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ROUNDING ERRORS IN SOLVINGBLOCK HESSENBERG SYSTEMSURS VON MATT AND G. W. STEWARTSeptember, 1994Abstract. A rounding error analysis is presented for a divide-and-conquer al-gorithm to solve linear systems with block Hessenberg matrices. Conditions arederived under which the algorithm computes a backward stable solution. The algo-rithm is shown to be stable for diagonally dominant matrices and for M-matrices.1. IntroductionIn [7] an algorithm was proposed for the solution of the linear systemAX = B;(1)where A is a block Hessenberg matrix. Its development was motivated by the attemptto �nd the steady-state of certain Markov chains. In this paper we will present anerror analysis to explain the accurate results obtained by the algorithm.Our analysis is a backward error analysis in the style of Wilkinson [12, 13]. Thismeans that the computed matrixX can be regarded as the exact solution of a nearbylinear system. In particular we will show that the computed X satis�esAX = B +�B:We call the matrix X a backward stable solution ifk�Bk � �kAk kXk;where � denotes a small multiple of the unit roundo� ".A backward stable solution is not to be confused with an accurate solution. Theaccuracy of X is usually limited by the condition number �(A) := kAk kA�1k. The1991 Mathematics Subject Classi�cation. Primary 65G05; Secondary 65F05.Key words and phrases. Rounding error analysis, linear systems, block Hessenberg matrices,diagonally dominant matrices, M-matrices.This work was supported in part by the National Science Foundation under grant CCR 9115568.1



2 URS VON MATT AND G. W. STEWARTrelative error of X can be bounded bykX �A�1BkkA�1Bk � ��(A)1� ��(A);provided that ��(A) < 1. Thus we can only compute an accurate solution X if weuse a stable algorithm to solve a well-conditioned problem.Our paper is organized as follows. In Section 2 we give a concise description ofthe algorithm to be analysed. This algorithm consists of a few basic building blocksfor which we will cite error bounds in Section 3. Since our algorithm calls itselfrecursively we have to make an assumption about the structure of the errors aftereach invocation. This is the purpose of Section 4, where we also analyse the localerrors in each stage. We combine these local errors to give a global error bound inSection 5. The structure of this global error bound reveals a potential instability ofour algorithm. This is discussed in Section 6. In Sections 7 and 8 we identify twoclasses of matrices for which our algorithm computes a backward stable solution. Weconclude our presentation with some numerical examples in Section 9.Throughout our analysis we will use the 2-norm, except where otherwise noted.Its main advantage is that the norm of an orthogonal matrix is one.2. AlgorithmWe assume that the matrix A in (1) has the following block Hessenberg structure:A = 2666666664A11 A12 � � � � � � A1nA21 . . . .... . . . . . .... . . . . . An�1;nAn;n�1 Ann 3777777775 :The diagonal blocks Aii are assumed to be square nonsingular matrices of order pi.The total size of A is given by N := nXi=1 pi:If n > 1 we can select a tear index k with 1 � k < n and partition the matrix Aas follows: A = "Anw AneAsw Ase# :The submatrix Anw contains the �rst k diagonal blocks of A, and Ase contains thelast n� k diagonal blocks of A. Note that Ak+1;k is the only nonzero block in Asw.
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-�pkFigure 1. Structure of A.This partitioning is also shown as Figure 1. The dimensions nnw and nse are givenby nnw = kXi=1 pi;nse = nXi=k+1 pi:Let E be the columns of the identity matrix that correspond to the rows of Aspanned by Ak+1;k, and let F consist of the columns of the identity matrix corre-sponding to the columns of A spanned by Ak+1;k. Then we can also de�neÂ := "Anw Ane0 Ase# = A� EAswFT:In order to solve the linear system (1) for X we can compute the solution Y ofÂY = Band get X from Y by means of an updating formula. The well-known Sherman-Morrison-Woodbury formula (cf. [4, p. 51]) would give usA�1 = (Â+ EAswFT)�1 = Â�1 � Â�1E(I +AswFTÂ�1E)�1AswFTÂ�1= Â�1 � Â�1EAsw(I + FTÂ�1EAsw)�1FTÂ�1:



4 URS VON MATT AND G. W. STEWARTAlgorithm 1. Solution of Block Hessenberg Systems.function X = solve(A;B)if not at the bottom thenCompute the orthogonal URV-decomposition Asw = URV T.Gs := solve(Ase; U )Gn := solve(Anw;�AneGs)S := RV TGnT := I + SSolve TR̂ = R for R̂ by Gaussian elimination.P := GR̂Ys := solve(Ase; Bs)Yn := solve(Anw; Bn �AneYs)X := Y � PV TYnelseSolve AX = B for X by Gaussian elimination.endUnfortunately, this formula does not take advantage of the many zeros in Asw, re-quiring the solution of a large intermediate linear system. We can reduce the size ofthis linear system with the help of the URV-decomposition (cf. [8])Asw = URV T:Let r denote the rank of Asw as it is determined by the URV-decomposition. Then Uwill be an orthogonal nse-by-r matrix with pk+1 nonzero rows. Also R is a squarer-by-r matrix, and V is an orthogonal nnw-by-r matrix with pk nonzero rows. Nowwe can express the inverse of A byA�1 = Â�1 � Â�1EU(I +RV TFTÂ�1EU)�1RV TFTÂ�1:In order to avoid the multiple evaluation of the same expressions we introduce thefollowing intermediate quantities:G := Â�1EU;S := RV TFTG;T := I + S;R̂ := T�1R;P := GR̂:Note that these matrices are independent of the right hand side B. The overallprocedure to solve the linear system (1) is also presented as Algorithm 1.In [7] this algorithm is re�ned further by introducing the auxiliary procedures\patchgen" and \topsolve". These re�nements are critical for the e�ciency of the
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?Figure 2. Tear Tree.algorithm, but they are not necessary for the purpose of this error analysis. Furtherimplementation details may be found in [9].The solution of the linear system (1) can also be described by the tear tree ofFigure 2. Each node represents a linear system to be solved. The node on the toplevel (k = 3) stands for the system (1), whereas the leaf nodes are the linear systemsthat are not divided any further but solved by Gaussian elimination. The number nof diagonal blocks in the matrix A, which is equal to the number of leaf nodes, andthe height h of the tear tree are connected by the inequalitiesn � 2h;h � log2 n:These inequalities become equalities if the tear tree of Figure 2 is a complete binarytree. 3. Basic OperationsAlgorithm 1 is composed of a few basic building blocks. These are the addition andmultiplication of matrices, the calculation of a URV-decomposition, and the solutionof linear systems by Gaussian elimination. We will now state bounds for the errorsassociated with these operations.In the case of the addition of two matrices we have
(A+B) = A+B + E;where kEk � �1kA+Bk:



6 URS VON MATT AND G. W. STEWARTThe quantity �1 is on the order of the unit roundo� " and slowly increases with thesize of the matrices A and B. See also [13, pp. 114{115 and p. 57].If we multiply two matrices in 
oating point we have
(AB) = AB + E;where kEk � �2kAk kBk:Again, �2 is a small multiple of the unit roundo� and slowly grows with the size ofthe matrices A and B (cf. [13, pp. 115{116]).The size of the error in computing an orthogonal URV-decomposition depends onthe speci�cs of the decomposition. One may choose a QR-decomposition [4, Chap-ter 5], a rank-revealing decomposition [2, 8], or the singular value decomposition [4,Section 8.3]. All of these factorizations have in common that they can be expressedas a sequence of orthogonal transformations applied from the left and the right tothe initial matrix. The orthogonal transformations are also accumulated to give thematrices U and V . Wilkinson shows in [13, pp. 160{161] that there are orthogonalmatrices U0 and V0 and an �3 such thatkR � UT0 AV0k � 2�3kAk;(2) kU � U0k � �3;(3) kV � V0k � �3:(4)The quantity �3 is on the order of the unit roundo� and slowly grows with the sizeof the matrix A and the number of the orthogonal transformations applied to A.From (3) and (4) it immediately follows thatkUk � 1 + �3;kV k � 1 + �3:We can also show, by increasing �3 slightly as necessary, thatkURV T �Ak � 4�3kAk;k(UTU)�1UTk � 1 + 3�3;kV (V TV )�1k � 1 + 3�3:We assume that small linear systems are solved by Gaussian elimination. In [12,p. 108] and [13, p. 252] Wilkinson shows that this process can be described by theequation Ax = b +�b;(5)



BLOCK HESSENBERG SYSTEMS 7where k�bk � �04kAk kxk:(6)The value of �04 is on the order of the unit roundo� and slowly increases with the sizeof A. It also depends on the pivoting strategy used. See [5] for a more recent survey.Note that the bound (6) is only applicable if the right hand side of (5) is a vector.If we solve several linear systems with the same matrix A we getAX = B +�B;(7)where k�Bk � �04qrkAk kXk;(8)and r denotes the number of columns in the matrix B.Let rmax be the maximum number of right hand sides in a linear system that issolved by Gaussian elimination in Algorithm 1. If we de�ne�4 := �04qrmax;then we can always bound the residual �B in (7) byk�Bk � �4kAk kXk:Thanks to this convention our error bounds will become somewhat simpler.4. Analysis of one StageIn the following we will give expressions for the rounding errors incurred at onestage of Algorithm 1. We assume that we are not at the bottom of the tear tree, andwe use the assumptions of Section 3 to bound the size of the rounding errors.In what follows the matrix A denotes the system matrix of an arbitrary interiornode of the tear tree. In an attempt to keep the notation simple we do not intro-duce an index to indicate the corresponding node. We also assume that the foursubmatrices Anw, Ane, Asw, and Ase are prede�ned by the tearing strategy.We make the inductive assumption that the solutionX computed at level k satis�esAX = B +�B;(9)where the residual �B can be expressed by�B = �LX +�MXX:(10)We use the index X for the matrices �LX and �MX to indicate that they dependon the solution X.



8 URS VON MATT AND G. W. STEWARTWe assume that at level k we always havek�LXk � �kkD�1Xk;(11) k�MXDk � �k;(12)for all matrices X. The quantity D denotes a nonsingular block diagonal matrix,which is partitioned commensurably with A. In particular we always have Dne = 0and Dsw = 0 for all the nodes in the tear tree. The matrix D will give us additional
exibility in bounding the norm of the residual �B. We will discuss this issue inmore detail in Sections 7{9.Since we solve the systems at the bottom level by Gaussian elimination, we de�ne�0 := �4kAk kDk;�0 := 0;The purpose of the next sections will be to compute �k and �k if �k�1 and �k�1 areknown.Let us also establish the following convention: If we compute a quantity, say x, thecorresponding rounding error is called �x. Consequently, �x does not need to beread as a perturbation of x. We only break this convention if several quantities arecomputed simultaneously, as in the URV-decomposition, and for the residual �B.Throughout our analysis we will assume that the rounding errors remain smallcompared to the norm of the computed quantities. This means that the computedand the exact quantities will agree to at least a few digits.4.1. Calculation of the URV-Decomposition. The result of the initial URV-decomposition of Algorithm 1 can be described byAsw = URV T +�Asw;(13)where k�Aswk � 4�3kAswk:(14)The matrices U and V are nearly orthogonal, and they satisfykUk � 1 + �3; k(UTU)�1UTk � 1 + 3�3;(15) kV k � 1 + �3; kV (V TV )�1k � 1 + 3�3:(16)The expression RV T, which we will also use later on, can be written asRV T = (UTU)�1UT(Asw ��Asw):(17)Therefore we have the boundkRV Tk � (1 + 3�3)(1 + 4�3)kAswk:(18)



BLOCK HESSENBERG SYSTEMS 9Because of R = (UTU)�1UT(Asw ��Asw)V (V TV )�1;we can also bound the norm of R bykRk � (1 + 3�3)2(1 + 4�3)kAswk:(19)4.2. Calculation of G. The calculation of the matrix G proceeds in three stepsthat can be described by the equationsAseGs = U +�Gs;Un = �AneGs +�Un;AnwGn = Un +�Gn:The error matrix �Un is bounded byk�Unk � �2kAnek kGsk � 1:01�2kAnek kA�1se k:(20)The residuals �Gs and �Gn have the expansion�Gs = �LGs +�MGsGs;�Gn = �LGn +�MGnGn:We can also write these equations in matrix terms asÂG = EU +�G;(21)where �G := "�Gn +�Un�Gs # = "�LGn +�Un�LGs #+ "�MGn �MGs#G:(22)Since the matrix G can be written asG = Â�1(EU +�G);we also have kGk � 1:01kÂ�1k:(23)



10 URS VON MATT AND G. W. STEWART4.3. Calculation of S. We can express the matrix S byS = RV TGn +�S;(24)where k�Sk � (2�2 + �22)kRk kV k kGnk:This bound applies regardless of the sequence in which the two multiplications areperformed. In view of (16,19,23) we can also bound k�Sk byk�Sk � 1:01(2�2 + �22)(1 + �3)(1 + 3�3)2(1 + 4�3)kAswk kÂ�1k� 2 � 1:012�2kAswk kÂ�1k:(25)By means of the equations (13,21,24) we can derive the following more explicit ex-pression for S:S = (UTU)�1UT(AswFTÂ�1EU ��AswFTG+AswFTÂ�1�G) + �S:Obviously, the norm of S can be bounded bykSk � 1:01kAswFTÂ�1k:4.4. Calculation of T . The matrix T satis�es the equationT = I + S +�T;(26)where k�Tk � �1kI + Sk:By means of some straightforward manipulations, using (13,21,24), we can see thatEU(I + S) = AÂ�1EU � E�AswFTG+ EAswFTÂ�1�G+ EU�S:(27)Consequently, we can express I + S asI + S = (UTU)�1UTET(AÂ�1EU � E�AswFTG+EAswFTÂ�1�G) + �S;and T is given byT = (UTU)�1UTET(AÂ�1EU � E�AswFTG+EAswFTÂ�1�G) + �S +�T:If �Asw, �G, and �S are su�ciently small, we havek�Tk � 1:01�1kAÂ�1k:(28)



BLOCK HESSENBERG SYSTEMS 11Similarly, we also have kTk � 1:01kAÂ�1k:(29)4.5. Calculation of R̂. If we solve the linear system for R̂ by Gaussian eliminationwe get TR̂ = R +�R̂;(30)where k�R̂k � �4kTk kR̂k:(31)In order to bound k�R̂k di�erently we need an alternative expression for R̂. It isuseful to consider the quantity I �GR̂V TFT �rst. By using (13,21,24,26,30) we haveA(I �GR̂V TFT) = Â+ E�AswFT(I �GR̂V TFT)��GR̂V TFT + EU�(�S +�T )R̂��R̂�V TFT;(32)which is equivalent toI �GR̂V TFT = A�1Â+A�1E�AswFT(I �GR̂V TFT)�A�1�GR̂V TFT +A�1EU�(�S +�T )R̂��R̂�V TFT:(33)Consequently, we can represent R̂ asR̂ = (UTU)�1UTET(Â� ÂA�1Â)FV (V TV )�1 �(UTU)�1UTET�ÂA�1E�AswFT(I �GR̂V TFT)FV (V TV )�1 +EAswFTA�1�GR̂+ ÂA�1EU�(�S +�T )R̂��R̂��:Note that we can also write Â� ÂA�1Â asÂ� ÂA�1Â = EAswFTA�1Â = ÂA�1EAswFT:(34)If we assume the rounding errors to be bounded we can show thatkR̂k � 1:01kÂ� ÂA�1Âk:(35)By combining this result with (29,31) we can bound k�R̂k byk�R̂k � 1:012�4kAÂ�1k kÂ� ÂA�1Âk:(36)



12 URS VON MATT AND G. W. STEWART4.6. Calculation of P . The calculation of P can be described by the equationP = GR̂ +�P;(37)where k�Pk � �2kGk kR̂k:By using (23,35) we can bound k�Pk byk�Pk � 1:012�2kÂ�1k kÂ� ÂA�1Âk:(38)Because of (33) the following alternative expression for P applies:P = A�1EAswV (V TV )�1 �A�1E�AswFT(I �GR̂V TFT)FV (V TV )�1 +A�1�GR̂ �A�1EU�(�S +�T )R̂��R̂�+�P:Provided that the rounding errors remain bounded we certainly havekPk � 1:01kA�1EAswk:(39)4.7. Calculation of Y . The matrix Y is computed in three steps as follows:AseYs = Bs +�Ys;(40) B̂n = Bn �AneYs +�B̂n;(41) AnwYn = B̂n +�Yn:(42)The error in computing B̂n can be bounded byk�B̂nk � �1kBn �AneYsk+ (1 + �1)�2kAnek kYsk� �1kBnk+ (�1 + �2 + �1�2)kAnek kYsk:(43)On the other hand we can assume the following expressions for the residuals �Ysand �Yn: �Ys = �LYs +�MYsYs;(44) �Yn = �LYn +�MYnYn:(45)The equations (40,41,42,44,45) can also be written in matrix terms asÂY = B +�Y;(46)where �Y := "�Yn +�B̂n�Ys # = "�LYn +�B̂n�LYs #+ "�MYn �MYs#Y:(47)



BLOCK HESSENBERG SYSTEMS 13It will turn out to be useful to eliminateBn from the right hand side of (43). Observethat kBnk � kBk � kÂk kY k+ k�Y k � 1:01kÂk kY k:Consequently, we can also bound k�B̂nk byk�B̂nk � (2:01�1 + �2 + �1�2)kÂk kY k � 1:01(2�1 + �2)kÂk kY k:(48)4.8. Calculation of X. The computed value of X satis�esX = Y � PV TYn +�X;(49)where k�Xk � �1kY � PV TYnk+ (1 + �1)(2 + �2)�2kPk kV k kYnk:This bound can be processed further by using (16,39), and we getk�Xk � ��1 + 1:01(1 + �3)��1 + (1 + �1)(2 + �2)�2�kA�1EAswk�kY k:A simpler bound is given byk�Xk � ��1 + 1:012(�1 + 2�2)kA�1EAswk�kY k:(50) 5. Backward ErrorWe are now ready to give an expression for the residual �B in (9). By using theequations (32,37,46,49) we get�B = �E�AswFT(I �GR̂V TFT)��GR̂V TFT +EU�(�S +�T )R̂��R̂�V TFT �A�PV TFT�Y +�Y +A�X:(51)The value of �B can be processed further. By combining (37) and (49) we get(I �GR̂V TFT)Y = X +�PV TFTY ��X:(52)If we use (9,13,21,33,34,46,51,52) we can also derive the following alternative expres-sion for R̂V TFTY :R̂V TFTY = RV TFTX � �(�S +�T )R̂��R̂�V TFTY +RV TFT�PV TFTY �RV TFT�X:(53)



14 URS VON MATT AND G. W. STEWARTBecause of (22,47,52,53) we are led to the following expression for �B:�B = E�AswFTX �"�LGn +�Un�LGs #RV TFTX � "�MGn �MGs#GRV TFTX +EU(�S +�T )RV TFTX � EU�R̂V TFTY �A�PV TFTY +"�LYn +�B̂n�LYs # + "�MYn �MYs#Y +A�X +O("2):(54)The matrix O("2) represents second order terms. They tend to zero as the unitroundo� " tends to zero. Speci�cally, we havelim"#0 kO("2)k" = 0:A key expression in (54) is GRV TFT. With the help of (13,21) we can transformthis matrix intoGRV TFT = Â�1EAswFT � Â�1E�AswFT + Â�1�GRV TFT:Similarly, we use (9,46) to write Y asY = Â�1AX � Â�1(�B ��Y )= D(D�1Â�1AD)D�1X � Â�1(�B ��Y ):(55)Now it is straightforward to write the residual �B as�B = �LX +�MXX;where �LX = "�LYn +�B̂n�LYs #+A�X +O("2);(56) �MX = E�AswFT � "�LGn +�Un�LGs #RV TFT �"�MGn �MGs# Â�1EAswFT +EU(�S +�T )RV TFT � EU�R̂V TFTÂ�1A�A�PV TFTÂ�1A+ "�MYn �MYs# Â�1A:(57)



BLOCK HESSENBERG SYSTEMS 15Let us give bounds for the norms of �LX and �MX . From (48,50,55) we havek�LXk � 1:01�p2�k�1 + 1:01(2�1 + �2)kÂk kDk +��1 + 1:012(�1 + 2�2)kA�1EAswk�kAk kDk� �kD�1Â�1ADk kD�1Xk:(58)In order to bound k�MXDk we need to multiply (57) by D from the right:�MXD = E�AswFTD � "�LGn +�Un�LGs #RV TFTD �"�MGnDnw �MGsDse#D�1Â�1EAswFTD +EU(�S +�T )RV TFTD �EU�R̂V TFTDD�1Â�1AD �A�PV TFTDD�1Â�1AD +"�MYnDnw �MYsDse#D�1Â�1AD:Because of (17) we can write the expression RV TFTD also asRV TFTD = (UTU)�1UT(Asw ��Asw)FTD:Consequently, its norm is certainly bounded bykRV TFTDk � 1:01kAswDnwk:(59)If we use (11,12,14,15,16,18,20,25,28,36,38,59) we can bound k�MXDk as follows:k�MXDk � 4�3kAswk kDnwk+1:012(p2kÂ�1k�k�1 + �2kAnek kA�1se k)kAswDnwk+(1 + �3)1:01�2 � 1:012�2kAswk kÂ�1k+1:01�1kAÂ�1k�kAswDnwk+(1 + �3)21:012�4kAÂ�1k kÂ� ÂA�1Âk kDnwk kD�1Â�1ADk +1:012(1 + �3)�2kAk kÂ�1k kÂ� ÂA�1Âk kDnwk kD�1Â�1ADk+(kD�1Â�1EAswDnwk+ kD�1Â�1ADk)�k�1:



16 URS VON MATT AND G. W. STEWARTIt is useful to simplify this bound somewhat:k�MXDk � 4�3kAswk kDnwk+ 1:014(�1 + 3�2)kAswDnwk kAk kÂ�1k+1:013(�2 + �4)kAk kÂ�1k kÂ� ÂA�1Âk kDnwk kD�1Â�1ADk+1:012p2kAswDnwk kÂ�1k�k�1 +(kD�1Â�1EAswDnwk+ kD�1Â�1ADk)�k�1:(60)The inequalities (58) and (60) contain the quantities �k�1 and �k�1 which are used tobound the errors at the previous level of the tear tree. Consequently, we can use (58)and (60) to give recurrence relationships for �k and �k. Let us de�ne the quantitiesf� := max1:01p2kD�1Â�1ADk;(61) f� := maxkD�1Â�1EAswDnwk+ kD�1Â�1ADk;(62) g := max1:012p2kAswDnwk kÂ�1k;(63) c� := max1:01�1:01(2�1 + �2)kÂk kDk +��1 + 1:012(�1 + 2�2)kA�1EAswk�kAk kDk� �kD�1Â�1ADk;(64) c� := max4�3kAswk kDnwk+1:014(�1 + 3�2)kAswDnwk kAk kÂ�1k+1:013(�2 + �4)kAk kÂ�1k kÂ� ÂA�1Âk �kDnwk kD�1Â�1ADk;(65)where the maximum is to be taken over all the nodes in the tear tree. The se-quences f�kg and f�kg thus satisfy the following recurrence relationships:�0 = �4kAk kDk;�k = f��k�1 + c�; k � 1;�0 = 0;�k = f��k�1 + g�k�1 + c�; k � 1:



BLOCK HESSENBERG SYSTEMS 17Their explicit solutions are given by1�k = �0fk� + c� fk� � 1f� � 1 ;(66) �k = �0gfk� � fk�f� � f� + c� fk� � 1f� � 1 +c�g� 1(f� � 1)(f� � 1) + fk�(f� � 1)(f� � f�) � fk�(f� � 1)(f� � f�)�:(67)These explicit expressions for �k and �k are only valid if f� 6= 1, f� 6= 1, and f� 6= f�.It would be possible to give similar expressions for these special cases, too. Howeverthese formulas would not give us more insight than (66) and (67).At the top level of the tear tree the residual �B is given by�B = �LX +�MXX;where k�LXk � �hkD�1Xk;k�MXDk � �h:Consequently, k�Bk can be bounded byk�Bk � (�h + �h)kD�1Xk:(68)The expression kD�1Xk is nothing else than the size of the solution X expressed inanother norm. 6. Stability CriterionLet us now analyse the conditions under which Algorithm 1 computes a backwardstable solution. We assume that all the matrices A, Â, and D in the tear treeare nonsingular and only moderately ill-conditioned. Without this assumption thequantities c� and c� could become arbitrarily large, like in the case of the matricesA := "� 11 �# ; Â := "� 10 �# ;with � # 0.If c� and c� are only small multiples of "kAk the norm of the residual �B in (68) willbe on the order of "kAk kD�1Xk for f� � 1 and f� � 1. This condition is equivalent tothe requirement that there exists a nonsingular block diagonal matrix D, partitionedcommensurably with A, such thatkD�1Â�1ADk � 1(69)1We used Maple [3] to derive this result.



18 URS VON MATT AND G. W. STEWARTfor all the matrices in the tear tree. If this stability criterion is met Algorithm 1 isguaranteed to compute a backward stable solution provided that all the matrices A,Â, and D in the tear tree are only moderately ill-conditioned.It should be noted that (69) is a su�cient but not a necessary stability condition.Since we use the quantities �k and �k to bound k�LXk and k�MXDk at each level inthe tear tree, these bounds may grow even if �LX and �MXD remain bounded. Onthe positive side, we get a manageable error analysis and a simple stability criterion.In the next two sections we will identify two classes of matrices for which thecriterion (69) is always satis�ed.7. Diagonally Dominant MatricesAn important class of matrices, for which the condition (69) is always satis�ed, isgiven by the set of nonsingular diagonally dominant matrices. In order to see this weneed the following theorem.Theorem 7.1. Let A be an m-by-n matrix with m < n, and let A be diagonallydominant, i.e. nXj=1j 6=i jaijj � jaiij; i = 1; : : : ;m:We partition A into A = hA1 A2i ;where A1 is a square m-by-m matrix, and A2 is an m-by-(n � m) matrix. We alsoassume that A1 is nonsingular. Under these assumptions the inequalitykA�11 A2k1 � 1applies.Proof. The proof is based on the observation that Gaussian elimination without piv-oting can be applied to the matrixA, and that A remains diagonally dominant duringthis process (cf. [11, pp. 288{289]). Speci�cally there are elementary matrices Lk, Rk,and a diagonal matrix D such thatRm�1 � � �R1DLm�1 � � �L1A1 = I:If we apply these transformations to A we getRm�1 � � �R1DLm�1 � � �L1A = hI A�11 A2i :Since these transformations preserve the diagonal dominance of the matrix A weconclude that kA�11 A2k1 � 1.



BLOCK HESSENBERG SYSTEMS 19As a straightforward application of Theorem 7.1 we consider the norm of Â�1Awhen A is diagonally dominant. It is easily veri�ed thatÂ�1A = "I �A�1nwAneA�1se Asw 0A�1se Asw I# :The two matrices hAnw Anei and hAse Aswi satisfy the assumptions of Theorem 7.1,and we have kA�1nwAnek1 � 1;kA�1se Aswk1 � 1:It is now easy to see that kÂ�1Ak1 � 2:This bound is tight. It is attained, for instance, by the matricesA = " 1 1�1 1# ; Â = "1 10 1# :If a matrixA is diagonally dominant then so are all its submatrices in the tear tree.Consequently, if we set D = I, the condition (69) is satis�ed, and Algorithm 1 willcompute a stable solution of the linear system (1), provided that all the matrices Aand Â in the tear tree are only moderately ill-conditioned.8. M-MatricesA nonsingular n-by-n matrix A is called an M-matrix if aij � 0 for i 6= j and all theentries in A�1 are nonnegative. Many alternative characterizations of an M-matrixmay be found in [1, Chapter 6] and [6, Section 6.4]. For the purpose of this erroranalysis the following de�nition is the most useful: A nonsingular n-by-n matrix Ais called an M-matrix if aij � 0 for i 6= j, aii > 0, and there exists a positive diagonalmatrix D such that AD is strictly diagonally dominant, i.e.aiidii >Xj 6=i jaijjdjj ; i = 1; : : : ; n:Without loss of generality we may assume that kDk = 1. Note that this de�nition isequivalent to the condition (M35) in [1, p. 137].In view of the preceding discussion in Section 7 the stability criterion (69) is satis-�ed for this particular choice of the matrix D. Therefore, Algorithm 1 will computea stable solution for linear systems with M-matrices.



20 URS VON MATT AND G. W. STEWART9. Numerical ResultsIn this section we will present numerical results for three classes of test matricesto illustrate our error bounds. As our �rst example we choose the matrixA := 266666666666664 � 11 11 � 11 11 � 11 11 � 1 377777777777775 :We will see in a moment that the condition (69) is not satis�ed for this matrix. Thebasic building block of A is given byM := "1 11 �# ;which is a well-conditioned matrix for 0 < � < 1=2. Speci�cally we have�1(M) = 41 � �:On the other hand the matrix M̂ := "1 10 �#becomes increasingly ill-conditioned as � tends to zero:�1(M̂) = 21 + �� :Consequently, if we partition the matrix A as indicated we can expect large valuesof kD�1Â�1ADk for all nodes in the tear tree.In order to avoid large matrices we choose an unusual tearing strategy: If the sizeNof the matrix A is two we solve the linear system by Gaussian elimination, otherwisewe set nnw = N � 2 and nse = 2 (cf. Figure 1). This strategy leads to a degeneratetear tree with a height of h = N=2 � 1. The point of our example, however, does notdepend on a particular tearing strategy. For any given strategy we can construct amatrix A that exhibits the same problems.



BLOCK HESSENBERG SYSTEMS 21Table 1. Properties of the First Class of Test Matrices.N kAk kA�1Âk kÂ�1k kD�1Â�1ADk kÂ� ÂA�1Âk4 1:735 1:010 � 102 1:000 � 104 9:901 � 101 1:010 � 10�26 1:906 1:021 � 102 1:010 � 104 1:414 � 102 1:010 � 10�28 1:954 1:031 � 102 1:021 � 104 1:744 � 102 1:010 � 10�210 1:974 1:041 � 102 1:031 � 104 2:026 � 102 1:010 � 10�212 1:984 1:052 � 102 1:042 � 104 2:278 � 102 1:010 � 10�214 1:990 1:063 � 102 1:053 � 104 2:509 � 102 1:010 � 10�216 1:994 1:074 � 102 1:064 � 104 2:724 � 102 1:010 � 10�218 1:996 1:085 � 102 1:074 � 104 2:928 � 102 1:010 � 10�220 1:998 1:096 � 102 1:085 � 104 3:122 � 102 1:010 � 10�222 1:999 1:107 � 102 1:097 � 104 3:308 � 102 1:010 � 10�2For our numerical example we choose � = 0:01. If we set D = I the value of thequantity kD�1Â�1ADk is on the order of ��2 = 104. However, if we chooseD := 266666666666664 1 c 1 c 1 c 1 c 377777777777775 ;where c := �2 = 10�4, this norm can be reduced to the order of ��1 = 102.In Table 1 we give the values of some key quantities from (61,62,63,64,65). Forany A with N � 4 we obtain the corresponding Â by setting aN�1;N�2 to zero. Thisis consistent with our special tearing strategy. We can see from the values of Table 1that all the subproblems in the tear tree are only moderately ill-conditioned.The entries of the right hand side b are given by bi = i. We computed our re-sults on a DECstation 3100 using a MATLAB [10] implementation of Algorithm 1.The unit roundo� is given by " = 2�52 � 2:2204 � 10�16. We used the singular valuedecomposition as our URV-decomposition.In Table 2 we present the absolute and relative residuals for increasing matrixsizes N . Due to our special tearing strategy the height h of the tear tree increaseslinearly with N . We also compare the residuals obtained from Algorithm 1 withthose fromGaussian elimination (backslash operator inMATLAB). The reader shouldobserve the exponential error growth of the residual kAx� bk, which is due to thelarge value of kD�1Â�1ADk.



22 URS VON MATT AND G. W. STEWARTTable 2. Residuals for the First Class of Test Matrices.kAx� bk kAx� bkkAk kxkGaussian GaussianN h Algorithm 1 elimination Algorithm 1 elimination4 1 3:634 � 10�14 4:965 � 10�16 1:042 � 10�16 1:423 � 10�186 2 5:298 � 10�12 4:441 � 10�16 9:169 � 10�15 7:687 � 10�198 3 1:523 � 10�10 8:882 � 10�16 1:918 � 10�13 1:119 � 10�1810 4 3:020 � 10�8 6:280 � 10�16 2:996 � 10�11 6:231 � 10�1912 5 7:708 � 10�6 8:882 � 10�16 6:307 � 10�9 7:268 � 10�1914 6 2:044 � 10�3 1:538 � 10�15 1:422 � 10�6 1:070 � 10�1816 7 9:639 � 10�2 2:176 � 10�15 5:754 � 10�5 1:315 � 10�1818 8 6:382 � 100 1:776 � 10�15 2:538 � 10�3 9:483 � 10�1920 9 1:462 � 103 1:776 � 10�15 4:403 � 10�3 8:483 � 10�1922 10 2:708 � 105 1:986 � 10�15 1:958 � 10�2 8:572 � 10�19Table 3. Properties of the Class of Diagonally Dominant Matrices.N kAk kA�1Âk kÂ�1k kD�1Â�1ADk kÂ� ÂA�1Âk4 1:990 7:143 � 101 1:611 � 100 1:407 5:024 � 1016 1:995 1:060 � 102 1:010 � 102 1:572 6:677 � 1018 1:997 1:328 � 102 2:025 � 102 1:752 7:505 � 10110 1:998 1:554 � 102 3:458 � 102 1:922 8:003 � 10112 1:999 1:752 � 102 5:303 � 102 2:081 8:335 � 10114 1:999 1:931 � 102 7:558 � 102 2:230 8:573 � 10116 1:999 2:095 � 102 1:022 � 103 2:371 8:751 � 10118 1:999 2:248 � 102 1:330 � 103 2:503 8:889 � 10120 2:000 2:391 � 102 1:678 � 103 2:630 9:000 � 10122 2:000 2:526 � 102 2:067 � 103 2:751 9:091 � 101As our second test matrix we choose the diagonally dominant matrixA := 266666666666664 1 aa 1 bb 1 aa 1 bb 1 aa 1 bb 1 aa 1 377777777777775 ;where we set a := 0:01 and b := 0:99. All the subproblems in the tear tree are rela-tively well-conditioned. To illustrate this we present in Table 3 the values of somekey quantities in the tear tree.



BLOCK HESSENBERG SYSTEMS 23Table 4. Residuals for the Class of Diagonally Dominant Matrices.kAx� bk kAx� bkkAk kxkGaussian GaussianN h Algorithm 1 elimination Algorithm 1 elimination4 1 8:379 � 10�15 2:665 � 10�15 6:066 � 10�17 1:929 � 10�176 2 1:801 � 10�14 1:779 � 10�14 4:593 � 10�17 4:535 � 10�178 3 7:121 � 10�14 3:815 � 10�14 8:786 � 10�17 4:708 � 10�1710 4 8:175 � 10�14 1:113 � 10�13 5:759 � 10�17 7:842 � 10�1712 5 2:283 � 10�13 1:088 � 10�13 1:018 � 10�16 4:851 � 10�1714 6 2:863 � 10�13 1:632 � 10�13 8:677 � 10�17 4:947 � 10�1716 7 4:768 � 10�13 1:835 � 10�13 1:034 � 10�16 3:981 � 10�1718 8 5:265 � 10�13 3:521 � 10�13 8:504 � 10�17 5:687 � 10�1720 9 1:019 � 10�12 5:198 � 10�13 1:265 � 10�16 6:450 � 10�1722 10 8:965 � 10�13 4:299 � 10�13 8:763 � 10�17 4:201 � 10�17We use the same tearing strategy as in the �rst example. Again, the vector b isgiven by bi = i. The norms of the residuals for di�erent matrix sizes are presented asTable 4.As our last example we choose the M-matrixA := 266666666666664 1 ba 1 ab 1 ba 1 ab 1 ba 1 ab 1 ba 1 377777777777775 ;where we set a := �0:00049 and b := �490. The matrix AD is diagonally dominantfor D := 266666666666664 c 1 c 1 c 1 c 1 377777777777775 ;where c := 1000. The properties of A are listed as Table 5. We choose the sametearing strategy and the same right hand side b as before, and the resulting residuals



24 URS VON MATT AND G. W. STEWARTTable 5. Properties of the Class of M-Matrices.N kAk kA�1Âk kÂ�1k kD�1Â�1ADk kÂ� ÂA�1Âk4 7:928 � 102 1:158 � 103 7:547 � 102 1:303 8:387 � 1026 8:830 � 102 1:445 � 103 2:167 � 103 1:349 9:549 � 1028 9:209 � 102 1:614 � 103 4:028 � 103 1:396 1:001 � 10310 9:403 � 102 1:712 � 103 6:077 � 103 1:431 1:021 � 10312 9:515 � 102 1:768 � 103 8:130 � 103 1:453 1:029 � 10314 9:586 � 102 1:799 � 103 1:007 � 104 1:466 1:033 � 10316 9:633 � 102 1:815 � 103 1:182 � 104 1:474 1:035 � 10318 9:666 � 102 1:823 � 103 1:338 � 104 1:478 1:035 � 10320 9:691 � 102 1:828 � 103 1:474 � 104 1:480 1:036 � 10322 9:709 � 102 1:830 � 103 1:591 � 104 1:481 1:036 � 103Table 6. Residuals for the Class of M-Matrices.kAx� bk kAx� bkkAk kxkGaussian GaussianN h Algorithm 1 elimination Algorithm 1 elimination4 1 1:017 � 10�12 4:441 � 10�16 1:570 � 10�19 6:859 � 10�236 2 4:547 � 10�12 9:095 � 10�13 2:087 � 10�19 4:173 � 10�208 3 5:457 � 10�12 1:819 � 10�12 1:100 � 10�19 3:667 � 10�2010 4 7:500 � 10�12 1:819 � 10�12 8:214 � 10�20 1:992 � 10�2012 5 1:373 � 10�11 8:702 � 10�15 9:347 � 10�20 5:923 � 10�2314 6 1:925 � 10�11 3:638 � 10�12 8:923 � 10�20 1:686 � 10�2016 7 4:002 � 10�11 3:638 � 10�12 1:349 � 10�19 1:226 � 10�2018 8 4:426 � 10�11 5:087 � 10�14 1:139 � 10�19 1:309 � 10�2220 9 7:570 � 10�11 7:276 � 10�12 1:544 � 10�19 1:484 � 10�2022 10 8:678 � 10�11 2:183 � 10�11 1:444 � 10�19 3:632 � 10�20are presented as Table 6.For the second and third class of test problems the condition (69) always holds.For these cases, the results in Table 4 and 6 con�rm that Algorithm 1 can compute asolution with a residual whose norm is on the same order as the norm of the residualfrom Gaussian elimination. 10. ConclusionsWe have presented an error analysis for a divide-and-conquer algorithm to solvelinear systems with block Hessenberg matrices. Our error analysis corresponds closelyto the recursive nature of this algorithm. The key to our analysis is equation (10)which gives a representation for the residuals �B in the tear tree. Another importantequation is (51) which shows the structure of the residuals in terms of local errorsand errors from previous nodes in the tear tree. By combining (10) and (51) we can



BLOCK HESSENBERG SYSTEMS 25derive the linear recurrence relationships for �k and �k which lead to the �nal errorbound (68).The precise value of the bound (68) is of minor importance. Rather we can showthat Algorithm 1 computes a backward stable solution if the condition (69) is satis�edfor all the matrices in the tear tree. This condition ensures that all the quantitiesin Algorithm 1 remain bounded. In particular equation (55) shows that the ma-trix D�1Y can never be much larger than D�1X. On the other hand, if kD�1Â�1ADkis signi�cantly larger than one for all the nodes in the tear tree, we may encountervery large matrices D�1Y during the execution of Algorithm 1, even if the �nal re-sult D�1X is small. This is exactly what happens in our �rst test case in Section 9,leading to a large residual �B.We have also shown that the condition (69) is always satis�ed in the case of diag-onally dominant matrices and M-matrices. This explains the accurate results of thealgorithm for this type of problems.References1. A. Berman and R. J. Plemmons, Nonnegative matrices in the mathematical sciences, AcademicPress, New York, 1979.2. T. F. Chan, Rank revealing QR factorizations, Linear Algebra Appl. 88/89 (1987), 67{82.3. B. Char, K. Geddes, G. Gonnet, B. Leong, M. Monagan, and S. Watt, Maple V languagereference manual, Springer, New York, 1991.4. G. H. Golub and C. F. Van Loan, Matrix computations, second ed., The Johns Hopkins Uni-versity Press, Baltimore, 1989.5. N. J. Higham, How accurate is Gaussian elimination?, Numerical Analysis 1989, Proceedingsof the 13th Dundee Conference (D. F. Gri�ths and G. A. Watson, eds.), Longman Scienti�cand Technical, 1990, pp. 137{154.6. H. Minc, Nonnegative matrices, John Wiley & Sons, New York, 1988.7. G. W. Stewart, On the solution of block Hessenberg systems, Tech. Report CS-TR-2973, De-partment of Computer Science, University of Maryland, October 1992, to appear in NumericalLinear Algebra and Applications.8. , An updating algorithm for subspace tracking, IEEE Trans. Signal Processing 40 (1992),1535{1541.9. , Implementing an algorithm for solving block Hessenberg systems, Tech. Report CS-TR-3295, Department of Computer Science, University of Maryland, June 1994.10. The MathWorks Inc., MATLAB, high-performance numeric computation and visualization soft-ware, Natick, Massachusetts, 1992.11. J. H. Wilkinson, Error analysis of direct methods of matrix inversion, J. Assoc. Comput. Mach.8 (1961), 281{330.12. , Rounding errors in algebraic processes, Prentice-Hall, New Jersey, 1963.13. , The algebraic eigenvalue problem, Clarendon Press, Oxford, 1965.
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