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Colorectal cancer (CRC) is the third leading cause of cancer-related death in the 

United States. During the tumorigenesis and metastasis of CRC, cells encounter 

numerous cellular and molecular events. ATF3, a member of the ATF/CREB 

transcription factor family, plays an important role on regulation of apoptosis and is 

regarded as a potential molecular target for chemoprevention and chemotherapy of 

colon cancer. The current study was performed to investigate cellular and molecular 

mechanisms by which ATF3 affects colon cancer-related phenotypes including 

apoptosis and metastasis. Here, we demonstrated that knockdown of ATF3 using 

small interfering RNA (siRNA) promotes the expression of anti-apoptotic protein, B-

cell lymphoma 2 (Bcl-2), in colon cancer cells, while overexpression of ATF3 

resulted in a dramatic decrease in Bcl-2 protein. Gain of function of ATF3 in colon 

cancer cell line HCT116 led to an increase of pro-apoptotic protein Bcl-2 homologous 

antagonist killer (Bak), followed by the induction of apoptosis. Furthermore, we 

observed that ATF3 overexpression downregulated expression of epithelial-

mesenchymal transition (EMT)-related transcription factors. However, mammosphere 

forming assay indicated that ATF3 overexpressed colon cancer cells form larger and 

more budding sites compared to control, which is associated with an increase of 

cluster of differentiation 44 (CD44) expression and a decrease of retinoblastoma (Rb) 

and tight junction protein zonula occludens (ZO)-1.  This study suggested that ATF3 

may play a dichotomous role in regulation of apoptosis and metastasis in colon 

cancer.   
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Chapter 1. Introduction 

1.1 Introduction 

 Cancer is a major cause of death in the world. The American Cancer Society 

estimates that 1,658,370 men and women will be diagnosed and 589,430 cancer deaths 

will occur in the United States in 2015 (1). Colorectal cancer (CRC) is the third leading 

cause of cancer mortality in the Western world (1). Cost-effective therapies and 

preventive approaches to treat colorectal cancer are urgently needed. Chemopreventive 

strategy using dietary compounds which prevents or delays the onset of several types of 

cancer, has gained a great deal of attention,  (2). Various bioactive phytochemicals, such 

as flavonoids (3-8), proanthocyanidins (9-11), carotenoids (12-16), isothiocyanates (17-

24), and sphingolipids (25-29) have been shown to exert anti-cancer activities in CRC 

(30). The mechanisms of their chemopreventive actions include targeting specific genes 

and modulating of oncogenic or tumor suppressive signaling pathways that lead to 

changes of cell proliferation, differentiation, survival, cell cycle progression, and 

metastasis (30).  

 During the course of tumorigenesis, cells encounter numerous cellular and 

physical stresses (31). Cells respond to stress in various ways ranging from promotion of 

cell survival to elicitation of the programmed cell death and removal of the damaged cells 

(32). However, the failure to restrain and eliminate stress signals can increase the risk of 

cancer (33-35). Activating transcription factor 3 (ATF3) is a member of the ATF/CREB 

family, which shares basic region-leucine zipper (bZip) DNA binding domain (36). 

Previous research has demonstrated that ATF3 is encoded by an immediate early gene (36) 

and its baseline mRNA level is low in normal cells. ATF3 can be induced by various 

stress stimuli and signals that damage the cells or tissues. These stress signals include 

hypoxia, anoxia, carcinogens, DNA damage, UV exposure and radiation (36, 37). 
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Comprehensive research found that ATF3 can participate in several cellular processes and 

adapt to different extra- and intra-cellular stimuli (36, 38).  

 In previous studies, we and other groups reported that ATF3 is a molecular target 

of many anti-cancer compounds and mediates the compound-stimulated apoptosis (39-42). 

However, several current studies demonstrated that ATF3 could either promote or 

suppress the cell proliferation and apoptosis in cancer cells (43). Besides, xenograft 

models showed ATF3 possessed either tumor suppressive or oncogenic activity (44-47). 

To better understand the role of ATF3 in colon cancer progression and increase the 

efficacy of anti-tumorigenic compounds targeting ATF3, in this project, we examined the 

changes of cellular gene expression and cell morphology after overexpression or 

knockdown of ATF3. 

 

1.2 Overview of cancer development and tumorigenesis 

1.2.1 Tumor cell apoptosis and Bcl-2 protein family 

 Apoptosis is a major mode of programmed cell death, which serves as an essential 

barrier for cancer development in multicellular organisms. By eliminating the damaged or 

aged cells, cell death balances the cell proliferation and contributes to the tissue 

homeostasis, development and immunity (48). The cellular cascade of molecular events 

involved in apoptosis is highly complex, and they can be categorized into two main 

pathways: the death receptor (extrinsic) pathway and the mitochondrial (intrinsic) 

pathway, with evidence indicating that the two pathways are interactive (49).  

 The function and activity of mitochondrial pathway mainly depends on the 

dynamic interaction between subgroups of Bcl-2 family proteins on the mitochondrial 

outer membrane. The Bcl-2 family proteins, which control the mitochondrial membrane 

permeability, can be further categorized into BH3-only proteins (delivering initiation 
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signals) (e.g. BIM PUMA, BAD, BIK), anti-apoptotic proteins (e.g. Bcl-2, Bcl-x, Bcl-XL, 

Bcl-w, BAG), and pro-apoptotic proteins (e.g. Bcl-10, Bax, Bak, Bid, Bad, Bim, Bik, and 

Blk) (31, 48). Accumulation of cytotoxic stresses suppresses the activity of anti-apoptosis 

proteins, whereas it triggers the pro-apoptotic proteins BAX and BAK to form the 

oligomers and increases the permeability of mitochondrial outer membrane. As a result, 

cytochrome c is released to cytosol where they bind to apoptotic protease activating factor 

1 (APAF1), recruits caspase 9 enzyme and activate caspase 3 (50). Aberrant expression of 

Bcl-2 family proteins is widely observed in various malignancies, and therapeutic 

strategy targeting Bcl-2 family proteins is promising. For example, anti-apoptotic protein 

Bcl-2 is frequently overexpressed in estrogen receptor-positive breast cancer, and the 

BH3 mimetic ABT-737 targeting Bcl-2 can improve tumor response to antiestrogen 

tamoxifen (51).   

 With better understanding of the signaling cascades, many approaches and assays 

are available for detecting and counting the apoptotic cells. The annexin V, a Ca+-

dependent phospholipid-binding protein, is widely used as a marker of apoptosis. During 

early apoptosis, annexin V can bind to phophatidylserine residues that translocate from 

inner surface of membrane to the outside of the cell due to the increased permeability (52).  

 

1.2.2  Tumor cell cycle 

 Cell cycle refers to the sequence of activities carried out by a cell leading to 

self-division and duplication. It proceeds through the activation of cyclins and cyclin-

dependent kinases (CDKs) to ensure successive transition from G1 to S and G2 phase 

and then the initiation of mitosis. Cyclin/CDK complexes are formed and switched on 

and off during different phases of the cell cycle progression through phosphorylation 

of target proteins (53). For example, the Cyclin D and CDK4/6 complex 

phosphorylates and inactivates its target protein, retinoblastoma and subsequently 
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cause G1/S transition and stimulate cell cycle (55). Whereas, cyclin A/E and CDK2/1 

complex regulates progression through S/G2/M phases (53, 54).  

 The activities of cyclin/CDK complexes are suppressed by CDK inhibitors, 

depending on the specificity between target CDK and inhibitor (56). The first class of 

inhibitors includes the INK4 proteins that bind to catalytic subunits of CDK4 and 

CDK6, but not other CDKs or D-type cyclins. The second family inhibitors of 

Cip/Kip proteins like p21 and p27 are more broadly acting, which inhibit all types of 

cyclin and CDK complexes at any phase without dissociating cyclin–CDK complexes 

(56, 57). 

 Structural studies show that p21 and p27 share similar primary structure and 

exert inhibition effect over the target proteins (58). At the beginning of the catalytic 

reaction, α-helix of Cip/Kip protein first makes contact with cyclin, followed by a 

deep insertion of second helix inside the catalytic cleft, and blocks the loading of ATP. 

Further conformational changes of CDK2 are observed to lock the catalytic cleft to an 

inactive form (57). Some studies have shown that highly expressed p27 can also 

inhibit CDK4 activity (59).  

 

 

1.2.3 Tumor cell metastasis: Single cell migration (EMT) vs. Collective invasion 

 Metastasis is a collective term which describes a process that a tumor cell leaves 

the primary tumor, travels to a distant site via the circulatory system, and establishes a 

secondary tumor. Metastasis is initiated by invasion. During the invasion, cancer cells 

may (or may not, depends on the migration model chosen) lose cell-cell or cell-matrix 

attachment which triggers matrix degradation followed by migration. Depending on the 

cell context and tissue environment, cells use two different models for migration: single 
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cell migration with the absence of cell-cell attachment, and collective cell migration along 

with the maintenance of the cell-cell junction. Cancer cell move into lumina blood and 

lymphatic vessels during intravasation and then circulates in the blood vessel. Many 

cancer cells will be trapped, however, those escape from the arrest can be transported to 

the new site (60). 

 Metastasis is responsible for 80% of death in cancer patients. Invasive tumor 

cells divide rapidly in an aggressive primary mass and variety of stromal cells in the 

surrounding microenvironment can be recruited to tumors. The hijacked tumor-

associated stroma cells can be educated and in turn, support tumor growth by 

producing growth factors and proteolytic enzymes (61). 

 Cells migration occurs in two major modes. Single cell migration, when cell-

cell adhesions are absent, and multicellular, collective cell migration, when cell-cell 

junctions are retained (60). The single cell migration is executed in a series of 

physicochemical steps within the same cell, which allows the cell body to protrude 

and generate traction force (60). 

  

Epithelial Mesenchymal Transition 

 Epithelial Mesenchymal Transition (EMT) is an essential embryonic process 

that causes the epithelial cells to lose their characteristics and switch to motile 

mesenchymal ones. This transition involves changes in cell morphology, size and 

behavior that is characterized by loss of cell junctions and apical-basal polarity, 

followed by the acquisition of a fibroblastic motility. These changes lead to a 

degradation of extracellular matrix and facilitate the cell migration and invasion (62-

64). EMT is initiated by the change in gene expression profile. The main EMT-

associated transcription factors include of the Snail, Slug, ZEB-1, SIP-1 and Twist 
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(64-68). Although a majority of EMT transcription factors are highly up-regulated at 

early EMT, each type shows distinct expression profiles depending on the cellular 

context, tissue type and progression stage of EMT. In addition, they control 

reciprocally and synergistically target a specific gene, thus leading to either repression 

of the epithelial genes or activation of mesenchymal genes (67, 68). 

 Activation of EMT transcription factors leads to a downregulation of E-

cadherin (epithelial maker) and an upregulation of N-cadherin (mesenchymal marker), 

thereby decreasing the cell adhesion. For example, SNAIL proteins, such as Snail and 

Slug, repress transcription of the E-cadherin by directly binding to E-box DNA 

sequences in the promoter region. This transcriptional suppression is associated with 

histone modifications of Polycomb repressive complex2 (PRC2), specifically 

methylation and acetylation at histone H3 Lys4 (H3K4), H3K9 and H3K27 (68). 

Additionally, SNAIL can also induce the mesenchymal phenotype by activating N-

cadherin. 

 Multiple signaling pathways have been implicated to regulate the initiation 

and progression of EMT by either activating or suppressing SNAIL expression. 

Glycogen synthasekinase-3β (GSK3β) directly phosphorylates Snail at two Ser-rich 

consensus motifs and inactivates its transcriptional activity (68). However, Wnt and 

PIK2-AKT pathway activate transcriptional activity of SNAIL by suppressing GSK3β 

activity (69-71). Activation of Wnt and EMT factors lead to an increase of stability of 

cytoplasmic β-catenin (68). Increased β-catenin translocate to nucleus where it forms 

β-catenin-TCF-4 complex and promotes the transcription of target gene (72).  

 Similarly, Twist expression is associated with the E-cadherin and N-cadherin 

gene expression along with SNAIL. Twist can be up-regulated by transcription factor 

hypoxia-inducible factor 1α (HIF1α) under hypoxia conditions, inducing angiogenesis 
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(73). Additionally, TWIST can also interact with methyltransferase SET8, thus 

mediates the H4K20 monomethylation, which is a histone mark linked to repression 

of E-cadherin and promotion of N-cadherin (74).  

 

Collective invasion 

 Over the decades, scientists have studied the possible mechanisms underlying 

single cell migration in both normal and malignant cells, involving the governing of 

cell adhesion and cytoskeleton dynamics (75-77). However, they failed in defining the 

rate-limiting mechanisms, such as dominant signaling pathway, receptor-ligand 

interaction, or protease-substrate interaction, which regulate invasive cancer cell 

migration. As an alternative, cancer invasion is now considered as a heterogeneous 

and adaptive process. The “plasticity” of invasion in cell adhesion, cytoskeletal 

dynamics, and mechanotransduction, together with other hallmarks of cancer, 

orchestrates morphological, signaling, and genetic alteration, and help the adaptation 

of cancer cells in even adverse tumor microenvironment (77-85).  

 Collective invasion requires cell-cell adhesion as well as coordination between 

various cells, which results in the co-existance of multicellular groups at the interface 

between tumor and stroma (85-87). Collective invasion exhibit different 

morphologies depending on the cell types, the number of jointly moving cells, and the 

tissue structure (85). For example, cells may form small clusters, solid strands or even 

an inner lumen, if epithelial polarity is retained. In some other ways, collective 

invasion can also present with a bud-like protruding site consisting of multiple cells 

with variable positions (60, 85).  

 

1.2.4 Tumor growth and cancer stem cell  
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 Carcinomas are cancers and malignancies that caused by multistep progression 

from benign low-grade adenomas. Researchers using different models have shown 

that unrestricted growth occurred in both benign and malignant tumors during 

complex tumor-progression process can be attributed to cancer stem cells (88). 

Physiologically, stem cells are undifferentiated cells that are capable of differentiating 

to all tissues during embryonic development, resulting in both self-renewal and 

differentiation to second daughter cell. Variety of signaling pathways are involved in 

the generation of stem cells (89, 90). Mutations in crucial pathways, such as Notch, 

Wnt and Hedgehog pathways, can cause normal stem cells to function abnormally, 

and accumulation of these genetic alterations can be responsible for malignancy (91). 

These malignant stem cells are considered as cancer stem cells (CSCs). 

 CSCs are considered as the driving forces for tumor growth malignancy, and 

the seeds for metastatic expansion of the tumor and cancer reoccurrence after surgery 

or chemotherapy (92). Certain characteristics were associated with CSC-enriched 

cancer cell populations in vitro (93): (i) CSCs in solid tumors can be identified using 

an extensive list of cell-surface markers (94-99). For example, colon cancer stem cell 

populations are rich in cell surface proteins CD133, CD24 and CD44 markers, which 

are usually associated with aggressive cancer types and poor prognosis (100). (ii) 

CSC-enriched cell populations are prone to form tumor mammospheres or 

tumorspheres (101), which are spherical colonies in suspension cultures. (iii) CSC-

enriched cell populations are hard to eliminate, which are associated with increased 

resistance to chemotherapeutic agents and radiotherapy (102-107).  

 CSCs protein marker CD44 is a transmembrane glycoprotein, together with its 

alternatively spliced variants, functions as receptors of hyaluronan and connects the 

actin cytoskeleton by the adaptor protein. CD44 expression is essential for 
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maintaining the cancer stem cell phenotype and promoting primary tumor growth of 

mammary cells (157). In particular, CD44 expression is essential for collective cell 

migration and subsequence metastatic progression initiated by loss of Rb function 

(138). Rb can suppress collective invasion, circulation and metastasis of cancer cells 

in CD44-dependent manner (138). 

 

1.3 The biological activities of ATF3 in cancer development 

1.3.1 Characteristics of ATF/CREB family of transcription factors 

 Activating transcription factor, or ATF, was first  identified in 1987 by Lee 

and his colleagues as a factor that can activate the transcription of the E1A-inducible 

adenovirus promoters E2A, E3, and E4 (109). In the same year, Montminy and 

Bilezikjian characterized a nuclear protein that can bind to the cAMP response 

element (CRE) in the somatostatin gene, and they named it CRE binding protein or 

CREB.  Later, ATF was found to be identical to the CREB, since ATF directly binds 

to the consensus sequence 5’-TGACGTCA-3’ and transactivates cAMP-inducible 

somatostatin gene (110). Since then, multiple factors that bind to this consensus 

sequence have been isolated (38). Those factors constitute ATF/CREB family with 

nearly 20 members and were classified into subgroups according to their amino acid 

similarity: the CREB/CREM, CRE-BP1 (commonly known as ATF2), ATF3, ATF4, 

ATF6 and B-ATF subgroups (38, 43). 

 All ATF/CREB proteins share similar basic region-leucine zipper (bZip) DNA 

binding domain, within each subgroups (38). ATF/CREB proteins form homodimers 

and selective heterodimers with other bZip proteins (for example, the AP-1 and 

C/EBP families of proteins) (36, 38). Despite their structural similarity, ATF/CREB 

proteins exhibit various different biological functions because different types of 



 10 

homo- or hetero-dimers determine DNA binding specificity and transcriptional 

activities of their genes (38). One common biological response of the ATF/CREB 

family is induction of a variety of stress signals in the cells (44).   

 The human ATF3 was first cloned by Dr. Hai and her colleagues in 1989 from 

cDNA library prepared of HeLa cells (111). The human ATF3 gene is localized in 

chromosome 1q32.3, and derived from four exons (as exons A, B, C, and E) with over 

15 kilobases (112). Exon A contains the 5’-untranslated region with a length of 167bp. 

Exon B incudes the AUG initiation codon and encodes first 80 amino acids of ATF3. 

Exon C encodes 36 amino acids that made up by basic region. Exon E encodes 65 

amino acids, which contains both the leucine zipper (ZIP) domain and the 3’-

untranslated region. Each exon B, C, and E each encodes a functional domain.  

 Like other ATF/CREB family members, ATF3, is a transcriptional factor and 

can both activate and repress the transcription of the target gene  through formation of 

either hetero- or homo- dimers. ATF3 homodimer auto-represses itself 

transcriptionally by recruiting inhibitory cofactors to its own promoter whereas ATF3 

heterodimer can either activate or repress the transcription of target gene (36, 113-116). 

 

1.3.2   Dichotomous role of ATF3 in cancer progression 

 ATF3 expression is induced by various cellular stresses such as hypoxia, 

anoxia, carcinogens, cytokines, genotoxic agents, and cell death-inducing compounds, 

which suggested that ATF3 expression may associate with and mediates diverse 

biological consequences. Currently, the debate on the role ATF3 plays in the cancer 

progression is rather conflicting and confusing. The following part will briefly review the 

several biological processes associated with ATF3 expression. 
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ATF3 and apoptosis 

 Apoptosis, referred as cell programed death, which is an essential cellular 

process in the normal cell progression and maintain the hemostasis in the body. The 

resistance to apoptosis is significant mechanism of  malignance and poor prognosis in 

many types of human cancers. Quite a few research evidences studied the role of 

ATF3 in apoptosis; nevertheless, a conclusion is still obscure.  

 ATF3 expression remains low in many cancer cell lines (36, 113). However, 

stable or transient overexpression of ATF3 increased caspase protease activation and 

promoted the etoposide or camptothecin induced apoptosis in HeLa cells (117). 

Furthermore, ATF3 expression can be induced by PI3K inhibitor, LY294002, 

followed by the induction of apoptosis in several colorectal cancer cell lines (118). 

ATF3 is molecular target of many anti-cancer compounds such as epicatechin gallate 

(39),  indole-3-carbinol (40), genistein (119), 5’-FU (120), Zerumbone (121), 

Dexrazoxane (122), sulindac sulfide (123), tolfenamic acid (124), HDAC inhibitor 

(125), troglitazone (45), metformin (126). Consistently, in in vivo condition, 

expression of ATF3 is linked with functional defects in several target tissues. 

Transgenic mice expressing ATF3 showed dysfunction in the liver and defects in 

endocrine pancreas development (127, 128). Overexpression of ATF3 in the heart 

displayed atrial enlargement and ventricular hypertrophy (129), which is associated 

with pro-apoptotic functions of ATF3.  

 On the other hand, ATF3 was also reported to play a role in protecting the cells 

from apoptosis. It was reported that overexpression of ATF3 by adenovirus can inhibit 

the apoptosis through activating cell survival signal such as mitogen-activated kinase 

kinase 1 (MEKK1) c-Jun N-terminal kinase (JNK)-dependent pathway and enhanced 

neurite elongation through Akt activation in PC12 cells (130). ATF3 also protected 

human umbilical vein endothelial cells from tumor necrosis factor (TNF)-α-induced 
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apoptosis (122, 131). Recently, Yin reported that ATF3 enhances apoptosis in the 

untransformed MCF10A mammary epithelial cells, whereas protects the aggressive 

MCF10CA1a cells and enhances its cell motility (132). Taken together, the role of ATF3 

in apoptosis depends on the cell type, tissue context.  

 

ATF3 and metastasis 

 The first paper studying a role of ATF3 in metastasis came out in the late of 

twenty century. Ishiguro’s group found that transfection of ATF3 into the low 

metastatic clone F1 can switch the parental cells from low- to high- metastatic cells 

(133). In their follow-up research, ATF3 antisense oligonucleotide changed cell 

morphology and enhanced migration of HT29 colon cancer cells, and improved 

mouse survival in vivo (46). Another research group also found that ATF3 was highly 

expressed at higher levels in the cell lines derived from metastatic sites than in those 

from original tumor sites when they are screening cancer cell lines and surgically 

excised human colon cancer samples (134). Bottone’s group found overexpression of 

full-length ATF3 protein in colorectal cancer cells was associated with decreased 

tumor cell invasion, indicating a anti--tumorigenic role for ATF3 (45). However, 

recently study indicated the involvement of ATF3 in metastasis. A paper published 

recently found that ATF3 knockout mice have less cancer metastasis, indicating that 

ATF3 facilitated metastasis (135). Breast cancer model showed that ATF3 protects 

the high-grade malignant breast cells MCF10CA1a and enhances its cell motility by 

promoting transcription of the TWIST1, FN-1, Snail and Slug genes (132). ATF3 also 

promoted in vitro motility and invasion in both HT29 and CaCO2 cells (136) . 
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Chapter 2. Materials and Methods 

2.1. Cell culture, reagents, and antibodies 

Human colorectal adenocarcinoma cells HCT116, LoVo, CaCo2, SW480, HT-29 

were purchased from American Type Culture Collection (ATCC; Manassas, VA) and 

grown in Dulbecco’s modified Eagle medium (DMEM/F12) supplemented with 10% 

fetal bovine serum (FBS). Normal human colon cells, CCD112CoN was purchased 

from ATCC and grown in Eagle’s Minimal Essential Medium (EMEM) supplemented 

with 10% FBS. The cells were maintained at 37 ºC under a humidified atmosphere of 

5% CO2. Primary and secondary antibodies are obtained from the following source: 

anti-ATF3 (Santa Cruz, anta Cruz, CA), anti-Bcl-2 (BD Biosciences, San Jose, CA), 

anti-Bim, anti-Bcl-xL, anti-Bak, anti-Bad, anti-Bax, anti-Cyclin D1, anti-p21, anti-

p27, anti-Gsk3beta, anti-beta-catenin, anti-p-ERK, anti-p-Akt, anti-Rb, anti-CD44, 

anti-ZO-1, and anti-beta-actin (Cell Signaling, Beverly, MA). 

 

2.2. Generation of colon cancer cells with ATF3 knockdown or ectopic expression of 

ATF3 

Transient transfections were performed using Lipofectamine 2000 (Invitrogen) 

according to the manufacturer’s instruction. The pCG-ATF3 expression construct was 

generously provided by Dr. T Hai (Ohio State University, Columbus, OH, USA). 

pcDNA3.1 his/v5 empty vector was used as control. HCT116 , HCT15, SW480 and 

HT29 cells were plated in 6-well plates at the concentration of 4×10
5
cells/well. The 

next day, plasmid mixtures containing 2.5 µg of ATF3 promoter linked to luciferase 

and 2.5 µg of pcDNA3.1 his/v5 vector were transfected for 48h, respectively.  

Endogenous knockdown of ATF3 was performed using TransIT-TKO transfection 

reagent (Mirus) according to the manufacturer’s instruction. 10 μl of TransIT-TKO 
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reagent was added into 100 μL of Opti-MEMI Reduced-Serum Medium (Solution A). 

Then control (cont) small interfering RNA (siRNA; 100 nM) or ATF3 siRNA 

(siATF3; 100 nM) was mixed with Solution A (Solution B and Solution C). HCT116 

cells were transfected with Solution B and Solution C for 24 hours. 

 

2.3. SDS-PAGE and western blot 

Cells were washed with ice-cold 1 × phosphate-buffered saline (PBS), and cell pellets 

were resuspended in radioimmunoprecipitation assay (RIPA) buffer (Boston Bio 

Products, Ashland, MA, USA) supplemented with protease and phosphatase inhibitor 

cocktail (Sigma Aldrich, St. Louis, MO). The cell suspension was centrifuged at 

12,000 × g for 10 min at 4°C. Protein content was measured by the bicinchoninic acid 

(BCA) protein assay (Pierce, Rockford, IL, USA). Equal amounts of proteins were 

separated on 8%, 10%, 12% or 14% SDS-PAGE, transferred to nitrocellulose 

membranes (Osmonics, Minnetonka, MN, USA) and blocked for non-specific binding 

with 5% non-fat dry milk in Tris-buffered saline containing 0.05% Tween 20 (TBS-T) 

for 1 h at room temperature. Membranes were probed with specific primary 

antibodies in 5% nonfat dry milk at 4 °C overnight and then with horse radish 

peroxidase (HRP)-conjugated immunoglobulin G (IgG) for 1 h at room temperature. 

Chemiluminescence was detected with Pierce ECL Western blotting substrate 

(Thermo Scientific) and visualized by ChemiDoc MP Imaging system (Bio-Rad, 

Hercules, CA, USA).  

 

2.4. Isolation of RNA and semi-quantitative RT-PCR  

Total RNA was prepared using a RNeasy Mini kit (Qiagen). Total RNA (1 μg) was 

reverse-transcribed with the Verso cDNA kit (Thermo Scientific) according to the 
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manufacturer’s instruction. PCR was carried out using ReadyMix Taq polymerase 

(Sigma). 

Primers used in this study 

Gene Forward (5'-3') Reverse (5'-3') 

ATF3 GTTTGAGGATTTTGCTAACCTGAC AGCTGCAATCTTATTTCTTTCTCGT 

GAPDH GGGCTGCTTTTAACTCTGGT TGGCAGGTTTTTCTAGACGG 

E-Cadherin TGCCCAGAAAATGAAAAAGG GTGTATGTGGCAATGCGTTC 

N-Cadherin  ACAGTGGCCACCTACAAAGG CCGAGATGGGGTTGATAATG 

Vimentin  GAGAACTTTGCCGTTGAAGC GCTTCCTGTAGGTGGCAATC 

Snail CCTCCCTGTCAGATGAGGAC CCAGGCTGAGGTATTCCTTG 

Twist GGAGTCCGCAGTCTTACGAG TCTGGAGGACCTGGTAGAGG 

Slug  GGGGAGAAGCCTTTTTCTTG TCCTCATGTTTGTGCAGGAG 

 

2.5. Tumorsphere assay 

Cells were plated at 20,000 cells/mL and grown in 1% methylcellulose on poly–

HEMA coated 6-well plates in DMEM supplemented with 10% serum and 20 ng/ml 

hEGF. Suspension cultures were cultured for 14 days. Then, microscope images were 

taken by phase-contrast microscope and tumorsphere-forming ability was quantified 

by ImageJ. 

 

2.6. Boyden chamber single-cell migration assay 

Cells (1×10
5
) were plated on 8 μm pore size Transwell filters in either DMEM or 

RPMI medium and allowed to migrate for 24 hours. The transmigrated cells were 

detected with Hoechst fluorescent dye and counted. 
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2.7 Detection of apoptotic cells.  

The DNA contents for control and ATF3 overexpressed HCT-116, HCT15, SW480, 

and HT29 cells were determined by fluorescence-activated cell sorting (FACS) as 

previously described. For detection of apoptosis by ATF3 overexpression, HCT-116 

cells were stained with FITClabeled Annexin V and propidium iodide using Annexin 

V-FITC apoptosis detection kit (BD Biosciences PharMingen, San Diego, CA) 

according manufacturer instruction. Briefly, HCT-116 cells were plated at 3×10
5
 per 

well in six-well plates and transfected with pCG-ATF3 by FuGENE 6 (Roche, 

Indianapolis, IN) for 24 hours. Subsequently, the cells were grown for 24 hours and 

stained with Annexin V-FITC and propidium iodide. A total of 10,000 cells were 

examined by flow cytometry using a Beckman Coulter Epixs XL equipped with ADC 

and ModFit LT software. Cells were gated on side scatter and forward scatter to 

exclude debris. Doublets were eliminated using peak versus integral analysis. 

Annexin V–positive/propidium iodide–positive and Annexin V–positive/propidium 

iodide–negative cell populations were determined as apoptotic cells from the total 

gated cells. 

 

2.8. Cell cycle analysis 

Analysis of cell cycle progression was performed by using flow cytometry. The 

confluent 2-day HCT116 cells were harvested. Then, harvested cells were fixed with 

70% ethanol for 2 h at 4 °C, washed with PBS, and centrifuged. The resulting pellet 

was stained with 40 μg per mL propidium iodine solution containing 1 mg per mL 

RNase A at 37 °C for 30 min. The cell cycle progression of samples 10,000 cells was 

analyzed using flow cytometer according to the manufacturer's instructions. 
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 2.9. Statistics 

Statistical analysis was performed with IBM SPSS and the data was analyzed by 

Student t test. Data was expressed as means ± SD and differences were considered 

significant at p ≤0.05. 
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Chapter 3: The dual biological function of ATF3 in colon cancer 

progression 

3.1 Low expression of ATF3 in colon cancer cell lines 

Previous evidences indicated that ATF3 is stress-inducible gene, however its basal 

mRNA and protein level is nearly undetectable in most colon cancer cell lines. In 

order to compare basal expression of ATF3 in colorectal cancer cell lines with 

different genetic backgrounds, we examined the mRNA and protein level of 

endogenous ATF3 in multiple colon cancer cell lysates including normal human colon 

CCD-112CoN, human colon adenocarcinoma HCT116, SW480, LoVo, CaCO2, 

HCT15 and HT29. Indeed, we found ATF3 mRNA expression was almost 

undetectable in normal human colon CCD-112CoN, colon cancer cell line HCT116, 

SW480 at mRNA level by RT-PCR (Figure 3.1A).  Protein level of ATF3 was 

detected by western blot. Similarly, low level of indigenous ATF3 was observed in 

HCT116, HCT15, HT29 and SW480 (Similarly 3.1.B), however higher expression of 

ATF3 was observed in LoVo and Caco-2 cells. Based on these results, we choose 

HCT116, SW480, HT15, and HT29 to further investigate the effect of ATF3 in colon 

cancer.  
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Figure 3.1. ATF3 expression in colon cancer cell lines  

 

 

Figure 3. 1. ATF3 expression in colon cancer cell lines. (A) Colon cancer cell 

lysates were harvested and semiquantitative reverse transcriptase (RT)-PCR was 

performed for ATF3 and glyceraldehyde 3-phosphate dehydrogenase (GAPDH). (B) 

Western blot was performed to analyze the basal expression level of ATF3 and β-

actin in colon cancer cells. 
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3.2 ATF3 induces apoptosis in colon cancer 

To determine whether gain of function of ATF3 in colon cancer cells can induce the 

apoptosis, we stained HCT116 cells with Annexin V-FITC and propidium iodide and 

analyzed by flow cytometry. We observed significance for the apoptotic cell 

populations after transfection with pCG-ATF3. Result was calculated by Student’s t 

test. 

Figure 3.2. ATF3 induces apoptosis in colon cancer 

 

 

Figure 3.2 Overexpression of ATF3 induces apoptosis in HCT116 cells. HCT-116 

cells were transfected with empty and pCG-ATF3 expression vectors. The cells were 

grown for 24 hours and subsequently stained with Annexin V-FITC and propidium 

iodide and analyzed by flow cytometry. Columns, mean from three independent 

transfections; bars, SD. Apoptotic cell populations after transfection with pCG-ATF3 

or empty vector were calculated by Student’s t test; *, P < 0.01, versus pcDNA3-

transfected cells. 
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3.3  ATF3 modulates Bcl-2 family members  

Next we tested if ATF3-mediated apoptosis in human colorectal cancer cells is 

associated with Bcl-2 family proteins. Then western blot was performed to detect the 

protein level of Bcl-2 family members. As shown in Fig. 3.3, overexpression of ATF3 

decrease the protein level of Bcl-2, whereas increase the expression level of Bak. No 

change was detected in other Bcl-2 family members.  This result provides evidence of 

potential interaction between ATF3, Bcl-2 and Bak. 

 

Figure 3. 3.  ATF3 modulates the protein and mRNA expression of Bcl-2 family 

genes  
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Figure 3. 3.  ATF3 modulates the protein and mRNA expression of some Bcl-2 

family genes (a) ATF3 expression vector was transfected into colon cancer cells 

HCT-116 using lipofectamine2000 for 48 hours and then the cells were harvested. 

Western blot analysis was performed for Bim, Bcl-xl, Bak, Bcl-2, Bax and beta-actin. 
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3.4 ATF3 inversely regulates Bcl-2 expression.  

To further determine whether ATF3 mediates the expression of Bcl-2, we 

overexpressed ATF3 in three different types of colorectal cancer cells (HCT116, 

HCT15 and SW480) and carried out western blot analysis for ATF3, Bcl-2 and β-

actin. Decreased of Bcl-2 expression was observed after ATF3 expression in HCT116, 

HCT15, but SW480 cells did not express Bcl-2 (figure 3.4A). Meanwhile, we 

knockdown endogenous ATF3 in HCT116 cell line using small interfering RNA 

(siRNA) targeting ATF3 (siRNA). Inversely, Bcl-2 protein was elevated when ATF3 

was suppressed (figure 3.4B). To access whether these changes occurred at a 

transcriptional level, a semi-quantitative RT-PCR was performed. As shown in Figure 

3.4C, overexpressed ATF3 resulted in decrease in the Bcl-2 on mRNA expression 

level. Whereas, Bak was increased in ATF3 overexpressed HCT116 cells (Figure3.4D) 

in mRNA level. 

 

           

A 
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Figure 3.4 Overexpression and knockdown of ATF3 inversely regulate Bcl-2 

protein levels. (A) Control or pCG-ATF3 expression vector was transfected into 

colon cancer cells HCT116, HCT15 and SW480 using lipofectamine2000 for 48 

hours and then the cells were harvested. Western blot analysis was performed for 

ATF3, Bcl-2 and β-actin. (B) HCT-116 cells were transfected with control (cont) 

small interfering RNA (siRNA; 100nM) or ATF3 siRNA (siATF3; 100nM) for 24 

hours using a TransIT-TKO transfection reagent. Western blot analysis was 

performed for ATF3, Bcl-2 and beta-actin.  (C) Control or pCG-ATF3 expression 

vector was transfected into colon cancer cells HCT116, HCT15 and SW480 using 

lipofectamine2000 for 48 hours and then RT-PCR was performed for ATF3, Bcl-2 

and GAPDH.(D) Control or pCG-ATF3 expression vector was transfected into colon 

cancer cells HCT-116 using lipofectamine2000 for 48 hours and then RT-PCR was 

performed for ATF3, Bak and GAPDH.  
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3.5 ATF3 has limited effect on cell cycle regulation.  

According to literature, protective activity of ATF3 in invasive breast cancer cells is 

mediated by activating cell cycle arrest (Yin, 2008).  To determine whether ATF3 

affects cell cycle in colon cancer, we analyzed the fraction of each phase in cell cycle 

after ATF3 expression using FACS analysis and western blot. As shown in Figure 3.5 

A, restoration of ATF3 in HCT116 cells results in a slight decrease in G1 phase, but a 

gain in S and G2-M phase. Inversely, suppression of ATF3 in HCT116 cells resulted 

in minimal G1 arrest, and decreased S and G2-M phase. However, we did not observe 

any changes associated with cell cycle regulatory gene such as cyclin D1 and cyclin-

dependent kinase (CDK) inhibitor p21, p27 (Figure 3.5 C).  These data suggest that 

ATF3 may have minimal effect on the cell cycle regulation.  
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Figure 3.5. ATF3 has limited effect on cell cycle regulation.  
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Figure 3.5. ATF3 has limited effect on cell cycle regulation. (a) HCT116 cells were 

transfected with control vector (OC), ATF3 vector (OA), control knockdown (SC), 

ATF3 knockdown (SA) for 48h and then cultured and analyzed by FACS. Values are 

means ± SD, n=3. Means without a common letter differ, P ≤0.05. (b) ATF3 was 

transfected into colon cancer cells HCT116 and HCT15 using PolyJet for 48 hours 

and then the cells were harvested. Western blot analysis was performed for ATF3, 

Bcl-2, Cyclin D1, p21, p27 and beta-actin. 

 

B 
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3.6 Regulation of EMT-related gene expression by ATF3 in colon cancer cell lines. 

To test whether ectopic expression of ATF3 affects EMT-related gene expression 

profile, we performed RT-PCR to assess Slug, Snail, Vimentin, E-cadherin, N-

cadherin, and Twist in HCT116, HCT15, SW480 and HT29 cells. Slug was decreased 

in HCT116, SW480, and HT29; Snail was reduced in HT29 and Vimentin was 

lessened in SW480. Interestingly, HT15 showed opposite expression of Slug, Snail 

and Vimentin, all of which were elevated after the introduction of ectopic ATF3. 

To further elucidate the mechanism associated with the change of EMT-related gene 

profile, we checked the protein expression level of Gsk3beta, Beta-catenin, p-ERK, 

ERK, and p-Akt. Gsk3beta was enforced associated with the diminished expression of 

beta-catenin in ATF3 overexpressed HCT116 cells. In addition, the expression of p-

ERK and p-AKT were also raised after gain function of ATF3 in HCT116 cells. 
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Figure 3.6 Regulation of EMT-related gene expression by ATF3 in colon cancer 

cell lines. 
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Figure 3.6 Regulation of EMT-related gene expressions by ATF3 in colon cancer 

cell lines. (A) Colon cancer HCT116, HCT15, SW480, HT29 cell lysates were 

harvested and RT-PCR was performed for ATF3, GAPDH and EMT-related genes. 

(B) Western blot was performed to analyze the expression level of Gsk3beat, beta-

catenin, p-ERK, ERK, p-Akt, and Beta-Actin after gain function of ATF3 in HCT116 

cells. 
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3.7 ATF3 overexpressed cells do not induce single cell migration  

To address whether ATF3 promotes colon cancer cell motility, we analyzed the cells 

by using Boyden chamber. The result indicates that ectopic expression of ATF3 in 

HCT116 and HCT15 cells does not affect colon cancer cell motility when compared 

to the control cells, representative pictures of the motility assay is shown (Figure 

3.7A). 

 

 



 33 

 

Figure 3.7. ATF3 overexpressed cells do not induce single cell migration. (a) 

HCT116 and HCT15 cells were analyzed by Boyden chamber assay for single cell 

migration ability with and without the overexpression of ATF3. Fluorescent images 

and quantification of migrated cells numbers were initiated one week after the 

transient transfection with ATF3 expression vector. Numbers of metastases were 

quantified by ImageJ. Unequal variance Student’s t-test, p≤0.05 
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3.8 Formation of cancer initiating cell features and collective cell invasion 

Rb acts as the key suppressor in metastatic progression and upregulation of CD44 can 

decrease the expression of Rb, which is crucial for initiating collective cell migration 

and metastatic growth (138). To test whether ATF3 expression affects collective cell 

migration, we examined expression level of Rb, CD44, and ZO-1 after overexpression 

of ATF3. The western blot assay showed that ectopic expression of ATF3 in HCT116 

cells can elevate the expression of CD44 alternative splicing v and suppress the 

protein level of Rb. (Fig. 3.8 left)  

The mammosphere forming assay was originally developed by Dontu et al. (101) as a 

way to propagate mammary epithelial stem cells (MaSC) in in vitro. Later, 

researchers started to use it as a surrogate reporter of stem cell and cancer stem cell 

activity for tissue samples, tumors and cell lines (92, 139-141). During circulation, 

undifferentiated stem cells survive, but others die by anoikis in blood. The self-

renewal ability of the stem cells permits the formation of mammospheres in serial 

non-adherent passage. This form of culture system proved to be as a feasible approach 

for isolating and propagation of tumorigenic breast cancer cells from primary tumors 

(140) and metastasis (139). Therefore, to test the tumorsphere forming ability of colon 

cancer cells and their morphology under microscope after overexpression of ATF3, 

we perfomed tumorspheres assay under non-adherent conditions. Morphology of the 

colon cancer cell lines HCT116 with and without ectopic expression of ATF3 

included in the study. Compared to the control, ATF3 overexpressing HCT116 cells 

showed more condensed cell density and formed more protruding and budding sites 

(Figure 3.8, right).  
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Figure 3.8. Formation of cancer initiating cell features and collective cell 

invasion 

 

Figure 3.8. Formation of cancer initiating cell features and collective cell 

invasion (A) HCT-116 cells were transfected with ATF3 expression vector using 

PolyJet for 48 hours and western blot was performed for ATF3, Rb, CD44, ZO-1 and 

beta-actin. (B) Phase contrast images and quantification of tumorsphere-forming were 

initiated to test the collective invasion potency of HCT116 with ATF3 overexpression.  
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Chapter 4. Discussion, Conclusions, and Future Perspective  

4.1 Discussion 

 ATF3 gene expression can be induced by a variety of stress signals, including 

those encountered by cancer cells during their development (carcinogens, DNA 

damage, hypoxia, anoxia etc.) (36, 38), as well as signals commonly present in the 

tumor microenvironment (142, 143). Therefore, ATF3 is considered as an adaptive-

response gene that participates in cellular processes to adapt to extra- and/or intra 

cellar changes and functions as a hub in the biological network that allows cell to 

respond to signals disrupting homeostasis (144). 

 The cyclic AMP response element (CRE) is a major positive regulatory site in 

the bcl-2 promoter, which plays an important functional role in the regulation of 

endogenous Bcl-2 expression and apoptosis (145). Previous researches revealed that 

CRE binding protein ATF/CREB can form selective heterodimers with each other or 

other bZip proteins such as the AP-1 and C/EBP families of proteins. The formation 

of the heterodimer can alter DNA binding specificity and transcriptional activities 

(43). Therefore, ATF3 may regulate Bcl-2 by binding to the promoter region of Bcl-2 

in colon cancer cell lines including HCT116, HT29, and SW480. Whether Bak, the 

pro-apoptosis protein from Bcl-2 family, is activated directly by ATF3, or indirectly 

as a consequence of neutralization of pro-survival targets Bcl-2 is the subject 

deserved further discussion. A detailed understanding of the interactions between 

ATF3 and Bcl-2 family members provided by the current research has notable 

implications for designing anti-cancer drugs to target the Bcl-2 family, thus triggering 

apoptosis in cancer cells (146).  

 Interestingly, expression of ATF3 protein is shown to have limited effect on 

cell cycle regulation. In agreement with this observation, we have also noticed that 
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cell cycle progression of protein markers, such as cyclins and cyclin-dependent 

kinases (CDKs), and their inhibitors p21 and p27, were not changed after induction of 

ATF3 in HCT116 and HCT15 cells. However, previous research found that 

overexpression of ATF3 using the tetracycline-inducible system can moderately slow 

down progression of cells from G1 to S phase, indicating that ATF3 protein might be 

a candidate in the control of cell cycle progression (147). This might be due to the 

variation of tissue and cellular environment and use of different means of inducing 

ATF3. The future investigation is required to understand whether ATF3 protein 

function differently when cellular or tissue environment changed.  

 In our study, ATF3 potentially suppresses EMT by regulating of EMT-related 

gene expression in HCT116, HT29 and SW480 cell lines. Here, we propose three 

mechanisms. Firstly, we observed that the overexpression of ATF3 leads to 

stimulation of Wnt pathway, which induces the expression of GSK-3β, consequently, 

lower the expression level of β-catenin (Figure 3.6B). The glycogen synthase kinase-

3β (GSK3β) promotes stabilization of cytoplasmic β-catenin, which inhibits the 

translocation of β-catenin to the nucleus and stops its binding to the transcription 

factors lymphoid enhancer-binding factor 1 (LEF) and T cell factor (TCF). This 

action inhibits gene expression program that suppress EMT (68). Secondly, in the 

present study, we also observed that SNAIL family transcription factors, Slug and 

Snail, are decreased after induction of ATF3. Snail family transcription factors are 

well known to stimulate EMT. Previous studies have shown that Snail or Slug can 

repress the E-cadherin by binding to E-box DNA sequences in the promoter region 

(68). Additionally, SNAIL can also induce the mesenchymal phenotype by activating 

N-cadherin. Downregulation of E-cadherin and induction of N-cadherin can result in 

the alteration of cell adhesion, which is essential of the initiation of EMT. Thirdly, 
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EMT responses can also be induced by crosstalk and cooperation between distinct 

pathways. Our result showed that the increase of exogenous ATF3 in colon cancer 

cell line can activate the phosphorylation of Akt and Eer proteins, which ameliorates 

the EMT signaling. The integrin-induced Akt activation can cooperating with Wnt 

signaling by inhibiting GSK3β, thus inducing SNAIL expression through nuclear 

factor-κB (NF-κB) and stabilizing SNAIL and β-catenin (68).    

 In addition to promoting EMT through Wnt pathway, transforming growth 

factor-β (TGFβ) can activate the PI3K–Akt, Erk MAPK, p38 MAPK and Jun N-

terminal kinase (JNK) pathways. TGF-β3 signaling induces formation of beta-

catenin–LEF-1 complexes that initiate EMT by up-regulating the synthesis of Snail 

and Slug (72).   

 Interestingly, HCT15 cell lines showed different expression profile of EMT-

related genes. Unlikely HCT116, SW480 and HT29 cells, HCT15 cells have elevated 

Slug, Snail and vimentin mRNA expression level after ATF3 expression. One of the 

possible reasons is that HCT15 carry disrupted MSH6. He et al., proposed a 

correlation between low content of MSH6 and elevated EMT (152). Low level of 

MSH6 (153, 154) activates alternative lengthening of telomeres (ALT) and promote 

cancer progression at advanced stages through promoting EMT (152). However, 

whether the low level of MSH6 can trigger the display of EMT characteristic remains 

unknown. Further investigation is required to address this issue.  

 Another interesting finding in current study is that ATF3 suppresses Rb and 

stimulates the expression of CD44, a marker of colon cancer stem cell. The 

development of metastasis consists of underlying rate-limiting multistage steps (148). 

However, metastatic colonization, the successful initiation of metastatic growth, is not 

frequently seen and inefficient for many cancer types except a minority of cancer cells 



 39 

that reach distant sites (149, 150). A subpopulation of cancer stem cells is pivotal for 

metastatic colonization, and the interaction with stromal niche signals are crucial to 

the expansion process (151).  

 Previous research indicates that ATF3 enhance cancer-initiating cell features 

by increasing the population of CD44
high

 cells, the mammosphere-forming ability, and 

the tumor-initiating frequency in breast cancer (144). We observed that ectopic 

expression of ATF3 in colon cancer cells processes the ability to increase cancer-

initiating cell features and holds the metastasis potential, which paves the way for 

various stromal signals to exert their impact by inducing ATF3, a hub of the 

biological network, to promote cancer development.  
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4.2 Conclusion and Future Perspectives 

 The present study suggests potential dual function of ATF3 in the 

development of human colorectal cancer. Data presented in Chapter 3 revealed that 

ATF3 can modulate the protein and mRNA expression of some Bcl-2 family genes, 

and enhance apoptosis in different colorectal cancer cells. Though, minimal effect of 

ATF3 generated on cell cycle regulation. This result indicated a tumor suppressive 

role of ATF3. Without triggering the single cell migration, however, induction of 

ATF3 exerts differential regulation effect of EMT-related gene markers in different 

colon cancer cells. Overexpression of ATF3 can enhance the tumorsphere forming 

ability and promote primary tumor growth, consequently, contribute to the collective 

tumor invasion. This finding provides correlative evidence to support an oncogenic 

role of ATF3.    

 However, much more work remains to further investigate the mechanisms and 

functions of ATF3 in human colon cancer. First, in our study, we use overexpression 

of ectopic ATF3 in colon cancer, but the effects and function of signal-induced or 

compound-induced expression of ATF3 may be different. Secondly, using the gene 

overexpression and knockdown strategy, we demonstrated that ATF3 directly regulate 

the gene expression of Bcl-2. While we do not know whether Bcl-2 can inversely 

regulate ATF3. Double overexpression or double knockdown strategy is needed to 

elucidate the relationship between Bcl-2 and ATF3. Thirdly, to further examine the 

collective cell invasion activity after gain function of ATF3 in colon cancer cells, we 

can test cell surface proteases, including MT1MMP and MMP2, which are acclaimed 

to be engaged in degrading the ECM substrate and participate in the ECM remodeling, 

an early event in collective cancer cell movement (158, 159). Fourthly, given the 

importance of ATF3 in cellular context, it is also crucial to investigate how ATF3 
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function in vivo situation. Physiological mechanisms that regulate biological events 

are very complex and the biological system for investigating disease process 

sometimes can be different from in vitro study. To test whether ATF3 can induce the 

metastasis in colorectal cancer in vivo, we can use tail vein injection lung metastasis 

animal model.  

 Previous studies have revealed that ATF3 can be induced by a variety of anti-

tumorigenic compounds including indole-3-carbinol (40), conjugated linoleic acid 

(41), tolfenamic acid (124), epicatechin gallate (39), resveratrol (42), paclitaxel (160) 

and PI3 kinase inhibitor (118). Some of these compounds have entered into clinical 

trails. However, the possible oncogenic property of ATF3 can bring the side effect to 

drugs made by these compounds. Thus, it is essential to understand the molecular 

context which determines the function of ATF3 as a tumor suppressor or an oncogene, 

providing the rationale for designing anti-cancer treatment and benefiting the clinical 

practice in the future. 
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