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Predicting energy consumption accurately and reliably is critical for route optimization in 

eco-routing. State-of-the-practice methods for calculating energy consumption utilize second-by-

second speed, acceleration, and power demand. Such models can achieve high accuracy but are 

not suitable for forecasting usages due to strict requirement of inputs and computing resources. 

Other methods used to predict energy consumption rely on average speed data to reduce data 

collection and computation efforts. However, they ignore the individuality of driving behavior, 

which is particularly important in near-term predictions of energy consumption, as shown in this 

paper. This study develops an input-output hidden Markov model (IOHMM) to cope with the 

influence of external environment and driving behaviors on individual driving features. The model 

is built and trained using passively collected geospatial location data. The approach furthermore 

improves the prediction of vehicle specific power (VSP) distribution, a critical parameter for 

energy predication, through predicted driving features. The model is tested in the Washington D.C. 

metropolitan area, and the performance is evaluated by comparing various indicators with the real-

world values obtained from in-vehicle fuel recording devices. In general, the IOHMM behavior 

model demonstrates an overall cruising speed accuracy of 86.85% and acceleration rate accuracy 



 

of 82.73%. The behavior-integrated energy prediction model outperforms the traditional 

approaches by increasing the energy prediction accuracy to 86.81%. Results obtained from this 

study corroborate the importance of behavioral richness, environmental dynamics, and 

computation efficiency.  
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Chapter 1 Introduction 

1.1. Background  

In an era of accelerated urbanization around the world, the ability to travel 

freely is more critical than ever before. Travel is no longer just for commuting to and 

from work. As a matter of fact, travel for other purposes such as entertainment, vacation, 

leisure activities, running errands, and shopping has long surpassed work-related trips. 

While trips through modes such as public transportation (e.g., bus, rail), transportation 

network companies (e.g., Uber, Lyft), bicycles, shared bikes, and scooters have 

increased, trips carried out through personally owned vehicles are still the predominant 

method of travel. This phenomenon results in continued increases on fuel demand, 

leading to increases in energy consumption, greenhouse gas (GHG) emissions, and air 

toxic emissions [2-4]. According to the Inventory of U.S. Greenhouse Gas Emissions 

and Sinks 1990-2017 (A national inventory that the U.S. Department of Energy 

prepares annually under the United Nations Framework Convention on Climate 

Change), transportation accounted for the largest portion (29%) of total U.S. GHG 

emissions in 2017 [5].  

In the past few decades, researchers have developed a wide range of 

technologies and practices to mitigate vehicle travel congestion and improve air quality. 

On the public agency front, these efforts include the continued improvement of 

roadway infrastructure such as more efficient and interconnected roadway intersection 

controls, highly effective freeway ramp metering and variable speed limit 

managements, focused investment on new modes of transportation, 
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carpooling/vanpooling promotion, and HOV/HOT deployment to reduce single 

occupancy vehicles [5, 6]. On the private business and research front, trip planning and 

navigation apps developed and installed through smart phones and GPS devices are 

used by the public to enable efficiency for an individual traveler, achieving their goals 

of minimizing travel time or travel distance. Such apps analyze roadway conditions 

with near real-time inputs and make recommendations on the shortest route to travel 

from a driver’s origin to their destination, which includes the least travel time paths, 

least travel distance paths, or toll-free ways.  

While these apps primarily focus on travel distance, travel time, and toll, 

functional apps designed for fuel and emissions considerations by individual traveler 

are not widely used. Various research states the path with shortest travel time or shortest 

travel distance may not be the eco-route, especially under complicated traffic 

conditions. Regional-level research on energy and emission indicates the trip fuel 

efficiency can be increased up to 25% through alternative routing. The entire system 

can benefit from the eco-routing system with the fuel reduction ranges between 3.3% 

and 9.3% compared to traditional shortest-travel-time strategies [6]. 

As it stands now, the focus of both public entities and private businesses is 

congestion mitigation: reducing travel distance and travel time. Recently, several trip-

based computation methods and algorithms on energy consumption have emerged, 

such as eco-routing and eco-driving. Eco-routing suggests the optimum path with 

minimum energy consumption, while eco-driving improves drivers’ driving behavior 

[7-16]. Both methods alleviate concerns associated with energy consumption, 
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greenhouse gas emissions, and general air quality. Various research analyzes the 

benefits of eco-routing and suggests the overall reduction of energy consumption is 

considerable [17-23].  

1.2. Vehicle Energy Consumption Modeling 

Vehicle energy consumption estimation modeling has been researched with 

varying coverage and focus. Most macroscopic models take energy consumption as a 

function of traffic features, such as traffic speed, traffic flow density, and roadway 

types. Various bins are established with pre-defined energy consumption rates to reflect 

different driving modes. Some models also use driving features (e.g., average cruising 

speed) and vehicle features (e.g., vehicle type and vehicle age) to determine the energy 

consumption rates. The macroscopic models are easy to deploy but not fully consider 

the influence of the dynamic driving influences on energy consumption.  

An energy consumption estimation model at microscale has gained significant 

attention, benefitting from the advancements in modern electronics, which enable data 

acquisition on a second-by-second scale. Detailed trip trajectory data with driving 

dynamic is recorded, which helps to estimate energy consumption more accurately. The 

two representative types of microscopic models are cycle-based models and modal-

based models. Cycle-based models use driving features (e.g., number of stops, 

acceleration and deceleration ratios, speed variation, and braking time) as inputs to 

calculate energy consumption. A trip is separated into several cycles based on driving 

features, and energy consumption for each cycle is calculated. Modal-based models 

classify vehicle instantaneous operation modes into different bins, which are 
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determined by a second-by-second power demand called vehicle specific power (VSP) 

and cruising speed. VSP can be formulated as a function of speed, acceleration, vehicle 

mass, energy power, resistance factors, and rotation factors. Both models fully consider 

the influence of driving dynamics on energy consumption. Although models at 

microscale are highly accurate, low availability of input data and strict requirement of 

computing power prohibit their practical application for eco-routing. Specifically, the 

microscale models require detailed driving dynamics at a second-by-second level, 

which are usually hard to acquire at a roadway system or through area-wide levels. In 

addition, rates of energy consumption for various bins must be pre-calculated and 

stored in a database for any real-time application, considering the high computation 

demand. 

Both macroscale and microscale models are not suitable for prediction purposes 

in an eco-routing system. To bridge the gaps between macroscale and microscale 

models, mesoscopic models based on VSP distribution have emerged. Recent research 

indicates that VSP on a link follows Gaussian distribution, whose mean and standard 

deviation can be estimated using average traffic speed and road type. The VSP-based 

models have simple structures and lower requirements for the inputs but consider the 

influence of driving dynamics.  

1.3. Driving Behavior Modeling  

Driving behavior covers a lot of parameters, including both macroscale 

phenomena and microscale actions. Macroscale travel behavior includes the number of 

trips a person makes in a day, modes the person uses, and purposes of the person’s trips. 
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Microscale actions cover how a driver operates their vehicle. In the discussion here, 

travel behaviors refer to the microscale parameters related to how the driver completes 

a vehicle trip. Parameters of the driver’s emotion, experience, pressure, reaction to 

emergency traffic, and other unquantifiable factors are referred to as driving behavior. 

The microscale driving behaviors discussed above are mainly influenced by traffic 

conditions (e.g., degree of congestion and weather) and roadway geometry features 

(e.g., both horizontal and vertical curvatures, lane width, median availability, and 

shoulder availability), as revealed by past research [19-21]. Meanwhile, both driving 

behavior and external environment influence driving features: for instance, average 

cruising speed, acceleration rate, and deceleration rate. Driving under low-traffic 

volumes on an uncongested, properly designed, and constructed roadway is more likely 

to a cruising experience with fewer sudden acceleration and deceleration actions. On 

the other hand, making a left turn without protected left-turn signal control may 

increase a driver’s pressure, resulting in harsh acceleration and deceleration. Except the 

external environment, individuality of driving behaviors also leads to varied actual 

driving features and travel experiences. An example is that two drivers driving under 

the same external environment (same congestion level and same roadway) can present 

extremely different driving features, even with similar average speed. A new driver 

with poor driving experience may drive very cautiously with frequent deceleration 

under heavy traffic, while an experienced driver can operate the vehicle more smoothly.  

Though the driving behavior is highly related to the individual, it can be 

improved through various approaches. For example, an eco-driving assistance system 

can recommend to the driver based on real-time operating conditions, improve driving 
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behaviors, result in changes of driving features, and ultimately lead to higher fuel 

efficiency. Additionally, more appropriate routes for lower energy consumption can be 

suggested to the driver based on individual driving behaviors. The deployment of such 

approaches shows that driving behavior changes could significantly increase fuel 

efficiency and reduce energy consumption and emission reduction.  

1.4. Objective 

The objective of this study is twofold. The first is to establish quantitative 

relationships among external environment, driving behaviors, and driving features. The 

second objective is to deploy these relationships to gain a preliminary understanding 

on their utility. 

The study aims at developing an applicable mesoscopic model to predict energy 

consumption with high accuracy for an eco-routing system. The applicable model 

integrates the individual driving behavior model and VSP-based energy prediction 

model. The relationship between external environment, individual driving behavior, 

and driving features is studied, then quantitated with a well-defined statistical model. 

The driving behaviors and features predicted by the statistical model can be utilized to 

estimate more accurate VSP distribution for the VSP-based energy model. 

External environment refers to traffic flow conditions, such as the degree of 

congestion and roadway features such as road type, speed limit, grade, curvature, and 

traffic control. Driving behavior refers to how drivers react to the external environment 

changes, which includes driving experience, reaction time, pressure, emotion, and other 

unquantifiable factors. Driving features are the result of external environment and 
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driving behavior. It includes information on cruising speed, acceleration rate, 

deceleration rate, continuous acceleration or deceleration, and speed variance.  

The relationships are analyzed statistically through the generative approach of 

Input Output Hidden Markov Model (IOHMM), whose structure is consistent with the 

relationships demonstrated above. The model takes external environment variables as 

inputs, driving features as outputs, and driving behaviors as hidden states. The collected 

trip trajectory data is utilized to train the model to predict driving behaviors and driving 

features. The model outputs are then used to improve energy consumption prediction 

model for eco-routing system by amending the VSP distribution based on the driving 

features.  

Compared with other related research, the present study makes contributions 

from the following aspects.  

First, this study considers the driving behavior impact in energy consumption 

prediction. The study analyzes the relationship between external environment, driving 

behavior, and driving features using drivers’ historical trip trajectory data. Then, the 

relationship is quantitated using a well-defined statistical approach to predict driving 

features, which are then utilized to achieve more accurate VSP distribution, thus, to 

improve energy consumption prediction.  

Second, this study quantitates the relationship between external environment, 

driving behavior, and driving features in an innovative way. The route sequence is 

considered as a Hidden Markov Process with states transition, which is modeled 
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utilizing Input Output-Hidden Markov Model. The driving behaviors are included as 

hidden states of the Input Output-Hidden Markov Model to cope with the impact on 

driving features and energy consumptions.  

The proposed behavior-integrated energy prediction model proves to be an 

appropriate approach for eco-routing system. The model does not require detailed 

driving dynamics and powerful computing recourses. Instead, the driving features can 

be predicted through the personalized IOHMM model, which is trained in advance 

using historical trip trajectories. 

The study explores and successfully develops a comprehensive and innovative 

effective framework to integrate the proposed energy prediction model with traffic 

simulation models. The IOHMM approach offers the ability to generate different 

sequences of driving behaviors and driving features, which can be further integrated 

into traffic simulation models for system benefits analysis on energy consumption. 

1.5. Paper Organization 

The remainder of the dissertation is organized as follows. The state-of-the-

practice energy modeling approaches and driving behaviors analysis are summarized 

in Chapter 2. Chapter 3 covers the proposed methodologies. The experimental study is 

demonstrated in Chapter 4. Chapter 5 discusses the extension of the proposed model in 

real-world applications, such as eco-routing and system energy monitoring. The final 

chapter ends the paper with conclusion and further research directions. 
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Chapter 2 Literature Review 

 

2.1 Energy Modeling Approaches 

2.1.1. Microscopic models 

Microscopic models calculate the vehicle-level energy consumption and 

emissions by tracking second-by-second driving statistics that represent vehicles’ real-

time operational conditions. Among various microscopic models, cycle-based models 

are the simplest. Such models calculate emissions by recording driving characteristics 

(e.g., number of stops, vehicle miles traveled (VMT) or maximum acceleration) of the 

entire driving circle [24-26]. Cycle-based models are not considered as common 

strategies since the summary characteristics cannot fully represent all driving 

conditions. Regression models are another type of methods dealing with energy 

estimation. Generally, the regression models take second-by-second driving statistics 

as inputs and consider the energy consumption as a function of driving variables during 

an event (e.g., acceleration, deceleration, and idling) coupled with roadway geometry 

features (e.g., grade and curvature) [27-29]. Compared with cycle-based models, the 

regression models are of more details, and aim at calculating vehicular emissions and 

energy consumption at a second-by-second resolution. Another highly representative 

category at microscopic scale are modal-based emission models. Modal-based models 

calculate vehicle emissions based on engine-operating modes from detailed speed and 

acceleration [30, 31]. The Motor Vehicle Emission Simulator (MOVES), developed by 

the U.S. Environmental Protection Agency (EPA), is the most widely accepted modal-

based models [32-36]. The latest version of MOVES was officially released in 2013, 
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fully replacing the previous version, namely MOBILE [37]. In MOVES, vehicle energy 

consumption and emissions are described as a combining effect of two factors – 

emissions sources and vehicle operating modes. As for emissions sources, various bins 

are categorized by vehicle characteristics such as vehicle type, fuel type, vehicle age, 

model, engine technologie, and average weight fraction. Operating modes refer to 

vehicle operating conditions, represented by a function of Vehicle Specific Power 

(VSP). VSP is a formalism used in the evaluation of vehicle emissions, which 

represents the combination of loads resulting from various vehicle manufacturing and 

operation parameters, including aerodynamic drag, acceleration, speed, rolling 

resistance, mass, and slope of speed [38-43]. MOVES model calculates the VSP at 

second level through Equation 1 [36]: 

𝑉𝑆𝑃 =
ଵ

ெ
×  (𝐴 ∗ 𝑣 + 𝐵 ∗ 𝑣ଶ + 𝐶 ∗ 𝑣ଷ) + 𝑎 ∗ 𝑣 + 𝑠𝑖𝑛𝜃 ∗ 𝑣                                     (1) 

where 𝑣 refers to the speed (𝑚/𝑠), 𝑎 denotes acceleration (𝑚/𝑠ଶ) and 𝜃 is grade. 𝐴, 𝐵, 

and 𝐶 stand for rolling term (metric ton), rotation term (metric ton/(m/s)) and drag term 

(metric ton/(m/s)2), respectively. 𝑀 refers to vehicle mass (metric ton).  

As a practical model with detailed emissions factors, MOVES can conduct 

energy and emissions analysis on large-scale traffic networks with complex vehicle 

compositions. Although models of this type fully capture the influence of driving 

dynamics on energy and emissions, they require driving data at high resolution and 

detailed emissions rates for various combinations of source bins and operating mode 

bins. These data usually require a huge amount of memory for storage and powerful 
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computation resources for calculation, which are impracticable for real-time 

applications, especially for eco-routing system.  

2.1.2. Macroscopic models 

Macroscopic models, on the other hand, taking traffic flow properties as inputs 

to represent overall traffic conditions, estimate fleet emissions at regional or state level. 

Original studies of this type tried to estimate emissions using aggregates emissions 

factors (EF) for various vehicle types operating in different driving conditions [57, 58]. 

Traffic situations models and traffic variables models treat the traffic as a whole and 

use category-specific emissions factors to calculate emissions and fuel consumption 

[44, 47]. The difference between the two is that traffic situations models classify traffic 

conditions into pre-defined categories while traffic variables models formulate regional 

emissions as function of average traffic speed or traffic density. Research work carried 

out to analyze the relationships between driving dynamics and emissions/energy 

consumption, concluded that vehicle-specific emissions factors could be represented 

by a function of average cruising speed [47-49]. Because its ability to estimate 

emissions at both trip and regional levels, average speed models quickly came out 

ahead. Some well-known applications include COPERT (Computer programmer to 

calculate emissions from road transport) and HBEFA (Handbook on emissions factors 

for road transport [50, 51]. Research also suggested that levels of congestion and 

regional environmental impact should be considered in emissions calculation [52, 53]. 

To overcome the limitation of average speed model, Smit et al. (2008) replaced the 

average cruising speed with mean speed distribution on roadway links to better 

represent the impact of traffic conditions [54]. Results showed that all emissions 
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indexes presented noticeable increase when using mean speed distribution, which 

indicates the original average speed models likely underestimate the emissions. 

Tsanakas et al. (2017) reported similar conclusions by quantifying errors of average 

speed models and stated that using average speed could result in an underestimation of 

emissions [55, 56]. In Tsanakas’ work, a post-processing based on quasi-dynamic 

approach was proposed in order to filling the gap of missing emissions by traffic 

dynamics.  

2.1.3. Mesoscopic models 

Obviously, both microscopic and macroscopic models have their drawbacks in 

various aspects. Microscopic models can produce accurate estimations but requires 

detailed travel dynamic data and consumes large amount of computation resources. 

Macroscopic models, on the other hand, is simpler and faster regarding computation 

but offers no consideration to the influence of travel dynamics. Over the last decade, 

more researchers contributed to improving emissions models regarding both their 

accuracy and efficiency. The vehicle specific power arises as a more representative 

variable that more broadly reflects the influence of travel dynamics. Jimenez (1999) 

first introduced the concept of VSP, which is the evaluation of vehicle emissions as the 

sum of the loads divided by the mass of the vehicle [59]. As mentioned earlier, some 

mobile source emission models (e.g., MOVES, PHEM) take VSP as the primary 

variable for predicting second-by-second emissions and show promising results.  

However, these models are not suitable for real-time application. Instead of 

calculating for every second, some studies suggested the VSP distribution could be 
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formulated as a Gaussian distribution function of average cruising speed [60-63]. 

Similar findings were shown in the study of Li et al. (2016) by deriving the relationship 

between emissions factors and average cruising speeds based on an intermediate 

variable of VSP [64]. Moreover, Li also indicated that the relationship was obviously 

different on different types of roads and speed ranges. Yao et al. (2013) analyzed the 

impact of freeway grades and time-of-day factors on the characteristics of VSP using 

collected GPS data from different periods [65]. The results demonstrated that both 

variables significantly influence the variation of VSP distribution and should be 

considered in VSP-based emission models. Quaassdorff et al. (2016) integrated the 

microscopic traffic model VISSM with a VSP-based emissions model [66]. Different 

scenarios with various traffic conditions were simulated through the VISSIM model to 

provide vehicle-driving patterns as inputs for emissions model. While to some extent 

the integration of dynamic approaches covers both the spatial and temporal congestion 

pattern, the computation heavily relies on the availability of high-resolution data, both 

in terms of demand and calibration data.  

2.2. Behavior Modeling Approaches 

Several energy models introduced above were tested for eco-routing 

applications to predict route-based energy consumptions. However, all the applied 

models are in a simple structure with limited traffic parameters at aggregated level. 

Brundell and Ericsson (2005) analyzed the influence of various trip features resulted 

from different driving behaviors on energy consumption and concluded that frequent 

speed changes and continuous acceleration usually result in higher energy consumption 

[67]. Their study also analyzed the difference of these trip features between different 
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drivers. Results suggested that driver micro-level driving behaviors and traffic controls 

are significant contribution factors to trip features. Zheng et al. (2018) investigated the 

influence of driving behavior on vehicle emission through driver behavior 

questionnaires. The investigation found that drivers reported higher fuel consumptions 

are most likely exhibiting aggressive micro-level driving behavior. A study was 

conducted by Zhang et al. (2013) on the impact of various socio-demographic 

characteristics and driving behaviors on fuel efficiency. The study indicated that fuel 

efficiency is highly related to several factors, for instance, purpose, age and gender [68].  

Various approaches have been developed to improve driver micro-level driving 

behaviors through training simulators or on-board assistant systems. Training 

simulators help drivers to get familiar with correct driving skills, while on-board 

assistant systems provide real-time suggestions on driving behaviors during a trip. By 

comparing a drivers’ performance before and after the improvement programs, Guan 

et al. (2012) claimed the fuel efficiency could be obviously improved after 

maneuvering skills were fully improved [70]. Walnum et al. (2015) conducted a similar 

case study on heavy-duty truck drivers [69]. Truck drivers received real-time 

suggestions from an on-board assistance system and adjusted their driving behaviors 

according to the suggestions. A significant reduction of truck energy consumption and 

emissions were observed when drivers changed the pattern of using running idle, 

avoided frequent acceleration and deceleration, and decreased rolling without engine 

load. The study also suggested the results are specific to heavy-duty trucks, and the 

influence of behaviors varied between different vehicle classes, roadway types, and 

traffic conditions. Studies also showed the relationship between micro-level driving 
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behaviors and emissions and energy consumption using trajectory data collected from 

different drivers. It is highlighted that an experienced driver could travel in a highly 

saturated flow condition and kept fuel and consumptions and emissions low.  Jimenez 

et al (2018) integrated the energy prediction model in a deep neural network to classify 

driving behavior into three types: turning, acceleration, and braking [71]. The 

significant improvement in classification indicates high correlation between energy 

consumption and the micro-level driving behavior. A lot of other research prove the 

individuality in driving behavior and the influence on driving features and fuel 

efficiency [72-98]. Some of the related research is summarized in Table 2-1. 

Table 2-1: Summary of Previous Studies on Driving Behavior 
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2.3. Sequence Modeling 

General energy prediction models usually consider a road segment as an 

independent frame. However, the continuous transmission and transformation of 

driving behaviors happen between different stages of a trip. Therefore, this study 

considers a route as a sequence of stages, where each stage refers to a road segment. 

The link- and route-based energy consumption can be estimated through sequence 

modeling approaches. Sequence data attracts many researchers in various fields, for 

instance, speech recognition, activity recognition, and sentiment analysis [99-106]. 

Various sequence modelling approaches has been developed and deployed to cope with 

sequence data, of which the two most popular ones are Recurrent Neural Network 

(RNN) and Hidden Markov Model (HMM). Ycart and Benetos (2017) applied the Long 

Short-Term Memory (LSTM) on modelling polyphonic music sequences [106]. The 

study analyzed the influence of various parameters on training process and prediction 

performance. Sequence labeling is critical for various sequence modeling problems. 

Jagannatha and Yu (2016) utilized RNN in sequence labeling to improve the exact 

phrase detection of various medical entities [107]. HMM approaches have similarities 

in basic principles and structures with RNN, but the two models have significant 

difference in latent variables [108, 109]. In RNN, a latent variable is deduced 

deterministically from the latent variables and historical observations in the previous 

stages. On contrary, HMM considers the sequence data as a Markov Chain that a latent 

variable is only determined by the latent variable in the last stage. Leveraging the depth 

video sequences of spatial temporal features, Kamal et al. developed a modified HMM 

for human body detection and recognition [109]. Similar analysis on human activity 
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recognition (HAR) is conducted by Lee and Cho (2011) and Segundo et al. (2016) 

using HMM approaches [111, 112]. Integrated the HMM with decision tree (DT), 

Reddy et al. (2010) developed a classification approach to separate various 

transportation modes, for instance, walking, driving, and biking [113]. The integrated 

approach proved to achieve an accuracy of 93.6%. Though HMM proves to be reliable 

approaches for sequence modelling, its performance is sometimes limited by the 

homogeneous assumption [114, 115]. Input Output-Hidden Markov Model (IOHMM), 

a variant of standard HMM, is proposed based on the non-homogeneous assumption 

that emission and state transition probabilities depend on inputs. Yin et al. (2018) 

developed an IOHMM to analyze travelers’ daily travel pattern using collected call 

detail records (CDR) data [115]. The trained IOHMM is also capable to generate travel 

activity sequences for travel demand modelling. The work is extended by Lin et al. 

(2017) that integrated the IOHMM with LSTM to estimate location choice of the 

predicted activities [116]. Some recent studies innovatively integrated the RNN and 

HMM to enhance the performance in sequence modeling. An obvious example is the 

iterative re-alignment approach developed by Koller et al. (2017) [117]. Koller’s team 

first trained end-to-end CNN-BLSTMs with considerable improvement in language 

and gesture recognition. The CNN-BLSTMs are then embedded into HMM to corrects 

labeling accuracy and improve the performance. Except the CNN-BLSTM, some other 

machine learning methods are integrated with HMM for better performance, for 

instance, HMM-DNN, HMM-GMM and HMM-RF.  
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2.4. Summary 

This review underlines the difficulty and drawbacks of existing energy model, 

which can be summarized as follows: First, although vehicle emission is highly related 

to average cruising velocity, neither this single variable nor the mean speed distribution 

can adequately reflect a vehicle’s operation under dynamic traffic conditions. Other 

parameters such as speed distribution, acceleration distribution, road configuration, 

traffic volume, congestion level and weather condition should be considered in 

emission and energy consumption calculations, especially for short-term prediction. 

Second, data source is another aspect preventing the development of a second by 

second in-situ link-based emission model. In-vehicle GPS data has great details and 

accuracy, but it is difficult to obtain a large size of data that offers complete driving 

behavior, leading to different trip patterns. Additionally, individual travel 

characteristics collected by microscopic simulation models have been found to be of 

questionable regarding its reliability. Random and volatile data on traffic congestions 

show poor fitness and low accuracy when used for forecasting through simulation 

models. Third, there is a relationship between average cruising speed and VSP 

distribution. However, the single average speed does not represent the dynamic traffic 

condition in real world. Studies has revealed that trips with the same average trip speed, 

the differences in speed-acceleration distribution are significant, resulting in both 

significantly different emissions and energy consumptions. 

With these concerns, the purpose of this study is to explore the quantitative 

relationships among external environment, travel behavior, and trip features to predict 
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the link-level driving features based on real-time accessible traffic variables, thus, to 

predict short-term emissions and energy consumption at both link and system scales.  

Compared with traditional VSP-based models using only average speed or 

mean speed distribution, the new model may not be the simplest and fast in prediction 

traffic emissions but offers more accurate and reliable data regarding emission and 

energy consumption. 

The new model enables the understanding and explains the relationships among 

speed, and acceleration distributions associated with traffic activities and roadway 

geometric features. In addition, this new model study offers a robust short-term 

emission prediction model with high accuracy. With this new established modeling 

approach, both real-time emission estimation and energy consumption quantification 

and short-time emission and energy consumption prediction, covering both individual 

vehicle rerouting and large-scale network monitoring, can be carried out.  
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Chapter 3 Methodology 

3.1. Data Introduction and Processing 

3.1.1. Location Data Types 

Mobile device location data (MDLD) with driving information is widely used 

in travel demand and travel pattern analysis. MDLD mainly includes three different 

types: GPS-enhanced travel survey data, call detailed record (CDR) data, and location-

based service (LBS) data.  

GPS-enhanced travel survey data is collected through on-board GPS loggers 

and further verified and amended by users’ feedback through user feedback systems. 

CDR data is collected through the communication between smartphones and cell 

towers. As long as the density of cell towers is high, the collected CDR data could be 

in high reliability and accuracy. Similar with CDR data, LBS data is mainly collected 

when a mobile phone communicates with an app, and the communication is captured 

and recorded by various medias, for instance, Wi-Fi, Bluetooth, cell towers, or GPS 

loggers. Given the fact that a large portion of the population use mobile devices with 

various APPs, and the communication media sources have great coverage across the 

nation, the LBS data outperforms in spatial and temporal coverages, data quality, and 

user coverage over the other two data types.  

3.1.2. Data Collection 

Two sets of data gathered from UMD’s incenTrip and i2D are utilized in this 

study. incenTrip (incentrip.org) is a multimodal trip-planning APP developed and 
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deployed by the National Transportation Center (NTC) at UMD. The APP is developed 

as a product for the ‘Integrated, Personalized, Real-time Traveler Information and 

Incentive (iPretii)’ project, funded by the U.S. Department of Energy (DOE). The app 

was officially launched in August 2019, supported by the Metropolitan Washington 

Council of Government (MWCOG), incentivizing travelers to choose eco-friendly 

travel options (e.g., transit, multimodal, biking, walking, and carpooling). The service 

area of incenTrip is illustrated in Figure 3-1.  

 

Figure 3-1: incenTrip Service Area 

 

Users can plan trips through the APP, which records the executed trip 

trajectories with GPS points at 1HZ. Additionally, the APP also records unplanned trips 

using background logging system and trip identification algorithms in order to track 

and incentivize users’ behaviors changes. GPS location data with driving statistics (i.e., 

timestamp, speed, and acceleration) are collected from Google Maps API with a pre-
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defined sample rate (i.e., 1HZ) and stored through Amazon Web Services (AWS) for 

privacy and security concerns. When creating an incenTrip account, users also provide 

vehicle-related information, such as vehicle type, vehicle age, and fuel type. This study 

queries 5,269 driving trips from October 2019 to May 2021 to support the experimental 

studies. Detailed description of the collected data is summarized in Table 3-1.  

“i2D” data was collected through an on-board logging system, which is consists 

of a unit, a communication system, and a cloud database. The unit collects multiple 

engine and travel dynamics statistics in real time at a resolution of 1 Hz through a GPS 

sensor along with a 3D accelerometer. The logged trips are uploaded to the online 

database for users queries and safety purpose. For each trip, the logging system collects 

trajectory (e.g., grade, longitude, and latitude), travel dynamics (e.g., speed and 

acceleration), fuel consumption statistics (e.g., cumulated fuel and fuel efficiency), and 

environmental factors (e.g., intake air temperature, humidity, and manifold pressure) 

in real time. Sixteen testers are involved in the trip collection process and 2,812 trips 

with the greatest level of detail were collected. A data summary is provided in Table 3-

2. Vehicle information, such as age, type, mass, and power, is also stored in the cloud 

database.  
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Table 3-1: Summary of Trips Collected from incenTrip Application 

 

Table 3-2: Summary of Trips Collected from i2D system 

 

Characteristics Sedan SUV Van Truck 

Number of trips collected 4326 777 114 52 

Number of drivers recorded 192 45 8 9 

Average vehicle age (year) 6.55 5.27 8 11 

Number of days recorded 511 112 41 29 

Number of road segments covered 52141 36114 6013 3114 

Total of vehicle miles travelled (mile) 55996 13978 6294 423 

Total of vehicle hours travelled (hour) 2210 582 43 30 

Percentage of VMT in peak period 70% 68% 62% 54% 

Average trip length (min) 30.65 45.01 22.66 35.01 

Average trip distance (mile) 12.94 17.99 8.10 8.14 

 

Characteristics Sedan SUV 

Number of trips collected 2434 378 

Number of drivers recorded 14 2 

Average vehicle age (year) 6.42 5.5 

Number of days recorded 554 217 

Number of road segments covered 34541 6324 

Total of vehicle miles travelled (mile) 22344 7634 

Total of vehicle hours travelled (hour) 1176 214 

Percentage of VMT in peak period 63% 48% 

Average trip length (min) 29 34 

Average trip distance (mile) 9.18 11.84 
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Taking advantage of detailed driving dynamics and trip trajectories, the data 

collected from the incenTrip APP and i2D system are used to analyze the relationship 

among external environment, driving behaviors, and driving features. To match the trip 

trajectories with roadway geometry information, a statewide network is extracted from 

HERE navigation network with the same coverage to the incenTrip service area, as 

demonstrated in Figure 3-2. 

The network consists of 215,202 nodes and 366,464 links. These links are 

identified by their geometrics such as number of lanes, speed limits, facilities, 

intersections, and traffic controls. One point must be emphasized regarding the number 

of lanes. The lanes in the HERE navigation network includes normal travelling lanes, 

left-turn lanes, acceleration and deceleration lanes, and special-purpose lanes. In this 

study, only the normal travel lane and left-turn lanes are considered.  
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Figure 3-2: HERE Navigation Network with Various Roadway Geometry Features 

 

3.1.3. Data Screening and Processing         

The proposed model aims at predicting driving features and energy 

consumption at link level. To support model training, the trip trajectories must be 

converted into sequences of stages to achieve link-based driving features. The stage 

here refers to one or more continuous links with similar environmental features. The 

GPS points are first screened on the statewide network to gain roadway geometrics and 

traffic dynamics information. A reliable tool, called Rtree spatial-index function, is 

used for the screening process at network scale. Rtree is a ctypes Python wrapper of 

lib-spatial-index that provides several advanced spatial indexing features for spatial 

analysis, such as nearest neighbor search and clustered indexes [125]. Once a buffer 
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(e.g., 0.001 mile) is defined, the links intersected with the buffer around the GPS points 

are filtered. However, the statewide network developed in this study includes many 

local roads, where roadway segments are often short and near other roadways. To better 

match the GPS points with the state-level network, the study develops a shortest-path 

approach, which takes the link-based historical travel time as weight. The approach is 

coded based on the NetworkX function in Python, with a database recording historical 

traffic speed collected from RITIS. For some local roads with limited observations of 

historical traffic speed given their low traffic volume during most time period, the 

speed is assumed to be free-flow speed given the low volume conditions. The 

framework of the data processing is shown in Figure 3-3. 

 

Figure 3-3: Framework of Data Screening and Processing 
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The screened GPS points are checked, and necessary reconstructions are 

conducted to insure appropriate matching. Special cases, as described below, are 

further processed as described.  

1) Mismatching: When two or more roadway links are close to or on top of each 

other (e.g., a bidirectional link), GPS points may be assigned to the wrong links. 

This type of mismatching is common when the spatial-index tool is used, since 

only the vertical distances to the reference links are considered. To correct the 

mismatched links, the shortest-path function in the NetworkX package of 

Python is used to check if the link belongs to the feasible path of the trip and 

relocate the mismatched points if needed.  

2) Missing data: In some cases, the observations on one link are completely 

missing due to a mobile phone signal lost or communication issues. For instance, 

there are four consecutive roadway segments named A, B, C, and D in 

sequential order. While segments A and D have the GPS data, segments B and 

C do not have observations. In this case, the shortest-path algorithm is utilized 

to decide how the missed data should be filled in. The algorithm takes the from-

node of the upstream link and the to-node of the downstream as origin and 

destination, calculates the weighted cost of each feasible path, then returns the 

path with the minimum cost. When the correct middle segments are decided, 

the empty data cell is filled in with the assumption that the speed on the segment 

is uniformly distributed. 
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3) Outliers: Values are judged against the vehicle’s technical parameters. For 

instance, points with speeds over 100 mph will be removed. For the removed 

GPS points, the driving features will be determined based on the assumption 

that the speed on the segment is uniformly distributed.  

Suitability in this paper is defined as the number of links with GPS points over 

the total number of links of the path. Only the trips with a suitability of more than 90% 

will be used as training data. The processed dataset is summarized as Table 3-3.  

Table 3-3: Summary of Trips after Data Processing 

Features Sources Before 
Processing 

After 
Processing 

Number of Trips 
incenTrip  5269 3897 

i2D 2812 2664 

Number of Users 
incenTrip  254 46 

i2D 16 16 

Average Travel time 
incenTrip  32.65 33.19 

i2D 29.67 29.78 

Average Travel Distance 
incenTrip  13.53 15.01 

i2D 8.19 8.19 
 

3.1.4. Data Exploration       

At the mesoscopic scale, using VSP-distribution function to calculate energy 

consumption at link level is a promising approach for eco-routing purposes. Less 

computation resources are needed, and input data does not need to be at a high temporal 
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resolution in VSP-based models. Existing studies suggest the mean and standard 

deviation of VSP distribution can be estimated using average cruising speed [41]. For 

prediction purpose, the average speed is not available, while posted speed limits and 

historical speed may be used instead. This study analyzes the relationship between VSP 

distribution and various driving features. The results indicate that using average 

cruising speed and acceleration rates can improve the accuracy of VSP distribution and 

energy consumption by 7% and 11%, respectively.  

Four scenarios are compared, taking different inputs to estimate VSP 

distribution and energy consumption: posted speed limit, historical traffic speed, 

average cruising speed, and average cruising speed with acceleration rate as 

supplementary input. For convenience, the four groups are named as speed limit group, 

traffic speed group, cruising speed group, and cruising speed & acceleration rate group 

in further discussions. Only ‘i2D’ data is utilized as ground truth data at this stage since 

it includes information for both VSP distribution and energy consumption. In each 

scenario, the mean and standard deviation of VSP distribution is first calculated and 

compared with the observed statistics for ‘i2D’. Utilizing the reference table (Table 3-

4) between VSP and operation modes, and the reference table (Table 3-5) between 

operation modes and energy rates, the link-based energy consumption can be achieved 

[36].  
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Table 3-4: Reference Table between Operation Mode and VSP  

Cruising Speed (mph) 

0~25 25~50 50< 

Mode VSP Mode VSP MODE VSP 

11 <0 21 <0 NA NA 

12 0~3 22 0~3 NA NA 

13 3~6 23 3~6 33 <6 

14 6~9 24 6~9 35 6~12 

15 9~12 25 9~12 NA NA 

16 12< 27 12~18 37 12~18 

Other  28 18~24 38 18~24 

0 Braking 29 24~30 39 24~30 

1 Idling 30 30< 40 30< 
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Table 3-5: Reference Table Between Various Emission Factors and Operation Mode 

 

The comparison among the four scenarios is summarized in Table 3-6 on 

distance-weighted error of VSP distribution mean, VSP distribution standard deviation, 

and trip-based energy consumption. As shown in the table, the speed-limit-group 

achieves the lowest accuracy, while the accuracy of the traffic-speed-group is slightly 

better. Significant improvement is observed using average cruising speed as input 

instead of speed limit or historical traffic speed. Adding the acceleration rate as 

supplementary, the performance is further improved for all criteria, especially for the 

standard deviation.  

 

Table 3-6: Accuracy of Prediction of VSP Distribution and Energy Consumptions for Different Groups 
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Inputs Mean Cruising 
Speed (%) 

Standard 
Deviation (%) 

Link Energy 
Consumption 

(%) 
Trip Energy 

Consumption (%) 

Speed Limit  70.1 61.7 68.8 74.6 

Traffic Speed 79.1 72.2 76.1 78.3 

Cruising Speed 88.6 78.2 82.6 86 
Cruising Speed 
& Acceleration 

Rate 
89.3 83.9 87.5 91.3 

 

3.2. Model Selection 

As discussed in section 3.1, the personalized driving features—for instance, 

average cruising speed and acceleration rate—could be predicted to amend VSP 

distribution. Given a feasible path from origin to destination, a model is needed to map 

a sequence of links to a sequence of link-based driving features. In general, the 

algorithms for sequence data modeling can be categorized as supervised learning, 

unsupervised learning, and semi supervised learning. 

Through sufficient and reliable ground truth data, supervised learning is used 

to explore the relationship between inputs and desired outputs (supervisory signal). In 

other words, inputs are pre-labeled ground truth data, from which a relationship is 

established and the model accuracy can also be estimated. Supervised learning 

algorithms are modeled as classification or regression, and have been widely applied 

in text categorization, face detection, signature recognition, weather furcating, etc. 
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Unsupervised learning, contrary to supervised learning, takes inputs that are 

neither classified nor labeled. The machine needs to explore and learn the hidden 

patterns by itself, as there is a lack of knowledge on the underlying logic and the desired 

outputs. The strength of the unsupervised learning rests with its input flexibilities. In 

practice, unsupervised learning algorithms performs well in clustering and anomaly 

detection. 

Falling between the supervised learning and unsupervised learning, Semi-

supervised learning is a new approach. It can be flexibly applied when only limited 

amount of ground truth data is available. Typically, the training data for semi-

supervised learning consists of a small amount of labeled data and a large amount of 

unlabeled data. The combination of labeled and unlabeled data could infer the hidden 

pattern and guide the learning process to perform well. 

As stated in previous studies, various factors from external environment, such 

as road type, traffic condition, and traffic control, have an influence on driver behavior 

and driving features. In order to predict driving features, it is necessary to model 

driver’s behavior and driving context jointly. Driver’s driving behavior is an abstracted 

concept that is usually unobservable and hard to be quantified, though its influence on 

driving features is matter-of-course. The individuality of driving features under the 

same external environment is an embodiment of driving behavior. On the other hand, 

driving behavior varies stage by stage, while the current stage is mostly affected by the 

previous stage and the external environment at the current stage. Therefore, a model 

such as Hidden Markov Model (HMM) is better suited than discriminative models such 
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as Support Vector Machine (SVM) or Neural Network (NN) that do not consider these 

temporal aspects. Though some Recurrent Neural Networks (RNN), such as Long 

Short-Term Memory (LSTM) can also be used to do sequence classification and 

sequence prediction, the HMM model outperforms the RNN models considering the 

limited training data for personalized modeling. Moreover, the HMM is developed 

based on the assumption that the current state is only determined by the previous state, 

which is a sound hypothesis in the current research.  

3.2.1. Hidden Markov Model       

The Hidden Markov Model (HMM) is a statistical model treating a system as a 

sequence of possible events. In the system, the status of each event only depends on 

the previous event, namely the Markov Process (MP). Except the observational data, 

the underlying data of the Markov model is hidden or unknown. As a generative model, 

HMM is well known for its effectiveness in modeling the correlations between adjacent 

symbols, domains, and events [126]. It has been extensively developed and applied in 

action recognitions and digital communications. HMM consists of two parts (Figure 3-

4). The first part is a set of observed states and hidden states. The second part is the 

probability model consisting of initialization, transition, and observed outputs. The 

hidden states in the model are the factors that influence the environment but are difficult 

to be captured or quantified (e.g., emotion, mental activities, propensity). Nevertheless, 

the impact of these factors can be represented by several observable variables, namely 

observed states. 
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Figure 3-4: Structure of Standard Hidden Markov Model 

A hidden Markov model is formulated as HMM: {N, M, A, B, ∏  } where: 

1) 𝑁  refers to the capacity of a hidden states set, which is pre-defined before 

training the model. The projection of hidden state can be either determinate or 

indeterminate depending on the learning method: supervised or unsupervised. 

Each individual hidden state can be denoted as 𝑠௜  (1 ≤ 𝑖 ≤ 𝑁).  

2) 𝑀 stands for the length of the output set, where the output variables represent 

the impact of hidden states. It is worthwhile to mention that the output variables 

should only be observable after transitions occur (prediction process). Each 

individual output variable can be denoted as 𝑥௜ (1 ≤ 𝑖 ≤ 𝑀). 

3) The initial state probability distribution is a column vector with a dimension 

of 1 × 𝑆. In general, the initial probability can be determined by experience or 

historical records. While in some models, NN and RNN approaches can also be 

utilized to estimate the initial state probability.  Cell 𝜋௜ the value represents the 

initial probability given its initial hidden state is 𝑠௜, as represented by Equation 

2: 
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𝜋௜ = 𝑃(𝑞ଵ =  𝑆௜)     1 ≤ 𝑖 ≤ 𝑁                                                                                             (2) 

4) 𝐴 stands for the state transition probability matrix, where each cell indicates the 

probability that a hidden state transitioning to another state. Since the transition 

is modelled as Markov process, it assumes that the next state is only dependent 

on the current state. The probability for each state pair is formulated as: 

𝜑௜,௝ = 𝑃൫𝑠௝ห 𝑠௜൯, 1 ≤ 𝑖 ≤ 𝑁, 1 ≤ 𝑗 ≤ 𝑁                                                                  (3) 

5) Except the initial probability matrix, state transition matrix, the HMM also 

includes an observation probability matrix, also known as the emission 

probability matrix (𝑁 × 𝑀). Each cell in the observation probability matrix 

denotes the output variables distribution given a specific hidden state. It is 

expressed in the form of: 

𝜃௜,௞ = 𝑃(𝑥௞| 𝑠௜),    1 ≤ 𝑖 ≤ 𝑁 𝑎𝑛𝑑 1 ≤ 𝑘 ≤ 𝑀                                                     (4) 

 

3.2.2. Input Output-Hidden Markov Model       

The standard HMM takes homogeneous transition and emission probability and 

assumes each hidden state is only decided by the previous hidden state. These 

assumptions, however, are too restrictive and one-sided in most cases. Some other 

factors may also affect the current hidden state. For instance, a driver driving 

aggressively on the immediate prior road segment is more likely to make a sharp 

deceleration if the current roadway segment has a traffic signal control or a reduced 

speed ahead. On the other hand, a less aggressive driver may act excessively cautious 
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on a high-traffic road, even though the traffic speed is still high. To make up the 

drawbacks of the standard HMM, the so-called Input Output Hidden Markov Model 

(IOHMM) is proposed as the selected architecture, which fully considers the influence 

of both the previous state and the system environment. As shown in Figure 3-5, the 

IOHMM shares similar structure and components as the standard HMM, except that it 

has an additional layer of observed contextual variables, namely the input layer. 

Different from the output layer, the observable variables in this input layer represent 

the system effects that should be observable before a state transition. In IOHMM, the 

inputs determine the current state through the previous state, then control the outputs 

through the current state. In other words, the distribution of both states and outputs are 

influenced by a set of input variables. Based on this modeling structure, the IOHMM 

could map the input sequence into output sequence through the similar process as RNN. 

 

 

Figure 3-5: Structure of Input Output Hidden Markov Model 
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3.3. Model Generation 

3.3.1. Feature Selection 

The IOHMM learns the relationship between inputs, outputs, and hidden states, then 

maps the input sequence into output sequence. In this study, the observable features of 

external environments are treated as inputs, the driving features are considered as 

outputs of the model, and individual behaviors are considered as hidden states.  

As demonstrated in the data exploration results in section 3.1.4, the average 

cruising speed and acceleration rate contribute to the formulation of VSP distribution. 

Meanwhile, the two variables are controlled by both external environment and 

individual behaviors and are only observable after state transition. Therefore, the 

average cruising speed and acceleration rate are involved as the output variables.  

As stated in previous studies, various features from the external environment 

have impact on driving behaviors and driving features, such as roadway geometry 

features (i.e., number or lanes and speed limit) and traffic conditions (i.e., traffic speed 

and traffic volume). Though more features included in the input layer provide richer 

information, the model may not perform well in sequence prediction. A simpler 

structure with less inputs is preferred in sequence modeling. The most important reason 

is the overfitting issue caused by redundant inputs and complex models, which shows 

high performance in training datasets and poor performance in the testing ones. In 

general, the overfitting issue could be eliminated through appropriate feature selection 

and dimension reduction. Feature selection works by analyzing the relationship 

between features and selecting the most critical ones. Commonly applied feature 
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selection methods can be categorized as filter methods (e.g., linear discrimination 

analysis, Anova analysis, Pearson Correlation, and chi-square analysis) and wrapper 

methods (e.g., forward selection, backward selection, and recursive feature 

elimination). Dimension reductions alleviate the overfitting by generating new features 

with most critical impacts on the outputs. Both methods can drop low-impact features 

and reduce multi-collinearity of features. Some emerging approaches also prove 

reliable performance in reducing the effects of overfitting: ‘early-stopping’ approach 

that stops the training process before reaching optimum, and ‘data-expansion’ approach 

that generates a larger training dataset based on the original training dataset [120]. 

In this study, the authors conducted a Pearson correlation analysis on alternative 

features to select most critical and comprehensive variables for input layer. The average 

Pearson correlation coefficients among variables are summarized in Figure 3-6. 
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Figure 3-6: Pearson Correlation Coefficients of Various External Variables and Driving Features 

 

As indicated by the Pearson correlation analysis, the relationship between mean 

cruising speed and speed limit is the most significant, with the highest coefficient of 

0.6106. The road type comes in second, achieving a coefficient of 0.3867. A clear 

negative correlation is observed between mean cruising speed and signal control, which 

indicates the segments with signal controls usually have lower speeds. The correlation 

score between mean cruising speed and intersection is -0.2903, and the value is -0.3772 

for peak hour factor. Speed limit, intersection, and signal control present positive 

influence on acceleration rate, which indicates that drivers tend to frequently adjust 

Mean Cruising Speed Acceleration Rate

Mean Cruising Speed 0.1765

Acceleration Rate 0.1765

Number of Lanes 0.2135 0.1554

Speed Limit Ratio 0.6106 0.3100

Intersection -0.2903 0.3955

Signal Control -0.4220 0.4152

Peak Hour -0.3772 -0.2099

Ramp -0.0102 0.2114

Road Type 0.3867 -0.2178

Grade -0.2312 -0.0999
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their speeds toward an intersection with signal controls. In addition, the road type has 

a negative influence on accelerate rate, which indicates that the speed is smoother on 

high-level roads. Five variables exerting substantive effects on mean speed and 

acceleration rate are included in the proposed input output-hidden Markov mode. These 

four variables are, road types, turning movements, signal controls, and speed limit. A 

detailed description and definition are as follows: 

1) Road type: an integer value from 1 to 5 (1, a road with high volume and 

maximum-speed traffic; 2, a road with high volume and high-speed traffic; 3, a 

road with high-volume traffic; 4, a road with high-volume traffic and moderate-

speed traffic between neighborhoods; and 5, a road whose volume and traffic 

flow are below the level of any other road types). 

2) Peak hour indicator: a binary variable indicating if the segment is in peak period, 

which is defined as the period where the ratio between the historical traffic 

speed and posted speed limit is less than 0.85. It is worth noticing that the 

threshold used here is different from the traditional definition of peak period. 

The reason for this modification is the fact that traffic conditions on some 

segments are very different during different times of day. 

3) Speed limit ratio: an integer number between 1 and 4 represents different ratio 

of historical speed over the posted speed limit (1, speed limit ratio less than or 

equal to 0.75; 2, speed limit ratio greater than 0.75 but less than or equal to 0.9; 

3, speed limit ratio greater than 0.9 but less than or equal to 1.1; 4, speed limit 

ratio greater than 1.1).  
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4) Traffic control: an integer number between 1 and 3 represents if the segment 

has traffic control (1, with signal control; 2, left/right turn without signal control; 

and 3, others) 

5) Speed Limit 

Except for the variables discussed above, traffic features could also affect 

driving behaviors. Historical traffic statistics may be adopted as inputs in the training 

process of the model, but the deployment requires real-time traffic information. 

Therefore, a short-term traffic dynamic prediction model is needed for the present study 

to support a real-time eco-routing system.  

Recurrent Neural Network (RNN) is a popular approach of learning sequential 

data through a generalization of feedforward NN with an internal memory. Different 

from a standard NN, the RNN learns from inputs through its internal memory, which 

helps deal with large data size. Traditional RNN performs well in modeling non-linear 

time series problems. Nevertheless, its performance is still limited due to time-

consuming and poor performance in long-sequences modeling.  

To overcome the limitations summarized above, a long short-term memory 

(LSTM) approach is deployed. LSTM is a special RNN approach that works better for 

long sequencesAs shown in Figure 3-7, LSTM makes a significant improvement on 

recurrent cells by adding forget gates, which allows removing or updating information 

to a cell state. 
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 A standard LSTM model is composed of a cell and three gates: the input gate, 

the output gate, and the forget gate. The input gate decides the rate of the cell receiving 

a new value. The output gate controls the value to be used to compute the output 

variation of the LSTM unit. The forget gate controls the extent in which a value remains 

in the cell. In each iteration, the three gates control the status of flow of information in 

the cell: in, out, or remain. 

In this study, the LSTM algorithm with the following structure is used for traffic 

dynamic prediction. 

𝑋 = (𝑥ଵ, 𝑥ଶ, 𝑥ଷ, … , 𝑥௡)                                                                                                 (5) 

𝑋 = (𝑥ଵ, 𝑥ଶ, 𝑥ଷ, … , 𝑥௡)                                                                                                 (6) 

𝐻 = (ℎଵ, ℎଶ, ℎଷ, … ℎ௡)                                                                                                 (7) 

where 𝑋  stands for the input sequence (historical traffic dynamic), 𝑌  refers to the 

output sequence (predicted traffic dynamic), and 𝐻  is the hidden state vector, also 

known as output vector of the LSTM unit. The training process of LSTM model starts 

by setting the cell state vector 𝑐௧  and hidden state vector ℎ௧ as zero (𝑐଴ = 0, ℎ଴ = 0). 

The predicted average speed is calculated iteratively using historical data through the 

following equations [127-129]: 

ℎ௧ = 𝑜௧ ∙ tanh (𝑐௧)                                                                                                        (8) 

𝑜௧ = 𝜎௚(𝑊௢𝑥௧ + 𝑈௢ℎ௧ାଵ + 𝑏௢)                                                                                    (9) 
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𝑓௧ = 𝜎௚(𝑊௙𝑥௧ + 𝑈௙ℎ௧ାଵ + 𝑏௙)                                                                                     (10) 

 𝑖௧ = 𝜎௚(𝑊௜𝑥௧ + 𝑈௜ℎ௧ାଵ + 𝑏௜)                                                                                   (11) 

  𝑐௧ = 𝑓௧ ∙ 𝑐௧ିଵ +  𝑖௧ ∙ tanh (𝑊௖𝑥௧ + 𝑈௖ℎ௧ାଵ + 𝑏௖)                                                     (12)                       

where 𝑜௧  refers to the output gate’s activation vector, 𝑖௧  represents the activation 

vectors of input and output gates, 𝑖௧ stands for the forget gate’s activation vector, and 

the cell state vector is denoted as 𝑐௧.  

𝜎௚(∙) is defined as the standard logistics sigmoid function with the formulation of: 

𝜎(∙) =  
ଵ

ଵା ௘షೣ
                                                                                                             (13) 

In addition to input and output layers, IOHMM model also includes a hidden 

layer to reflect the influence of unobservable hidden states. Hidden states are 

unobservable during training, but certainly influence the state transitions and outputs 

generation. Past research indicated that there have been large differences in judging the 

appropriate number of hidden states. Some studies stated that having more hidden states 

leads to a higher likelihood, which obviously increases the reliability of parameters. 

While small number of hidden states are preferred in practical applications considering 

the data quality and availability. Developing the IOHMM modeling structure also 

requires labeling the hidden states. If no ground truth data is available for labeling, only 

the number of hidden states is required, and the model will be formulated as 

unsupervised learning process. In this study, the hidden states are individual driving 

behavior. Though some research defines various rules to classify driving behaviors, 
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few of them are validated using ground truth data. Therefore, the authors first trained 

the model as unsupervised learning process without labeling the hidden states. Multiple 

rounds of training processes are repeated to test the performances under a different 

number of hidden states, and the results show that the optimum number of hidden states 

is five. Then, the personalized behavior models are developed with the optimum 

number of hidden states. The authors conducted deeper research on the characteristics 

of predicted hidden states and the relationship between input and output variables. The 

analysis suggested that the labeling rules with speed rate (defined as average cruising 

speed over average traffic speed), percentage of continuous acceleration duration, and 

percentage of continuous deceleration duration generate the most reliable hidden states. 

More detailed analysis and discussion will be presented in Chapter 5 in experimental 

results. The hidden states labeling rules are summarized below: 

1) Idling:  

a. Percentage of continuous acceleration duration < 0.05  

b. Percentage of continuous deceleration duration < 0.05. 

c. Average cruising speed/average traffic speed < 0.2. 

2) Very cautious: 

a. Average cruising speed/average traffic speed within (0.2 ~ 0.75). 

3) Cautious: 
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a. Average cruising speed/average traffic speed within (0.75 𝑚/𝑠ଶ  ~ 0.9 

𝑚/𝑠ଶ). 

4) Normal: 

a. Average cruising speed/average traffic speed within (0.9 𝑚/𝑠ଶ ~ 1.1 

𝑚/𝑠ଶ). 

5) Aggressive: 

a. Average cruising speed/average traffic speed > 1.1. 

b. Percentage of continuous acceleration duration + percentage of 

continuous deceleration duration < 0.25. 

6) Very aggressive: 

a. Average cruising speed/average traffic speed > 1.1. 

b. Percentage of continuous acceleration duration + percentage of 

continuous deceleration duration >= 0.25. 

Note that the optimum number of hidden states is five based on multiple rounds 

of testing. The authors, however, found that many states with long duration of 

stationary are mis-classified into other states, which may influence the performance of 

the proposed model. Therefore, a separate hidden state for idling is added in the 

labeling rules of supervised learning process.  
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3.3.2. Parameter Estimation 

With the structure of IOHMM, several parameters related to the hidden states 

cannot be directly determined based on the experimental data: initial probability 

parameters, transition probability parameters, and emission probability parameters. 

Various types of approaches have been developed and deployed for parameters 

estimation for all kinds of statistical problems, such as the Expectation-Maximization 

(EM) algorithms, NN algorithms, and rank regression. EM algorithms estimate the 

parameters by finding the maximum log-likelihood iteratively based on the unobserved 

latent variables in statistical models, while NN algorithms seek the optimum 

parameters through iterative optimization processes such as gradient decants or 

backpropagation. In this paper, the unknown parameters are learned through the EM 

algorithm as the hidden states of IOHMM model. EM algorithms include the 

Estimation step (E step) and Maximization step (M step). Based on the model structure 

and selected variables, the log-likelihood representing the summation of all routes 

through the hidden states can be formulated as follows.  

𝐿(𝑥, 𝑢, 𝜃) = ∑ [𝑃(𝑠ଵ|𝑢ଵ; 𝜃௜௡) ∙ ∏ 𝑃(𝑠௧|𝑠௧ିଵ, 𝑢௧
்
௧ୀଶ ; 𝜃௧௥) ∙ ∏ 𝑃(𝑥௧|𝑠௧, 𝑢௧; 𝜃௘௠)]்

௧ୀଵௌ                

                                                                                                                                   (15)                  

Where 𝑠௧, 𝑢௧, 𝑥௧ refer to the hidden state, input variables, and output variables at stage 

𝑡, respectively. 𝜃௜௡, 𝜃௧௥, 𝜃௘௠ stand for the initial probability, transition probability, and 

emission probability. 𝑇 is the total number of stages of the sequence. 𝐿(𝑥, 𝑢, 𝜃) denotes 

the likelihood.  
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With the likelihood function formulated, the parameters are estimated and 

optimized through the EM algorithm.  

E step: in the E step, the expected value of the likelihood is computed through 

Equation 15 based on the observed inputs and outputs at the current stage and the 

parameters estimated from the previous stage.  

M step: the parameters are updated to maximize the expected log-likelihood 

formulated in Equation 16. 

𝑄 =  ෍ 𝛾௜,ଵ

ௌ

௜ୀଵ

𝑙𝑜𝑔𝑃(𝑠ଵ = 𝑖|𝑢ଵ; 𝜃௜௡)

+ ෍ ෍ ෍ 𝜉௜,௝,௧𝑙𝑜𝑔𝑃(𝑠௧ = 𝑗|𝑠௧ିଵ

ௌ

௝ୀଵ

ௌ

௜ୀଵ

்

௧ୀଶ

= 𝑖, 𝑢௧; 𝜃௧௥) + ෍ ෍ 𝛾௜,௧𝑙𝑜𝑔𝑃(𝑥௧|𝑠௧ = 𝑖, 𝑢௧; 𝜃௘௠)

௦

௜ୀଵ

்

௧ୀଵ

 

                                                                                                                                   (16) 

Where 𝑄 refers to the expected value of the log-likelihood. 𝑆 is the set of state and 𝑖, 

and 𝑗 represents a specific state from the set of states. 𝑇 denotes the total stages of the 

sequence and 𝑡 refers to one of the stages. 𝑠௧, 𝑢௧, 𝑥௧ refer to the state, input variables, 

and output variables at stage 𝑡 , respectively. 𝜃௜௡ , 𝜃௧௥ , 𝜃௘௠  stand for the initial 

probability, transition probability, and emission probability. 𝛾௜,௧ stands for the posterior 

state probability for state 𝑖  at stage 𝑡 , while 𝜉௜,௝,௧  explains the posterior transition 

probability from state 𝑖 to state 𝑗 at stage 𝑡.  
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3.3.3. Model Specification 

The unknown parameters: initial model, transition model, and emission model 

can be formulated based on the types of variables. A logistic regression model is 

defined as Equation 17 for the initial model based on the discrete variable in hidden 

state. 

𝑃(𝑠ଵ = 𝑖|𝑢ଵ; 𝜃௜௡) =
௘ഇ೔೙

೔
ೠ೟

∑ ௘ഇ೔೙
ೖ

ೠ೟ೄ
ೖ

                                                                                   (17) 

Where 𝑠ଵ and 𝑢ଵ represent the initial state and given inputs, respectively. 𝜃௜௡
௜ stands 

for the coefficients of initial state 𝑖 in initial probability matrix. 𝑘 denotes the state in 

state set 𝑆. 𝑢௧ refers to the inputs at stage 𝑡.  

For the discrete input variables, for instance, road type and traffic control could also be 

formulated as a logistic regression model: 

𝑃(𝑠௧ = 𝑗|𝑠௧ିଵ = 𝑖, 𝑢௧; 𝜃௧௥) =
௘ഇ೟ೝ

೔ೕ
ೠ೟

∑ ௘ഇ೟ೝ
೔ೖ

ೠ೟ೄ
ೖ

                                                                    (18) 

In the equation, 𝑠௧  and 𝑢௧  represent the state and inputs at stage t. 𝜃௜௝  donates the 

transition probability to reach state 𝑗, given the current state 𝑖. 𝑆 is the total number of 

states of the hidden state set and 𝑘 refers to a single state in 𝑆. 

For inputs defined as binary variables—for instance, peak hour indicator—a 

logistic regression in the following format also works: 

𝑃(𝑠௧ = 1|𝑠௧ିଵ = 𝑖, 𝑢௧; 𝜃௧௥) =
ଵ

ଵା௘షഇ೟ೝ
೔
∙ೠ೟

                                                                  (19) 
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The average cruising speed and acceleration rate defined as output variables are 

both continuous. A normal distribution could be assumed for emission model, as 

formulated in Equation 20.  

𝑃(𝑥௧|𝑠௧ = 𝑖, 𝑢௧; 𝜃௘௠) =
ଵ

√ଶగఙ೔
𝑒

ି
(ೣ೟షഇ೐೘

೔
∙ೠ೟)మ

మ഑೔
మ                                                                      (20) 

where 𝜎௜ and 𝜃௘௠
௜ stand for the standard deviation and coefficients of the linear model 

for state 𝑖, respectively.  

3.4. Modeling Framework 

In summary, this chapter describes the methodology to analyze individual 

driving behavior and to develop statistical models to predict driving features, as shown 

in Figure 3-7.  

 

Figure 3-7: Methodology Framework 
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The chapter first describes the trip trajectory data collected from incenTrip and 

i2D, which is utilized to analyze individual driving behaviors. Then the data processing 

process is briefly introduced. To explore the relationship between external 

environment, individual driving behavior, and driving features, a statistical model is 

developed using Input-Output Hidden Markov model. The model considers a route as 

a sequence of stage, with each stage representing one or more links with the same 

characteristics. The model takes the driving behavior as hidden states and assumes the 

behavior at each stage is decided by the external environment at current stage and the 

behavior at previous stage. The driving features are involved as output variables, which 

are influenced by both the hidden states and external environment. The model is first 

trained by an unsupervised learning process without labeling the hidden states. The 

predicted hidden states from trained models are used to extract distinguishing 

characteristics to evaluate the labeling rules in previous studies. The model is then 

trained by supervised learning using labeled hidden states based on the optimum rules 

from previous studies. Several procedures of developing the model are then discussed: 

feature selection, parameter estimation, and model specification. Finally, the 

integration of IOHMM model and energy prediction model is presented.  
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Chapter 4 Experimental Results 

4.1. Model Deployment 

To evaluate the performance of the proposed driving behavior model with 

IOHMM structure, an experimental study is conducted using trip trajectory data 

collected from incenTrip APP and the i2D system. As indicated in Chapter 3, the data 

used in this study shows uneven distribution in travel distance, which may result in the 

imbalance of input sequences. The IOHMM could take the imbalanced inputs by setting 

the dimensions of transition and emission probability matrix as the length of the longest 

input vector. However, less information can be provided by the input vectors with short 

length, and the learning efficiency at the last stages will be significantly weakened.  

Therefore, the consecutive links with similar input variables are combined and the trips 

with a sequence length between 20 to 40 are used in the experimental study. This helps 

balancing the input data size and ensures learning efficiency. To ensure the data size is 

enough for training the personalized driving behavior model, drivers with 20 or more 

trips are selected. Additionally, to reduce the impact of familiarity of roadway on 

driving behavior, only drivers with five or more different paths are retained in the 

training dataset. A total of 2,254 trips from 75 incenTrip users and 2,011 trips from i2D 

testers meet these criteria and are used in the experimental study for personalized 

driving behavior modeling. The performance of the proposed model is evaluated on 

multiple levels through various measurements of effectiveness (MOE): (1) state 

transition and recognition, (2) driving features prediction, (3) energy consumption 

prediction at link- and trip- levels, (4) benchmark methods comparison, and (5) system 
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benefits analysis. It is worth stating that only the trips from i2D are using in evaluating 

energy consumption prediction since the trips from incenTrip does not include ground 

truth energy data. 

4.2. State Transition and Recognition 

As stated above, the IOHMM can be trained as both a supervised and 

unsupervised learning process depending on whether the hidden states are labeled. In 

the experiemental study, the personalized IOHMM models are first trained as 

unsupervised learning processes without labeling the hidden states. Multiple rounds of 

testing with different numbers of hidden states are conducted and the performance 

indicates the most approperiate number of hidden states is five. The personalized 

models are trained and the hidden states are predicted. The state transition probability 

matrix for four different drivers under same inputs are presented as examples through 

the heatmaps, as shown in Figure 4-1. The red cells represent lower transition 

probablity while the green cells stand for higher transition probability. As demonstrated 

in Figure 4-1, significant individual differences in state transition pattern can be 

observed among different drivers. Specifically speaking, the green cells of the first 

driver’s pattern concentrate in the -45-degree axis of symmetry, which indicates that 

the driver tends to maintain the current state instead of shifting to other states. This 

phenomenon is commonly seen in experienced drivers who can operate the vehicle 

smoothly under various traffic conditions. On the contrary, the green cells of the second 

driver’s state transition pattern concentrate in state D. In other words, the driver prefers 

to change from other states to state D when driving. Similar phenomemon can be 

observed in Figure 4-1 (c) for the third driver and 4-1 (d) for the forth driver. The green 
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cells of these two drivers’ pattern concentrate more in state B and the drivers prefer to 

maintain state B during the trips. Additionally, a slight difference can be observed 

between the third and fourth driver. With the exception of state B with highest transition 

probability, the second highest state is state C and state A for the third and fourth driver, 

respectively. These observations prove that the proposed IOHMM models could 

capture the individually different driving behaviors. Moreover, these differences in 

state transition patterns among different drivers further prove the importance of 

considering individual driving behavior in energy prediction and building personalized 

driving behavior models.  

 

                                                     (a) 
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                                                     (b) 

 

                                                        (c) 
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                                                      (d) 

Figure 4-1: Heatmap of Transition Probability Matrix Between States for (a) Driver with 176 Trips, (b) Driver 
with 112 Trips, (c) Driver with 65 Trips, and (d) Driver with 39 Trips 

 

The study then compares the predicted hidden states from unsupervised 

IOHMM with labeled states through various labeling rules. The comparison indicates 

that maximum matching occurs under the labeling rules based on average cruising 

speed, acceleration rate, and continuous acceleration rate. The IOHMM models are 

then trained as supervised learning process using the labeled hidden states. The three 

parameters are obtained, and the hidden states are predicted. The comparison between 

predicted hidden states and labeled hidden states for the testing trips (20% of total trips) 

is demonstrated through confusion matrix, as shown in Figure 4-2. Each cell in the 

confusion matrix stands for the number of observations, whose labeled state is A (row 

name) and the predicted state is B (column name). Additionally, the percentages of 

mismatching among different states are summarized as a heatmap in Figure 4-3, where 

red cells represent higher percentages of mismatching and green cells stand for lower 
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percentages of mismatching. The white cells in the -45-degree axis of symmetry of the 

figure are the percentage of properly matching among different states.  

 

Figure 4-2: Confusion Matrix between Labeled Hidden States and Predicted Hidden States  
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Figure 4-3: Mismatching Ratio Between States  

 

In general, the proposed personalized IOHMM models achieve an accuracy of 

76.32% in state recognition. The ‘idling’ state shows the highest accuracy of 88.53% 

due to the significant higher probability of the ‘idling’ state in the initial probability. 

The initial states of almost all the input sequences are labeled as the ‘idling’ states, 

which contributes to the higher initial probability. Except for the ‘idling’ state, the ‘very 

cautious’ state and ‘very aggressive’ state are the best represented in state matching, 

with the accuracy of 87.58% and 79.54%, respectively. The ‘normal’ state achieves the 

poorest accuracy of 73.84% with the most mismatching happening between the 

‘normal’ state and the ‘cautious’ state. A high percentage of mismatching between the 

‘very cautious’ state and the ‘idling’ state is observed. This confusion is natural since 

the ‘very cautious’ state is defined as the observations with higher deceleration rate and 

lower cruising speed than traffic, which is consistent with the driving features on the 

link that the vehicle starts from the ‘idling’ state. For instance, a vehicle approaching 

an intersection with a red signal is more likely to reduce its speed and stop for a 

considerable duration. A similar condition may also happen to an overly cautious driver 

approaching a ramp with a yield sign. The driver may perform ‘stop and go’ many 

times, especially when upcoming main-through traffic is heavy. A deeper analysis is 

conducted on the mismatched observations. Among the 59 mismatched observations, 

51 are ramps or with signal controls—that’s a ratio of 86%. However, the observations 

with signal control or ramps only contribute to 8.9% of the entire network and 17.2% 

of the entire testing data. Such disparities indicate the assumptions stated above: that 

the confusion rate between ‘strong cautious’ and ‘normal’ is reasonable.  
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Deeper analysis is conducted on the relationship between predicted states and 

various input variables. The portion under different states is summarized for the input 

variable of peak-hour indicator and traffic controls, as shown in Table 4-1 and Table 

4-2, respectively. As shown in Table 4-1, the ‘aggressive’ state and ‘very aggressive’ 

state have observable higher percentages during off-peak hours, which are around 

2.85% and 4.3% higher than peak hours. The ‘Normal’ state has a greater increase of 

5.9%.  This may result from the heavy traffic during peak hours that prevents drivers 

from operating vehicles aggressively. When traffic is free during off-peak hours, 

overspeed-driving and continuous acceleration are more commonly observable. On the 

contrary, the ‘cautious’ and ‘strong cautious’ states occur more in the peak hours, which 

also indicates more drivers prefer to take less aggressive actions during peak hours.  

Distributions of the hidden states under different traffic control show 

perceptible differences, as indicated in Table 4-2. Among the three types of traffic 

controls, non-control has a significantly higher percentage of ‘normal’ state than signal 

control and turning control. However, the percentage of all other four states presents a 

perceivable higher percentage under signal control and turning control, especially the 

‘very cautious’ state. Comparing the state distribution pattern under different peak-hour 

indicators and traffic control indicators gives various interesting findings. In general, 

more drivers prefer to be more cautious during peak hours with heavy traffic and are 

more aggressive during off-peak hours with little traffic. However, the tendency is 

different for traffic controls. Drivers show obvious polarization in the reactions to 

different traffic controls, which is presented by the significant increase in both 

‘aggressive’ states and ‘cautious’ states. These findings indicate the influence of the 
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external environment on drivers’ driving behavior and the importance of building 

personalized driving behavior models in predicting driving features.  

Table 4-1: State Distribution in Peak Hours and Non-Peak Hours 

State Peak Hour Off-peak Hour 

1 6.71 3.86 

2 21.64 17.34 

3 48.19 42.23 

4 18.5 26.58 

5 4.96 9.98 

 

Table 4-2: State Distribution on Roads with Signal Control, with Intersection, and without Controls 

State Signal Control No Control Turning Control 

1 7.10 4.71 6.99 

2 22.20 18.77 21.25 

3 36.89 46.97 37.11 

4 24.87 22.37 24.75 

5 8.94 7.18 9.87 

 

4.3. Output Variables 

The proposed IOHMM has the ability to predict output sequences of driving 

features using input sequences of environmental variables. In this section, the accuracy 



61 

 

of outputs prediction under different input variables is summarized to evaluate the 

performance of the model. The predicted cruising speed and acceleration rates are 

compared with the observed values at link level through distance weighted error 

(DWE), as shown in Figure 4-4, 4-5, 4-6, and 4-7. As shown in Figure 4-4, the DWE 

of both cruising speed and acceleration rate have the tendency to increase with the 

decrease of roadway levels. Alternatively, it could simply mean that the prediction of 

both output variables on high-level roadways (e.g., freeway and highway) outperforms 

the low-level roadways, for instance, local roads. It could be speculated that this is due 

to the more complete and smoother observations on high-level roads. More complex 

traffic conditions may occur on low-level roads, for instance, traffic controls, 

pedestrians, work zones, and loading vehicles. For DWE under different road types, 

similar trends are observed, the high-speed roads present lower error for both speed 

rate and acceleration, and vice versa. However, the error for both output variables on 

the roads with a speed between 10 to 40 mph is hard to distinguish. It is difficult to 

explain such results with the context of current experimental studies. Additionally, 

significantly higher distance weight errors for both output variables are observed during 

peak hours. This appears to be a case of more frequent acceleration and deacceleration 

during peak hours, which results in a wider range of acceleration rates that are hard to 

predict. In the aspect of traffic controls, the roads with traffic controls obviously 

perform worse than the roads without control. Moreover, the roads with turning control 

present slightly lower error than signal-controlled roads.  
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Figure 4-4: Errors of Output Variables for Different Road Types 

 

0

5

10

15

20

25

1 2 3 4 5

D
is

ta
nc

e 
W

ei
gh

te
d 

Er
ro

r (
%

)

Road Type

Cruising Speed Error Acceleration Rate Error

0

5

10

15

20

25

30

0~10 10~20 20~30 30~40 40~50 50~60 >60

D
is

ta
nc

e 
W

ei
gh

te
d 

Er
ro

r (
%

)

Speed Limit (mph)

Cruising Speed Error Acceleration Rate Error



63 

 

Figure 4-5: Errors of Output Variables for Different Speed Ranges 

 

Figure 4-6: Errors of Output Variables for Peak Hours and Off-peak Hours 
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Figure 4-7: Errors of Output Variables for Different Traffic Controls 

4.4. Energy Consumptions 

Another critical ability of the proposed model is to accurately predict the VSP 

distribution, thus, enhancing the performance of energy consumption estimation. As 

introduced in Chapter 3.4, the average cruising speed and acceleration rates predicted 

by the behavior model are utilized to calculate the mean and standard deviation of VSP 

distribution through Equation 4 and Equation 5. Energy consumption can be estimated 

based on the integral of VSP distribution with energy factors, as illustrated in Equation 

6.  

 Emission factors are derived from the simplified MOVES model developed by 

Frey and Liu in 2013, namely MOVES lite [121]. Similar to MOVES, MOVES lite 
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estimates the energy consumption based on the conversion table of VSP and operating 

models. The difference is that MOVES lite uses average energy and emission rates of 

various bins to reduce complexity [121-123]. As reported in Frey and Liu’s work, the 

simplified MOVES model can represent more than 95% of the total traffic. Moreover, 

the method considers only limited vehicle types such as passenger car, passenger truck, 

light commercial truck, short haul truck, and long-haul truck. The relationship between 

VSP, operation modes, and energy factors can be referred to in Table 3-4 and Table 3-

5. 

 To highlight the advantage of the proposed IOHMM, energy calculated based 

on VSP distribution with and without adjustment from the IOHMM are compared at 

link level, as illustrated in Figure 4-8. The X-axes in the two figures represent the 

observed energy consumptions, while the Y-axes stand for the energy estimation based 

on the old VSP-based model in Figure 4-8 (a) and the energy estimation based on the 

proposed behavior-integrated model in Figure 4-8 (b). Each dot in the figure refers to 

a link-based observation, with its color corresponding to its link-based average speed 

depicted in the accompanying vertical bar to the left of the chart. 

 Several phenomena shown in Figure 4-8 are worth noting. First, the density 

distribution is more concentrated to the cut-off line of y=x in Figure 4-8 (b), indicating 

that the integration of the IOHMM behavior model can achieve more accurate VSP 

distribution and energy consumption estimation. Second, the dots with dark shades in 

Figure 4-8 (a) are widely distributed in the upper half of the cut-off line, while the dots 

with undertint colors are mostly observed in the middle and lower half. This indicates 
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that the old VSP-based models are more likely to overestimate energy consumptions 

on low-speed roads and achieve undervalued results on high-speed roads, which are 

consistent with findings in other studies. Similar characteristics are observed in the 

results with IOHMM adjustments, as shown in Figure 4-8 (b). Though the darker 

shaded dots are still obvious in the upper half, the undertint dots are more evenly 

distributed near the cut-off line. The findings prove that the proposed IOHMM model 

outperforms the old VSL-based models in predicting energy consumption on high-level 

roads with higher travel speeds. For the low-level roads, the improvement of IOHMM 

is not as expected. The VSP distribution on lower-level roads, which does not fully 

follow normal distribution, may contribute to this. Moreover, some low-level roads are 

short with their lengths and the observations on the roads are limited, which also 

influences the estimation accuracy based on the normal distribution. 

 

Figure 4-8: Comparison between Observed Energy and Estimated Energy Based on (a) Average Traffic Speed, 
and (b) Predicted Driving Features at Link Level 
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Similar comparisons are conducted at trip level, as shown in Figure 4-9. The X-

axes in the two figures represent the observed trip energy consumptions, while Y-axes 

stand for the trip energy estimation based on the old VSP-based model in Figure 4-9 

(a) and the trip energy estimation based on the proposed behavior-integrated model in 

Figure 4-9 (b). Each dot in the figure refers to a link-based observation, with its color 

corresponding to its trip-based average speed depicted in the accompanying vertical 

bar. The VSP-based model with IOHMM gives clearly better results than the traditional 

models without adjustments, and the distance weighted mean squared error 

significantly decreases from 20.20% to 13.19%.  

 

Figure 4-9: Comparison between Observed Energy and Estimated Energy Based on (a) Average Traffic Speed, 
and (b) Predicted Driving Features at Trip Level 

 

4.5. Comparison Experiments  

Here the study compares the results of the proposed IOHMM method with those 

of the traditional energy models including VSP-based model, aggregate model, modal-
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based model, traffic-based model, and average-speed model. The modeling structure, 

inputs, and outputs of these traditional energy models have been described in Chapter 

2. The absolute error and distance weighted error of energy consumption for trips are 

calculated and compared with the collected ground truth energy data from i2D, as 

summarized in Table 4-3. When comparing the results to those of previous studies, it 

must be pointed out that the model structures are directly referred to the instructions in 

the older papers without further calibrations or validations using existing data. 

Moreover, some hypotheses are made in the comparison due to the limitation of some 

input variables. For instance, some system-related factors of the modal-based model 

are hard to achieve, so the study takes the energy factors from the MOVES lite model 

instead of the MOVES model. Additionally, the traffic volume on some roads is 

missing as is the volume calculated from the fundamental relations of traffic flow.  

Table 4-3: The Absolute Error and Distance Weighted Error of Various Energy Models 

Model Absolute Error (%) Distance Weighted Error 
(%) 

IOHMM Model 16.32 13.19 

VSP-Based Model 21.65 19.27 

Aggregate Modal 22.50 20.15 

Modal Model 10.32 9.98 

Traffic-Based Model 34.96 29.32 

Average-Speed Model 29.20 24.60 
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Among the five traditional methods, the modal-based model leads to the best 

results, even if the strict requirements on inputs of detailed driving statistics at second 

level and consumed computing resources are negligible. A traditional VSP-based 

model gives the second-best performance, with 21.65% in absolute error and 19.27% 

in distance weighted error. The aggregate model, widely used in some simple eco-

routing systems, is fractionally behind the VSP-based model with a slightly higher 

error. The traffic-based model that takes traffic speed and volume as inputs presents 

the highest error with 34.96% in absolute error and 29.32% in distance weighted error. 

however, the extent to which the accuracy of the traffic-based model can be improved 

using ground truth traffic volume data instead of estimated traffic volume is unknown. 

The average-speed model generates slight better results with 29.20% in absolute error 

and 24.60% in distance weighted error. These two models use energy factors at an 

aggregated level and do not consider the influence of external environment and 

individual driving features. Overall, the accuracy and ranks of these models are in 

accordance with the findings in previous studies. The results of the proposed IOHMM 

demonstrated in Table 4-3 match the state-of-the-art methods (i.e., modal-based 

model), with 6% more in absolute error and 3% more in distance weighted error. It 

must be pointed out that at this stage of understanding, the author believed the 

implementation of the modal-based model in an eco-routing system is just scarcely 

possible due to these strict requirements. The results of the proposed IOHMM model 

also go significantly beyond the traditional VSP-based model, showing that the 

consideration of the cruising speed and acceleration rates can obviously improve the 

accuracy of energy prediction. By comparing the results from other older methods, the 
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proposed IOHMM method takes simpler structure and less-detailed inputs but achieves 

high accuracy. Therefore, this study determines that the proposed method could be a 

more appropriate energy prediction model for an eco-routing system.  

A further novel finding is that the distance-weighted errors for all methods are 

significantly smaller than the absolute errors, which suggests the absolute error on 

short-distance links and short-distance trips are higher than long-distance ones. This 

also indicates the energy prediction for short links and trips need more effort. A deeper 

comparison is conducted on various models by trips distance. The average absolute 

errors of different bins of trips distances are plotted in Figure 4-10. For all models, the 

short-distance trips achieve significant higher error than other distance bins. With the 

increase of trip distance, the average absolute error presents an obvious decreasing 

trend. This basic finding is consistent with the research showing that energy prediction 

is more difficult for short-distance trips. A popular explanation of this phenomenon is 

that the short-distance trips include more local roads, which are hard to predict. 

Moreover, the starting of the vehicle generates a constant amount of energy 

consumption, which is not considered in this study. The error caused by the dismiss of 

constant starting energy is more significant in short-distance trips with less energy 

consumption. Though the decreasing trend can be observed in all six models, the slope 

is more significant in the proposed model. The difference of average absolute error 

between the proposed IOHMM model and the modal-based model is about 12% for 

trips less than 1 mile, while this error is only 3% in the longest-distance bin. This 

phenomenon suggests the proposed IOHMM has more reliable prediction ability at 

long-distance links or long-distance trips. This also confirms the assumption that 
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individual behavior on higher-level roads with long distance and smooth transition is 

easier to capture with the proposed IOHMM model.  

 

Figure 4-10: Average Absolute Errors for Various Energy Models in Various Bins of Trip Distances 

 

Further statistical analyses are performed using the box plot to represent the 

minimum, maximum, median, 25th percentile, and 75th percentile, as demonstrated in 

Figure 4-11. The box plot reveals the absolute error of the modal-based model is more 

concentrated than other five models. With the exception of the modal-based model, 

which is not suitable as an energy prediction model, the proposed IOHMM achieves a 

statistically significant improvement in energy prediction accuracy by capturing 

individual driving behaviors. However, the model’s outliers in the box plot are higher 
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than some other models, which indicates the proposed model may generate an unstable 

estimation under some situations. Further analysis of the outliers is worth studying.  

 

Figure 4-11: The Distribution of Absolute Errors for Various Energy Models 

 

The study also compares the proposed IOHMM with other modeling 

approaches: Hidden Markov model (HMM), Neural Network (NN), Linear Regression 

(LR), and Long Short-term Memory (LSTM), as shown in Table 4-4. The proposed 

IOHMM performs well, giving clearly better results than other models. Long short-

term memory models, a widely used model for sequence modeling, gives the second-

best results with 20.16% in average absolute error and 17.30% in distance weighted 

error. When comparing the results from the proposed model to those of the LSTM 
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model, one thing must be noted. Though the proposed IOHMM model outperforms the 

LSTM model in general, the LSTM model achieves similar or even higher accuracy on 

the drivers with the large training dataset. NN and LSTM models result in 20.62% and 

19.99% in distance weighted error, respectively. HMM achieves the poorest 

performance, with 26.15% in absolute error and 22.93% in distance weighted error. 

This demonstrates that the external environmental variables have significant impact on 

driving features and energy consumption, which should be fully considered in energy 

prediction.   

Table 4-4: The Absolute Error and Distance Weighted Error of Various Modeling Approaches 

Model Absolute Error (%) Distance Weighted 

Error (%) 
IOHMM Model 16.32 13.19 

HMM Model 26.15 22.93 

Neural Network 23.41 19.99 

Linear Regression 24.96 20.62 

Long Short-Term 

Memory 

20.16 17.30 

 

4.6. System Benefits Evaluation  

To evaluate the performance of the proposed eco-routing method for real-world 

implementation and deployment, a statewide traffic simulation model is carried out to 

analyze system benefits. The traffic simulation model covers the Greater Washington 

metropolitan area, encompassing Maryland, Washington, D.C., and Northern Virginia. 

The model generation includes two steps: network generation and demand estimation. 
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The network is transformed from the HERE navigation network for the year 2019. 

Additional links are added to construct the signalized intersections, split the bi-

directional links, and connect traffic analysis zones (TAZ). The reconstructed network 

includes 2,089 traffic analysis zones (TAZ), 215,202 nodes, and 366,464 links, as 

displayed in Figure 4-12. Leveraging the massive cell phone location data, more 

reliable traffic demand data could be used as seed inputs for the traffic simulation 

model. This proceeds in four stages: trip identification, mode imputation, trip chaining, 

and trip population [124].  

 

Figure 4-12: Simulation Model for Benefits Analysis 

 

Over the course of the traffic demand estimation, calibration and validation play 

important roles. Several critical parameters—for instance traffic volume, traffic speed, 
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and other supply-side factors—must be calibrated to build a reliable simulation model. 

Link-based volumes are calibrated based on hourly traffic counts data collected from 

179 field sensors in 2015, which reside in the Regional Integrated Transportation 

Information System (RITIS) and the State Highway Administration (SHA) Traffic 

Monitoring System (I-TMS) database. In addition to the Origin Destination Matrix 

Estimation (ODME) function in DTAlite, manual effort also contributes to the 

calibration and validation process to deal with complex roadway segments. The 

framework of calibration and validation process is summarized as Figure 4-13.  
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Figure 4-13: Framework of Calibration and Validation Process of Simulation Model 
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The proposed eco-routing algorithm is simulated with the calibrated travel 

demand model under different scenarios through a series of pre-defined levels of user 

penetration represented by the parameter-named ratio of audiences (i.e., a 5% ratio of 

audiences means 5% of travelers follow the guidance of the proposed eco-routing 

system). Though the personalized IOHMM models are trained for all drivers, the ratio 

of the model distribution in all populations is unknown. Therefore, the drivers are 

clustered into four groups through a simple K-means algorithm, and a separate IOHMM 

driving behavior model is trained using the trips from all users in each group. The 

trained modes are randomly assigned to the drivers with the same proportion as the 

training dataset (i.e., 46% for group 1, 24% for group 2, 19% for group 3, and 11% for 

group 4). For each driver, the top five routes with the least amount of travel time during 

the same departure time window are collected from the simulation model, and the 

energy consumption for the routes are estimated. Each route is assumed to start from 

the ‘idling’ state. Relevant contextual information, transition probabilities, and 

emission probabilities are then used to determine the states and output variables. The 

output variables for all stages are estimated, then the link based VSP distributions are 

obtained, thus the energy consumptions are calculated. The route with minimum fuel 

consumption is considered the eco-route for each driver, which will be updated as the 

driver’s route in the next iteration. The simulation model is re-run using the updated 

routes, and the system performance is summarized.  
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Table 4-5: System Benefits under Various Percentage of Audience 

Ratio 
Energy 

Saving Per 
Vehicle (KJ) 

Energy Saving Per vehicle 
without Eco-routing (KJ) 

Energy Saving Per vehicle 
with Eco-routing (KJ) 

 

5% 129.23 7.02 88.52  

10% 131.15 10.11 149.75  

15% 141.1 16.01 234.42  

20% 147.17 25.41 335.46  

25% 150.12 28.01 394.62  

 

From the summary above, key findings emerge. First, the application of the 

proposed algorithm not only reduces the energy consumption of the app users, but also 

benefits the non-app users in the system. One possible reason accounts for this 

phenomenon. With the users changing their routes, the congestion on some high-

occupied roads could be released. Therefore, the non-app users also achieve higher fuel 

efficiency, although their routes remain the same. Second, with the increase of the 

audience ratio, the system benefits increase. Extensive results carried out show that the 

increasing speed first speeds up then slows down. One possible explanation for this is 

that more users shifting to other routes may result in unexpected congestion on some 

roads. This is an important finding in understanding the optimal ratio of the audience.  

Nevertheless, there are several limitations to the designed analysis. First, the 

traffic speed, one of the contextual input variables, is assumed to be constant under 

different scenarios. However, the case is not consistent with real world conditions. With 

users changing routes, the traffic conditions would change accordingly, which may 
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affect the prediction of driving behaviors and driving features. Second, though the 

routes of app users can be adjusted based on energy consumption, the routes of non-

app users are assumed to be fixed. This also goes against the real-world condition that 

users usually seek the fastest routes under various traffic conditions. This may raise 

concerns about the difficulties of integrating an eco-routing system with dynamic 

traffic assignments, which can be addressed in further research.  

4.7. Other Findings  

In addition to the analysis stated above, the study reveals several other 

interesting findings. First, the study compares the routes with minimum energy 

consumption and routes with minimum travel time. Collected trips from i2D and the 

incenTrip app are first matched with simulated trips from the statewide simulation 

model based on trajectories and departure times. Then other feasible routes for the 

matched trips are filtered based on origin, destination, and departure time. Energy 

consumption of the other feasible routes is estimated through the trained personalized 

behavior-integrated energy prediction model. For each collected trip, the routes with 

minimum fuel cost, minimum user cost (defined as fuel cost plus value of time), and 

minimum system cost (defined as fuel cost plus societal cost) are achieved. The 

percentages of trips with minimum travel time in each group are plotted for different 

distances (defined as the OD distance under free flow travel time) bins, as presented in 

Figure 4-14.  
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Figure 4-14: Matching Rate of Groups with Various Trips under Various OD Distance 

In general, 90% of the routes with minimum energy consumption also have 

minimum travel time, and the percentages for maximum system benefits and minimum 

user cost are 93% and 95%, respectively. These indicate that the shortest route is not 

always the one with minimum energy consumption or minimum societal impact, which 

is consistent with the assumptions that are generally accepted these days. Moreover, 

the percentages in mid-distance bins (i.e., 5~10 miles and 10~25 miles) are obviously 

lower that the values in short-distance bins (1 mile< and 1~5 miles). The differences 

are more significant between mid-distance bins and long-distance bins (25~50 miles 

and >50 miles). One possible reason is that feasible routes with similar travel time are 

limited for a short-distance trip, so the route with the shortest travel time usually has 

the lowest fuel cost and user cost. The case is similar for a long-distance trip, in that 

the route is usually unique except under severe traffic congestion. On the other hand, a 
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mid-distance trip has more feasible routes with similar travel time, so the shortest-

travel-time route is usually the most fuel-efficient option.  

Additionally, the study undertakes the empirical analysis on the relationship 

between fuel efficiency and drivers’ familiarity to the routes. Based on the number of 

trips per route, the routes are categorized into six groups. The fuel efficiency of each 

trip is calculated and the distance weighted fuel efficiency for all groups is summarized 

in Figure 4-15. As demonstrated in the figure, the distance weighted fuel efficiency 

increases with the increase of number of trips per route. This phenomenon indicates 

that a driver can operate the vehicle more smoothly on familiar roads and avoid less 

efficient driving behaviors. Driving on roads with frequent uphill and downhill 

segments would be a typical example. Though the traffic signs along the road may 

catch the driver’s attention, the perception of the road ahead would still be very limited 

if the driver is unfamiliar with the road. The driver is more likely to take a sharp 

deacceleration when he encounters a curve or signal ahead after passing the uphill. The 

situation is quite the opposite for a driver who is familiar with the road. The driver 

could take advance deceleration based on the experiences, even when the curve or 

signal is not visible, to avoid sharp deceleration and increase fuel efficiency. Based on 

these assumptions, the familiarly could be treated as an input variable or a hidden state 

of the proposed behavior-integrated model in further deployments.  
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Figure 4-15: Average Fuel Efficiency of Groups with Various Number of Trips per Path 
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Chapter 5 Applications 

 

This chapter presents the applications of the proposed behavior-integrated 

energy prediction approach on individual eco-routing and large-scale network 

monitoring and forecasting.  

5.1. Eco-routing System 

Supported by the Department of Energy (DOE), incenTrip, a comprehensive 

trip planning APP has been developed. incenTrip helps commuters in the Washington 

metropolitan region to find optimal commuting options. The application provides four 

distinct services to commuters: 1) provide cash rewards for a smart commute, 2) 

identify multimodal commute options, 3) avoid traffic delays, and 4) monitor the 

system impact [130]. However, the driving trips could be reduced, but could not be 

avoided in most cases. To reduce energy and emissions consumption of driving trips, 

the team is currently developing and deploying the proposed behavior-integrated 

energy prediction model in the incenTrip APP.  

The incenTrip APP has thousands of active users, most of which are commuters 

in Washington metropolitan area. The APP records the trip trajectory data of the users 

to improve user experience. Trip trajectory data stored online includes rich travel 

information with high frequency (e.g., 1 HZ) such as speed, acceleration, and location, 

which can be matched with roadway geometry features through map matching. The 

rich travel information can then be used as inputs for training personalized driving 

behavior model, whose outputs contribute to achieving accurate energy estimation. As 
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demonstrated in Figure 5-1, the operation process of the eco-routing module consists 

of three modules: online database, behavior modeling, and eco-routing.  

 

Figure 5-1: Framework of the Deployment of Eco-routing System on incenTrip Application 

 

Online database stores historical trip trajectories, vehicle information, and user 

information. The historical traffic data is also stored in the online database, which 

contributes to the short-term traffic speed and volume estimation. Every time a user 

plans a trip, the front-end sends the trip information, for instance, departure time, 

origin, and destination to the behavior modeling module. Several feasible routes are 

then generated by the routing algorithm and the corresponding energy consumption is 

estimated using the pre-trained behavior-integrated energy prediction model stored in 

the online database. For the users with limited driving records, the general models for 

different behavior groups could be used instead. The routes with minimum fuel cost, 

user cost, or societal impacts are filtered and returned to the front-end as different travel 

options. User can select the most appropriate route fitting personal needs. Sometime 

the route with minimum energy consumptions may not be the optimum solution if the 
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travel time is too long. Therefore, we eco-routing function considers travel time, fuel 

consumption and system benefits. For each possible route, the total cost is denoted as: 

𝐶௜,௧ =  𝑇௜,௧ ∗ 𝑐௏ை் + 𝐹௜,௧ ∗ 𝑐ி + ∑ 𝐸௜,௧,௝ ∗ 𝑐௝
௃
௝ୀ଴                                                             (21) 

Where 𝐶௜,௧  refers to the total cost of route 𝑖  departing at time 𝑡 , while 𝑇௜,௧  and 𝐹௜,௧ 

represent the total travel time (hours) and total fuel consumption (gallon). The unit cost 

of travel time and fuel consumption are indicated as 𝑐௏ை் and 𝑐ி. 𝑐௏ை் of this study is 

set as a $25.13/hour which is the median hourly wage rate for all employees working 

in the Washington metropolitan area, as reported by the Bureau of Labor Statistics. 𝑐ி 

is a dynamic variable that depends on fuel type and real-time fuel price. The third part 

of the equation refers to the system impact of emission consumption, where 𝐸௜,௧,௝ stands 

for the consumption of emission item 𝑗, and 𝑐௝ means the corresponding system impact. 

Cost for all emissions is considered as the societal cost generated by FY 2015-17 TDM 

program, as shown by Table 5-2. The eco-routing system aims at providing user the 

route with the largest benefits, so the objective function is formulated as: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐶௜,௧,     𝑖 ∈ 𝐼 𝑎𝑛𝑑 𝑡 ∈ 𝑇                                                                              (22) 

As an important input of hidden Markov behavior model, link-based average 

speed should be accurately predicted. As introduced previously, a long short-term 

memory model can be developed for average speed prediction, as described in section 

3.3.1. One thing worth noticing is that the average speeds for all links in the network 

are predicted every 10 minutes. This is because running LSTM model takes some time. 
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Table 5-1: Societal Cost of Various Types of Emissions Generated by 2015-17 TDM Program 

Societal Benefit Benefit Unit Cost Per Unit of Benefit 

NOX Tons removed $1,612 

VOC Tons removed $133 

PM2.5 Tons removed $15,107 

PM2.5NOX Tons removed $1,612 

 

After the user finishing the trip, the trip trajectory data is uploaded to the online 

database. Leveraging the latest sets of trip trajectories, the user’s personalized behavior 

model is trained and updated.  

5.2. System Energy Monitoring 

Although the proposed behavior-integrated prediction model cannot be directly 

used to predict link-based energy consumption, its hidden states can help to improve 

the accuracy of links with high bias. The hidden set of hidden Markov model represents 

the unobservable factors that influence the output variables. Recall the estimation 

results using average-speed model, there are some segments with obvious differences 

between the predicted energy consumption and the observed value. Although some 

deep learning methods may help to decrease the difference, it is still necessary to 

understand the reasons and come up with general methods. The proposed system is 

composed of three parts: link-based average speed prediction, link-based volume 

prediction, and fleet type and age distribution prediction.  
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Similar with average speed prediction, link-based volume is predicted through 

a spatial-temporal traffic flow method using LSTM. LSTM can handle the long-term 

dependency in the traffic flow data and discover the latent feature representations 

hidden in the traffic flow, which yields better prediction performance. Historical traffic 

volume data from RITTIS is used to train the LSTM model.  

In addition to traffic condition effect, energy consumption is also influenced by 

vehicle-related factors such as vehicle type, vehicle age, and fuel type. Some existing 

studies weight the traffic volume with fleet type distribution to improve accuracy. This 

study proposes tested a method to predict time-dependent link-based fleet distribution 

using trajectory data collected from mobile phone devices and vehicle registration data 

at zip code level. The rational for this testing is due to national or regional default fleet 

factors do not reflect local condition The trajectory data collected from mobile devices 

is used to get traffic demand, while vehicle registration data provides age and type 

distribution to weight traffic demand from each zone.  
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Chapter 6 Summary and Further Work 

 

6.1. Summary of the Research 

Theories of eco-routing and eco-driving have drawn increasing attention in both 

research and practice as the public becomes more concerned with environmental 

quality issues. However, the practical foundations of energy prediction models for eco-

routing systems have not been well established. Microscopic models generate accurate 

results but require detailed inputs and considerable computing resources. Macroscopic 

models are simple to implement but fully dismiss driving dynamics. Some mesoscopic 

models are a trade-off between microscopic and macroscopic ones using VSP 

distribution, which can be estimated using various driving features. However, the 

existing VSP-based models estimate the VSP distribution using average traffic speed 

or speed limit, which achieves poor accuracy in energy estimation (73.22% at trip level 

and 64.37% at link level). Taking the instantaneous VSP under average traffic speed as 

the mean of VSP distribution assumes that the speed is normal distribution on a link 

and is linearly related with VSP, which is not true in most cases. Further analysis 

indicates that the mean and variance of VSP distribution are strongly related to other 

driving features, for instance, average cruising speed and acceleration rate.  

External environmental factors prove to significantly influence driving features, 

affecting energy consumption and emissions. Additionally, various unobserved driver-

related factors also influence the driving features—for instance, emotions, pressures, 

and sensitivity. These unobserved factors show obvious individual differences and are 

collectively referred to as driving behaviors. Understanding the relationships among 
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external roadway environment, driving behaviors, and driving features is critical for 

building a reliable eco-routing system.  

Considering the interplay of these three groups of factors, a train-based 

IOHMM with similar structure is trained and deployed to estimate individual driving 

features using historical trip trajectory data. Compared with standard HMM, the 

IOHMM has an additional input layer, which consists of observed contextual variables 

such as historical traffic statistics and roadway geometry information. The hidden layer 

of IOHMM captures the influence of unobservable driving behaviors and the outputs 

are predicted driving features. Three types of parameters are involved in the proposed 

model: initial probability model, transition probability model, and emission model. The 

parameters are formulated based on the variables of different layers and are learned 

through Expectation-Maximization and Forward-Backward algorithms.  

Next, the experimental study is given to explain the modeling process and the 

performance of the proposed algorithm. Personalized behavior models are developed 

based on drivers’ historical trip trajectory data. Various measurements of effectiveness 

are conducted to evaluate the model performance: for example, state recognition, 

driving features estimation, and energy estimation at link and trip levels. State 

recognition is evaluated by comparing the estimated states with the labeled states. In 

general, an accuracy of 82% is achieved, which indicates that the proposed IOHMM 

model can capture the driving behavior with great success. Then, the driving features—

including average cruising speed and acceleration rates—are compared with ground 

truth data at link level. The distance weighted errors are 13.15% and 17.27% for 
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average cruising speed and acceleration rates, respectively. Moreover, the results also 

prove that the proposed approach with IOHMM outperforms other methods in 

predicting energy consumption with an error of 12.80%. Additionally, a state-level 

simulation model is developed and tested to analyze system benefits. The system 

performance indicates that the widely implementation of the proposed approach not 

only benefits the users but also reduces the energy consumption and traffic congestion 

of the entire system. 

In summary, this study presents a framework of modeling individual driving-

behavior-generated driving features for effective short-term energy consumption and 

emissions prediction. In the proposed framework, the prediction process doesn’t need 

the VSP at a second-by-second scale as it has been. Instead, the VSP distribution is 

predicted based on the personalized IOHMM training through drivers’ historical trip 

trajectory data. The integration of IOHMM model overcomes the limitation of old 

energy prediction approaches in coping with driving behavior impact, resulting in more 

accurate VSP distribution and energy consumption prediction.  

6.2. Further Work 

6.2.1. Model Selection          

In this study, the input output-hidden Markov model is utilized to map a 

sequence of input variables into output variables. Except for the statistical approaches, 

various machine learning algorithms—for instance, LSTM, deep neural network 

(DNN), and generic algorithm (GA)—can also be used to solve the prediction problems 

of sequence data. The selection of statistical methods and machine learning methods 
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are mainly depending on the size of input data and logistics assumptions. For limited 

size of inputs, the models with simple structure (e.g., hidden Markov model, input 

output-hidden Markov model, and Bayesian model) can produce better results than 

complex models. The most critical reason is that training with limited size of data with 

simpler models can avoid overfitting. When a lot of data is available, more complex 

models (DNN and LSTM) outperform the simpler ones since a more accurate 

relationship can be explored. This is also proved in the comparison experiments of this 

study. Though the proposed IOHMM achieves higher accuracy than the LSTM model 

in general, contradictory results are observed in some users with a large training dataset. 

The relationship between data size and model accuracy is worth further exploration. 

With the wider implementation of the application and communication with more data 

sources, richer personal trip records are available and more complex models could be 

utilized. Additionally, applying different models on drivers with different trip records 

is also an innovative approach in eco-routing applications.  

6.2.2. Model Generation          

Though the framework has been thoroughly designed, developed, and 

evaluated, several aspects still need further exploration for real-world implementation.  

The selection of input and output variables of the proposed IOHMM may 

benefit from further analysis. Previous studies tend to determine these variables based 

on the researchers’ own practical experiences. In this study, the Pearson correlation 

analysis is used to select the appropriate variables—high coefficients output variables. 

Similar analysis is conducted in deciding the input contextual variables; the candidate 
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variables are also selected this way. A more systematic evaluation of all relevant 

variables and a more comprehensive analysis of their sensitivity could provide more 

certainty on the appropriateness of selecting input and output variables.  

Hidden states also worth further exploration. The number of hidden states in the 

input output-hidden Markov model is usually hard to determine. More hidden states 

can help the model handle a wide range of driving behaviors, but the performance is 

usually limited by the data size and data quality. A smaller size of hidden states can 

expedite the training process; a dynamic number of hidden states is a potential solution, 

instead of a constant value. The number of hidden states can be dynamically determined 

by the data size and data quality of the historical trips. Further quantitative research on 

the exact number of hidden states could provide more certainty in the process and 

potentially improve computation efficiency. The study first trains the IOHMM through 

unsupervised learning without labeling the hidden states. The results of unsupervised 

learning are used to select the most appropriate rule for hidden states labeling, which 

are later used for supervised learning. The experimental results of state recognition in 

this study highlight the capabilities of the proposed IOHMM in estimating the driving 

behavior of individuals. However, confusion can be observed in some states, which 

indicates the definitions of hidden states are not appropriate enough. The hidden states 

can be better defined through classification methods such as supper vector machine 

(SVM), random forest, decision tree, logistic regression, and K-nearest neighbor. 

As shown by the experimental results, the proposed IOHMM achieves 

significantly low accuracy of energy prediction on local roads. One possible reason that 
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contributes to this phenomenon is that local roads usually have short link distances in 

the HERE navigation network. A limited number of observations indicates the VSP 

may follows other distributions (e.g., linear distribution) instead of Gaussian 

distribution. Merging several adjacent links with similar geometry features together 

could help to receive richer link-based GPS observations.  

6.2.3. Model Implementation          

Though the personalized input output-hidden Markov model can capture a 

driver’s driving behavior, it is not applicable in some cases. For instance, the trip 

records of a newly registered driver are limited, so the data size is insufficient to support 

training a personalized model. For application purposes, more general driving behavior 

models are needed. Drivers could be categorized into different groups based on driving 

styles or behaviors through various categorized algorithms. In general, categorized 

algorithms include clustering algorithms (e.g., decision tree, Bayesian classifiers, 

logistic regression, and support vector machine) and classification algorithms (e.g., K-

means algorithms and hierarchical clustering), based on the knowledge of the outputs. 

Clustering is framed by unsupervised learning, which takes a set of inputs without 

previously knowing the desired outputs. On the other hand, classification algorithms 

belong to supervised learning, which means that both the inputs and the outputs are 

pre-defined. This study suggests that K-means algorithm could be adopted to study the 

features of the collected data and classify the drivers. Pearson correlation coefficients 

between driving features and trip energy consumption are first calculated. Variables 

with significant correlations should be selected as inputs for the K-means model 

according to the standard guidance of Pearson correlation coefficient. Then, the trips 
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belonging to drivers in each group are combined as the training dataset for general 

behavior modeling, which can later be utilized to estimate energy consumption for 

drivers with limited driving records.  

Though the proposed algorithm help users select eco-routes with minimum 

energy consumption, how to benefits the entire system worth further analysis. As 

discovered in Section 4.6, the increment of system benefits slows down after the ratio 

of audience reaches a specific level. Two possible reasons contribute to this inertia. 

First, with more users detour to eco-routes, some new bottlenecks arise when some 

local roads cannot afford the heavy influx of traffic. Second, the non-APP users are 

assumed not to change their routes, which is inconsistent with real-world situation. 

Here the study comes up with several ideas to extend the proposed algorithm from user 

optimum to system optimum.  

1) Though real time simulation can help generate system optimal solutions, it is 

not acceptable for real world implementation due to time consuming. However, 

the primary group of incenTrip users are commuters with relatively stable travel 

patterns, for instance, work location, home location, and departure time. 

Therefore, these users’ recommended routes could be predicted in advance by 

offline simulation models, which are simulated and calibrated using real-time 

and historical traffic statistics. Instead of setting minimum travel time as 

objective function, the simulation model aims at maximizing the system 

benefits. When simulating a user’s trajectory, the driving features on a link are 

predicted using the pre-trained driving behavior model and the energy 
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consumption is estimated through the behavior-integrated energy prediction 

model. After predicting the routes with maximum system benefits, the routes 

are recommended to the users through the incenTrip APP in advance (e.g., 15 

or 30 minutes prior to the normal departure time). To increase the efficiency 

and accuracy of the prediction, several offline models could be developed 

separately for different time periods. 

2) For the non-commute trips, the process described in Section 5.1 could be used 

to predict eco-routes. Except the factors formulated in equation 21, the penalty 

factor representing the system impact from detouring (i.e., detouring from 

routes with least travel time) could also be considered. For instance, detouring 

from a heavy congested road will have a negative penalty, while positive 

penalty is applied if detouring to a road that near saturation. A simple penalty 

function can be formulated as: 

𝑃 =  𝜀(
௏

஼
)ఢ                                                                                                                    (22) 

Where 𝑉 stands for the existing traffic volume and 𝐶 represents the capacity of 

the link. 𝜀  and 𝜖  are link-based penalty factors, which can be estimated in 

further analysis.  

Autonomous vehicles, also known as self-driving vehicles, are vehicles that 

operate based on screening the external environment through multiple sensors and 

moving safely with little or no human effort. Recently, the autonomous driving 

technology has been promoted significantly by the rapid advances in computer vision 

and deep neural networks. More researchers suggest that the self-driving vehicle will 
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be an accepted trend for the future. Though the proposed model in this study focuses 

on drivers’ behavior and driving features, it can also contribute to the autonomous 

driving vehicles. Similar with driver-driving vehicles, energy consumption of self-

driving vehicles is also determined by various unobservable factors, for instance, 

vehicle performance and auto-driving algorithms. The vehicle performance and auto-

driving algorithms can be involved in the hidden layer as hidden states to capture the 

influence on driving features. Additionally, most autonomous vehicles also have 

driver-driving mode for safety concerns. The changes between driver-driving status 

and autonomous driving status can influence driving features and should also be 

included as hidden states. Utilizing the historical trip trajectory data, the personalized 

IOHMM is trained and the integrated model is used to predict energy consumption for 

autonomous driving vehicles.  
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