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Abstract

There are numerous applications where one agent a needs to reason about the beliefs
of another agent, as well as about the actions that other agents may take. Eiter, Sub-
rahmanian, and Pick (1998) introduced the concept of an agent program, and provided
a language within which the operating principles of an agent could be declaratively
encoded on top of imperative data structures. We first introduce certain belief data
structures that an agent needs to maintain. Then we introduce the concept of a Meta
Agent Program (map), that extends the (Eiter, Subrahmanian, and Pick 1998) frame-
work, so as to allow agents to peform metareasoning. We build a formal semantics for
maps, and show how this semantics supports not just beliefs agent a may have about
agent b’s state, but also beliefs about agents b’s beliefs about agent c¢’s actions, beliefs
about b’s beliefs about agent c¢’s state, and so on. Finally, we provide a translation
that takes any map as input and converts it into an agent program such that there is
a one-one correspondence between the semantics of the map and the semantics of the
resulting agent program. This correspondence allows an implementation of maps to be
built on top of an implementation of agent programs.

1 Introduction

Over the last few years, there has been tremendous interest in the area of intelligent software
agents. Such agents provide a wide range of services, ranging from providing data mediation
agents (Bayardo et. al. 1997; Arens, Chee, Hsu, and Knoblock 1993; Brink, Marcus,
and Subrahmanian 1995; Lu, Nerode, and Subrahmanian 1996; Chawathe, Garcia-Molina,
Hammer, Ireland, Papakonstantinou, Ullman, and Widom 1994), to mobile agents (Rus,
Gray, and Kotz 1997), to personalized visualization agents (Candan, Prabhakaran, and
Subrahmanian 1996; Ishizaki 1997), to agents that monitor newspapers, prioritize mail
buffers and the like (Goldberg, Nichols, Oki, and Terry 1992; Foltz and Dumais 1992; Sta
1993; Sheth and Maes 1993).
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Most such existing work on agents subscribes to the view that agents should be au-
tonomous, and that such autonomous agents should behave according to a clearly articu-
lated set of operating principles. These operating principles allow agents to take actions
that change the state of the agent in accordance with the operating principles (Rosenschein
(1985), Rosenschein and Kaelbling (1995)). Declarative languages to encode such operating
principles were proposed by Shoham(Shoham 1993) and Hindriks, de Boer, van der Hoek,
and Meyer (1997). Recently, Eiter, Subrahmanian, and Pick (1998) have proposed a notion
of an Agent Program and shown how agent programs can be layered on top of arbitrary
data structures. This allows the creator of an agent to agentize existing bodies of software
code by “adding on” such operating principles on top of the code.

Figure 1: Autonomous Vehicle

In general, in many multiagent applications, an agent needs to be able to reason about
other agents. Consider, for example, a simple autonomous vehicle a driving in the left lane
of a highway, with another vehicle in the right lane, as shown in Figure 1. Vehicle b is in
the right lane, slightly ahead of Vehicle a.

e Vehicle a may believe that vehicle b’s turn signal is malfunctioning. This belief may
well be incorrect.

e Vehicle a may also believe that vehicle b is imminently going to cut in front of it.

Based on these two beliefs—the first which is about the state of vehicle b, while the second
is about the actions of vehicle b—vehicle a may decide to slow down by either depressing
the brake or easing up on the accelerator. Of course, things can get even more complex—for
example, vehicle a may believe that vehicle b believes that vehicle c is about to shift to the
right lane, etc.

In general, this very simple, everyday example shows that one agent may need to reason
about other agents’ state, beliefs, and potential actions. In most existing agent languages
such as (Shoham 1993; Hindriks, de Boer, van der Hoek, and Meyer 1997; Eiter, Subrah-
manian, and Pick 1998), the notion of an agent state is general enough to include almost
anything. However, the specific needs of agents such as vehicle a in the above discussion,
are not addressed, and in particular, it is assumed that beliefs will somehow be encoded
into the very general notion of state. Our aim in this paper is to precisely show how this
can be done, and we go about it in the following way:

e In Section 2, we present a compelling motivating example, that requires meta-reasoning
capabilities.



e This paper forms part of the IMPACT (Interactive Maryland Platform for Agents
Collaborating Together) project (Arisha, Kraus, Ozcan, Ross, and V.S.Subrahmanian
1997; Eiter, Subrahmanian, and Pick 1998; Bonatti, Kraus, Salinas, and Subrahma-
nian 1998). In Section 3, we briefly overview the basic architecture of our IMPACT
system, and quickly describe the decision making framework of (Eiter, Subrahmanian,
and Pick 1998).

e The new contributions of this paper start with Section 4. Here, we note that different
agents may wish to reason about beliefs in different ways. Some may be content
with reasoning about their beliefs about other agents, instead of their beliefs about
the beliefs of other agents, and so on. We propose a hierarchy of belief languages,
building on top of arbitrary data structures that embody the state of an agent. We
then propose two specific data structures for managing an agent’s beliefs—a belief
table, and a belief semantics table. These are accompanied by corresponding operators
to manipulate these tables. We then introduce the important notion of a Meta Agent
Program (map, for short).

e In Section 5, we study the semantics of maps. We propose a notion of a feasible belief
status set. Intuitively, a set of beliefs that satisfies these feasibility requirements is
one that a “sensible” agent could hold. We refine this semantics to two finer grained
semantics—namely rational belief status sets, and reasonable belief status sets, both
of which satisfy additional epistemic requirements.

e In Section 6, we provide a transformation that takes any map, and converts it into an
ordinary agent program, together with some integrity constraints, as defined by Eiter,
Subrahmanian, and Pick (1998). A somewhat complex result shows that the feasible
(resp. rational, reasonable) belief status sets of the map are in one-one correspondence
with the feasible (resp. rational, reasonable) status sets (without beliefs) of the agent
program + integrity constraints generated by the transformation. As techniques to
implement agent programs have been undergoing concurrent development (see http:
//www.cs.umd.edu/"vs/agent/impact .html for selected screendumps), this means
that once this transformation is implemented, maps can be computed in much the
same way as agent programs’ feasible, rational, and reasonable status sets.

2 Motivation: Route and Maneuver Planning (RAMP)

We are building an application to conduct distributed simulations involving route and ma-
neuver planning over free terrain (RAMP). A simplified version of the RAMP application
that deals with meta-reasoning by agents is described below. This example will provide a
unifying theme throughout this paper, and will be used to illustrate the various definitions
we introduce.

The RAMP application involves tracking enemy vehicles on the battlefield, and attempt-
ing to predict what these enemy agents are likely to do in the future, based on metaknowl-
edge that we have about them. RAMP is intended to be used in training and simulation
efforts, rather than being deployed on the battlefield. RAMP involves the following agents.

A set of enemy vehicle agents: These agents move across free terrain, and their motion



is generated by a program that the other agents listed below do not have access to
(though they may have beliefs about this program).

A terrain route planning agent, which reasons with terrain maps stored in the form of
Digital Terrain Elevation Data (DTED). The terrain route planning agent takes as
input, any DTED map, together with two points on this map, a vehicle type, and
plans an optimal route from the first to the second point for the specified vehicle
type. It also provides a flight path computation service for helicopters, through which
it plans a flight, given an origin, a destination, and a set of constraints specifying the
height at which the helicopters wish to fly. The terrain route planning agent is built
on top of an existing US ARMY Route planning software package developed at the
Topographic and Engineering Center (Benton and Subrahmanian 1994).

A tracking agent, which takes as input, a DTED map, an id assigned to an enemy
agent, and a time point, and produces as output, the location of the enemy agent at
the given point in time (if known) as well as its best guess of what kind of the enemy
agent is.

A coordination agent, that keeps track of current friendly assets. This agent receives
input and ships requests to the other agents with a view to determining exactly what
target(s) the enemy columns may be attempting to strike, as well as determining
how to nullify the oncoming convoy. The situation is complicated by the fact that
the agent may have a hard time determining what the intended attack target is. It
may be further complicated by uncertainty about what kind of vehicle the enemy is
using—depending upon the type of vehicle used, different routes may be designated
as optimal by the terrain route planning agent.

A set of helicopter agents, that may receive instructions from the coordination agent
about when and where to attack the enemy vehicles. When such instructions are
received, the helicopter agents contact the terrain route planning agent, and request
a flight path. Such a flight path uses terrain elevation information (to ensure that the
helicopter does not fly into the side of a mountain).

The aim of all agents above (except for the enemy agents) is to attack and nullify the
enemy attacking force. To do this, the coordination agent sends requests for information
and analyses to the other friendly agents, as well as instructions to them specifying actions
they must take. It is important to note that the coordination agent’s actions are based on
its beliefs about what the enemy is likely to do. These beliefs include:

e Beliefs about the type of enemy vehicle type. Each enemy vehicle has an associated
type—for example, one vehicle may be a T-80 tank, the other may be a T-72 tank.
However, the coordination agent may not precisely know the type of a given enemy
vehicle, due to inaccurate and/or uncertain identification made by the sensing agent.
At any point in time, it holds some beliefs about the identity of enemy vehicle.

e Beliefs about intentions of enemy vehicle. The coordination agent must try to guess
what the enemy’s target is. Suppose the tracking agent starts tracking a given enemy
agent at time %y, and the current time is t,,,. Then the tracking agent can provide
information about the location of this agent at each instant between time ¢y and time



thow- Let ¢; denote the location of one such enemy agent at time ¢;, 0 < ¢ < now. The
coordination agent believes that the enemy agent is trying to target one of its assets
Ay, ..., Ag, but does not know which one. It may ask the terrain route planning agent
to plan a route from £y to each of the locations of Ay,..., Ag, and may decide that
the intended target is the location whose associated route most closely matches the
observed initial route taken by the enemy agent between times ¢ty and ;4.

e Changing beliefs with time. As the enemy agent continues along its route, the coor-
dination agent may be forced to revise its beliefs, as it becomes apparent that the
actual route being taken by the enemy vehicle is inconsistent with the expected route.
Furthermore, as time proceeds, sensing data provided by the tracking agent may cause
the coordination agent to revise its beliefs about the enemy vehicle type. As the route
planning agent plans routes based on the type of enemy vehicle being considered, this
may cause changes in the predictions made by the terrain planning agent.

e Beliefs about the enemy agent’s reasoning. The coordination agent may also hold
some beliefs about the enemy agents’ reasoning capabilities (see the Belief-Semantics
Table in Definition 4.7 on page 19). For instance, with a relatively unsophisticated
and disorganized enemy whose command and control facilities have been destroyed,
it may believe that the enemy does not know what moves friendly forces are making.
However, in the case of an enemy with viable/strong operational command and control
facilities, it may believe that the enemy does have information on the moves made by
friendly forces—in this case, additional actions to mislead the enemy may be required.

A detailed description of all agents and their actions will be given in the Appendix B.

3 Preliminaries

For the rest of the paper we denote by A a finite set whose elements are called agents. Each
agent a € A is built on top of a body of software code (built in any programming language)
that supports a well defined application programmer interface (either part of the code itself,
or developed to augment the code). In general, we will assume that the piece of software
S¢ associated with an agent a € A is represented by a pair S = (7§, F$) where:

e 7' is the set of all data types manipulated by the software package S¢.

e F§ is the set of all pre-defined functions of the package S that are provided by the
package’s application programmer interface.

When we are referring to the code associated with a fixed agent a, we will often drop the
superscript a above.

This characterization of a piece of software code is a well accepted and widely used
specification. For example, the Object Data Management Group’s ODMG standard (Cattell
et.al. 1997) and the CORBA framework (Siegal 1996) are existing industry standards
consistent with this specification.



In our framework, agents will be built on top of a body of code (either legacy code,
or specially developed code) satisfying the above definitions. Each agent has a message
box (which will be discussed later in Example 3.8 on page 11) having a well defined set
of associated code calls that can be invoked by external programs. Each agent has some
metaknowledge about itself, as well as about other agents, reflecting its beliefs about the
data possessed by other agents, the mechanism that other agents use to act, and the ca-
pabilities of other agents. Each agent has a security module that specifies the agent’s
associated security mechanisms, if any—the security module of our system is described in
detail in (Bonatti, Kraus, Salinas, and Subrahmanian 1998).

The state of an agent, at any given point ¢ in time, consists of the set of all instantiated
data objects of types contained in 7', as well as the contents of the metaknowledge module
and the security module.

Each agent has an action-base consisting of a description of the various actions that
the agent is capable of executing. Actions change the state of the agent and perhaps the
state of other agents’ msgboxes. Each agent has an associated set of integrity constraints—
only states that satisfy these constraints are considered to be walid or legal states. Each
agent has an associated set of action constraints that define the circumstances under which
certain actions may be concurrently executed. As at any given point ¢ in time, many sets
of actions may be concurrently executable, each agent has a Meta-Agent Program (map for
short and denoted by BP), to be introduced in Definition 4.13 on page 24, that determines
what actions the agent can take, what actions the agent cannot take, and what actions the
agent must take. The map associated with an agent is a declarative specification of the
agents’ decision policies.

Figure 2 on the next page shows the different components of an agent, together with
information on the flow of data/actions between them. The shaded components of this
figure show objects whose contents jointly describe the state of the agent. The primary aim
of this paper is to describe the meta-knowledge component of an agent’s state, as well as
the notion of a meta-agent program based on meta-knowledge.

3.1 Code Calls and Code Call Atoms

Suppose we consider a body S = (7s, Fs) of software code. Given any type 7 € Ts, we
will assume that there is a set Var(7) of variable symbols ranging over 7. If X € Var(r)
is such a variable symbol, and if 7 is a complex record type having fields f,... ,f,, then
we require that X.f; be a variable of type 7; where 7; is the type of field £;. In the same
vein, if £; itself has a sub-field g of type 7, then X.f;.g is a variable of type v, and so on. In
such a case, we will call X a root-variable, and the variables X.f;, X.f;.g, etc. path-variables.
For any path variable Y of the form X.path, where X is a root variable, we refer to X as the
root of Y, denoted by root(Y); for technical convenience, root(X), where X is a root variable,
refers to itself.

3.1 Definition (Code Call cc)

Suppose S = (Ts,Fs) is some software code and f € F is a predefined function with
n arguments, and di,... ,d, are objects or variables such that each d; respects the type
requirements of the i’th argument of f. Then S:f(dy,...,dy) is called a code call. A code
call is ground, if all the d;’s are objects.
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In general, as we will see later, code calls are executable when they are ground. Thus,
non-ground code calls must be instantiated prior to attempts to execute them.

In general, each function f € F has a signature, specifying the types of inputs it takes,
and the types of outputs it returns. Here are some examples of code calls that are used in
the RAMP example:

e Heli: SetAltitude(Alt) — Bool.

This code call sets helicopter altitude to ALlt. It returns true if it succeeds, otherwise
it returns false.

e Tank: GetPosition(now) — 2DPoint.

This code call determines the current position of the tank.

e Route: FlightPlan(SourcePoint,DestinationPoint) — Sequence0f3DPoints.
This code call creates a flight plan from point SourcePoint to point DestinationPoint.
It returns the plan as a sequence of 3D points.

e Track: GetTypeOfAgent(AgentId) — (VehicleType,Probability).

This code call determines the type of a vehicular agent whose id is AgentId. It also
returns a number, denoting the probability that the identification is current.

e Coord: FindAttackTimeAndPosition(AgentId) — (Position, Time,Route,Probability).



This code call tries to create a plan to attack agent with id AgentId. The plan is
returned as a position, a time point, a route to get there and the probability that the
determination was correct.

3.2 Definition (Code Call Atom in(X, cc))
If cc is a code call, and X is either a variable symbol, or an object of the output type of cc,
then in(X, cc) and not_in(X, cc) are code call atoms.

3.3 Definition (Code Call Condition x)
A code call condition x is defined as follows:

1. Every code call atom is a code call condition.
2. If s,t are either variables or objects, then s = t is a code call condition.

3. If s, t are either integers/real valued objects, or are variables over the integers/reals,
then s < t,s > t,s > t,s <t are code call conditions.

4. If x1, x2 are code call conditions, then x1 & x2 is a code call condition.

A code call condition satisfying any of the first three criteria above is an atomic code call
condition.

The following is an atomic code call condition. It is satisfied if the position pos is
the current position for the tank agent: in(pos, Tank: GetPosition(now)). Here is a more
complex code call condition.

in(P2, Heli: GetPosition(now)) &
in(D, Heli: ComputeDistance (P1,P2)) &
in(R, Heli: GetMazGunRange (now)) &
D <R

If P1 is instantiated, then this code call attempts to check if the helicopter is within firing
range of an enemy site located at P1.

3.4 Definition (Safe Code Call)

A codecall S:f(dy,...,dy) is safe if, by definition, each d; is ground. A code call condition
x1&...& xn, n > 1 is safe, if, by definition, there exists a permutation @ of x1,... ,Xn
such that for every ¢ = 1,... ,n the following holds:

1. If xr(;y has the form s =t or s <t,s <t ,s>t, s>t, then one of s, t (or both)
is either a constant or one of the X, (;)’s for j <1i; let X, (;) denote a possible new
variable;

2. If Xr;) is a code call atom in(X (), cCr(z)) or not_in(Xy(s), cCr(s)), then for each
variable Y occurring in ccr(;), root(Y) is from the set {root(X.(;) | j < i}.

It is easily seen that the code call condition immediately preceding this definition is not
safe. The reason for this is that the variable P1 is not instantiated by any of the in atoms.
Had P1 been replaced with a ground term, then the above code call condition would have
been safe.



3.2 Integrity Constraints ZC

In addition to code-calls, each agent also has an associated set of Integrity Constraints.
Agent integrity constraints specify properties that states of the agent must satisfy.

3.5 Definition (Integrity Constraints ZC)
An integrity constraint is an expression of the form

Y = x

where 1) is a safe code call condition, and x is an atomic code call condition such that every
root variable in x occurs in 1. A set of integrity constraints is denoted by ZC.

Here are two examples:

= in(S, Tank: GetSpeed (now)) & 8 < MaxSpeed
= in(A, Heli: GetAltitude(now)) & A < MaxAltitude

The first integrity constraint says that a tank’s speed can never exceed its maximum speed,
while the second says that a helicopter’s altitude can never exceed its maximum flying
altitude. In both the above examples, the 1) component of the integrity constraint is empty.

3.3 Actions

Every agent’s actions are completely determined by three parameters that the individual
creating the agent must specify:

AB: an Action Base, specifying a set of actions that the agent can execute (under the
right conditions),

AC: a set of Action Constraints that specify, for example, mutual exclusion between
actions, etc.

P: a Agent Program that determines which of the (instances of) actions in the agent base
the agent is obligated, permitted, or forbidden to execute, together with a mechanism
to actually determine what actions will be taken.

3.3.1 Action Base AB

In this section, we will introduce the concept of an action and describe how the effects of
actions are implemented.

3.6 Definition (Action; Action Atom)
An action « consists of five components:

Name: usually written a(Xy, ... ,X,), where the X;’s are root variables.



Schema: usually written as (71,... ,7T,), of types. Intuitively, this says that the variable
X; must be of type 7;, for all 1 < i < n.

Pre(a): A code-call condition x, called the precondition of the action.
Add(a): A set Add(«) of code-call conditions.

Del(a): A set Del(a) of code-call conditions.

The precondition Pre(c«) must be safe modulo the variables X;, ... X,,. This means
that Pre(«) is a safe code-call condition if every variable Y in Pre(«) such that root(Y) €
{X; | 1 < i < n} were considered as an instantiated object (constant) from the domain.
Furthermore, every code-call condition x in Add(a) U Del(a) must be safe modulo the
union of Xy, ... ,X, and the root variables Yi,... ,Y,, occurring in Pre(c), i.e., it is safe if
every variable Y in x such that root(Y) € {X; ... ,Xp, Y1,..., Y} were considered as though
it were a constant.

An action atom is a formula «(t1, ... ,t,), where t; is a term, i.e., an object or a variable,
of type T;, for alli =1,... ,n.

Let us now consider some examples of action and their associated descriptions in the
case of the RAMP example described at the beginning of this paper.

3.7 Example (Some Actions of RAMP Agents)
We describe some actions of the Helicopter-, Tank-, Route- and Coordination-Agents:

Helicopter Agent:

Fly(From ,To ,Altitude ,Speed)
Pre: in(From, Heli: GetPosition(now))
Del: in(From, Heli: GetPosition(now))
Add: in(To, Heli: GetPosition(now + 1))

Tank Agent:

Drive (From ,To ,Speed)
Pre: in(From, Tank: GetPosition(now))
Del: in(From, Tank: GetPosition(now))
Add: in(To, Tank: GetPosition(now + 1))

Route Agent:
PlanRoute (Map ,SourcePoint ,DestinationPoint ,VehicleType)
Pre: SourcePoint # DestinationPoint
Del: {}
Add: in(true, Route: UseMap(Map,now)) &

in(Plan, Route: GetPlan(SourcePoint,DestinationPoint, VehicleType,now))

Coordination Agent:

10



Attack (SetOfAgentIds ,EnemyId)
Pre: SetOfAgentIds # {}
Del: {}
Add: in(AP, Coord: CoordinatedAttack (Set0fAgentIds, EnemyId, now))

3.8 Example (Message Box)

Throughout this paper, we will assume that each agent’s associated software code includes
a special type called msgbox (short for message box). The message box is a buffer that
may be filled (when it sends a message) or flushed (when it reads the message) by the
agent. In addition, we assume the existence of an operating-systems level messaging protocol
(e.g. SOCKETS or TCP/IP (Wilder 1993)) that can fill in (with incoming messages) or flush
(when a message is physically sent off) this buffer.

We will assume that the agent has the following functions that are integral in managing
this message box. Note that over the years, we expect a wide variety of messaging languages
to be developed (examples of such messaging languages include KQML (Labrou and Finin
1997) at a high level, and remote procedure calls at a much lower level). In order to provide
maximal flexibility, we will merely specify below the core interface functions available on
the msgbox type. Note that this set of functions may be augmented by the addition of other
functions on an agent by agent basis.

e SendMessage(<source_agent>, <dest_gent>, <message>): This causes a quintuple
(o, "src", "dest", "message", "time") to be placed in msgbox. The parameter o sig-
nifies an outgoing message. When a call of SendMessage("src", "dest", " message") is
executed, the state of msgbox changes by the insertion of the above quintuple denot-
ing the sending of a message from the source agent src to a given Destination agent
dest involving the message body "message"; "time" denotes the time at which the
message was sent.

e GetMessage(<src>): This causes a collection of quintuples
(i, "SI'C", "agent", ”msg", " time")

to be read from msgbox. The i signifies an incoming message. Note that all messages
from the given source to the agent agent whose message box is being examined,
are returned by this operation. "time" denotes the time at which the message was
received.

e TimedGetMessage(<op>,<walid>): This causes the collection of all quintuples tup
of the form tup =q4e (i, <src>, <agent>, <message>,time) to be read from msgbox,
such that the comparison tup.time op walid is true, where op is required to be any of
the standard comparison operators <, >, <, >, or =.

Agents interact with the external world through the msgbox code—in particular, external
agents may update agent a’s msgbox, thus introducing new objects to agent a’s state, and
triggering state changes which are not triggered by agent a.

3.9 Definition (Action Base AB)
An action base, AB, is any finite collection of actions.

11



In (Eiter, Subrahmanian, and Pick 1998), three alternative definitions of concurrent exe-
cution of actions are given. For one of those definitions, determining concurrent executabil-
ity is polynomial time, for another it is NP-complete, and for the third, it is co-NP-complete.
These complexities reflect definitions that are increasingly epistemically satisfying. Rather
than reinvent the wheel here, we will merely assume the existence of a predicate, conc_ex
which takes four arguments—a set of ground action atoms, a precondition, an add-list, and
a delete list. Intuitively, conc_ex(Aset,Pre,Add,Del) means that the set, Aset of actions
is concurrently executable and the concurrent execution of the actions in Aset may be
viewed as a single “composite” action with the specified precondition, Pre(«), Add(a) and
Del(a). In the event that the Aset is not concurrently executable, Pre(a) is set to the
special condition false, reflecting the fact that the “composite” action is un-executable.

3.3.2 Action Constraints AC

An action constraint AC is an explicit statement saying that a given set of actions is not
concurrently executable if certain conditions are met.

3.10 Definition (Action Constraints AC)
An action constraint AC has the syntactic form:

{ar(X1), - an(Xe)} < x (1)

where a1(X1), ... ,ar(Xy) are action names, and x is a code call condition.

A set of action constraints is denoted by AC.

— —

The above constraint says that if condition x is true, then the actions o (X1),. .. , ax(Xk)
are not concurrently executable.

3.11 Example (Constraints for Fly and Attack)
Here are two simple constraints for the Fly and the Attack predicate:

{Fly_plane! (X1 ,Y1 ,A1 ,S1),Fly_plane2 (X2 ,Y2 ,A2 ,52)} <+ Y1 =Y2
{Attack (P)} < in(P, Heli: GetPosition(now))

3.3.3 Agent Programs

In this section, we introduce the important concept of an agent program. Intuitively, agent
programs specify what an agent is obliged to do, what an agent is permitted to do, and
what an agent is forbidden from doing. Agent programs provide a mechanism to encode
the intended behavior of an agent.

3.12 Definition (Action Status Atom)
Suppose a(t) is an action atom, where € is a vector of terms (variables or objects) matching

the type schema of a. Then, the formulas P(a(t)), F(a(t)), O(a(t)), W(a(t)), and Do(c(t))
are action status atoms. The set {P,F,0, W, Do} is called the action status set.
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We will often abuse notation and omit parentheses in action status atoms, writing Po(f)
instead of P(«(f)), and so on. An action status atom has the following intuitive meaning
(a more detailed description of the precise reading of these atoms will be provided later in
Subsection 5.2):

e Pa means that the agent is permitted to take action «;

e Fa means that the agent is forbidden from taking «;

e Oqa means that the agent is obliged to take action «;

e Wa means that obligation to take action « is waived; and,

e Doa means that the agent does take action a.

Notice that the operators P, F, O, and W have been extensively studied in the area of
deontic logic (Meyer and Wieringa 1993; Aquist 1984). Moreover, the operator Do is in
the spirit of the “praxiological” operator EqA (Kanger 1972), which informally means that
“agent a sees to it that A is the case” (Meyer and Wieringa 1993, p.292).

3.13 Definition (Action Rule)
An action rule (rule, for short) is a clause r of the form

A(—Ll,...,Ln (2)

where A is an action status atom, and each of L1, ... , L, is either an action status atom,
or a code call atom, each of which may be preceded by a negation sign ().

We require that every root variable which occurs in the head A of a rule r and every
root- or path-variable occurring in a negative atom also occurs in some positive atom in the
body (this is the well-known safety requirement on rules (Ullman 1989)).

A rule r is to be understood as being implicitly universally quantified over the variables
in it. A rule is called positive, if no negation sign occurs in front of an action status atom
in its body.

3.14 Definition (Agent Program)
An agent program P is a finite collection of rules. An agent program P is positive, if all its
rules are positive.

4 Belief Language and Data Structures

In the following definition we introduce the most important notion, namely belief atoms.
Belief atoms express the beliefs of one agent a about what holds in another agent’s, say b’s,
state. They will be used later in Definition 4.13 on page 24 to define the notion of a meta
agent program, which is central to this paper.

When an agent a reasons about another agent b, it must have some beliefs about b’s
underlying action base (what actions can b take?), b’s action program (how will b reason?)
etc. These beliefs will be discussed later in more depth.
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In this section, we will describe the belief language that is used by IMPACT agents. In
particular, our definitions proceed as follows:

1. We first describe in Subsection 4.1 a hierarchy of belief languages of increasing com-
plexity as we go “up” the hierarchy.

2. We then define in Subsection 4.2 an intermediate structure called a basic belief table.
Intuitively, a basic belief table maintained by agent a contains information about the
beliefs a has about the states of other agents, as well as a itself. It also includes a’s
belief about action status atoms that are adopted by other agents.

3. Each agent also has some beliefs about how other agents reason about beliefs. As
the same syntactic language fragment can admit many different semantics, the agent
maintains a Belief Semantics Table, describing its perceptions of the semantics used
by other agents to reason about beliefs (Subsection 4.3).

4. We then extend in Subsection 4.4 the concept of a basic belief table to a belief table.
Intuitively, a belief table is obtained by adding an extra column to the basic belief
table—the reason for separating these two definitions is that the new column may refer
to conditions on the columns of basic belief tables. Intuitively, belief tables contain
statements of the form If condition ¢ is true, then agent a believes b where 1 is a
condition about some agent b’s state, or about the actions that agent b might take.

Is important to note that assuming additional datatypes as part of our underlying soft-
ware package has strong implications on the possible code calls as introduced in Defini-
tion 3.2 on page 8: the more datatypes we have, the more types of code calls can be
formulated in our language. We will introduce in Definition 5.6 on page 28 a precise notion
of the set of extended code calls.

4.1 Belief Language Hierarchy

We are now ready to start defining the beliefs that agent a may hold about the code calls
agent b can perform. These code calls determine the code call conditions that may or may
not hold in agent b’s state. Let us denote this by the belief atom

Ba(b,x)

which represents one of the beliefs of agent a about what holds in the state of agent b.
In that case, agent a must have beliefs about agent b’s software package S°: the code call
condition y has to be contained in S®. We will collect all the beliefs that an agent a has
about another agent b in a set I'*(b) (see Definition 5.5 on page 28).

From now on we will refer to code call conditions satisfying the latter property as
compatible code call conditions. We will use the same term for action atoms: compatible
action atoms of agent a with respect to agent b, are those in the action base that a believes
agent b holds. We also assume that the structure of such an action contained in b’s base (as
believed by a) is defined in I'*(b). This means that the schema, the set of preconditions,
the add-list and the delete-list are uniquely determined.
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4.1 Definition (Belief Atom/Literal, BAt;(a,b), BLit1(a, A))
Let a,b be agents in A. Then we define the set BAt;(a,b) of a-belief atoms about b of
level 1 as follows:

1. If x is a compatible code call condition of a with respect to b, then Bq(b, x) is a belief
atom.

2. For M € {O,W,P,F,Do}: if Ma(t) is a compatible action atom of agent a with
respect to b, then Bo(b, Ma(t)) is a belief atom.

If Bo(b, x) is a belief atom, then By(b,x) and =By (b, x) are called belief literals of level
1, the corresponding set is denoted by BLit;(a,b).

Let

BAti(a,A) =qer | BAti(a,b) and BLiti(a,A) =g | ) BLit1(a,b)
beA beA

be the set of all a-belief atoms (resp. belief literals) relative to A. This reflects the idea
that agent a can have beliefs about many agents in A, not just about a single one.

Here are a couple of belief atoms from our RAMP example:

4.2 Example (Belief Atoms In RAMP)
e Bieii(Tankl,in(pos1, Tank1: GetPosition(now)))
This belief atom says that the agent, Helil believes that agent Tank1’s current state
indicates that Tank1’s current position is posl.

o BHelﬂ (Tank], F Attack (now + 1))
This belief atom says that the agent, Helil believes that agent Tank1’s current state
indicates that it is forbidden for Tank1 to attack in the next step.

e Breuz(Tankl,in(pos2, Tankl1: GetPosition(now)))
This belief atom says that the agent, Heli3 believes that agent Tank1’s current state
indicates that Tank1’s current position is pos2.

e Byeusz(Tankl, O Drive(posl, pos2, 35))
This belief atom says that the agent, Heli3 believes that agent Tank1’s current state
makes it obligatory for Tank1 to drive from location posl to pos2 at 35 miles per
hour.

It is important to note that these are beliefs held by agents Helil and Heli3, respectively.
Any of them could be an incorrect belief.

Thus far, we have not allowed for nested beliefs. The language BLit;(a,A) does not
allow agent a to have beliefs of the form “Agent b believes that agent c’s state contains
code call condition x 7, i.e. agent a cannot express beliefs it has about the beliefs of another
agent.

The next definition introduces nested beliefs and also a general belief language. We
introduce the following notation: for a given set X of formulae and a set C of connectives,
let Cl¢(X) be the closure of X under the connectives from C.
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4.3 Definition (Nested Beliefs BLit;(a, b), Belief language BL)
In the following let a,b € A and C =4 {&,—}. In accordance with Definition 4.1 we
denote by

BAty(a,b) =4ef {¢: ¢ is a compatible code call condition or action atom}

the flat set of code call conditions or action atoms—no belief atoms are allowed. Further-
more, we define

B‘CO(aab) —def ClC(BAtO(aab))
B,Cl((l,b) =def Clc(BAtl((l,b)),

i.e. the set of formulae obtained by closing the set BAty(a, b), resp. the set BAti(a,b), under
the connectives in C.

We call

BL§ =aef Cle(Upea BLy(a,b))
BLY =4ef Cle(Upea BL:(a,b))

the belief languages of agent a of level 0, resp. of level 1. To define nested belief literals we
set for i > 1

BAti(a,b) =def {Ba(b,ﬁ) : BE BAti_l(b,A)}.

and correspondingly BLit;(a,b). BLit;(a,A) =qer Upea BLiti(a,b) is called the set of belief
literals of depth 1. We also define

BAtso(a,A) =aer | BAti(a,A),  BLitos(a,A) =ge | ] BLiti(a, A).

i=0 i=0
Now let
BL;(a,b) =4¢ Clc(BAt;(a,b)),
and
BL{ =qe5 Cle(| ) BL;(a,b)) (3)
bEA

be the belief language of agent a of level i. Finally

o0
BLS, =q4er Cle (| BLY) (4)
=0

is the maximal belief language an agent a can have. Formulae in this language are also
called general belief formulae.

At first sight the last definition looks overly complicated. The reason is that every agent
keeps track of only its own beliefs, and not of another agent’s beliefs (we will see later in
Lemma 4.9 that an agent may be able to simulate another agent’s state). This means that
a nested belief atom of the form B (b, B.(d, x)) does not make sense (because b # c¢) and
is not allowed in the above definition.
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Note also that the closure under C in Equation (3) allows us to use conjunctions with
respect to different agents By (b, x) ABqa(c, x'). The closure in Equation (4) allows us to use
in addition different nested levels of beliefs, like Bq(b, x) A Bq(c, Bc(d, x')). However, for
most practical applications this additional freedom seems not to be necessary. We discuss
this point again in Lemma 4.9.

Here are some belief formulae from the RAMP example (see Section 2 or Appendix B):

4.4 Example (Belief Formulae for RAMP)
The following are belief formulae from BL{'%, BLTO ! and BLSOoTd.

e Bheii(Tankl, in(pos1, Tankl1: GetPosition(now))).
This formula is in BLECW . It says that agent Helil believes that agent Tankl’s
current state indicates that Tank1’s current position is pos1.

e Branki(Helil, By (Tankl, in(posi, Tankl: GetPosition (now)))).
This formula is in BL]®™. It says that agent Tankl believes that agent Helil
believes that agent Tankl’s current position is pos1.

e Beoora(Tankl, Branki(Helil, Byei1 (Tank2, in(pos2, Tank2: GetPosition (now))))).
This formula is in BLS°™. It says that agent Coord believes that agent Tank]
believes that Helil believes that agent Tank2’s current position is pos2.

However, the following formula does not belong to any language:
Branki(Helil, Branki(Tankl, in(Pos1, Tank: GetPosition(now)))).

The reason for this is because in Helil’s state there can be no beliefs belonging to Tank].

4.2 Basic Belief Table

We now describe how the agent keeps track of its beliefs about other agents and how these
beliefs can be updated. The easiest way to structure a set of beliefs is to view it as a
relational database structure. The notion of a basic belief table provides the starting point
for defining how an agent maintains beliefs about other agents.

4.5 Definition (Basic Belief Table BBT®)
Every agent a has an associated basic belief table BBT® which is a set of pairs

(h, d)
where h € A, ¢ € BL

For example, if the entry (b, By(a,x)) is in the table BBT®, then this intuitively means
that agent a believes that agent b has the code call condition x among its own beliefs about
agent a. Here ¢ € BLY.

4.6 Example (Basic Belief Table for RAMP Agents)
We define suitable basic belief tables for agent Tank1l (Table 1 on the following page) and
Helil (Table 2 on the next page).
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Agent | Formula

Helil | in(poshl, Helil: GetPosition(now))

Heli2 | Bueui2(Tankl,in(postl, Tankl: GetPosition(now)))

Tank2 | Byank2(Heli2, Byeiz(Tankl, in(pos3, Tank1: GetPosition (now))))

Table 1: A Basic Belief Table for agent Tank]l.

Agent | Formula

Heli2 | in(posh2, Heli2: GetPosition(now))

Tankl | in(postl, Tankl: GetPosition(now))

Tankl | Bygnki(Helil,in(poshi, Helil : GetPosition(now)))

Tank2 | Bygnk2(Tankl, Brgnk2(Helil, in(pos4, Helil : GetPosition(now))))

Table 2: A Basic Belief Table for agent Helil.

These tables describe that Tankl and Helil work closely together and know their
positions. Both believe that the other knows about both positions. Tankl also believes
that Tank2 believes that in Heli2’s state, Tankl is in position pos3 (which is actually
wrong).

Helil thinks that Tank2 believes that Tank1 believes that Helil is in position pos4,
which is also wrong.

What kind of operations should we support on belief tables? We distinguish between two
different types:

1. For a given agent h, other than a, we may want to select all entries in the table having
h as first argument.

2. For a given belief formula ¢, we may be interested in all those entries, whose second
argument “implies” (w.r.t. some underlying definition of entailment) the given formula

9.

The latter point motivates us to consider more general relations between belief formulae
with respect to an epistemic background theory. This will extend the expressibility and
usefulness of our overall framework. For example the background theory can contain certain
epistemic axioms about beliefs or even certain inference rules and the relation between belief
formulae can be the entailment relation with respect to the chosen background theory.

4.3 Belief Semantics Table

Agent a may associate different background theories with different agents: it may assume
that agent h reasons according to semantics BSemy, and assumes that agent h' adopts a
stronger semantics BSemy,. We will store the information in a separate relational data
structure:
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4.7 Definition (Belief Semantics Table BSemT* of Agent a)
Every agent a has an associated belief semantics table BSemT® which is a set of pairs

(h, BSemy,)

where h € A and BSem{ is a belief semantics over BL and i € IN is fixed. Le. BSem®
determines an entailment relation

¢ |:BSemﬁ ¢

between belief formulae ¢, € BLF. We also assume the existence of the following function
(which constitutes an extended code call, see Definition 5.6 on page 28) over BSemT“:

BSemT* : select(agent, =, h),
which selects all entries corresponding to a specific agent h € A.
4.8 Example (Belief Semantics Tables for RAMP Agents)

We shortly describe how suitable Belief Semantics Table for Helil and Tankl can look

like. We have to define entailment relations BSemtK) BSem[SH! BSem[Sns! and

BSemtell " BSemHell " BSemHelll - For simplicity we restrict these entailment relations
to belief formulae of level at most 1, i.e. BLY.

1. BSemHell . The smallest entailment relation satisfying the schema
BTank] (Tank] -]a X) - X

This says that Helil believes that all beliefs of Tank1l about Tankl.1 are actually
true: Tank1l knows all about Tank1.1.

2. BSem?ﬁ}f&z: The smallest entailment relation satisfying the schema

Brank2(Tank2.1, x) — x.

This describes that Heli2 believes that all beliefs of Tank2 about Tank2.1 are
actually true: Tank2 knows all about Tank2.1.

3. BSem[SK1: The smallest entailment relation satisfying the schema
Bhe1 (Tankl, x) — x.

This describes that Tankl believes that if Helil believes in x for Tankl, then
this is true (Helil knows all about Tankl. A particular interesting instance of x is
in(post1, Tankl1: GetPosition(now)).

4. BSem[ZKV: The smallest entailment relation satisfying the schema
BHeti1 (Tank2, x) A Bheuir (Tank2.1, x) — x.

This describes that Tankl believes that if Helil believes that x is true both for
Tank2 and Tank2.1 then this is actually true.
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The notion of a semantics used in the belief semantics table is very general: it can be an
arbitrary relation on BL x BL!". We briefly illustrate (1) which sort of semantics can be
expressed and (2) how our framework can be suitably restricted for practical applications.

The generality and flexibility of our framework can be seen by considering the following
two simple axioms that can be built-in to a semantics:

(1) th(haX) = th(h,7X)
(2) th(h’7X) = X

The first axiom refers to different agents h, h’ while the second combines different levels of
belief atoms: see Equations (3) and (4) and the discussion after Definition 4.3. In many
applications, however, such axioms will not occur: h = h' is fixed and the axioms operate
on the same level ¢ of belief formulae.

Thus it makes sense to consider simplified versions of semantics that are easy to imple-
ment and to handle. In fact, given the results of Eiter, Subrahmanian, and Pick (1998) and
the various semantics Sem for agent programs, i.e. with no belief atoms, we now show how
such a semantics Sem induces, in a natural way a semantics BSemy, to be used in a belief
semantics table. These semantics can be implemented and handled as built-ins. Entries in
BSemT* can then look like

(hla Semfeas)
(hg, Semmt>
<h37 SemTeas)

meaning that the agents h; behave according to the indicated semantics, which are well
understood for action programs without beliefs.

The idea is to use the semantics Sem of the action program P%(b) (that a believes b to
have) for the evaluation of the belief formulae. However, this is a bit complicated by the
fact that the computation of the semantics depends on various other parameters like the
state and the action and integrity constraints.

Before stating the definition, we recall that a semantics Sem is a set of action status sets
which depend on (1) an action program, (2) a set of action constraints, (3) a set of integrity
constraints, and, finally, (4) the current state. The notation Semy(P) only reflects the
influence of (1) but (2)—(4) are equally important. For example, when the belief semantics
table contains the entry (hj,x) where x is a code call condition, x is a belief of a about
hy’s state. x is therefore a condition on the state of hy. In contrast, an entry (h;, Ma(?)),
where Ma(t_) is an action atom, is a belief of a on the actions that h; holds. Consequently
action atoms can be seen as conditions on hy’s action program.

In the following lemma, we show how to define belief semantics defined on belief lan-
guages of level 0 and 1. But belief formulae contain both code call conditions and action
atoms and those are, as just discussed, evaluated in different domains. Therefore for a
formula ¢ which is a conjunction of code call conditions and action atoms, we let

CCC(¢) be the conjunction of all ccc’s occuring in ¢,
ACT(¢) be the conjunction of all action atom’s occuring in ¢.
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4.9 Lemma (Sem for Agent Programs induces BSemy))

Let Sem be the reasonable, rational or preferential semantics for agent programs (i.e. not
containing beliefs). Suppose agent a believes that agent h reasons according to Sem. Let
P(h) be the agent program of h and O(h), AC(h) and ZC(h) the state, action constraints
and integrity constraints of h. Then there is a basic belief table BSemT® and a belief
semantics BSemy, induced by Sem such that

e a believes in h'’s state, and

e a believes in all actions taken by h with respect to Sem and P(h).

More generally: let « € IN and suppose agent a believes that agent h; believes that
agent hy believes that ... believes that agent h;_; acts according to P“(o) (where o =g¢f
[hi,he,... ,hj_1]) and state O(o). Then there is a basic belief table BSemT" and a belief
semantics BSem$ induced by Sem on a suitably restricted subset of BL{ x BL{ such that

e a believes in h;_1’s state, and

e a believes in all actions taken by h;_, with respect to Sem and P(o).

Proof: We define a belief semantics BSem& on BL{ x BL{ with respect to a state O,
AC, and ZC as follows:
1. ACT(9) € Semp(P%(h) U{ACT(¢)}) wrt. the state O U CCC(¢).
2. OuCCC CCC(v).
b Fosseny by { 2 ) = o)

AC are satisfied wrt. enlarged program.

4. OUCCC(¢) =1IC

We now define a belief semantics BSem;, on BLY x BLY with respect to a state O, AC, and
ZC as follows.

1. We restrict, as already discussed, to entailment relations that operate on the same
level of beliefs. For level 0 we just defined such a relation.

2. For level 1 beliefs we also restrict to those that contain the same agent as first com-
ponent: {By(c,¢) : ¢ is a code call condition or an action atom}.

3. For a belief formula ¢ of level 1 which has the form By (c, 1) A--- A By(c, ¢p,) we let
CCC(y) =aef CCC(¢1) A --- A CCC(ghy)
and

ACT(y) =aef ACT(¢1) A+ -+ ANACT(¢hn).

4. We define:
ACT(¢) € Semc(P%([h,c]) U{ACT(¢)}) wrt. O UCCC(o).
O UCCC(9) = CCC(w).

AC are satisfied wrt. enlarged program.

O UCCC() |= IC

¢ EBsemg ¢ by

Ll e

The notation P%([h,c]) denotes the program that a believes h to believe about c.
The sequences o will be introduced in Definition 5.2 on page 26. |
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4.4 Belief Tables

We are now ready to give the full definition of a belief table.

4.10 Definition (Belief Table BT¢)
Every agent a has an associated belief table BT“, which consists of triples

(h'a ¢7 XB)

where h € A, ¢ € BL! and x5 € BCond®(h) is a belief condition of a to be defined below
(see Definition 4.11 on the following page).

We identify that part of BT® where the third entries are empty (or, equivalently, true)
with the basic belief table introduced in Definition 4.5 on page 17. Thus, every belief table
induces a (possibly empty) basic belief table.

We also assume the existence of the following two functions over BT:
BT : proj-select(agent, =, h)

which selects all entries of BT of the form (h, ¢, true) (i.e. corresponding to a specific agent
h € A and having the third entry empty) and projects them on the first two arguments,
and

BT : B-proj-select(r, h, ¢)

for all 1 € R =g4¢f {=,<, <} and for all belief formulae ¢ € B[,L‘o. This function selects
all entries of BT® of the form (h,,true) that contain a belief formula 1) which is in
relation r to ¢ with respect to the semantics BSemy, as specified in the belief semantics
table BSemT® and projects them on the first two arguments.

For example, if we choose =€ R as the relation r then
(v = ¢) € BSemy,

or, equivalently, Epsema (¢ = @) says ¢ is entailed by ¢ relative to semantics BSemy,.

We emphasize the fact that although the two introduced project-select functions are defined
on the full belief table BT, they can be thought of as operating on the induced basic belief
table BBT®, which results from BT® by projection on the first two arguments of those
triples where the third entry is empty.

In the last definition we introduced the notion of a belief table but we did not yet specify
the third entry in it, the belief condition. The role of such a belief condition is to extend the
expressiveness of the basic belief table by restricting the applicability to particular states,
namely those satisfying the belief condition. Intuitively, (b, ¢, x) means that

Agent a believes that ¢ is true in agent b’s state, if the condition x5 holds.

Note that agent a can only reason about his own state, which contains (through the belief
table BT“ and the belief semantics table BSemT®) his beliefs as well as his underlying
epistemic theory about other agent’s states.
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BT® and BSemT?, taken together, simulate agent b’s state as believed by agent a.

A belief condition xp that occurs in an entry (b, ¢, xg) must therefore be evaluated in
what agent a believes is agent b’s state. This is important because the code call conditions
must be compatible and therefore not only depend on agent a but also on agent b.

4.11 Definition (Belief Conditions BCond“®(h))
The set BCond®(h) of belief conditions of agent a is defined inductively as follows:

1. Every code call condition x of agent a compatible with agent h is in BCond“(h).

2. IfX is an entry in the basic belief table (or, equivalently the projection of an entry of
the belief table BT on the first two arguments) or a variable over basic belief table
tuples, then

in(X, BT : proj-select(agent, =, h))
is in BCond“(h).

3. IfX is an entry in the basic belief table or a variable over such entries, r € R, ¢ € BL;
and h € A then

in(X, BT : B-proj-select(r, h, ¢))
is in BCond®(h).

4. If x and X' are in BCond®(h), then so are IXx, and any conjunction ()& (—)x’.

As belief conditions corresponding to step 1. above will be checked in what agent a believes
is agent b’s state, we introduce the following notation:

e h_part(x) =4ef the subconjunction of x consisting of all code call conditions
not involving BT,

e a_part(x) =gef the subconjunction of x consisting of all code call conditions
that involve BT*“.

Note that h_part(x) consists of conditions that have to be checked in what a believes is
agent h’s state, while a_part(x) refers to the belief tables of agent a.

Agent | Formula Condition
Helil | in(pos1, Helil: GetPosition(now)) true

Heli2 | Bueti2(Tankl,in(P, Tankl1: GetPosition(now))) Beond] 4™k
Tank2 | Branke(Helil, Byet (Tankl, in(P, Tank1: GetPosition(now)))) | Beond ™!

Table 3: A Belief Table for agent Tankl.
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4.12 Example (Belief Table for RAMP Agents Revisited)

We now extend our basic belief tables for agent Tankl (Table 1 on page 18) and Helil
(Table 2 on page 18). Let Bcond!®*™ be in(pos1, Tank1: GetPosition(now)) and define
Beond} ™! by

in((Helil, belief atom), BT %! : proj-select (agent, =, Helil)),
where
belief atom = 4o Bewi1(Tank],in(pos1, Tankl: GetPosition(Now))).
The first row in the table says that Tankl believes that in Helil’s state the position
for Helil is posl, unconditionally.

The second row in the belief table above, says that Tankl believes that if Tankl’s
position is pos1, Heli2 believes that in Tank1’s state the position of Tankl1 is pos1.

The third row in the belief table says that if Tank1 believes Helil believes that Tank1’s
position is pos1, then Tank2 believes Helil believes Tank1’s position is pos1.

The table for Helil looks as shown in Table 4, where Bcond!'®'"! stands for
in(pos1, Helil : GetPosition(now))
and Beond} ™! is defined by
in((Tank]1, belief atom), BTHeIL : proj-select(agent, =, Tank1)),

where
belief atom = jof = Branki(Helil,in(pos1, Helil : GetPosition(Now))).
Agent | Formula Condition
Heli2 | in(pos1, Heli2: GetPosition(now)) true
Tankl | Bygnki(Helil,in(p, Helil : GetPosition(now))) Beond! e
Tank2 | Brank2(Tankl, Branki(Helil, in(p, Helil : GetPosition (now)))) | Bcondhe'!

Table 4: A Belief Table for agent Helil.

We are now in a position to formally express a meta agent program, i.e. a program
which formalizes the actions and the circumstances under which an agent a will execute
these actions based not only on its own state but also on its beliefs about other agent’s
states.

4.13 Definition (Meta Agent Program (map) BP)
A meta action rule, (mar for short), for agent a is a clause r of the form

A« Ly,... Ly (5)

where A is an action status atom, and each of Ly,..., L, is either a code call literal, an
action literal or a belief literal from BLitx(a,A).

A meta agent program, (map for short), for agent a is a finite set BP of meta agent rules
for a.
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4.14 Example (map’s For RAMP-Agents)
Let Helil’s meta agent program be as follows:

P Attack(P1 ,P2) < Bpeui(Tankl,in(P2, Tankl: GetPosition(Now))) ,
P Fly(P1 ,P3 ,A ,S),
P Attack(P3 ,P2).

where Attack(P1,P2) is an action which means attack position P2 from position P1. Helil’s
program says Helil can attack position P2 from P1 if Helil believes Tankl is in position
P2, Helil can fly from P1 to another position P3 at altitude A and speed S, and Helil
can attack position P2 from P3.

Let Tank1’s meta agent program be as follows:

O Attack(P1 ,P2) <+ O DriveRoute([PO ,P1 ,P2 ,P3 1,S),
Branki1(Tank2, in(P2, Tank2: GetPosition(Now))).

If Tank1 must drive through a point where it believes Tank2 is, it must attack Tank2.

From now on we assume that the software package S¢ = (7g',F§) of each agent a
contains as distinguished data types

1. the belief table BT¢, and

2. the belief semantics table BSemT?,

as well as the corresponding functions

BT : B-proj-select(r, h, ¢) and BSemT* : select(agent, =, h).

5 Semantics of Meta-Agent Programs

It remains to define the semantics of meta agent programs. As in the case of agent programs
without any metaknowledge (we refer to the appendix where we provided the definitions to
make this paper selfcontained), the basic notion upon which more sophisticated semantics
will be based, is the notion of a feasible status set for a given meta agent program BP. In
order to do this we first have to introduce the notion of a belief status set, the counterpart
of a status set for a meta agent program.

5.1 Definition (Belief Status Set BS)
A belief status set BS of agent a, also written BS(a), is a set consisting of two kinds of
elements:

e ground action status atoms over S and

e belief atoms from BAt.(a,A) of level greater or equal to 1.
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The reason that we do not allow belief atoms of level 0 is to avoid having code call conditions
in our set. Such conditions are not implied by the underlying map (only action status atoms
are allowed in the heads of rules). Moreover, in the agent programs without beliefs (which
we want to extend) they are not allowed as well (see Definition A.1).

We note that such a set must be determined in accordance with

1. the map BP of agent a,

2. the current state O of a,

3. the underlying set of action and integrity constraints of a.
In contrast to agent programs without beliefs we now have to cope with all agents about
which a holds certain beliefs. Even if the map BP does not contain nested beliefs (which
are allowed), the belief table BT may and, by the belief semantics table BSemT®, such

nested beliefs may imply (trigger) other beliefs. Thus we cannot restrict ourselves to belief
atoms of level 1.

Any belief status set BS of agent a induces, in a natural way, for any agent b € A, two
sorts of sets: the state and the various action status sets that agent a believes other agents
b to hold or those that a believes other agents b to hold about other agents c. To easily
formalize the latter conditions, we introduce the notion of a sequence:

5.2 Definition (Sequence o, [p] of Agents)
A sequence o of agents from A is defined inductively as follows:

1. The empty sequence [] is a sequence.

2. If a € A and [p] is a sequence, then [a], [—a], [a,p], [p,a] , [a,—p], [—p,a] are
sequences.

We use both o and [p] to refer to an arbitrary sequence.

The negation signs in the last definition were introduced in order to distinguish between
Ba(ba Bb(C, Bc(da X)))
and

Ba(ba _‘Bb(ca BC(d7 X)))

While the latter belief atom corresponds to the sequence [—b,c,d], the former is de-
scribed by [b, ¢, d]. The overall intuition of the formula B, (b, By(c, Bc(d, x))) is that if we
keep agent a in mind, then agent a believes in a code call condition of type [b,c,d], i.e. a
ccc that b believes that c believes it holds in d’s state.

We also say sometimes “o’s state” and refer to the code call conditions that are true in
what a believes that b believes ... where [a,b,...] = 0.
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5.3 Definition (Induced Status Set IT2!i°"(BS) and State II3*2*¢(BS))
Let a,b be agents and BP a map of a. Every belief status set BS of an agent a induces the
following two sets describing a’s beliefs about b’s actions and b’s state

H%C‘ﬂion(BS) =aef { Ma(t) : Bq(b,Ma(t)) € BS, where M € {O, W,P,F,Do}}
H%tate(BS) =aef { % : Ba(b,x) € BS and x is a code call condition}

Now assume that agent a believes in BS. Then II$'**(BS) formalizes the state of agent b
as believed by agent a. Similarly, [13°"(BS) represents the action status set of agent b as
believed by agent a.

In the same way BS induces for arbitrary sequences o two sets

[12tion(BS)  describing a’s belief about actions corresponding to o
15t (BS)  describing a’s belief about the state corresponding to o,

depending on the depth of the belief atoms occuring in BP.

It is important to note that for any sequence, o of agents, II%1°%(BS) is a set of action
status atoms. Likewise, II3%¢(BS) is a set of code call conditions that do not involve beliefs.
For the empty sequence [], we identify HEC“OH(BS) (resp. Hitate(BS)) with a’s own action

status set (resp. a’s own state) as defined by the subset of BS not involving belief atoms.

5.4 Example (Belief Status Sets for RAMP-Agents)
We consider the map of Helil given in Example 4.14

BS(Helil) =4y { PFly(PointA,PointB, 10000, 200), O Fly(PointA, PointB, 10000, 200),
Bhiewr (Heli2, P Fly (PointA, PointB, 10000, 200)),
B (Heli2, in(pos, Helil : GetPosition (Now))),
Bt (Heli2, Byeiz(Tankl, in(pos, Tank: GetPosition(Now))))
B (Heli2, Byei2(Tank1, P Drive(PointX, PointY, 40)))}

This belief status set is for Helil and it says:

1. It is possible to fly from PointA to PointB at an altitude of 10000 feet and a speed of
200 knots.

2. It is obligatory to fly from PointA to PointB at an altitude of 10000 feet and a speed
of 200 knots.

3. Helil believes that in Heli2’s state it is possible to fly from PointA to PointB at
10000 feet and 200 knots.

4. Helil believes that in Heli2’s state the position of Heli2 is pos.
5. Helil believes Heli2 believes that Tankl1’s position is pos.

6. Helil believes Heli2 believes that in Tank1’s state it is possible to drive from PointX
to PointY at 40 miles per hour.
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We then have:

IIaction (BS(Helil)) = {P Fly(PointA, PointB, 10000, 200)}

It (BS(Helil)) = {in(pos, Helil : GetPosition (Now))}

TS0 1o (BS(Helil)) = {PDrive(PointX, PointY, 40)}
(

Hffjetfiz Tanky (BS(Helil)) = {in(pos, Tankl: GetPosition(Now))}

These sets formalize the following:

o II¥ten(BS(Helil)) describes Tank1’s beliefs about Heli2’s actions and it says that it
is possible to fly from PointA to PointB at 10000 feet and 200 knots.

o II}{ate, (BS(Helil)) describes Tankl’s beliefs about Heli2’s state and it says that its
position is pos.

. H?,f{te‘{’lnz Tank] (BS(Helil)) describes Tank1’s beliefs about Heli2’s beliefs about Tank1’s
actions, and it says that it is possible to drive from PointX to PointY at 40 miles per
hour.

. H?fjetﬁz Tank1 (BS(Helil)) describes Tank1’s beliefs about Heli2’s beliefs about Tank1’s

state, and it says that its position is pos.

Obviously for a to make a guess about agent b’s behaviour, agent a not only needs a belief
table and a belief semantics table, but a also needs to guess about b’s action base, action
program as well as the action and integrity constraints used by b. This is very much like
having a guess about b’s software package which we motivated and illustrated just before
Definition 4.1 on page 15 (see the notion of compatible code call condition). For notational
convenience and better readability we merge all these ingredients into a set I'*(b).

5.5 Definition (T ¢(b), Info(a))

For agents a,b € A, we denote by I'“(b) the following list of all beliefs that agent a holds
about another agent b: the software package S®(b), the action base AB%(b), the action
program P ¢(b), the integrity constraints ZC “(b) and the action constraints AC ¢(b). I'¢(b)
may also contain these objects for sequences o = [b,c| instead of b: we use therefore also
the notation I"*([b,c]). I'*(o) represents a’s beliefs about b’s beliefs about c.

In addition, given an agent a, we will often use the notation Info(a) to denote the
software package 8¢, the action base AB, the action program P, the integrity constraints
IC and action constraints AC used by agent a. Thus we define Info(a) =gef rl(a).

The set I' ¢(b) is very important and therefore we introduce corresponding software code
calls, thereby extending our original package S.

5.6 Definition (Extended Code Calls, S°*t)

Given an agent a, we will from now on distinguish (if it is not immediately clear from
context) between basic and extended code calls respectively code call conditions. The basic
code calls refer to the package S, while the latter refer to the extended software package
which also contains

1. the following function of the belief table:
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(a) a: belief _table(), which returns the full belief table of agent a, as a set of triples
(h’a ¢a XB>7

2. the following functions of the belief semantics table:

(b) a: belief _sem_table(), which returns the full belief semantics table, as a set of
pairs (h, BSemy),

(c) a:bel_semantics(h,,v), which returns true when ¢ Fpseme 1 and false oth-
erwise.

3. the following functions, which implement for every sequence o the beliefs of agent a
about o as described in " *(o):

(d) a:software_package(o), which returns the set S%(o),

(e) a:action_base(o), which returns the set AB%(0),

(f) a:action_program (o), which returns the set P%(c),

(g) a:integrity_constraints(o), which returns the set ZC “(o)

(h) a:action_constraints(o), which returns the set AC “(o),
4. the following function which simulates the state of another agent b or a sequence o,

(i) a:bel_ccc_act(o), which returns all the code call conditions and action status
atoms that a believes are true in o’s state. We write these objects in the form
"in(, )" (resp. "Ma" for action status atoms) in order to distinguish them from
those that have to be checked in a’s state.

We also write S® for this extended software package and distinguish it from the original
S from which we started.

5.1 Feasible Belief Status Sets

Consider now an agent a with associated structures, Info(a). Suppose BS is an arbitrary
status set. We would like to first identify the conditions that determine whether it “makes
sense” for agent a to hold the set of beliefs prescribed by BS. In particular, agent a must
use some epistemically well justified criteria to hold a set, BS, of beliefs. In this section, we
introduce the concept of a feasible belief status set. Intuitively, BS is feasible if and only if
it satisfies two types of conditions—conditions on the agent a, and conditions on the beliefs
of agent a about other agents b or sequences o.

Conditions on agent a:

1. Deontic and action consistency: 5S must not contain any inconsistencies. For
example, BS may not contain action status atoms, Oa and Fa as these two ac-
tion status atoms are mutually incompatible. Similarly, the set of actions taken
by agent a must not violate any action constraints, i.e. if Todo = {a|Doa € BS},
then for each ground instance of an action constraint of the ActSet <« yx, either
x is false in the current agent state, or ActSet € Todo.
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2. Deontic and action closure: This condition says that BS must be closed under
the deontic operations. For example, if Oa € BS, then Pa € BS, and so on.

3. Closure under rules of BP: Furthermore, if we have a rule in BP having a
ground instance whose body’s code-call conditions are all true in the current
agent state, and whose action status atoms and belief literals are true in BS,
then the head of that (ground) rule must be in BS.

4. State consistency: Suppose we concurrently execute all actions in the set Todo.
Then the new state that results must be consistent with the integrity constraints
associated with agent a.

Conditions on beliefs of agent a about other agents b:

5. Local feasibility: This condition requires that for any agent b, every induced
status set I12t°8 (BS) is feasible (in the original sense) with respect to the induced
state II}***¢(BS) and action program P¢(b). Furthermore a similar condition
must hold for any sequence o instead of just b.

6. Compatibility with BT“: We have to ensure that (1) all belief atoms of the
basic belief table are contained in BS and that (2) whenever a belief condition
is true, then the corresponding belief formula is true in BS.

7. Compatibility with BSemT": If (b, BSemy) is an entry in BSemT*®, we have
to ensure that b’s induced state is closed under the semantics BSemg.

We are now ready to formalize the above 7 basic conditions through a sequence of definitions.

5.7 Definition (Deontic/Action Consistency)

A belief status set BS held by agent a is said to be deontically consistent, if, by definition, it
satisfies the following rules for any ground action « and any sequence o of agents (including
the empty sequence):

1. If Oc € TIHON(BS) | then W ¢ TT2Ho0 (BS).

2. If Pa € 12400 (BS) | then Fa ¢ 12401 (BS).

3. If Pa € T12Mo0(BS) | then I15%%¢(BS) |= Pre(a) (i.e. a is executable in TI5%%(BS)).

A belief status set BS is called action consistent, if and only if for every ground action
instance, ActSet <= x, of an action constraint in AC, either x is false in state O or BS N
{Doa | @ € ActSet} = 0.

Intuitively, the requirement of deontic consistency ensures that belief sets are internally
consistent and do not have conflicts about whether an action should or should not be taken
by agent a. Action consistency ensures that the agent cannot violate action constraints.

At this point, the reader may wonder why we need to ensure that deontic/action consis-
tency requirements also apply to sequences of agents rather than to just agent a by itself.
The reason is that if we replaced all occurrences of o in the preceding definition by the
empty sequence [], i.e. we just look at a’s own action status set, then we may still encounter
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deontic inconsistencies nested within beliefs. For example, agent a’s belief set could contain
both By (b, Oa) and By (b, Fa). In this case, agent a believes that action « is both forbid-
den and obligatory for agent b—a state of affairs that is clearly inconsistent. It is to rule
out such scenarios that we have defined deontic and action consistency as above,

5.8 Lemma (Deontic Closure)

Suppose BS is a belief status set held by agent a. The deontic closure of BS, denoted
D-CI1(BS), is the minimal extension of BS by new belief atoms, such that the following
condition holds:

if Oa € TI24°0 (BS) then Pa € TI2ton (BS),

where « is any ground action and o is any sequence of agents. We say that BS' is deontically
closed if, by definition, BS = D-C1(BS).

Again, this requirement forces an agent a’s belief status set to be closed—if agent a believes
that « is obligatory for agent b to perform then it must also believe that agent b is permitted
to perform action .

Proof: We have to show that such a minimal extension of BS exists. Let us define a
sequence BS;, where BSy =4.; BS and

BSii1 =gef BS; U {Ba(b,Pa)|B.(b,O0a) € BS;}.
Obviously, |J BS§° is a minimal extension of BS as required in the statement. The general

case for arbitrary sequences o instead of just [b | is analogous. |

5.9 Lemma (Action Closure)
Suppose BS is a belief status set held by agent a. The action closure of BS, denoted
A-CI(BS), is the minimal extension of BS by new belief atoms, such that the following
conditions hold:

1. if Oa € I1&°" (BS), then Doa € I131" (BS),

2. if Doa € 11" (BS), then Pa € T12%°" (BS),

where « is any ground action and o is any sequence of agents. We say that a status BS is
action-closed, if BS = A-CI1(BS) holds.

Intuitively, this lemma says that for all ground actions «, if agent a believes that action «
is obligatory for agent b, then agent a must believe that agent b will do it.

Proof: We have to show that such a minimal extension of BS exists and follow the proof
of the last lemma. We define a sequence BS;, where BSy =4, BS and

BSii1 =gef BS; U {Ba(b,Pa)|Bq(b,Doa) € BS;} U{By(b, Do) | By(b,O0c) € BS;}.

Obviously, |JBSF° is a minimal extension of BS as required in the statement. As in the
previous lemma, the general case for arbitrary sequences o instead of just [b ] is analogous.
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We are now ready to start defining the notion of closure of a belief status set, BS,
under the rules of a map, BP. First, we define an operator, Appoyo(BS) that takes as
input, a belief status set, BS, and produces as output, another belief status set, obtained
by applying the rules in BP with respect to the state O once.

5.10 Definition (Operator Appgp (BS5))

Suppose BP is a map, and O is an agent state. Then, Appgp o(BS) is defined to be the
set of all ground action status atoms A such that there exists a rule in BP having a ground
instance of the form r : A < L1,... ,L,, which we denote by

A «— B;Z(r) U Bg.(r)U B;her(r) UB,,,..(r)

(in order to distinguish between positive/negative occurrences of code call atoms and non-
code call atoms, i.e. action status literals and belief literals) such that:

1. BT

other

(r) € BS and =.B_, . (r) N BS =0, and
2. every code call x € B/ (r) succeeds in O, and
3. every code call x € =.B,(r) does not succeed in O, and

4. for every atom Op(a) € Bt (r) U {A} such that Op € {P,0,Do}, the action « is
executable in state O.

Intuitively, the operator Appgp (BS) closes BS by applying all rules of the map BP once.
The following example shows how this operator works, using our familiar RAMP example.

5.11 Example (Appgp o(BS) for RAMP)

We continue with Example 4.14 on page 25 and consider the following belief status set for
Helil:

BSi(Helil) =4 { Breur(Tankl, in(B, Tank1: GetPosition(Now))),
P Fly(A, C,5000,100), P Attack(C,B)}

Then Appgp o(BS1(Helil)) = {P Attack(A,B)}.

Note that no belief atoms are present, because the definition of App only specifies
program rule heads and we cannot have belief atoms in rule heads. Also, the atoms
PFly(A,C,5000,100) and P Attack(C,B) were not preserved because there are no rules to
support them.

5.12 Definition (Program Closure)
A belief status set, BS, is said to be closed with respect to a map, BP, and an agent state,
O, if, by definition, Appgp o(BS) = {Ma | Ma € BS where M € {O, W,P,F,Do}}.

Intuitively, this definition says that when we restrict BS to the action status atoms asso-
ciated with agent a, then the set of action status atoms that the map, BP, makes true
in the current state, is equal to the set of action status atoms already true in BS. The
following example builds upon the previous one, and explains why certain belief status sets,
BS, satisfy the program closure condition, while others do not.
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In the previous example the belief status set B.S;(Helil) does not satisfy the program
closure property because Appgp o(BS1(Helil)) is not equal to

{M«a: Mae BS} ={PFly(A,C,5000,100), P Attack(C,B)}.

However, if we add to Helil’s program the rules:

P Fly(A , C , 5000 ,100) «
P Attack(C , B) —

the following belief status set BSs(Helil) does satisfy the program closure rule:

BSy(Helil) =4¢f { Brewr(Tankl,in(B, Tank: GetPosition(Now))),
P Fly(A, C, 5000, 100),
P Attack(C,B),
P Attack(A,B) }.

Then
Appgp o(BSa(Helil)) = {PAttack(A,B), P Attack(C,B), P Fly(A, C, 5000, 100)}.

At this point, we have completed describing the requirements on agent a that must be
true. In addition, we must specify conditions on the beliefs that agent a holds about other
agents, b. To some extent, this has already been done in the definitions of deontic and
action consistency/closure. However, more coherent conditions need to be articulated. The
first of these is the fact that the beliefs held by agent a about another agent b must be
coherent. For instance, if a believes that it is obligatory for agent b to do action «, then
a must also believe that b will do a. Other, similar conditions also apply. This condition
may be expressed through the following definition.

5.13 Definition (Local Coherence)

A belief status set, BS, held by agent a is said to be locally coherent w.r.t. a sequence,
o of agents if, by definition, the induced status set II12°%°"(BS) is feasible in the sense of
(Eiter, Subrahmanian, and Pick 1998) with respect to the induced state I13%*(BS) and
agent program P%(o).

BS is said to be locally coherent if, by definition, BS is coherent with respect to all
sequences, o, of agents.

The above definition makes explicit reference to the definition of feasible status set, provided
by (Eiter, Subrahmanian, and Pick 1998). It is important to note that II%1°%(BS) is a set
of action status atoms, and that I15*3*¢(BS) involves no belief literals, and P%(o) is an agent
program with no belief modalities, as defined earlier on in Definition 3.14 on page 13. Here
are a few examples of what it means for a belief status set held by agent a to be locally
coherent.

Let

BS(H@hZ) =def { BHeuz(Heu] ,PFly (PointA, PointB, 1000, 100)),
Bheiiz2(Helil,in(100, Helil : GetAltitude (now))),

B2 (Helil, in(1000, Helil : GetAltitude(now))) }

and let Helil’s program as believed by Heli2 (we denote it by P He2(Helil)) be:
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P Fly(X ,Y ,A ,S) < in(S,Helil: GetSpeed(now)), in(A, Helil : GetAltitude(now)).

The set BS(Heli2) is locally coherent w.r.t. the sequence (Heli2). Notice that:
T340 (BS(Heli2)) =g4¢ {PFly(PointA, PointB, 1000, 100)}
is feasible with respect to:
[Tt (BS(Heli2)) = {in(100, Helil : GetAltitude(now)), in(1000, Helil : GetAltitude (now))}.
Let

BS(Tcmkl) =def { Branki (HeliZ, BHeuz(Helﬂ ,PFly (PointA, PointB, 1000, 100))),
Branki1(Heli2, Byei2(Helil, in(100, Helil : GetSpeed (now)))),
Branki(Heli2, Byeiz(Helil, in(1000, Helil : GetAltitude(now))))

}
and let the P79 ([Heli2, Helil]) be the program Tankl believes Heli2 believes Helil
has:

P Fly(X ,Y ,A ,S) < in(S,Helil: GetSpeed(now)), in(A, Helil: GetAltitude(now)).

Then BS(Tank]1) is locally coherent w.r.t. the sequence [Heli2, Helil]. Just like in the pre-
vious example: H?ﬁte‘?{lz,Helm(BS(Tank])) = {PFly(PointA,PointB, 1000, 100)} is feasible
with respect to:

H?ﬁ?etfiz,Helm(BS(Tank])) = {in(100, Helil : GetSpeed (now)), in(1000, Helil : GetAltitude(now))}.

In addition to being locally coherent, for a belief status set to be considered feasible, we
need to ensure that it does not ignore the contents of the belief table of agent a. This may
be encoded through the following condition.

5.14 Definition (Compatibility with BT®)
Suppose (h, ¢, xp) is in BT. BS is said to be compatible with (h, ¢, xg) if, by definition,
either

1. h_part(xp) is false w.r.t. I (BS) or a_part(xp) is false w.r.t. a’s state Og.

2. ¢ is a code call condition or an action status atom and By (h, ¢) € BS.

BS is said to be compatible with BT® if, by definition, it is compatible with all tuples in
BT.

Intuitively, this condition says that if a row in the belief table of agent a has a “true”
condition, then agent a must hold the corresponding belief about the agent h in question.
The following example illustrates this concept of compatibility.
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5.15 Example (Compatibility)
We continue with Table 3 on page 23. We define

BS(Tankl) =g4er {Btank1(Helil,in(pos1, Helil : GetPosition (now)))}.
belss(Tankl1) is compatible with BT,
However, the following belief set is not compatible with the give belief table:
BS(Tankl) = {in(pos1, Tankl: GetPosition(now))}.

This is because there is a true condition in the first row of the table but the belief set does
not contain

Branki(Helil,in(pos1, Helil : GetPosition(now)))

according to the definition of compatibility.

The last condition in defining feasible belief status sets is that for any agent b, the beliefs
agent a holds about agent b must be closed under the notion of entailment that agent a
thinks agent b uses.

5.16 Definition (Compatibility with BSemT")
Suppose (b, BSemy) is an entry in BSemT*®, and suppose BS is a belief status set. Let
BS[b] = {x|Ba(b, x) € BS}. BS is said to be compatible with (b, BSemy) if, by definition,

{x"| BS[b] EBsems X'} S BS.

BS is said to be compatible with BSemT?® iff BS is compatible with every entry in
BSemT*“.

We are now ready to define feasible belief status sets.

5.17 Definition (Feasible Belief Status Set)

A belief status set, BS held by agent a, is said to be feasible with respect to a meta-agent
program, BP, an agent state, O, and a set ZC of integrity constraints, and a set AC of
action constraints if, by definition, BS satisfies our 7 conditions stated above (deontically
and action consistent, deontically and action closed, closed under the map BP’s rules, state
consistent, locally coherent, compatible with BT, and compatible with BSemT*).

To George 1 George, please fill in 4 examples here. Include two feasible status sets, and
2 sets that are not feasible for different reasons.

5.2 Rational Belief Status Sets

The notion of a rational status set is a useful strengthening of feasible status sets. The idea
is that all executed actions should be grounded or justified by the meta agent program. As
a simple example, consider a feasible belief status set and add a Doa atom for an action
« that does not occur in any rule of the program or in the action and integrity constraints
at all. It is immediate that this new set still is a feasible belief status set, although not a
minimal one: there is no reason to believe in Do«. Rational sets rule out such non-minimal
status sets:

35



5.18 Definition (Groundedness; Rational Status Set)

A belief status set BS which is locally coherent, compatible with BT®, and compatible
with BSemT*? is grounded, if there exists no belief status set BS’ strictly contained in BS
(BS' C BS) such that BS’ satisfies the following 3 conditions of a feasible belief status set
as given in Definition 5.17: deontically and action consistent, deontically and action closed,
closed under the map BP’s rules.

A belief status set BS is a rational status set, if BS is a feasible status set and BS is
grounded.

If we compare this last definition with the original definition of a belief status set, Defini-
tion 5.17, the reader will note that only the state consistency is not explicitly required while
minimizing BS’. In contrast, the locally coherence and the two compatibility conditions are
required and do not guide the minimization process. If state consistency were added to the
minimization policy, then an agent would be forced to execute actions in order to satisfy
the integrity constraints. However, such actions may not be mentioned at all by the pro-
gram, and thus it seems unreasonable to execute them. Of course, the state consistency is
guaranteed, because we check groundedness only for feasible belief status sets.

5.3 Reasonable Belief Status Sets

As shown in (Eiter, Subrahmanian, and Pick 1998) for programs without beliefs, rational
status sets allow the arbitrary contraposition of rules, which is often not intended. For
example the program consisting of the simple rule

Do(a) + —Do(p)

has two rational status sets: S; = {Do(«),P(a)}, and So = {Do(f3),P(8)}. The second
one seems less intuitive because there is no rule in the program to justify deriving Do(g).

This leads, in analogy to (Eiter, Subrahmanian, and Pick 1998) to the following notion:

5.19 Definition (Reasonable Status Set)
Let BP be an agent program, let Os be an agent state, and let BS be a belief status set.

1. If BP is a positive meta agent program, then BS is a reasonable belief status set for
P on Og, 1if, by definition, BS is a rational belief status set for P on Og.

2. The reduct of BP w.r.t. BS and Og, denoted by red®%(BP, Os), is the program which
is obtained from the ground instances of the rules in BP over Og as follows.

(a) First, remove every rule r such that B, (r) N BS # 0;

(b) Remove all atoms in B, (r) from the remaining rules.

Then BS is a reasonable status set for BP w.r.t. Og, if it is a reasonable status set of
the program red®%(BP,Os) with respect to Os.

Analogously to (Eiter, Subrahmanian, and Pick 1998), we have the following relation be-
tween reasonable and rational status sets:
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5.20 Theorem (Reasonable Status Sets are Rational)
Every reasonable status set is also rational.

6 How to Implement Meta-Agent Programs?

Meta-Agent Programs significantly extend agent programs by allowing to reason about
beliefs. But within the IMPACT-platform developed at the University of Maryland, agent
programs have been already efficiently implemented and thus the question arises if we can
take advantage of this work. In fact, as we will show in this section, this can be done by

1. transforming meta agent programs into agent programs, and

2. taking advantage of extended code calls S¢*' as introduced in Definition 5.6.

The first step is a source-to-source transformation: the belief atoms in a meta agent program
are replaced by suitable code calls to the new datastructures. We also note that the second
step is indispensable, as every agent dealing with meta agent programs needs to deal with
Belief Tables, Belief Semantics Tables and some functions operating on them.

Let us illustrate the transformation with the following simplified example. Recall that
we already introduced extended code call conditions in Definition 5.6 on page 28: those also
involve the new datatypes (belief- and belief semantics tables). Suppose the belief table
does not contain any belief conditions (i.e. it coincides with its basic belief table). Then if
x is any code call condition of agent c, the extended code call atom

in((c, x, true), a: belief _table())

corresponds to the belief atom

Ba(c,x).

However, this does not mean that we can just replace the latter expression by the former.
The problem is that beliefs need not neccessarily be stored in the belief table. They can
also be triggered by entries from the belief table and those from the belief semantics table.
In fact, this was why we explicitly formulated condition 7. on compatibility with the belief
semantics table. Also if the third entry in the belief table is present, the belief condition,
then the first two entries of this triple specify a belief that must hold. Therefore we will
use the additional function

a: bel_ccc_act(o),

which was introduced in Definition 5.6 on page 28 and thus implement belief atoms with
extended code calls:

in("x", a: bel_ccc_act(c))

What happens if the formula x is not a code call, but again a belief formula, say B.(d, x’)?
An expression of the form in(B.(d, x’), a: bel_ccc_act(c)) is not a wellformed formula in our
framework (recall that a: bel_ccc_act(o) returns a set of code call conditions and action
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status atoms but no belief formulae). In fact, even if it were, it would not help in reducing
the belief atoms to something involving only extended code calls. Here is where the inductive
definition of our transformation (we call it Trans from now on) comes in. We map

Ba(C, Bc(du X,))
to

in("x'", a: bel_ccc_act([c, d])).

Our main theorem in this section states that there is indeed a uniform transformation
Trans from arbitrary meta agent programs (which can also contain nested beliefs) to agent
programs such that the semantics are preserved:

Sem(BP) = Sem(Zrans(BP)) (6)
for Sem being a semantics based on feasible, rational or reasonable belief status sets.

6.1 Definition (Trans)
For an agent a, we defined in Definition 4.3 on page 16 the maximal belief language BLS,.
We define the mapping

Trans : BLL — Code Call Conditions of S

by induction on the structure of the belief literal:

Level 0: If bel_lit is a code call condition or an action status atom, then Trvans(bel_lit) =gef
bel _lit.

Level 1: If bel_lit has the form (—)By(b, ¢) where ¢ is a code call condition or an action
status atom, then

1. Trans(Bq (b, ¢)) — in("¢", a: bel_ccc_act(b)),
2. Trans(—Bq (b, ¢)) — not_in("¢", a: bel_ccc_act(b)),

Level n + 1: If bel_lit has the form (—)Bq(b,$) where ¢ is of level n, then we define
Trans(Bq (b, ¢)) by

{ in("x", a:bel_ccc_act([b,p]))  if Trans(¢p) =in("x", a: bel_ccc_act([p]))
in("x", a:bel_ccc_act([b,—p])) if Trans(¢p) = not_in("x", a: bel_ccc_act([p]))

and we define Trans(—Bq (b, ¢)) by

not_in("x", a: bel_ccc_act([b,p]))  if Trans(¢p) =in("x", a: bel_ccc_act(p))
not_in("x", a: bel_ccc_act([b,—p])) if Trans(¢) = not_in("x", a: bel_ccc_act(p))

Linear Extension to BLS: Up to now Trans is only defined on belief literals, not for
arbitrary belief formulae (which can be arbitrary conjunctions of belief literals (see
Definition 4.3 on page 16). However we can easily extend Tvans so that it respects &
by viewing the belief literals as a basis a naturally induced vector space. This new
Trans is then the uniquely determined homomorphism which coincides with the Trans
just defined.
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For a belief status set BS we denote by Ttans®*°?(BS) the subset of all action status
atoms in BS. This is exactly the status set as defined in Definition A.1 for agent programs
without beliefs.

For a belief status set BS and an agent b € A, we also define:

‘Itanﬁsm_e(BS, b) =4 {x|Ba(b,x) € BS and x is a code call condition}
Trans®%(BS,b) =4y {Ma(t)| Ba(b,Ma(t)) € BS, where M € {O, W,P,F,Do}}.

As in Definition 5.3 on page 27, these definitions are easily extended to arbitrary sequences
o instead of just b.

This transformation Trans maps all belief literals into extended code call conditions and
will be used in the following to map any set containing belief literals (like belief status sets
or meta agent programs) into one without belief literals but containing extended code calls.
Also Trans(BP) naturally defines an agent program without beliefs and thus we can use
an existing implementation for agent programs to compute them.

Although the mapping Tvans is very simple, some more work is needed in order to get
the above claimed equivalence result. Namely, in the definition of a feasible belief status set
we have explicitly required the compatibility with the belief table and the belief semantics
table (see Definitions 5.14 on page 34 and 5.16 on page 35). If we use Trans to get rid of
all belief atoms in a belief status set by transforming them into code calls, then we need to
formulate similar conditions in terms of code calls. Otherwise we cannot expect a strong
equivalence result to hold. The following picture may help to clarify the problem:

BP Trans P

Compatible with
- Belief Semantics TSemnew

???Tsem()ld
- Belief Table

BS Trans

It will be easy to show that if the conditions on the left side are fulfilled, and B.S belongs
to the semantics Sem of BP, then S belongs to the semantics Sem of P. But in order to
reduce the semantics of meta agent programs to those of agent programs we must also have
the converse, namely that all S’s of P on the right hand side are induced by BS’s on the
left hand side. Such a result can only hold if we have corresponding conditions (indicated
by “?7?” in the above diagram) on the right hand side.

The way we solve this problem is
1. to extend the original set of integrity constraints ZC by a new constraint which ex-

presses the compatibility with the belief semantics table using the new functions now
available in S,

2. to add a new condition (which cannot be expressed as an integrity constraint) which
ensures the compatibility with the belief table.
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As to 1. we denote by ZC®** the set ZC of original integrity constraints augmented with
the following extended integrity constraints (one for each agent b € A):

in((b, BSemy), a: belief _sem_table()) &

in("x", a: bel_ccc_act(b)) &
in(true, a: bel_semantics(b, x, X))
=

in("x'", a: bel_ccc_act(b)).

Note that we assume for ease of notation that the formulae x, X’ are just code call conditions.
In general, they can be arbitrary belief formulae (as determined by BSemg). In this case,
we have to take their transformation as provided by Trans. To be more precise, we have to
add the constraints:

in((b, BSemy), a: belief _sem_table()) &
in(true, a: bel_semantics(b, x, X))
Trans(x) &
=

Trans(x’)

As to 2. we require the following condition

Closure: Let the state Ogext satisfy in((b, ¢, x5), a: belief _table()) as well as a_part(xg)
and let Trans®?(BS, b) satisfy b_part(x5). Let further ¢ be a code call condition or
an action status atom,

1. If ¢ is a code call condition or an action status atom, then Ogext satisfies
in(¢, a: bel_ccc_act(b)).

2. If ¢ is of the form By(c, ¢’), where ¢’ is a code call condition or an action status
atom, then Ogex: satisfies in("¢'", a: bel_ccc_act([b,c])).

3. More generally, if ¢ is a nested belief atom, then we can associate with this atom
a sequence [p] (as introduced in Definition 5.2 on page 26) and we require that
Ogext satisfies in("¢'", a: bel_ccc_act([p])).

Thus we end up up with the following picture:

BP Trans )
_
Compatible with TCext
- Belief Semantics TSem“ew TSede
- Belief Table Closure
BS Trans S
_

The following theorem and its corollaries make the statement (6) precise.

6.2 Theorem (Implementing Belief Programs by Agent Programs)
Let BP be a meta agent program, a € A, Ogext a state of agent a, ZC a set of integrity
constraints, and AC a set of action constraints for a.

If BS is a feasible belief status set of agent a wrt. BP, Ogext, ZC and AC, then
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1. Trans®on(BS) s a feasible status set of Trans(BP) wrt. Ogex and IC™'. In
addition Ogext satisfies Closure.

2. for all sequences o: Trans®°%(BS, o) is a feasible status set wrt. Trans**4%(BS, o)
and P%(o), where in(P%(o0), a: action_program (o)) is true in Ogext.

Moreover, every feasible status set of Tvans(BP) for a state Ogex and IC®™" where O gext
satisfies Closure is obtained in that way.

Proof: We first show 1. and 2. Let BS be a feasible belief status set of agent a wrt. BP,
Ogest, ZC and AC. Trans?"°%(BS) is certainly a status set of Trans(BP): it consists
just of certain action status atoms for Trans(BP). To check feasibility of this set, we have
to check (1) closure under program rules, (2) deontic and action consistecy, (3) deontic
and action closure and (4) state consistency. But all these properties are immediate from
the corresponding conditions for BS (see Definition 5.12 for (1), Definition 5.7 for (2),
Lemmas 5.8 and 5.9 for (3), state consistency is analogously to (4) defined, and note that
Teans®M" (BS, o) and Trans™®®(BS, o) correspond to 112107 (BS) and 1582 (BS)).

Why is ZC*™' true and why does Ogext satisfy Closure? ZC®' follows by the belief
semantics compatibility condition and Closure by the belief table compatibility.

Condition 2. is implied by local feasibility.

Now we have to prove the converse, namely that every feasible status set of Trans(BP)
for a state Ogext and ZC®™* where Ogex: satisfies Closure is obtained in that way. Let S be
such a feasible status set. Then we reconstruct BS™®" using the code calls a: bel_ccc_act([p]).
Whenever Ogext satisfies a code call atom

in("x", a: bel_ccc_act([b, p]))

where "x" is a code call atom of the form "in(¢, : ())" or an action status atom, then we
add By (b, x) to BS™®". Note that because of the Closure condition, such code call atoms
must hold and satisfy (if retransformed to belief formulae) the belief table compatibilty
condition. By construction, BS™W is a status set and the feasibility is guaranteed by the
feasiblity of S and the conditions we have just mentioned. |

6.3 Corollary (Srans(BP) is invariant under Rational and Reasonable Semantics)
If BS is a rational (resp. reasonable) belief status set of agent a wrt. BP, Ogext, ZC and
AC, then

1. Trans®¥°"(BS) s a rational (resp. reasonable) status set of Trans(BP) wrt. Ogex
satisfying Closure and wrt. TC®,

2. for all sequences o: Trans®“°1(BS, o) is a rational (resp. reasonable) status set
wrt. Trans®?®(BS, o) and P%(c), where in(P%(0), a: action_program (o)) is true in
Osext.

Moreover, every rational (resp. reasonable) status set of Trans(BP) for a state Ogext and
IC*™" where Ogext satisfies Closure is obtained in that way.
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Proof: We distinguish between rational and reasonable status sets. As the latter are
based on the former we first consider rational sets.

Rational: Using Theorem 6.2, it only remains to prove that every BS which is locally
coherent, compatible with BT® and with BSemT? satisfies:

BS is grounded wrt. BP if and only if Trans(BS) is grounded wrt. Trans(BP).

This equivalence is easily shown by comparing the operators given in Definition 5.10
for programs with beliefs and Definition A.4 for programs without. Note that the
transformation Trans ensures that all belief literals of BP are transformed into ex-
tended code call conditions and these code call conditions are taken care of by our
conditions (Closure and ZC®**). A detailed inspection shows that every application of
Appgp o4 (BS) corresponds exactly to an application of APPaans(8p),0...., (Frans(BS))
and thus the result follows.

Sext (

Reasonable: Here we have to show that applying Trans() is compatible with the reduction
operation:

Trans(redB5 (BP, Ogext)) = red ¥ B9 (Trans(BP), Ogext).

The result then follows immediately by the definition of reasonable status sets, which
are based on rational sets for positive programs. The problem is therefore reduced to
the former case.

That the condition above holds follows immediately from the very definition of red.
As we have a one-one correspondence between the body atoms of BP and those of
Trans(BP), arule in BP is removed if and only if the corresponding rule in Trans(BP)
is removed. |

7 Related Work

In this paper, we have provided a framework within which an agent may reason about the
beliefs it has about other agents’ states, beliefs and possible actions. Our framework builds
upon classical logic programming results. As there has been considerable work on these
areas, we try to relate our work with the most relevant of these works. We do not explicitly
relate ordinary agent programs (Eiter, Subrahmanian, and Pick 1998) with other agent
systems, as that has been done in great detail in (Eiter, Subrahmanian, and Pick 1998).
Rather, we focus primarily on meta-reasoning capabilities of agents and compare maps with
meta reasoning capabilities of other agent frameworks.

Kowalski and Sadri (1998) have developed an agent architecture that uses logical rules
expressed in Horn clause-like syntax, to encode agent behavior—both rational and reactive.
The reactive agent rules are of the form

« <+ condition

where « is an action, and the condition in the body of the rule is a logical condition.
Rationality is captured through integrity constraints. In the current language of (Kowalski
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and Sadri 1998), there seems to be no obvious support for meta-reasoning, though no doubt
it could be encoded in, via some use of the metalogical demo predicate (Kowalski 1995).

M. Schroeder () have shown how extended logic programming may be used to specify
the behavior of a diagnostic agent. They propose an architecture that supports cooperation
between multiple diagnostic agents. Issues of interest arise when conflicting diagnoses are
hypothesized by different agents. Their architecture consists of a knowledge base imple-
mented by an extended logic program (Alferes and Pereira 1994), and inference machine
that embodies the REVISE algorithm (C.V. Damasio and Pereira 1994) for eliminating
contraditions, and a control layer. No meta-reasoning issues are brought up explicitly in
this work.

Concurrently with our effort, M. Martelli and Zini (1998, M. Martelli and Zini (1997)
have developed a logic programming based framework called CaseLP that may be used to
implement multiagent applications by building on top of existing software. As in our work,
agents have states, and states are changed by the agents’ actions, and the behavior of an
agent is encoded through rules. No meta-reasoning issues are brought up explicitly in this
work.

Morgenstern (1990) was one of the first to propose a formal extension of auto-epistemic
logic to deal with multiagent reasoning. She extended auto-epistemic logic (Moore 1985)
with belief modalities indexed by agent names. She proposed a concept of expansions for
such theories.

The Procedural Reasoning System (PRS) is one of the best known multiagent con-
struction system that implements BDI agents (BDI stands for “Belief, Desires, Intention-
ality”) (d’'Inverno, Kinny, Luck, and Wooldridge 1997). This framework has led to several
interesting applications including a practical, deployed application called OASIS for air
traffic control in Sydney, Australia. The theory of PRS is captured through a logic based
development, in (Rao and Georgeff 1991).

Gmytrasiewicz and Durfee (1992) have developed a logic of knowledge and belief to
model multiagent coordination. Their framework permits an agent to reason not only
about the world and its own actions, but also to simulate and model the behavior of other
agents in the environment. In a separate paper (P. Gmytrasiewicz and Wehe. 1991), they
show how one agent can reason with a probabilistic view of the behavior of other agents so
as to achieve coordination. This is good work.

There are some significant differences between our work and theirs. First, we focus on
agents that are built on top of arbitrary data structures. Second, our agent meta-reasoning
language is very general—an agent can decide, for instance, that it will reason only with
level 1 nested beliefs—and hence, our framework allows different agents to pick the level of
belief reasoning appropriate for them. Third, our action framework is very general as well,
and meta-reasoning with permitted, obligatory and forbidden actions is novel. Fourth, our
framework allows an agent to “plug in” different estimates of the semantics used by other
agents.

Researchers in the distributed knowledge community have also conducted extensive re-
search into how one agent reasons about its beliefs about other agents (and their beliefs).
Fagin and Vardi (1986) present a multiagent modal logic where knowledge modalities are
indexed by agent names. They provide a semantics for message passing in such an environ-
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ment. However, their work is quite different from ours.

Conclusions

We have seen that the operating principles governing how an agent acts, may, in many
applications, be based upon the agent’s beliefs about other agents’ states, beliefs, and pos-
sible courses of actions. In order to effectively support such applications, we have proposed
the notions of belief tables, and belief semantics tables, culminating in the definition of
a Meta Agent Program, or map. We have shown that our map framework is rich enough
to encode fairly complex meta-reasoning needs, such as those arising in the context of the
RAMP example.

We have developed a formal semantics for maps—in particular, if a particular map BP is
associated with an agent a, and the current state of the agent is Og, then we have indicated
what constitutes a feasible belief status set. Such a set indicates not only what the agent’s
permitted, obligatory and forbidden actions are, but also specifies what the agent believes to
be the permitted, obligatory and forbidden actions of other agents are. We have then refined
the concept of a feasible belief status set to two more fine grained semantics—namely the
rational belief status set semantics, and the reasonable belief status set semantics.

Finally, we have provided a transformation that takes as input, a map and converts it
into an ordinary agent program, together with a slightly modified version of the integrity
constraints and object state. The feasible (resp. rational, reasonable) belief status sets of the
map are shown to be in a one-one correspondence with the belief-free feasible (resp. rational,
reasonable) status sets of the transformed agent progam with modified integrity constraints
and object state. This result is nontrivial, and makes it possible to implement maps through
a computation engine for feasible (resp. rational, reasonable) status sets of agent programs.
We have currently developed a preliminary implementation of a computation engine for
agent programs, and are currently refining it. Some sample screendumps of this engine may
be seen at the following .

As beliefs that an agent a may hold about another agent b may be uncertain, we are
currently extending the current work on maps to handle probabilistic modes of uncertainty.
We are also extending maps so that agent a can estimate what agent b may do in the future,
and to reason about how agent b’s beliefs may evolve in the future.
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A Agent Programs without Beliefs

A.1 Feasible, Rational and Reasonable Semantics

A.1 Definition (Status Set)
A status set is any set S of ground action status atoms over §. For any operator Op €

{P,Do,F,0, W}, we denote by Op(S) the set Op(S) = {a | Op(«a) € S}.

A.2 Definition (Deontic and Action Consistency)
A status set S is called deontically consistent, if, by definition, it satisfies the following
rules for any ground action «:

e IfOa €S, then Wa ¢ S
e IfPac S, then Fa ¢ S

e If Pa € S, then Os |= 3*Pre(a), where 3*Pre(a) denotes the existential closure of
Pre(a), i.e., all free variables in Pre(«) are governed by an existential quantifier. This
condition means that the action « is in fact executable in the state Og.

A status set S is called action consistent, if S, Os = AC holds.
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Besides consistency, we also wish that the presence of certain atoms in S entails the
presence of other atoms in S. For example, if O« is in S, then we expect that P« is also in
S, and if O« is in S, then we would like to have Do« in §. This is captured by the concept
of deontic and action closure.

A.3 Definition (Deontic and Action Closure)
The deontic closure of a status S, denoted D-C1(S), is the closure of S under the rule

If Oa € S, then Pa e S

where « is any ground action. We say that S is deontically closed, if S = D-C1(S) holds.

The action closure of a status set S, denoted A-CI1(S), is the closure of S under the
rules

If Ox € S, then Doa € S
If Doa € S, then Pa € S

where « is any ground action. We say that a status S is action-closed, if S = A-CI(S)
holds.

The following straightforward results shows that status sets that are action-closed are also
deontically closed, i.e.

A.4 Definition (Operator Appp o,(S5))

Suppose P is an agent program, and Og is an agent state. Then, Appp 04(S) is defined
to be the set of all ground action status atoms A such that there exists a rule in P having
a ground instance of the formr : A < Ly,... , L, such that

1. BJ,(r) C S and —.B,,(r) NS =0, and
2. every code call x € B} (r) succeeds in Og, and
3. every code call x € =.B_.(r) does not succeed in Og, and

4. for every atom Op(a) € Bt (r) U {A} such that Op € {P,0,Do}, the action « is
executable in state Og.

Note that part (4) of the above definition only applies to the “positive” modes P, O, Do.
It does not apply to atoms of the form F« as such actions are not executed, nor does it apply
to atoms of the form W, because execution of an action might be (vacuously) waived, if
its prerequisites are not fulfilled.

Our approach is to base the semantics of agent programs on consistent and closed status
sets. However, we have to take into account the rules of the program as well as integrity
constraints. This leads us to the notion of a feasible status set.

A.5 Definition (Feasible Status Set)
Let P be an agent program and let Os be an agent state. Then, a status set S is a feasible
status set for P on Og, if the following conditions hold:
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(S1): (closure under the program rules) Appp os(S) CS;
(S2) (deontic and action consistency) S is deontically and action consistent;
(S3) (deontic and action closure) S is action closed and deontically closed;

(S4) (state consistency) O% = ZC, where O = apply(Do(S),Os) is the state which
results after taking all actions in Do(S) on the state Os.

A.6 Definition (Groundedness; Rational Status Set)
A status set S is grounded, if there exists no status set S’ # S such that S’ C S and S’
satisfies conditions (S1)—(S3) of a feasible status set.

A status set S is a rational status set, if S is a feasible status set and S is grounded.

A.7 Definition (Reasonable Status Set)
Let P be an agent program, let Os be an agent state, and let S be a status set.

1. If'P is a positive agent program, then S is a reasonable status set for P on Og, if and
only if S is a rational status set for P on Os.

2. The reduct of P w.r.t. S and Og, denoted by red®(P,Os), is the program which is
obtained from the ground instances of the rules in P over Og as follows.

(a) First, remove every rule r such that B,,(r) NS # 0;

(b) Remove all atoms in Bg,(r) from the remaining rules.

Then S is a reasonable status set for P w.r.t. Og, if it is a reasonable status set of
the program red® (P, Os) with respect to Os.

B Agents in RAMP

B.1 Helicopter Agent

B.1.1 Code Calls

1. Change flying altitude to Altitude (0 to Maximum altitude):
Heli: SetAltitude(Altitude) — Boolean

2. Get current altitude:
Heli: GetAltitude(now) — Altitude

3. Change flying speed to Speed (0 to Maximum speed):
Heli: SetSpeed (Speed) — Boolean

4. Get current speed:
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Heli: GetSpeed (now) — Speed
5. Change flying heading to Heading (0 to 360):
Heli: SetHeading(Heading) — Boolean
6. Get current heading:
Heli: GetHeading(now) — Heading
7. Aim the gun at the 3D point given by Position:
Heli: Aim(Position) — Boolean
8. Fire the gun using the current aim:
Heli: Fire(now) — Boolean
9. Determine the current position in space:
Heli: GetPosition(now) — 3DPoint
10. Compute heading to fly from 2D point Src to 2D point Dst:
Heli: ComputeHeading(Src,Dst) — Heading)
11. Compute the distance between two 3D points:
Heli: ComputeDistance(X,Y) — Distance
12. Retrieve the maximum range for the gun:

Heli: GetMaxGunRange(now) — Distance

B.1.2 Actions
1. Fly from 3D point From to 3D point To at altitude Altitude and speed Speed

Fly(From ,To ,Altitude ,Speed)

Pre(Fly): in(From, Heli: GetPosition(now))
Del(Fly): in(From, Heli: GetPosition(now))
Add(Fly): in(To, Heli: GetPosition(now + 1))

2. FlyRoute(path) Path given as a sequence of triples consisting of: a 3D point, altitude,
and speed

FlyRoute (Path)

Pre(FlyRoute): in(Path(0).Position, Heli: GetPosition(now))
Del(FlyRoute): in(Path(0).Position, Heli: GetPosition(now))
Add(FlyRoute): in(Path(Path.Count).Position, Heli: GetPosition(now + 1))
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3. Attack vehicle at position Position in space

Attack (Position)

Pre(Attack): in(MyPosition, Heli: GetPosition(now)) &
in(Distance, Heli: ComputeDistance(MyPosition, Position,now)) &
in(MaxRange, Heli: GetMazGunRange(now)) &
Distance < MaxRange

Del(Attack): {}

Add(Attack): {}

B.1.3 Integrity Constraints

in(S, Heli: GetSpeed (now)) & S < MaxSpeed
in(A, Heli: GetAltitude(now)) & A < MaxAltitude

B.1.4 Action Constraints

{ Fly(x1,Y1,A1,81), Fly(X2,Y2,A2,52)}
<~ X1 !=X2 0r Y1 !=Y2 Or A1l != A2 Or S1 != S2
{ Attack(P)} < in(P, Heli: GetPosition(now))

B.2 Tank Agent

B.2.1 Code Calls

1. Drive forward at speed Speed (0 to Max speed)
Tank: GoForward (Speed) — Boolean

2. Drive backward at speed Speed (0 to Max speed)
Tank: GoBackward (Speed)

3. Turn left by Degrees degrees (0 to 360)
Tank: TurnLeft(Degrees)

4. Turn right by Degrees degrees (0 to 360)
Tank: TurnRight(Degrees)

5. Determine current position in 2D

Tank: GetPosition(now) — 2DPoint

6. Get current heading
Tank: GetHeading(now) — Heading

7. Aim the gun at 3D point Point

Tank: Aim(Point) — Boolean

ol



8. Fire the gun using the current aim

Tank: Fire(now) — Boolean

9. Compute the distance between two 2D points

Tank: ComputeDistance(X)Y — Distance

10. Retrieve the maximum range for the gun

Tank: GetMarGunRange(now) — Distance

B.2.2 Actions
1. Drive from to 2D point From to 2D point To at speed Speed

Drive (From,To,Speed)

Pre(Drive): in(From, Tank: GetPosition(now))
Del(Drive): in(From, Tank: GetPosition(now))
Add(Drive): in(To, Tank: GetPosition(now + 1))

2. Drive route Route given as a sequence of 2D points at speed Speed

DriveRoute (Route, Speed)

Pre(DriveRoute): in(Route(0).Position, Tank: GetPosition(now))
Del(DriveRoute): in(Route(0).Position, Tank: GetPosition(now))
Add(DriveRoute): in(Route(Route.Count).Position, Tank: GetPosition(now + 1))

3. Attack vehicle at position Position in space
Attack (Position)
Pre(Attack): in(MyPosition, Tank: GetPosition(now)) &
in(Distance, Tank: ComputeDistance(MyPosition, Position,now)) &
in(MaxRange, Tank: GetMazGunRange(now)) &
Distance < MaxRange

Del(Attack): {}
Add(Attack): {}

B.3 Terrain Route Planning Agent

B.3.1 Code Calls

1. Sets current map to Map
Route: UseMap(Map) — Bool
2. Compute a route plan on the current map for a vehicle of type VehicleType from

SourcePoint to DestinationPoint given in 2D. Returns a route plan as a sequence
of points in plane.
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Route: GetPlan(SourcePoint,DestinationPoint, VehicleType)
— Sequence0f2DPoints

3. Given SourcePoint and DestinationPoint on the current map, determine the likely
routes of a vehicle of type VehicleType whose initial route segment is Route, given
as a sequence of points in the plane It returns a sequence of route-probability pairs.

Route : GroundPlan (SourcePoint,DestinationPoint, VehicleType, Route)
— (Route,Probability)

4. Compute a flight plan on the current map from SourcePoint to DestinationPoint
given in 3D. Returns a flight plan as a sequence of points in space

Route: FlightPlan(SourcePoint,DestinationPoint)
— Sequence0f3DPoints

5. Determines whether two points are visible from each other on the given map. For
example if a hill lies between the two points, they are not visible from each other.
This is useful to determine whether an agent can see another agent or whether an
agent can fire upon another agent.

Route: Visible(Map,Pointl,Point2) — Boolean

B.3.2 Actions

1. Compute a route plan on map Map for a vehicle of type VehicleType from SourcePoint
to DestinationPoint given in 2D.

PlanRoute (Map, SourcePoint ,DestinationPoint,VehicleType)
Pre(PlanRoute): SourcePoint != DestinationPoint
Del(PlanRoute): {}
Add(PlanRoute): in(true, Route: UseMap(Map,now)) &
in(Plan, Route: GetPlan(SourcePoint,DestinationPoint,VehicleType,now))

2. Given SourcePoint and DestinationPoint on map Map determine the likely routes
of a vehicle of type VehicleType whose initial route segment is Route, given as a
sequence of points in the plane

Evaluate GroundPlan (Map,SourcePoint ,DestinationPoint,VehicleType,Route)
Pre(EvaluateGroundPlan): SourcePoint != DestinationPoint
Del(EvaluateGroundPlan): {}
Add(EvaluateGroundPlan): in(true, Route: UseMap(Map,now)) &

in(RP, Route : GroundPlan(SourcePoint,DestinationPoint, VehicleType, Route, now))

3. Compute a flight plan on map Map from SourcePoint to DestinationPoint given
in 3D.

PlanFlight (Map,SourcePoint ,DestinationPoint)
Pre(PlanFlight): SourcePoint != DestinationPoint
Del(PlanFlight): {}
Add(PlanFlight): in(true, Route: UseMap(Map,now)) &
in(Plan, Route: FlightPlan(SourcePoint,DestinationPoint,now))
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B.4 Tracking Agent

This agent continuously scans the area for enemy vehicles. It maintains a list of enemy
vehicles, assigning each an agent id. It tries to determine the vehicle type for each enemy
vehicle. When it detects a new vehicle, it adds it to its list, together with its position. Since
the tracking agent only keeps track of enemy vehicles which are on the ground, the position
is in the plane. This could be for example an AWACS plane.

B.4.1 Code Calls

1. Get position for agent with id AgentId at time Time If time is in the past this is
done by searching the database. If time is in the future this is done by guessing the
position.

Track: GetPosition(AgentId, Time) — 2DPoint

2. Get the type of agent for agent with id AgentId. It returns the most likely vehicle
type together with the probability

Track: GetTypeOfAgent(AgentId) — (VehicleType,Probability)
3. Return the list of all agents being tracked

Track: GetListOfAgents(now) — ListOfAgentIdsF

B.5 Coordination Agent

B.5.1 Code Calls

1. Determine wether a vehicle of type VehicleTypel at position Positionl can attack
a vehicle of type VehicleType2 at position Position2. For example a tank is not
able to attack a fighter plane unless it is on the ground.

Coord: CanBeAttackedNow((VehicleTypel,Positionl, VehicleType2, Position2))

— Boolean

2. Given an agent id for an enemy vehicle, determine the best position, time and route
for an attack to be successful. Also return the estimated probability of success

Coord: FindAttackTimeAndPosition(AgentId)
— (Position,Time,Route,Probability)

3. Given a set of ids for friendly agents, compute a plan for a coordinated attack against
the enemy agent with id EnemyId. The friendly agents participating in the coordinated
attack are taken from the set SetO0fAgentIds

Coord: CoordinatedAttack ((SetOfAgentIds, EnemyId))
— AttackPlan
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B.5.2 Actions

1. Given a set of ids for friendly agents, compute a plan for a coordinated attack against
the enemy agent with id EnemyId. The friendly agents participating in the coordinated
attack are taken from the set SetOfAgentIds.

Attack (Set0fAgentIds,EnemyId)

Pre(Attack): SetOfAgentIds != {}

Del(Attack): {}

Add(Attack): in(AP, Coord: CoordinatedAttack ((SetOfAgentIds, EnemyId, now)))
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