capture such

color statistics of objects and their immediate environment.

We begin by identifying colors that are typically present in the background category.

First, pixels are sampled from the entire set of background image patches in the training

set of images. Each pixel is represented in a 3 dimensional space(r, g, s), wherer and

g are chromaticity variables representing the fraction of the red and green components

respectively:r = R
R+G+B

andg = G
R+G+B

. s represents the brightness component:s =

R+G+B
3

. These pixels (obtained from all the background training images) are clustered to

determine the dominant colors present in the background. Each cluster of pixels is used

to build a color density model in RGB space using Kernel Density Estimation.

pc(r, g, s) =
1

N c
pts

Nc
pts∑

i=1

Kσr(r − rc
i)Kσg(g − gc

i)Kσs(s− sc
i)

Kσ(x) =
1√
2πσ

e−
x2

2σ2 (3.1)

wherepc(r, g, s) refers to the probability of the(r, g, s) triple for thecth cluster.σr, σg and

σs represent the channel bandwidths.rc
i ,g

c
i andsc

i refer to the chromaticity and brightness

components of theith pixel in the cth cluster. N c
pts refers to the number of points in

the cth cluster. Given an image, one can obtain a color probability map for every color

33

model. These probability maps are concatenated to form a feature vector representing

the color statistics of the image patch,Fcmap. In order to limit the number of probability

maps that must be computed for each image patch, only the most discriminating clusters

are used. First, clusters that contain a very small number of points are rejected. Then the

remaining clusters are ranked based on their discriminative capability. For a given cluster,

we generate the corresponding probability map for all positive and negative samples in the

training set and calculate the average misclassification error using a 5-fold cross validation

procedure. The topNcmap clusters are then chosen.

The Improved Fast Gauss Transform (IFGT) [63] is used for efficient computation

of the probabilities. The bandwidths for each channel are estimated independently using

a bandwidth selection criterion given in [72]. Given a test image patch, the computation

of its Color Probability Maps is further speeded up bya priori constructing look-up tables

that directly map entries in theR −G− B color space to a probability value. A look-up

table is constructed for each of theNcmap color clusters.

3.2.2 Histograms of Oriented Gradients

The second class of features are the Histograms of Oriented Gradients (HOG),

which have been used in many object detection algorithms [20]. These features cap-

ture the spatial distribution of gradients that are typically observed in image patches that

contain vehicles. Since histograms are computed over regions, they are fairly robust to

some variability in the location of the parts of the object. Moreover, the HOG descriptor

is also invariant to rotations smaller than the size of the histogram orientation bin.

34

Figure 3.1: Color Probability Maps. Pixels extracted from negative training image
patches are clustered to obtain models of typical colors observed in the background.
Given a new image patch, kernel density estimation is then used to obtain a probabil-
ity map corresponding to each color cluster.

Each detection window is divided into square cells and a 9-bin HOG feature is

calculated for each cell. Grids of 2x2 cells are grouped into a block, resulting in a 36

dimensional feature vector per block. Each block feature vector is normalized to an L2

unit length. Dalal et al. [20] used blocks defined at a single scale. In their approach, for

35

a detection window of size64 × 128 pixels, 105 blocks were used, each having a size of

16× 16 pixels. Zhu et al. [106] extended this approach by using blocks at varying scales

and varying aspect ratios (1:1, 1:2 and 2:1). We incorporate this multi-scale approach

employed in [106].

3.2.3 Pairs Of Pixels

Properties of pixel pairs within an image patch can provide structural information

about the object present in that patch. Consider the image patch shown in Figure 3.2. The

structure of a car shown in the image can be described using the relationships between the

regions highlighted in red, green and blue. The three regions highlighted in red represent

the body of the vehicle and typically have the same color. Similarly, regions highlighted

in green represent the windows of the vehicle which usually appear dark in color. Re-

gions that are not present on the vehicle might have colors that differ from the color of

the vehicle but they might be similar to one another. Such relative color statistics can

capture the structure and relationships amongst different parts of a given object. Using

relative properties of pixel pairs, as opposed to pixel properties themselves, is robust to

illumination changes in the scene, changes in the background, as well as the color of the

object itself.

In principle, one can encode many different relative properties of regions, such as

the difference between their colors, textural properties, gradient magnitudes, etc. Here,

we restrict these regions to be single pixel locations and the relative property to be the

Euclidean distance between their color values. The feature vector,Fpop, encoding this

36

Figure 3.2: The structure of a typical car and its surrounding regions can be described
using pairwise relationships between the highlighted regions. Regions that are marked
with the same color typically have the same color and texture properties. This information
is captured by the PoP feature.

relative property can be obtained by concatenating the distances between the colors of a

large number of pixel pairs.

Figure 3.3: POP Schemes. Scheme 1 captures differences between pairs of pixels that
lie symmetrically across the central vertical axis of the image patch. Scheme 2 captures
differences between pairs of pixels that lie in the same row and column.

If we were to consider all pixel pairs in an image patch, the feature vector would be

of lengthM2N2 whereM andN are the length and width of an image patch. For a small

image patch of size 100 x 100, this would result in a feature vector of length 100 million.

In order to restrict this dimensionality, we propose two alternatives. These alternatives are

designed to capture a large portion of the structural information, while taking advantage

37

of the symmetry exhibited by vehicles about a central vertical axis.

Scheme 1: Consider all pairs of pixels that exhibit a symmetry in location about the

central vertical axis, as shown in Figure 3.3. This reduces the dimensionality of the fea-

ture vector toM × N
2

. However, these pixel pairs only capture horizontal differences.

Scheme 2:Consider a pixelp at location(x, y). Consider its differences with all pix-

els that lie in the same row and column as pixelp at intervals of distanced. This provides

an advantage over Scheme 1 by capturing structural properties in both the horizontal and

vertical directions while restricting the dimensionality of the resulting feature vector. Us-

ing Scheme 2 results in a feature vector of lengthM ×N × (1− M+N
d

).

We use Scheme 2, since we are able to accommodate the length of the resulting PoP

feature vector. The PoP vector is then normalized by dividing it by itsL1 norm.

The three classes of features are finally combined to form the resulting feature vec-

tor describing an image patch.

F = [Fcmap Fhog Fpop] (3.2)

3.3 Partial Least Squares

The combination of the three feature classes results in an extremely high dimen-

sional feature space (approximately70, 000 dimensions). In contrast, the number of sam-

ples in our training dataset is much smaller (about 200 in the positive and 1500 in the

38

negative class). Furthermore, our features are extracted from neighboring pixels within

a detection window, which tremendously increases the correlation between them, ren-

dering traditional Ordinary Least Squares (OLS) regression estimates unreliable. This

phenomenon is also known as the multicollinearity of the feature set. The nature of our

proposed feature set makes an ideal setting for a statistical technique known as Partial

Least Squares (PLS) regression [93].

The PLS method was first developed by Herman Wold in the 1960s and 1970s to

address problems in econometric path-modeling [92], and was subsequently adapted in

the 1980s to problems in chemometric and spectrometric modeling. In the late 1980’s and

1990’s, PLS attracted the attention of statisticians [30][36], due to its ability to deal with

a small number of examples and a large number of variables.

We present a brief introduction to PLS. For a more detailed analysis, see [12]. Con-

sider a set ofp predictor variables,X1, X2, . . . Xp, which are used to predictq response

variables,Y1, Y2, . . . Yq. Let n equal the number of observation pairs denoted as(xi, yi)

where{i = 1, 2, . . . , n}. The data samples are assumed to be mean-centered. They are

concatenated to form the matricesX(n×p) andY(n×q). Whenn < p, classical regression

tools cannot be applied since the covariance matrixXT X(p×p) is singular.

PLS regression is based on the following latent component decomposition

X = TP T + E (3.3)

Y = UQT + F (3.4)

where,T andU give the latent components (known as thescoresmatrices),P andQ

provide the coefficients (known as theloadingsmatrices), andE and F are the error

39

matrices. Note that a decomposition similar to Equation 3.3 is obtained by Principal

Components Analysis.

The latent components given byT are obtained by a linear transformation ofX as

follows,

Tn×d = Xn×pWp×d (3.5)

whered is the dimensionality of the latent space. The latent componentsT , are used for

prediction in place of the original data vectorsX. There are many variants of the basic

PLS algorithm. They can be broadly classified based on their ability to deal with uni-

variate response variables versus multivariate response variables. Multivariate response

PLS has two popular implementations. The first variant leads to the NIPALS algorithm,

whereas the second variant leads to the SIMPLS algorithm. These two methods differ in

the matrix deflation process within the PLS algorithm. In our analysis, we have used the

NIPALS algorithm. The NIPALS algorithm is essentially one of many methods that exist

for finding the eigenvectors of a matrix. It was originally developed for Principal Com-

ponents Analysis, but was subsequently used to iteratively extract factors for in a Partial

Least Squares Analysis. Algorithm 1 provides a brief outline of the NIPALS algorithm.

For more details we refer the reader to [31].

Wi andTi represent theith columns of the matricesW andT respectively. The

regression model is given by,

Y = XB + F (3.6)

where,Bp×q is the matrix of regression coefficients. Algebraic manipulations yield,

B = WQT = W (T T T)−1T T Y (3.7)

40

Algorithm 1 NIPALS Algorithm
1: for i = 1 to d do

2: Matrix Projection

Wi = XT Y/
∥∥XT Y

∥∥
Ti = XWi/ ‖XWi‖

3: Matrix Deflation

X = X − TiT
T
i X

Y = Y − TiT
T
i Y

4: end for

A new observationxnew thus yields a response value given by,

ynew =
1

n

n∑
i=1

yi + BT (xnew −
1

n

n∑
i=1

xi) (3.8)

The data we are interested in, falls into two classes - vehicles and background. We use

the PLS regression algorithm as aclass awaredimensionality reduction tool by setting the

class label of a sample inY to 1 or−1. Thus, for our purpose,q = 1. Note that the matrix

of regression coefficientsB, is now a single vector(Bp×1), with a single coefficient for

every feature. In practice, we do not project a new observation ontoB. Instead, we project

it onto the firstk columns of matrixW , and then apply a classifier on that subspace. This

method allows us to apply any classifier within this subspace (linear or non-linear) and has

been shown to provide improved performance. The number of PLS factorsk is obtained

using cross validation.

Dimensionality reduction techniques can be broadly classified in two ways: linear

vs non-linear methods and supervised vs unsupervised methods. Non-linear methods are

41

generally computationally intensive and are not very suitable for extremely high dimen-

sional feature spaces, such as ours. For the purposes of classification, supervised methods

hold an advantage over unsupervised methods, owing to their use of the class information

within the training dataset.

Principal Component Analysis (PCA) is a classical linear unsupervised method.

While PCA creates orthogonal latent vectors by maximizing the covariance between the

data vectorsxi, PLS (a supervised approach) also considers the class labels. Figure 3.4

demonstrates the advantage of PLS over PCA. A subset of the training dataset (80% of

the data points with all 69,552 variables) is provided to both PCA and PLS, and then

projected onto the first two factors given by each dimensionality reduction method. The

first row shows the training points projected onto the subspaces. The second row shows

the test points (the remaining 20% of the data) projected onto the subspaces. The first two

factors given by PLS are clearly more discriminating than PCA.

Fisher Discriminant Analysis (FDA) is in this way similar to PLS. It is a linear

supervised method. However, FDA suffers from thesmall sample sizeproblem. When the

number of features exceeds the number of samples(n < p), as in our case, the covariance

estimates are not full rank, which are required to obtain the projection vectors. A number

of extensions have been to LDA have been proposed to deal with this problem. Belhumeur

et al. [4] first projected points onto a lower dimensional subspace using PCA (which does

not suffer from the small sample size problem), and then applied FDA on the reduced

subspace. Chen et al. [17] used a modified version of Fisher’s criterion and proposed an

efficient and stable algorithm to calculate the discriminant subspace. However, FDA has

a further limitation, in that it retains onlyl − 1 meaningful latent vectors, wherel is the

42

−0.05 0 0.05 0.1 0.15
−0.1

−0.05

0

0.05

0.1

−0.05 0 0.05 0.1 0.15
−0.1

−0.05

0

0.05

0.1

−0.5 0 0.5 1
−1

−0.5

0

0.5

1

−0.5 0 0.5 1
−1

−0.5

0

0.5

1

Factor 1

Fa
ct

or
 2

Fa
ct

or
 2

Fa
ct

or
 2

Fa
ct

or
 2

Factor 1Factor 1

Factor 1

PLS PCA

T
R

AI
N

IN
G

T
ES

T
IN

G

Vehicles
Background

Vehicles
Background

Vehicles
Background

Vehicles
Background

Figure 3.4: Projection of data points from a 69,552 dimensional feature space onto a 2
dimensional subspace. In this illustration 80% of the training dataset is used to obtain
the subspaces, and the remaining 20% of the data from each class are used as the testing
samples. The left column shows the subspace extracted using PLS. The right column
shows the subspace extracted using PCA. Clearly, PLS extracts a subspace that is more
discriminating than PCA.

number of classes being considered. For our 2 class problem, a 1 dimensional subspace

might not be sufficiently discriminative.

3.3.1 Visualization of PLS factors

It is useful to be able to visualize data points in the reduced PLS latent space. We

propose a technique to visualize the separation between the data points in the two classes

as the dimensionality of the PLS latent space increases.

Figure 3.5 shows the visualization of data in a 5 dimensional PLS factor space. The

top left plot shows the data plotted in the space spanned by the first two PLS factors.

One can observe that the two classes are not completely separated in this 2 dimensional

43

Figure 3.5: Visualization of multiple PLS factors. The effect of thenth PLS factor can
be visualized by plotting it against the composite factor obtained by combining the first
n− 1 PLS factors.

space. In order to visualize the effect of the third PLS factor, the data points are plotted

in the space spanned by the third factor and the composite PLS dimension obtained from

the first two PLS factors. The composite factor is essentially the vector of regression

coefficients (B) given in equation 3.7. The data projected onB represents the output of

PLS regression obtained using a 2 dimensional latent space. The top right plot shows the

data projected onB as against the third PLS factor. In this way, data projected on factori

is plotted against the data projected on the composite factor obtained from the PLS factors

1 to i− 1.

One can observe the increase in the separation between the two classes as the num-

ber of PLS factors is increased. This visualization is a useful tool to observe the structure

of the data in the two classes in a high dimensional PLS factor space.

Note that it cannot be used to determine the optimum number of PLS factors for a

given problem, which is obtained by a cross validation procedure on the training dataset.

44

3.4 Feature Selection

The large number of features greatly increases the computational cost of the vehicle

detector. Calculating the features requires a substantial amount of time. At the same

time, projecting a data point from anp dimensional space down to ad dimensional PLS

factor space requiresp × d multiplications and(p − 1) × d additions. A typical image

which must be scanned at multiple orientations and scales has hundreds of thousands of

windows to be evaluated. Clearly, this would be a very time consuming process. This

can be greatly speeded up, without a significant loss in performance, by using an effective

feature selection process.

Furthermore, feature selection can often improve the performance of a PLS based

classification system. In our set of thousands of features, one can expect many of them to

be very noisy and redundant. Feature selection can help discard a large fraction of such

variables.

We use two methods to perform feature selection: Ordered Predictive Selection and

a Multi-Stage Multi-Resolution Analysis.

3.4.1 Ordered Predictors Selection (OPS)

Variable Importance on Projection (VIP) is a widely used technique for PLS based

feature selection. VIP provides a score for every variable, that ranks them according to

their predictive power. A cross validation scheme can then be used to select the number

of variables required to obtain a desired level of classification accuracy. In general any

informative vector which provides a measure of the predictive power of the variables, can

45

be used for feature selection.

Teofilo et al. [86] used several informative vectors and their combinations to per-

form feature selection for regression problems. Their method is computationally efficient

as compared to other variable selection methods, such as genetic algorithms, and can be

completely automated. They used several different datasets in their analysis, some hav-

ing a multiple number of dependent variables. Their analysis showed a rather surprising

result. The number of PLS factors that were obtained by a cross validation procedure

for the purpose of feature selection was often higher than the number of PLS factors that

were optimal for the purpose of regression.

We perform a similar feature selection analysis, enabling us to reject a large fraction

of noisy features. We only deal with a single dependent variable, which is set to the class

label (+1/− 1). The following informative vectors are used in our analysis.

1. Variable Importance on Projection (VIP) - The VIP score for thejth variable is a

measure based on the weighted PLS coefficients. The higher the score, the more

importance a variable presents. The average VIP score over all variables equals 1.

Thethumb ruleused to select variables according to their VIP score is to retain only

those variables whose VIP score is greater than 1.

VIPj =

√√√√p

d∑
k=1

B2
kW

2
jk/

d∑
k=1

B2
k (3.9)

2. Regression Coefficients (B) - The regression coefficientsB defined in Equation 3.7

represent the expected change in the response, per unit change in the variable. The

absolute value of the regression coefficients are thus used as informative scores.

46

3. Correlation (CORR) - The correlation informative vector contains the Pearson cor-

relation coefficients between every predictor variableXi and the response variable

Y . A high correlation indicates that the predictor variable is very informative about

the PLS classification model.

R =
X tY

n− 1
(3.10)

Since the Pearson correlation coefficient lies between−1 and+1, with 0 indicating

an absence of any correlation, the absolute value of the correlation coefficients is

used.

4. Covariance Procedures Vector (CVP) - The CVP score was proposed by Reinikainen

et al. [73] as a measure of variable importance. The ranking of variables is based

on the covariance of the dependent and independent variables which is given by,

CVP = diag(X tY Y X) (3.11)

Informative Vectors CORR and CVP do not depend on the dimensionality of the

PLS factor space. However, VIP and BETA vary with the dimensionality of the factor

space. Motivated by the OPS results obtained in [86], a nested cross validation procedure

is used to determine the optimum dimensionality of the PLS factor space for classifica-

tion and the optimum dimensionality of the PLS factor space to calculate the informative

vector.

3.4.2 Multi-Stage Multi-Resolution Analysis

The nature of the three feature classes introduces a fair amount of redundancy in the

feature set. For instance, the color probability maps capture color statistics of every pixel

47

Algorithm 2 OPS Cross Validation Procedure
1: for θ = 1 to Nselect do

2: Build PLS model usingθ factors

3: Calculate informative vector and sort variables by their informative score

4: Choose topK variables based on feature selection criteria

5: for φ = 1 to Nmodel do

6: Build PLS model usingφ factors and topK variables

7: Calculate classification accuracy on the validation set

8: end for

9: end for

within an image patch. Clearly, neighboring pixels are highly correlated and introduce a

lot of redundancy. Downsampling an image can help remove this redundancy somewhat,

at the cost of performance.

We build 2 PLS models using features computed from training images at different

resolutions. The first model is built from training images reduced to a width and height

that equal1/2 the original image dimensions, vastly reducing the dimensionality of the

feature vector. The second model is computed from the original training images. The fea-

tures that contribute towards each PLS model, undergo the OPS feature selection strategy

that was outlined in Section 3.4.1. Thus we obtain two trimmed PLS models. In principle,

one may add more downsampling stages to obtain a further speedup, possibly at the cost

of accuracy.

Given a testing image, each and every image patch is classified using the first and

fastest PLS model. A subset of these are then sent to the second stage which contains the

48

second PLS model (lowest speed, highest performance).

49

3.5 Experiments

3.5.1 Google Earth San Francisco Dataset

We test the performance of our vehicle detector on satellite images of the city of

San Francisco taken from Google Earth. This dataset consists of 40 satellite images at a

resolution of979 × 1348 pixels and a color depth of 24 bits per pixel (RGB). Figure 3.6

shows one such image. Each image looks down on an urban scene with multiple cars

present in each image. The total number of vehicles present in the dataset is 650. The

average size of a vehicle is48× 16 pixels1.

The first 5 images in the dataset are used for training purposes and the performance

of our vehicle detector is tested on the remaining 35 images. 184 positive image patches

(vehicles) are extracted from the training images and aligned vertically. Similarly 1500

negative image patches are randomly chosen from the training images. Each image patch

has a size of81 × 41 pixels. Figure 3.6 shows a few training image patches from the

dataset. The test images are scanned using a sliding window approach. The size of the

window is fixed to81 × 41 pixels, since the training and test images have been captured

at the same resolution and all vehicles are observed at a single scale. More generally

however, one may need to scan the image at multiple scales. The horizontal and vertical

step sizes are set to 5 pixels.

1The highest resolution for current commercial satellite imagery is 0.5 meters, where as the images

used in the San Francisco dataset correspond to a resolution of 0.1 meters. We have used images captured

using the software: Google Earth. Images provided by Google Earth beyond this resolution are obtained by

digitally enlarging the images.

50

Figure 3.6: Example images from the Google Earth San Francisco dataset. Top image
shows a test image from the dataset, looking down on an urban scene, with overlaid
detections using our vehicle detector. Bottom image shows a few training images patches
from both classes.c© 2009 Google

3.5.2 Feature Extraction and Evaluation

Each image patch has a size of81 × 41 pixels. 6 color clusters are used to build

our color probability maps. This results in a feature vector of length 19,926. The HOG

feature is calculated for 661 blocks ranging from a size of12 × 12 pixels to a size of

80 × 40 pixels. Each blocks yields a 36 dimensional feature vector resulting in a total

length of 23,796. The PoP feature is calculated using images reduced to size41 × 21,

which gives a feature of length 25,830. Thus, the length of the resulting feature vector

obtained by combining the three feature classes is 69,552.

51

All the parameter selection in our system is performed by using 3 iterations of a 5-

fold cross validation scheme. The analysis presented in Figures 3.7 to 3.14 was carried out

using this cross validation procedure on the Google Earth San Francisco training dataset.

Figure 3.7 shows the mean classification error obtained using each of the three

feature classes separately as well as their combination. As the number of PLS factors is

increased, the classification error reduces. Beyond a certain value however, addition of

PLS factors does not yield an improved performance. This saturation point is generally

regarded as the optimum number of PLS factors. In some cases, performance decreases as

more PLS factors are introduced. The PoP feature class outperforms the other two feature

classes, but the best performance is obtained when all three feature classes are combined.

The number of factors chosen, when the entire set of features is used, is 5.

2 4 6 8 10 12 14
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

All Features
Pairs-Of-Pixels
Histograms of Oriented Gradients
Color Probability Maps

Number of PLS factors

M
ea

n
cl

as
si�

ca
tio

n
er

ro
r

Figure 3.7: Mean classification error obtained after 3 iterations of 5-fold cross validation
on the Google Earth San Francisco training dataset. The error plot is shown for each class
of features individually, as well as their combination.

Figure 3.8 shows the components of the first 5 PLS latent vectors (W ′s) that corre-

spond to the color probability maps and the PoP features. The latent vectors correspond-

52

Figure 3.8: The first 5 PLS latent vectors. The components of the latent vectors corre-
sponding to the Color Probability Maps and Pairs of Pixels feature classes are displayed.
The images shown for the color probability maps directly correspond to the latent vec-
tors. The images displayed for the PoP feature correspond to accumulator matrices.(best
viewed in color)

ing to the color probability maps are directly displayed as shown in the figure, since each

coefficient corresponds to a single pixel location in the image patch. But each coefficient

of the latent vector from the PoP features corresponds to two pixel locations in the image

(a pair of pixels), and thus cannot be displayed directly. Instead, the images displayed in

the figure for the PoP feature class correspond to accumulator matrices. We initialize the

accumulator matrix as a matrix of zeros and increment a location with the corresponding

coefficient in the latent vector, when that location forms one half of the corresponding

pixel pair. Furthermore, the images corresponding to the PoP feature class are split into

the vertical and horizontal components. Each coefficient in the HOG feature vector corre-

53

sponds to a bin of a histogram and captures information about a neighborhood of pixels.

These neighborhoods also have varying sizes (multiple block sizes), and thus cannot be

easily visualized as the other two feature classes.

A very positive (dark red) or very negative (dark blue) color indicates a high de-

gree of importance afforded to that pixel location. It is noticeable that the feature classes

complement each other well, by extracting information from different parts of the image

patch. The first (and most important) factor for the color probability maps shows that

information extracted from the neighborhood of the object is given a high weight. This

indicates that these features are able to capture the immediate context within which vehi-

cles are typically observed. The PoP feature is seen to primarily focus on pixels that lie

on top of the vehicle, in order to capture its regular structure.

3.5.3 Feature Selection: OPS

Figure 3.9 shows the result of the commonly used feature selection criterion using

VIP. The VIP informative vector has been calculated using 5 PLS factors (which was

the optimal number when using the entire set of features - refer to Figure 3.7). Using

the V IP > 1 thumb rule reduces the number of features to 21,322 which represents

about30% of the total feature set. The performance does not drop significantly; instead

a comparable performance is obtained using a smaller number of PLS factors. Results

using varying values of the VIP cut-off score are shown.

Figure 3.10 shows the results of feature selection using the four informative vec-

tors. The VIP and B informative vectors have been calculated using 5 PLS factors. The

54

0 5 10 15
0

0.002

0.004

0.006

0.008

0.01

0.012

All Features (69,552)
VIP > 1 (21,322)
VIP > 0.75 (35,326)
VIP > 0.25 (67,371)

Number of PLS factors

M
ea

n
cl

as
si�

ca
tio

n
er

ro
r

Figure 3.9: Basic feature selection using VIP. The error plot is shown for the original set
of features and for a subset of features using the VIP criterion. VIP> 1 is thethumb rule
usually applied in PLS analysis.

Correlation and Covariance Procedures Vector are calculated independent of the number

of PLS factors. As a fair comparison, we use the same number of features with each

informative vector. This number, 21,322, is the number of features retained using the

V IP > 1 rule. The best performing informative vector is the regression vectorB.

Figure 3.11 shows the results of feature selection using the B informative vector

when the number of PLS factors (θ) used to compute this vector are varied. As was

observed in [86], the optimum number of PLS factors used to calculate the informative

vector (θ) is not the same as the optimum number of PLS factors used to build the model

(φ), when all features are used (φ was determined to be 5 in our case). The performance

is shown to increase withθ and it saturates beyond 11. The number of features selected

was, once again, set to the number obtained by theV IP > 1 rule. The mean error after

cross validation is seen to go down to 0 when B is calculated from 11 PLS factors and

21,322 features (≈ 30% of the total set) are retained.

Figure 3.12 shows the classification errors obtained using different informative vec-

55

2 4 6 8 10 12 14
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

All Features (69,552)
VIP > 1 (21,322)
B (21,322)
Correlation (21,322)

Number of PLS factors

M
ea

n
cl

as
si�

ca
tio

n
er

ro
r

CVP (21,322)

Figure 3.10: Basic feature selection using all four informative vectors. The regression
vector, B, when used as an informative vector, outperforms the typically used VIP infor-
mative vector. The CVP vector performs very poorly on our dataset.

tors and their combinations. 8 matrices are displayed in the figure in a2 × 4 grid. Each

column in the grid of matrices corresponds to the results obtained for a particular infor-

mative vector. Each row in the grid of matrices corresponds to the results obtained for

particular set of input features. We first consider only the first row in this grid of matri-

ces, where all 69,552 features are provided as input to the feature selection module. We

discuss the second row in Section 3.5.4. Each matrix in the2 × 4 grid is color coded to

represent the classification errors obtained by the cross validation procedure. Each matrix

column represents a different value ofθ. In general, asθ increases, the classification error

reduces and then saturates. Each matrix row represents a different number of features

retained after the feature selection process. As this number reduces, the error increases.

Since the Correlation and CVP informative vectors do not perform very well, they are not

displayed in this image.

B is the most consistent and best performing informative vector. It also performs

56

2 4 6 8 10 12 14
0

1

2

3

4

5

6

7

8
x 10

−3

B: 1 factor (21,322)
B: 3 factors (21,322)
B: 5 factors (21,322)
B: 7 factors (21,322)

Number of PLS factors

M
ea

n
cl

as
si�

ca
tio

n
er

ro
r

B: 9 factors (21,322)
B: 11 factors (21,322)

Figure 3.11: Feature selection using the B informative vector. The number of PLS factors
used to calculate B (θ), is varied. The error is seen to reduce asθ is increased and it
saturates beyond 11.

very well, when just 2000 features of the total 69,552 features are retained. This corre-

sponds to less than3% of the total number of features. The informative vectors are usually

combined by simply multiplying their corresponding bins. The combination of VIP and

B outperforms other combinations, and is the only one displayed in this figure. We also

introduce a new scheme to combine the B and VIP informative vectors calledVIP-then-B.

First theV IP > 1 rule is employed to select a set of features. Then a new PLS model is

built using these chosen features and the informative vector B is calculated. This smaller

set of features is then ranked using B and a subset of these is finally selected.VIP-then-B

is seen to perform very well, especially when a small sets of features are chosen. We

finally choose the following feature selection scheme:B with θ = 9 and 2000 features

selected (over all three feature classes). Cross validation determined the number of PLS

factors in the model (φ) to be 6. The cell corresponding to this parameter choice is marked

with the white cross.

57

1 3 5 7 9 11 13 15 1 3 5 7 9 11 13 151 3 5 7 9 11 13 151 3 5 7 9 11 13 15

VIP B VIP x B VIP-then-B

10,000 features

7,000 features

3,500 features

2,000 features

 1,800 features

 900 features

 350 features

 175 features

θ θ θ θ

No Downsampling
Original Features

= 69,552

Downsampling by 2
Original Features

= 17,919
0

0.02

Error

Figure 3.12: Results of the OPS feature selection approach on the original training set
and the downsampled set. The errors represent the mean misclassification error after
cross validation. (Refer to the text for more details).

3.5.4 Feature Selection: Downsampling

The original image patches have a size of81 × 41 pixels. The total number of

features computed for these original image patches equals 69,552. These image patches

are downsampled by a factor of 2 (41 × 21 pixels). This reduces the total number of

features to 17,919 (5,166 color, 9,288 HOG and 3,465 PoP features).

Figure 3.13 shows the result of downsampling without any feature selection. As

is seen, performance does not degrade too much for a downsampling factor of 2. This

reduced set of features is used in the first stage of our 2 stage PLS model. This enables us

to efficiently reject a large number of background image patches and only pass on a small

set of candidate vehicles to the next stage.

For each level of downsampling, a thorough OPS-PLS analysis is carried out using

cross validation on the training dataset. These results are displayed in the second row

of the2 × 4 grid of matrices displayed in Figure 3.12. This determines the informative

vector chosen for feature selection and the number of parameters associated with it. For

a downsampling factor of 2, the VIP-then-B informative vector combination provides the

best performance. Remarkably, the feature selection strategy retains only 175 features

58

2 4 6 8 10 12 14
0

0.005

0.01

0.015

0.02

0.025

0.03

Original features
(69,552 features)
Downsampling - factor of 2
(17,919 features)

Number of PLS factors

M
ea

n
cl

as
si�

ca
tio

n
er

ro
r

Figure 3.13: Mean classification error obtained using downsampling. No feature selection
is used. The performance decreases very slightly as images are reduced to a smaller size.

in the fast first stage (almost 0.25% of the original number of features 69,552). This

enables a fast rejection strategy and improves the performance of the system. Figure 3.14

shows the performance at a downsampling factor of 2 when the popularV IP > 1 feature

selection strategy is used, as well as when the best feature selection criteria is used.

2 4 6 8 10 12 14
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

VIP > 1 (4,614)
VIP-then-BETA
(7 factors) (175)

Number of PLS factors

M
ea

n
cl

as
si�

ca
tio

n
er

ro
r

Downsampling - factor of 2

Figure 3.14: Mean misclassification error at downsampling factor of 2. The error rates
drop after the feature selection process. The informative vector combination VIP-then-B
outperformsV IP > 1.

Thus we obtain a 2 stage PLS model, whose parameters are given in Table 3.1.

59

Table 3.1: The 3 stage vehicle detector

STAGE 2 STAGE 3

Image size 41× 21 pixels 81× 41 pixels

Original features 17,919 69,552

Feature selection VIP-then-B (θ = 7, φ = 7) B (θ = 9, φ = 6)

Retained features 175 2,000

60

3.5.5 Performance: Google Earth San Francisco dataset

We test the performance of our system on the test images of the Google Earth San

Francisco dataset. All test images are fully ground truthed to show the presence of vehi-

cles along with their orientation. Vehicle detections that overlap the ground truth locations

by an area equal to33% of the size of the bounding box, are considered true detections.

As per the evaluation criteria commonly used in the PASCAL VOC challenge [24], if

multiple detections overlap with a ground truthed location, only one of them is consid-

ered a true positive detection. The remaining detections are considered to be false alarms.

Since the vehicles in the entire dataset are roughly the same size, we only scan the images

at a single scale. If the size of the vehicles was unknown, the images would have to be

scanned at multiple scales. Since the orientation of the vehicles is unknown, the image

must be scanned at multiple rotations. In order to decrease the number of image patches

that must be scanned, we employ a coarse to fine rotation strategy. First the image is

rotated in increments of30◦ and scanned completely. Candidate windows are selected

and are then finely rotated in increments of5◦ in a neighborhood of25◦ from the original

detection2. In an urban setting, roads typically form a rectangular grid. Determining this

grid orientation can help to initialize the scan angles and further speed up the system.

We compare our system to a number of other approaches. The first approach is a

traditional object detection approach3. SIFT features are calculated on a dense grid of

points in the training images. The SIFT descriptors from the training set undergo vec-

2The identical scanning stratgy is used for the proposed vehicle detector and the approaches we compare

to.
3Code obtained from http://www.cs.unc.edu/ lazebnik/

61

tor quantization to form visual words. An image patch can then be described using a

histogram of the visual words present in the patch. In order to enforce some spatial con-

straints on the location of these features, we use Spatial Pyramidal Matching [52]. This

involves repeatedly subdividing the image and computing histograms of SIFT features at

increasingly finer resolutions. The distance measure used is histogram intersection and

the classifier used is the Support Vector Machine.

The second approach we compare to, is the vehicle detector proposed by Moon et

al. [61]. They derive an optimal one dimensional step edge detector to be the derivative

of the double exponential (DODE) function. This is extended along the shape’s boundary

contour to obtain the shape detector4. This results in detecting shapes in the image that

resemble parallelograms. Their vehicle detector does not require a training phase.

The third approach we compare to is the popularly used HOG based approach used

to detect objects, proposed by Dalal et al. [20]. HOG features are calculated for a large

number of blocks within an image window and concatenated together to form the fea-

ture vector. Blocks of only a single size are used in this approach. The feature vectors

thus obtained are used to train a linear Support Vector Machine (SVM). We used libLin-

ear [25]5, an efficient linear SVM, for this purpose. Dalal et al. note in their work that

a kernel SVM can provide improved performance at the cost of a significant reduction in

the efficiency of the system. This is because the standard approach to evaluate the kernel

for a test vector involves a comparison with each of the support vectors.

Recently, Maji et al. [58] proposed a method to significantly improve the efficiency

4Code obtained from the authors
5Package available at http://www.csie.ntu.edu.tw/ cjlin/liblinear/

62

of kernel SVMs for a class of kernels such as the histogram intersection kernel and the chi

squared kernel. Their approximate SVM has constant runtime and space requirements, in-

dependent of the number of support vectors, as opposed to the typical linear dependency.

Furthermore, the loss in classification accuracy using this approximation is negligible. As

a fourth comparison, we applied this improved kernel SVM6 known as the approximate

intersection kernel support vector machine (approx IKSVM) to the HOG features pro-

posed by Dalal and Triggs. While [58] demonstrated that the IKSVM evaluates nearly

as fast as a linear classifier, it did not address the problem of efficiently training such a

classifier. Subsequently Maji et al. [59] proposed very efficient training algorithms for

additive classifiers in a max-margin framework.

Figure 3.15 shows the Precision-Recall curves for the vehicle detectors. The dataset

we test on, contains images in an urban setting. The presence of a large number of recti-

linear structures in such images leads to false alarms with all approaches. Objects present

on top of buildings, such as air conditioning units are seen to cause errors. The DODE

approach is able to correctly find many vehicles but also produces a very large number of

false alarms on rectangular structures. The HOG features when applied to a linear SVM

outperform the SIFT based approach. The use of the histogram intersection kernel greatly

improves performance over the linear kernel. Our proposed solution outperforms all the

other approaches.

Figure 3.16 compares our proposed approach to directly applying an SVM to our

proposed set of 69,552 features. The PLS based approach comfortably outperforms the

approach using a linear SVM. We used the LibLinear package for this purpose. Using

6Code obtained from http://www.cs.berkeley.edu/ smaji/projects/fiksvm/

63

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

Pr
ec

isi
on

Proposed Method - PLS analysis
HOG + FIK-SVM
HOG + Linear SVM
SIFT + Sp Pyr Matching
DODE

Figure 3.15: Performance of the five vehicle detectors on the Google Earth San Francisco
dataset. Our vehicle detector outperforms the other ones.

the approximate and fast IKSVM method improves results over using a linear kernel.

However, applying the IKSVM to the original 69,552 features is quite time-consuming.

Table 3.2 compares the speeds of the 3 classification approaches shown in Figure 3.16.

Note that the numbers provided in Table 3.2 account for the classification time only, and

not the time required to calculate the features. Projection onto the subspace followed by

classification by a quadratic classifier is very fast compared to the other two approaches.

Applying the fast approximate intersection kernel is much slower than the other two meth-

ods.

Overall, our two stage vehicle detection system is able to process approximately

5600 detection windows per second. Our system is implemented in MATLAB and all our

experiments are run on a an Intel Xeon 2.8 GHz processor. While the machine we use has

multiple processing cores, our program currently makes use of only a single core. The

64

Table 3.2: Comparison of classification speeds (windows/second) while using 69,552

features

PLS method LibLinear Fast IKSVM

Detection speeds (win/sec) 8565 308 95

number of detection windows processed per second can be improved by taking advantage

of multi-core architectures. All three stages of our detection system - feature calculation,

projection onto a subspace as well as classification - can be parallelized to yield a faster

detection system.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

Pr
ec

isi
on

Proposed Method :
69,552 features + PLS analysis
69,552 features + LibLinear
69,552 features + fast IKSVM

Figure 3.16: Performance of the proposed vehicle detector compared to detectors com-
posed of the proposed features and SVMs as classifiers.

65

Figure 3.17: Sample vehicle detection results from the Google Earth San Francisco
dataset.

3.5.6 Speedup using Feature Selection

Figure 3.18 compares the performance of the 2 stage vehicle detector with a detector

when only the high resolution stage (Stage 2) is used. The Precision-Recall curves of the

two detectors are quite comparable. This enables us to obtain the speedup given by the 2

stage approach, without a significant loss of performance.

Table 3.3 shows the percentage of windows that are processed in each stage, over the

entire Google Earth San Francisco dataset. All windows are processed by the fast Stage

1, but only a very small number are passed on to the second stage. Note that the image

66

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

Pr
ec

isi
on

PLS - Only Stage 2 (slow)
PLS - Proposed 2 stage approach

Figure 3.18: Performance of the 2 stage vehicle detector compared to the performance of
the detector when only the the high resolution stage (Stage 2) is used.

Table 3.3: Percentage of windows that are processed by each stage of the 2 stage system

STAGE 1 STAGE 2

Number of Features 175 2,000

Percentage Windows Processed 100% 0.48%

patches that obtain a high detection probability in stage 3, undergo further processing by

rotating them at finer angular intervals. This processing is done at the full resolution.

Figure 3.17 shows some sample vehicle detection results from the Google Earth

San Francisco dataset. As can be seen, false alarms are typically caused by rectangular

structures on top of buildings such as air-conditioning units.

67

3.5.7 Overhead Imagery Research Data Set

We also test the performance of our system on the publicly available Overhead

Imagery Research Data Set (OIRDS)7. The OIRDS is a large collection of almost 900

overhead images, captured using aircraft mounted cameras. The total number of vehicles

annotated in the dataset is around 1800.

The OIRDS dataset is a very challenging dataset. The images in this set have vary-

ing levels of zoom and a wide degree of difficulty. The images have been captured pri-

marily in suburban settings. The presence of a large number of trees in these images often

causes vehicles to be partially occluded. We divide this dataset into 3 parts (with roughly

300 images in each part). We label these parts OIRDS 1, OIRDS 2 and OIRDS 3. OIRDS

1 contains images that have the best picture quality and vehicles that are clearly visi-

ble. These images are similar in quality to the images in the Google Earth San Francisco

dataset. OIRDS 2 contains images that are of a poorer quality and the vehicles are also

harder to find. Some of these vehicles are partially occluded. OIRDS 3 contains images

in which vehicles are very difficult to find. Many of these images have vehicles that were

almost fully occluded. Figure 3.19 shows sample images from these three sets.

We compare the performance of the five vehicle detectors on OIRDS 1 and OIRDS

2. No new training was carried out for this dataset. The detectors trained on the Google

Earth San Francisco training dataset were directly used. Figures 3.20 and 3.20 shows the

Precision-Recall curves for all three detectors. We outperform all detectors on OIRDS1

and obtain a comparable performance to the HOG + kernel SVM approach on OIRDS 2.

7Downloaded from http://sourceforge.net/apps/mediawiki/oirds

68

Figure 3.19: Sample images taken from the OIRDS dataset. We divide this dataset into
three parts based on the degree of difficulty.

As expected, the performance of all the detectors drops for OIRDS 2.

Finally, Figure 3.22 shows the performance of our vehicle detector on a large

panoramic image (5007× 7776 pixels). This was obtained by stitching a large number of

images obtained from Google Earth. The image overlooks the parking lot and adjacent

areas of the San Francisco Giants stadium in San Francisco city. Our vehicle detector is

able to accurately locate a large number of vehicles in this image.

69

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Proposed Method - PLS analysis
HOG + FIK-SVM
HOG + Linear SVM
SIFT + Sp Pyr Matching
DODE

Recall

Pr
ec

isi
on

Figure 3.20: Performance of the three vehicle detectors on the OIRDS 1 dataset.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Proposed Method - PLS analysis
HOG + FIK-SVM
HOG + Linear SVM
SIFT + Sp Pyr Matching
DODE

Recall

Pr
ec

isi
on

Figure 3.21: Performance of the three vehicle detectors on the OIRDS 2 dataset.

70

Figure 3.22: Performance of our vehicle detector on a large panoramic image overlooking
the parking lot of the San Francisco Giants stadium.c© 2009 Google

71

Chapter 4

Detecting Vehicles using Incremental Multiple Kernel Learning

4.1 Introduction

Early works on object recognition used global features such as color or texture

histograms [69]. However these features were not robust to view-point changes, clutter

and occlusion. Over the years, more sophisticated approaches such aspart-based[28]

andbag-of-features[79] methods have become more popular.

Increased interest in object recognition has resulted in new feature descriptors and

a multitude of classifiers. Inspired by the pyramidal feature matching approach of [53],

Bosch et al. proposed two new region descriptors - the Pyramidal Histogram of Oriented

Gradients (PHOG) and Pyramidal Histogram of Visual Words (PHOW) [9]. These fea-

tures were then used with Random Forests as a multi-way classifier [8]. Zhang et al. used

the Geometric Blur (GB) feature [5] and proposed using a discriminative nearest neighbor

classification for object recognition [101]. Wu et al. [95] used edgelet features to capture

the local shape of objects and were able to simultaneously detect and segment objects of

a known category.

Zhang et al. [102] combined multiple descriptors and obtained improved results for

texture classification and object recognition. They provided equal weights to each de-

scriptor. Similarly, Bosch et al. [8] linearly combined the PHOG and PHOW descriptors

to obtain improved performance. The linear combination weights were, however, ob-

72

tained by a brute force search using a validation dataset. Since the number of features

was small, their search space had few dimensions, thus making the brute force compu-

tationally feasible. Wu et al. [96] combined multiple heterogeneous features for object

detection by using cascade structured detectors in a boosting framework. Features were

combined using their classification powers and computational cost.

Lanckriet et al. [51] introduced the MKL procedure to learn a set of linear combina-

tion weights, while using multiple sources of information with a kernel method, such as

an SVM. Their problem formulation, however, resulted in a convex but non-smooth min-

imization problem. Bach et al. [3] considered a smoothed version of the problem. Their

Sequential Minimal Optimization (SMO) algorithm was significantly more efficient than

the previous formulation in [51]. Sonnenburg et al. [80] reformulated the problem as a

semi-infinite linear program and solved it efficiently by recycling the standard fast SVM

implementations. Their algorithm worked for hundreds of thousands of examples or hun-

dreds of kernels. Rakotomamonjy et al. [71] formulated the problem using a 2-norm

regularization formulation to a smooth and convex optimization problem. Their method

provided the additional advantage of encouraging sparse kernel combinations. Varma et

al. [89] combined multiple features using MKL and showed a considerable increase in the

performance of their visual classifier.

A number of unsupervised, online learning algorithms have been used for computer

vision applications. Li et al. [55] used a non-parametric graphical model in an incremen-

tal approach for automatic dataset collection from the Internet (OPTIMOL). Their itera-

tive framework simultaneously learns object category models and collects object category

datasets. We compare our IMKL method with OPTIMOL in Section 4.4. Boosting tech-

73

niques for incremental learning have also been popular. Javed et al. [44] usedco-training

to label incoming data and used it to update a boosted classifier. Co-training [7] is a

method for training a pair of learners, given that the two algorithms use differentviews

of the data. The two classifiers are used to provide additional informative labeled exam-

ples to one another, which improves the overall performance. Wu et al. [94] extended

the online boosting algorithm and proposed an online framework for cascade structured

detectors. An automatic labeler called theoracle, with a high precision rate, provided

samples to update the online object detector. In order to prevent the boosting algorithm

from overfitting noisy data (provided by theoracle), they employed two noise resistant

strategies from variants of the Adaboost algorithm designed to be robust to outliers. Our

initial object classifier, built from a generic training dataset, is tuned similar to thisora-

cle. Our work builds on MKL and fits well into the SVM framework. It also provides the

useful property of being able to adapt kernel weights over time in addition to updating the

training database.

4.2 An Incremental Solution

4.2.1 The Multiple Kernel Learning Problem

Kernel based learning methods have proven to be an extremely effective discrimi-

native approach to classification as well as regression problems. Given multiple sources

of information, one might calculate multiple basis kernels, one for each source. In such

cases, the resultant kernel is often computed as a convex combination of the basis kernels,

Φ(xi, xj) =
K∑

k=1

dkΦk(xi, xj),
K∑

k=1

dk = 1 , dk ≥ 0 (4.1)

74

wherexi are the data points,Φk(xi, xj) is thekth kernel anddk are the weights given to

each information source (kernel). Learning the classifier model parameters and the kernel

combination weights in a single optimization problem is known as the Multiple Kernel

Learning problem [51]. There have been a number of formulations for the MKL problem,

as noted in Section 4.1. Our incremental approach builds on the MKL formulation of

[71], known as SimpleMKL. This formulation enables the kernel combination weights to

be learnt within the SVM framework. The optimization equation is given by,

min
∑

k

1
dk

wkw
T
k + C

∑
i

ξi

such that yi

∑
k

φk(xi) + yib ≥ 1− ξi ∀i (4.2)

ξi ≥ 0 ∀i, dk ≥ 0 ∀k,
∑

k

dk = 1

whereb is the bias,ξi is the slack afforded to each data point andC is the regularization

parameter. The solution to the above MKL formulation is based on a gradient descent on

the SVM objective value. An iterative method alternates between determining the SVM

model parameters using a standard SVM solver and determining the kernel combination

weights using a projected gradient descent method.

4.2.2 Karush-Kuhn-Tucker Conditions

The support vectors returned by the training algorithm of an SVM generally repre-

sent a small fraction of all the training examples, but are able to summarize the decision

boundary between the classes very well. Thus, one way to increment an SVM is to retain

only the support vectors, to reduce the computational load required at every successive

training step [84]. The same approach could be used for the MKL problem. However,

75

this gives only approximate results.

The first exact online approach to train SVMs was proposed by Cauwenberghs et

al. [15]. New data points are presented to the SVM one at a time. The new data point is

added to the solution while ensuring that the Karush-Kuhn-Tucker (KKT) conditions are

retained on all the previous data points. Our proposed approach to IMKL is inspired by

this work.

The key idea behind the Incremental SVM is that the SVM optimization problem

is convex. Thus, the KKT conditions are not onlynecessarybut alsosufficient. Thus,

maintaining the KKT conditions on all old points, as well as the new point, indicates that

a new solution has been obtained. The optimization problem given by the SimpleMKL

framework in Equation 4.2 is also convex, making it suitable for our purposes.

The KKT conditions for our problem are derived from the Lagrangian function

corresponding to Equation 4.2,

L =
1
2

∑
k

wkwk

dk
+ C

∑
i

ξi −
∑

i

νiξi − µkdk −∑
i

αi(yiwkφk(xi) + yib− 1 + ξi)− λ(
∑

k

dk − 1) (4.3)

whereαi is the Lagrange multiplier corresponding to the first constraint in Equation 4.2,

νi andµk are the Lagrange multipliers associated with the non-negativity constraints on

ξi anddk respectively, whileλ corresponds to the Lagrange multiplier of thel1-norm

equality constraint ond.

The optimal solution of the multiple kernel system in Equation 4.2 occurs at the

saddle point of Equation 4.3. The saddle point is obtained by differentiating the La-

grangian equation with respect to the primal variables(wk, dk, ξi, b) and the dual variables

(αi, νi, µk). A small amount of algebraic manipulations yields the KKT conditions given

76

below,

gi =
∑

j

∑
k

dkαjQ
k
ij + yib− 1 = 0,

∑
i

αiyi = 0

1
2

∑
i

∑
j

αiαjQ
k
ij + µk − λ = 0, µkdk = 0,

∑
k

dk = 1 (4.4)

whereQk
ij = yiΦk(xi, xj)yj.

Note thatgi = yif(xi)− 1, wheref(xi) is the solution of the multiple kernel SVM

given by,

f(xnew) =
∑

j

∑
k

dkαjyjΦk(xj , xnew) + b (4.5)

4.2.3 Algorithm

Consider a set of data instances(x1, x2, . . . , xn) with corresponding class labels

(y1, y2, . . . , yn). Let Φk(xi, xj) be the set ofK kernels. The MKL solution for the given

data is obtained by SimpleMKL and it thus satisfies the KKT conditions in Equation 4.4.

The data points are divided into three disjoint sets based on their Lagrange multipliers

(α′
is): setL containing the set of points lying on the correct side of the margin vectors

(αi = 0), setS containing the support vectors (0 < αi < C) and setE containing the

points lying on the wrong side of the margins (αi = C). We also divide the kernels into

two sets: setD+ containing kernels with positive weights and setD0 with kernels having

zero weight. These sets are illustrated in Figure 4.1.

When a new pointxq is added to the solution, we need to calculate its Lagrange

multiplier αq (0 ≤ αq ≤ C) such that the KKT conditions are satisfied once again. We

begin with a valueαq = 0 and keep increasing it until we reach the updated solution.

77

Every time we incrementαq, the remaining Lagrangian multipliers, the kernel weights

and the bias must be changed to maintain the constraints in Equation 4.4. These changes

are given by the differential form of the constraints,

∑
j

αj

∑
k

∆dkQ
k
ij +

∑
j

∆αj

∑
k

Qk
ij

+
∑

j

∑
k

∆dk∆αjQ
k
ij + yi∆b = 0, ∀i ∈ S,∀j ∈ {S, E,L, q}

∑
i

∑
j

∆αiαjQ
k
ij +

1
2

∑
i

∑
j

∆αi∆αjQ
k
ij (4.6)

+∆µk −∆λ = 0, ∀k ∈ K∑
i

αiyi = 0∀i ∈ {S, E,L, q},
∑

k

∆dk = 0

∆µkdk + µk∆dk + ∆µk∆dk = 0, ∀k ∈ K

For a given step size∆αq, Equation 4.6 is a set of(numS+2K+2) equations in(numS+

2K + 2) unknowns. Here,numS is the number of points in set S andK is the number of

kernels. The unknown variables are:{∆α1 . . . , ∆αnumS
, ∆d1, . . . , ∆dK , ∆µ1, . . . , ∆µK , ∆b, ∆λ}.

These non-linear equations can be solved using a standard non-linear equation solving

package. Since an addition of a new point may not alter the system significantly, a good

initial solution for all the unknowns in Equation 4.6 is0.

The above differential equations only hold when∆αq is small enough to ensure that

there is no change in set membership for either the points or the kernels. Thus, when set

membership changes, the differential equations are updated and the process is repeated.

The conditions for a change in the set membership are described in Figure 4.1.

The algorithm is terminated when any of the following conditions occur.

• gq > 0 atαq = 0: xq is a correctly classified point. Added to set L.

78

L

S

E

gi(+,0)

gi(0,-)

αi(+,0)

αi(+,C)

αi= 0 D+

D0

d k
=

0

μ
k = 0

dk(+,0) μk(+,0)

gi
>

0
gi

=
0

gi
<

0 αi= C

0 < αi< C

d k
>

0

μ
k > 0

Figure 4.1: Categorization of the data points and kernels. The image on the left shows
the values of the Lagrange multipliers (α′s) and the output of the system (g′s) for each
of the sets:L, S andE. It also shows the conditions that are checked to detect a set
transition. (Notation:gi(+, 0) denotes the value ofgi changing from a positive value to
0.) The image on the right shows the two kernel sets, the corresponding values of the
weights (d′s) and their Lagrange multipliers (µ′s) and the set change conditions.

• gq = 0 beforeαq = C: xq is a support vector. Added to set S.

• αq = C andgq < 0: xq is on the wrong side of the margin. Added to set E.

A similar procedure can be used for removing data points from the classifier (decremental

unlearning).

The number of computations required by the IMKL algorithm depends on the com-

putations to solve the non-linear system and the number of steps taken to reach the final

value of∆αq. In our experiments, we have observed that setting the initial solution of

the non-linear solver to a zero vector, reduces the computational cost significantly. The

number of steps taken to reach the final solution is lower bounded by the number of set

changes that are required to arrive at the final solution. We use a large step size at every

time instant and backtrack our solution if we observe a set change for the given step size.

The IMKL algorithm can also be sped up by ignoring the higher order terms in Equa-

tion 4.6 to obtain linear equations. However this provides only an approximate solution.

79

Figure 4.2: A 2-class classification example. Points in class 1 are shown in orange and
points in class 2 are shown in blue. Points in setS are marked with a black border. Points
in setL are solid colored while points in setE are not filled with color. Kernel 1 (weight
shown by the brown bar) captures the similarity between the y-coordinates of the points,
while Kernel 2 (green bar) captures the similarity between the x-coordinates. The left
figure shows the effect of adding a new point (shown in red) on the original points and
the weights. A change in set membership is observed for some points. The figure on the
right shows the final classifier after adding 7 new points close to the first new point.

Consider the two class classification problem shown in Figure 4.2. A new pointq,

marked in red, is added to the system, and it initially gets misclassified. As the Lagrange

multiplier αq is incremented upwards from a value of 0, the distance between the new

point and the margin reduces, while some of the other points change set membership. At

the same time, the kernel combination weights also change.

4.3 Object Recognition Framework

A training database, representative of the expected test points, is an essential com-

ponent of any classification system. In a practical object recognition framework, a good

training database is one that contains images of the expected objects in their more likely

poses and illumination conditions. It must also contain a representative set of images in

80

the negative set, which, in an object recognition framework, is usually the background.

Obtaining such a set of good training examples can often be a tedious process. On the

other hand, it is easier to obtain a generic training dataset of images of the expected ob-

ject classes. Our object detector is initialized on a generic training dataset and tunes itself

towards the objects and background in the scene.

Global
Object

Detector

Local
Object

Detector

cirene
G

gniniarT

esabata
D

Updating
 Criteria

Updating
criteria 2

Figure 4.3: Object recognition framework.

Figure 4.3 provides an overview of our visual categorization framework. Training

images from a generic training dataset are used to train an initial object detector which

we call theglobal detector. Theglobal detector is not updated at any time and serves as

a generic object classifier. The generic training dataset is also used to train alocal object

detector, which runs in an online mode throughout the duration of analysis. Incoming

images from a video stream are scanned using overlapping windows and each window is

classified into one of the classes by both the detectors. The classification results returned

by the global detector keep updating the training image sets of the local object detector.

The updating criterion differs for the foreground classes (buses and cars) and the

background class. The image windows that are classified by theglobal detector as be-

81

longing to one of the foreground classes are thresholded so as to retain only very high

confidence detections. Such windows are considered reliable detections and used to up-

date the foreground training sets of thelocal object detector. Since the purpose of the

local object detector is to train on typically observed appearances and poses, updating

it with high confidence samples works well. The high precision of theglobal detector

comes at the cost of a lower recall. Updating thelocal detector with false positives can

lead to a significant drop in the performance of the system, and the probability threshold

is set sufficiently high to minimize this.

On the other hand, for the background class, such an updating criterion leads to the

addition of a large number of image patches from a single portion of the scene. This is

because background patches with very similar appearances repeat over several frames.

Thus if a patch gets classified with a very high probability of belonging to the negative

set, several similar images also get added to thelocal training set. Ideally, one would like

the entire scene to be well represented in the background class of the local detector. Thus,

we first threshold image windows classified by theglobal detector as belonging to the

background class. Then, for every image patch passing this initial criterion, we evaluate

its positional entropy with respect to the distribution of the positions of all image patches

currently in thelocal background training set. This is given by,

H(I) = −
∑

w∈{BGlocal}

p(w(x,y)|I(x,y)) log p(w(x,y)|I(x,y)) (4.7)

wherew represents an image patch in the current background set,I represents the new

image patch and(x, y) represent the co-ordinates of an image patch in the scene. Im-

age patches passing the initial background threshold, as well as having a high entropy

82

with respect to the current local training set, form good candidates to improve the di-

versity of thelocal background set and are added to it. Over time, the object classes

get updated with images of objects in their typical observed appearances and poses and

the background class gets updated with image patches from different parts of the scene.

Figure 4.4 demonstrates the image patches in thelocal background set which has been

updated using both criteria. Using the entropy criteria in addition to a probability thresh-

old, samples the entire scene well. Li et al. [55] used a similar criteria to update their

dataset. While their entropy is calculated in the feature space, our measure is calculated

in the image co-ordinate space.

The local detector fits itself towards image patches observed in the recent past,

improving its performance. However, it also has the tendency of misclassifying objects

that are atypical in the scene, due to overfitting on the observed data. The more generically

trainedglobaldetector helps classify such atypical objects. The outputs of both detectors

are combined to obtain the final detections. The resultant object detections are used to

update thelocal detector.

In order to fit the local detector towards a dynamically changing scene, it is also

important to discard image patches from the local training dataset. For every image patch

added to the local set, we retain a timestamp indicating the frame it was obtained from.

We use this to discard training samples based on the length of their stay in the training

set. Thus the classifier adapts itself towards changing illumination conditions, particularly

when day transitions to night.

Our IMKL algorithm described in Section 4.2 is used to update theLocal classifier

with new training images. This also results in an update of the kernel combination weights

83

Figure 4.4: Representation of thelocal negative training set using two sampling meth-
ods to update the training set. For this display, all image patches in the set are added
together at the appropriate locations in the scene. Thus brighter regions corresponds to
more patches in that portion of the scene, black regions indicate that no image patches
represent that portion of the scene. (Left) High probability criteria - Only certain por-
tions of the scene are represented. (Right) High probability + high entropy criteria - Most
portions of the scene are represented equally.

based on the training data. We use multiple 1-Vs-All classifiers for our purpose of multi-

class classification. This enables us to compute a separate set of kernel combination

weights, one for each object class. In Section 4.4 we show an example of the evolution of

these kernel weights over time.

4.4 Experiments

We test the performance of our system on the task of object detection on videos

taken from a traffic dataset. This dataset consists of 11 challenging videos (480 x 704

pixels at 15 frames/second), of a busy intersection, taken from a traffic surveillance cam-

era. The total number of frames is more than 120,000. Our task is to detect two classes

of objects, cars and buses. We have ground truth marked for every tenth frame in this

dataset.

84

Figure 4.5: Snapshots of the training set at 4 time instants. Top row shows the initial train-
ing set. The next 3 rows show sample images added tolocal over time. The illumination
change is noticeable at each time instant. The dataset gets updated with many objects in
similar poses and representative background patches.

Due to the camera location and traffic restrictions in the scene, cars in the video

typically have a frontal view, while buses typically appear in a profile view. Other views

are also observed, but they are less common. Thecar category includes cars of varying

sizes as well as SUV’s and trucks. With a few exceptions, buses have a similar appearance,

since most of them are public transportation buses. The dataset consists of videos captured

at different times of the day, resulting in a variety of illumination conditions as shown in

Figure 1.3, including street-lights at night. For videos captured during the transition of

day to night, the appearances of the vehicles also change (most prominently, vehicles in

the dark have their headlights turned on).

85

4.4.1 Kernel Matrices

We use 5 kinds of features in our system, giving rise to a total of 17 kernel matrices.

The first feature used is the Pyramidal Histogram of Oriented Gradients (PHOG-180) [9]

to represent local shape. This consists of HOG features calculated over increasingly finer

spatial grids. The orientations are calculated over the interval[0, 180].We set the number

of levels of the pyramid to 4. HOG features calculated for grids within the same level of

the pyramid are concatenated to form a long feature vector, but feature vectors calculated

at different levels are treated independently. Our IMKL algorithm automatically weights

each level of the pyramid based on the training dataset. Histogram intersection is used as

the similarity metric for all features in this paper. The first feature gives rise to 4 kernels,

one for each level of the pyramid. The second feature is the PHOG-360. It only differs

from PHOG-180 in that orientations are calculated over the interval[0, 360]. This also

gives rise to 4 kernels.

The third feature, PHOW-Gray [9], encodes appearance. SIFT features are densely

sampled at 10 pixel intervals in each direction and quantized to a 300 visual words vo-

cabulary. Histograms of visual words are calculated over an increasing number of grids

at each pyramidal level. We use 3 levels. The fourth feature is PHOW-Color. The only

difference from PHOW-Gray is that it is calculated on the 3 channels of the HSV image.

These give rise to 6 kernels.

The fifth feature is Geometric Blur (GB) [5], which captures shape information

of the objects and also accounts for the geometric distortion between images. The un-

quantized GB feature was used with an expensive correspondence based distance metric

86

in [101]. However, in order to speed-up computations, we quantized the GB feature

to a set of 300 visual words. We then calculated histograms of GB words in the same

pyramidal framework to enforce some measure of spatial constraints. We used a 3 level

pyramid. Thus we obtained a total of 17 kernel matrices.

4.4.2 Analysis

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

c
is

io
n

Recall

Sum of Kernels

PHOW−Color

Geometric Blur

Multiple Kernel
Learning

(a) Evaluation of MKL

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

Pr
ec

is
io

n

Generic Object Detector
Updated Obj Detector − SoK
Updated Obj Detector − OPTIMOL
Updated Obj Detector − IMKL

(b) Precision-Recall for buses

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

Pr
ec

is
io

n

Generic Object Detector
Updated Obj Detector − SoK
Updated Obj Detector − OPTIMOL
Updated Obj Detector − IMKL

(c) Precision-Recall for cars

0 50 100 150 200 250 300
0

1

2

3

4

5

6

Number of increments

P
ro

c
e
s
s
in

g
 t
im

e
 (

s
e
c
s
)

Retraining with MKL

Updating with IMKL

(d) Efficiency of IMKL

Figure 4.6: (a) shows the evaluation of the individual kernels, combination using SoK
and combination using MKL. MKL outperforms all other schemes. The best performing
individual kernel is GB. (b) and (c) show the Precision-Recall curves for thebus and
car classes respectively. Using our incremental object detector consistently increases
performance in both cases. (d) compares the processing time of our incremental approach
to retraining the MKL system at every step using all available images.

87

Evaluation of MKL. We first evaluate the power of using multiple kernels and using

MKL to determine kernel weights for the given classification task. For this purpose, we

created a validation dataset consisting of images of buses, cars and background extracted

from the ground truth as well as the initial training set (obtained from Google). We then

individually evaluated each kernel as well as the combination of kernels using a Sum of

Kernels (SoK) approach (such as in [53]) and an MKL approach for both object classes

over the validation set. The SoK approach assigns equal weights to all kernels. SoK

has been known to provide good results when kernels are carefully chosen for the given

data, but its performance degrades in the presence of noisy kernels. In our experiments,

the MKL approach performs better than all other methods where as the SoK approach

comes in second, outperforming both GB (the best performing individual feature) and the

popular SIFT feature. Figure 4.6(a) shows the results for theBusesclass.

Local dataset snapshots.We now demonstrate results of our IMKL approach on the

video dataset. Starting from a generic training dataset, our IMKL algorithm simultane-

ously updates the training dataset as well as the kernel combination weights. Figure 4.5

shows snapshots of the training database at different time instants for one video.

Kernel weights over time. Figure 4.7 demonstrates the change of kernel combination

weights over time. For this experiment, we chose a video where the scene is bright in

the beginning but gets very dark by the end. We do not display kernel weights 1 to

8, since they do not show considerable change over time. Time 1 refers to the initial

training dataset obtained from Google. Between times 1 and 2, we do not update the

foreground classes to study the effect of updating only the background training set. This

also causes a non-trivial change of weights (Time 2). After time 2, we update all object

88

9
10

11
12

13
14

15
16

17

0

0.1

0.2

0.3

0.4

0.5

PHOG
-Gray

PHOW
-Colo

r
Geom

-Blur
Initial Set

 U
pdating

 background

 U
pdating

 background

 +foreground

Features

Time Instants

1

2

3

4

5

Feature W
eights

2 - Bright scene
3 - Bright scene
4 - Darker scene
5 - Dark scene

Illumination conditions

Figure 4.7: Kernel combination weights sampled at multiple time instants. Results shown
for Busesclass.(see text for details)

classes. Between times 2 and 3, the scene is bright. In this period, the detector tunes

itself towards objects of specific poses and background patches. Beyond time 3, the scene

gets darker. Here, PHOW-Color weights show a considerable drop (kernels 12-14), since

color information in the video deteriorates, while PHOW-Gray kernels get higher weights.

GB at fine spatial resolution (kernel 17) gets high weights with decreasing illumination,

indicating added importance to positional information (such as importance given to the

position of vehicle headlights).

Performance evaluation.Figures 4.6(b) and 4.6(c) show the performance of our system

for the bus and car classes respectively, averaged over all videos in the dataset. We

compare our IMKL object detector with 3 other detectors. Our baseline detector (which

we call theGenericdetector), represents an object detector built offline using only the

generic training dataset and is not updated over time. It uses all 17 kernels and MKL

89

to obtain the kernel weights. Our second comparison is to an object detector built on

the generic Google dataset and updated over time, but using SoK (equal kernel weights).

Since these kernel weights are fixed over time, an incremental SVM approach suffices as

the classifier. Our third comparison is to OPTIMOL [55], an incremental model learning

approach, recently proposed for automatic object dataset collection.1 The OPTIMOL

algorithm is run independently of the IMKL system with a single change. In [55], Li et.

al use SIFT as their feature descriptor. But given the superior performance of GB in our

validation set (Figure 4.6(a)), we use histograms of GB based visual words as our feature

descriptor for OPTIMOL.

Figure 4.8: Sample results from a video sequence showing the ability of our system to
adapt to gradual illumination changes.

Our IMKL approach outperforms the other 3 methods, especially at high recalls.

Figure 4.9 provides some more insight into the results. This plot shows the performance of

the various methods over time for one of the videos in our dataset for which illumination

changes. The images at the bottom show a sample frame within the specified time interval.

OPTIMOL starts off slowly but as it gets updated, it catches up with the rest of the object

detectors. As the scene gets darker, however, its performance deteriorates. OPTIMOL

uses GB, and even our IMKL approach begins to reduce the importance given to this

1We obtained code for OPTIMOL from the authors.

90

kernel when the scene becomes dark. We also noticed a low overall performance of

OPTIMOL (on a subset of the data) while using other kernels such as PHOW-Gray and

PHOW-COLOR. This is because no single kernel has been able to provide consistently

good results in all scene conditions. Using multiple kernels with fixed weights (SoK) was

also sub-optimal. Our IMKL approach provided the best results because it was able to

dynamically change kernel weights based on the current object and scene characteristics.

IMKL’s performance decreases at times 4 and 6 since the scene changes, but recovers at

instants 5 and 7, once it updates itself sufficiently.

Figure 4.8 shows sample results. Overall, we detect buses more reliably than cars.

We are unable to consistently detect cars smaller than 60x60 pixels, which is the case

for cars approaching from a distance, giving rise to a number of false negatives. Finally,

Figure 4.6(d) illustrates the computational efficiency of the IMKL algorithm as compared

to retraining the entire system using SimpleMKL.

91

1 2 3 4 5 6 7

0.4

0.5

0.6

0.7

0.8

0.9

1

Bright illumination Golden illumination Dark illumination

Time instants

Ar
ea

 u
nd

er
 R

O
C

 c
ur

ve

Our approach (IMKL) Updated detector - SoK
Updated detector - OPTIMOLGeneric object detector

Figure 4.9: Performance comparison of object detectors over time for a single video for
Busesclass.(see text for details)

92

Chapter 5

Scene Understanding

5.1 Introduction

We develop a video understanding system for scene elements, such as bus stops,

crosswalks, and intersections, that are characterized more by qualitative activities and

geometry than by intrinsic appearance. The domain models for scene elements are not

learned from a corpus of video, but instead, naturally elicited by humans, and represented

as probabilistic logic rules within a Markov Logic Network framework. Human elicited

models, however, represent object interactions as they occur in the 3D world rather than

describing their appearance projection in some specific 2D image plane. We bridge this

gap by recovering qualitative scene geometry to analyze object interactions in the 3D

world and then reasoning about scene geometry, occlusions and common sense domain

knowledge using a set of meta-rules.

5.2 Related Work

Methods to categorize scenes from single images by completely bypassing the tasks

of image segmentation and object detection are described in [66, 27, 11]. Oliva et al. [66]

represented holistic image structure using low level features that captured the degree of

naturalness, openness, ruggedness, etc. whereas Fei-Fei et al. [27] represented scenes as

93

bags of codewords of texture measures. More recently, there have been attempts to jointly

solve the tasks of object recognition and scene classification. Bosch et al. [10] detected

objects and then used the object distribution for scene classification. Murphy et al. [64]

combined the holistic image representation of [66] with local object detectors using a

tree-structured graphical model. Li et al. [56] proposed a framework to deal with three

problems simultaneously: object detection, segmentation and scene categorization.

There has also been progress in recovering surface orientations [40, 32] and occlu-

sion boundaries [16], given just a single image. Recently, Hoiem et al. [41] proposed

a framework in which estimates of surface orientations, occlusion boundaries, objects,

camera viewpoint and relative depth are combined, enabling automatically reconstructed

3D models.

Research in the domain of scene understanding from videos has mostly focused

on building models of motion patterns of objects and using these to detect anomalous

behaviors [82, 60, 42, 75]. While Hu et al. [42] propose a parametric approach to model

typical scene behaviors, Saleemi et al. use non-parametric density functions. Building

such typical behavior models can help to improve foreground detection, detect areas of

occlusion and identify anomalous motion patterns. There have also been attempts to learn

activity based semantic region models for locations such as roads, paths, and entry/exits,

most notably by Makris et al. [60] and Swears et al. [83]. These approaches both involved

designing a detector for every scene element.

Research in object category recognition has typically focused on building visual

classifiers trained on annotated datasets. Recently however, there has been a growing

interest in building object category models directly from human elicited descriptions [50,

94

26, 91]. Such approaches have the potential to learn unseen object categories based on

their descriptions in terms of known visual attributes.

5.3 Image Analysis

Proximity Measures

Zone Occlusions

Surface Layout

Horizon Estimate

Zone Segmentation

Object Tracking

Object Detection

Image Analysis

t1: CarStop(z2,t1), BusSpeedsUp(z8,t1), ...
t2: CarAppears(z2,t2), BusSpeeds(z8,t2), ...
t3: BusStops(z2,t3), PersonDisappears(z8,t3), ...
t4: CarStop(z2,t4), BusSpeedsUp(z8,t4), ...
t5: CarAppears(z2,t5), BusSpeeds(z8,t5), ...
t6: BusStops(z2,t6), PersonDisappears(z8,t6), ...
t7: CarStop(z2,t7), BusSpeedsUp(z8,t7), ...
t8: BusStops(z2,t8), PersonDisappears(z8,t8), ...

Dynamic Events
z1: ZoneVertical(z1), ZoneNearZone(z1,z5), ...
z2: ZoneHorizontal(z2), ZoneNearBoundary(z2), ...
z3: ZoneHorizontal(z3), ZoneOccludedCar(z3,z7), ...
z4: ZoneVertical(z4), ZoneNearZone(z4,z5), ...
z5: ZoneHorizontal(z5), ZoneNearBoundary(z5), ...
z6: ZoneHorizontal(z6), ZoneOccludedCar(z6,z7), ...
z7: ZoneVertical(z7), ZoneNearBoundary(z7), ...
z8: ZoneHorizontal(z8), ZoneNearZone(z8,z1), ...

Zone Characteristics

Knowledge Base
Domain Models
PeopleAppear(z1) ^ ZoneVertical(z2) ^ ZnZ(z1,z2) => Entrance(z1)
CarsStop(z1,t1) ^ ZoneNearZn(z1,z2) ^ PeopleOrtho(z1,t1) => Crosswalk(z1)
PeopleAppear(z1) ^ ZoneVertical(z2) ^ ZnZ(z1,z2) => Entrance(z1)

PeopleAppear(z1) ^ CarPresent(z2) ^ ZoneOcc(z1,z2) => CarOcc(z1,t1)
PeopleDisappear(z1) ^ CarPresent(z2) ^ ZoneOcc(z1,z2) => CarOcc(z1,t1)
PeopleAppear(z1) ^ CarPresent(z2) ^ ZoneOcc(z1,z2) => CarOcc(z1,t1)

Meta-Rules

Inference
Markov Logic Network

Scene Element Labels

Figure 5.1: System overview. Our scene understanding system consists of an image anal-
ysis module (Section 5.3) that takes an input video and outputs a set of events and zone
characteristics as observational evidence, a knowledge base (Section 5.4) that stores hu-
man elicited domain models and general rules about scene geometry and occlusion as a
set of first-order logic rules, and an inference engine (Section 5.5) based on Markov Logic
Networks that uses the logic rules and observational evidence to infer the labels of visible
scene elements.

95

Our scene understanding framework has three components: an image analysis mod-

ule, a knowledge base and an inference module (refer to Figure 5.1 for a system overview).

The image analysis module first segments the scene into a set of neighborhoods called

zones. It then analyzes appearance characteristics of each zone as well as motion prop-

erties of objects passing through them, to generate a set of zone attributes that charac-

terize local scene geometry and capture occlusion relationships between zones. A set of

dynamic events is then generated for every zone, at every time instant, to describe the be-

havior of objects in the scene. The knowledge base consists of domain models describing

the scene elements of interest, as well as a set of meta-rules that capture general knowl-

edge about scene geometry and occlusion. The inference module, based on Markov Logic

Networks (MLN), integrates events generated by the image analysis component with the

rules in the knowledge base to label scene elements. The knowledge base and inference

module are described in Sections 5.4 and 5.5 respectively. The components of the image

analysis module are described below.

5.3.1 Detection and Tracking

We detect and track three classes of objects: humans, cars and buses. Detection

is carried out using the object detection method proposed in [78]1. For the purposes of

human detection, we directly used a trained model provided along with the code, which

was trained on the INRIA pedestrian dataset [20]. The car detector is trained using the

Caltech Car Rear Training Set and the ETHZ Car Side Training Set [54]. The bus detector

is trained using images from Bing Image Search.

1Code obtained:http://www.umiacs.umd.edu/∼schwartz/softwares.html

96

A two level association based tracking method is used to link object detections into

tracks. At the low level, detections are linked to form tracklets using appearance and

proximity features. At the second level, these tracklets are associated into longer tracks

using appearance and motion features. Figure 5.2b shows car and human tracks obtained

for one of the videos in our dataset.

Cars
Humans

(c) (d)

(a) (b)

Figure 5.2: Components of the image analysis module. (a) Background image for Scene
I. (b) Car and human trajectories (Section 5.3.1). (c) Zone segmentation (Section 5.3.2).
(d) Horizon line estimate (Section 5.3.3).

5.3.2 Zone Segmentation

The MLN based reasoning module utilizes events generated by the image analysis

framework to assign labels to each part of the scene. To avoid performing inference at

the pixel level, we segment the scene spatially into a set of zones, and perform inference

on each zone. Zone segmentation groups pixels based on their appearance, location and

97

the motion characteristics of objects passing through them. This results in a set of zones

in which objects display distinct behaviors. Examples include locations where people

gather and stand still for a long time (at bus stops), locations where vehicles drive in

specific directions (along drive lanes), locations where cars and people cross each other

(at cross walks), etc.

We begin by obtaining a background image by simply constructing an image for

which a pixelp(i, j) is the median of all pixels in the video at that location. This image is

oversegmented by an image segmentation algorithm [2] to create a set of superpixels2. A

set of features are computed for each superpixel, including

1. Appearance - 3 histograms (one each for R,G,B).

2. Motion - Velocity magnitude histogram and velocity orientation histograms (weighted

by magnitude) for each class of passing objects.

An affinity matrix that includes the similarity between all pairs of superpixels is created

for each feature. The distance metric used for all histograms is the Earth Mover’s Distance

(EMD). In addition, a location based affinity matrix is also created. This captures the

minimum Euclidean distance between all pairs of superpixels and is calculated efficiently

using the distance transform.

Spectral clustering is then used to group superpixels into zones. We used the self-

tuning method proposed by Zelnik-Manor et al. [100]3, since it automatically selects the

scale of analysis as well as the number of clusters. Figure 5.2c shows zones obtained for

one of the scenes in our dataset.
2Code obtained:http://www.wisdom.weizmann.ac.il/∼ronen/indexfiles/segmentation.html
3Code obtained:http://www.vision.caltech.edu/lihi/Demos/SelfTuningClustering.html

98

5.3.3 Scene Geometry Analysis

5.3.3.1 Surface Layout

An estimate of the scene surface layout supports reasoning about the location of

many scene elements. For example, entrance and exit zones (such as doors into buildings)

are typically located where horizontal and vertical surfaces meet. We obtain a rough

surface layout using the method of [40]4 which classifies pixels into three primary classes:

horizontal, verticalandsky.

This estimate uses information extracted from individual images. However, we also

have the additional knowledge of object trajectories that can help us obtain better surface

estimates. Our meta-rules (discussed in Section 5.4) encode common sense knowledge

about surfaces such as:Objects are supported by a horizontal surface. Objects might

appear out of and disappear into vertical surfaces.Such rules allow us to correct some

of the erroneous surface estimates provided by [40]. Figure 5.3 shows a surface layout

before and after inference by our system.

5.3.3.2 Proximity Measures

Models of scene elements typically contain predicates corresponding to notions

of proximity in the world, such asnearby, far away, next to, etc. Distances measured

directly in the image plane, however, do not maintain these scene proximity relationships.

Under a unit aspect ratio perspective camera model, we show how to compare segment

lengths measured at different parts of the image based on theirtrue lengthsin the 3D

4Code obtained:http://www.cs.uiuc.edu/homes/dhoiem/

99

HorizontalVertical

(a) (b)

Figure 5.3: Surface layout estimates before and after inference by our system. The road
visible in the far distance is erroneously labeled as a vertical surface (in (a)), but corrected
after inference (in (b)), due to the presence of objects passing over it.

world. We break the problem down into two components: segments parallel to the camera

axis (lengths measured along a column of pixels) and segments parallel to the camera

image plane (lengths measured along a row of pixels), shown in Figures 5.4a and 5.4b

respectively.

Consider Figure 5.4a. As in [39], we translate our image co-ordinates(u, v) to

(û, v̂) so thatv̂ = 0 for every point on the horizon line and̂v > 0 below the horizon line.

In this new co-ordinate systemf1 represents the foot location in the image of a person

at a distancez1 from the camera andf ′1 is the foot location when the person takes a step

∆z1 parallel to the camera axis to be located at a distancez′1 from the camera. Now,

f1z1 = f ′1z
′
1 = fyc. Consider a person at a second location in the scene taking a step∆z2.

This gives us:f2z2 = f ′2z
′
2 = fyc. A little algebra yields,

(f ′1 − f1)f2f
′
2

(f ′2 − f2)f1f ′1
=

∆z1

∆z2

(5.1)

Now consider Figure 5.4b. Here the person moves from foot locationf1 to a new

locationf ′1 parallel to the camera image plane. One can obtain:∆i1yc = ∆z1f1, where

100

∆i1 represents the image plane distance between the two feet locations. For a second

person at a new location, we obtain:∆i2yc = ∆z2f2. This yields,

∆i1
∆i2

f2

f1

=
∆z1

∆z2

(5.2)

Given the location of the horizon line, Equations 5.1 and 5.2 relate distances (seg-

ment lengths) measured at different locations in the image plane, based on the true 3D

measurements. Measures such asnearby, far away, large distance away, when defined at

one location in the image, can be transformed to equivalent measures at other locations.

The horizon line is estimated using the method of Lv et al. [43]. Consider two

vertical poles of the same height in the scene. The two lines joining their foot locations

and head locations, respectively, intersect at a point on the horizon line. Thus, three non-

coplanar poles of the same height uniquely determine the horizon line. In practice, we

have a large number of people walking through each scene. Each pair of detections (from

the same human track) provides us with an estimate of a point lying on the horizon line.

A least squares estimate of many such detection pairs yields a good horizon line estimate

(shown in Figure 5.2d).

5.3.3.3 Zone Transitions

While the distance measures described above help define notions of proximity in the

scene, they do not capture the restrictions imposed on object trajectories due to the scene

layout. For example, a sidewalk is located adjacent to a road, yet vehicles typically do not

traverse between roads and sidewalks. We characterize typical object traffic patterns in

the scene in terms of the average transition times of objects between one zone and another.

101

Figure 5.4: Schematic relating image plane distances to ground plane distances.

Proximal Zones for Cars Proximal Zones for People

Figure 5.5: Examples of proximal zones based on zone transition matrices. (a) Vehicles
travel from red zones onto yellow zones within a short time span. (b) People walk from
blue zones onto yellow within a short time span.

These patterns are represented as transition matricesT k(zi, zj), one for each object class

k. Zone pairs that do not have any traffic flowing between them, are assigned a large

transition time by default. Figure 5.5 shows examples of proximal zones based on the

zone transition measure. Note that cars typically conform to fixed directions along road

lanes, where as people walk along paths in both directions.

102

5.3.3.4 Directionality

User descriptions of scene elements often involve spatial prepositions which pro-

vide a notion of directionality, such asin front of, behind, to the left of, etc. Under the

assumption that objects move in the direction in which they are facing, we define four

directions with respect to the motion of the object: left, right, front and behind. Further-

more, some zones in the scene exhibit a single dominant direction of motion (based on

the objects that pass through them). This is especially true of zones located on the road,

on which vehicles strictly follow a single direction of motion. The four directions defined

above are also noted for such zones, with respect to the centroid of the given zone.

5.3.4 Zone Occlusion Relationships

As vehicles and humans move through the scene, they occlude different areas of

the scene as well as objects present at those locations. This is a common source of de-

tection and tracking errors in a typical computer vision system. Knowledge about typical

occlusion areas can provide valuable information to the scene understanding framework.

For example, people trajectories ending at a location suggest the presence of a door-

way/entrance to a building at that location. However, the observation of a vehicle parked

nearby, with the knowledge that it may causes occlusions at the former location, can pre-

vent such an inference error.

We represent occlusion relationships between zones using a binary matrixOC. For

every object that passes through a zonezi, we determine zones in the scene that intersect

the object bounding box in the image plane (indicating potential occlusions), while the

103

object was withinzi. If a zonezj consistently undergoes occlusion by objects inzi, the

indicator variableOC(zi, zj) is set to 1. An occlusion relationship matrix is created for

every object class.

5.3.5 Event Generation

Short time spans of 20 frames are grouped together to form a temporal window. A

set of dynamic events is generated at every zone within each temporal window. These

events characterize the location, motion and trajectory of objects in a given zone during

the given window. This results in a large set of evidence ground atoms passed to the

inference module throughout the duration of the video sequence. In addition, the image

analysis module also generates a set of zone characteristics and inter zone relationships,

as described above. These are also represented as evidence atoms and passed on to the

inference module.

5.4 Knowledge Base

The knowledge base in our system consists of two components: a set of domain

models describing the scene elements and a set of meta-rules that capture information

about scene geometry, general occlusion reasoning as well as common sense knowledge

that applies to many domains. We begin with a description of our approach to repre-

sent uncertain knowledge, and then proceed with outlining the two components of our

knowledge base.

104

5.4.1 Knowledge Representation

Knowledge is represented in our system as first order production rules. The rules

are represented in clausal form, whereby each rule is a conjunction of clauses and each

clause is a disjunction of literals. Rules are constructed using variables such aszone,

time, etc. Some of our variables are typed, in which case they range over a predetermined

set of objects. All typed variables have mutually exclusive and exhaustive values. For

example, the typed variableappearPersonReasonsignifies an explanation for the birth

of a person track and must take one of the following values:{NearBuildingEntrance,

TrackingFailure, OcclusionByCar, ... , Other}.

We use two types of predicates. The first represents events in the video and are as-

sociated with a particular zone and time instant. For example,PersonAppear(zone,time),

CarStop(zone,time), etc. These are generated by the image analysis module at each

time instant. The second represents properties of individual zones such asZoneIsVer-

tical(zone), relationships between zones such asZoneNearZone(zone, zone)and relation-

ships between time instants such asShortlyAfter(time, time). These predicates are also

generated by the image analysis module, but they need only be calculated once for the

entire video sequence.

Each rule in our knowledge base is associated with a weight that indicates its con-

fidence. We use three degree of confidence for our rules to indicate rules of absolute

certainty (weight = M), ones with lesser certainty (weight = 0.5M) and rules that may

be true a very small fraction of times (weight = 0.25M). In principle, one may infer the

certainty of a human elicited rule by frequency adverbs such as always, never, sometimes,

105

rarely, etc.

Some of the predicates generated by the image analysis module, such asZoneIsVer-

tical(zone), have a confidence value associated with them. Such uncertain predicates are

integrated into the first order rules using the method employed in [88]. Consider a pred-

icateP with a weightw. We introduce a dummy observation predicateOP along with

a ruleOP → P and associate the weightw with this rule, instead of assigning it with

predicateP . The predicateOP does not have any weight associated with it.

5.4.2 Scene Element Models

Each scene element is described by a logical model comprising a set of first order

rules. These logical models describe a scene element on the basis ofwhat typically hap-

pensin a scene at that element. For example, the logical model for a cross-walk consisting

of first order logic rules with confidence measures is given in Figure 5.6. The numbers

in parentheses represent the weight assigned to each rule (recall that M represents the

highest weight assigned in the knowledge base). The presence of people walking on the

road indicates that they might be passing over a crosswalk (Rule 1). However, pedestrians

often disobey laws and cross the road at other locations. The presence of a car waiting

for people to cross the road is a stronger indication of a crosswalk and is thus assigned a

higher weight (Rule 2).

106

Rule1: (0.25M) PeopleMove(z1,t1) ^ ZoneClassA(z1,Road) => ZoneClass(z1,Crosswalk)
Rule2: (0.5M) PeopleMove(z1,t1) ^ ZoneClassA(z1,Road) ^ CarStop(z2,t1) ^
 ZoneTransitionCar(z2,z1) => ZoneClass(z1,Crosswalk)
Rule3: (0.5M) ZoneClassA(z1,Road) ^ ZoneTransitionPeople(z2,z1) ^ ZoneClassA(z2,Sidewalk) ^
 ZoneTransitionPeople(z1,z3) ^ ZoneClassA(z3,Sidewalk) => ZoneClass(z1,Crosswalk)
Rule4: (1.0M) !ZoneClass(z1,Road) => !ZoneClass(z1,Crosswalk)

Crosswalk Model:

Figure 5.6: First order logic rules representing a crosswalk model.

5.4.3 Meta-Rules

In addition to the scene element specific models, the knowledge base also consists

of a set of meta-rules, which encode information relating to scene geometry, occlusion

handling, common failures of low level computer vision modules as well as common

sense knowledge about the world. They only need to be written once, but are then widely

applicable over a large number of domains. For instance, consider the scene element

Building Entrance/Exit. Entrances and exits are typically characterized as sources and

sinks of person tracks. There are however, a variety of situations that may lead to an

initiation of a person track such as: exiting a vehicle, occlusion by a vehicle, identity

switching by the tracker, entering the image at its boundary, occlusion within a group

of people, etc. Our meta rules encode such possibilities. This enables the inference

module to reason about plausible explanations when it encounters a new person track.

This reduces the number of false locations that might be labeled as an entrance-exit.

5.5 Inference using Markov Logic Networks

There has been a growing interest in problems related to knowledge representa-

tion and learning in domains that are rich in relational as well as probabilistic structure.

107

Markov Logic Networks (MLN) are one such representation that combine first order logic

with probability theory in finite domains [74]. They support the specification of statisti-

cal models using intuitive and understandable first order rules. A first order knowledge

base, by itself, is often impractical to use for real world problems. Each rule in such a

knowledge base is a hard constraint. A world that does not satisfy a single formula gets

assigned a zero probability. MLNs attempt to relax these hard constraints using weights

for each formula. The probability of a world is dependent upon the number of formulae

that the world satisfies and the weights assigned to those formulae.

MLNs can also be viewed as a template for constructing ordinary Markov networks.

Given a set of formulae and constants, a MLN produces a Markov network. Based on

the constructed network, marginal distributions of events given the observations can be

computed using probabilistic inference. Since the resulting network may contain cycles,

exact inference is intractable. Inference in MLNs is thus often performed using MCMC.

For details on efficient inference algorithms in MLNs we refer the reader to [74]. We use

the Alchemy system [48] to represent our rules and perform inference on the resulting

MLN5.

5.5.1 Local Inference Procedures

The image analysis module generates a large number of evidence ground atoms

within every temporal window, for every zone in the scene. Over the entire video, the

number of ground atoms gets prohibitively large, rendering inference intractable. How-

ever, the spatio temporal interactions between objects, that characterize the scene ele-

5Code available: http://alchemy.cs.washington.edu/

108

ments of interest are sufficiently local in nature, both spatially and temporally. For in-

stance, consider the crosswalk model in Figure 5.6 described by the interaction between

people walking on the crosswalk and vehicles waiting on the road adjacent to it. Inter-

actions between objects at locations far away from the crosswalk do not affect inference

about the given zone. Likewise, interactions between people and vehicles at the cross-

walk, at other times in the video, are largely independent of the current interaction.

We break down the large inference problem into smaller ones, carried out in ev-

ery zone and at regularly spaced time instants. For every such spatio temporal location,

the inference procedure takes into consideration events generated at a set of neighboring

zones and time instants. For each zone, votes for each label, which are generated over the

duration of the video, are aggregated to determine the final scene element label associated

with that zone.

5.6 Experiments

We demonstrate our scene understanding framework on a dataset of 5 videos of

public spaces, totaling over 100,000 frames (about 58 minutes). The video data has been

collected using cameras overlooking scenes from varying viewpoints. Each scene con-

tains a large amount of pedestrian, car and bus traffic passing through it. Over the entire

dataset, the number of pedestrians, cars and buses is approximately 700, 500 and 25

respectively. The data has been collected in high definition mode (1920x1080 pixels).

Figures 5.7- 5.11 shows some representative frames.

The scene elements that we seek to identify are: Road, Sidewalk, Other Path (other

109

paths taken by people, which are not sidewalks), Bus-stops, Stop-sign Zones, Crosswalks,

Entrances-Exits for People (typically buildings) and Entrances-Exits for Vehicles (typi-

cally garages). Figure 5.7- 5.11 shows the labels assigned to different regions of the

scenes. The system is able to correctly identify a large number of the scene elements

using the human elicited domain models.

Our scene understanding framework is effectively able to reason about the scene

geometry and occlusions to identify scene elements from widely varying viewpoints. Re-

call the example of a bus-stop observed from two viewpoints (refer to Figure 1.4). Scene

III contains a view of a bus-stop in which we are able to observe people entering and

exiting the bus. Scene II and IV, on the other hand, contain views of bus-stops in which

the doors of the bus are not visible. The system reasons about people that might have

entered and exited the buses that stopped at the location and correctly identifies all bus

stops. Note that in Scene III, two locations are marked as bus-stops. This is because

camera III overlooks a bus depot at which multiple buses stop one behind the other.

Pedestrian crosswalks are also correctly identified in all scenes, with the exception

of a partially visible crosswalk in Scene II. These include the three crosswalks visible

in the far distance in Scene III. A fair number of people tend to cross roads at locations

other than crosswalks. However, cars do not always stop for such jaywalking violations.

The system correctly identifies crosswalk locations using this additional information and

suppresses the false alarms.

Vehicle and pedestrian entrances are identified on the basis of track appearances

and disappearances into vertical surfaces. Scene I shows an example of a correctly iden-

tified garage entrance. The other detections in Scene I are not garage entrances, but they

110

correspond to locations in the scene (away from the image boundary and close to vertical

surfaces) where cars enter and exit the camera frame. Scene V shows a loading dock

correctly marked as a potential entrance/exit for people. We fail to detect one of the door-

ways in Scene III (primarily due to an leafless, yet occluding tree). Another entrance in

the same scene at a large distance away is correctly determined.

The scene elements: Roads, Sidewalks and Other Paths are also identified in each

scene. Sidewalks are defined to be paths adjacent to roads and parallel to them on which

people walk. Zones in the scene are considered parallel to one another if the orientations

of objects passing through them are similar. Stop-sign zones are also correctly detected

in the scenes. The system does not merely depend on locations where cars stop-and-

go, but also uses information such asStop zones may be located adjacent to cross-walks

and at intersections. Scene V shows a false alarm caused by cars frequently stopping at a

crosswalk with a very large amount of pedestrian traffic. Such false alarms can be reduced

by analyzing a larger amount of data, possibly spanning different times of the day.

111

Road Bus-Stop
Sidewalk
Other Path
Pedestrian Entrance Vehicle Entrance

Stop Sign Zone
Crosswalk

I

I

Figure 5.7: Scene element labels determined by our system for Scene I along with a
representative image from the scene.

Road Bus-Stop
Sidewalk
Other Path
Pedestrian Entrance Vehicle Entrance

Stop Sign Zone
Crosswalk

II

II

Figure 5.8: Scene element labels determined by our system for Scene II along with a
representative image from the scene.

112

Road Bus-Stop
Sidewalk
Other Path
Pedestrian Entrance Vehicle Entrance

Stop Sign Zone
Crosswalk

III

III

Figure 5.9: Scene element labels determined by our system for Scene III along with a
representative image from the scene.

Road Bus-Stop
Sidewalk
Other Path
Pedestrian Entrance Vehicle Entrance

Stop Sign Zone
Crosswalk

IV

IV

Figure 5.10: Scene element labels determined by our system for Scene IV along with a
representative image from the scene.

113

Road Bus-Stop
Sidewalk
Other Path
Pedestrian Entrance Vehicle Entrance

Stop Sign Zone
Crosswalk

V

V

Figure 5.11: Scene element labels determined by our system for Scene V along with a
representative image from the scene.

114

Chapter 6

Conclusions

Scene understanding is one of the fundamental objectives of computer vision. This

task involves recognizing the different objects present in the scene, segmenting the scene

into meaningful regions, as well as obtaining a holistic understanding of the activities

taking place in the scene. Each of these problems has received considerable interest within

the computer vision community. In this thesis, we presented contributions to two aspects

of visual scene understanding.

First we explored multiple methods of feature selection for the problem of object

detection. We demonstrated the use of Principal Components Analysis to select features

in different parts of the scene, in order improve object detection in video. We then demon-

strated the use of Partial Least Squares, a supervised dimensionality reduction tool, to

detect vehicles in aerial and satellite imagery. We proposed two new feature sets: Color

Probability Maps, to capture the color statistics of vehicles and their surroundings, and

Pairs of Pixels, to capture the structural characteristics of objects. A powerful feature

selection analysis based on Partial Least Squares was employed to deal with the resulting

high dimensional feature space (almost 70,000 dimensions). We compared against state

of the art approaches to object detection and consistently obtained superior results. We

also proposed an Incremental Multiple Kernel Learning (IMKL) scheme to detect vehi-

cles in a traffic surveillance scenario. Obtaining task and scene specific datasets of visual

115

categories is far more tedious than obtaining a generic dataset of the same classes. Our

IMKL approach initialized on a generic training database obtained from Google Image

Search and then tuned itself to the task of detecting vehicles at a busy traffic intersection.

Second, we developed a video understanding system for scene elements, such as bus

stops, crosswalks, and intersections, that are characterized more by qualitative activities

and geometry than by intrinsic appearance. The domain models for these scene elements

were written down by humans and were represented as probabilistic logic rules within

a Markov Logic Network framework. We analyzed object interactions in the 3D world

and reasoned about qualitative scene geometry, occlusions and common sense domain

knowledge.

116

Bibliography

[1] S. Agarwal, A. Awan, and D. Roth. Learning to detect objects in images via a
sparse, part-based representation.IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence (PAMI), 2004.

[2] Sharon Alpert, Meirav Galun, Ronen Basri, and Achi Brandt. Image segmentation
by probabilistic bottom-up aggregation and cue integration.Computer Vision and
Pattern Recognition (CVPR), 2007.

[3] F. Bach, G. Lanckriet, and M. Jordan. Multiple kernel learning, conic duality, and
the smo algorithm.International Conference on Machine Learning (ICML), 2004.

[4] P.N. Belhumeur, J.P. Hespanha, and D.J. Kriegman. Eigenfaces vs. fisherfaces:
Recognition using class specific linear projection.IEEE Transactions on Pattern
Analysis and Machine Intelligence (PAMI), 19, 1997.

[5] A.C. Berg and J. Malik. Geometric blur for template matching.Computer Vision
and Pattern Recognition (CVPR), 2001.

[6] A. Blum and P. Langley. Selection of relevant features and examples in machine
learning.Artificial Intelligence, 1997.

[7] A. Blum and T. Mitchell. Combining labeled and unlabeled data with co-training.
COLT: Proceedings of the Workshop on Computational Learning Theory, 1998.

[8] A. Bosch, A. Zisserman, and X. Munoz. Image classification using random forests
and ferns.International Conference on Computer Vision (ICCV), 2007.

[9] A. Bosch, A. Zisserman, and X. Munoz. Representing shape with a spatial pyra-
mid kernel.ACM International Conference on Image and Video Retrieval (CIVR),
2007.

[10] Anna Bosch, Andrew Zisserman, and Xavier Muñoz. Scene classification via plsa.
European Conference on Computer Vision (ECCV), 2006.

[11] Anna Bosch, Andrew Zisserman, and Xavier Munoz. Scene classification using
a hybrid generative/discriminative approach.IEEE Pattern Analysis and Machine
Intelligence (PAMI), 2008.

[12] A.-L. Boulesteix and K. Strimmer. Partial least squares: A versatile tool for the
analysis of high-dimensional genomic data.Briefings in Bioinformatics, 2007.

[13] Kristin Branson and Serge Belongie. Tracking multiple mouse contours (without
too many samples). InComputer Vision and Pattern Recognition (CVPR), pages
1039–1046, 2005.

117

[14] Kristin Branson, Vincent Rabaud, and Serge Belongie. Three brown mice: See how
they run. InIEEE International Workshop on Visual Surveillance and Performance
Evaluation of Tracking and Surveillance (VS-PETS), 2003.

[15] G. Cauwenberghs and T. Poggio. Incremental and decremental support vector ma-
chine learning.Neural Information Processing Systems (NIPS), 2000.

[16] Xiaofeng Ren Charless, Xiaofeng Ren, Charless C. Fowlkes, and Jitendra Malik.
Figure/ground assignment in natural images.European Conference on Computer
Vision (ECCV), 2006.

[17] Li-Fen. Chen, Hong-Yuan Mark Liao, Ming-Tat Ko, Ja-Chen Lin, and Gwo-Jong
Yu. A new lda-based face recognition system which can solve the small sample
size problem.Pattern Recognition, 2000.

[18] Jae-Young Choi and Young-Kyu Yang. Vehicle detection from aerial images using
local shape information.PSIVT ’09: Proceedings of the 3rd Pacific Rim Symposium
on Advances in Image and Video Technology, 2008.

[19] Seth W. Coleman, Gail L. Patricelli, and Gerald Borgia. Variable female prefer-
ences drive complex male displays.Nature, 428(6984):742–745, 2004.

[20] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human detec-
tion. Computer Vision and Pattern Recognition (CVPR), 2005.

[21] Piotr Dollar, Zhuowen Tu, and Serge Belongie. Supervised learning of edges and
object boundaries. InComputer Vision and Pattern Recognition (CVPR), pages
1964–1971, 2006.

[22] L. Eikvil, L. Aurdal, and H. Koren. Classification-based vehicle detection in high-
resolution satellite images.ISPRS Journal of Photogrammetry and Remote Sens-
ing, 2009.

[23] Ahmed M. Elgammal, David Harwood, and Larry S. Davis. Non-parametric model
for background subtraction. InEuropean Conference on Computer Vision (ECCV),
pages 751–767, 2000.

[24] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman.
The PASCAL Visual Object Classes Challenge 2008 (VOC2008) Results.
http://www.pascal-network.org/challenges/VOC/voc2008/workshop/index.html,
2008.

[25] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin.
Liblinear: A library for large linear classification.Journal of Machine Learning
Research, 9:1871–1874, 2008.

[26] Ali Farhadi, Ian Endres, Derek Hoiem, and David A. Forsyth. Describing objects
by their attributes. 2009.

118

[27] Li Fei-fei and Pietro Perona. A bayesian hierarchical model for learning natural
scene categories.Computer Vision and Pattern Recognition (CVPR), 2005.

[28] R. Fergus, P. Perona, and A. Zisserman. Object class recognition by unsupervised
scale-invariant learning.Computer Vision and Pattern Recognition (CVPR), 2003.

[29] John W. Fitzpatrick, Martjan Lammertink, Jr. Luneau, M. David, Tim W.
Gallagher, Bobby R. Harrison, Gene Sparling, Kenneth Rosenberg, Ronald
Rohrbaugh, Elliott Swarthout, Peter Wrege, Sara Barker Swarthout, Marc S.
Dantzker, Russell A. Charif, Timothy R. Barksdale, Jr. Remsen, J. V., Scott D.
Simon, and Douglas Zollner. Ivory-billed Woodpecker (Campephilus principalis)
Persists in Continental North America.Science, 308(5727):1460–1462, 2005.

[30] P. H. Garthwaite. An interpretation of partial least squares.Journal of the American
Statistical Association, 1994.

[31] P. Geladi and B.R. Kowalski. Partial least-squares regression: a tutorial.Analytica
Chimica Acta, 185, 1986.

[32] Stephen Gould, Richard Fulton, and Daphne Koller. Decomposing a scene into
geometric and semantically consistent regions.International Conference on Com-
puter Vision (ICCV), 2009.

[33] Helmut Grabner, T.T. Nguyen, Barbara Gruber, and Horst Bischof. On-line
boosting-based car detection from aerial images.ISPRS Journal of Photogram-
metry and Remote Sensing, 63(3):382 – 396, 2008.

[34] I. Guyon and A. Elisseeff. An introduction to variable and feature selection.Jour-
nal of Machine Learning Research, 2003.

[35] Marko Heikkilä and Matti Pietik̈ainen. A texture-based method for modeling the
background and detecting moving objects.IEEE Transactions on Pattern Analysis
and Machine Intelligence (PAMI), 28(4):657–662, 2006.

[36] I. Helland. On the structure of partial least squares.Communication in Statistics.,
Simulation and Computation, 1988.

[37] Geoffrey E. Hill, Daniel J. Mennill, Brian W. Rolek, Tyler L. Hicks, and Kyle A.
Swiston. Evidence suggesting that ivory-billed woodpeckers (Campephilus prin-
cipalis) exist in florida.Avian Conservation and Ecology, 2006.

[38] Stefan Hinz. Detection and counting of cars in aerial images.International Con-
ference on Image Processing (ICIP), 2003.

[39] Derek Hoiem, Alexei A. Efros, and Martial Hebert. Putting objects in perspective.
Computer Vision and Pattern Recognition (CVPR), 2006.

[40] Derek Hoiem, Alexei A. Efros, and Martial Hebert. Recovering surface layout
from an image.International Journal of Computer Vision (IJCV), 2007.

119

[41] Derek Hoiem, Alexei A. Efros, and Martial Hebert. Closing the loop on scene
interpretation.Computer Vision and Pattern Recognition (CVPR), 2008.

[42] Weiming Hu, Xuejuan Xiao, Zhouyu Fu, Dan Xie, Tieniu Tan, and Steve May-
bank. A system for learning statistical motion patterns.IEEE Pattern Analysis and
Machine Intelligence (PAMI), 2006.

[43] Chang Huang, Bo Wu, and Ramakant Nevatia. Robust object tracking by hierarchi-
cal association of detection responses.European Conference on Computer Vision
(ECCV), 2008.

[44] O. Javed, S. Ali, and M. Shah. Online detection and classification of moving
objects using progressively improving detectors.Computer Vision and Pattern
Recognition (CVPR), 2005.

[45] Zia Khan, Tucker Balch, and Frank Dellaert. A rao-blackwellized particle filter for
eigentracking.Computer Vision and Pattern Recognition (CVPR), pages 980–986,
2004.

[46] Zia Khan, Tucker R. Balch, and Frank Dellaert. An mcmc-based particle filter for
tracking multiple interacting targets. InEuropean Conference on Computer Vision
(ECCV), pages 279–290, 2004.

[47] Zia Khan, Rebecca A. Herman, Kim Wallen, and Tucker Balch. An outdoor 3-d
visual tracking system for the study of spatial navigation and memory in rhesus
monkeys.Behavior Research Methods, 37:453–463, 2005.

[48] S. Kok, M. Sumner, M. Richardson, P. Singla, H. Poon, D. Lowd, and P. Domingos.
The alchemy system for statistical relational ai.Technical report, Department of
Computer Science and Engineering, University of Washington, Seattle, WA, 2007.

[49] C.H. Lampert, M.B. Blaschko, and T. Hofmann. Efficient subwindow search: A
branch and bound framework for object localization.IEEE Pattern Analysis and
Machine Intelligence (PAMI), 2009.

[50] Christoph H. Lampert, Hannes Nickisch, and Stefan Harmeling. Learning to detect
unseen object classes by between-class attribute transfer.Computer Vision and
Pattern Recognition (CVPR), 2009.

[51] G. Lanckriet, N. Cristianini, L. El Ghaoui, P. Bartlett, and M. Jordan. Learning
the kernel matrix with semi-definite programming.Journal of Machine Learning
Research (JMLR), 2004.

[52] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyra-
mid match for recognizing natural scene categories.Computer Vision and Pattern
Recognition (CVPR), 2006.

120

[53] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyramid
matching for recognizing natural scene categories.Computer Vision and Pattern
Recognition (CVPR), 2006.

[54] Bastian Leibe, Alěs Leonardis, and Bernt Schiele. Robust object detection with
interleaved categorization and segmentation.International Journal of Computer
Vision (IJCV), 2008.

[55] L. Li, G. Wang, and L. Fei-Fei. Optimol: automatic object picture collection via
incremental model learning.Computer Vision and Pattern Recognition (CVPR),
07.

[56] Li-Jia Li, R. Socher, and Li Fei-Fei. Towards total scene understanding: Classifi-
cation, annotation and segmentation in an automatic framework.Computer Vision
and Pattern Recognition (CVPR), 2009.

[57] D.G. Lowe. Distinctive image features from scale-invariant keypoints.Interna-
tional Journal of Computer Vision (IJCV), 2004.

[58] S. Maji, A. C. Berg, and J. Malik. Classification using intersection kernel support
vector machines is efficient.Computer Vision and Pattern Recognition (CVPR),
2008.

[59] Subhransu Maji and Alexander C. Berg. Max-margin additive classifiers for detec-
tion. International Conference on Computer Vision (ICCV), 2009.

[60] D. Makris and T. Ellis. Learning semantic scene models from observing activity in
visual surveillance.IEEE Transactions on Systems, Man, and Cybernetics, 2005.

[61] H. Moon, R. Chellappa, and A. Rosenfeld. Optimal edge-based shape detection.
IEEE Transactions on Image Processing, 2002.

[62] H. Moon, R. Chellappa, and A. Rosenfeld. Performance analysis of a simple vehi-
cle detection algorithm.Image and Vision Computing, 2002.

[63] Vlad I. Morariu, Balaji Vasan Srinivasan, Vikas C. Raykar, Ramani Duraiswami,
and Larry S. Davis. Automatic online tuning for fast gaussian summation. In
Advances in Neural Information Processing Systems (NIPS), 2008.

[64] Kevin Murphy, Antonio Torralba, and William T. Freeman. Using the forest to
see the trees: A graphical model relating features, objects, and scenes.Neural
Information Processing Systems (NIPS), 2003.

[65] Sang Min Oh, James M. Rehg, Tucker Balch, and Frank Dellaert. Learning and
inference in parametric switching linear dynamical systems. InInternational Con-
ference on Computer Vision (ICCV), pages 1161–1168, 2005.

[66] Aude Oliva and Antonio Torralba. Modeling the shape of the scene: A holistic
representation of the spatial envelope.International Journal of Computer Vision
(IJCV), 2001.

121

[67] Toufiq Parag, Ahmed M. Elgammal, and Anurag Mittal. A framework for feature
selection for background subtraction. InComputer Vision and Pattern Recognition
(CVPR), pages 1916–1923, 2006.

[68] Gail L. Patricelli, J. Albert C. Uy, Gregory Walsh, and Gerald Borgia. Sexual
selection: Male displays adjusted to female’s response.Nature, 415(6869):279–
280, 2002.

[69] M. Pontil and A. Verri. Support vector machines for 3d object recognition.IEEE
Transactions on Pattern Analysis and Machine Intelligence (PAMI), 1998.

[70] Fatih Porikli. Integral histogram: A fast way to extract histograms in cartesian
spaces.Computer Vision and Pattern Recognition (CVPR), 1:829–836, 2005.

[71] A. Rakotomamonjy, F. R. Bach, S. Canu, and Y. Grandvalet. More efficency in
multiple kernel learning.International Conference on Machine Learning (ICML),
07.

[72] Vikas C. Raykar and Ramani Duraiswami. Fast optimal bandwidth selection for
kernel density estimation. InSIAM International Conference on Data Mining
(SDM), 2006.

[73] S.P. Reinikainen and A. Hoskuldsson. Covproc method: strategy in modeling dy-
namic systems.Journal of Chemometrics, 2003.

[74] Matthew Richardson and Pedro Domingos. Markov logic networks.Machine
Learning, 2006.

[75] Imran Saleemi, Khurram Shafique, and Mubarak Shah. Probabilistic modeling of
scene dynamics for applications in visual surveillance.IEEE Pattern Analysis and
Machine Intelligence (PAMI), 2009.

[76] Jean-François Savard, Jason Keagy, and Gerald Borgia. Spatial dynamics and mod-
ulation of courtship in satin bowerbirds,Ptilonorhynchus violaceus. 44th annual
meeting of the Animal Behavior Society, 2007.

[77] C. Schlosser, J. Reitberger, and Stefan Hinz. Automatic car detection in high reso-
lution urban scenes based on an adaptive 3d model.GRSS/ISPRS Joint Workshop
on Data Fusion and Remote Sensing Over Urban Areas, 2003.

[78] W.R. Schwartz, A. Kembhavi, D. Harwood, and L.S. Davis. Human detection
using partial least squares analysis.International Conference on Computer Vision
(ICCV), 2009.

[79] J. Sivic, B. Russell, A. Efros, A. Zisserman, and W. Freeman. Discovering objects
and location in images.International Conference on Computer Vision (ICCV),
2005.

122

[80] S. Sonnenburg, G. R̈atsch, C. Scḧafer, and B. Scḧolkopf. Large scale multiple
kernel learning.Journal of Machine Learning Research (JMLR), 2006.

[81] Chris Stauffer and W. Eric L. Grimson. Adaptive background mixture models for
real-time tracking. InComputer Vision and Pattern Recognition (CVPR), pages
2246–2252, 1999.

[82] Chris Stauffer and W. Eric L. Grimson. Learning patterns of activity using real-
time tracking.IEEE Pattern Analysis and Machine Intelligence (PAMI), 2000.

[83] Eran Swears and Anthony Hoogs. Functional scene element recognition for video
scene analysis.Workshop on Motion and Video Computing (WMVC), 2009.

[84] N.A. Syed, H. Liu, and K.K. Sung. Incremental learning with support vector ma-
chines.International Joint Conferences on Artificial Intelligence (IJCAI), 1999.

[85] F. Tanner, B. Colder, C. Pullen, D. Heagy, M. Eppolito, V. Carlan, C. Oertel, and
P. Sallee. Overhead imagery research data set an annotated data library and tools
to aid in the development of computer vision algorithms.IEEE Applied Imagery
Pattern Recognition Workshop 2009, 2009.

[86] R.F. Teofilo, J.P.A. Martins, and M.C. Ferreira. Sorting variables by using infor-
mative vectors as a strategy for feature selection in multivariate regression.Journal
of Chemometrics, 2008.

[87] Kentaro Toyama, John Krumm, Barry Brumitt, and Brian Meyers. Wallflower:
Principles and practice of background maintenance. InInternational Conference
on Computer Vision (ICCV), pages 255–261, 1999.

[88] Son D. Tran and Larry S. Davis. Event modeling and recognition using mlns.
European Conference on Computer Vision (ECCV), 2008.

[89] M. Varma and D. Ray. Learning the discriminative power-invariance trade-off.
International Conference on Computer Vision (ICCV), 2007.

[90] Paul Viola and Michael Jones. Robust real-time object detection.International
Journal of Computer Vision (IJCV), 2002.

[91] J. Wang, K. Markert, and M. Everingham. Learning models for object recognition
from natural language descriptions.British Machine Vision Conference (BMVC),
2009.

[92] H. Wold. Estimation of principal components and related models by iterative least
squares.Multivariate Analysis, 1966.

[93] H. Wold. Partial least squares. In S. Kotz and N.L. Johnson, editors,Encyclopedia
of Statistical Sciences, volume 6, pages 581–591. New York, 1985.

[94] B. Wu and R. Nevatia. Improving part based object detection by unsupervised,
online boosting.Computer Vision and Pattern Recognition (CVPR), 2007.

123

[95] B. Wu and R. Nevatia. Simultaneous object detection and segmentation by boost-
ing local shape feature based classifier.Computer Vision and Pattern Recognition
(CVPR), 2007.

[96] B. Wu and R. Nevatia. Optimizing discrimination-efficiency tradeoff in integrating
heterogeneous local features for object detection.Computer Vision and Pattern
Recognition (CVPR), 2008.

[97] Changjiang Yang, Ramani Duraiswami, and Larry S. Davis. Efficient kernel ma-
chines using the improved fast gauss transform. InNeural Information Processing
Systems (NIPS), pages 1561–1568, 2004.

[98] Ron Yeh, Chunyuan Liao, Scott Klemmer, François Guimbretière, Brian Lee,
Boyko Kakaradov, Jeannie Stamberger, and Andreas Paepcke. Butterflynet: a
mobile capture and access system for field biology research. InProceedings of
the SIGCHI conference on Human Factors in computing systems, pages 571–580,
2006.

[99] Z. Yue, D. Guarino, and R. Chellappa. Moving object verification in airborne
video sequences.IEEE Transactions on Circuits and Systems for Video Technology,
2009.

[100] Lihi Zelnik-manor and Pietro Perona. Self-tuning spectral clustering.Neural In-
formation Processing Systems (NIPS), 2004.

[101] H. Zhang, A.C. Berg, M. Maire, and J. Malik. Svm-knn: Discriminative near-
est neighbor classification for visual category recognition.Computer Vision and
Pattern Recognition (CVPR), 2006.

[102] J. Zhang, M. Marszalek, S. Lazebnik, and C. Schmid. Local features and kernels
for classification of texture and object categories: A comprehensive study.Inter-
national Journal of Computer Vision (IJCV), 2007.

[103] J. Zhang, M. Marszalek, S. Lazebnik, and C. Schmid. Local features and kernels
for classification of texture and object categories: A comprehensive study.Inter-
national Journal of Computer Vision (IJCV), 2007.

[104] T. Zhao and R. Nevatia. Car detection in low resolution aerial images.Image and
Vision Computing, 2003.

[105] H. Zheng, L. Pan, and L. Li. A morphological neural network approach for vehi-
cle detection from high resolution satellite imagery.International Conference on
Neural Information Processing, 2006.

[106] Qiang Zhu, Mei-Chen Yeh, Kwang-Ting Cheng, and Shai Avidan. Fast human
detection using a cascade of histograms of oriented gradients.Computer Vision
and Pattern Recognition (CVPR), 2006.

124

