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Ensemble data assimilation techniques, including the Ensemble Transform

Kalman Filter (ETKF), have been successfully used to improve prediction skill in nu-

merical models for weather forecasting. However, less research has been conducted

on data assimilation techniques for systems with no numerical model. In this study,

we begin by applying the technique of bred vectors to a reconstructed phase space

model for simple, autonomous nonlinear systems and compare the predictive ca-

pabilities of data driven bred vectors to those computed using a numerical model.

Next, we show that a combination of the phase space reconstruction with ETKF

yields a new technique, which we call Nearest Neighbor ETKF, for forecasting using

only time series data. This technique is applied to a simple nonlinear system, the

Lorenz three variable model, to demonstrate its effectiveness in forecasting noisy

time series data. Finally, we use this technique to forecast field variations in the

magnetosphere, which exhibit low dimensional behavior on the substorm time scale.



The time series data of the magnetic field variations monitored by the network of

ground-based magnetometers in the auroral region are used for forecasting at two

stages. In the first stage, the auroral electrojet indices, computed from the magne-

tometer data, are used to reconstruct the dynamics and Nearest Neighbor ETKF

yields forecasts of the index that are more skillful than persistence. In the second

stage, the multivariate time series from several auroral region magnetometers is

used to reconstruct the phase space of the magnetosphere-solar wind system using

Multi-channel Singular Spectrum Analysis. The Nearest Neighbor ETKF is applied

to ensemble forecasts made using model data, constructed from long time series of

the data from each magnetometer, in addition to observations in the reconstructed

phase space, constructed from magnetometer measurements concurrent with the

start of the forecast. Additionally, the spreads of the ensembles constructed to fore-

cast these times series are used as precursors to understand and predict extreme

space weather events.
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Chapter 1: Introduction

1.1 Background and Motivation

Nonlinear systems are ubiquitous in nature. A key feature of nonlinear dy-

namics is an inherent difficulty in predicting the evolution of the system. Even with

full knowledge of the underlying dynamics, small errors in initial conditions can

grow exponentially over time causing large forecast errors. This phenomena is well

known in the case of weather forecasting where capturing highly nonlinear behavior

becomes challenging. Tools for mitigating these effects in numerical forecasts and

improving predictability have been developed extensively.

However, many systems in nature are difficult or impossible to forecast using

numerical models. Constructing a first principles model that can be solved numer-

ically is challenging when physical processes are not well understood. In the case

that a model can be constructed, discretization of such models require that physical

processes that occur on smaller scales than those represented by discrete grid be pa-

rameterized. This can hamper the ability of a numerical model to capture the all the

relevant behavior of the system. Finally, to initialize a model forecast, sufficiently

many state variables must be observed to capture the current state. Often only a

partial state vector or perhaps a scalar value can be measured. The predictability
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of many systems is impaired by these limitations and more; however, forecasting

such nonlinear systems from time series data has been an area of active research for

some time [4–10].

The motivation for this work comes from a desire to combine techniques com-

mon to numerical weather prediction (NWP) that improve forecast skill with data

driven techniques for predicting the evolution of nonlinear systems based on time

series data. The potential applications for these new techniques are vast, but here

they will be used to forecast a natural phenomenon that is particularly difficult

to forecast numerically - the development of a class of space weather events called

magnetospheric substorms driven by the solar wind.

1.2 Tools for Numerical Weather Prediction

The past century has seen remarkable advances in our ability to forecast com-

plex, nonlinear systems. Today, NWP accomplishes a feat that seemed insurmount-

able at the turn of the previous century when the equations governing the dynamics

of the atmosphere were solved by hand. [11–13]. Great effort over many decades

has brought the state of forecasting the behavior of the neutral atmosphere to its

current level of success.

While the first principles governing the flow of air within the atmosphere have

been well known, their complicated and nonlinear nature has made direct solutions of

such equations near impossible until the advent of the computer age. Computers can

perform the many computations required to numerically solve the governing equa-
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tions on increasingly fine grids. Since then, a number of advances have contributed

to the current success seen in forecasting the weather. The first is that computers

have become better over time. This allows for the inclusion of more physics and

more refined solution domains. The second major advance is seen in the number

of observations available. The earliest days of weather forecasting depended upon

individuals making regular detailed measurements of their local conditions. Now,

in addition to many in situ measurements taken by all manner of weather stations,

airplanes, and sea-crafts in addition to more specialized vehicles like radiosondes,

weather balloons, and unmanned submersibles, we enjoy global coverage from re-

mote sensing satellites that provide radiances from which atmospheric variables can

be retrieved through radiative transfer models. The third major area in which ad-

vances have enabled enhanced numerical weather prediction is in the development

of tools to help capture these inherent instabilities and mitigate their effects.

One such tool is bred vectors [14,15]. Breeding takes advantage of the divergent

nature of nearby trajectories in nonlinear systems to characterize these instabilities

in a computationally efficient way. These vectors capture the fastest growing modes

of variability and, since their inception, these vectors have been applied to testbeds

of simple nonlinear system to further explore their properties. In fact, bred vectors

themselves have been shown to provide predictive skill for certain regime transitions

[16].

Even with a perfect model and increased observational coverage, it is still

a challenge to initialize complex, nonlinear models such as those for NWP. Each

of the model variables must be known at each location which is impossible even

3



with enhanced observational coverage. Additionally, even the best observations

include errors. The nonlinear nature of weather models that made them so difficult

to perfect in the first place ensure that errors in the initial conditions will grow

exponentially during the forecast window, to potentially complete divergence from

the true evolution of the atmosphere. Data assimilation is a tool that serves to

construct initial conditions with improved errors relative to the errors introduced

by observations and previous model forecasts. By optimally averaging between the

two estimates available at the start of the forecast window, taking into account their

relative errors, an estimate of the true state of the system can be obtained.

Within the field of data assimilation, advances over the years have allowed for

improvements beyond the use of static background error covariances in 3D varia-

tional methods, such as the Kalman filter [17], to those that incorporate some aspect

of time. One framework assimilate asynchronous observations using a variational

method called 4D VAR [18, 19]. This requires the use of a numerical model be-

cause the adjoint must be obtained to handle observations at different times. On

the other hand, ensemble methods evolve background error covariances in time by

computing them based on multiple model realizations from a number of perturbed

initial conditions, thus sampling the variability in the model space [20, 21]. This

technique has great potential to be applied to data driven methods because the

ensemble members need not necessarily come from numerical model forecasts. The

particular variant of an ensemble Kalman filter used in this study is the Ensemble

Transform Kalman Filter (ETKF) [22]. Recently, efforts to extend the capability

and forecast improvements due to data assimilation to systems lacking a numerical
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model have been made [23], including this study.

1.3 Nonlinear Time Series Prediction

Complicated models and a dearth of data necessitates the exploration of alter-

native forecasting strategies. Many nonlinear systems that are difficult to observe

and model benefit from a data driven approach to forecasting. The study of various

systems through measurements of a partial set of variables, even in some cases a

single scalar variable, has yielded predictive skill in forecasting future behavior.

Given a set of historical data from a system there are many approaches that

can be taken. Making parametric fits of curves with various functional forms to

datasets works well if the solution follows a known form. However, when there is no

closed form solution to the data, or a linear fit to a polynomial is not appropriate,

more advanced techniques need to be explored. An extension of a linear model is an

auto-regressive moving average models (ARMA) that includes a stochastic compo-

nent to account for some degree of nonlinearity. On the other hand, neural networks

and other deep learning techniques, where a hidden layers of of interconnected “neu-

rons” transform the in-put variables to the out-put variables, an recreate complex,

nonlinear behavior without knowing anything about the form of the solution.

For time series data arising from a dynamical system, i.e. one whose evolution

is defined by a phase space [24], we can reconstruct the behavior of the system,

even if only a single variable is observed. Through time delay embedding, developed

by Packard et al. [25] and formalized into a theorem by Takens [26], phase space
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models that account for all of the dynamics of a system can be constructed given a

sufficiently long time series of observations. Behavior of arbitrary initial conditions

can be forecasted by finding analogs among the reconstructed phase space states [27].

Fortunately, many systems in nature that we are interested in forecasting are

deterministic, perhaps with underlying dynamics that may not be known to us. If

they are also dissipative, i.e. the volume of the phase space of the initial state

contracts under the dynamics, then the phase space model can be low dimensional

and this data driven forecasting technique becomes viable. Phase space models

constructed in this way will become the substitute for those made by numerical

models in the techniques developed for NWP.

1.4 Forecasting Space Weather

Space weather is a class of phenomena that have recently garnered much at-

tention. While space weather effects have been visible in the polar region aurora, the

potentially devastating effects of which are only just being realized. While the effects

are largely present in the naturally occurring subsystems of the earth’s atmosphere

and magnetosphere, man-made objects are severely affected. As we build structures

along the earth’s surface susceptible to the devastating effects of geomagnetically

induced currents and structures within the near earth space environment vulnerable

to the effects of highly energetic ionized particles, we stand to lose vital technolo-

gies upon which we have become dependant. Potentially crippling fallout from such

large scale events include the severe economic impacts of having to rebuild vital
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infrastructure including power grids and railway lines, the loss of communication

and other satellites upon which the ease of modern life depend, and the potential

loss of life and property.

The need to forecast such events is evident. However the current state of

space weather forecasting lags considerably behind that of its terrestrial counterpart.

Modeling space weather suffers from many drawbacks. First, the scale of the system

is vast covering many relevant characteristic time and length scales. To truly capture

the system one must model from “the sun to the mud” covering both the evolution

of solar events such as high speed streams, flares, and coronal mass ejections; their

propagation through and interaction with the space environment as the solar wind;

and finally their interaction with a number of coupled earth systems including the

magnetosphere, ionosphere, neutral atmosphere and potentially man-made earth-

based systems to truly capture the full extent of the effects. The efficient modeling

of many of these systems is still an area of active research. Physics governing the

evolution of solar structures and the interaction of magnetic fields within key areas

of the magnetosphere are still not well understood.

The scale of the system also contributes to another drawback, a lack of obser-

vations. Currently, space weather forecasts begin when activity is detected on the

sun. The sun is well observed along the line of sight between it and the earth by

several space based observatories. However to determine the direction of material

ejected from its surface, multiple views are needed. Even in this limited context,

adequate observations are difficult to come by. Stereo A and B orbit in opposite

directions, potentially providing two additional views from different angles allowing
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for the determination of direction and extent of material ejected from the sun. In

other regions of the system observations are even more scarce. Only two satellites

make in situ observation of the solar wind plasma parameters and magnetic field cur-

rently. The ACE satellite sits at the first Lagrange point and measures the upstream

solar wind before it reaches earth. More recently, an effort is underway to observe

the magnetosphere at key locations. But largely, observations of the magnetosphere

made at the surface of the earth by a number of ground based magnetometers are

needed to complement the in situ spacecraft observations.

1.5 Thesis Objectives

The objective of this study is to understand the effect of data assimilation on

forecasts made using data derived models. As a preliminary step, we also explore

the predictive skill of the growth rate of bred vectors using data derived model.

We constructed these models from time series observations of univariate or multi-

variate phase space variables. The approach we developed combines phase space

reconstruction to create this model with the ensemble transform Kalman filter to

make improved forecasts. To test this approach, we use the Lorenz three variable

model. This allows us to compare directly the performance of forecasts made in the

reconstructed phase space to forecasts made using the known dynamical equations.

Of particular interest to this study are time series that characterize space

weather conditions. The signature of substorm development can be seen in the

scalar auroral electrojet indices. These indices have been studied for decades and
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are used throughout the literature to identify substorm events. We use our technique

to forecast the value of the AL index to predict such events.

This technique can be extended to multivariate time series. Rather that re-

ducing the observed anomalies in the auroral oval to a scalar value, we also forecast

the magnetometer measurements simultaneously. Forecasts of the multivariate time

series provide additional information including timing and location of anomalies. Fi-

nally, the ensemble forecasts made of the AL index are used to identify and predict

the occurrence of extreme events.

This thesis is organized as follows: Chapter 2 describes the techniques com-

bined to perform the study. A preliminary study of bred vectors in the reconstructed

phase space is described in Chapter 3. Chapter 4 includes the results of the Nearest

Neighbor Ensemble Transform Kalman Filter applied to the Lorenz 3 variable sys-

tem. Chapter 5 contains the results of applying this technique to the lower auroral

electrojet index and the results of the multi-variate extension to the auroral oval

magnetometer data. Results utilizing the spread of the forecast ensembles to pre-

dict regime change in the Lorenz system as well as the magnitude of space weather

events are also presented in Chapter 5. Finally, some conclusions are summarized

in Chapter 6.
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Chapter 2: Data Driven Ensemble Transform Kalman Filter

Forecasting nonlinear systems with no numerical model and limited observa-

tions requires that we take full advantage of the data that is available and exploit

the nonlinearity of the system. First a data-derived model is constructed using non-

linear time series analysis techniques of time-delay embedding. Since observations

are contaminated by high dimensional noise, singular spectrum analysis (SSA) is

applied to the phase space model to filter out unwanted noise, capture the dynam-

ical signal, and create and orthogonal basis for the phase space model. Finally,

the Ensemble Transform Kalman Filter (ETKF) combines forecasts made using the

phase space model with observations of the current state of the system to improve

the skill of forecasts by improving the initial conditions of each subsequent forecast

cycle.

2.1 Dynamical Modeling Using Time Series Data

Forecasting future values of a scalar, nonlinear time series of observations has

been a rich field of study [4,7,8]. From making simple linear predictor models based

on a training set of data, to improved models that incorporate nonlinear behavior,

there are many techniques available to those interested in tackling such a problem
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[24,28,29]. For nonlinear dissipative systems, the evolution follows trajectories that

lie on an attractor. For an infinitely long time series, the system will continue to

visit each neighborhood of the attractor infinitely many times, coming arbitrarily

close to previous trajectories without ever intersecting. For dissipitive systems, the

dimension of the attractor itself is smaller than the dimension of the phase space in

which it is contained because phase space volumes contract as the system evolves

in time [30].

Given an attractor that is densely populated by a long phase space trajectory,

predictions can be made using analogs of arbitrary initial conditions. Nearby tra-

jectories will tend to follow a similar evolution in the short term [8]. In the long

term, the nonlinear nature of the governing dynamics will cause nearby trajecto-

ries to diverge exponentially. Given a long historical time series, the attractor of

the system can be covered such that analogs for arbitrary initial conditions can be

found within neighborhoods of a given radius.

2.2 Time Delay Embedding

For dissipitive, nonlinear, systems for which the full state vector cannot be

observed, it is possible to reconstruct the leading features of the attractor from

a time series of scalar observations for systems that contract onto a low dimen-

sional attractor . The reconstructed attractor is diffeomorphic with the original

attractor and preserves the original topology. [25, 26] Given a time series of data,

{x(t1), x(t2), . . . , x(tN)}, taken from measurements at regular intervals, multivariate
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state vectors can be constructed by taking as each component a time-lagged value

of the original series [24,31].

x̃(ti+(m−1)τ ) = (x(ti), x(ti+τ ), . . . , x(ti+(m−1)τ))
T (2.1)

The time delay between each successive component is denoted by τ , and should be

long enough that within that interval, information about the unobserved, but non-

linearly coupled, variables is incorporated in the evolution of the observed variable.

If the time delay is too long the observations at the beginning and end of the interval

will be uncoupled and therefore essentially independent. To ensure that each new

component of the so called time-delay vector introduces the optimal amount of

new information, the time delay can be determined by looking at the decay of the

information shared by each pair of components. This quantity is measured by the

average mutual information function [27]. The autocorrelation function can also

be used to obtain the time delay, τ ; however, the mutual information function

yields more reliable values because it can capture nonlinear relationships while the

autocorrelation function depends on linear relationships.

The time delay is determined from the mutual information function, given by

I(τ) =
N∑
t=0

p(x(t), x(t+ τ)) log

[
p(x(t), x(t+ τ))

p(x(t))p(x(t+ τ))

]
, (2.2)

where p(x(t)) and p(x(t + τ)) are the probability distributions of the variable x(t)

and the time lagged value respectively.
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The mutual information function is a measure of the extent to which knowledge

of one random variable provides knowledge of another random variable. If the two

are mutually independent, they share no common information and knowledge of

one does not provide knowledge of the other, thus the mutual information function

tends to zero. It is similar to an auto-correlation in that it will pick up linear

relationships between the two lagged variables, but it is also possible to detect

nonlinear relationships.

The time delayed reconstruction depends on information about unobserved

variables being introduced by each new component of the time delayed vector. The

time delay selected should be long enough that any two components do not provide

redundant information, but not so long that the nonlinear nature of the system has

eliminated any correlation between the two

The dimension of the state vector, denoted by m, should be large enough that

the reconstructed attractor is completely unfolded and trajectories lying on it are

proper phase space trajectories, i.e. they do not intersect. If the dimension of the

embedding is too small, phase space trajectories will necessarily intersect. Thus,

points that fall on these intersecting trajectories will appear to be nearest neighbors

when they should not be nearby at all. By estimating the percentage of ”false

nearest neighbors”, those points that are no longer neighbors to one another when

the dimension of the embedding increases, one can determine the optimal embedding

dimension by watching this quantity fall to zero [6, 32,33].
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2.3 Reconstructing Phase Space by Singular Spectrum Analysis

There are several considerations that must be made for dealing with real data.

The first is the duration of the time series. It is important that the there be suf-

ficiently many observations to cover the attractor densely enough to find suitable

nearest neighbor analogs [24].

The second concern is that real data often contains random noise in addition

to the underlying signal of interest. This noise is high dimensional and can increase

the estimated dimension of the attractor. We wish to filter out this noise by using

Singular Spectrum Analysis (SSA) [9, 34]. Given the m-dimensional reconstructed

attractor, SSA allows for the identification of the directions that contain most of

the variability seen in the data. The remaining dimensions that contain minimal

variability correspond to the noise present in the data.

The application of SSA also serves to construct a proper basis for the model.

The basis of the time delay vectors is not orthogonal. The basis of the principal

components constructed using SSA are eigenvectors and are therefore orthogonal to

one another. As analogs for our forecast initial conditions, we use nearest neigh-

boring points among the model trajectory located by minimizing the distance to

the arbitrary initial condition. Thus, with a proper basis, the distances to nearest

neighbors in the space of principal components is well defined.

To perform the SSA, we first construct the trajectory matrix of time delay
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vectors. From the trajectory matrix,

D =



x(t1) x(t2) · · · x(tN ′)

x(t1+τ ) x(t2+τ ) · · · x(tN ′+τ )

...
...

. . .
...

x(t1+(m−1)τ ) x(t2+(m−1)τ ) · · · x(tN ′+(m−1)τ )


(2.3)

the covariance matrix is given by

C =
1

N
DDT . (2.4)

From the covariance matrix, eigenvalue decomposition is used to find the series of

eigenvalues, {λ1, λ2, . . . , λm}, and eigenvectors {e1, e2, . . . , em} ∈ Rm. The eigenval-

ues correspond to the amount of variance attributable to the mode defined by the

corresponding eigenvector. The eigenvalues tend to fall off with increasing mode

number. The eigenvectors that correspond to eigenvalues that fall below a certain

noise floor can be discarded. Taking only the first k modes corresponding to the

largest eigenvalues, an m× k transformation matrix given by

T = [e1e2 · · · ek]T (2.5)

can be used to map the m dimensional time delay state vectors onto the k di-

mensional attractor that describes the dynamical signal of the data, yielding a k

dimensional phase space of the principal component time series.
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2.4 The Ensemble Transform Kalman Filter

Both models used to predict future states of a system and observations used

to initialize the models contain errors. For nonlinear systems these errors compound

over time, leading to a rapid divergence between the forecast and the true state of

the system being predicted. Data assimilation is a technique used to systematically

improve the initial conditions used to initiate a forecast by taking into account

both the errors in the observations and the errors introduced by the previous model

forecast to make a better estimate of the true state of the system to start the next

forecast. [13]

The improved estimation of the true state is called the analysis given by xa.,

while the a priori estimate of the state provided by the previous model forecast is

called the background and denoted by xb. To find the analysis given the background

state and an observation xo, minimize the cost function that assumes both the

background and observation have Gaussian error statistics with respect to the true

state of the system:

J(x) = 1
2

(
(x− x̄b)T (Pb)−1)(x− x̄b) + [yo −Hox]T R−1 [yo −Hox]

)
(2.6)

where Pb and R are the error covariances of the background and observations re-

spectively. The observation operator Ho takes vector x from the state space of the

system and model, to a potentially different space where the observation resides.

Ensemble methods are those that use many background states, each starting
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from initial conditions that are slightly perturbed with respect to each other, rather

than a single background state. This provides an easy way to estimate the back-

ground error covariance and also allows for it to evolve in time, better representing

the ”errors of the day.” [20] Given an ensemble of M states denoted

{xb(1)(t),xb(2)(t), . . . ,xb(M)(t)}, (2.7)

the mean and ensemble perturbations about the mean are given by

x̄b(t) = 1
M

M∑
l=1

xb(l)(t) (2.8)

and

X̂b(t) =
[
xb(1)(t)− x̄b(t) xb(2)(t)− x̄b(t) · · · xb(M)(t)− x̄b(t)

]
(2.9)

respectively. The background error covariance can be computed as

Pb(t) = (M − 1)−1X̂b(t)
(
X̂b(t)

)T
. (2.10)

A computationally efficient way of solving the cost function to determine the

analysis ensemble is the Ensemble Transform Kalman Filter [22]. In this approach,

the spread of the background ensemble about the mean is treated as a proper basis

(although it is not, in fact, full rank). Arbitrary states can be expressed in this

basis as x = x̄b + wX̂b where w ∈ span(X̂b). Defining the quantities ȳb = Hx̄b and
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Ŷb = HX̂b, the cost function can be expressed as

J̃(w) = 1
2

(
(M − 1)wTw +

[
y − ȳb − Ŷbw

]T
(Ro)−1

[
y − ȳb − Ŷbw

] )
. (2.11)

The cost function is minimized to obtain the mean state

w̄a = P̃a(Ŷb)TR−1(yo − ȳb). (2.12)

The members of the ensemble are given by the columns of

Ŵa =

[
(M − 1)

[
(M − 1)I + (Ŷb)TR−1Ŷb

]−1]1/2
(2.13)

plus the mean w̄a.

To obtain the analysis states, the mean is given by x̄a = x̄b + X̂bw̄a, and the

members of the ensemble by xa(i) = x̄b + X̂bwa(i) . The analysis ensemble members

are used as the initial conditions for the subsequent forecast for each background

ensemble member respectively. Typically the forecast is made using a numerical

model, however, in this case a data-derived phase space model of Sec. 2.2 will be

used.

2.5 Nearest Neighbor Ensemble Transform Kalman Filter

The approach developed for this study combines the reconstructed phase space

forecasting technique with the ETKF to produce improved forecasts. The first step
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is to construct the model. This requires a long time series as discussed in 2.3. The

model time series should not include any observations that will be used during the

ETKF stage where forecasts of events will be made. In other words, all events to

be forecast should be out of sample. The model construction proceeds as followed

and is repeated a single time.

2.5.1 Model Construction

(1) Given the model time series, compute the appropriate time delay τ and di-

mension m for the embedding.

(2) Construct the time delay vectors as in Eq. 2.1 and the model trajectory Dm.

(3) To apply SSA, compute the eigenvalues and eigenvectors from the covariance

matrix of the model trajectory as in Eq. 2.4.

(4) Project the model trajectory onto the transform matrix of the k most impor-

tant modes (Eq. 2.5).

2.5.2 Forecast Cycle

Once the model has been constructed, forecasts can be made using the ETKF

and the model constructed from the time series data. The following sequence will

be repeated to make forecasts after each forecast window of duration tw. The initial

background ensemble can be chosen from random points within the model trajectory

or from an ensemble of nearest neighbors to an initial observation.
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(1) Beginning with an ensemble of prior estimates, compute the ensemble mean

and spread.

(2) Using the observations corresponding to time {t−(m−1)τ, t−(m−2)τ, . . . , t},

construct a time delay vector for the observation xo. To apply SSA, project

the observation vector onto Tm.

(3) Apply the ETKF to the background ensemble and the observation to obtain

the analysis ensemble.

(4) Make the subsequent forecast using the data-derived reconstructed phase space

model

(a) For each member of the analysis ensemble, locate the index of the analog

among the model state vectors by minimizing the distance.

tNN(i) = min
t∈[1,N ′]

|xa(i)− xm(t)| (2.14)

(b) Follow the evolution of the analog over the duration of the forecast win-

dow to obtain the background ensemble member xb(i) = xm(tNN(i) + tw)

(5) Using the new background ensemble, proceed to step (2) to repeat the cycle

for the next forecast window.
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2.5.3 Reconstruction of Original Time Series

The forecasts are made in the model space consisting of time delay vectors.

In the instances where singular spectrum analysis is used, the dimension of this

space is reduced by projecting the time delay vectors onto a subset of eigenvectors

representing the modes of variability. In order to compare forecasts made in this

space to the observed time series a reconstruction must be performed.

(1) If SSA has been applied to filter observational noise, a time delay vector cor-

responding to the forecast time is obtained by taking a superposition of the

eigenvectors weighted by their time amplitude, i.e. the corresponding compo-

nent of the forecast vector.

(2) The forecasted value of the time series is the one with the latest time index,

i.e. the m-th component of the time delay vector.

To evaluate how well the forecast performs it can be compared to a refer-

ence forecast. The simplest forecast to perform given a time series is a persistence

forecast. Persistence assumes that the value of the variable will remain the same

throughout the forecast window. Thus, the value at the end of the forecast window

will be the same as the initial value at the start of the window. For both the nearest

neighbor ETKF forecast and persistence, the root mean square error with respect

to the true value will be computed. A skill score compares the error in each forecast

and quantifies how well the ETKF forecast performed relative to the reference [35].
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SS = 1− RMSENN ETKF

RMSEpersistence

(2.15)

A skill score close to one means that the nearest neighbor ETKF forecast is

performing better than persistence. A negative skill score means that persistence is

outperforming the nearest neighbor ETKF forecast.

2.5.4 Localization

In common data assimilation scenarios, such as NWP, the model state is usu-

ally quite large covering many state variables and many grid points. The back-

ground error covariance matrix governs how each variable in the state vector is

updated based on variations in the other state variables. Often the connection is

obvious, however sometimes spurious correlations can occur within the background

error covariance. This might lead to variables that are spatially far away having a

disproportionate effect on one another. To counter this, a localization strategy is

employed.

2.5.5 Data Density

The utility of this method is greatly determined by the quality of data in the

model. It is essential to have sufficient observational data from which to construct

a model. The first concern is that every portion of the attractor be visited by the

model trajectory. The second is that every portion be visited frequently enough that

sufficiently close nearest neighbor analogs can be located for each ensemble member.
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2.6 Multi-channel Extension

If a partial state vector is available as an observation rather than simply a

scalar time series, the techniques discussed above can still be applied [9]. Let the

observed state vector x be given by (x1(t), x2(t), . . . , xL(t))T , where L is the number

of observed variables, or channels. A time delay vector can be constructed as follows:

x̃(t) = (x1(t), x1(t+τ), . . . x1(t+(m−1)τ), . . . , xL(t), xL(t+τ), . . . , xL(t+(m−1)τ))T

(2.16)

such that the time-delay vector is (m × L)-dimensional looks like a concatenation

of L m-dimensional time-delay vectors for each variable. The trajectory matrix

and covariance matrix can be constructed as in Sec. 2.3. The eigenvalues and

eigenvectors are also obtained in the same way. The eigenvectors, like the time-delay

vectors, will appear as a piecewise configuration of L individual vectors. To reduce

the dimension of the model, select the k eigenvectors with the largest eigenvalues

that explain sufficiently much of the variability of the original data and project the

trajectory matrix and observations onto this basis.
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Chapter 3: Bred Vectors in the Reconstructed Phase Space

3.1 Introduction

A hallmark of nonlinear systems is that nearby trajectories tend to diverge

exponentially as they evolve in time. This can lead to large errors in forecasts made

based on initial conditions with relatively small errors. This is particularly evident

in numerical weather prediction where the system has very complex and highly

nonlinear behavior. “Errors of the day” arise from local instabilities that vary both

spatially and temporally and are potentially fast growing. Ensemble forecasts are

used to quantify the uncertainty due to the difficulty in capturing the fast growing

and localized instabilities which causes the separation, or spread, among members

of the ensemble to increase as the neighboring trajectories diverge. The technique of

bred vectors was developed to maximize the potential spread of ensemble forecasts

by predisposing members to grow in the presence of instabilities [14,15].

Bred vectors are a computationally efficient way to pick up on directions of

rapid growth within the model because they depend on numerically computing only

two model runs - a control run and a perturbed run over a short breeding window.

The direction of displacement between the perturbed trajectory and the control

trajectory at the end of the breeding window is used to inform the choice of perturbed
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initial condition for the next breeding cycle. After repeated cycles, bred vectors

tend to pick up on the fastest direction of growth locally. It is natural to draw a

comparison between the growth rate of bred vectors and Lyapunov exponents. Bred

vectors converge to the local leading Lyapunov vector and their growth rate is a

nonlinear extension of the leading local Lyapunov exponent [15].

Here we extend the technique of bred vectors, described below, to accommo-

date systems for which numerically integrating perturbed trajectories is not possible.

The new technique, called Nearest-Neighbor Bred Vectors, relies on reconstruction

of the phase space from a scalar time series, as described in Sec. 2.1. To evaluate

the performance of the nearest-neighbors bred vectors technique in the phase space

reconstructed from time series data, we turn to three simple, autonomous chaotic

models – the Lorenz three variable model, the Chua oscillator, and the Rössler

model. Each of these is often used as a test bed for nonlinear analysis techniques.

These particular systems were chosen because they have two clearly defined regimes

for which the signature of the transition between the two can be seen in the time

series of a single model variable. We compare how well the original bred vectors

can capture the transition between the two regimes in each system and test some

simple prediction rules. We then compare the performance to nearest neighbor bred

vectors in both the full phase space of all model variables and the reconstructed

phase space of a single model variable.
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3.1.1 Method of Bred Vectors

Given a set of model equations dx
dt

= F(x(t)), a control trajectory xc(t) is

obtained by integrating the model equations for a period of time. The breeding

cycle starts by integrating a perturbed trajectory initiating from a point given by

xp(ti) = xc(ti) + δx0
i , where δx0

i is a displacement vector with a small magnitude

equal to δ0. Both trajectories are evolved over an integration window of n∆t where

∆t is the time step. At the end of the integration window, the magnitude of the

displacement vector between the perturbed trajectory and the control trajectory,

given by δxfi = ||xc(ti+n)− xp(ti+n)|| is compared to the initial displacement and

the rate of exponential growth is computed as

gi =
1

n∆t
ln
(
||δ~xfi||/||δx0

i ||
)
. (3.1)

To start the next breeding cycle, the final perturbation vector is rescaled to the

magnitude of the initial perturbation δ0 such that the direction of the displacement

final displacement from the previous cycle is preserved. The next breeding cycle

initiates from a perturbed initial condition given by xp(ti+n) = xc(ti+n) + δ0
δxf

i

||δxf
i ||

.

After repeated breeding cycles, the bred vectors will converge upon the local direc-

tion of greatest growth and their growth rates will approximate the local leading

Lyapunov exponents [15]. This is a computationally efficient way to approximate

similar information to that provided by Lyapunov exponents, but rather than com-

puting a limit, only two integrations of the nonlinear model are required – one for
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the control trajectory and one for the perturbed.

3.1.2 Nearest-Neighbor Bred Vectors

Many systems exist for which no numerical model is available. In this case

we turn to a data-driven phase space model described in Ch. 2 and present an

extension to the original breeding technique. Since this technique uses nearby points

to serve as analogs for the perturbed initial conditions we call it nearest-neighbor

breeding. Using a long historical time series of observations of a single variable, a

phase space model is constructed as described in Sec. 2.1. The control trajectory

is an out-of-sample time series of the same variable observed from the same system.

To make forecasts of perturbations with respect to the control, analogs for the

perturbed initial conditions are located among the model data points, the evolution

of which is known. This analog is chosen such that the distance between the target

perturbation and the analog is small, and the angle between the target perturbation

and the nearest-neighbor perturbation is also small. This ensures that the direction

of growth is maintained as much as possible during the breeding cycles.

From the time series data of a single variable, multivariate time delay coor-

dinates are constructed according to Eq. 2.16. In this case, the control trajectory

and model trajectory are each defined by discrete points. The control trajectory is

given by xci and the perturbed trajectory is chosen from the model trajectory such

that xpi = xmj .

The growth rate is computed as in Eq. 3.1 where δx0
i = xmj − xci and

27



δxfi = xmj+n − xci+n are the initial and final perturbations of the breeding cycle

respectively. To select the perturbed trajectory of the next breeding cycle around

the control starting from xci+n, we follow the spirit of the standard breeding in which

the initial perturbation is given by δx0
i+n = αδxfi /||δxfi ||; i.e., the final perturba-

tion of the previous cycle is rescaled and bred as the new perturbation. Here the

perturbation size α is constant for all breeding cycles. In the reconstructed phase

space, however, the trajectory is defined by discrete points, and the rescaled posi-

tion xi+n + αδxfi /||δxfi || may not be a trajectory point. We thus search and select

the nearest point xcj? and refer to the distance between these two points as the

displacement distance.

Like the standard breeding, it involves two parameters, i.e. the window size

n and the target perturbation size α. For successful applications of the nearest

neighbor search, the density of the trajectory points must be high enough that,

on average, the displacement distance in the nearest-neighbor search is small with

respect to target initial perturbation size and the correlation between δxfi and

δx0
i+n is nearly 1.

3.1.3 Experimental Setup

The performance of nearest-neighbor bred vectors, particularly in the phase

space reconstructed from time series data, is analyzed by performing the follow-

ing three breeding experiments. Experiment (a) is the standard breeding in the

3-dimensional model phase space using the model equations as in Evans et al. [16].
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Experiment (b) is the nearest-neighbor breeding applied to a discrete time series

data in the model phase space, i.e., x̂i = {x1(ti), x2(ti), . . . , xn(ti)}. This experi-

ment reveals whether the nearest-neighbor breeding, without any knowledge about

the model equations, gives comparable results to the standard breeding in the orig-

inal model phase space. Finally, Experiment (c) is the nearest-neighbor breeding

technique in the phase space reconstructed by the time-delayed embedding of a sin-

gle time series i.e., x̃ = {xj(ti), xj(ti+τ ), . . . , xj(ti+(m−1)τ )}.

In all experiments, the growth rate gi is computed using the breeding window

size n = 8 with ∆t = 0.01 and (targeted) perturbation size α = 0.10. For each

model, a control trajectory consists of approximately 10 000 orbits after an initial

spin-up to make sure that the trajectory has reached the attractor. To ensure

sufficient data density for the nearest-neighbor search in Experiments (b) and (c),

nearest neighbors are selected from an out of sample model dataset that contains

800 000 data points in the original phase space.

3.2 Bred Vectors in the Reconstructed Phase Space of the Lorenz

System

As a test bed for the techniques developed for this study, and here for the

nearest-neighbors bred vectors, we use the Lorenz model to demonstrate the con-

cepts of time series analysis, nonlinear dynamics, and data-driven data assimilation.

The model was developed by Edward Lorenz in 1963 to serve as a idealized hydro-

dynamic model [36]. This set of first order ordinary differential equations is simple
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in formulation,

dx

dt
= −σx+ σy

dy

dt
= −xz + rx− y

dz

dt
= xy − bz,

(3.2)

yet yields interesting nonlinear behavior.

Figure 3.1: The attractor of the Lorenz 3 variable system in the natural 3 dimen-
sional phase space of (x, y, z).

The standard choice of parameters, σ = 10, b = 8/3, and r = 28, and integra-

tion with a time step of ∆t = 0.01 produces the familiar butterfly attractor seen in

Fig. 3.1. While the system has only three model dimensions, the strange attractor

onto which the phase space collapses has a fractional dimension between 2 and 3.

Three fixed points organize the topology of the attractor. Two foci, both unstable

spiral points, give rise to the two lobes about which the trajectory orbits. A hyper-
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Figure 3.2: The time series data for the variables x(t), y(t), and z(t) for the Lorenz
system. The signature of regime change can be seen in the x(t) variable when a sign
change occurs.

bolic fixed point located at the origin governs the chaotic transition between two

regimes. The two regimes are defined by the two lobes of attractor. The signature

of the transition can be seen in positive or negative values of the x coordinate. After

a number of orbits about the fixed point in one of the lobes, the trajectory crosses

the x = 0 axis to orbit the other lobe. The behavior is nonperiodic and the number

of orbits varies irregularly revealing the chaotic nature of the system. Though the

behavior of the system is chaotic, it is predictable, making it a unique nonlinear

system, ideal for testing new predictive techniques [16, 23,37,38].

3.2.1 Reconstruction of the Lorenz Attractor

To reconstruct the Lorenz attractor from the time series x(t), time delay vec-

tors are constructed as described in Sec. 2.1. The information shared by the first
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(a) (b)

Figure 3.3: 3.3(a) The mutual information function as a function of time delay for the
Lorenz x(t) variable. 3.3(b) The percentage of false nearest neighbors for attractors
reconstructed from the x(t) variable of the Lorenz system for various time delays as
a function of embedding dimension. For a range of time delays, the percentage of
false nearest neighbors becomes negligible for more than three dimensions.

variable of the Lorenz system, x(t), and its time-lagged counterpart, x(t + τ∆t),

reaches a first minimum after a time delay of t = 0.14 or τ = 14 time steps of

∆t = 0.01, as seen in Fig. 3.3(a). At the first minimum, x(t) and x(t+ τ∆t) share

relatively little information with one another, thus introducing maximal information

to the vector. The time required for the information shared by the variable to decay

to e−1 of its original content at t = 0.07. Often the embedding is not particularly

sensitive to the value of the time delay chosen and choices of τ within this range

will yield a proper embedding. For the reconstruction of the Lorenz attractor from

the x(t) variable a time delay of τ = 7 will be used.

The minimum embedding dimension of the time delay vectors is chosen such

that the attractor is unfolded and the phase space trajectories do not intersect. The

method of false nearest neighbors described in Sec. 2.2 quantifies how neighborhoods

of points on the attractor change as the embedding dimension is increased. If phase

space trajectories intersect, points that should not be nearby will be spuriously close.
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Figure 3.4: The reconstructed attractor in the embedded phase space formed by
time delay vectors with dimension m = 3 and time delay τ = 7.

As a sufficient number of dimensions is reached, points occupying neighborhoods

should stabilize and remain unchanged. For all of the selected time delays, the

percentage of false nearest neighbors shown in Fig. 3.3(b) tends to zero after m = 3,

indicating a minimum of three dimensions are required for a proper embedding of

the Lorenz attractor.

The reconstructed Lorenz attractor is depicted in Fig. 3.4. While the form

of the attractor appears different than the full phase space attractor in Fig. 3.1,

the major features are retained. Because the topological properties of the attractor

are preserved by the skeleton of the attractor in the reconstructed phase space, the

regime change between orbiting one foci of the butterfly to the other governed by

the hyperbolic fixed point can be seen in each.
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(a) (b)

(c)

Figure 3.5: Growth rates of bred vectors in the Lorenz system using three different
methods: 3.5(a) standard breeding using the ordinary differential equations in the
phase space (x, y, z); 3.5(b) nearest-neighbor breeding in the phase space (x, y, z);
and 3.5(c) nearest-neighbor breeding in the reconstructed phase space (x1, x2, x3).
The colored points correspond to negative (blue), low (green), medium (yellow) and
high (red) growth; see text for the value of the thresholds.

3.2.2 Bred Vectors Results

The average displacement distance and vector correlation between the stan-

dard and the nearest neighbor breeding are 0.17 and 0.97 in Experiment (b); they

are 0.12 and 0.98 in Experiment (c).

Figure 3.5 shows the points along the respective control trajectories for which

bred vector growth rates were computed in each of the three experiments. The
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(a)

(b)

(c)

Figure 3.6: The first coordinate of phase space as a function of time, with red stars
indicating the points with high growth rate (gi ≥ 6.4) bred vectors; (a)-(c) are the
same as in Fig. 3.5.
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magnitudes of the growth rate are represented by colors using the same empirical

thresholds as in Evans et al. [16]: negative growth points (gi < 0) in blue, low

growth points (0 ≤ gi < 3.2) in green, medium growth points (3.2 ≤ gi < 6.4) in

yellow, and high growth points (gi ≥ 6.4) in red. As shown in Evans et al. [16] for

the standard breeding, all experiments show high growth at points concentrated in

the regime transition region, while the regions with different growth rates are well

separated. The nearest-neighbor breeding, both in the original (Fig. 3.5b) and in

the reconstructed (Fig. 3.5c) phase spaces, successfully captures the features found

in the standard breeding (Fig. 3.5a), although the separation between the different

growth rates is less sharp. Figure 3.6 shows the time series of the first phase space

coordinate (x) for the first 500 breeding cycles for each of the three experiments.

Note that, by construction, the first coordinate x in phase space coincides with the

first coordinate x1 in the embedded space.

3.2.3 Predicting Regime Changes

As pointed out by Evans et al. [16] and apparent in Fig. 3.6, high bred vec-

tor growth rate, marked in red, is a very good predictor of regime change in the

standard breeding in the Lorenz model. To test the predictive capabilities of the

bred vector growth rates, we make binary (Yes-No) forecasts based on the prediction

rules developed by Evans et al. [16]:

• Rule 1: The appearance of a red star indicating a growth rate in

excess of 6.4 signals a regime change will occur at the end of the
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current orbit (Yes). The absence of a red star means the current

regime will continue (No).

• Rule 2: The length of the new regime is proportional to the number

of red stars. For example, the presence of five or more stars in the

old regime, implies that the new regime will last four orbits or more

(Yes). Fewer than five stars means the new regime will last fewer

than four orbits (No).

We modify these rules slightly for the case of nearest-neighbor breeding by

excluding red stars that occur on orbits with extrema whose absolute value is greater

than 1, to reduce the false alarms in the prediction of regime change.

Table 3.1 is the contingency table [35] of the forecast/observed event pairs

applying the first prediction rule to the bred vectors from the three experiments.

Individual forecasts of the rule (FCST) are made for each orbit of the trajectory. The

observed events (OBS) are based on the occurrence or non-occurrence of the regime

change following the completion of the orbit. Corresponding accuracy measures [35]

are shown in Table 3.2.

Examining the hit rate (HR), threat score (TS), and false alarm rate (FAR), it

is apparent that the three experiments succeed in predicting the regime change with

similar accuracy. The HRs and TSs for the three methods are close, varying from

82 to 87, and 72 to 76 %, respectively. The FARs are about 6% for the standard

breeding but increase to 11 and 13% when nearest-neighbor breeding is used in the

original model phase space and in the reconstructed phase space, respectively.
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Table 3.1: Contingency tables based on the rule that regime change will occur in
the orbit following the appearance of high growth rate bred vectors using three
different methods. In (b) and (c) using the nearest-neighbor breeding, high growth
rate points in orbits with absolute values of extrema above 1 are excluded. OBS
and FCST stand for observed and forecast, respectively; (a)-(c) are the same as in
Fig. 3.5.

OBS

Yes No Total

Yes 374 38 412

(a) FCST No 80 573 653

Total 454 611 1065

Yes 396 67 463

(b) FCST No 58 544 602

Total 454 611 1065

Yes 383 77 460

(c) FCST No 71 534 605

Total 454 611 1065

We note that, in addition to large bred vector growth rate, two other methods

have been also proposed to predict regime changes in the Lorenz three variable

system. In his original paper (Lorenz, 1963), Lorenz pointed out that regime changes

were associated with large values of the variable z. Yadav et al. (2005) showed that

large absolute magnitudes of the x variable are also a good predictor. We have

implemented the method used in [38] for the time series x(t) and got equally good

results. However, the main objective of this paper is to determine whether bred

vectors can predict stability from a single time series data, i.e., in the reconstructed

phase space. The reasons for the choice of bred vectors as a predictor of fast growth

in the dynamical system are two-fold. First, unlike the size of a particular variable,
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Table 3.2: Measures of forecast accuracy in terms of the Hit Rate (HR), Threat
Score (TS), and False Alarm Rate (FAR); (a)-(c) are the same as in Fig. 3.5. The
final row shows the values when the threshold of x(ti) rule is used.

HR (%) TS (%) FAR (%)

(a) 82.4 76.0 5.2

(b) 87.2 76.0 11.0

(c) 84.4 72.1 12.6

breeding can be tested in any dynamical model. Second, bred vector perturbations

and their growth have a clear physical meaning in that they detect instabilities [39]

and are akin to the leading local Lyapunov vector and their corresponding growth

[40]. Thus while predictions based on threshold values of a single variable work well

for the Lorenz model, bred vector growth rate may be suitable for making predictions

in a broad range of dynamical systems. The bred vectors, by their ability to capture

nonlinearity in instability growth, can characterize instability in dynamical systems

in a more general manner than Lyapunov vectors and provide a way to obtain regime

change in cases where the latter are computed from the time series data [41].

For the binary forecasts, Evans et al. (2004) noted that the next regime tended

to be longer-lasting when the when more red stars appeared in the previous regime.

As can be seen in Fig. 3.7, this rule holds true for the nearest neighbor breeding

technique in the full phase space. However, it is less convincing for high growth rate

bred vectors in the reconstructed phase space.
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(a) (b)

(c)

Figure 3.7: The observed number of cycles vs the number of high growth rate bred
vectors observed in previous regime. The numbers indicate the frequency with which
a given pair was observed. The line correspond to the values in prediction rule 2.
(a) Bred vectors are computed using the ODEs. (b) NN bred vectors are computed
using the full phase space model. (c) NN bred vectors are computed using the
reconstructed phase space model.

3.3 Bred Vectors in the Reconstructed Phase Space of the Chua Os-

cillator

The Chua oscillator is one of the first electronic circuits constructed to display

chaotic behavior [42]. This system produces a double scroll attractor, similar to

the Lorenz attractor, with two lobes that the trajectory orbits and a transition

between the two regimes, as seen in Fig. 3.8. However, unlike the Lorenz system,
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the equations that model the behavior do not contain an explicit nonlinear term.

The system is described by the following equations:

dx

dt
= α (y − x− h(x))

dy

dt
= x− y + z

dz

dt
= βy,

(3.3)

where h(x) = bx+ 1
2

(a− b) (|x+ 1| − |x− 1|) . The attractor in Fig. 3.8 is produced

using the values of α = 11.6, β = 18.432, a = −1.4554, and b = −0.7853 for the

coefficients.

Figure 3.8: The attractor of the Chua 3 variable system in the natural 3 dimensional
phase space of (x, y, z).

Despite the lack of an explicitly nonlinear term in the governing equations,

the system has rigorously been shown to exhibit chaotic behavior [43]. In fact, the

system was constructed to mimic the type of double scroll behavior seen in the

Lorenz system. The Chua attractor has been used in numerous studies as a model
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testbed for nonlinear techniques.

The three fixed points of the system divide the domain into three regions where

the behavior can be analyzed. Like the Lorenz system, there are two fixed points

with a stable and unstable manifold that results in a trajectory that orbits each.

The one-dimensional stable manifold draws trajectories into the plane spanned by

the unstable manifold, where trajectories tend to spiral away from the fixed point.

These orbits can be seen in the time series of both the x and y coordinates, with one

region defined by positive x values and negative y values, and the other by negative

x and positive y coordinates. Also similar to the Lorenz system, the Chua circuit

attractor possesses a fixed point at the origin that controls the transition between

the two regimes. However, this fixed point is not hyperbolic.

Figure 3.9: The time series data for the variables x(t), y(t), and z(t) for the Chua
system. The signature of regime change can be seen in the x(t) variable when a sign
change occurs.

The signature for the regime change can be seen in the value of the x coordinate
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(a) (b)

Figure 3.10: 3.10(a) The mutual information function as a function of time delay for
the Chua x(t) variable. 3.10(b) The percentage of false nearest neighbors for attrac-
tors reconstructed from the x(t) variable of the Chua system for various time delays
as a function of embedding dimension. For a range of time delays, the percentage
of false nearest neighbors becomes negligible for more than three dimensions.

in Fig. 3.9. As it crosses from positive to negative and vice versa, the trajectory

transitions from orbiting the fixed point in the positive region to that in the negative

region.

3.3.1 Reconstruction of the Chua Attractor

Time delay vectors built from the first variable of the Chua system are used

to reconstruct the attractor. The mutual information function in Eq. 2.2 computed

for a series of time lags is shown in Fig. 3.10(a). Unlike in that of the Lorenz x(t)

variable, the average mutual information of the Chua x(t) variable displays no local

minima. However, the e-folding time of the mutual information of about τ = 16 can

be used to reconstruct the attractor.

The fraction of false nearest neighbors, shown in Fig. 3.10(b), falls off to

negligible values after three dimensions. The attractor reconstructed from time delay

vectors with delay of 16 time steps between each component and three dimensions
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Figure 3.11: The reconstructed Chua attractor in the embedded phase space of time
delay vectors with m = 3 and τ = 16.

is shown in Fig. 3.11. The double scroll of the Chua attractor in Fig. 3.8 can still

be seen. The transition region about the origin is also preserved.

3.3.2 Bred Vectors Results

High growth rate bred vectors in the Lorenz system tended concentrate about

the hyperbolic fixed point at the origin where the instability gave rise to regime

change. In the Chua system, high growth rate bred vectors also concentrate near

the fixed point at the origin; however, their appearance is not as clear a precursor

to regime change as it was for the Lorenz system.

The distribution of bred vector growth rates are very similar for the standard

bred vectors and those computed using the nearest neighbor bred vector method

in the full (x, y, z) phase space, as can be seen in Fig. 3.12. Here, the points with

negative growth rates are blue, low growth rate points (0 ≤ gi < 2.85) in green,

medium growth points (2.85 ≤ gi < 5.7) are yellow, and high growth rate points
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(gi ≥ 5.7) are red. In the standard and full phase space nearest neighbor bred

vectors, the high growth rate points are mostly in the transition regions, however,

there are some instances of high growth rate bred vectors in the scroll portions of

the attractors.

(a) (b)

(c)

Figure 3.12: Growth rates of bred vectors in the Chua system using three different
methods: 3.12(a) standard breeding using the ordinary differential equations in the
phase space (x, y, z); 3.12(b) nearest-neighbor breeding in the phase space (x, y, z);
and 3.12(c) nearest-neighbor breeding in the reconstructed phase space (x1, x2, x3).
The colored points correspond to negative (blue), low (green), medium (yellow) and
high (red) growth; see text for the value of the thresholds.

The same threshold values are used for bred vectors in the reconstructed phase

space. Here the separation between the growth rates and the occurrence of high

growth rate bred vectors is even more clear, which contrast with the results seen in
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the same scenario using the Lorenz system where the clearest divisions were seen in

the standard breeding technique using the ODEs.

This result can also be seen in the time series in Fig. 3.13. In the time series

from experiments (a) and (b), occasionally high growth rate bred vectors can be

seen near the extreme points of the orbits. However, these points do not always

occur in the final orbit before the transition. In experiment (c) the high growth rate

bred vectors rarely occur close to the extrema of the orbits and are confined almost

exclusively to the transition region.

(a)

(b)

(c)

Figure 3.13: The first coordinate of phase space as a function of time, with red stars
indicating the points with high growth rate (gi ≥ 6.4) bred vectors; (a)-(c) are the
same as in Fig. 3.12(a).
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3.3.3 Predicting Regime Change

While the high growth rate bred vectors are not as strong a predictor of regime

change as in the case of the Lorenz system, they still provide good skill for forecasting

regime change. Table 3.3 shows the contingency table for 967 orbits for prediction

Rule 1, that the appearance of high growth rate bred vectors indicate that the orbit

will be the final one in the regime.

Table 3.4 contains the skill scores for forecast rule 1. Given the threshold values

for bred vector growth rates defined above, all three methods produce forecasts with

similar skill. The nearest neighbor bred vectors in the full model phase space had

the highest percentage of false alarm rates indicating a high growth rate bred vector

did not appear despite impending regime change.

The method of nearest neighbor bred vectors in the reconstructed phase space

had both the highest percentage of correct forecasts and the lowest false alarm rate.

In fact, with a lower threshold, the embedded bred vectors have the potential to

predict an even higher percentage of regime changes correctly, with PC = 81.6, HR

= 75.5, TS = 63.4, FAR = 14.0. For this system, predictions made using a time

series of a single variable are even more skillful than methods where full knowledge

of the equations of motion or phase space are utilized.
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Table 3.3: Contingency tables based on the rule that regime change will occur in
the orbit following the appearance of high growth rate bred vectors using three
different methods. In (b) and (c) using the nearest-neighbor breeding, high growth
rate points in orbits with absolute values of extrema above 1 are excluded. OBS
and FCST stand for observed and forecast, respectively; (a)-(c) are the same as in
Fig. 3.12.

OBS

Yes No Total

Yes 242 69 311

(a) FCST No 166 490 656

Total 408 559 967

Yes 247 113 360

(b) FCST No 161 446 607

Total 408 559 967

Yes 308 78 386

(c) FCST No 100 481 581

Total 408 559 967

3.4 Bred Vectors in the Reconstructed Phase Space of the Rössler

System

Another well known and well studied simple nonlinear system was developed

by Otto Rössler in the late 1970s [44, 45]. The Rössler system also has been used

as a nonlinear testbed for studies [46]. Constructed to be an even simpler flow that

that of the Lorenz system, the attractor of the Rössler system has only one scroll.
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Table 3.4: Measures of forecast accuracy in terms of the Hit Rate (HR), Threat
Score (TS), and False Alarm Rate (FAR); (a)-(c) are the same as in Fig. 3.12.

PC (%) HR (%) TS (%) FAR (%)

(a) 75.7 59.3 50.7 12.3

(b) 71.7 60.5 47.4 20.2

(c) 77.0 57.4 51.3 8.6

The equations have a single nonlinear term and are given by:

dx

dt
= −y − z

dy

dt
= z + ay

dz

dt
= b+ z (x− c) .

(3.4)

The shape of the attractor varies based on the choice of parameters. Setting a =

0.55, b = 2, and c = 4 yields an attractor with a screw shape seen in Fig. 3.14. The

system has two fixed points, located at

(
c
2
±
√
c2 − 4a,− c

2a
∓ 1

2a

√
c2 − 4a, c

2a
± 1

2a

√
c2 − 4a

)
. (3.5)

The regime change between orbiting within in the xy-plane to approaching the

unstable fixed point outside of the plane is chaotic. The signature for regime change

can be seen in the x and z time series, however it is most clear in the x(t) data. The

regime change can be seen when the value of x(t) crosses from positive to negative,

similar to the Lorenz system. This coincides with transitioning from orbiting close

to the z = 0 plane, where values of z(t) tend to be close to zero, to orbiting the fixed
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Figure 3.14: The attractor of the Rössler 3 variable system in the natural 3 dimen-
sional phase space of (x, y, z).

point outside of that plane in the screw-like portion of the attractor. One obvious

difference between the regimes in this system, and those in the Lorenz and Chua

systems, is that in the negative x regime, the system always completes a single orbit

before transitioning to the positive x regime, as can be seen in Fig. 3.15

3.4.1 Reconstruction of the Rössler Attractor

The Rössler attractor has three state variables and the attractor has a dimen-

sion between two and three. The fraction of false nearest neighbors falls off after

three embedding dimensions for a variety of time delays chosen, as can be seen in

Fig. 3.16(b). The average mutual information function for the time series of the

x(t) variable, in Fig. 3.16(a), falls off exponentially. As for the Chua system x(t)

variable, the are a range of appropriate time delays for the reconstruction ranging

from a single timestep to approximately the e-folding time of the mutual information

function. As the time delay increases, the orbits of the two regimes become more
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Figure 3.15: The time series data for the variables x(t), y(t), and z(t) for the Rössler
system. The signature of regime change can be seen in the x(t) variable when a sign
change occurs.

clearly defined. Here, a time delay of 34 time steps is chosen and the two regimes

are visible in Fig. 3.17.

3.4.2 Bred Vectors Results

A striking result of the distribution of bred vector growth rates in the Lorenz

system, using the ODEs to compute the evolution of the perturbed trajectory, is

the clear separation between the regions of various growth rates. These regions

became less clearly defined in the case of the nearest neighbor bred vectors in the

reconstructed phase space. The same feature is evident for the Rössler system. Low

growth rate bred vectors (indicated by green points) are found almost entirely in the

z = 0 plane in Fig. 3.18(a). Yellow and red points representing medium and high

growth rate bred vectors respectively are found just after transition from orbiting
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(a) (b)

Figure 3.16: 3.16(a) The mutual information function as a function of time delay
for the Róssler x(t) variable. 3.16(b) The percentage of false nearest neighbors for
attractors reconstructed from the x(t) variable of the Róssler system for various
time delays as a function of embedding dimension. For a range of time delays,
the percentage of false nearest neighbors becomes negligible for more than three
dimensions.

Figure 3.17: The reconstructed attractor in the embedded phase space formed by
time delay vectors with dimension m = 3 and time delay τ = 34.
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the xy-plane regime to the screw portion of the attractor when the sign of the x

variable changes. A similar pattern is seen in Fig. 3.18(b) for nearest neighbor bred

vectors computed using the full (x, y, z) phase space to determine the evolution.

These features are not well defined for nearest neighbor bred vectors computed

in the reconstructed phase space seen in Fig. 3.18(c). Regions of negative, low, and

medium growth rate bred vectors occur throughout the attractor. High growth rate

bred vectors, however, do tend to be confined to a single region and tend to precede

the regime change. This can be seen more clearly in Fig. 3.18(c). Similarly, the fact

that high growth rate bred vectors come immediately following the regime change

from the negative to positive x regimes in the other two cases can be seen in Figs.

3.19(a) and 3.19(b). In these experiments, no high growth rate bred vectors appear

in the negative x regime, therefore the transition from the negative to positive

regime can not be predicted by bred vector growth rate. In the embedded phase

space experiment, a high growth rate bred vector often appears in the negative

regime.

3.4.3 Predicting Regime Change

Because the high growth rate bred vectors tend to occur immediately following

a regime change in the cases where knowledge of the full phase space is used, they

are poor predictors of regime change. Contingency tables for each of the three

experiments are given in Table 3.5. Threshold values of 0.9 and 1.8 were chosen for

these experiments, but no good choice of threshold for any of the three scenarios.
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(a) (b)

(c)

Figure 3.18: Growth rates of bred vectors in the Lorenz system using three different
methods: 3.18(a) standard breeding using the ordinary differential equations in the
phase space (x, y, z); 3.18(b) nearest-neighbor breeding in the phase space (x, y, z);
and 3.18(c) nearest-neighbor breeding in the reconstructed phase space (x1, x2, x3).
The colored points correspond to negative (blue), low (green), medium (yellow) and
high (red) growth; see text for the value of the thresholds.

These values maximize the predictive skill in the case of the nearest neighbor

bred vectors in the reconstructed phase space. While the ODE and nearest neighbor

experiments with the full phase space show very little, if any, predictive skill, as

indicated by the very small percentage of correct forecasts in Table 3.6, there is

moderate predictive skill in the embedded phase space experiment.

In the full phase space experiments, a high growth rate bred vector appears

following every transition to the positive regime, however often this regime persists
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(a)

(b)

(c)

Figure 3.19: The first coordinate of phase space as a function of time, with red stars
indicating the points with high growth rate (gi ≥ 6.4) bred vectors; (a)-(c) are the
same as in Fig. 3.18(a).

for more than one orbit, thus the high false alarm rate. There are no high growth

rate bred vectors in the negative x regime. High growth rate bred vectors cannot

predict the regime change from negative to positive resulting in an extremely low

hit rate.

The predictions made using high growth rate bred vectors from nearest neigh-

bor breeding in the reconstructed phase space are more successful. Regime changes

from negative to positive and positive to negative values of x can both be forecasted.

However, the skill is moderate compared to similar predictions made in the Lorenz

and Chua systems.
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Table 3.5: Contingency tables based on the rule that regime change will occur in
the orbit following the appearance of high growth rate bred vectors using three
different methods. In (b) and (c) using the nearest-neighbor breeding, high growth
rate points in orbits with absolute values of extrema above 1 are excluded. OBS
and FCST stand for observed and forecast, respectively; (a)-(c) are the same as in
Fig. 3.18.

OBS

Yes No Total

Yes 7 267 274

(a) FCST No 725 31 756

Total 732 298 1030

Yes 15 276 291

(b) FCST No 717 22 739

Total 732 298 1030

Yes 515 136 651

(c) FCST No 217 162 379

Total 732 298 1030

3.5 Summary and Conclusions

Bred vectors are useful because they provide an efficient way to detect insta-

bilities. Previously, bred vectors have been shown to be useful in predicting regime

change for the Lorenz system [16]. Here we have extended this result to systems

reconstructed from the time series of a single variable and test the results for three

simple, autonomous nonlinear systems.

The appearance of high growth rate bred vectors proves to be a skillful pre-

dictor of regime change within the Lorenz system. Additionally, the number of

high growth rate bred vectors in a given regime is correlated with the duration of

56



Table 3.6: Measures of forecast accuracy in terms of the Hit Rate (HR), Threat
Score (TS), and False Alarm Rate (FAR); (a)-(c) are the same as in Fig. 3.18. The
final row shows the values when the threshold of x(ti) rule is used.

PC (%) HR (%) TS (%) FAR (%)

(a) 3.7 1.0 0.7 89.6

(b) 3.6 2.1 1.5 92.7

(c) 65.7 70.4 59.3 45.6

the subsequent regime, allowing for prediction of the number of orbits in the next

regime.

The Chua attractor also has two scroll regimes. The mechanism of regime

change in this system differs from that of the Lorenz system. High growth rate bred

vectors tend to appear prior to the regime change, however their skillfulness as a

precursor for regime change is not as strong. In the phase space reconstructed from

a single model variable, using high growth rate bred vectors to forecast the regime

change is more accurate.

The Rössler attractor has a structure that is simple compared to either the

Lorenz or Chua attractors. When using knowledge of the full phase space, either

through the equations of motion or a time series of all three model variables, the

regions in which bred vectors of various growth rates appear are clearly defined.

In the case of the reconstructed phase space, those regions become intermingled.

However, there is very little predictive skill gained from using the appearance of high

growth rate bred vectors to forecast regime change in the case of full knowledge of

the phase space. There is some skill when making predictions in the reconstructed

phase space using nearest neighbor bred vectors.
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The ability to predict regime change in a dynamical system using the time

series data of just one of its many variables, demonstrated here, has important

implications. For most systems in nature and in laboratory, the time series obser-

vations of only a limited number of physical variables, often a single variable, are

available. In many cases even the actual number of variables is not known. The

results presented here demonstrate that the nearest-neighbor breeding enables the

prediction of regime change in systems for which regime change follows the appear-

ance of instabilities, thus extending the predictive capability beyond the cases whose

time evolution equations are known. Further, when regime change is associated with

large changes in the dynamical states, this technique can lead to the prediction of

large or extreme events in the cases where nonlinear dynamical predictions are made

using time series data, e.g., in the magnetosphere and space weather as will be seen

in Ch. 5.
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Chapter 4: Modeling and Forecasting the Lorenz System

4.1 Introduction

We have seen that the predictability of the Lorenz system is preserved in the

phase space reconstructed from a single variable, and that a phase space model

constructed by the method of time delay vectors can serve as a model for mak-

ing forecasts. Now we wish to demonstrate that data assimilation techniques, in

particular the Ensemble Transform Kalman Filter (ETKF), can be applied to fore-

casts made using data driven models rather than the more typical application to

numerical models.

As a test bed for determining whether the NN ETKF method described in 2.5

serves to improve forecasts, we again turn to the Lorenz 63 system. The dynamical

equations are well known and easy to integrate to forecast the model forward in

time. The reconstruction of the Lorenz system is described in 3.2.1.

When forecasting the future state of the Lorenz system using the true dynam-

ical equations, the model is perfect despite any error in the observations. In the case

of a perfect phase space model, it is possible to directly compare the results of using

the NN ETKF in either the full phase space of the model or the phase space recon-

structed from a scalar time series of a single model variable to the ETKF method
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using the model equations to make forecasts.

The goal of this work is to demonstrate that data assimilation techniques can

be used to improve forecasts made of real world observables for which modeling

numerically is not possible. In these cases, historical observations from which data

driven models would be constructed are contaminated by observational noise. Thus,

the phase space model constructed from the noisy time series will also contain errors.

Therefore, we will study the effects of random errors on the quality of the

forecasts. In real-world systems, we are not so fortunate as to know the underlying

equations and observations are tainted by instrument error. The ability of NN

ETKF to adapt to these noise measurements will be important for assessing its

applicability to real world problems. To remove some of the noise from the data, we

apply Singular Spectrum Analysis as described in 2.3. Noise can enter the system

in many ways. The most straight forward is instrument noise that is added to

observations of the system variables. However there may also be parameters that

vary within the system. To simulate model errors, a series of random perturbations

will be added to the parameters of the Lorenz system in Eq. 3.2.

4.2 The Perfect Model Case

A “perfect model” is one that introduces no error to the forecasts. In the case

of a traditional ETKF scheme with a numerical model, this means using the known

dynamical equations, Eqs. 3.2, for the Lorenz attractor to make predictions for

the evolution of points on the attractor. For data derived models, this means the
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model is constructed from the exact solutions of the dynamical equations without

any additional noise or error added.

The benefit of the perfect model is it allows for direct comparison between

the forecasts made by solving the dynamical ODEs from the exact analysis initial

conditions to data based approaches. As in Ch. 3, three experiments are conducted.

Experiment (a) is the standard application of the ETKF using Eq. 3.2 to forecast.

Experiment (b) is the application of the NN ETKF to a phase space model that

includes all of the phase space variables (x, y, z) using a long time series obtained by

integrating Eqs. 3.2. From this long time series, we can take the first variable x(t)

and construct an embedded phase space model to test the method developed in this

study and outlined in Sec. 2.5. The third experiment, (c), takes this reconstructed

phase space model with components (x1, x2, x3) for anm = 3 dimensional embedding

with τ = 7 to make forecasts using the NN ETKF.

The data-derived models are constructed from the same set of solutions to the

Lorenz ODEs containing N = 200 000 points. This means that the first coordinate

of the full phase space model is the same as the coordinate in the reconstructed phase

space model with the latest time index, i.e. x3. To compare the three methods, each

will be used to predict the value of a predetermined control trajectory, also obtained

by solving Eq. 3.2. The control trajectory is out of sample from the training

data used to construct the model for the data driven techniques. Observations

will be taken from this truth trajectory and also are perfect in the sense that no

observational error has been added. To ensure that the same observations are used

in each of the three experiments, the first variable of the observation vector will be
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(a)

(b)

(c)

Figure 4.1: Comparison of forecasts made using three versions of the perfect model:
4.1(a) the ODE model, 4.1(b) the full phase space model (x, y, z), and 4.1(c) the
phase space model (x1, x2, x3) reconstructed from x(t).

observed for the ODE and full phase space experiments, and the third variable x3

will be observed in the embedded phase space experiment. In each case, the scalar

variable observed for each forecast window will be the same. The initial ensemble

is selected from randomly chosen points on the full phase space attractor.

4.2.1 Results for the Lorenz System

Results are shown for forecasts of 8 time steps in Fig. 4.1. To compare

the forecasts, the results for forecasting the x variable are shown. In the case of
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the reconstructed phase space model, this is obtained following the reconstruction

procedure outlined in Sec. 2.5. The black curve in each panel represents the true

state of the system the forecast attempts to capture and is the same for all. The

colored curves represent the analysis and background determined using ETKF the

various forecasting techniques, as described in the caption.

(a)

(b)

(c)

Figure 4.2: The average root mean squared error in both the analysis (blue) and
the background (red) as a (a) function of embedding dimension, (b) time delay, and
(c) the length of the forecast window.

Each of the three methods produces both forecasts (the darker colored curve)
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and analysis (the lighter colored curve) values that are in close agreement with the

truth. The RMSE errors in the background forecast for each of the three techniques

are also comparable. In the case of using ETKF with the ODE equations and NN

ETKF in the full phase space, knowledge of the full information of the system is

used. The forecasts are excellent, as would be expected when the observations also

contain no error. The remarkable thing here is that when only a time series of a

single variable is know, the same results can be recovered.

4.2.2 Tuning Embedding Parameters

Another benefit to the perfect model is that the effect of various parameters on

the nearest neighbor ETKF forecast can be compared. Such parameters include the

time delay τ , the embedding dimension m, and the duration of the forecast window

tw. Figure 4.2 shows the root mean squared error (RMSE) in each the background

(red curve) and the analysis (blue curve) as each of the quantities is varied. In

the first panel the time delay is varied while the embedding dimension and forecast

window are kept constant at m = 3 and tw = 8. In the second panel the embedding

dimension is varied and τ = 7 and tw = 8. In the final panel, the forecast duration

is increased for a reconstructed attractor with τ = 7 and m = 3.

The dimension of the Lorenz attractor is well known and the false nearest

neighbors test revealed that the number of dimensions sufficient to unfold the at-

tractor in the reconstructed phase space is 3. Including more dimensions than

necessary in the reconstruction adds additional information through the inclusion of
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more time delayed values of the x-coordinate. This additional information, however,

does not improve the forecast. With additional dimensions in the reconstruction the

RMS error in the forecast and analysis both increase as can be seen in Fig. 4.2(a).

A range of values of the time delay produce forecasts of comparable skill given

an embedding dimension of 3. The average mutual information function also indi-

cated that this same range would produce a good reconstruction, as discussed in

section 2.2. Time delays beyond 15 time steps are too long and the components of

the time delay vectors begin to become uncorrelated.

The experiments in this section were conducted using a forecast window of

8 time steps. As the forecast window increases, the skill of the forecast decreases.

This is also the case when using the ODE equations to make forecasts.

4.3 Additive Observational Noise

4.3.1 Phase Space Reconstruction of Noisy Data

To simulate the realistic conditions in which observations have noise in the

Lorenz model testbed, additive noise is incorporated into both the time series used

to construct the model and the observations used during the ETKF cycles. A

time series of normally distributed perturbations are added to model trajectory

and control trajectory to generate observations. The noise level is then scaled to

determine the effect of decreasing signal to noise ratio.

The effect of the noise on the reconstruction is examined. The addition of noise

increases the fraction of false nearest neighbors even at higher dimensions. Random
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(a)

(b)

Figure 4.3: (a)The mutual information function as a function of time delay and (b)
the fraction of false nearest neighbors as a function of embedding dimension for the
Lorenz x(t) plus various levels of additive noise variable.

noise is high dimensional and effectively increases the dimension of the attractor.

From Fig. 4.3(b) it can be seen that while the fraction of false nearest neighbors falls

to zero after 3 dimensions for the perfect model, the minimum embedding dimension

is higher as the noise level increases.

To effectively unfold the noisy attractor, an embedding dimension larger than

the minimum dimension indicated by the false nearest neighbors test is used for

the time-delay embedding. In this case, 10 dimensional time-delay vectors are con-
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Figure 4.4: An enlarged portion of the eigenvalue spectrum computed for various
levels of additive noise for the Lorenz x(t) variable to show the noise floor.

structed from the noisy x(t) time series. Again, a time delay of 7 time steps is used

since the behavior of the average mutual information function is not affected.

We are interested in forecasting only the deterministic signal even though it is

contaminated by noise. Singular spectrum analysis (SSA), described in Sec. 2.3, can

be applied to the time delayed vectors in order to separate the modes of variability

corresponding to the signal from those of the noise. Eigenvectors are computed from

the covariance matrix of the model trajectory covering the attractor. Regardless of

the level of the noise present in the signal, the eigenvectors are roughly the same

for each noisy trajectory, indicating that they correspond to the deterministic part

of the signal. The first six eigenvectors for a model trajectory with no error and an

error level of 50% of the variance in the signal are shown in Fig. 4.5. The curves

are essentially identical.

The spectrum of eigenvalues shows the noise floor where the value tends to

level off. From the spectrum of eigenvalues, it is evident in Fig. 4.4 that with
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Figure 4.5: The first six eigenvectors of the Lorenz system x variable with additive
noise levels of 0% and 50%.

increasing magnitude of noise added to the data, the noise floor feature becomes

more prominent. However, the noise floor appears roughly after 6 dimensions. The

variability represented by those first 6 eigenmodes corresponds to the variability of

the deterministic signal (the x-coordinate) in the noisy signal.

Therefore, the first six eigenvectors are retained to serve as the basis for the

model. Forecasts of all six phase space variables are made in the model space. The

six principal components are then reconstructed as described in Sec. 2.5 to obtain

the forecast of the variable x(t).

Figure 4.6 shows the NN ETKF background and forecast for NN ETKF as well

as the true value of the variable x(t) without added noise, and the observations of

the the x(t) variable with noise added. The NN ETKF forecasts are made in three

different scenarios. The first is NN ETKF in the full phase space in Fig. 4.6(a). The

second is NN ETKF in the reconstructed phase space in Fig. 4.6(b). And finally,

the NN ETKF in the phase space spanned by the first six eigenvectors of the SSA

68



(a)

(b)

(c)

Figure 4.6: Comparison of reconstructed forecasts made of the Lorenz x(t) variable
with a noise level 60% of the standard deviation of the x variable. Panel (a) depicts
the background and analysis of NN ETKF forecasts made in the full (x, y, z) phase
space. Panel (b) depicts the background and analysis of NN ETKF performed in
the reconstructed (x1, x2, x3) phase space. Panel (c) depicts the background and
analysis of NN ETKF forecasts in the space of the first six principal components
after SSA was applied to the reconstructed phase space.

decomposition of the reconstructed model data. In this case, the forecasted values

of x come from a reconstruction of the forecasted principal components.

The RMS error in the background and analysis is computed by comparing the

mean value of the forecast ensemble x to the true value from the control run. The

RMS errors for various noise levels and the three experiments described above are

shown in Fig. 4.7. While the best performance for the background comes from NN

ETKF in the full phase space, the application of SSA to the reconstructed phase

space offers an improvement to forecasts over those made in the reconstructed phase
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Figure 4.7: The root mean squared error in the mean values of the forecast and
analysis ensembles, as a percentage of the standard deviation in the time series x(t)
vs. the percentage of error added to the time series to simulate observations.

space alone.

Hamilton et al. [23] also combined phase space reconstruction with ETKF,

called the Kalman-Takens filter. This study both confirms their result that the

performance of the ETKF in the phase space reconstructed from a single variable

is comparable to methods with full knowledge of the phase space or equations, and

also extension to this work. The addition of SSA to the construction of the phase

space model helps the data driven method to handle the noisy data.

4.4 Discussion and Conclusions

Using only a scalar time series x(t) the dynamics of the Lorenz model can

be reconstructed using time-delay embedding techniques. Phase space models con-

structed from a long time series of observations and NN ETKF are used to forecast

future values of the time series x(t). The forecast skill is comparable to the skill
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obtained by using numerical solutions of the Lorenz ODEs and ETKF to forecast

based on the same initial conditions as seen in Fig. 4.1. Forecasts made using

the NN ETKF in the phase space reconstructed from the time series x(t) are also

comparably skillful, thus validating this method.

The error in forecasts is not particularly sensitive to the specifics of the pa-

rameters used in the embedding procedure. A range of time-delays can be used

and similar results obtained. Including additional dimensions beyond the minimum

indicated by the false nearest neighbors test does no improve the result. Including

many more dimensions than required actually can have a negative impact on the

skill of the forecast.

When simulated noise is added to the time series used for phase space recon-

struction, forecasts of the time series x(t) can still be made by filtering out the noise

using SSA. As the noise level increases, the dimension of the attractor also increases

since random noise is high dimensional. Systems with a high level of noise contami-

nation produce less skillful forecasts than perfect model scenarios and low level noise

contamination. This indicates that it will be possible to apply these techniques to

real data for which contains noise and an unknown signal. The SSA can be used

to filter out some of the noise and produce more skillful forecasts than NN ETKF

alone.
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Chapter 5: Modelling and Forecasting Space Weather Using Time

Series Data of Magnetic Field Variations

5.1 Introduction

5.1.1 Geomagnetic Substorm Dynamics

The near-Earth space environment consists of the portion of the atmosphere

that extends into the interplanetary medium. At these altitudes the atmosphere

becomes ionized as energetic photons strip gas atoms of their electrons. The Earth’s

magnetic field becomes an important force governing the behavior of the plasma in

this region. Both the ionosphere and the magnetosphere interact with the plasma

and magnetic field structures carried by the solar wind emanating from the corona

of the sun. The term space weather describes the fluctuations in the near-Earth

space environment driven by the solar wind. The structure of the sun’s magnetic

field is complicated and evolves over both short time scales and the eleven year solar

cycle. Due to the turbulent nature of the plasma motions within the sun, the solar

magnetic field can become quite complex, particularly during the maximal phase of

the solar cycle when solar activity is increased.

The earth is shielded from the solar wind by its standing dipole field. The

72



protective bubble of the magnetosphere segregates the plasma populations within it

from mixing with those carried by the solar wind and allows life on earth to exist.

The shape of the Earth‘s dipole field is distorted by the solar wind. On the day-side

of the Earth, facing the sun, the dipole field is compressed at the magnetopause,

the boundary of the magnetosphere, where the two fields meet. On the night-side

the dipole field is elongated by the flow of the solar wind into a structure called the

magnetotail. Under certain conditions of the solar wind, the highly energetic plasma

carried by the solar wind can enter the magnetosphere and plasmasphere protects,

resulting in space weather conditions observed by the Earth. An example of such a

condition is the so-called magnetospheric substorms observed at high latitudes.

In the region where the two fields meet at the magnetopause, labeled (2) in

Fig. 5.1, the orientation of the Earth’s magnetic field is northward. If the magnetic

field of the solar wind has a component with a southward orientation is is possible for

magnetic reconnection to take place. At the point where the closed line of the Earth

and the open line of the solar wind meet, reconnection creates open field lines with

one foot point in the Earth’s polar regions that opens into space. These open lines are

drawn across the polar region to the night-side of the earth. There magnetic tension

compresses the lines in the magnetotail region. When the open lines come close

enough to one another, reconnection again takes place in region (3). This reforms

an open solar wind field line that is carried away by the solar wind and a closed

field line for the Earth. The newly formed closed field line is carrying the energetic

plasma from the sun. The release of magnetic energy due to reconnection causes

the plasma to flow along the closed field line where it precipitates into the Earth’s
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Figure 5.1: Schematic of the interaction between the solar wind magnetic field and
the Earth’s magnetic field

upper atmosphere over the polar regions. The injection of the highly energetic solar

particles into the ionosphere gives rise to the auroras seen in the high latitudes. To

close the current loop created by plasma flowing along the field lines, currents are

induced in the ionosphere, intensifying the naturally occurring currents found there.

In addition to the visible auroras, the signature of this geomagnetic substorm

can be seen in the fluctuations in the Earth’s magnetic field caused by the mag-

netic field induced by the intensified currents in the ionosphere. Ground based

magnetometers, located within the auroral oval as shown in Fig. 5.2, record these

fluctuations and present the data every minute. To characterize the the state of the

ionosphere, indices are constructed from the 12 stations located in the auroral oval

(Fig. 5.2). The World Data Center at Kyoto University, Japan and other locations

worldwide collect data from all the stations (e.g. SuperMAG) and plots anomalies

simultaneously by removing a quiet-time reference value from each station. Indices

are defined by the upper and lower envelope of the data, called AU and AL re-

spectively shown in Fig. 5.3. The overall measures of state is characterized by
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Figure 5.2: The locations of the 12 ground-based magnetometer stations whose
measurements contribute to the construction of the AE indices

Figure 5.3: The AL index (orange curve) is the lower envelope of anomalies measured
at each of the stations (gray curves). Data from eight of the twelve stations that
contribute to the AL index are shown during a high speed stream in May of 2011.

AE = AU − AL and AO = AU + AL.

The AL index is almost always negative, as can be seen in Fig 5.3. Since this

index corresponds most closely with the intensification of the westward electrojet

that takes place during substorm event, it is the index that we will use to forecast

these events. Substorms correspond to the large, negative spikes seen in the AL

index. Forecasting future values of the index will allow for substorm forecasting.
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Forecasting the anomalies measured by individual stations will allow for spatial in-

formation about the location of the disturbance and potentially provide information

relevant to people within the vicinity of the magnetometer station.

Forecasts will be made using reconstructed phase space models as described

in Sec. 2.1. Because the time series of the AL index is derived from observed

fluctuations in magnetic field measurements which in turn are driven by the rapidly

fluctuating solar wind magnetic fields, the time series data for the reconstruction

is contaminated by observational errors. Singular spectrum analysis will be used

to isolate the deterministic signal for forecasting. Forecasts will be made using the

nearest neighbor ensemble transform Kalman filter described in Sec. 2.4 and applied

to the Lorenz system in Ch. 4. Forecasts of the AL index will be made, as well as of

the station observations that yield the auroral indices. Additionally, the ensembles

used for forecasting these time series will also be studied further to gain insight into

the occurrance of extreme events.

5.1.2 Reconstruction of Magnetospheric Dynamics

The system that yields the auroral electrojet indices consists of many compli-

cated, coupled systems including the solar wind, magnetosphere, and ionosphere.

On first inspection it is not obvious that this system is low dimensional, or even

deterministic, since the solar wind driver is arguably stochastic in nature. The di-

mensionality of the AE index, in particular, has been well studied [47–55] Many of

the same conclusions can be drawn from the AL index, chosen for analysis due to its
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close physical relation with the substorm processes we are interested in forecasting.

The average mutual information of the AL index falls off exponentially with

increasing time lag and has no clear first minimum, unlike the same quantity com-

puted for the Lorenz system variable x(t) in Sec. 3.2.1. In such cases, one choice

of time delay is a single sampling time step for the reconstruction [24]. Using a

time delay of the one 1-minute time step, the fraction of false nearest neighbors

can be computed for various embedding dimensions. When the fraction of false

nearest neighbors becomes negligible, a sufficient embedding dimension has been

reached. All of these suggest that the time series originates from an underlying low

dimensional, deterministic system and thus the data assimilation and forecasting

technique described above are applicable.

The final step in the analysis of the AL index is to determine the most impor-

tant modes of variability to isolate the deterministic part of the signal, as was done

for the Lorenz attractor with additive noise in Sec. 4.3. The time delay used for the

embedding is a single time step, therefore the more important embedding param-

eter becomes the embedding dimension. Each component of the time delay vector

is adjacent in the original scalar time series, thus the time delay vector acts like a

sliding window along the time series. This window should be large enough that the

attractor is fully unfolded, thus greater than the minimum embedding dimension.

Due to the noise contamination seen in the data, the standard deviation of the data

over the window should be greater than the noise level so that the signal can be

resolved [24]. From m = 20 dimensional time-delay vectors, the first six modes of

variability are selected. Therefore the dimension of our phase space model is six.
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(a)

(b)

Figure 5.4: The mutual information function as a function of time delay and the
fraction of false nearest neighbors as a function of embedding dimension for the AL
index.
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Figure 5.5: The percent variance explained by each mode of the eigenspectrum on
the AL index. After 6 modes, nearly 90% of the variance in the signal is explained.

Figure 5.6: The first six eigenvectors and principal components for a substorm even
in 2005.
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We require a long time series to construct the phase space model for the

system. It should include many events of the type we are attempting to forecast so

that suitable analogs for the initial conditions of interest can be found. Because the

dimension of the underlying attractor is quite high, the duration of the model data

must allow for this. Data sets of a year of AL index observations from 2000 are used

to construct the phase space models.

Once the model data has been embedded, the principal components are com-

puted as seen in Fig. 5.6. Forecasts will be made in the multidimensional space

of the principal components, and then the AL index reconstructed from these fore-

casted values.

When multivariate data is available, such as station magnetometer measure-

ments, the phase space can be reconstructed in much the same way as for the scalar

data. In this case, each variable is physically the same quantity, but obtained at

a different location as described in Sec. 2.6. Time-delay vectors for the model are

constructed by embedding each channel.

5.2 Forecasting the AL Index During Geomagnetic Substorms

5.2.1 Experimental Setup

We are interested in forecasting magnetospheric substorm events resulting from

the interaction between the magnetosphere and the solar wind as described in Sec.

5.1.1. The features of the solar wind that provide favorable conditions for substorm

developments are the magnitude and direction of the magnetic field and increases
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plasma density and velocity. There must be a persistent southward component of

the solar wind magnetic field. The velocity must be high compared to the quiescent

solar wind with anomalous plasma density. There are several solar wind conditions

that can result in a substorm. - one occurring frequently and one more seldom.

In the following sections, we will look at forecasts of the AL index during a

series of substorm events resulting from high speed streams (HSS) of solar wind and

coronal mass ejections (CME). The events occur between 2005 and 2014. Most of

the events occur during the ascending phase of solar cycle 24, which began in 2008

and reached its peak activity between 2011 and 2014 [56]. To model events during

this cycle, data from the year 2000 is used which was near the peak of the previous

solar cycle. The model to forecast the AL index was constructed as described in

Sec. 5.1.2.

The eigenvectors from SSA performed on the model data form the basis upon

which the observations from the events are projected. Forecasts are made in the

space spanned by the first six eigenvectors. Ensemble forecasts of 10 members are

made. Since the window spanned by the time delay vectors is 20 minutes, forecasts

windows longer than 20 minutes should be used to avoid repeating observations

during the NN ETKF step. Forecasts of various duration, including 20, 40, and 60

minutes, were made for a variety of substorm events driven by HSS and CMEs.
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5.2.2 Forecasting the AL Index during High Speed Stream Events

Generally, the speed of the solar wind is about 350 km/s [57]. The solar wind

tends to come from the equatorial region of the sun. Regions of the sun with a single

polarity can form, known as coronal holes. While these features can be present at

any time, they tend to occur more frequently and persist for longer periods during

solar minima.

The solar wind emanating from these holes tends to have higher speeds, often

exceeding 600 km/s [57]. During a high speed stream (HSS) event, a high velocity

solar wind is emitted, which compresses the lower velocity solar wind ahead of it

resulting in co-rotating interaction regions depicted in Fig. 5.7. The increased

density of the plasma and magnetic field lines ahead of the high speed stream due

to interactions with the lower speed background solar wind produces a solar wind

event that has both high velocity, larger plasma density, and increased field strength,

thus increasingly providing the proper conditions for a geomagnetic substorm event.

Table 5.1 contains the dates of the HSS events in this study. They occur

throughout the period of interest and during both the solar minimum and maximum

of solar cycle 24. The geomagnetic substorms that occurred during these events also

cover a range of intensities. During the weakest substorm during May of 2011, the

AL index reached a minimum value of only -771 nT. The most extreme substorm

saw a minimum AL index value of -2539 during May of 2011. Table 5.1 also reports
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Figure 5.7: Schematic of the co-rorating interaction region (CIR) that forms during
an HSS event [1]

.

the normalized root mean square forecast error given by

NRMSE =
1

σ

√√√√ 1

N

N∑
i+1

(xoi − xbi), (5.1)

where σ is the standard deviation of the observed AL index, xoi is the observed

value of the AL index, and xbi is the forecasted value either using the NN ETKF or

persistence.

In general, the forecasts made using NN ETKF show an improvement over

those made using persistence evident by reduced normalized RMS errors. This

improvement tends to be greater the longer the forecast duration. An example

of forecasts made of a single event, that from April 2011, is shown in Fig. 5.8.

Skill scores defined by Eq. 2.15 are quoted above each forecast. The skill score is
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(a)

(b)

(c)

Figure 5.8: Forecasts made of the AL index during an HSS event that occurred in
April of 2011. The green and red curves represent forecasts made using persistence
and NN ETKF respectively. 5.8(a) depicts a series of 20 minute forecasts, 5.8(b)
depicts a series of 40 minute forecasts, and 5.8(c) depicts a series of 60 minute
forecasts. The skill score of the NN ETKF forecasts with respect to persistence is
quoted in the title.

positive for each case indicating that the NN ETKF forecasts improve the error in

the forecast with respect to persistence.

This is a relatively large substorm event with a minimum AL index of -1156.

It is difficult for forecasts made using an ensemble of analogs to capture the deepest

peaks in AL index because there are relatively few analogs among the model data

to use. Thus, as the number of ensemble members increases, more of the members

will be forced to use analogs of insufficient intensity resulting in a smoothing out of

high intensities in the mean of the forecast ensemble.
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Table 5.1: Normalized root mean squared errors for forecasts of various HSS events.
Forecasts are made using NN ETKF and persistence, predicting the value of the AL
index 20, 40, and 60 minutes beyond the current observation.

20 min. forecast 40 min. forecast 60 min. forecast

HSS Event Date NN ETKF Persist. NN ETKF Persist. NN ETKF Persist.

Apr. 9-17, 2005 0.5355 0.5444 0.7036 0.7473 0.7574 0.8655

Apr. 6-12, 2006 0.6446 0.6445 0.7607 0.7753 0.8836 0.9276

Jul. 25-30, 2006 0.6191 0.6528 0.7425 0.798 0.8787 0.9841

Nov. 7-13, 2006 0.4711 0.513 0.6003 0.6899 0.7871 0.9476

Dec. 3-9, 2006 0.4889 0.5158 0.6941 0.7460 0.7078 0.7775

Jan. 28-Feb. 1, 2007 0.6268 0.6614 0.8291 0.8775 0.9805 1.0853

Oct. 23-28, 2007 0.5294 0.549 0.7033 0.7676 0.7924 0.8862

Mar. 6-17, 2008 0.5326 0.5476 0.7453 0.8164 0.8156 0.9132

Apr. 19-28, 2008 0.5089 0.5396 0.7385 0.7585 0.8324 0.9205

Sept.1-10, 2008 0.4761 0.4815 0.6626 0.6942 0.6831 0.7445

Oct. 20-28, 2010 0.6231 0.6385 0.8546 0.9064 0.9135 1.0304

Feb. 26-Mar. 4, 2011 0.5415 0.5455 0.6998 0.7740 0.7652 0.8299

Apr. 28-May 2, 2011 0.5388 0.5660 0.6785 0.7346 0.8379 0.8837

May 24-31, 2011 0.5765 0.6086 0.7260 0.7876 0.7409 0.7887

Apr. 8-15, 2012 0.4848 0.4748 0.6747 0.7059 0.7754 0.8000

May 7-11, 2012 0.5519 0.5513 0.6944 0.7844 0.7242 0.8045

Jun. 28-Jul. 3, 2012 0.5643 0.5762 0.7228 0.7554 0.8584 0.9225

Feb. 26-Mar. 4, 2013 0.4903 0.5186 0.7158 0.7566 0.8487 0.9525

Despite the difficulty in capturing every peak, the forecasts made using NN

ETKF tend to have better correlations with the true value of the AL index than

forecasts made using persistence. Fig. 5.9 shows the correlation of forecasts with

increasing lead times with the true value. Consistently, the correlation coefficient of

NN ETKF forecasts is higher than that of persistence.
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Figure 5.9: The correlation between the true value of the AL Index during the April
2011 HSS event and forecasts made using the NN ETKF and persistence.

5.2.3 Forecasting the AL Index during Coronal Mass Ejections

HSS events tend to occur during solar minima when coronal holes are more

prevalent. During solar maxima, the magnetic field of the sun becomes increasingly

complex. Active regions of the sun, i.e. where solar magnetic field lines have con-

centrated, produce magnetic field structures as the layers of the sun are churning

causing twisting of the field lines. The exact series of events that cause a build up

of solar plasma and twisted magnetic field structures to be ejected from the solar

atmosphere are not well understood. However, coronal mass ejections (CME), de-

picted schematically in Fig. 5.10, tend to form in the coronal streamer belt where

closed loop field lines prevent the plasma from escaping into the solar wind [57].

Instead, bubbles build restrained by increasingly unstable magnetic field structures.

Eventually these structures are ejected by the release of magnetic potential energy

through magnetic reconnection. While the bubble within the CME, seen in Fig.

5.10, contains relatively low density plasma, the propagation of the CME through
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Figure 5.10: Schematic the structure of a CME [2]

the solar wind can form a shock with compressed solar wind plasma ahead of the

bubble. Additionally, the flux rope within the CME can have a high magnitude,

rapidly varying magnetic field with a strong southward component. CMEs can travel

at any speed. Some are carried by the solar wind and some have very high speeds

exceeding 2,000 km/s.

Table 5.2 lists the CME events in this study. All occur between 2011 and 2014,

during the maximum period of solar cycle 24. The CMEs resulted in substorms

covering a range of intensities from the least intense substorm with a minimum AL

of -861 in September of 2014, to the most intense substorm occurring in August of

2011 with a minimum AL of -2084. The normalized RMS error in the NN ETKF

forecasts and the persistence forecasts is also shown in Table 5.2 for forecasts of 20,

40, and 60 minutes. For shorter duration forecasts of 20 minutes, the NN ETKF

method offers little, if any, improvement over persistence. However, for forecasts

with a longer lead time, NN ETKF produces a more skillful forecast.

Fig. 5.11 shows forecasts made of a substorm resulting from a CME in Septem-
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Table 5.2: Normalized root mean squared errors for forecasts of various CME events.
Forecasts are made using NN ETKF and persistence, predicting the value of the AL
index 20, 40, and 60 minutes beyond the current observation.

20 min. forecast 40 min. forecast 60 min. forecast

CME Event Date NN ETKF Persist. NN ETKF Persist. NN ETKF Persist.

Aug. 2-8, 2011 0.5156 0.4867 0.6964 0.7033 0.8729 1.0525

Sept. 23-30, 2011 0.5673 0.5931 0.7254 0.7684 0.8248 0.9173

Oct. 22-27, 2011 0.4628 0.4560 0.5617 0.5821 0.7741 0.7744

Apr. 19-27, 2012 0.4671 0.4595 0.6013 0.6139 0.6538 0.7504

July 12-18, 2012 0.499 0.5154 0.5690 0.5622 0.6577 0.6894

Sept. 28-Oct. 3,2012 0.4151 0.4635 0.5499 0.5091 0.5967 0.5953

Nov. 10-16, 2012 0.3827 0.3748 0.5171 0.5311 0.6206 0.5826

Feb. 25-Mar. 2,2014 0.4204 0.4396 0.5483 0.5696 0.6628 0.68

Apr. 9-15,2014 0.4531 0.4626 0.6199 0.6611 0.7483 0.7877

Sept.27-Oct. 2, 2014 0.6108 0.6526 0.8092 0.9206 0.8999 1.0404

ber of 2011. With an even deeper drop in AL during the most intense part of the

substorm than that for the HSS event in Fig. 5.8, it is even more evident how the

NN ETKF forecast can struggle to match the deep drops in AL. persistence forecasts

can produce the feature, however it necessarily lags that of the observed substorm.

These results also suggest that the NN ETKF offers an improvement over

other data driven techniques for forecasting substorms via auroral electroject indices.

Chen et al. [58] use a database of AL index from 2001 and solar wind −Bzvx to

reconstruct a phase space model and the local linear filter to forecast substorms

from the peak of solar cycle 23 [58]. The largest substorm due to a CME in this

study occurred in May of 2011. It was comparable in magnitude to the November

2003 substorm in Chen’s study. Conducting 5 mintue forecasts, a normalized RMS
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error of 0.792 was acheived. Using the NN ETKF, a 60 minute forecast has a

normalized RMS error of 0.741 over a similar period.

(a)

(b)

(c)

Figure 5.11: Forecasts made of the AL index during a CME event that occurred
in September of 2011. The green and red curves represent forecasts made using
persistence and NN ETKF respectively. 5.11(a) depicts a series of 20 minute fore-
casts, 5.11(b) depicts a series of 40 minute forecasts, and 5.11(c) depicts a series
of 60 minute forecasts. The skill score of the NN ETKF forecasts with respect to
persistence is quoted in the title.

5.3 Forecasting Ground Based Magnetometer Measurements

The magnetometers monitoring fluctuations in the Earth’s magnetic field are

maintained by various national and multinational organizations. Of the 12 stations

located in the auroral oval, the four stations located in Russia do not make their data
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(a)

(b)

Figure 5.12: Forty minute forecasts of the data from each of the 8 stations that
had data available to the public and the skill scores of the forecasts with respect to
persistence. Skill scores range from -0.05 to 0.27.
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available to the public and recent data are not available. Therefore, only eight time

series were available for a sufficiently long time to make forecasts. The horizontal

component, that is the component in the plane tangent to the station’s location,

were collected from each of these eight stations.

Because the magnetic latitude and longitude locations of the stations vary,

each has a different baseline reading on a quiet day with little to no magnetospheric

activity. To account for this, averages over the year were removed from each station’s

reading. The same embedding parameters as for the AL index were used to construct

time delay vectors. As described in Sec. 2.6, the time delay vectors are of dimension

m × L where in this case m = 20 and L = 8 for the eight stations providing data.

The model was constructed from data recorded in the year 2000.

The multi-channel SSA extension described in Sec. 2.6 was applied to the

trajectory of the model data. The first six eigenvectors were retained to form the

basis of the phase space model. The projection of the trajectory matrix onto this

basis yields a 48 dimensional phase space model, with six degrees of freedom corre-

sponding to this . Twenty minute forecasts of the April 2011 HSS event were made.

Forecasts for each station were made simultaneously. The measurements for each

station were then reconstructed. The forecasts compared to persistence appear in

Fig. 5.12.
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5.4 Forecasting Extreme Events using Ensemble Spread

Identifying and predicting extreme events, particularly in space weather, is an

area of active research. To identify regions of instability in the phase space of a

system that give rise to extreme events, we develop a data driven approach that

takes advantage of the forecast ensembles we have constructed. Just as the bred

vectors described in Ch. 3 converge to the direction of largest growth locally, the

spread of the ensembles will increase when instabilities cause large growth in various

directions. The ensemble spread as given by

Sb =
√

Tr(P b) (5.2)

where P b is the background error covariance given by Eq. 2.10. The ensemble

spread characterizes the uncertainty in the forecast which will grow as an extreme

event occurs and predictability is lost [59].

The concept here is readily illustrated using the Lorenz system. In Fig. 5.13,

ensembles originating from various locations on the Lorenz attractor are shown.

Ensembles that begin in a relatively stable region tend to experience less ensemble

spread with repeated integrations, as seen in the left panel. However, ensembles

near an unstable part of the attractor, about to experience the extreme event of

regime transition as in the right panel, experience a large growth in their spread as

they evolve.

During his time as an undergraduate student in the Department of Atmo-
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Figure 5.13: The left panel depicts the scenario in which an ensemble is not subject
to an extreme event, while the right panel shows the effect of an extreme event on
the spread of the ensemble members. Figure from [3].

spheric and Oceanic Science, Keenan Eure and I worked to develop a data driven

approach analogous to that developed for bred vectors in Ch. 3 that we test on

the Lorenz system. Ensembles about points along a control trajectory will be taken

from a densely populated phase space model constructed from a long time series of

data. For every 10 time step forecast along the control trajectory, a new ensemble

of points within a small neighborhood of the control trajectory is reinitialized. That

neighborhood of points is evolved concurrent with the control and the final spread

is compared to the initial spread. As the control trajectory approaches an extreme

event, in this case the transition from one lobe of the attractor to the other, the

spread of the ensemble increases. This is illustrated in Fig. 5.14 by the appearance

of large spread ensembles, indicated by red stars, preceding a transition from the

variable x from positive values to negative and vice versa.

We extend this to use the ensembles produced using ETKF, which also sam-

ple the local phase space estimate the probability distribution of the state space

of the model, to forecast values of the AL index. The spread tends to be small

in regions where the system is stable, such as during the quite time prior to the

93



Figure 5.14: The spread of the nearest neighbors to a control trajectory over a
series of forecasts is indicated by colored stars along the x(t) variable. This figure
was provided by Keenan Eure.

HSS events. As the magnetosphere/ionosphere system becomes more disturbed, the

spread increases.

In Fig. 5.15 the time series of the AL index for a HHS event that occurred in

April 2011 is plotted along with the spread of the ensemble used to forecast it. The

size and color of the dots at the location of each forecast correspond to the size of

the ensemble spread. There is a high correlation between the magnitude of the AL

index and that of the of the ETKF ensemble spread, indicating that the spread is

a good predictor for the magnitude of an event. Events with very large magnitude

AL could be considered extreme.

Using the spread and time rate of change of the spread as independent vari-

ables, along with the value of the AL index forecasted by the mean of the ensemble

generated in the NN ETKF, a prediction of the AL index can be made using linear
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Figure 5.15: The dashed line depicts the observed value of the AL index while the
colored circles indicate the mean value of the ETKF forecast ensemble. The color
and size of the circles correspond to the magnitude of the ensemble spread. The
ensemble spread is well correlated with the value of the AL index.

Figure 5.16: The black curve represents the observed value of the AL index dur-
ing the April 2011 substorm while the blue curve is a forecast made by the linear
regression in Eq. 5.3.
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regression.

AL(t+ 1) = b0 + b1x̄
b(t) + b2AL(t− 1) + b3S

b(t) + b4S
b(t− 1) (5.3)

The estimated value of the AL index from Eq. 5.3 agrees very well with the observed

value of the AL index. The training data for the regression coefficients comes from

the same model year as used for the phase space models in Sec. 5.2.

5.5 Conclusions

The AL index shows the signature of substorm development and is constructed

from anomalies measured by ground based magnetometers in the auroral oval. Non-

linear time series analysis of the index indicates that there is an underlying low-

dimensional deterministic signal. Reconstruction of the phase space and filtering of

high dimensional noise by SSA results in a data-derived model that can be combined

with the NN ETKF technique to make forecasts.

Forecasts were made for 18 HSS events occurring during the descending phase

of solar cycle 23 and ascending phase of solar cycle 24. Additionally, forecasts for 10

CME evens occurring during the peak of solar cycle 24 were also made. While short

forecasts do not present a considerable increase in skill with respect to persistence,

as the lead time of the forecast increases, so does the skill of the NN ETKF forecasts

with respect to persistence. Since persistence forecasts lag the observed values of

the AL index, NN ETKF forecasts also demonstrate better correlation with the true

value of the AL index.
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The index removes all spatial information about the location of disturbances

seen. However using the multi-channel extension to the NN ETKF technique allows

all of the available station data to be forecast simultaneously. While these forecasts

are not always as skillful, proving this location information is valuable. There are

local effects of geomagnetic activity that can only be anticipated if regional forecasts

are available.

Finally, the spread of the ensembles produced in the NN ETKF forecast offers

additional information about the severity of the substorm. As the intensity of the

storm increases, fewer analogs provide an appropriate representation of the event.

Thus the spread increases rapidly as ensemble members struggle to capture the

lowest values of the AL index.
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Chapter 6: Summary and Conclusions

The quest to predict the weather has prompted a deep study of the predictabil-

ity of nonlinear systems. Techniques to characterize instabilities and mitigate the

effect of nonlinearities on forecasts have proven invaluable. Despite its complexity

and scale, great effort has yielded numerical models for forecasting the state of the

atmosphere. Unfortunately, other nonlinear systems present an even greater chal-

lenge. Space weather, for example, presents many challenges to following this route

including the vast scale of the domain of interest, the number of coupled systems

involved in the phenomena, and the lack of observations of relevant processes. It

is desirable, and the aim of this thesis, to demonstrate that some of the techniques

common in the field of neutral atmosphere weather forecasting can be applied to

systems for which no nonlinear model exists or is easily implemented.

As a first step, the technique of bred vectors was applied to data derived models

in Chapter 3. Using three simple, autonomous nonlinear models, the Lorenz system,

the Chua circuit, and the Rössler system, reconstructed phase space models were

constructed using appropriate time delays and embedding dimensions for the first

phase space variable. Each of the attractors for the different systems has a unique

topology but a common feature among all is the presence of two distinct regimes.
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The growth rate of bred vectors was tested as a predictor for regime change in each

of the three systems.

The unique features of each system lead to varying degrees of success using the

appearance of high growth rate bred vectors as a precursor for regime change. High

growth rate bred vectors proved to be the most skillful in the Lorenz system where

the hyperbolic fixed point governs the regime change causing trajectories to diverge

in its vicinity. Nearest neighbor bred vectors in the reconstructed phase space had

performance comparable to methods for which full knowledge of the phase space is

utilized.

The Chua system also presented some promise for predicting regime change

using high growth rate bred vectors. In fact, in this case the NN bred vectors in the

reconstructed phase space showed more skill in predicting the regime change than

their counterparts.

The Rössler system is simple by comparison to the other two. One regime

consists of a single orbit in each instance. In this case, the high growth rate bred

vectors occur immediately following the regime change for methods with full knowl-

edge of the phase space like traditional bred vectors using the ODE and NN bred

vectors in the full phase space. In the reconstructed phase space, bred vectors show

modest skill in predicting the regime transition as they are not confined to occur

following the regime change.

In Chapter 4, the application of data assimilation techniques to data derived

models was tested using the Lorenz system. The technique was verified by applying

NN ETKF to the best case scenario - a perfect model. When the model is con-
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structed using a control trajectory with no error, the performance of the NN ETKF

in the phase space reconstructed from the x variable is identical to that of ETKF

using the numerical model.

However, if the goal is to apply these techniques to real-world systems for

which modeling numerically is difficult or impossible, this does not provide the best

test case. To more accurately assess the applicability of this technique experiments

were conducted in which the time series data was contaminated by various levels

of observational noise. While the NN ETKF performs well in this scenario, as

demonstrated by Hamilton et al, [23], further improvements can be made to the

data driven model to improve forecasting the true value of the variable.

To filter out the additive noise, eigenvectors corresponding to the underlying

deterministic signal are computed from the covariance matrix of the model trajectory

covering the attractor. This process, called SSA, produces a reduced dimensional

phase space (from that required to unfold the noisy attractor). Regardless of the

level of the noise present in the signal, the eigenvectors are roughly the same for

each noisy trajectory, indicating that they correspond to the deterministic part of

the signal. Forecasts made in the space of principal components of the the time

delay vectors projected onto the reduced basis, perform better than forecasts made

in the noise reconstructed phase space alone.

Having verified the technique of NN ETKF, we next applied it to a real-world

example in Chapter 5. The time series of the AL index is closely related to the

development of substorms during active space weather in the Earth’s magnetosphere

and ionosphere. These events are the result of solar wind conditions that depart from

100



the typical ambient solar wind. The solar wind tends to have increased magnetic

field strength in the southward direction, increased velocity, and increased density

during high speed streams (HSS) and coronal mass ejections (CMEs).

Various substorms resulting from each of these phenomena were forecasted

using NN ETKF in the phase space reconstructed from the time series of the AL

index and then reduced in dimension using SSA. As was shown for the Lorenz

system, this technique produces skillful forecasts. The forecasts are potentially

more skillful with longer lead times than for other methods that may be used to

forecast auroral electroject index as a means of predicting substorms.

This technique was then extended to the multivariate time series of the mag-

netometer stations from which the AL index was constructed. While this forecast

is more challenging due to the difficulty in constructing a good model, the forecasts

of individual station measurements still show some skill. It is difficult to construct

a good model in this scenario because there are often large gaps in the records from

individual stations, while the indices constructed from the stations together lack

such gaps. Also, the anomalous measurements at any one station are difficult to

capture because those experiencing quiet conditions tend to draw the forecast to a

quiet state. As with all data driven modeling that uses analogs to represent the

observed state, a lack of suitable analogs for each ensemble member can negatively

impact the forecast.

This limitation was addressed by including the spread of the forecast ensemble

as a potential independent variable for forecasting. As the system enters unstable

state, such as those occurring during a substorm, and particularly for events of
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very large magnitude, the spread of forecast ensembles generated using NN ETKF

tends to increase dramatically. The high correlation between the magnitude of the

background ensemble spread and the value of the AL index suggests that it would

be a good predictor for future values of the AL index. Combining with previous and

current values of the AL index with previous and current values of the ensemble

spread as independent variables, skillful predictions of the future value of the AL

index can be made using a simple regression model.

While data driven techniques will always have limits, particularly with respect

to the quality and quantity of historical data from which to construct models or

training data, this work demonstrates how tools commonly applied to numerical

models can be extended to these cases. With a great many systems exhibiting

the low dimensional underlying dynamics necessary for this kind of phase space

reconstruction, the potential to apply data assimilation to improve forecasts made

using data derived models is evident.
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