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ROUNDING ERRORS IN SOLVING
BLOCK HESSENBERG SYSTEMS

URS VON MATT AND G. W. STEWART

September, 1994

ABSTRACT. A rounding error analysis is presented for a divide-and-conquer al-
gorithm to solve linear systems with block Hessenberg matrices. Conditions are
derived under which the algorithm computes a backward stable solution. The algo-
rithm is shown to be stable for diagonally dominant matrices and for M-matrices.

1. INTRODUCTION

In [7] an algorithm was proposed for the solution of the linear system
(1) AX =B,

where A is a block Hessenberg matrix. Its development was motivated by the attempt
to find the steady-state of certain Markov chains. In this paper we will present an
error analysis to explain the accurate results obtained by the algorithm.

Our analysis is a backward error analysis in the style of Wilkinson [12, 13]. This
means that the computed matrix X can be regarded as the exact solution of a nearby
linear system. In particular we will show that the computed X satisfies

AX =B+ AB.
We call the matrix X a backward stable solution if
[AB| < |l Al 1X,

where 7 denotes a small multiple of the unit roundoff e.
A backward stable solution is not to be confused with an accurate solution. The
accuracy of X is usually limited by the condition number x(A) := ||A]| ||A™Y]|. The
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2 URS VON MATT AND G. W. STEWART

relative error of X can be bounded by

X = ATB| _ ns(4)
<
[AZ'Bl = 1 —ns(A)’

provided that nk(A) < 1. Thus we can only compute an accurate solution X if we
use a stable algorithm to solve a well-conditioned problem.

Our paper is organized as follows. In Section 2 we give a concise description of
the algorithm to be analysed. This algorithm consists of a few basic building blocks
for which we will cite error bounds in Section 3. Since our algorithm calls itself
recursively we have to make an assumption about the structure of the errors after
each invocation. This is the purpose of Section 4, where we also analyse the local
errors in each stage. We combine these local errors to give a global error bound in
Section 5. The structure of this global error bound reveals a potential instability of
our algorithm. This is discussed in Section 6. In Sections 7 and 8 we identify two
classes of matrices for which our algorithm computes a backward stable solution. We
conclude our presentation with some numerical examples in Section 9.

Throughout our analysis we will use the 2-norm, except where otherwise noted.
Its main advantage is that the norm of an orthogonal matrix is one.

2. ALGORITHM

We assume that the matrix A in (1) has the following block Hessenberg structure:

_All A12 Tt Tt Aln 1
A21 ' :
A=
‘- An—l,n
L An,n—l Ann _

The diagonal blocks A;; are assumed to be square nonsingular matrices of order p;.
The total size of A is given by

N = Zpi.
=1
It n > 1 we can select a tear index k& with 1 < k < n and partition the matrix A
as follows:
Anw ATL@
A= [Asw AJ '

The submatrix A,, contains the first & diagonal blocks of A, and A,. contains the
last n — & diagonal blocks of A. Note that Aji; is the only nonzero block in Aj,.



BLOCK HESSENBERG SYSTEMS 3

nnw nse
N A | D A e
Pk+1 I
...................
Pk : :
nse ASU} AS€ D

FIGURE 1. Structure of A.

This partitioning is also shown as Figure 1. The dimensions n,, and n, are given

by
k
Npw = Zplv
=1
Nse = Z Pi-

i=k+1

Let E be the columns of the identity matrix that correspond to the rows of A
spanned by Ajiq, and let F' consist of the columns of the identity matrix corre-
sponding to the columns of A spanned by Ayt ;. Then we can also define

A Anw Ane o T
A= [ 0 ASJ =A—-FA,F~.

In order to solve the linear system (1) for X we can compute the solution Y of
AY =B

and get X from Y by means of an updating formula. The well-known Sherman-
Morrison-Woodbury formula (cf. [4, p. 51]) would give us

AT = ATBE(T + A FTAT )T A FTAT
AV ATEA, (I + FTAT EA,,) ' FTA.

AV = (A+ EA,,FT)!
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ALGORITHM 1. Solution of Block Hessenberg Systems.

function X = solve(A, B)

if not at the bottom then
Compute the orthogonal URV-decomposition A, = URVT.
Gy = solve(Ase, U)
Gy = solve(Apy, —AneGls)

S:=RVTaG,

T =I4+5

Solve TR = R for R by Gaussian elimination.
P:=GR

Y; = solve(Ase, Bs)

Yy, = solve(Any, Bn, — AneYs)

X:=Y - PVTy,
else

Solve AX = B for X by Gaussian elimination.
end

Unfortunately, this formula does not take advantage of the many zeros in Ag,, re-
quiring the solution of a large intermediate linear system. We can reduce the size of
this linear system with the help of the URV-decomposition (cf. [8])

Ay =URVT.

Let r denote the rank of A, as it is determined by the URV-decomposition. Then U
will be an orthogonal ng.-by-r matrix with pri; nonzero rows. Also R is a square
r-by-r matrix, and V is an orthogonal 1n,,-by-r matrix with p; nonzero rows. Now
we can express the inverse of A by

ATV = ATV~ AT'EU(I + RV FTAT'EU) ' RVTFT AL,

In order to avoid the multiple evaluation of the same expressions we introduce the
following intermediate quantities:

G = AT'EU,
S:=RVTF'G,
T:=1+5,
R:=T7'R,

P := GR.

Note that these matrices are independent of the right hand side B. The overall
procedure to solve the linear system (1) is also presented as Algorithm 1.

In [7] this algorithm is refined further by introducing the auxiliary procedures
“patchgen” and “topsolve”. These refinements are critical for the efficiency of the
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FIGURE 2. Tear Tree.

algorithm, but they are not necessary for the purpose of this error analysis. Further
implementation details may be found in [9].

The solution of the linear system (1) can also be described by the tear tree of
Figure 2. Each node represents a linear system to be solved. The node on the top
level (k = 3) stands for the system (1), whereas the leaf nodes are the linear systems
that are not divided any further but solved by Gaussian elimination. The number n
of diagonal blocks in the matrix A, which is equal to the number of leaf nodes, and
the height h of the tear tree are connected by the inequalities

n <2
h > log, n.

These inequalities become equalities if the tear tree of Figure 2 is a complete binary
tree.

3. Basic OPERATIONS

Algorithm 1 is composed of a few basic building blocks. These are the addition and
multiplication of matrices, the calculation of a URV-decomposition, and the solution
of linear systems by Gaussian elimination. We will now state bounds for the errors
associated with these operations.

In the case of the addition of two matrices we have

fllA+ B)=A+ B+ FE,
where

IEN < mlA+ B
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The quantity 7y is on the order of the unit roundoft ¢ and slowly increases with the
size of the matrices A and B. See also [13, pp. 114-115 and p. 57].
It we multiply two matrices in floating point we have

fi(AB)= AB+ F,
where
[ < n2| Al B

Again, 7y is a small multiple of the unit roundoft and slowly grows with the size of
the matrices A and B (cf. [13, pp. 115-116]).

The size of the error in computing an orthogonal URV-decomposition depends on
the specifics of the decomposition. One may choose a QR-decomposition [4, Chap-
ter 5], a rank-revealing decomposition [2, 8], or the singular value decomposition [4,
Section 8.3]. All of these factorizations have in common that they can be expressed
as a sequence of orthogonal transformations applied from the left and the right to
the initial matrix. The orthogonal transformations are also accumulated to give the
matrices U and V. Wilkinson shows in [13, pp. 160-161] that there are orthogonal
matrices Uy and Vy and an 53 such that

(2) 1R — Uy AVo|| < 2us]| Al
(3) 1U = Uol| < ns,
(4) IV = Vol < ns.

The quantity ns is on the order of the unit roundoff and slowly grows with the size
of the matrix A and the number of the orthogonal transformations applied to A.
From (3) and (4) it immediately follows that

U] <1+ ns,
VI <1+ ns.

We can also show, by increasing 53 slightly as necessary, that
IURVT — AJ| < 4ap5]|All.
(OO < 1+ 3,
V)T < 1+ 3.

We assume that small linear systems are solved by Gaussian elimination. In [12,
p. 108] and [13, p. 252] Wilkinson shows that this process can be described by the
equation

(5) Ax = b + Ab,
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where
(6) [Ab|| < myl[All [[x]]-

The value of 7}, is on the order of the unit roundoff and slowly increases with the size
of A. It also depends on the pivoting strategy used. See [5] for a more recent survey.

Note that the bound (6) is only applicable if the right hand side of (5) is a vector.
It we solve several linear systems with the same matrix A we get

(7) AX = B+ AB,
where
(8) IAB| < nin/rll A X)),

and r denotes the number of columns in the matrix B.
Let rpax be the maximum number of right hand sides in a linear system that is
solved by Gaussian elimination in Algorithm 1. If we define

N4 1= N3\ Tmax

then we can always bound the residual AB in (7) by
JAB|| < nal Al | X]|-

Thanks to this convention our error bounds will become somewhat simpler.

4. ANALYSIS OF ONE STAGE

In the following we will give expressions for the rounding errors incurred at one
stage of Algorithm 1. We assume that we are not at the bottom of the tear tree, and
we use the assumptions of Section 3 to bound the size of the rounding errors.

In what follows the matrix A denotes the system matrix of an arbitrary interior
node of the tear tree. In an attempt to keep the notation simple we do not intro-
duce an index to indicate the corresponding node. We also assume that the four
submatrices A, Ane, Asw, and Ay, are predefined by the tearing strategy.

We make the inductive assumption that the solution X computed at level k satisfies

9) AX =B+ AB,
where the residual AB can be expressed by
(10) AB=ALx +AMxX.

We use the index X for the matrices ALy and AMx to indicate that they depend
on the solution X.
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We assume that at level k we always have

(11) IALx|| < &IID7 X,
(12) [AMx DIl < Gk,

for all matrices X. The quantity D denotes a nonsingular block diagonal matrix,
which is partitioned commensurably with A. In particular we always have D,. =0
and Dy, = 0 for all the nodes in the tear tree. The matrix D will give us additional
flexibility in bounding the norm of the residual AB. We will discuss this issue in
more detail in Sections 7-9.

Since we solve the systems at the bottom level by Gaussian elimination, we define

€o == na|| Al | D],
CO = 07

The purpose of the next sections will be to compute &, and (. if &1 and (p_; are
known.

Let us also establish the following convention: If we compute a quantity, say =, the
corresponding rounding error is called Az. Consequently, Az does not need to be
read as a perturbation of x. We only break this convention if several quantities are
computed simultaneously, as in the URV-decomposition, and for the residual AB.

Throughout our analysis we will assume that the rounding errors remain small
compared to the norm of the computed quantities. This means that the computed
and the exact quantities will agree to at least a few digits.

4.1. Calculation of the URV-Decomposition. The result of the initial URV-
decomposition of Algorithm 1 can be described by

(13) Asw = URVT + AASIU?
where
(14) [A A < 4ns||Aswl|-

The matrices U and V' are nearly orthogonal, and they satisty

(15) U <1 4ms,  IUTO)TUT < 14+ 30,

(16) IVIE< 1+ s, VIV < 14 3.

The expression RV"', which we will also use later on, can be written as
(17) RVY = (UMY U (A, — AAL).

Therefore we have the bound

(18) RV < (1 + 393) (1 + 4n3) || Asao -
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Because of
R=UMU)TWUH (A, — AA)VIVEV)TE
we can also bound the norm of R by
(19) IR < (14 3m3) (1 4 473)[| Asa ||

4.2. Calculation of (. The calculation of the matrix GG proceeds in three steps
that can be described by the equations

AuGy= U+ AG,.
Un — _AneGs + AUna

The error matrix AU, is bounded by
(20) JAUL| < ol Al |Gl < 1.01na || Arel | |AZM]-
The residuals AG, and AG,, have the expansion

AG, = ALg. + AMg. G,
AG, = ALg, + AMqg, G,,.

We can also write these equations in matrix terms as
(21) AG = EU + AG,
where

(22) AG = lAGn + AUn] _ lALGn + AUn] N lAMGn

AG, AlLe. AMGS] G.

Since the matrix G can be written as
G = A"Y(EU + AG),
we also have

(23) 1G] < Lo1| A7,
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4.3. Calculation of S. We can express the matrix S by
(24) S =RV'G, + AS,
where

IAS] < (202 +n) IR IV IIG -

This bound applies regardless of the sequence in which the two multiplications are
performed. In view of (16,19,23) we can also bound ||AS]| by

IAS|| < 101202 + 03)(L + na)(1 4 3n3)*(1 + 4na) | Asa || | A7)

(25) 2 i1
<2 1.0 Asu || ||ATH.

By means of the equations (13,21,24) we can derive the following more explicit ex-
pression for S:
S = (UTU) U (A FTATVEU — AAL FTG + Ay FTATIAG) 4 AS.
Obviously, the norm of S can be bounded by
I15]] < 101 Ay FTA7Y.
4.4. Calculation of T'. The matrix 7" satisfies the equation
(26) T=1+5+AT,
where
AT < mlf + 5.
By means of some straightforward manipulations, using (13,21,24), we can see that
(27)  EU(I +5)=AAT'EU — EAAFTG + EA FTAT'AG + EUAS.
Consequently, we can express [ 4+ 5 as
[+ S =UT)WYEYAAT EU — EAA,, FTG +
EA, FTATIAG) 4+ AS,
and T is given by
T = (UTU) WYEY(AAT'EU — EAA,, FTG +
EALFTATIAG) + AS + AT.
It AAg,, AG, and AS are sufficiently small, we have
(28) IAT]| < 1015 | AATY].



BLOCK HESSENBERG SYSTEMS 11
Similarly, we also have

(20) 17 < LOLJAA™.

4.5. Calculation of £. If we solve the linear system for R by Gaussian elimination
we get

(30) TR=R+AR,
where
(31) IAR| < nal| T ]I 2]].

In order to bound HAE’H differently we need an alternative expression for R. It is

useful to consider the quantity I — GRVTFT first. By using (13,21,24,26,30) we have
Al —=GRVYFTY = A4+ EAA,, FT(I — GRVTFT) —

32 . R R

(32) AGRV'F + EU((AS + AT)R — AR)V'F",

which is equivalent to
I—GRVYFY = A7"A+ A" EAA,, FY (I — GRVTFT) —
33 . . .
(33) ATAGRVTFT + AT BEU((AS + AT)R— AR)VTFT,

Consequently, we can represent i as
R= U)W EY(A - AATTA) PV (VTIV)™! —
WUy T ET (AA‘lEAAstT(] —GRVTETYFV(VTY) ! 4
EALFTATAGR + AATEU((AS + AT)R - AJ%)).
Note that we can also write A — AA™'A as
(34) A—AATYA = BA, FTAT A= AAT'EA,, FT.
If we assume the rounding errors to be bounded we can show that
(35) |R|| <1.01]|A — AA7A].
By combining this result with (29,31) we can bound ||AR|| by

(36) AR < 1.01%9)|AA~||A — AAAJ|.
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4.6. Calculation of P. The calculation of P can be described by the equation
(37) P =GR+ AP,
where
IAP| < na| G| 2]
By using (23,35) we can bound ||AP| by
(38) IAPI| < 101 A7 [ A = AAT A
Because of (33) the following alternative expression for P applies:
P=A"EAVVIV) — AT EAA, FY(I — GRVIFYO)FV(VTV)™ 4
AT'AGR — ATEU((AS + AT)R — AR) + AP,

Provided that the rounding errors remain bounded we certainly have

39) |P|| < 1.01|AT E AL,

4.7. Calculation of Y. The matrix Y is computed in three steps as follows:
(40) ALY, = B, + AY,,

(41) B, = B, — A..Y, + AB,,

(42) AwaYy = B, + AY,,.

The error in computing B, can be bounded by

(43) [ABll < ml[ B = AneYsl[ 4 (1 + m1)nal| Ane [ 1Y5]]
< mllBall + (71 4 2 + mna2) || Ane[[ 1Y)

On the other hand we can assume the following expressions for the residuals AYj

and AY,:

(44) AY, = ALy, + AMy,Y,

(45) AY, = ALy, + AMy,Y,.

The equations (40,41,42,44,45) can also be written in matrix terms as
(46) AY = B+ AY,

where

Ay, +AB)]  [ALy, + AB,| | [AMy,
) ArE [ AY; ] B [ ALy, ] * [ A My, T
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It will turn out to be useful to eliminate B,, from the right hand side of (43). Observe
that

1Bl < IBIL < JAY I+ [AY ]| < LOLJA[ [ Y]].
Consequently, we can also bound HABnH by
(48) IABL| < (2:00m1 +n2 + ) [[A] Y]] < 101200 + ) [ Al Y]]
4.8. Calculation of X. The computed value of X satisfies
(49) X =Y - PV, + AKX,
where
JAX] < mllY = PYIYall+ (1 )@+ m s PV YL

This bound can be processed further by using (16,39), and we get
[AX]] < (771 + 1.01(1 + 773)(771 + (1 4+m)2+ 772)772) HA_IEAst) Y]

A simpler bound is given by

(50) IAX] < (ny + 1002 (s + 2p2) | AT EAL ) 1Y ]].

5. BACKWARD ERROR

We are now ready to give an expression for the residual AB in (9). By using the
equations (32,37,46,49) we get

AB = (EAAWFT(] CGRVTFT)  AGRVTFT

(51) EU((AS+AT)R— AR)VI T —
AAPVTFT) Y+ AY + AAX,

The value of AB can be processed further. By combining (37) and (49) we get
(52) (I —GRVTFN)Y = X + APVTFTY — AX.,
If we use (9,13,21,33,34,46,51,52) we can also derive the following alternative expres-
sion for RVTFTY:
RVIEYY = RVIFTX — ((AS + AT)R— AR)VIITY +

53
(53) RVYFTAPVIFTY — RVTFTAX.
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Because of (22,47,52,53) we are led to the following expression for AB:

AB = EAA, F'X —

[ALg, + AU, ]
ALg. AMg,

EU(AS + AT)RVYFTX — EUARVIFTY — AAPVTFTY +

ALy, + AB,] L [y,
ALy, |

RVTFTX —

lAMGn GRVTEFTX +

(54)

Y + AAX + O(&%).

)

The matrix O(e?) represents second order terms. They tend to zero as the unit
roundoff ¢ tends to zero. Specifically, we have

2
e,
|0 £

A key expression in (54) is GRVTFT. With the help of (13,21) we can transform
this matrix into

GRV'F' = AT VEAFT — AT EAALFT + ATTAGRVTFT.
Similarly, we use (9,46) to write ¥ as

YV = ATTAX — ATYAB — AY)

55 . X
(55) = D(D'AT'AD)DT X — ATY(AB — AY).

Now 1t is straightforward to write the residual AB as
AB=ALx+ AMxX,

where
(56) ALy = [P £8B L AAx 1 0(2),
ALy,
AMy = EAA, F* — [ALCZ ; AU”] RVTFT —
Gs
AMg ] -1 T
g ATTEALFT 4
(57) [ AMa.
EU(AS + AT)RVTFT — EUARVTFTAT A —
A A M- A
T 2T -1 Yy _1
AAPVTFTA A+[ AMYS]A A.
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Let us give bounds for the norms of ALx and AMx. From (48,50,55) we have

ALy < 1.01(V2r + 101(2q +n2) | Al D] +

(58) (i + 100 + 2)[ A7 B A ) A 1D ) -
|D AT AD| DX

In order to bound ||[AMx D|| we need to multiply (57) by D from the right:

AlLg, + AU,

— T
AMxD = EAA,, F* D [ AL,

] RVTFTD —

AMGnan -1 4-1 T
[ AMGSDSB] DA EA, L F D+

EU(AS + AT)RVYF'D — EUARVTFTDDA~'AD —
AAPVYFTDD YA AD +

AMYnan -1 A—l
[ AMYSDSJD A-AD,

Because of (17) we can write the expression RVIFTD also as
RVIFID = (UTU)Y WU (Agy — AAL)ETD.
Consequently, its norm is certainly bounded by
(59) |RVEETD|| < 1.01|| Agw Do |-
If we use (11,12,14,15,16,18,20,25,28,36,38,59) we can bound ||AMx D|| as follows:

[AMx D|| < 4ns]| Aswll || Dnw || +
LOV(V2I[ A€kt 4 mall AeHTAZ DI A D || +
(14 95)1.01(2 - 1.0 o] Au || || A7Y]] +
101y | AAT ) A D | +
(14 n3)* L0y [AATY| |A = AATA|| | Dy || | DT AT AD|| +
LO (1 + ) || Al [AT [ |A = AATY A || Do || | D7H AT AD| +
(D7 AT B Ay Dy || + |[D7H AT AD| ) G
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It is useful to simplify this bound somewhat:

(60)

IAMx D|| < 47| Aso || | Do || 4+ 1.01% (1 + 302) || Asw Do || || Al |A7Y]| +
101 (2 + ma) | JAT A = AAT Al || Dy [ 1D AT AD| +
LOTV2|| Ay D | | A7Y[ €21 +
(ID"* AT B A Do || + | DTV ATYAD[) o

The inequalities (58) and (60) contain the quantities {x_1 and (;—1 which are used to
bound the errors at the previous level of the tear tree. Consequently, we can use (58)
and (60) to give recurrence relationships for £ and ;. Let us define the quantities

(61) fe == max 1.01V2|| D AT AD),
(62) fe = max||[DTV AT EA, Dy || + |[DTPATTAD),
(63) g = max 1L.012V/2|| Ay, Dy || || A7),

¢e :=max 1.01 (1.01(2n1 +n2) | A|| || D[ +

(61 (1 + 101 + 2| A7 B A ) A 1D ) -
|pt ATt ap),
ce i= ma g Awu | Do | +
LOV (1 -+ 392)l| A Do AN A7) +
L0 (s + gl A A7 1A — A4~ 4] -
Dl D747 4D,

(65)

where the maximum is to be taken over all the nodes in the tear tree. The se-
quences {1} and {(x} thus satisfy the following recurrence relationships:

o = nal| Al [ D],
e = felp—1 + e, k>1,
CO = 07

Ch = feCho1 + 981 +cc. k> 1L
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Their explicit solutions are given by!

[E-1
(66) & =&l + e

T
fe—fo f—1

Ce = &og

_I_
(67)

) 1 fE B ¢
£g<(f£ —1)(fe —1) * (fe=D(fe—Tfo)  (fe=D(fe = fc))'

These explicit expressions for & and (j are only valid if fe # 1, fr # 1, and fe # fe.
It would be possible to give similar expressions for these special cases, too. However
these formulas would not give us more insight than (66) and (67).

At the top level of the tear tree the residual AB is given by

AB=ALx + AMxX,

where
IALx|| < & | DTHX]],
[AMx D[ < G-
Consequently, ||[AB|| can be bounded by
(68) IAB] < (& + G)IIDTH X

The expression ||[D~' X]| is nothing else than the size of the solution X expressed in
another norm.

6. STABILITY CRITERION

Let us now analyse the conditions under which Algorithm 1 computes a backward
stable solution. We assume that all the matrices A, A, and D in the tear tree
are nonsingular and only moderately ill-conditioned. Without this assumption the
quantities ¢ and ¢, could become arbitrarily large, like in the case of the matrices

e 1 - e 1
A.:L ] A.:lo ]
with € | 0.

If ¢¢ and ¢, are only small multiples of || A|| the norm of the residual AB in (68) will
be on the order of ¢||Al| || D~ X|| for f¢ ~ 1 and f; &~ 1. This condition is equivalent to
the requirement that there exists a nonsingular block diagonal matrix D, partitioned
commensurably with A, such that

(69) |ID7'ATYAD| &~ 1

'We used Maple [3] to derive this result.
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for all the matrices in the tear tree. If this stability criterion is met Algorithm 1 is
guaranteed to compute a backward stable solution provided that all the matrices A,
121, and D in the tear tree are only moderately ill-conditioned.

It should be noted that (69) is a sufficient but not a necessary stability condition.
Since we use the quantities £ and (i, to bound ||[ALx|| and |AMx D|| at each level in
the tear tree, these bounds may grow even if ALx and AMyx D remain bounded. On
the positive side, we get a manageable error analysis and a simple stability criterion.

In the next two sections we will identify two classes of matrices for which the
criterion (69) is always satisfied.

7. DIAGONALLY DOMINANT MATRICES

An important class of matrices, for which the condition (69) is always satisfied, is
given by the set of nonsingular diagonally dominant matrices. In order to see this we
need the following theorem.

Theorem 7.1. Let A be an m-by-n matriz with m <n, and let A be diagonally
dominant, i.ec.

Z|aij|§|aﬁ|, izl,...,m.
=1
i#i
We partition A into
A= [Al AQ] :

where Ay is a square m-by-m matriz, and Ay is an m-by-(n — m) matriz. We also
assume that Ay ts nonsingular. Under these assumptions the inequality

[ AT Azl < 1
applies.

Proof. The proof is based on the observation that Gaussian elimination without piv-
oting can be applied to the matrix A, and that A remains diagonally dominant during
this process (cf. [11, pp. 288-289]). Specifically there are elementary matrices Ly, Ry,
and a diagonal matrix D such that

Rm—l et RlDLm_l et LlAl — ]
It we apply these transformations to A we get
Rpoy o RiD Ly LA = |1 A7'Ay.

Since these transformations preserve the diagonal dominance of the matrix A we
conclude that ||A7' Ayl < 1. O
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As a straightforward application of Theorem 7.1 we consider the norm of ATA
when A is diagonally dominant. It is easily verified that

A []— AT ALAT A, 0]

A AL, Il

The two matrices [Anw Am] and [Ase Asw] satisfy the assumptions of Theorem 7.1,
and we have

A7 Anelloo < 1,
A Al < 1.

It is now easy to see that
JA- Al < 2.

This bound is tight. It is attained, for instance, by the matrices

11 2 11
S ST A T}
It a matrix A is diagonally dominant then so are all its submatrices in the tear tree.
Consequently, if we set D = I, the condition (69) is satisfied, and Algorithm 1 will

compute a stable solution of the linear system (1), provided that all the matrices A
and A in the tear tree are only moderately ill-conditioned.

8. M-MATRICES

A nonsingular n-by-n matrix A is called an M-matrix if a;; < 0 for « # 5 and all the
entries in A~ are nonnegative. Many alternative characterizations of an M-matrix
may be found in [1, Chapter 6] and [6, Section 6.4]. For the purpose of this error
analysis the following definition is the most useful: A nonsingular n-by-n matrix A
is called an M-matrix if a;; < 0 for ¢ # j, a;; > 0, and there exists a positive diagonal
matrix D such that AD is strictly diagonally dominant, i.e.

Gyl >Z|aij|djj7 1= 1, , 1.
J#
Without loss of generality we may assume that || D|| = 1. Note that this definition is
equivalent to the condition (Mss) in [1, p. 137].
In view of the preceding discussion in Section 7 the stability criterion (69) is satis-
fied for this particular choice of the matrix D. Therefore, Algorithm 1 will compute
a stable solution for linear systems with M-matrices.
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9. NUMERICAL RESULTS

In this section we will present numerical results for three classes of test matrices
to illustrate our error bounds. As our first example we choose the matrix

e |1
111
1le |1
111
A= Tle |1
111
1|e
1

We will see in a moment that the condition (69) is not satisfied for this matrix. The

basic building block of A is given by
11
1 €|’

which is a well-conditioned matrix for 0 < ¢ < 1/2. Specifically we have

M =

4

Koo (M) = T

On the other hand the matrix

~ 11
=y

becomes increasingly ill-conditioned as € tends to zero:

- 1
oo (V1) = 222€,

€

Consequently, if we partition the matrix A as indicated we can expect large values
of HD_IA_IADH for all nodes in the tear tree.

In order to avoid large matrices we choose an unusual tearing strategy: If the size N
of the matrix A is two we solve the linear system by Gaussian elimination, otherwise
we set 1y, = N — 2 and ng = 2 (cf. Figure 1). This strategy leads to a degenerate
tear tree with a height of h = N/2 — 1. The point of our example, however, does not
depend on a particular tearing strategy. For any given strategy we can construct a
matrix A that exhibits the same problems.
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TABLE 1. Properties of the First Class of Test Matrices.

AN | IARAL | AT [ IDTR AT AD | [|A - AAT A

N
471.73511.010-10% [ 1.000- 10* ] 9.901 - 101 1.010- 1072
6| 1.906 | 1.021-10% | 1.010- 104 1.414 - 102 1.010 - 102
1.954 | 1.031-102% | 1.021 - 104 1.744 - 102 1.010 - 102
10| 1.974 | 1.041-10% | 1.031-10%* |  2.026 - 102 1.010 - 102
121 1.984 | 1.052-10% | 1.042-10* | 2.278 - 102 1.010 - 102
14 [ 1.990 | 1.063 - 102 | 1.053-10* |  2.509 - 102 1.010- 1072
161 1.994 | 1.074-10% | 1.064 - 10* | 2.724 - 102 1.010 - 102
18 1 1.996 | 1.085-102 | 1.074 - 10* |  2.928 - 102 1.010 - 102
20| 1.998 | 1.096-10% | 1.085-10* | 3.122-102 1.010 - 102
22 11.999 | 1.107 - 102 | 1.097 - 10* 3.308 - 102 1.010 - 102

oo

For our numerical example we choose ¢ = 0.01. If we set D = I the value of the
quantity ||[D"* A7 AD|| is on the order of e7? = 10*. However, if we choose

1

c

where ¢ := ¢ = 10™*, this norm can be reduced to the order of ¢=! = 10%

In Table 1 we give the values of some key quantities from (61,62,63,64,65). For
any A with N > 4 we obtain the corresponding A by setting an_; y—2 to zero. This
is consistent with our special tearing strategy. We can see from the values of Table 1
that all the subproblems in the tear tree are only moderately ill-conditioned.

The entries of the right hand side b are given by b; =¢. We computed our re-
sults on a DECstation 3100 using a MATLAB [10] implementation of Algorithm 1.
The unit roundoff is given by € = 27°? & 2.2204 - 107'%. We used the singular value
decomposition as our URV-decomposition.

In Table 2 we present the absolute and relative residuals for increasing matrix
sizes N. Due to our special tearing strategy the height i of the tear tree increases
linearly with N. We also compare the residuals obtained from Algorithm 1 with
those from Gaussian elimination (backslash operator in MATLAB). The reader should
observe the exponential error growth of the residual ||Ax — b||, which is due to the

large value of ||[D™*A=1AD)|.
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TABLE 2. Residuals for the First Class of Test Matrices.

| Ax — b]|
Jx =l EIE]
Gaussian Gaussian

N | h | Algorithm 1 | elimination | Algorithm 1 | elimination
4] 11]3634-1071%[4.965-10"1 ] 1.042-10~1°% | 1.423-10~1®
6| 21529810712 | 4.441-1071%|9.169-10~ | 7.687-10~1°
8| 311.523-1071Y |8.882-1071%|1.918.10~"3 | 1.119-10~18
10| 43.020-107% |6.280-10715|2.996 101! | 6.231-10~1°
12| 5|7.708-107% |8.882-1071%|6.307-107° | 7.268-10~1°
14| 62.044-1073 | 1.538-10"15| 1.422-10-% | 1.070-10"18
16| 719.639-1072 |2.176-10~15 | 5.754-10-° | 1.315-10~18
18 | 86.382-10° 1.776-107% | 2.538 -10~3 | 9.483 .10 1°
20| 91 1.462-103 1.776 - 107 | 4.403-10~3 | 8.483.10"1°
22 |10 | 2.708 - 10° 1.986-107% | 1.958-10~2 | 8.572-1071°

TABLE 3. Properties of the Class of Diagonally Dominant Matrices.

N JA[ ] [ATRA] A=Y | [IDTTATTAD] | |4 — AATLA|
471.990]7.143-10F [ 1.611 - 10° 1.407 5.024 - 101
6| 1.995 | 1.060-10% | 1.010 - 102 1.572 6.677 - 10"
811.997 | 1.328 -10% | 2.025 - 102 1.752 7.505 - 101
10 | 1.998 | 1.554 - 102 | 3.458 - 102 1.922 8.003 - 10"
121 1.999 | 1.752 - 102 | 5.303 - 102 2.081 8.335- 10"
141 1.999 | 1.931-102 | 7.558 - 102 2.230 8.573- 10"
16 | 1.999 | 2.095-10% | 1.022 - 103 2.371 8.751 - 10*
18 1 1.999 | 2.248 - 10% | 1.330 - 103 2.503 8.889- 10"
20 | 2.000 | 2.391-102% | 1.678 - 103 2.630 9.000 - 10"
22| 2.000 | 2.526 - 102 | 2.067 - 103 2.751 9.091 - 10"

As our second test matrix we choose the diagonally dominant matrix

1
a

o= R
Q| o

TN R
Q| o

=R

Qo

a
L 1 -
where we set ¢ := 0.01 and b:= 0.99. All the subproblems in the tear tree are rela-
tively well-conditioned. To illustrate this we present in Table 3 the values of some

key quantities in the tear tree.
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TABLE 4. Residuals for the Class of Diagonally Dominant Matrices.

||Ax — b||

A = Bl AT ]
(Gaussian (Gaussian
N | h | Algorithm 1 | elimination | Algorithm 1 | elimination
4] 178379-107[2.665-10" [ 6.066-10"17 [ 1.929- 1017
6| 2|1.801-10""* | 1.779-10~'* | 4.593-10~'7 | 4.535- 10~
8| 3|7.121-10* | 3.815-10"1* | 8.786-10717 | 4.708 - 10~17
10| 4(8175-10™ | 1.113-10~*3 | 5.759 - 107 | 7.842 - 10~'7
12| 5(2.283-1073 | 1.088-10"13 | 1.018 - 10716 | 4.851- 1017
14| 6]2.863-10""2|1.632-10~3 | 8.677-10~7 | 4.947-10~'7
16| 7]4.768-107'3 | 1.835-107'3 | 1.034-1071% | 3.981-10~'7
18 | 8]5.265-10713 | 3.521-10~13 | 8.504 - 10717 | 5.687 - 1017
20 9]1.019-10712|5.198-10713 | 1.265-10~¢ | 6.450 - 10~ 17
22 110 | 8.965- 10713 | 4.299 - 10713 | 8.763 - 1017 | 4.201 - 10~ 7

We use the same tearing strategy as in the first example. Again, the vector b is
given by b; = ¢. The norms of the residuals for different matrix sizes are presented as

Table 4.

As our last example we choose the M-matrix

1 b
a 1|a
b1 b
a 1|a
A= b1 b ’
a 1|a
b1 b
al_

where we set ¢ := —0.00049 and b := —490. The matrix AD is diagonally dominant
for

c

I 1

where ¢ := 1000. The properties of A are listed as Table 5. We choose the same
tearing strategy and the same right hand side b as before, and the resulting residuals
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TABLE 5. Properties of the Class of M-Matrices.

[14]] JATHA] | AT [ IDTPATIAD] | (I - A1)

N

417928107 | 1.158- 103 | 7.547 - 10? 1.303 8.387 - 10?

6| 8.830-107 | 1.445- 103 | 2.167 - 103 1.349 9.549 - 10?
9.209 -10? | 1.614 - 103 | 4.028 - 103 1.396 1.001-103
10 | 9.403-10% | 1.712-10® | 6.077 - 10® 1.431 1.021-103
12 | 9.515-10% | 1.768 - 10® | 8.130 - 10® 1.453 1.029 - 103
14 | 9.586 - 10% | 1.799 - 103 | 1.007 - 10* 1.466 1.033-103
16 | 9.633-10% | 1.815-10% | 1.182 - 10* 1.474 1.035- 103
18 | 9.666 - 10% | 1.823 - 103 | 1.338 - 10* 1.478 1.035- 103
20 | 9.691-10% | 1.828 -10% | 1.474 - 10* 1.480 1.036 - 103
22 1 9.709-10% | 1.830 - 10® | 1.591 - 10* 1.481 1.036 - 10°

oo

TABLE 6. Residuals for the Class of M-Matrices.

[4x — b|]
(1AL 1]
Gaussian Gaussian
Algorithm 1 | elimination | Algorithm 1 | elimination

1.017-10" "2 [ 4.441-10~1% | 1.570-10"'° [ 6.859 - 10~ 23
4.547-10712 | 9.095- 10713 | 2.087-10"1° | 4.173-1072°
5.457-10712 | 1.819-107'2 | 1.100-10~° | 3.667 - 1020
7.500- 10712 | 1.819- 10712 | 8.214-1072° | 1.992. 1020
1.373-107 | 870210715 | 9.347-10720 | 5.923.10~23
192510~ | 3.638- 10712 [ 8.923-10720 | 1.686 - 10~20
4.002-10711 [ 3.638-10712 | 1.349-10-1° | 1.226 - 10~2°
4.426-10~'" | 5.087-10~* | 1.139-107'° | 1.309 - 10~ 22
7.570- 1011 | 7.276 - 10712 | 1.544 - 1019 | 1.484 . 1020
867810711 | 2.183 - 10~11 | 1.444.1071° | 3.632-10~2°

[[Ax — b]]

=

oo O = 2

10
12
14
16
18
20
22

O WO 0 =IO O W N

—_

are presented as Table 6.

For the second and third class of test problems the condition (69) always holds.
For these cases, the results in Table 4 and 6 confirm that Algorithm 1 can compute a
solution with a residual whose norm is on the same order as the norm of the residual
from Gaussian elimination.

10. CONCLUSIONS

We have presented an error analysis for a divide-and-conquer algorithm to solve
linear systems with block Hessenberg matrices. Our error analysis corresponds closely
to the recursive nature of this algorithm. The key to our analysis is equation (10)
which gives a representation for the residuals A B in the tear tree. Another important
equation is (51) which shows the structure of the residuals in terms of local errors
and errors from previous nodes in the tear tree. By combining (10) and (51) we can
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derive the linear recurrence relationships for &, and (; which lead to the final error

bound (68).

The precise value of the bound (68) is of minor importance. Rather we can show
that Algorithm 1 computes a backward stable solution if the condition (69) is satisfied
for all the matrices in the tear tree. This condition ensures that all the quantities
in Algorithm 1 remain bounded. In particular equation (55) shows that the ma-

trix D~'Y can never be much larger than D~ X. On the other hand, if | D' A~1AD||
is significantly larger than one for all the nodes in the tear tree, we may encounter
very large matrices D™1Y during the execution of Algorithm 1, even if the final re-
sult D71 X is small. This is exactly what happens in our first test case in Section 9,
leading to a large residual AB.

We have also shown that the condition (69) is always satisfied in the case of diag-
onally dominant matrices and M-matrices. This explains the accurate results of the
algorithm for this type of problems.
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