
Meta-Agent ProgramsJ�urgen Dix� V.S. Subrahmaniany George PickzSeptember 9, 1998AbstractThere are numerous applications where one agent a needs to reason about the beliefsof another agent, as well as about the actions that other agents may take. Eiter, Sub-rahmanian, and Pick (1998) introduced the concept of an agent program, and provideda language within which the operating principles of an agent could be declarativelyencoded on top of imperative data structures. We �rst introduce certain belief datastructures that an agent needs to maintain. Then we introduce the concept of a MetaAgent Program (map), that extends the (Eiter, Subrahmanian, and Pick 1998) frame-work, so as to allow agents to peform metareasoning. We build a formal semantics formaps, and show how this semantics supports not just beliefs agent a may have aboutagent b's state, but also beliefs about agents b's beliefs about agent c's actions, beliefsabout b's beliefs about agent c's state, and so on. Finally, we provide a translationthat takes any map as input and converts it into an agent program such that there isa one-one correspondence between the semantics of the map and the semantics of theresulting agent program. This correspondence allows an implementation of maps to bebuilt on top of an implementation of agent programs.1 IntroductionOver the last few years, there has been tremendous interest in the area of intelligent softwareagents. Such agents provide a wide range of services, ranging from providing data mediationagents (Bayardo et. al. 1997; Arens, Chee, Hsu, and Knoblock 1993; Brink, Marcus,and Subrahmanian 1995; Lu, Nerode, and Subrahmanian 1996; Chawathe, Garcia-Molina,Hammer, Ireland, Papakonstantinou, Ullman, and Widom 1994), to mobile agents (Rus,Gray, and Kotz 1997), to personalized visualization agents (Candan, Prabhakaran, andSubrahmanian 1996; Ishizaki 1997), to agents that monitor newspapers, prioritize mailbu�ers and the like (Goldberg, Nichols, Oki, and Terry 1992; Foltz and Dumais 1992; Sta1993; Sheth and Maes 1993).�University of Koblenz-Landau, Dept. of Computer Science, Rheinau 1, D-56075 Koblenz, Germany.E-mail: dix@informatik.uni-koblenz.de.yInstitute for Advanced Computer Studies, Institute for Systems Research and Department of ComputerScience, University of Maryland, College Park, Maryland 20742. E-mail: vs@cs.umd.eduzDepartment of Computer Science, University of Maryland, College Park, Maryland 20742. E-mail:george@cs.umd.edu 1

Most such existing work on agents subscribes to the view that agents should be au-tonomous, and that such autonomous agents should behave according to a clearly articu-lated set of operating principles. These operating principles allow agents to take actionsthat change the state of the agent in accordance with the operating principles (Rosenschein(1985), Rosenschein and Kaelbling (1995)). Declarative languages to encode such operatingprinciples were proposed by Shoham(Shoham 1993) and Hindriks, de Boer, van der Hoek,and Meyer (1997). Recently, Eiter, Subrahmanian, and Pick (1998) have proposed a notionof an Agent Program and shown how agent programs can be layered on top of arbitrarydata structures. This allows the creator of an agent to agentize existing bodies of softwarecode by \adding on" such operating principles on top of the code.
b

ca

Figure 1: Autonomous VehicleIn general, in many multiagent applications, an agent needs to be able to reason aboutother agents. Consider, for example, a simple autonomous vehicle a driving in the left laneof a highway, with another vehicle in the right lane, as shown in Figure 1. Vehicle b is inthe right lane, slightly ahead of Vehicle a.� Vehicle a may believe that vehicle b's turn signal is malfunctioning. This belief maywell be incorrect.� Vehicle a may also believe that vehicle b is imminently going to cut in front of it.Based on these two beliefs|the �rst which is about the state of vehicle b, while the secondis about the actions of vehicle b|vehicle a may decide to slow down by either depressingthe brake or easing up on the accelerator. Of course, things can get even more complex|forexample, vehicle a may believe that vehicle b believes that vehicle c is about to shift to theright lane, etc.In general, this very simple, everyday example shows that one agent may need to reasonabout other agents' state, beliefs, and potential actions. In most existing agent languagessuch as (Shoham 1993; Hindriks, de Boer, van der Hoek, and Meyer 1997; Eiter, Subrah-manian, and Pick 1998), the notion of an agent state is general enough to include almostanything. However, the speci�c needs of agents such as vehicle a in the above discussion,are not addressed, and in particular, it is assumed that beliefs will somehow be encodedinto the very general notion of state. Our aim in this paper is to precisely show how thiscan be done, and we go about it in the following way:� In Section 2, we present a compelling motivating example, that requires meta-reasoningcapabilities. 2

� This paper forms part of the IMPACT (Interactive Maryland Platform for AgentsCollaborating Together) project (Arisha, Kraus, Ozcan, Ross, and V.S.Subrahmanian1997; Eiter, Subrahmanian, and Pick 1998; Bonatti, Kraus, Salinas, and Subrahma-nian 1998). In Section 3, we brie
y overview the basic architecture of our IMPACTsystem, and quickly describe the decision making framework of (Eiter, Subrahmanian,and Pick 1998).� The new contributions of this paper start with Section 4. Here, we note that di�erentagents may wish to reason about beliefs in di�erent ways. Some may be contentwith reasoning about their beliefs about other agents, instead of their beliefs aboutthe beliefs of other agents, and so on. We propose a hierarchy of belief languages,building on top of arbitrary data structures that embody the state of an agent. Wethen propose two speci�c data structures for managing an agent's beliefs|a belieftable, and a belief semantics table. These are accompanied by corresponding operatorsto manipulate these tables. We then introduce the important notion of a Meta AgentProgram (map, for short).� In Section 5, we study the semantics of maps. We propose a notion of a feasible beliefstatus set. Intuitively, a set of beliefs that satis�es these feasibility requirements isone that a \sensible" agent could hold. We re�ne this semantics to two �ner grainedsemantics|namely rational belief status sets, and reasonable belief status sets, bothof which satisfy additional epistemic requirements.� In Section 6, we provide a transformation that takes any map, and converts it into anordinary agent program, together with some integrity constraints, as de�ned by Eiter,Subrahmanian, and Pick (1998). A somewhat complex result shows that the feasible(resp. rational, reasonable) belief status sets of the map are in one-one correspondencewith the feasible (resp. rational, reasonable) status sets (without beliefs) of the agentprogram + integrity constraints generated by the transformation. As techniques toimplement agent programs have been undergoing concurrent development (see http://www.cs.umd.edu/~vs/agent/impact.html for selected screendumps), this meansthat once this transformation is implemented, maps can be computed in much thesame way as agent programs' feasible, rational, and reasonable status sets.2 Motivation: Route and Maneuver Planning (RAMP)We are building an application to conduct distributed simulations involving route and ma-neuver planning over free terrain (RAMP). A simpli�ed version of the RAMP applicationthat deals with meta-reasoning by agents is described below. This example will provide aunifying theme throughout this paper, and will be used to illustrate the various de�nitionswe introduce.The RAMP application involves tracking enemy vehicles on the battle�eld, and attempt-ing to predict what these enemy agents are likely to do in the future, based on metaknowl-edge that we have about them. RAMP is intended to be used in training and simulatione�orts, rather than being deployed on the battle�eld. RAMP involves the following agents.A set of enemy vehicle agents: These agents move across free terrain, and their motion3

is generated by a program that the other agents listed below do not have access to(though they may have beliefs about this program).A terrain route planning agent, which reasons with terrain maps stored in the form ofDigital Terrain Elevation Data (DTED). The terrain route planning agent takes asinput, any DTED map, together with two points on this map, a vehicle type, andplans an optimal route from the �rst to the second point for the speci�ed vehicletype. It also provides a
ight path computation service for helicopters, through whichit plans a
ight, given an origin, a destination, and a set of constraints specifying theheight at which the helicopters wish to
y. The terrain route planning agent is builton top of an existing US ARMY Route planning software package developed at theTopographic and Engineering Center (Benton and Subrahmanian 1994).A tracking agent, which takes as input, a DTED map, an id assigned to an enemyagent, and a time point, and produces as output, the location of the enemy agent atthe given point in time (if known) as well as its best guess of what kind of the enemyagent is.A coordination agent, that keeps track of current friendly assets. This agent receivesinput and ships requests to the other agents with a view to determining exactly whattarget(s) the enemy columns may be attempting to strike, as well as determininghow to nullify the oncoming convoy. The situation is complicated by the fact thatthe agent may have a hard time determining what the intended attack target is. Itmay be further complicated by uncertainty about what kind of vehicle the enemy isusing|depending upon the type of vehicle used, di�erent routes may be designatedas optimal by the terrain route planning agent.A set of helicopter agents, that may receive instructions from the coordination agentabout when and where to attack the enemy vehicles. When such instructions arereceived, the helicopter agents contact the terrain route planning agent, and requesta
ight path. Such a
ight path uses terrain elevation information (to ensure that thehelicopter does not
y into the side of a mountain).The aim of all agents above (except for the enemy agents) is to attack and nullify theenemy attacking force. To do this, the coordination agent sends requests for informationand analyses to the other friendly agents, as well as instructions to them specifying actionsthey must take. It is important to note that the coordination agent's actions are based onits beliefs about what the enemy is likely to do. These beliefs include:� Beliefs about the type of enemy vehicle type. Each enemy vehicle has an associatedtype|for example, one vehicle may be a T-80 tank, the other may be a T-72 tank.However, the coordination agent may not precisely know the type of a given enemyvehicle, due to inaccurate and/or uncertain identi�cation made by the sensing agent.At any point in time, it holds some beliefs about the identity of enemy vehicle.� Beliefs about intentions of enemy vehicle. The coordination agent must try to guesswhat the enemy's target is. Suppose the tracking agent starts tracking a given enemyagent at time t0, and the current time is tnow. Then the tracking agent can provideinformation about the location of this agent at each instant between time t0 and time4

tnow. Let `i denote the location of one such enemy agent at time ti, 0 � i � now. Thecoordination agent believes that the enemy agent is trying to target one of its assetsA1; : : : ; Ak, but does not know which one. It may ask the terrain route planning agentto plan a route from `0 to each of the locations of A1; : : : ; Ak, and may decide thatthe intended target is the location whose associated route most closely matches theobserved initial route taken by the enemy agent between times t0 and tnow.� Changing beliefs with time. As the enemy agent continues along its route, the coor-dination agent may be forced to revise its beliefs, as it becomes apparent that theactual route being taken by the enemy vehicle is inconsistent with the expected route.Furthermore, as time proceeds, sensing data provided by the tracking agent may causethe coordination agent to revise its beliefs about the enemy vehicle type. As the routeplanning agent plans routes based on the type of enemy vehicle being considered, thismay cause changes in the predictions made by the terrain planning agent.� Beliefs about the enemy agent's reasoning. The coordination agent may also holdsome beliefs about the enemy agents' reasoning capabilities (see the Belief-SemanticsTable in De�nition 4.7 on page 19). For instance, with a relatively unsophisticatedand disorganized enemy whose command and control facilities have been destroyed,it may believe that the enemy does not know what moves friendly forces are making.However, in the case of an enemy with viable/strong operational command and controlfacilities, it may believe that the enemy does have information on the moves made byfriendly forces|in this case, additional actions to mislead the enemy may be required.A detailed description of all agents and their actions will be given in the Appendix B.3 PreliminariesFor the rest of the paper we denote by A a �nite set whose elements are called agents. Eachagent a 2 A is built on top of a body of software code (built in any programming language)that supports a well de�ned application programmer interface (either part of the code itself,or developed to augment the code). In general, we will assume that the piece of softwareSa associated with an agent a 2 A is represented by a pair Sa = (T aS ;FaS) where:� T aS is the set of all data types manipulated by the software package Sa.� FaS is the set of all pre-de�ned functions of the package Sa that are provided by thepackage's application programmer interface.When we are referring to the code associated with a �xed agent a, we will often drop thesuperscript a above.This characterization of a piece of software code is a well accepted and widely usedspeci�cation. For example, the Object Data Management Group's ODMG standard (Cattellet.al. 1997) and the CORBA framework (Siegal 1996) are existing industry standardsconsistent with this speci�cation. 5

In our framework, agents will be built on top of a body of code (either legacy code,or specially developed code) satisfying the above de�nitions. Each agent has a messagebox (which will be discussed later in Example 3.8 on page 11) having a well de�ned setof associated code calls that can be invoked by external programs. Each agent has somemetaknowledge about itself, as well as about other agents, re
ecting its beliefs about thedata possessed by other agents, the mechanism that other agents use to act, and the ca-pabilities of other agents. Each agent has a security module that speci�es the agent'sassociated security mechanisms, if any|the security module of our system is described indetail in (Bonatti, Kraus, Salinas, and Subrahmanian 1998).The state of an agent, at any given point t in time, consists of the set of all instantiateddata objects of types contained in T aS , as well as the contents of the metaknowledge moduleand the security module.Each agent has an action-base consisting of a description of the various actions thatthe agent is capable of executing. Actions change the state of the agent and perhaps thestate of other agents' msgboxes. Each agent has an associated set of integrity constraints|only states that satisfy these constraints are considered to be valid or legal states. Eachagent has an associated set of action constraints that de�ne the circumstances under whichcertain actions may be concurrently executed. As at any given point t in time, many setsof actions may be concurrently executable, each agent has a Meta-Agent Program (map forshort and denoted by BP), to be introduced in De�nition 4.13 on page 24, that determineswhat actions the agent can take, what actions the agent cannot take, and what actions theagent must take. The map associated with an agent is a declarative speci�cation of theagents' decision policies.Figure 2 on the next page shows the di�erent components of an agent, together withinformation on the
ow of data/actions between them. The shaded components of this�gure show objects whose contents jointly describe the state of the agent. The primary aimof this paper is to describe the meta-knowledge component of an agent's state, as well asthe notion of a meta-agent program based on meta-knowledge.3.1 Code Calls and Code Call AtomsSuppose we consider a body S = (TS ;FS) of software code. Given any type � 2 TS , wewill assume that there is a set V ar(�) of variable symbols ranging over � . If X 2 V ar(�)is such a variable symbol, and if � is a complex record type having �elds f1; : : : ; fn, thenwe require that X:fi be a variable of type �i where �i is the type of �eld fi. In the samevein, if fi itself has a sub-�eld g of type
, then X:fi:g is a variable of type
, and so on. Insuch a case, we will call X a root-variable, and the variables X:fi, X:fi:g, etc. path-variables.For any path variable Y of the form X:path, where X is a root variable, we refer to X as theroot of Y, denoted by root(Y); for technical convenience, root(X), where X is a root variable,refers to itself.3.1 De�nition (Code Call cc)Suppose S = (TS ;FS) is some software code and f 2 F is a prede�ned function withn arguments, and d1; : : : ; dn are objects or variables such that each di respects the typerequirements of the i'th argument of f . Then S : f (d1; : : : ; dn) is called a code call. A codecall is ground, if all the di's are objects. 6

�������
�������
�������

�������
�������
�������

����
����
����

����
����
����

��
��
��
��

Belief Structures

Meta-Agent Program

Security
Component

Action Constr.

Action Base

Integrity Constr

Msgbox

Software Implementation

data objects

messages from
external agents

NETWORK

Component which is
part of agent state

New contribution of
this paper

LEGEND:

Figure 2: Overall ArchitectureIn general, as we will see later, code calls are executable when they are ground. Thus,non-ground code calls must be instantiated prior to attempts to execute them.In general, each function f 2 F has a signature, specifying the types of inputs it takes,and the types of outputs it returns. Here are some examples of code calls that are used inthe RAMP example:� Heli : SetAltitude(Alt) ! Bool.This code call sets helicopter altitude to Alt. It returns true if it succeeds, otherwiseit returns false.� Tank :GetPosition(now) ! 2DPoint.This code call determines the current position of the tank.� Route :FlightPlan(SourcePoint; DestinationPoint) ! SequenceOf3DPoints.This code call creates a
ight plan from point SourcePoint to point DestinationPoint.It returns the plan as a sequence of 3D points.� Track :GetTypeOfAgent(AgentId) ! (VehicleType; Probability).This code call determines the type of a vehicular agent whose id is AgentId. It alsoreturns a number, denoting the probability that the identi�cation is current.� Coord :FindAttackTimeAndPosition(AgentId) ! (Position; Time; Route; Probability).7

This code call tries to create a plan to attack agent with id AgentId. The plan isreturned as a position, a time point, a route to get there and the probability that thedetermination was correct.3.2 De�nition (Code Call Atom in(X; cc))If cc is a code call, and X is either a variable symbol, or an object of the output type of cc,then in(X; cc) and not in(X; cc) are code call atoms.3.3 De�nition (Code Call Condition �)A code call condition � is de�ned as follows:1. Every code call atom is a code call condition.2. If s; t are either variables or objects, then s = t is a code call condition.3. If s; t are either integers/real valued objects, or are variables over the integers/reals,then s < t; s > t; s � t; s � t are code call conditions.4. If �1; �2 are code call conditions, then �1&�2 is a code call condition.A code call condition satisfying any of the �rst three criteria above is an atomic code callcondition.The following is an atomic code call condition. It is satis�ed if the position pos isthe current position for the tank agent: in(pos; Tank :GetPosition(now)). Here is a morecomplex code call condition.in(P2;Heli :GetPosition(now)) &in(D;Heli :ComputeDistance(P1; P2)) &in(R;Heli :GetMaxGunRange(now)) &D < RIf P1 is instantiated, then this code call attempts to check if the helicopter is within �ringrange of an enemy site located at P1.3.4 De�nition (Safe Code Call)A code call S : f (d1; : : : ; dn) is safe if, by de�nition, each di is ground. A code call condition�1& : : :&�n, n � 1 is safe, if, by de�nition, there exists a permutation � of �1; : : : ; �nsuch that for every i = 1; : : : ; n the following holds:1. If ��(i) has the form s = t or s < t, s � t , s > t, s � t, then one of s, t (or both)is either a constant or one of the X�(j)'s for j < i; let X�(i) denote a possible newvariable;2. If ��(i) is a code call atom in(X�(i); cc�(i)) or not in(X�(i); cc�(i)), then for eachvariable Y occurring in cc�(i), root(Y) is from the set froot(X�(j)) j j < ig.It is easily seen that the code call condition immediately preceding this de�nition is notsafe. The reason for this is that the variable P1 is not instantiated by any of the in atoms.Had P1 been replaced with a ground term, then the above code call condition would havebeen safe. 8

3.2 Integrity Constraints ICIn addition to code-calls, each agent also has an associated set of Integrity Constraints.Agent integrity constraints specify properties that states of the agent must satisfy.3.5 De�nition (Integrity Constraints IC)An integrity constraint is an expression of the form) �where is a safe code call condition, and � is an atomic code call condition such that everyroot variable in � occurs in . A set of integrity constraints is denoted by IC.Here are two examples:) in(S; Tank :GetSpeed (now)) & S < MaxSpeed) in(A;Heli :GetAltitude(now)) & A < MaxAltitudeThe �rst integrity constraint says that a tank's speed can never exceed its maximum speed,while the second says that a helicopter's altitude can never exceed its maximum
yingaltitude. In both the above examples, the component of the integrity constraint is empty.3.3 ActionsEvery agent's actions are completely determined by three parameters that the individualcreating the agent must specify:AB: an Action Base, specifying a set of actions that the agent can execute (under theright conditions),AC: a set of Action Constraints that specify, for example, mutual exclusion betweenactions, etc.P: aAgent Program that determines which of the (instances of) actions in the agent basethe agent is obligated, permitted, or forbidden to execute, together with a mechanismto actually determine what actions will be taken.3.3.1 Action Base ABIn this section, we will introduce the concept of an action and describe how the e�ects ofactions are implemented.3.6 De�nition (Action; Action Atom)An action � consists of �ve components:Name: usually written �(X1; : : : ; Xn), where the Xi's are root variables.9

Schema: usually written as (�1; : : : ; �n), of types. Intuitively, this says that the variableXi must be of type �i, for all 1 � i � n.Pre(�): A code-call condition �, called the precondition of the action.Add(�): A set Add (�) of code-call conditions.Del(�): A set Del(�) of code-call conditions.The precondition Pre(�) must be safe modulo the variables X1, : : : ,Xn. This meansthat Pre(�) is a safe code-call condition if every variable Y in Pre(�) such that root(Y) 2fXi j 1 � i � ng were considered as an instantiated object (constant) from the domain.Furthermore, every code-call condition � in Add(�) [Del(�) must be safe modulo theunion of X1; : : : ; Xn and the root variables Y1; : : : ; Ym occurring in Pre(�), i.e., it is safe ifevery variable Y in � such that root(Y) 2 fX1 : : : ; Xn; Y1; : : : ; Ymg were considered as thoughit were a constant.An action atom is a formula �(t1; : : : ; tn), where ti is a term, i.e., an object or a variable,of type �i, for all i = 1; : : : ; n.Let us now consider some examples of action and their associated descriptions in thecase of the RAMP example described at the beginning of this paper.3.7 Example (Some Actions of RAMP Agents)We describe some actions of the Helicopter-, Tank-, Route- and Coordination-Agents:Helicopter Agent:Fly(From ,To ,Altitude ,Speed)Pre: in(From;Heli :GetPosition(now))Del: in(From;Heli :GetPosition(now))Add: in(To;Heli :GetPosition(now+ 1))Tank Agent:Drive(From ,To ,Speed)Pre: in(From; Tank :GetPosition(now))Del: in(From; Tank :GetPosition(now))Add: in(To; Tank :GetPosition(now+ 1))Route Agent:PlanRoute(Map ,SourcePoint ,DestinationPoint ,VehicleType)Pre: SourcePoint 6= DestinationPointDel: fgAdd: in(true; Route :UseMap(Map; now)) &in(Plan; Route :GetPlan(SourcePoint; DestinationPoint; VehicleType; now))Coordination Agent: 10

Attack(SetOfAgentIds ,EnemyId)Pre: SetOfAgentIds 6= fgDel: fgAdd: in(AP; Coord :CoordinatedAttack (SetOfAgentIds; EnemyId; now))3.8 Example (Message Box)Throughout this paper, we will assume that each agent's associated software code includesa special type called msgbox (short for message box). The message box is a bu�er thatmay be �lled (when it sends a message) or
ushed (when it reads the message) by theagent. In addition, we assume the existence of an operating-systems level messaging protocol(e.g. SOCKETS or TCP/IP (Wilder 1993)) that can �ll in (with incoming messages) or
ush(when a message is physically sent o�) this bu�er.We will assume that the agent has the following functions that are integral in managingthis message box. Note that over the years, we expect a wide variety of messaging languagesto be developed (examples of such messaging languages include KQML (Labrou and Finin1997) at a high level, and remote procedure calls at a much lower level). In order to providemaximal
exibility, we will merely specify below the core interface functions available onthe msgbox type. Note that this set of functions may be augmented by the addition of otherfunctions on an agent by agent basis.� SendMessage(<source agent>;<dest gent>;<message>): This causes a quintuple(o; "src"; "dest"; "message"; "time") to be placed in msgbox. The parameter o sig-ni�es an outgoing message. When a call of SendMessage("src"; "dest"; "message") isexecuted, the state of msgbox changes by the insertion of the above quintuple denot-ing the sending of a message from the source agent src to a given Destination agentdest involving the message body "message"; "time" denotes the time at which themessage was sent.� GetMessage(<src>): This causes a collection of quintuples(i; "src"; "agent"; "msg"; "time")to be read from msgbox. The i signi�es an incoming message. Note that all messagesfrom the given source to the agent agent whose message box is being examined,are returned by this operation. "time" denotes the time at which the message wasreceived.� TimedGetMessage(<op>;<valid>): This causes the collection of all quintuples tupof the form tup =def (i; <src>;<agent>;<message>; time) to be read from msgbox,such that the comparison tup:time op valid is true, where op is required to be any ofthe standard comparison operators <, >, �, �, or =.Agents interact with the external world through the msgbox code|in particular, externalagents may update agent a's msgbox, thus introducing new objects to agent a's state, andtriggering state changes which are not triggered by agent a.3.9 De�nition (Action Base AB)An action base, AB, is any �nite collection of actions.11

In (Eiter, Subrahmanian, and Pick 1998), three alternative de�nitions of concurrent exe-cution of actions are given. For one of those de�nitions, determining concurrent executabil-ity is polynomial time, for another it is NP-complete, and for the third, it is co-NP-complete.These complexities re
ect de�nitions that are increasingly epistemically satisfying. Ratherthan reinvent the wheel here, we will merely assume the existence of a predicate, conc exwhich takes four arguments|a set of ground action atoms, a precondition, an add-list, anda delete list. Intuitively, conc ex(Aset; Pre; Add; Del) means that the set, Aset of actionsis concurrently executable and the concurrent execution of the actions in Aset may beviewed as a single \composite" action with the speci�ed precondition, Pre(�), Add(�) andDel(�). In the event that the Aset is not concurrently executable, Pre(�) is set to thespecial condition false, re
ecting the fact that the \composite" action is un-executable.3.3.2 Action Constraints ACAn action constraint AC is an explicit statement saying that a given set of actions is notconcurrently executable if certain conditions are met.3.10 De�nition (Action Constraints AC)An action constraint AC has the syntactic form:f�1(~X1); : : : ; �k(~Xk)g - � (1)where �1(~X1); : : : ; �k(~Xk) are action names, and � is a code call condition.A set of action constraints is denoted by AC.The above constraint says that if condition � is true, then the actions �1(~X1); : : : ; �k(~Xk)are not concurrently executable.3.11 Example (Constraints for Fly and Attack)Here are two simple constraints for the Fly and the Attack predicate:fFly plane1(X1 ,Y1 ,A1 ,S1),Fly plane2(X2 ,Y2 ,A2 ,S2)g - Y1 =Y2fAttack(P)g - in(P;Heli :GetPosition(now))3.3.3 Agent ProgramsIn this section, we introduce the important concept of an agent program. Intuitively, agentprograms specify what an agent is obliged to do, what an agent is permitted to do, andwhat an agent is forbidden from doing. Agent programs provide a mechanism to encodethe intended behavior of an agent.3.12 De�nition (Action Status Atom)Suppose �(~t) is an action atom, where ~t is a vector of terms (variables or objects) matchingthe type schema of �. Then, the formulasP(�(~t)), F(�(~t)),O(�(~t)),W(�(~t)), andDo(�(~t))are action status atoms. The set fP;F;O; W;Dog is called the action status set.12

We will often abuse notation and omit parentheses in action status atoms, writing P�(~t)instead of P(�(~t)), and so on. An action status atom has the following intuitive meaning(a more detailed description of the precise reading of these atoms will be provided later inSubsection 5.2):� P� means that the agent is permitted to take action �;� F� means that the agent is forbidden from taking �;� O� means that the agent is obliged to take action �;� W� means that obligation to take action � is waived; and,� Do� means that the agent does take action �.Notice that the operators P;F;O; and W have been extensively studied in the area ofdeontic logic (Meyer and Wieringa 1993; �Aquist 1984). Moreover, the operator Do is inthe spirit of the \praxiological" operator EaA (Kanger 1972), which informally means that\agent a sees to it that A is the case" (Meyer and Wieringa 1993, p.292).3.13 De�nition (Action Rule)An action rule (rule, for short) is a clause r of the formA L1; : : : ; Ln (2)where A is an action status atom, and each of L1; : : : ; Ln is either an action status atom,or a code call atom, each of which may be preceded by a negation sign (:).We require that every root variable which occurs in the head A of a rule r and everyroot- or path-variable occurring in a negative atom also occurs in some positive atom in thebody (this is the well-known safety requirement on rules (Ullman 1989)).A rule r is to be understood as being implicitly universally quanti�ed over the variablesin it. A rule is called positive, if no negation sign occurs in front of an action status atomin its body.3.14 De�nition (Agent Program)An agent program P is a �nite collection of rules. An agent program P is positive, if all itsrules are positive.4 Belief Language and Data StructuresIn the following de�nition we introduce the most important notion, namely belief atoms.Belief atoms express the beliefs of one agent a about what holds in another agent's, say b's,state. They will be used later in De�nition 4.13 on page 24 to de�ne the notion of a metaagent program, which is central to this paper.When an agent a reasons about another agent b, it must have some beliefs about b'sunderlying action base (what actions can b take?), b's action program (how will b reason?)etc. These beliefs will be discussed later in more depth.13

In this section, we will describe the belief language that is used by IMPACT agents. Inparticular, our de�nitions proceed as follows:1. We �rst describe in Subsection 4.1 a hierarchy of belief languages of increasing com-plexity as we go \up" the hierarchy.2. We then de�ne in Subsection 4.2 an intermediate structure called a basic belief table.Intuitively, a basic belief table maintained by agent a contains information about thebeliefs a has about the states of other agents, as well as a itself. It also includes a'sbelief about action status atoms that are adopted by other agents.3. Each agent also has some beliefs about how other agents reason about beliefs. Asthe same syntactic language fragment can admit many di�erent semantics, the agentmaintains a Belief Semantics Table, describing its perceptions of the semantics usedby other agents to reason about beliefs (Subsection 4.3).4. We then extend in Subsection 4.4 the concept of a basic belief table to a belief table.Intuitively, a belief table is obtained by adding an extra column to the basic belieftable|the reason for separating these two de�nitions is that the new column may referto conditions on the columns of basic belief tables. Intuitively, belief tables containstatements of the form If condition � is true, then agent a believes where is acondition about some agent b's state, or about the actions that agent b might take.Is important to note that assuming additional datatypes as part of our underlying soft-ware package has strong implications on the possible code calls as introduced in De�ni-tion 3.2 on page 8: the more datatypes we have, the more types of code calls can beformulated in our language. We will introduce in De�nition 5.6 on page 28 a precise notionof the set of extended code calls.4.1 Belief Language HierarchyWe are now ready to start de�ning the beliefs that agent a may hold about the code callsagent b can perform. These code calls determine the code call conditions that may or maynot hold in agent b's state. Let us denote this by the belief atomBa(b; �)which represents one of the beliefs of agent a about what holds in the state of agent b.In that case, agent a must have beliefs about agent b's software package Sb: the code callcondition � has to be contained in Sb. We will collect all the beliefs that an agent a hasabout another agent b in a set �a(b) (see De�nition 5.5 on page 28).From now on we will refer to code call conditions satisfying the latter property ascompatible code call conditions. We will use the same term for action atoms: compatibleaction atoms of agent a with respect to agent b, are those in the action base that a believesagent b holds. We also assume that the structure of such an action contained in b's base (asbelieved by a) is de�ned in �a(b). This means that the schema, the set of preconditions,the add-list and the delete-list are uniquely determined.14

4.1 De�nition (Belief Atom/Literal, BAt1(a;b), BLit1(a;A))Let a;b be agents in A. Then we de�ne the set BAt1(a;b) of a-belief atoms about b oflevel 1 as follows:1. If � is a compatible code call condition of a with respect to b, then Ba(b; �) is a beliefatom.2. For M 2 fO;W;P;F;Dog: if M�(~t) is a compatible action atom of agent a withrespect to b, then Ba(b;M�(~t)) is a belief atom.If Ba(b; �) is a belief atom, then Ba(b; �) and :Ba(b; �) are called belief literals of level1, the corresponding set is denoted by BLit1(a;b).Let BAt1(a;A) =def [b2ABAt1(a;b) and BLit1(a;A) =def [b2ABLit1(a;b)be the set of all a-belief atoms (resp. belief literals) relative to A. This re
ects the ideathat agent a can have beliefs about many agents in A, not just about a single one.Here are a couple of belief atoms from our RAMP example:4.2 Example (Belief Atoms In RAMP)� BHeli1(Tank1; in(pos1; Tank1 :GetPosition(now)))This belief atom says that the agent, Heli1 believes that agent Tank1's current stateindicates that Tank1's current position is pos1.� BHeli1(Tank1;FAttack(now+ 1))This belief atom says that the agent, Heli1 believes that agent Tank1's current stateindicates that it is forbidden for Tank1 to attack in the next step.� BHeli3(Tank1; in(pos2; Tank1 :GetPosition(now)))This belief atom says that the agent, Heli3 believes that agent Tank1's current stateindicates that Tank1's current position is pos2.� BHeli3(Tank1;ODrive(pos1; pos2; 35))This belief atom says that the agent, Heli3 believes that agent Tank1's current statemakes it obligatory for Tank1 to drive from location pos1 to pos2 at 35 miles perhour.It is important to note that these are beliefs held by agents Heli1 and Heli3, respectively.Any of them could be an incorrect belief.Thus far, we have not allowed for nested beliefs. The language BLit1(a;A) does notallow agent a to have beliefs of the form \Agent b believes that agent c's state containscode call condition �", i.e. agent a cannot express beliefs it has about the beliefs of anotheragent.The next de�nition introduces nested beliefs and also a general belief language. Weintroduce the following notation: for a given set X of formulae and a set C of connectives,let ClC(X) be the closure of X under the connectives from C.15

4.3 De�nition (Nested Beliefs BLiti(a;b), Belief language BLai)In the following let a;b 2 A and C =def f&;:g. In accordance with De�nition 4.1 wedenote byBAt0(a;b) =def f� : � is a compatible code call condition or action atomgthe
at set of code call conditions or action atoms|no belief atoms are allowed. Further-more, we de�ne BL0(a;b) =def ClC(BAt0(a;b))BL1(a;b) =def ClC(BAt1(a;b));i.e. the set of formulae obtained by closing the set BAt0(a;b), resp. the set BAt1(a;b), underthe connectives in C.We call BLa0 =def ClC(Sb2A BL0(a;b))BLa1 =def ClC(Sb2A BL1(a;b))the belief languages of agent a of level 0, resp. of level 1. To de�ne nested belief literals weset for i > 1 BAti(a;b) =def fBa(b; �) : � 2 BAti�1(b;A)g:and correspondingly BLiti(a;b). BLiti(a;A) =def Sb2A BLiti(a;b) is called the set of beliefliterals of depth i. We also de�neBAt1(a;A) =def 1[i=0BAti(a;A); BLit1(a;A) =def 1[i=0BLiti(a;A):Now let BLi(a;b) =def ClC(BAti(a;b));and BLai =def ClC([b2ABLi(a;b)) (3)be the belief language of agent a of level i. FinallyBLa1 =def ClC(1[i=0BLai) (4)is the maximal belief language an agent a can have. Formulae in this language are alsocalled general belief formulae.At �rst sight the last de�nition looks overly complicated. The reason is that every agentkeeps track of only its own beliefs, and not of another agent's beliefs (we will see later inLemma 4.9 that an agent may be able to simulate another agent's state). This means thata nested belief atom of the form Ba(b;Bc(d; �)) does not make sense (because b 6= c) andis not allowed in the above de�nition. 16

Note also that the closure under C in Equation (3) allows us to use conjunctions withrespect to di�erent agents Ba(b; �)^Ba(c; �0). The closure in Equation (4) allows us to usein addition di�erent nested levels of beliefs, like Ba(b; �) ^ Ba(c;Bc(d; �0)). However, formost practical applications this additional freedom seems not to be necessary. We discussthis point again in Lemma 4.9.Here are some belief formulae from the RAMP example (see Section 2 or Appendix B):4.4 Example (Belief Formulae for RAMP)The following are belief formulae from BLHeli10 , BLTank11 and BLCoord2 .� BHeli1(Tank1; in(pos1; Tank1 :GetPosition(now))).This formula is in BLHeli10 . It says that agent Heli1 believes that agent Tank1'scurrent state indicates that Tank1's current position is pos1.� BTank1(Heli1;BHeli1(Tank1; in(pos1; Tank1 :GetPosition(now)))).This formula is in BLTank11 . It says that agent Tank1 believes that agent Heli1believes that agent Tank1's current position is pos1.� BCoord(Tank1;BTank1(Heli1;BHeli1(Tank2; in(pos2; Tank2 :GetPosition(now))))).This formula is in BLCoord2 . It says that agent Coord believes that agent Tank1believes that Heli1 believes that agent Tank2's current position is pos2.However, the following formula does not belong to any language:BTank1(Heli1;BTank1(Tank1; in(Pos1; Tank :GetPosition(now)))):The reason for this is because in Heli1's state there can be no beliefs belonging to Tank1.4.2 Basic Belief TableWe now describe how the agent keeps track of its beliefs about other agents and how thesebeliefs can be updated. The easiest way to structure a set of beliefs is to view it as arelational database structure. The notion of a basic belief table provides the starting pointfor de�ning how an agent maintains beliefs about other agents.4.5 De�nition (Basic Belief Table BBTa)Every agent a has an associated basic belief table BBTa which is a set of pairshh; �iwhere h 2 A, � 2 BLhi .For example, if the entry hb;Bb(a; �)i is in the table BBTa, then this intuitively meansthat agent a believes that agent b has the code call condition � among its own beliefs aboutagent a. Here � 2 BLb1 .4.6 Example (Basic Belief Table for RAMP Agents)We de�ne suitable basic belief tables for agent Tank1 (Table 1 on the following page) andHeli1 (Table 2 on the next page). 17

Agent FormulaHeli1 in(posh1;Heli1 :GetPosition(now))Heli2 BHeli2(Tank1; in(post1; Tank1 :GetPosition(now)))Tank2 BTank2(Heli2;BHeli2(Tank1; in(pos3; Tank1 :GetPosition(now))))Table 1: A Basic Belief Table for agent Tank1.Agent FormulaHeli2 in(posh2;Heli2 :GetPosition(now))Tank1 in(post1; Tank1 :GetPosition(now))Tank1 BTank1(Heli1; in(posh1;Heli1 :GetPosition(now)))Tank2 BTank2(Tank1;BTank2(Heli1; in(pos4;Heli1 :GetPosition(now))))Table 2: A Basic Belief Table for agent Heli1.These tables describe that Tank1 and Heli1 work closely together and know theirpositions. Both believe that the other knows about both positions. Tank1 also believesthat Tank2 believes that in Heli2's state, Tank1 is in position pos3 (which is actuallywrong).Heli1 thinks that Tank2 believes that Tank1 believes that Heli1 is in position pos4,which is also wrong.What kind of operations should we support on belief tables? We distinguish between twodi�erent types:1. For a given agent h, other than a, we may want to select all entries in the table havingh as �rst argument.2. For a given belief formula �, we may be interested in all those entries, whose secondargument \implies" (w.r.t. some underlying de�nition of entailment) the given formula�.The latter point motivates us to consider more general relations between belief formulaewith respect to an epistemic background theory. This will extend the expressibility andusefulness of our overall framework. For example the background theory can contain certainepistemic axioms about beliefs or even certain inference rules and the relation between beliefformulae can be the entailment relation with respect to the chosen background theory.4.3 Belief Semantics TableAgent a may associate di�erent background theories with di�erent agents: it may assumethat agent h reasons according to semantics BSemah and assumes that agent h0 adopts astronger semantics BSemah0 . We will store the information in a separate relational datastructure: 18

4.7 De�nition (Belief Semantics Table BSemTa of Agent a)Every agent a has an associated belief semantics table BSemTa which is a set of pairshh;BSemahiwhere h 2 A and BSemah is a belief semantics over BLhi and i 2 IN is �xed. I.e. BSemahdetermines an entailment relation � j=BSemah between belief formulae �; 2 BLhi . We also assume the existence of the following function(which constitutes an extended code call, see De�nition 5.6 on page 28) over BSemTa:BSemTa : select(agent;=;h);which selects all entries corresponding to a speci�c agent h 2 A.4.8 Example (Belief Semantics Tables for RAMP Agents)We shortly describe how suitable Belief Semantics Table for Heli1 and Tank1 can looklike. We have to de�ne entailment relations BSemTank1Tank2, BSemTank1Heli1 , BSemTank1Heli2 , andBSemHeli1Tank1, BSemHeli1Tank2, BSemHeli1Heli2. For simplicity we restrict these entailment relationsto belief formulae of level at most 1, i.e. BLh1 .1. BSemHeli1Tank1: The smallest entailment relation satisfying the schemaBTank1(Tank1:1; �)! �:This says that Heli1 believes that all beliefs of Tank1 about Tank1:1 are actuallytrue: Tank1 knows all about Tank1:1.2. BSemHeli2Tank2: The smallest entailment relation satisfying the schemaBTank2(Tank2:1; �)! �:This describes that Heli2 believes that all beliefs of Tank2 about Tank2:1 areactually true: Tank2 knows all about Tank2:1.3. BSemTank1Heli1 : The smallest entailment relation satisfying the schemaBHeli1(Tank1; �)! �:This describes that Tank1 believes that if Heli1 believes in � for Tank1, thenthis is true (Heli1 knows all about Tank1. A particular interesting instance of � isin(post1; Tank1 :GetPosition(now)).4. BSemTank1Heli1 : The smallest entailment relation satisfying the schemaBHeli1(Tank2; �) ^BHeli1(Tank2:1; �)! �:This describes that Tank1 believes that if Heli1 believes that � is true both forTank2 and Tank2:1 then this is actually true.19

The notion of a semantics used in the belief semantics table is very general: it can be anarbitrary relation on BLhi � BLhi . We brie
y illustrate (1) which sort of semantics can beexpressed and (2) how our framework can be suitably restricted for practical applications.The generality and
exibility of our framework can be seen by considering the followingtwo simple axioms that can be built-in to a semantics:(1) Bh2(h; �)) Bh2(h0; �)(2) Bh2(h; �)) �The �rst axiom refers to di�erent agents h;h0 while the second combines di�erent levels ofbelief atoms: see Equations (3) and (4) and the discussion after De�nition 4.3. In manyapplications, however, such axioms will not occur: h = h0 is �xed and the axioms operateon the same level i of belief formulae.Thus it makes sense to consider simpli�ed versions of semantics that are easy to imple-ment and to handle. In fact, given the results of Eiter, Subrahmanian, and Pick (1998) andthe various semantics Sem for agent programs, i.e. with no belief atoms, we now show howsuch a semantics Sem induces, in a natural way a semantics BSemah to be used in a beliefsemantics table. These semantics can be implemented and handled as built-ins. Entries inBSemTa can then look like hh1;Semfeasihh2;Semrat ihh3;Semreasimeaning that the agents hi behave according to the indicated semantics, which are wellunderstood for action programs without beliefs.The idea is to use the semantics Sem of the action program Pa(b) (that a believes b tohave) for the evaluation of the belief formulae. However, this is a bit complicated by thefact that the computation of the semantics depends on various other parameters like thestate and the action and integrity constraints.Before stating the de�nition, we recall that a semantics Sem is a set of action status setswhich depend on (1) an action program, (2) a set of action constraints, (3) a set of integrityconstraints, and, �nally, (4) the current state. The notation Semh(P) only re
ects thein
uence of (1) but (2){(4) are equally important. For example, when the belief semanticstable contains the entry hh1; �i where � is a code call condition, � is a belief of a abouth1's state. � is therefore a condition on the state of h1. In contrast, an entry hh1;M�(~t)i,where M�(~t) is an action atom, is a belief of a on the actions that h1 holds. Consequentlyaction atoms can be seen as conditions on h1's action program.In the following lemma, we show how to de�ne belief semantics de�ned on belief lan-guages of level 0 and 1. But belief formulae contain both code call conditions and actionatoms and those are, as just discussed, evaluated in di�erent domains. Therefore for aformula � which is a conjunction of code call conditions and action atoms, we letCCC(�) be the conjunction of all ccc's occuring in �;ACT(�) be the conjunction of all action atom's occuring in �:20

4.9 Lemma (Sem for Agent Programs induces BSemah)Let Sem be the reasonable, rational or preferential semantics for agent programs (i.e. notcontaining beliefs). Suppose agent a believes that agent h reasons according to Sem. LetP(h) be the agent program of h and O(h), AC(h) and IC(h) the state, action constraintsand integrity constraints of h. Then there is a basic belief table BSemTa and a beliefsemantics BSemah induced by Sem such that� a believes in h's state, and� a believes in all actions taken by h with respect to Sem and P(h).More generally: let i 2 IN and suppose agent a believes that agent h1 believes thatagent h2 believes that : : : believes that agent hi�1 acts according to Pa(�) (where � =def[h1;h2; : : : ;hi�1]) and state O(�). Then there is a basic belief table BSemTa and a beliefsemantics BSema� induced by Sem on a suitably restricted subset of BL�0 � BL�0 such that� a believes in hi�1's state, and� a believes in all actions taken by hi�1 with respect to Sem and P(�).Proof: We de�ne a belief semantics BSemah on BLh0 �BLh0 with respect to a state O,AC, and IC as follows:� j=BSemah by 8>><>>: 1: ACT() 2 Semh(Pa(h) [fACT(�)g) wrt. the state O [CCC(�):2: O [CCC(�) j= CCC():3: AC are satis�ed wrt. enlarged program.4: O [CCC(�) j= ICWe now de�ne a belief semantics BSemah on BLh1 �BLh1 with respect to a state O, AC, andIC as follows.1. We restrict, as already discussed, to entailment relations that operate on the samelevel of beliefs. For level 0 we just de�ned such a relation.2. For level 1 beliefs we also restrict to those that contain the same agent as �rst com-ponent: fBh(c; �) : � is a code call condition or an action atomg.3. For a belief formula � of level 1 which has the form Bh(c; �1)^ � � � ^Bh(c; �n) we letCCC(
) =def CCC(�1) ^ � � � ^CCC(�n)and ACT(
) =def ACT(�1) ^ � � � ^ACT(�n):4. We de�ne:� j=BSemah by 8>><>>: 1: ACT() 2 Semc(Pa([h; c]) [fACT(�)g) wrt. O [CCC(�):2: O [CCC(�) j= CCC():3: AC are satis�ed wrt. enlarged program.4: O [CCC(�) j= ICThe notation Pa([h; c]) denotes the program that a believes h to believe about c.The sequences � will be introduced in De�nition 5.2 on page 26.21

4.4 Belief TablesWe are now ready to give the full de�nition of a belief table.4.10 De�nition (Belief Table BTa)Every agent a has an associated belief table BTa, which consists of tripleshh; �; �Biwhere h 2 A, � 2 BLhi and �B 2 BConda(h) is a belief condition of a to be de�ned below(see De�nition 4.11 on the following page).We identify that part of BTa where the third entries are empty (or, equivalently, true)with the basic belief table introduced in De�nition 4.5 on page 17. Thus, every belief tableinduces a (possibly empty) basic belief table.We also assume the existence of the following two functions over BTa:BTa : proj-select(agent;=;h)which selects all entries ofBTa of the form hh; �; truei (i.e. corresponding to a speci�c agenth 2 A and having the third entry empty) and projects them on the �rst two arguments,and BTa : B-proj-select(r;h; �)for all r 2 R =def f);(;,g and for all belief formulae � 2 BLh1. This function selectsall entries of BTa of the form hh; ; truei that contain a belief formula which is inrelation r to � with respect to the semantics BSemah as speci�ed in the belief semanticstable BSemTa and projects them on the �rst two arguments.For example, if we choose)2 R as the relation r then() �) 2 BSemahor, equivalently, j=BSemah () �) says � is entailed by relative to semantics BSemah.We emphasize the fact that although the two introduced project-select functions are de�nedon the full belief table BTa, they can be thought of as operating on the induced basic belieftable BBTa, which results from BTa by projection on the �rst two arguments of thosetriples where the third entry is empty.In the last de�nition we introduced the notion of a belief table but we did not yet specifythe third entry in it, the belief condition. The role of such a belief condition is to extend theexpressiveness of the basic belief table by restricting the applicability to particular states,namely those satisfying the belief condition. Intuitively, hb; �; �Bi means thatAgent a believes that � is true in agent b's state, if the condition �B holds.Note that agent a can only reason about his own state, which contains (through the belieftable BTa and the belief semantics table BSemTa) his beliefs as well as his underlyingepistemic theory about other agent's states. 22

BTa and BSemTa, taken together, simulate agent b's state as believed by agent a.A belief condition �B that occurs in an entry hb; �; �Bi must therefore be evaluated inwhat agent a believes is agent b's state. This is important because the code call conditionsmust be compatible and therefore not only depend on agent a but also on agent b.4.11 De�nition (Belief Conditions BConda(h))The set BConda(h) of belief conditions of agent a is de�ned inductively as follows:1. Every code call condition � of agent a compatible with agent h is in BConda(h).2. If X is an entry in the basic belief table (or, equivalently the projection of an entry ofthe belief table BTa on the �rst two arguments) or a variable over basic belief tabletuples, then in(X;BTa : proj-select(agent;=;h))is in BConda(h).3. If X is an entry in the basic belief table or a variable over such entries, r 2 R, � 2 BLaiand h 2 A then in(X;BTa : B-proj-select(r;h; �))is in BConda(h).4. If � and �0 are in BConda(h), then so are 9X�, and any conjunction (6)�&(:)�0.As belief conditions corresponding to step 1. above will be checked in what agent a believesis agent b's state, we introduce the following notation:� h part(�) =def the subconjunction of � consisting of all code call conditionsnot involving BTa,� a part(�) =def the subconjunction of � consisting of all code call conditionsthat involve BTa.Note that h part(�) consists of conditions that have to be checked in what a believes isagent h's state, while a part(�) refers to the belief tables of agent a.Agent Formula ConditionHeli1 in(pos1;Heli1 :GetPosition(now)) trueHeli2 BHeli2(Tank1; in(P; Tank1 :GetPosition(now))) BcondTank11Tank2 BTank2(Heli1;BHeli1(Tank1; in(P; Tank1 :GetPosition(now)))) BcondTank12Table 3: A Belief Table for agent Tank1.
23

4.12 Example (Belief Table for RAMP Agents Revisited)We now extend our basic belief tables for agent Tank1 (Table 1 on page 18) and Heli1(Table 2 on page 18). Let BcondTank11 be in(pos1; Tank1 :GetPosition(now)) and de�neBcondTank12 byin(hHeli1;belief atomi;BTTank1 : proj-select(agent;=;Heli1));where belief atom =def BHeli1(Tank1; in(pos1; Tank1 :GetPosition(Now))):The �rst row in the table says that Tank1 believes that in Heli1's state the positionfor Heli1 is pos1, unconditionally.The second row in the belief table above, says that Tank1 believes that if Tank1'sposition is pos1, Heli2 believes that in Tank1's state the position of Tank1 is pos1.The third row in the belief table says that if Tank1 believes Heli1 believes that Tank1'sposition is pos1, then Tank2 believes Heli1 believes Tank1's position is pos1.The table for Heli1 looks as shown in Table 4, where BcondHeli11 stands forin(pos1;Heli1 :GetPosition(now))and BcondTank12 is de�ned byin(hTank1;belief atomi;BTHeli1 : proj-select(agent;=;Tank1));where belief atom =def= BTank1(Heli1; in(pos1;Heli1 :GetPosition(Now))):Agent Formula ConditionHeli2 in(pos1;Heli2 :GetPosition(now)) trueTank1 BTank1(Heli1; in(p;Heli1 :GetPosition(now))) BcondHeli11Tank2 BTank2(Tank1;BTank1(Heli1; in(p;Heli1 :GetPosition(now)))) BcondHeli12Table 4: A Belief Table for agent Heli1.We are now in a position to formally express a meta agent program, i.e. a programwhich formalizes the actions and the circumstances under which an agent a will executethese actions based not only on its own state but also on its beliefs about other agent'sstates.4.13 De�nition (Meta Agent Program (map) BP)A meta action rule, (mar for short), for agent a is a clause r of the formA L1; : : : ; Ln (5)where A is an action status atom, and each of L1; : : : ; Ln is either a code call literal, anaction literal or a belief literal from BLit1(a;A).A meta agent program, (map for short), for agent a is a �nite set BP of meta agent rulesfor a. 24

4.14 Example (map's For RAMP-Agents)Let Heli1's meta agent program be as follows:P Attack(P1 ,P2) BHeli1(Tank1; in(P2; Tank1 :GetPosition(Now))) ,P Fly(P1 ,P3 ,A ,S),P Attack(P3 ,P2).where Attack(P1; P2) is an action which means attack position P2 from position P1. Heli1'sprogram says Heli1 can attack position P2 from P1 if Heli1 believes Tank1 is in positionP2, Heli1 can
y from P1 to another position P3 at altitude A and speed S, and Heli1can attack position P2 from P3.Let Tank1's meta agent program be as follows:O Attack(P1 ,P2) O DriveRoute([P0 ,P1 ,P2 ,P3],S),BTank1(Tank2; in(P2; Tank2 :GetPosition(Now))).If Tank1 must drive through a point where it believes Tank2 is, it must attack Tank2.From now on we assume that the software package Sa = (T aS ;FaS) of each agent acontains as distinguished data types1. the belief table BTa, and2. the belief semantics table BSemTa,as well as the corresponding functionsBTa : B-proj-select(r;h; �) and BSemTa : select(agent;=;h):5 Semantics of Meta-Agent ProgramsIt remains to de�ne the semantics of meta agent programs. As in the case of agent programswithout any metaknowledge (we refer to the appendix where we provided the de�nitions tomake this paper selfcontained), the basic notion upon which more sophisticated semanticswill be based, is the notion of a feasible status set for a given meta agent program BP. Inorder to do this we �rst have to introduce the notion of a belief status set, the counterpartof a status set for a meta agent program.5.1 De�nition (Belief Status Set BS)A belief status set BS of agent a, also written BS(a), is a set consisting of two kinds ofelements:� ground action status atoms over Sa and� belief atoms from BAt1(a;A) of level greater or equal to 1.25

The reason that we do not allow belief atoms of level 0 is to avoid having code call conditionsin our set. Such conditions are not implied by the underlying map (only action status atomsare allowed in the heads of rules). Moreover, in the agent programs without beliefs (whichwe want to extend) they are not allowed as well (see De�nition A.1).We note that such a set must be determined in accordance with1. the map BP of agent a,2. the current state O of a,3. the underlying set of action and integrity constraints of a.In contrast to agent programs without beliefs we now have to cope with all agents aboutwhich a holds certain beliefs. Even if the map BP does not contain nested beliefs (whichare allowed), the belief table BTa may and, by the belief semantics table BSemTa, suchnested beliefs may imply (trigger) other beliefs. Thus we cannot restrict ourselves to beliefatoms of level 1.Any belief status set BS of agent a induces, in a natural way, for any agent b 2 A, twosorts of sets: the state and the various action status sets that agent a believes other agentsb to hold or those that a believes other agents b to hold about other agents c. To easilyformalize the latter conditions, we introduce the notion of a sequence:5.2 De�nition (Sequence �; [�] of Agents)A sequence � of agents from A is de�ned inductively as follows:1. The empty sequence [] is a sequence.2. If a 2 A and [�] is a sequence, then [a], [�a], [a; �], [�;a] , [a;��], [��;a] aresequences.We use both � and [�] to refer to an arbitrary sequence.The negation signs in the last de�nition were introduced in order to distinguish betweenBa(b;Bb(c;Bc(d; �)))and Ba(b;:Bb(c;Bc(d; �))):While the latter belief atom corresponds to the sequence [�b; c;d], the former is de-scribed by [b; c;d]. The overall intuition of the formula Ba(b;Bb(c;Bc(d; �))) is that if wekeep agent a in mind, then agent a believes in a code call condition of type [b; c;d], i.e. accc that b believes that c believes it holds in d's state.We also say sometimes \�'s state" and refer to the code call conditions that are true inwhat a believes that b believes : : : where [a;b; : : :] = �.26

5.3 De�nition (Induced Status Set �actionb (BS) and State �stateb (BS))Let a;b be agents and BP a map of a. Every belief status set BS of an agent a induces thefollowing two sets describing a's beliefs about b's actions and b's state�actionb (BS) =def f M�(~t) : Ba(b;M�(~t)) 2 BS; where M 2 fO;W;P;F;Dogg�stateb (BS) =def f � : Ba(b; �) 2 BS and � is a code call conditiongNow assume that agent a believes in BS. Then �stateb (BS) formalizes the state of agent bas believed by agent a. Similarly, �actionb (BS) represents the action status set of agent b asbelieved by agent a.In the same way BS induces for arbitrary sequences � two sets�action� (BS) describing a's belief about actions corresponding to ��state� (BS) describing a's belief about the state corresponding to �;depending on the depth of the belief atoms occuring in BP.It is important to note that for any sequence, � of agents, �action� (BS) is a set of actionstatus atoms. Likewise, �state� (BS) is a set of code call conditions that do not involve beliefs.For the empty sequence [], we identify �action[] (BS) (resp. �state[] (BS)) with a's own actionstatus set (resp. a's own state) as de�ned by the subset of BS not involving belief atoms.5.4 Example (Belief Status Sets for RAMP-Agents)We consider the map of Heli1 given in Example 4.14BS(Heli1) =def f PFly(PointA; PointB; 10000; 200);OFly(PointA; PointB; 10000; 200);BHeli1(Heli2;PFly(PointA; PointB; 10000; 200));BHeli1(Heli2; in(pos;Heli1 :GetPosition(Now)));BHeli1(Heli2;BHeli2(Tank1; in(pos; Tank :GetPosition(Now))))BHeli1(Heli2;BHeli2(Tank1;PDrive(PointX; PointY; 40)))gThis belief status set is for Heli1 and it says:1. It is possible to
y from PointA to PointB at an altitude of 10000 feet and a speed of200 knots.2. It is obligatory to
y from PointA to PointB at an altitude of 10000 feet and a speedof 200 knots.3. Heli1 believes that in Heli2's state it is possible to
y from PointA to PointB at10000 feet and 200 knots.4. Heli1 believes that in Heli2's state the position of Heli2 is pos.5. Heli1 believes Heli2 believes that Tank1's position is pos.6. Heli1 believes Heli2 believes that in Tank1's state it is possible to drive from PointXto PointY at 40 miles per hour.
27

We then have:�actionHeli2 (BS(Heli1)) = fPFly(PointA; PointB; 10000; 200)g�stateHeli2(BS(Heli1)) = fin(pos;Heli1 :GetPosition(Now))g�action[Heli2;Tank1](BS(Heli1)) = fPDrive(PointX; PointY; 40)g�state[Heli2;Tank1](BS(Heli1)) = fin(pos; Tank1 :GetPosition(Now))gThese sets formalize the following:� �actionHeli2 (BS(Heli1)) describes Tank1's beliefs about Heli2's actions and it says that itis possible to
y from PointA to PointB at 10000 feet and 200 knots.� �stateHeli2(BS(Heli1)) describes Tank1's beliefs about Heli2's state and it says that itsposition is pos.� �action[Heli2;Tank1](BS(Heli1)) describes Tank1's beliefs aboutHeli2's beliefs about Tank1'sactions, and it says that it is possible to drive from PointX to PointY at 40 miles perhour.� �state[Heli2;Tank1](BS(Heli1)) describes Tank1's beliefs aboutHeli2's beliefs about Tank1'sstate, and it says that its position is pos.Obviously for a to make a guess about agent b's behaviour, agent a not only needs a belieftable and a belief semantics table, but a also needs to guess about b's action base, actionprogram as well as the action and integrity constraints used by b. This is very much likehaving a guess about b's software package which we motivated and illustrated just beforeDe�nition 4.1 on page 15 (see the notion of compatible code call condition). For notationalconvenience and better readability we merge all these ingredients into a set �a(b).5.5 De�nition (�a(b), Info(a))For agents a;b 2 A, we denote by �a(b) the following list of all beliefs that agent a holdsabout another agent b: the software package Sa(b), the action base ABa(b), the actionprogram P a(b), the integrity constraints IC a(b) and the action constraints AC a(b). �a(b)may also contain these objects for sequences � = [b; c] instead of b: we use therefore alsothe notation �a([b; c]). �a(�) represents a's beliefs about b's beliefs about c.In addition, given an agent a, we will often use the notation Info(a) to denote thesoftware package Sa, the action base AB, the action program P, the integrity constraintsIC and action constraints AC used by agent a. Thus we de�ne Info(a) =def �[](a).The set �a(b) is very important and therefore we introduce corresponding software codecalls, thereby extending our original package S.5.6 De�nition (Extended Code Calls, Sext)Given an agent a, we will from now on distinguish (if it is not immediately clear fromcontext) between basic and extended code calls respectively code call conditions. The basiccode calls refer to the package S, while the latter refer to the extended software packagewhich also contains1. the following function of the belief table:28

(a) a : belief table(), which returns the full belief table of agent a, as a set of tripleshh; �; �Bi,2. the following functions of the belief semantics table:(b) a : belief sem table(), which returns the full belief semantics table, as a set ofpairs hh;BSemahi,(c) a : bel semantics(h; �;), which returns true when � j=BSemah and false oth-erwise.3. the following functions, which implement for every sequence � the beliefs of agent aabout � as described in �a(�):(d) a : software package(�), which returns the set Sa(�),(e) a : action base(�), which returns the set ABa(�),(f) a : action program(�), which returns the set Pa(�),(g) a : integrity constraints(�), which returns the set IC a(�)(h) a : action constraints(�), which returns the set AC a(�),4. the following function which simulates the state of another agent b or a sequence �,(i) a : bel ccc act(�), which returns all the code call conditions and action statusatoms that a believes are true in �'s state. We write these objects in the form"in(;)" (resp. "M�" for action status atoms) in order to distinguish them fromthose that have to be checked in a's state.We also write Sext for this extended software package and distinguish it from the originalS from which we started.5.1 Feasible Belief Status SetsConsider now an agent a with associated structures, Info(a). Suppose BS is an arbitrarystatus set. We would like to �rst identify the conditions that determine whether it \makessense" for agent a to hold the set of beliefs prescribed by BS. In particular, agent a mustuse some epistemically well justi�ed criteria to hold a set, BS, of beliefs. In this section, weintroduce the concept of a feasible belief status set. Intuitively, BS is feasible if and only ifit satis�es two types of conditions|conditions on the agent a, and conditions on the beliefsof agent a about other agents b or sequences �.Conditions on agent a:1. Deontic and action consistency: BS must not contain any inconsistencies. Forexample, BS may not contain action status atoms, O� and F� as these two ac-tion status atoms are mutually incompatible. Similarly, the set of actions takenby agent amust not violate any action constraints, i.e. if Todo = f�jDo� 2 BSg,then for each ground instance of an action constraint of the ActSet - �, either� is false in the current agent state, or ActSet 6� Todo.29

2. Deontic and action closure: This condition says that BS must be closed underthe deontic operations. For example, if O� 2 BS, then P� 2 BS, and so on.3. Closure under rules of BP: Furthermore, if we have a rule in BP having aground instance whose body's code-call conditions are all true in the currentagent state, and whose action status atoms and belief literals are true in BS,then the head of that (ground) rule must be in BS.4. State consistency: Suppose we concurrently execute all actions in the set Todo.Then the new state that results must be consistent with the integrity constraintsassociated with agent a.Conditions on beliefs of agent a about other agents b:5. Local feasibility: This condition requires that for any agent b, every inducedstatus set �actionb (BS) is feasible (in the original sense) with respect to the inducedstate �stateb (BS) and action program Pa(b). Furthermore a similar conditionmust hold for any sequence � instead of just b.6. Compatibility with BTa: We have to ensure that (1) all belief atoms of thebasic belief table are contained in BS and that (2) whenever a belief conditionis true, then the corresponding belief formula is true in BS.7. Compatibility with BSemTa: If hb;BSemabi is an entry in BSemTa, we haveto ensure that b's induced state is closed under the semantics BSemab.We are now ready to formalize the above 7 basic conditions through a sequence of de�nitions.5.7 De�nition (Deontic/Action Consistency)A belief status set BS held by agent a is said to be deontically consistent, if, by de�nition, itsatis�es the following rules for any ground action � and any sequence � of agents (includingthe empty sequence):1. If O� 2 �action� (BS), then W� =2 �action� (BS).2. If P� 2 �action� (BS), then F� =2 �action� (BS).3. If P� 2 �action� (BS), then �state� (BS) j= Pre(�) (i.e. � is executable in �state� (BS)).A belief status set BS is called action consistent, if and only if for every ground actioninstance, ActSet - �, of an action constraint in AC, either � is false in state O or BS \fDo� j � 2 ActSetg = ;.Intuitively, the requirement of deontic consistency ensures that belief sets are internallyconsistent and do not have con
icts about whether an action should or should not be takenby agent a. Action consistency ensures that the agent cannot violate action constraints.At this point, the reader may wonder why we need to ensure that deontic/action consis-tency requirements also apply to sequences of agents rather than to just agent a by itself.The reason is that if we replaced all occurrences of � in the preceding de�nition by theempty sequence [], i.e. we just look at a's own action status set, then we may still encounter30

deontic inconsistencies nested within beliefs. For example, agent a's belief set could containboth Ba(b;O�) and Ba(b;F�). In this case, agent a believes that action � is both forbid-den and obligatory for agent b|a state of a�airs that is clearly inconsistent. It is to ruleout such scenarios that we have de�ned deontic and action consistency as above,5.8 Lemma (Deontic Closure)Suppose BS is a belief status set held by agent a. The deontic closure of BS, denotedD-Cl(BS), is the minimal extension of BS by new belief atoms, such that the followingcondition holds:if O� 2 �action� (BS) then P� 2 �action� (BS),where � is any ground action and � is any sequence of agents. We say that BS is deonticallyclosed if, by de�nition, BS = D-Cl(BS).Again, this requirement forces an agent a's belief status set to be closed|if agent a believesthat � is obligatory for agent b to perform then it must also believe that agent b is permittedto perform action �.Proof: We have to show that such a minimal extension of BS exists. Let us de�ne asequence BSi, where BS0 =def BS andBSi+1 =def BSi [fBa(b;P�) jBa(b;O�) 2 BSig:Obviously, SBS10 is a minimal extension of BS as required in the statement. The generalcase for arbitrary sequences � instead of just [b] is analogous.5.9 Lemma (Action Closure)Suppose BS is a belief status set held by agent a. The action closure of BS, denotedA-Cl(BS), is the minimal extension of BS by new belief atoms, such that the followingconditions hold:1. if O� 2 �action� (BS), then Do� 2 �action� (BS),2. if Do� 2 �action� (BS), then P� 2 �action� (BS),where � is any ground action and � is any sequence of agents. We say that a status BS isaction-closed, if BS = A-Cl(BS) holds.Intuitively, this lemma says that for all ground actions �, if agent a believes that action �is obligatory for agent b, then agent a must believe that agent b will do it.Proof: We have to show that such a minimal extension of BS exists and follow the proofof the last lemma. We de�ne a sequence BSi, where BS0 =def BS andBSi+1 =def BSi [fBa(b;P�) jBa(b;Do�) 2 BSig [fBa(b;Do�) jBa(b;O�) 2 BSig:Obviously, SBS10 is a minimal extension of BS as required in the statement. As in theprevious lemma, the general case for arbitrary sequences � instead of just [b] is analogous.31

We are now ready to start de�ning the notion of closure of a belief status set, BS,under the rules of a map, BP. First, we de�ne an operator, AppBP ;O(BS) that takes asinput, a belief status set, BS, and produces as output, another belief status set, obtainedby applying the rules in BP with respect to the state O once.5.10 De�nition (Operator AppBP ;O(BS))Suppose BP is a map, and O is an agent state. Then, AppBP ;O(BS) is de�ned to be theset of all ground action status atoms A such that there exists a rule in BP having a groundinstance of the form r : A L1; : : : ; Ln, which we denote byA B+cc(r) [B�cc(r) [B+other(r) [B�other(r)(in order to distinguish between positive/negative occurrences of code call atoms and non-code call atoms, i.e. action status literals and belief literals) such that:1. B+other(r) � BS and ::B�other(r) \ BS = ;, and2. every code call � 2 B+cc(r) succeeds in O, and3. every code call � 2 ::B�cc(r) does not succeed in O, and4. for every atom Op(�) 2 B+(r) [fAg such that Op 2 fP;O;Dog, the action � isexecutable in state O.Intuitively, the operator AppBP ;O(BS) closes BS by applying all rules of the map BP once.The following example shows how this operator works, using our familiar RAMP example.5.11 Example (AppBP ;O(BS) for RAMP)We continue with Example 4.14 on page 25 and consider the following belief status set forHeli1: BS1(Heli1) =def f BHeli1(Tank1; in(B; Tank1 :GetPosition(Now)));PFly(A; C; 5000; 100);PAttack (C; B)gThen AppBP ;O(BS1(Heli1)) = fPAttack(A; B)g.Note that no belief atoms are present, because the de�nition of App only speci�esprogram rule heads and we cannot have belief atoms in rule heads. Also, the atomsPFly(A; C; 5000; 100) and PAttack(C; B) were not preserved because there are no rules tosupport them.5.12 De�nition (Program Closure)A belief status set, BS, is said to be closed with respect to a map, BP, and an agent state,O, if, by de�nition, AppBP ;O(BS) = fM� jM� 2 BS where M 2 fO;W;P;F;Dogg.Intuitively, this de�nition says that when we restrict BS to the action status atoms asso-ciated with agent a, then the set of action status atoms that the map, BP, makes truein the current state, is equal to the set of action status atoms already true in BS. Thefollowing example builds upon the previous one, and explains why certain belief status sets,BS, satisfy the program closure condition, while others do not.32

In the previous example the belief status set BS1(Heli1) does not satisfy the programclosure property because AppBP ;O(BS1(Heli1)) is not equal tofM� : M� 2 BSg = fPFly(A; C; 5000; 100);PAttack (C; B)g:However, if we add to Heli1's program the rules:P Fly(A , C , 5000 ,100) P Attack(C , B) the following belief status set BS2(Heli1) does satisfy the program closure rule:BS2(Heli1) =def f BHeli1(Tank1; in(B; Tank :GetPosition(Now)));PFly(A; C; 5000; 100);PAttack(C; B);PAttack(A; B) g:ThenAppBP ;O(BS2(Heli1)) = fPAttack (A; B);PAttack (C; B);PFly(A; C; 5000; 100)g:At this point, we have completed describing the requirements on agent a that must betrue. In addition, we must specify conditions on the beliefs that agent a holds about otheragents, b. To some extent, this has already been done in the de�nitions of deontic andaction consistency/closure. However, more coherent conditions need to be articulated. The�rst of these is the fact that the beliefs held by agent a about another agent b must becoherent. For instance, if a believes that it is obligatory for agent b to do action �, thena must also believe that b will do �. Other, similar conditions also apply. This conditionmay be expressed through the following de�nition.5.13 De�nition (Local Coherence)A belief status set, BS, held by agent a is said to be locally coherent w.r.t. a sequence,� of agents if, by de�nition, the induced status set �action� (BS) is feasible in the sense of(Eiter, Subrahmanian, and Pick 1998) with respect to the induced state �state� (BS) andagent program Pa(�).BS is said to be locally coherent if, by de�nition, BS is coherent with respect to allsequences, �, of agents.The above de�nition makes explicit reference to the de�nition of feasible status set, providedby (Eiter, Subrahmanian, and Pick 1998). It is important to note that �action� (BS) is a setof action status atoms, and that �state� (BS) involves no belief literals, and Pa(�) is an agentprogram with no belief modalities, as de�ned earlier on in De�nition 3.14 on page 13. Hereare a few examples of what it means for a belief status set held by agent a to be locallycoherent.Let BS(Heli2) =def f BHeli2(Heli1;PFly(PointA; PointB; 1000; 100));BHeli2(Heli1; in(100;Heli1 :GetAltitude(now)));BHeli2(Heli1; in(1000;Heli1 :GetAltitude(now))) gand let Heli1's program as believed by Heli2 (we denote it by P Heli2(Heli1)) be:33

P Fly(X ,Y ,A ,S) in(S;Heli1 :GetSpeed (now)), in(A;Heli1 :GetAltitude(now)).The set BS(Heli2) is locally coherent w.r.t. the sequence (Heli2). Notice that:�actionHeli1 (BS(Heli2)) =def fPFly(PointA; PointB; 1000; 100)gis feasible with respect to:�state[Heli1](BS(Heli2)) = fin(100;Heli1 :GetAltitude(now)); in(1000;Heli1 :GetAltitude(now))g:LetBS(Tank1) =def f BTank1(Heli2;BHeli2(Heli1;PFly(PointA; PointB; 1000; 100)));BTank1(Heli2;BHeli2(Heli1; in(100;Heli1 :GetSpeed (now))));BTank1(Heli2;BHeli2(Heli1; in(1000;Heli1 :GetAltitude(now))))gand let the PTank1([Heli2;Heli1]) be the program Tank1 believes Heli2 believes Heli1has:P Fly(X ,Y ,A ,S) in(S;Heli1 :GetSpeed (now)), in(A;Heli1 :GetAltitude(now)).Then BS(Tank1) is locally coherent w.r.t. the sequence [Heli2;Heli1]. Just like in the pre-vious example: �action[Heli2;Heli1](BS(Tank1)) = fPFly(PointA; PointB; 1000; 100)g is feasiblewith respect to:�state[Heli2;Heli1](BS(Tank1)) = fin(100;Heli1 :GetSpeed (now)); in(1000;Heli1 :GetAltitude(now))g:In addition to being locally coherent, for a belief status set to be considered feasible, weneed to ensure that it does not ignore the contents of the belief table of agent a. This maybe encoded through the following condition.5.14 De�nition (Compatibility with BTa)Suppose hh; �; �Bi is in BTa. BS is said to be compatible with hh; �; �Bi if, by de�nition,either1. h part(�B) is false w.r.t. �stateh (BS) or a part(�B) is false w.r.t. a's state OS .2. � is a code call condition or an action status atom and Ba(h; �) 2 BS.BS is said to be compatible with BTa if, by de�nition, it is compatible with all tuples inBTa.Intuitively, this condition says that if a row in the belief table of agent a has a \true"condition, then agent a must hold the corresponding belief about the agent h in question.The following example illustrates this concept of compatibility.
34

5.15 Example (Compatibility)We continue with Table 3 on page 23. We de�neBS(Tank1) =def fBTank1(Heli1; in(pos1;Heli1 :GetPosition(now)))g:belss(Tank1) is compatible with BTa.However, the following belief set is not compatible with the give belief table:BS(Tank1) = fin(pos1; Tank1 :GetPosition(now))g:This is because there is a true condition in the �rst row of the table but the belief set doesnot contain BTank1(Heli1; in(pos1;Heli1 :GetPosition(now)))according to the de�nition of compatibility.The last condition in de�ning feasible belief status sets is that for any agent b, the beliefsagent a holds about agent b must be closed under the notion of entailment that agent athinks agent b uses.5.16 De�nition (Compatibility with BSemTa)Suppose hb;BSemabi is an entry in BSemTa, and suppose BS is a belief status set. LetBS[b] = f�jBa(b; �) 2 BSg. BS is said to be compatible with hb;BSemabi if, by de�nition,f�0 j BS[b] j=BSemab �0g � BS:BS is said to be compatible with BSemTa i� BS is compatible with every entry inBSemTa.We are now ready to de�ne feasible belief status sets.5.17 De�nition (Feasible Belief Status Set)A belief status set, BS held by agent a, is said to be feasible with respect to a meta-agentprogram, BP, an agent state, O, and a set IC of integrity constraints, and a set AC ofaction constraints if, by de�nition, BS satis�es our 7 conditions stated above (deonticallyand action consistent, deontically and action closed, closed under the map BP's rules, stateconsistent, locally coherent, compatible with BTa, and compatible with BSemTa).To George 1 George, please �ll in 4 examples here. Include two feasible status sets, and2 sets that are not feasible for di�erent reasons.5.2 Rational Belief Status SetsThe notion of a rational status set is a useful strengthening of feasible status sets. The ideais that all executed actions should be grounded or justi�ed by the meta agent program. Asa simple example, consider a feasible belief status set and add a Do� atom for an action� that does not occur in any rule of the program or in the action and integrity constraintsat all. It is immediate that this new set still is a feasible belief status set, although not aminimal one: there is no reason to believe inDo�. Rational sets rule out such non-minimalstatus sets: 35

5.18 De�nition (Groundedness; Rational Status Set)A belief status set BS which is locally coherent, compatible with BTa, and compatiblewith BSemTa is grounded, if there exists no belief status set BS0 strictly contained in BS(BS0 � BS) such that BS0 satis�es the following 3 conditions of a feasible belief status setas given in De�nition 5.17: deontically and action consistent, deontically and action closed,closed under the map BP's rules.A belief status set BS is a rational status set, if BS is a feasible status set and BS isgrounded.If we compare this last de�nition with the original de�nition of a belief status set, De�ni-tion 5.17, the reader will note that only the state consistency is not explicitly required whileminimizing BS0. In contrast, the locally coherence and the two compatibility conditions arerequired and do not guide the minimization process. If state consistency were added to theminimization policy, then an agent would be forced to execute actions in order to satisfythe integrity constraints. However, such actions may not be mentioned at all by the pro-gram, and thus it seems unreasonable to execute them. Of course, the state consistency isguaranteed, because we check groundedness only for feasible belief status sets.5.3 Reasonable Belief Status SetsAs shown in (Eiter, Subrahmanian, and Pick 1998) for programs without beliefs, rationalstatus sets allow the arbitrary contraposition of rules, which is often not intended. Forexample the program consisting of the simple ruleDo(�) :Do(�)has two rational status sets: S1 = fDo(�);P(�)g, and S2 = fDo(�);P(�)g. The secondone seems less intuitive because there is no rule in the program to justify deriving Do(�).This leads, in analogy to (Eiter, Subrahmanian, and Pick 1998) to the following notion:5.19 De�nition (Reasonable Status Set)Let BP be an agent program, let OS be an agent state, and let BS be a belief status set.1. If BP is a positive meta agent program, then BS is a reasonable belief status set forP on OS , if, by de�nition, BS is a rational belief status set for P on OS .2. The reduct of BP w.r.t. BS and OS , denoted by redBS(BP;OS), is the program whichis obtained from the ground instances of the rules in BP over OS as follows.(a) First, remove every rule r such that B�other(r) \ BS 6= ;;(b) Remove all atoms in B�other(r) from the remaining rules.Then BS is a reasonable status set for BP w.r.t. OS , if it is a reasonable status set ofthe program redBS(BP;OS) with respect to OS .Analogously to (Eiter, Subrahmanian, and Pick 1998), we have the following relation be-tween reasonable and rational status sets: 36

5.20 Theorem (Reasonable Status Sets are Rational)Every reasonable status set is also rational.6 How to Implement Meta-Agent Programs?Meta-Agent Programs signi�cantly extend agent programs by allowing to reason aboutbeliefs. But within the IMPACT-platform developed at the University of Maryland, agentprograms have been already e�ciently implemented and thus the question arises if we cantake advantage of this work. In fact, as we will show in this section, this can be done by1. transforming meta agent programs into agent programs, and2. taking advantage of extended code calls Sext as introduced in De�nition 5.6.The �rst step is a source-to-source transformation: the belief atoms in a meta agent programare replaced by suitable code calls to the new datastructures. We also note that the secondstep is indispensable, as every agent dealing with meta agent programs needs to deal withBelief Tables, Belief Semantics Tables and some functions operating on them.Let us illustrate the transformation with the following simpli�ed example. Recall thatwe already introduced extended code call conditions in De�nition 5.6 on page 28: those alsoinvolve the new datatypes (belief- and belief semantics tables). Suppose the belief tabledoes not contain any belief conditions (i.e. it coincides with its basic belief table). Then if� is any code call condition of agent c, the extended code call atomin(hc; �; truei; a : belief table())corresponds to the belief atom Ba(c; �):However, this does not mean that we can just replace the latter expression by the former.The problem is that beliefs need not neccessarily be stored in the belief table. They canalso be triggered by entries from the belief table and those from the belief semantics table.In fact, this was why we explicitly formulated condition 7. on compatibility with the beliefsemantics table. Also if the third entry in the belief table is present, the belief condition,then the �rst two entries of this triple specify a belief that must hold. Therefore we willuse the additional function a : bel ccc act(�);which was introduced in De�nition 5.6 on page 28 and thus implement belief atoms withextended code calls: in("�"; a : bel ccc act(c))What happens if the formula � is not a code call, but again a belief formula, say Bc(d; �0)?An expression of the form in(Bc(d; �0); a : bel ccc act(c)) is not a wellformed formula in ourframework (recall that a : bel ccc act(�) returns a set of code call conditions and action37

status atoms but no belief formulae). In fact, even if it were, it would not help in reducingthe belief atoms to something involving only extended code calls. Here is where the inductivede�nition of our transformation (we call it Trans from now on) comes in. We mapBa(c;Bc(d; �0))to in("�0"; a : bel ccc act([c;d])):Our main theorem in this section states that there is indeed a uniform transformationTrans from arbitrary meta agent programs (which can also contain nested beliefs) to agentprograms such that the semantics are preserved:Sem(BP) = Sem(Trans(BP)) (6)for Sem being a semantics based on feasible, rational or reasonable belief status sets.6.1 De�nition (Trans)For an agent a, we de�ned in De�nition 4.3 on page 16 the maximal belief language BLa1.We de�ne the mappingTrans : BLa1 ! Code Call Conditions of Sextby induction on the structure of the belief literal:Level 0: If bel lit is a code call condition or an action status atom, then Trans(bel lit) =defbel lit .Level 1: If bel lit has the form (:)Ba(b; �) where � is a code call condition or an actionstatus atom, then1. Trans(Ba(b; �)) 7! in("�"; a : bel ccc act(b)),2. Trans(:Ba(b; �)) 7! not in("�"; a : bel ccc act(b)),Level n+ 1: If bel lit has the form (:)Ba(b; �) where � is of level n, then we de�neTrans(Ba(b; �)) by� in("�"; a : bel ccc act([b; �])) if Trans(�) = in("�"; a : bel ccc act([�]))in("�"; a : bel ccc act([b;��])) if Trans(�) = not in("�"; a : bel ccc act([�]))and we de�ne Trans(:Ba(b; �)) by� not in("�"; a : bel ccc act([b; �])) if Trans(�) = in("�"; a : bel ccc act(�))not in("�"; a : bel ccc act([b;��])) if Trans(�) = not in("�"; a : bel ccc act(�))Linear Extension to BLa1: Up to now Trans is only de�ned on belief literals, not forarbitrary belief formulae (which can be arbitrary conjunctions of belief literals (seeDe�nition 4.3 on page 16). However we can easily extend Trans so that it respects &by viewing the belief literals as a basis a naturally induced vector space. This newTrans is then the uniquely determined homomorphism which coincides with the Transjust de�ned. 38

For a belief status set BS we denote by Transaction(BS) the subset of all action statusatoms in BS. This is exactly the status set as de�ned in De�nition A.1 for agent programswithout beliefs.For a belief status set BS and an agent b 2 A, we also de�ne:Transstate(BS;b) =def f� jBa(b; �) 2 BS and � is a code call conditiongTransaction(BS;b) =def fM�(~t) j Ba(b;M�(~t)) 2 BS; where M 2 fO;W;P;F;Dogg:As in De�nition 5.3 on page 27, these de�nitions are easily extended to arbitrary sequences� instead of just b.This transformation Trans maps all belief literals into extended code call conditions andwill be used in the following to map any set containing belief literals (like belief status setsor meta agent programs) into one without belief literals but containing extended code calls.Also Trans(BP) naturally de�nes an agent program without beliefs and thus we can usean existing implementation for agent programs to compute them.Although the mapping Trans is very simple, some more work is needed in order to getthe above claimed equivalence result. Namely, in the de�nition of a feasible belief status setwe have explicitly required the compatibility with the belief table and the belief semanticstable (see De�nitions 5.14 on page 34 and 5.16 on page 35). If we use Trans to get rid ofall belief atoms in a belief status set by transforming them into code calls, then we need toformulate similar conditions in terms of code calls. Otherwise we cannot expect a strongequivalence result to hold. The following picture may help to clarify the problem:BP Trans��������! PCompatible with- Belief Semantics- Belief Table x??Semnew ???x??SemoldBS Trans��������! SIt will be easy to show that if the conditions on the left side are ful�lled, and BS belongsto the semantics Sem of BP, then S belongs to the semantics Sem of P. But in order toreduce the semantics of meta agent programs to those of agent programs we must also havethe converse, namely that all S's of P on the right hand side are induced by BS's on theleft hand side. Such a result can only hold if we have corresponding conditions (indicatedby \???" in the above diagram) on the right hand side.The way we solve this problem is1. to extend the original set of integrity constraints IC by a new constraint which ex-presses the compatibility with the belief semantics table using the new functions nowavailable in Sext,2. to add a new condition (which cannot be expressed as an integrity constraint) whichensures the compatibility with the belief table.39

As to 1. we denote by ICext the set IC of original integrity constraints augmented withthe following extended integrity constraints (one for each agent b 2 A):in(hb;BSemabi; a : belief sem table()) &in("�"; a : bel ccc act(b)) &in(true; a : bel semantics(b; �; �0)))in("�0"; a : bel ccc act(b)):Note that we assume for ease of notation that the formulae �; �0 are just code call conditions.In general, they can be arbitrary belief formulae (as determined by BSemab). In this case,we have to take their transformation as provided by Trans. To be more precise, we have toadd the constraints: in(hb;BSemabi; a : belief sem table()) &in(true; a : bel semantics(b; �; �0))Trans(�) &)Trans(�0)As to 2. we require the following conditionClosure: Let the state OSext satisfy in(hb; �; �Bi; a : belief table()) as well as a part(�B)and let Transstate(BS;b) satisfy b part(�B). Let further � be a code call condition oran action status atom,1. If � is a code call condition or an action status atom, then OSext satis�esin(�; a : bel ccc act(b)).2. If � is of the form Bb(c; �0), where �0 is a code call condition or an action statusatom, then OSext satis�es in("�0"; a : bel ccc act([b; c])).3. More generally, if � is a nested belief atom, then we can associate with this atoma sequence [�] (as introduced in De�nition 5.2 on page 26) and we require thatOSext satis�es in("�0"; a : bel ccc act([�])).Thus we end up up with the following picture:BP Trans��������! PCompatible with- Belief Semantics- Belief Table x??Semnew ICextClosurex??SemoldBS Trans��������! SThe following theorem and its corollaries make the statement (6) precise.6.2 Theorem (Implementing Belief Programs by Agent Programs)Let BP be a meta agent program, a 2 A, OSext a state of agent a, IC a set of integrityconstraints, and AC a set of action constraints for a.If BS is a feasible belief status set of agent a wrt. BP, OSext, IC and AC, then40

1. Transaction(BS) is a feasible status set of Trans(BP) wrt. OSext and ICext. Inaddition OSext satis�es Closure.2. for all sequences �: Transaction(BS; �) is a feasible status set wrt. Transstate(BS; �)and Pa(�), where in(Pa(�); a : action program(�)) is true in OSext.Moreover, every feasible status set of Trans(BP) for a state OSext and ICext where OSextsatis�es Closure is obtained in that way.Proof: We �rst show 1. and 2. Let BS be a feasible belief status set of agent a wrt. BP,OSext , IC and AC. Transaction(BS) is certainly a status set of Trans(BP): it consistsjust of certain action status atoms for Trans(BP). To check feasibility of this set, we haveto check (1) closure under program rules, (2) deontic and action consistecy, (3) deonticand action closure and (4) state consistency. But all these properties are immediate fromthe corresponding conditions for BS (see De�nition 5.12 for (1), De�nition 5.7 for (2),Lemmas 5.8 and 5.9 for (3), state consistency is analogously to (4) de�ned, and note thatTransaction(BS; �) and Transstate(BS; �) correspond to �action� (BS) and �state� (BS)).Why is ICext true and why does OSext satisfy Closure? ICext follows by the beliefsemantics compatibility condition and Closure by the belief table compatibility.Condition 2. is implied by local feasibility.Now we have to prove the converse, namely that every feasible status set of Trans(BP)for a state OSext and ICext where OSext satis�es Closure is obtained in that way. Let S besuch a feasible status set. Then we reconstruct BSnew using the code calls a : bel ccc act([�]).Whenever OSext satis�es a code call atomin("�"; a : bel ccc act([b; �]))where "�" is a code call atom of the form "in(�; : ())" or an action status atom, then weadd Ba(b; �) to BSnew. Note that because of the Closure condition, such code call atomsmust hold and satisfy (if retransformed to belief formulae) the belief table compatibiltycondition. By construction, BSnew is a status set and the feasibility is guaranteed by thefeasiblity of S and the conditions we have just mentioned.6.3 Corollary (Trans(BP) is invariant under Rational and Reasonable Semantics)If BS is a rational (resp. reasonable) belief status set of agent a wrt. BP, OSext , IC andAC, then1. Transaction(BS) is a rational (resp. reasonable) status set of Trans(BP) wrt. OSextsatisfying Closure and wrt. ICext,2. for all sequences �: Transaction(BS; �) is a rational (resp. reasonable) status setwrt. Transstate(BS; �) and Pa(�), where in(Pa(�); a : action program(�)) is true inOSext.Moreover, every rational (resp. reasonable) status set of Trans(BP) for a state OSext andICext where OSext satis�es Closure is obtained in that way.41

Proof: We distinguish between rational and reasonable status sets. As the latter arebased on the former we �rst consider rational sets.Rational: Using Theorem 6.2, it only remains to prove that every BS which is locallycoherent, compatible with BTa and with BSemTa satis�es:BS is grounded wrt. BP if and only if Trans(BS) is grounded wrt. Trans(BP):This equivalence is easily shown by comparing the operators given in De�nition 5.10for programs with beliefs and De�nition A.4 for programs without. Note that thetransformation Trans ensures that all belief literals of BP are transformed into ex-tended code call conditions and these code call conditions are taken care of by ourconditions (Closure and ICext). A detailed inspection shows that every application ofAppBP ;OS (BS) corresponds exactly to an application ofAppTrans(BP);OSext (Trans(BS))and thus the result follows.Reasonable: Here we have to show that applying Trans() is compatible with the reductionoperation: Trans(redBS(BP;OSext)) = redTrans(BS)(Trans(BP);OSext):The result then follows immediately by the de�nition of reasonable status sets, whichare based on rational sets for positive programs. The problem is therefore reduced tothe former case.That the condition above holds follows immediately from the very de�nition of red.As we have a one-one correspondence between the body atoms of BP and those ofTrans(BP), a rule in BP is removed if and only if the corresponding rule in Trans(BP)is removed.7 Related WorkIn this paper, we have provided a framework within which an agent may reason about thebeliefs it has about other agents' states, beliefs and possible actions. Our framework buildsupon classical logic programming results. As there has been considerable work on theseareas, we try to relate our work with the most relevant of these works. We do not explicitlyrelate ordinary agent programs (Eiter, Subrahmanian, and Pick 1998) with other agentsystems, as that has been done in great detail in (Eiter, Subrahmanian, and Pick 1998).Rather, we focus primarily on meta-reasoning capabilities of agents and compare maps withmeta reasoning capabilities of other agent frameworks.Kowalski and Sadri (1998) have developed an agent architecture that uses logical rulesexpressed in Horn clause-like syntax, to encode agent behavior|both rational and reactive.The reactive agent rules are of the form� conditionwhere � is an action, and the condition in the body of the rule is a logical condition.Rationality is captured through integrity constraints. In the current language of (Kowalski42

and Sadri 1998), there seems to be no obvious support for meta-reasoning, though no doubtit could be encoded in, via some use of the metalogical demo predicate (Kowalski 1995).M. Schroeder () have shown how extended logic programming may be used to specifythe behavior of a diagnostic agent. They propose an architecture that supports cooperationbetween multiple diagnostic agents. Issues of interest arise when con
icting diagnoses arehypothesized by di�erent agents. Their architecture consists of a knowledge base imple-mented by an extended logic program (Alferes and Pereira 1994), and inference machinethat embodies the REVISE algorithm (C.V. Damasio and Pereira 1994) for eliminatingcontraditions, and a control layer. No meta-reasoning issues are brought up explicitly inthis work.Concurrently with our e�ort, M. Martelli and Zini (1998, M. Martelli and Zini (1997)have developed a logic programming based framework called CaseLP that may be used toimplement multiagent applications by building on top of existing software. As in our work,agents have states, and states are changed by the agents' actions, and the behavior of anagent is encoded through rules. No meta-reasoning issues are brought up explicitly in thiswork.Morgenstern (1990) was one of the �rst to propose a formal extension of auto-epistemiclogic to deal with multiagent reasoning. She extended auto-epistemic logic (Moore 1985)with belief modalities indexed by agent names. She proposed a concept of expansions forsuch theories.The Procedural Reasoning System (PRS) is one of the best known multiagent con-struction system that implements BDI agents (BDI stands for \Belief, Desires, Intention-ality") (d'Inverno, Kinny, Luck, and Wooldridge 1997). This framework has led to severalinteresting applications including a practical, deployed application called OASIS for airtra�c control in Sydney, Australia. The theory of PRS is captured through a logic baseddevelopment, in (Rao and George� 1991).Gmytrasiewicz and Durfee (1992) have developed a logic of knowledge and belief tomodel multiagent coordination. Their framework permits an agent to reason not onlyabout the world and its own actions, but also to simulate and model the behavior of otheragents in the environment. In a separate paper (P. Gmytrasiewicz and Wehe. 1991), theyshow how one agent can reason with a probabilistic view of the behavior of other agents soas to achieve coordination. This is good work.There are some signi�cant di�erences between our work and theirs. First, we focus onagents that are built on top of arbitrary data structures. Second, our agent meta-reasoninglanguage is very general|an agent can decide, for instance, that it will reason only withlevel 1 nested beliefs|and hence, our framework allows di�erent agents to pick the level ofbelief reasoning appropriate for them. Third, our action framework is very general as well,and meta-reasoning with permitted, obligatory and forbidden actions is novel. Fourth, ourframework allows an agent to \plug in" di�erent estimates of the semantics used by otheragents.Researchers in the distributed knowledge community have also conducted extensive re-search into how one agent reasons about its beliefs about other agents (and their beliefs).Fagin and Vardi (1986) present a multiagent modal logic where knowledge modalities areindexed by agent names. They provide a semantics for message passing in such an environ-43

ment. However, their work is quite di�erent from ours.ConclusionsWe have seen that the operating principles governing how an agent acts, may, in manyapplications, be based upon the agent's beliefs about other agents' states, beliefs, and pos-sible courses of actions. In order to e�ectively support such applications, we have proposedthe notions of belief tables, and belief semantics tables, culminating in the de�nition ofa Meta Agent Program, or map. We have shown that our map framework is rich enoughto encode fairly complex meta-reasoning needs, such as those arising in the context of theRAMP example.We have developed a formal semantics for maps|in particular, if a particular map BP isassociated with an agent a, and the current state of the agent is OS , then we have indicatedwhat constitutes a feasible belief status set. Such a set indicates not only what the agent'spermitted, obligatory and forbidden actions are, but also speci�es what the agent believes tobe the permitted, obligatory and forbidden actions of other agents are. We have then re�nedthe concept of a feasible belief status set to two more �ne grained semantics|namely therational belief status set semantics, and the reasonable belief status set semantics.Finally, we have provided a transformation that takes as input, a map and converts itinto an ordinary agent program, together with a slightly modi�ed version of the integrityconstraints and object state. The feasible (resp. rational, reasonable) belief status sets of themap are shown to be in a one-one correspondence with the belief-free feasible (resp. rational,reasonable) status sets of the transformed agent progam with modi�ed integrity constraintsand object state. This result is nontrivial, and makes it possible to implement maps througha computation engine for feasible (resp. rational, reasonable) status sets of agent programs.We have currently developed a preliminary implementation of a computation engine foragent programs, and are currently re�ning it. Some sample screendumps of this engine maybe seen at the following .As beliefs that an agent a may hold about another agent b may be uncertain, we arecurrently extending the current work on maps to handle probabilistic modes of uncertainty.We are also extending maps so that agent a can estimate what agent b may do in the future,and to reason about how agent b's beliefs may evolve in the future.AcknowledgmentsThis work was supported by the Army Research O�ce under Grants DAAH-04-95-10174,DAAH-04-96-10297, DAAG-55-97-10047 and DAAH04-96-1-0398, by the Army ResearchLaboratory under contract number DAAL01-97-K0135 and by an NSF Young Investigatoraward IRI-93-57756.
44

ReferencesAlferes, J. and L. Pereira (1994). Reasoning with Logic Programming. In Springer LectureNotes in Arti�cial Intelligence vol. 1111.�Aquist, L. (1984). Deontic Logic. In D. Gabbay and F. Guenthner (Eds.), Handbook ofPhilosophical Logic, Vol.II, Chapter II.11, pp. 605{714. D. Reidel Publishing Com-pany.Arens, Y., C. Chee, C.-N. Hsu, and C. Knoblock (1993). Retrieving and Integrating DataFrom Multiple Information Sources. International Journal of Intelligent CooperativeInformation Systems 2 (2), 127{158.Arisha, K., S. Kraus, F. Ozcan, R. Ross, and V.S.Subrahmanian (1997, November).IMPACT: The Interactive Maryland Platform for Agents Collaborating Together.Submitted for publication.Bayardo et. al., R. (1997). Infosleuth: Agent-based Semantic Integration of Informationin Open and Dynamic Environments. In ACM SIGMOD Conf. on Management ofData, Arizona, USA.Benton, J. and V. Subrahmanian (1994). Using Hybrid Knowledge Bases for MissileSiting Problems. In I. C. Society (Ed.), Proceedings of the Conference on Arti�cialIntelligence Applications, pp. 141{148.Bonatti, P., S. Kraus, J. Salinas, and V. Subrahmanian (1998). Data Security in Het-erogenous Agent Systems. In M. Klusch (Ed.), Cooperative Information Agents, pp.290{305. Springer.Brink, A., S. Marcus, and V. Subrahmanian (1995). Heterogeneous Multimedia Reason-ing. IEEE Computer 28 (9), 33{39.Candan, K., B. Prabhakaran, and V. Subrahmanian (1996, November). CHIMP: AFramework for Supporting Multimedia Document Authoring and Presentation. InACM Multimedia Conference, Boston, MA.Cattell et.al., R. (1997). The Object Database Standard: ODMG-93. Morgan Kaufmann.Chawathe, S., H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakonstantinou, J. Ullman,and J. Widom (1994, October). The TSIMMIS Project: Integration of HeterogeneousInformation Sources. In IPSJ Conference, Tokyo, Japan. Also available via anonymousFTP from host db.stanford.edu, �le /pub/chawathe/1994/tsimmis-overview.ps.C.V. Damasio, W. N. and L. Pereira (1994). An Extended Logic Programming Systemfor Revising Knowledge Bases. In Proceedings of KR-94. Morgan Kaufman.d'Inverno, M., D. Kinny, M. Luck, and M. Wooldridge (1997). A Formal Speci�cation ofdMARS. In Intl. Workshop on Agent Theories, Architectures, and Languages, Provi-dence, RI, pp. 146{166.Eiter, T., V. Subrahmanian, and G. Pick (1998). Heterogenous Active Agents. Technicalreport, University of Maryland, Dept. of CS.Fagin, R. and M. Vardi (1986). Knowledge and Implicit Knowledge in a Distributed En-vironment. In Proc. 1986 Conf on Theoretical Aspects of Reasoning about Knowledge,pp. 187{206. Morgan Kaufman. 45

Foltz, P. W. and S. T. Dumais (1992). Personalized information delivery: An analysis of�ltering methods. In Proceedings of ACM CHI'92 Conference on Human Factors inComputing Systems { Posters and Short Talks, Posters: Designing for Use.Gmytrasiewicz, P. and E. Durfee (1992). A logic of knowledge and belief for recursivemodeling. In Proceedings of AAAI-92, pp. 628{634. Morgan Kaufman.Goldberg, D., D. Nichols, B. Oki, and D. Terry (1992, September). Using collaborative�ltering to weave an information tapestry. Technical Report CSL-92-10, parc, PaloAlto, California.Hindriks, K., F. de Boer, W. van der Hoek, and J. Meyer (1997). Formal Semantics ofan Abstract Agent Programming Language. In Intl. Workshop on Agent Theories,Architectures, and Languages, Providence, RI, pp. 204{218.Ishizaki, S. (1997). Multiagent Model of Dynamic Design: Visualization as an EmergentBehavior of Active Design Agents. In M. Huhns and M. Singh (Eds.), Readings inAgents, pp. 172{179. Morgan Kaufmann Press.Kanger, S. (1972). Law and Logic. Theoria 38.Kowalski, R. (1995). Using metalogic to reconcile reactive with rational agents. MIT Press.Kowalski, R. and F. Sadri (1998). Towards a uni�ed agent architecture that combinesrationality with reactivity. draft manuscript.Labrou, Y. and T. Finin (1997). Semantics for an Agent Communication Language. InIntl. Workshop on Agent Theories, Architectures, and Languages, Providence, RI, pp.199{203.Lu, J., A. Nerode, and V. Subrahmanian (1996). Hybrid Knowledge Bases. IEEE Trans-actions on Knowledge and Data Engineering 8 (5), 773{785.M. Martelli, V. M. and F. Zini (1997). Caselp: a complex application speci�cation envi-ronment based on logic programming. In Proc. of ICLP'97 Post Conference Workshopon Logic Programming and Multi-Agents, Leuven, Belgium, pp. 35{50.M. Martelli, V. M. and F. Zini (1998). Towards multi-agent software prototyping. In Proc.of The Third International Conference and Exhibition on The Practical Application ofIntelligent Agents and Multi-Agent Technology (PAAM98), London, UK, pp. 331{354.M. Schroeder and I. de Almeida Mora and L. M. Pereira (1997). A deliberative andreactive diagnosis agent based on logic programming. In J. Muller, M. Wooldridge,and N. Jennings (Eds.), Intelligent Agents III: Lecture Notes in Arti�cial IntelligenceVol. 1193, pp. 293{307. Springer Verlag.Meyer, J.-J. C. and R. Wieringa (Eds.) (1993). Deontic Logic in Computer Science.Chichester et al: Wiley & Sons.Moore, R. (1985). Semantical Considerations on Nonmonotonic Logics. Arti�cial Intelli-gence 25, 75{94.Morgenstern, L. (1990). A formal theory of multiple agent nonmonotonic reasoning. InProceedings of AAAI-90, pp. 538{544.P. Gmytrasiewicz, E. D. and D. Wehe. (1991). A Decision-Theoretic Approach to Coor-dinating Multiagent Interactions. In Proceedings of IJCAI 1991, pp. 62{68. MorganKaufman. 46

Rao, A. and M. George� (1991). Modeling Rational Agents within a BDI-Architecture.In J. F. Allen, R. Fikes, and E. Sandewall (Eds.), Proceedings of the InternationalConference on Knowledge Representation and Reasoning, Cambridge, MA, pp. 473{484. Morgan Kaufmann.Rosenschein, S. (1985). Formal Theories of Knowledge in AI and Robotics. New Gener-ation Computing 3 (4), 345{357.Rosenschein, S. and L. Kaelbling (1995). A Situated View of Representation and Control.Arti�cial Intelligence 73, 149{173.Rus, D., R. Gray, and D. Kotz (1997). Transportable Information Agents. In M. Huhnsand M. Singh (Eds.), Readings in Agents, pp. 283{291. Morgan Kaufmann Press.Sheth, B. and P. Maes (1993, Mrach). Evolving agents for personalized information �l-tering. In Proceedings of the 9th Conference on Arti�cial Intelligence for Applications(CAIA'93), pp. 345{352. IEEE Computer Society Press.Shoham, Y. (1993). Agent Oriented Programming. Arti�cial Intelligence 60, 51{92.Siegal, J. (1996). CORBA Fundementals and Programming. New York: John Wiley andSons.Sta, J.-D. (1993). Information �ltering: A tool for communication between researchers.In Proceedings of ACM INTERCHI'93 Conference on Human Factors in Comput-ing Systems { Adjunct Proceedings, Short Papers (Posters): Help and InformationRetrieval, pp. 177{178.Ullman, J. D. (1989). Principles of Database and Knowledge Base Systems. ComputerScience Press.Wilder, F. (1993). A Guide to the TCP/IP Protocol Suite. Artech House.A Agent Programs without BeliefsA.1 Feasible, Rational and Reasonable SemanticsA.1 De�nition (Status Set)A status set is any set S of ground action status atoms over S. For any operator Op 2fP;Do;F;O;Wg, we denote by Op(S) the set Op(S) = f� j Op(�) 2 Sg.A.2 De�nition (Deontic and Action Consistency)A status set S is called deontically consistent, if, by de�nition, it satis�es the followingrules for any ground action �:� If O� 2 S, then W� =2 S� If P� 2 S, then F� =2 S� If P� 2 S, then OS j= 9�Pre(�), where 9�Pre(�) denotes the existential closure ofPre(�), i.e., all free variables in Pre(�) are governed by an existential quanti�er. Thiscondition means that the action � is in fact executable in the state OS .A status set S is called action consistent, if S;OS j= AC holds.47

Besides consistency, we also wish that the presence of certain atoms in S entails thepresence of other atoms in S. For example, if O� is in S, then we expect that P� is also inS, and if O� is in S, then we would like to have Do� in S. This is captured by the conceptof deontic and action closure.A.3 De�nition (Deontic and Action Closure)The deontic closure of a status S, denoted D-Cl(S), is the closure of S under the ruleIf O� 2 S, then P� 2 Swhere � is any ground action. We say that S is deontically closed, if S = D-Cl(S) holds.The action closure of a status set S, denoted A-Cl(S), is the closure of S under therules If O� 2 S, then Do� 2 SIf Do� 2 S, then P� 2 Swhere � is any ground action. We say that a status S is action-closed, if S = A-Cl(S)holds.The following straightforward results shows that status sets that are action-closed are alsodeontically closed, i.e.A.4 De�nition (Operator AppP;OS (S))Suppose P is an agent program, and OS is an agent state. Then, AppP;OS (S) is de�nedto be the set of all ground action status atoms A such that there exists a rule in P havinga ground instance of the form r : A L1; : : : ; Ln such that1. B+as(r) � S and ::B�as(r) \ S = ;, and2. every code call � 2 B+cc(r) succeeds in OS , and3. every code call � 2 ::B�cc(r) does not succeed in OS , and4. for every atom Op(�) 2 B+(r) [fAg such that Op 2 fP;O;Dog, the action � isexecutable in state OS .Note that part (4) of the above de�nition only applies to the \positive" modes P;O;Do.It does not apply to atoms of the form F� as such actions are not executed, nor does it applyto atoms of the form W�, because execution of an action might be (vacuously) waived, ifits prerequisites are not ful�lled.Our approach is to base the semantics of agent programs on consistent and closed statussets. However, we have to take into account the rules of the program as well as integrityconstraints. This leads us to the notion of a feasible status set.A.5 De�nition (Feasible Status Set)Let P be an agent program and let OS be an agent state. Then, a status set S is a feasiblestatus set for P on OS , if the following conditions hold:48

(S1): (closure under the program rules) AppP;OS (S) � S;(S2) (deontic and action consistency) S is deontically and action consistent;(S3) (deontic and action closure) S is action closed and deontically closed;(S4) (state consistency) O0S j= IC, where O0S = apply(Do(S);OS) is the state whichresults after taking all actions in Do(S) on the state OS .A.6 De�nition (Groundedness; Rational Status Set)A status set S is grounded, if there exists no status set S0 6= S such that S0 � S and S0satis�es conditions (S1){(S3) of a feasible status set.A status set S is a rational status set, if S is a feasible status set and S is grounded.A.7 De�nition (Reasonable Status Set)Let P be an agent program, let OS be an agent state, and let S be a status set.1. If P is a positive agent program, then S is a reasonable status set for P on OS , if andonly if S is a rational status set for P on OS .2. The reduct of P w.r.t. S and OS , denoted by redS(P;OS), is the program which isobtained from the ground instances of the rules in P over OS as follows.(a) First, remove every rule r such that B�as(r) \ S 6= ;;(b) Remove all atoms in B�as(r) from the remaining rules.Then S is a reasonable status set for P w.r.t. OS , if it is a reasonable status set ofthe program redS(P;OS) with respect to OS .B Agents in RAMPB.1 Helicopter AgentB.1.1 Code Calls1. Change
ying altitude to Altitude (0 to Maximum altitude):Heli : SetAltitude(Altitude) ! Boolean2. Get current altitude:Heli :GetAltitude(now) ! Altitude3. Change
ying speed to Speed (0 to Maximum speed):Heli : SetSpeed (Speed) ! Boolean4. Get current speed: 49

Heli :GetSpeed (now) ! Speed5. Change
ying heading to Heading (0 to 360):Heli : SetHeading(Heading) ! Boolean6. Get current heading:Heli :GetHeading(now) ! Heading7. Aim the gun at the 3D point given by Position:Heli :Aim(Position) ! Boolean8. Fire the gun using the current aim:Heli :Fire(now) ! Boolean9. Determine the current position in space:Heli :GetPosition(now) ! 3DPoint10. Compute heading to
y from 2D point Src to 2D point Dst:Heli :ComputeHeading(Src; Dst) ! Heading)11. Compute the distance between two 3D points:Heli :ComputeDistance(X; Y) ! Distance12. Retrieve the maximum range for the gun:Heli :GetMaxGunRange(now) ! DistanceB.1.2 Actions1. Fly from 3D point From to 3D point To at altitude Altitude and speed SpeedFly(From ,To ,Altitude ,Speed)Pre(F ly): in(From;Heli :GetPosition(now))Del(F ly): in(From;Heli :GetPosition(now))Add(F ly): in(To;Heli :GetPosition(now+ 1))2. FlyRoute(path) Path given as a sequence of triples consisting of: a 3D point, altitude,and speedFlyRoute(Path)Pre(F lyRoute): in(Path(0):Position;Heli :GetPosition(now))Del(F lyRoute): in(Path(0):Position;Heli :GetPosition(now))Add(F lyRoute): in(Path(Path:Count):Position;Heli :GetPosition(now+ 1))50

3. Attack vehicle at position Position in spaceAttack(Position)Pre(Attack): in(MyPosition;Heli :GetPosition(now)) &in(Distance;Heli :ComputeDistance(MyPosition; Position; now)) &in(MaxRange;Heli :GetMaxGunRange(now)) &Distance < MaxRangeDel(Attack): fgAdd(Attack): fgB.1.3 Integrity Constraintsin(S;Heli :GetSpeed (now)) & S < MaxSpeedin(A;Heli :GetAltitude(now)) & A < MaxAltitudeB.1.4 Action Constraintsf Fly(X1,Y1,A1,S1), Fly(X2,Y2,A2,S2)g - X1 != X2 Or Y1 != Y2 Or A1 != A2 Or S1 != S2f Attack(P)g - in(P;Heli :GetPosition(now))B.2 Tank AgentB.2.1 Code Calls1. Drive forward at speed Speed (0 to Max speed)Tank :GoForward (Speed) ! Boolean2. Drive backward at speed Speed (0 to Max speed)Tank :GoBackward (Speed)3. Turn left by Degrees degrees (0 to 360)Tank :TurnLeft(Degrees)4. Turn right by Degrees degrees (0 to 360)Tank :TurnRight(Degrees)5. Determine current position in 2DTank :GetPosition(now) ! 2DPoint6. Get current headingTank :GetHeading(now) ! Heading7. Aim the gun at 3D point PointTank :Aim(Point) ! Boolean 51

8. Fire the gun using the current aimTank :Fire(now) ! Boolean9. Compute the distance between two 2D pointsTank :ComputeDistance(X)Y ! Distance10. Retrieve the maximum range for the gunTank :GetMaxGunRange(now) ! DistanceB.2.2 Actions1. Drive from to 2D point From to 2D point To at speed SpeedDrive(From,To,Speed)Pre(Drive): in(From; Tank :GetPosition(now))Del(Drive): in(From; Tank :GetPosition(now))Add(Drive): in(To; Tank :GetPosition(now+ 1))2. Drive route Route given as a sequence of 2D points at speed SpeedDriveRoute(Route,Speed)Pre(DriveRoute): in(Route(0):Position; Tank :GetPosition(now))Del(DriveRoute): in(Route(0):Position; Tank :GetPosition(now))Add(DriveRoute): in(Route(Route:Count):Position; Tank :GetPosition(now+ 1))3. Attack vehicle at position Position in spaceAttack(Position)Pre(Attack): in(MyPosition; Tank :GetPosition(now)) &in(Distance; Tank :ComputeDistance(MyPosition; Position; now)) &in(MaxRange; Tank :GetMaxGunRange(now)) &Distance < MaxRangeDel(Attack): fgAdd(Attack): fgB.3 Terrain Route Planning AgentB.3.1 Code Calls1. Sets current map to MapRoute :UseMap(Map) ! Bool2. Compute a route plan on the current map for a vehicle of type VehicleType fromSourcePoint to DestinationPoint given in 2D. Returns a route plan as a sequenceof points in plane. 52

Route :GetPlan(SourcePoint; DestinationPoint; VehicleType)! SequenceOf2DPoints3. Given SourcePoint and DestinationPoint on the current map, determine the likelyroutes of a vehicle of type VehicleType whose initial route segment is Route, givenas a sequence of points in the plane It returns a sequence of route-probability pairs.Route :GroundPlan(SourcePoint; DestinationPoint; VehicleType; Route)! (Route; Probability)4. Compute a
ight plan on the current map from SourcePoint to DestinationPointgiven in 3D. Returns a
ight plan as a sequence of points in spaceRoute :FlightPlan(SourcePoint; DestinationPoint)! SequenceOf3DPoints5. Determines whether two points are visible from each other on the given map. Forexample if a hill lies between the two points, they are not visible from each other.This is useful to determine whether an agent can see another agent or whether anagent can �re upon another agent.Route :Visible(Map; Point1; Point2) ! BooleanB.3.2 Actions1. Compute a route plan on map Map for a vehicle of type VehicleType from SourcePointto DestinationPoint given in 2D.PlanRoute(Map,SourcePoint,DestinationPoint,VehicleType)Pre(P lanRoute): SourcePoint != DestinationPointDel(P lanRoute): fgAdd(P lanRoute): in(true; Route :UseMap(Map; now)) &in(Plan; Route :GetPlan(SourcePoint; DestinationPoint; VehicleType; now))2. Given SourcePoint and DestinationPoint on map Map determine the likely routesof a vehicle of type VehicleType whose initial route segment is Route, given as asequence of points in the planeEvaluateGroundPlan(Map,SourcePoint,DestinationPoint,VehicleType,Route)Pre(EvaluateGroundP lan): SourcePoint != DestinationPointDel(EvaluateGroundP lan): fgAdd(EvaluateGroundP lan): in(true; Route :UseMap(Map; now)) &in(RP; Route :GroundPlan(SourcePoint; DestinationPoint; VehicleType; Route; now))3. Compute a
ight plan on map Map from SourcePoint to DestinationPoint givenin 3D.PlanFlight(Map,SourcePoint,DestinationPoint)Pre(P lanF light): SourcePoint != DestinationPointDel(P lanF light): fgAdd(P lanF light): in(true; Route :UseMap(Map; now)) &in(Plan; Route :FlightPlan(SourcePoint; DestinationPoint; now))53

B.4 Tracking AgentThis agent continuously scans the area for enemy vehicles. It maintains a list of enemyvehicles, assigning each an agent id. It tries to determine the vehicle type for each enemyvehicle. When it detects a new vehicle, it adds it to its list, together with its position. Sincethe tracking agent only keeps track of enemy vehicles which are on the ground, the positionis in the plane. This could be for example an AWACS plane.B.4.1 Code Calls1. Get position for agent with id AgentId at time Time If time is in the past this isdone by searching the database. If time is in the future this is done by guessing theposition.Track :GetPosition(AgentId; Time) ! 2DPoint2. Get the type of agent for agent with id AgentId. It returns the most likely vehicletype together with the probabilityTrack :GetTypeOfAgent(AgentId) ! (VehicleType; Probability)3. Return the list of all agents being trackedTrack :GetListOfAgents(now) ! ListOfAgentIdsFB.5 Coordination AgentB.5.1 Code Calls1. Determine wether a vehicle of type VehicleType1 at position Position1 can attacka vehicle of type VehicleType2 at position Position2. For example a tank is notable to attack a �ghter plane unless it is on the ground.Coord :CanBeAttackedNow ((VehicleType1; Position1; VehicleType2; Position2))! Boolean2. Given an agent id for an enemy vehicle, determine the best position, time and routefor an attack to be successful. Also return the estimated probability of successCoord :FindAttackTimeAndPosition(AgentId)! (Position; Time; Route; Probability)3. Given a set of ids for friendly agents, compute a plan for a coordinated attack againstthe enemy agent with id EnemyId. The friendly agents participating in the coordinatedattack are taken from the set SetOfAgentIdsCoord :CoordinatedAttack ((SetOfAgentIds; EnemyId))! AttackPlan 54

B.5.2 Actions1. Given a set of ids for friendly agents, compute a plan for a coordinated attack againstthe enemy agent with id EnemyId. The friendly agents participating in the coordinatedattack are taken from the set SetOfAgentIds.Attack(SetOfAgentIds,EnemyId)Pre(Attack): SetOfAgentIds != fgDel(Attack): fgAdd(Attack): in(AP; Coord :CoordinatedAttack ((SetOfAgentIds; EnemyId; now)))

55

