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Digital signal processing (DSP) is widely used in many types of devices, includ-

ing mobile phones, tablets, personal computers, and numerous forms of embedded

systems. Implementation of modern DSP applications is very challenging in part

due to the complex design spaces that are involved. These design spaces involve

many kinds of configurable parameters associated with the signal processing algo-

rithms that are used, as well as different ways of mapping the algorithms onto the

targeted platforms.

In this thesis, we develop new algorithms, software tools and design method-

ologies to systematically explore the complex design spaces that are involved in

design and implementation of signal processing systems. To improve the efficiency

of design space exploration, we develop and apply compact system level models,

which are carefully formulated to concisely capture key properties of signal process-

ing algorithms, target platforms, and algorithm-platform interactions.



Throughout the thesis, we develop design methodologies and tools for integrat-

ing new compact system level models and design space exploration methods with

lightweight dataflow (LWDF) techniques for design and implementation of signal

processing systems. LWDF is a previously-introduced approach for integrating new

forms of design space exploration and system-level optimization into design processes

for DSP systems. LWDF provides a compact set of retargetable application pro-

gramming interfaces (APIs) that facilitates the integration of dataflow-based models

and methods. Dataflow provides an important formal foundation for advanced DSP

system design, and the flexible support for dataflow in LWDF facilitates experimen-

tation with and application of novel design methods that are founded in dataflow

concepts. Our developed methodologies apply LWDF programming to facilitate

their application to different types of platforms and their efficient integration with

platform-based tools for hardware/software implementation. Additionally, we intro-

duce novel extensions to LWDF to improve its utility for digital hardware design

and adaptive signal processing implementation.

To address the aforementioned challenges of design space exploration and sys-

tem optimization, we present a systematic multiobjective optimization framework

for dataflow-based architectures. This framework builds on the methodology of mul-

tiobjective evolutionary algorithms and derives key system parameters subject to

time-varying and multidimensional constraints on system performance. We demon-

strate the framework by applying LWDF techniques to develop a dataflow-based

architecture that can be dynamically reconfigured to realize strategic configurations

in the underlying parameter space based on changing operational requirements.



Secondly, we apply Markov decision processes (MDPs) for design space explo-

ration in adaptive embedded signal processing systems. We propose a framework,

known as the Hierarchical MDP framework for Compact System-level Modeling

(HMCSM), which embraces MDPs to enable autonomous adaptation of embedded

signal processing under multidimensional constraints and optimization objectives.

The framework integrates automated, MDP-based generation of optimal reconfig-

uration policies, dataflow-based application modeling, and implementation of em-

bedded control software that carries out the generated reconfiguration policies.

Third, we present a new methodology for design and implementation of sig-

nal processing systems that are targeted to system-on-chip (SoC) platforms. The

methodology is centered on the use of LWDF concepts and methods for applying

principles of dataflow design at different layers of abstraction. The development

processes integrated in our approach are software implementation, hardware imple-

mentation, hardware-software co-design, and optimized application mapping. The

proposed methodology facilitates development and integration of signal processing

hardware and software modules that involve heterogeneous programming languages

and platforms.

Through three case studies involving complex applications, we demonstrate

the effectiveness of the proposed contributions for compact system level design and

design space exploration: a digital predistortion (DPD) system, a reconfigurable

channelizer for wireless communication, and a deep neural network (DNN) for vehicle

classification.
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Chapter 1

Introduction

In recent years, increased requirements on functionality and flexibility in dig-

ital signal processing (DSP) applications have imposed significant new challenges

on the design and implementation of embedded signal processing systems. Many

state-of-the-art signal processing applications involve challenging requirements on

flexibility and reconfigurability so that the systems can be adaptive to time-varying

constraints or changes in the operational environment. Additionally, implementa-

tion of these applications is subject to multidimensional design criteria, such as

competing objectives or constraints that involve power consumption, system accu-

racy, hardware cost, and processing speed. Thus, flexible adaptation across diverse

system configurations, and efficient design space exploration are key aspects in ad-

vanced design methodologies for DSP systems.

Due to the requirements of DSP system design described above, the design

space exploration for signal processing systems is both important and challenging.

Effective design space exploration in this context includes experimenting with differ-

ent sets of system configuration parameters, exploring alternative designs with differ-

ent optimization methods, and assessing trade-offs across the relevant optimization

objectives. In this work, we propose software tools, algorithms, and methodologies

to efficiently and systematically explore the design space of DSP systems across
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multiple levels of abstraction, including algorithm, software, and hardware.

1.1 Compact System Level Models

In this thesis, we develop new algorithms, software tools and design method-

ologies to systematically explore the complex design spaces that are involved in

deploying signal processing systems. To improve the efficiency of design space ex-

ploration, we develop and apply compact system level models, which are carefully

formulated to concisely capture key properties of signal processing algorithms, target

platforms, and algorithm-platform interactions.

Throughout the thesis, we develop design methodologies and tools for integrat-

ing new compact system level models and design space exploration methods with

lightweight dataflow (LWDF) techniques for design and implementation of signal

processing systems [1]. LWDF is a previously-introduced approach for integrating

new forms of design space exploration and system-level optimization into design

processes for DSP systems. LWDF provides a compact set of retargetable appli-

cation programming interfaces (APIs) that facilitates the integration of dataflow-

based models and methods with different hardware platforms and their associated

platform-based design tools.

Dataflow provides an important formal foundation for advanced DSP system

design [2, 3], and the flexible support for dataflow in LWDF facilitates experimen-

tation with and application of novel design methods that are founded in dataflow

concepts [4]. Our developed methodologies apply LWDF programming to facilitate
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their application to different types of platforms and their efficient integration with

platform-based tools for hardware/software implementation. Additionally, we intro-

duce novel extensions to LWDF to improve its utility for digital hardware design

and adaptive signal processing implementation.

1.2 Application Areas

We investigate three major application areas of signal processing systems to

demonstrate our contributions in design space exploration using compact system

level models and lightweight dataflow techniques. These are the areas of digital

predistortion (DPD) and channelizer design for wireless communications, and deep

neural networks (DNNs) for computer vision.

1.2.1 Digital Predistortion

Digital predistortion (DPD) is an application area in wireless communications

that we have applied our proposed design place exploration methods to. DPD

is a technique to counteract impairments, such as I/Q mismatch, power amplifier

(PA) nonlinearities, and local oscillator (LO) leakage, that compromise the linear-

ity of radio transmitter amplifiers [5]. Using our proposed design space exploration

techniques, we have developed a novel reconfigurable DPD architecture. The archi-

tecture provides flexible configuration across different combinations of polynomial

orders, bit-widths, and filter orders that are relevant to key trade-offs in DPD system

operation.
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In Chapter 2 and Chapter 3, we present a dataflow-based implementation

of our DPD architecture as a case study of our design optimization framework.

Through this case study, we concretely introduce new methods for multiobjective

design optimization on which the framework is based. These methods are applied to

efficiently navigate the complex design spaces associated with DPD implementation.

Through extensive experiments, we demonstrate the effectiveness of our configurable

DPD architecture and design optimization framework in enabling efficient, adaptive

DPD system operation.

1.2.2 Channelizer Design

In wireless communication, the channelizer is a key part of a receiver that ex-

tracts one or more radio channels of distinct bandwidths from a digitized wideband

input signal. By adapting the configuration of the channelizer based on the com-

munication scenario, we seek to optimize its energy efficiency while ensuring that it

extracts the number of channels that is required by the communication scenario at

any given time.

In Chapter 4, we develop a novel adaptive signal processing architecture to

achieve these objectives, and we apply lightweight dataflow techniques to implement

the architecture efficiently on a state-of-art embedded processing platform.
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1.2.3 Deep Neural Networks

Deep learning is another application area in which efficient design space ex-

ploration is of great importance. Deep learning is a sub-field of machine learning

that has attracted a large amount of attention from academia and industry in recent

years. The core component of a deep learning system is the deep neural network

(DNN), a neural network with hidden layers to optimize an objective function for the

targeted learning purpose. Deep learning has been applied in numerous fields, such

as speech recognition, computer vision, machine translation, and autonomous driv-

ing, with huge success in cases where a sufficient volume of labeled data is available

for training (e.g., see [6]).

Presently, there is a growing trend of deploying deep learning algorithms on

mobile devices, such as smart phones and tablets, in real-time applications. For

example, Facebook has presented a real-time video style transfer on mobile devices

using Caffe2Go, a lightweight deep learning framework [7]. The migration of DNNs

from high-end machines with huge amounts of computational resources to low-end

devices with limited resources is challenging. For example, a DNN with many layers

may not fit into the random access memory (RAM) of a mobile device. In Chapter 5,

as a case study of our proposed new hardware/software design methodologies, we

explore in depth the design space of a DNN application for vehicle classification.

1.3 Outline of Thesis

The remainder of this dissertation is organized as follows.
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The emphasis of Chapter 2 and Chapter 3 is on design space optimization for

DPD systems. In particular, Chapter 2 presents models and methods for efficient

search of the complex, multidimensional design spaces associated with DPD systems,

and Chapter 3 extends the work in Chapter 2 by proposing a novel evolutionary

algorithm framework for multiobjective optimization of DPD systems. In Chapter 3,

we demonstrate the proposed framework by applying it to develop an adaptive DPD

architecture.

In Chapter 4, we propose the Hierarchical MDP framework for Compact

System-level Modeling (HMCSM), which applies Markov decision processes (MDPs)

to enable autonomous adaptation of embedded signal processing under multidi-

mensional constraints and optimization objectives. The framework integrates auto-

mated, MDP-based generation of optimal reconfiguration policies, dataflow-based

application modeling, and implementation of embedded control software that car-

ries out the generated reconfiguration policies. The effectiveness of HMCSM is

demonstrated through experiments with an adaptive channelizer for wireless com-

munications.

In Chapter 5, we develop a dataflow-based methodology, along with supporting

software tools and libraries, for integrated hardware/software co-design and design

optimization of signal processing systems. As outlined above in Section 1.2.3, we

develop a DNN implementation for vehicle classification as a demonstration of the

proposed design methodology.

We conclude in Chapter 6 with a summary of the thesis followed by a discussion

on useful directions for future work.
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Chapter 2

Constrained Optimization for Digital Predistortion (DPD) Systems

As a starting point of design space exploration for DPD systems, in this

chapter, we develop new models and methods for exploring multidimensional de-

sign spaces associated with digital predistortion (DPD) systems. DPD systems are

important components for power amplifier linearization in wireless communication

transceivers. In contrast to conventional DPD implementation methods, which are

focused on optimizing a single objective — most commonly, the adjacent channel

power ratio (ACPR) — without systematically taking into account other relevant

metrics, we consider DPD system implementation in a multiobjective optimization

context. In our targeted multiobjective context, trade-offs among power consump-

tion and multiple DPD performance metrics are jointly optimized subject to per-

formance constraints imposed by the given modulation scheme. Through synthesis

and simulation results, we demonstrate that DPD systems derived through our de-

sign space exploration techniques exhibit significantly improved trade-offs among

multidimensional implementation criteria, including energy consumption, ACPR,

and symbol error-rate. Additionally, we perform experiments using three differ-

ent Long-Term Evolution (LTE) modulation schemes, and we demonstrate that our

multiobjective optimization approach significantly enhances system adaptivity in

response to changes in the employed modulation scheme.
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Material in this chapter was published in [8].

2.1 Introduction

In wireless communication systems, power amplifier (PA) nonlinearities, I/Q

mismatch, and leakage in the local oscillator (LO) introduce power leakage into

adjacent bands, interference between I and Q baseband signals, and direct current

(DC) offset, respectively. In the frequency domain of the transmitted signal, the

effects of these impairments are translated as power leakage into adjacent channels.

Digital predistortion (DPD) is a widely investigated technique (e.g., see [9, 10, 11,

12, 13]) to counteract such impairments by applying carefully-calculated distortion

to the signal prior to transmission. In this chapter, we develop new methods for

design optimization of field-programmable gate array (FPGA)–based DPD systems

that are novel in their adaptability to different modulation constraints, and their

support for multidimensional design space exploration. Specifically, we develop

methods to formulate and perform multiobjective optimization across the key DPD

operational metrics of power consumption, adjacent channel power ratio, and error

vector magnitude, which we abbreviate as PAE.

Our work builds on the DPD algorithm introduced in [5]. In this chapter, we

go beyond the work in [5] through a deep investigation into implementation aspects

of this DPD algorithm. In contrast, the study in [5] is primarily at the levels of

theoretical analysis and algorithm-level (MATLAB) simulation evaluation.

Unlike earlier DPD architectures (e.g., see [10, 14]), the DPD algorithm pro-
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posed in [5] is one of the first DPD techniques that jointly compensates for PA

nonlinearities and I/Q modulator impairments. Conventional digital predistorters

are constructed using serial configurations. For example, the work in [10] is fo-

cused on modeling and compensation of frequency-dependent gain/phase imbalance

and DC offset. For more details on this serial digital predistorter structure, we

refer the reader to [10]. Instead of using a serial structure, the DPD architecture

in [5] employs an extended parallel Hammerstein structure, which decomposes DPD

operation into direct and conjugate predistortion subsystems. Such a decomposed

structure provides additional degrees of freedom in the predistorter design compared

to the serial structures used in traditional DPD systems.

The problem of parameter optimization for DPD systems has been studied

extensively in prior work. These works can be distinguished in terms of three key

(vector-valued) DPD parameters — the filter orders, polynomial orders, and filter

coefficients. For example, Çiflikli and Yaṕıćı and Sperlich et al. apply genetic algo-

rithms to optimize the filter coefficients while assuming fixed filter and polynomial

orders [9, 15]. In contrast, Abdelhafiz et al. jointly optimize all three parameters [16];

however, this optimization is performed with respect to only a single objective —

the adjacent channel power ratio (ACPR). Freiberger et al. determine DPD filter co-

efficients based on constrained multiobjective optimization [17]; however, the work

in this chapter also assumes fixed polynomial and filter orders, and is specialized to

a specific modulation scheme (64–QAM).

To the best of our knowledge, the work of this chapter is the first to go beyond

the aforementioned works by simultaneously (1) considering joint optimization of

9



all three DPD implementation parameters; (2) optimizing the derived DPD archi-

tectures in a multiobjective context (PAE); (3) and demonstrating applicability to

multiple modulation schemes, for example, Quadrature Phase Shift Keying (QPSK),

16–Quadrature Amplitude Modulation (QAM), and 64–QAM in LTE) under their

respective, modulation-specific constraints.

2.2 Design Space Exploration for DPD Systems

Given a multidimensional design evaluation space (MDES), we view a multiob-

jective optimization (MOO) process as a process that searches the associated design

space in an effort to derive a set of Pareto-optimal solutions. A solution in an MDES

is Pareto-optimal if no solution in the space is superior to it when all objectives are

considered. Our design optimization problem for DPD system implementation can

be viewed as an MOO problem where the MDES is defined by the PAE metrics

defined in Section 2.1. In this section, we provide details on these metrics and the

DPD parameters — the filter coefficients, filter orders and polynomial orders — that

define the design space that is investigated in our work.

To implement the DPD algorithm in [5], we develop a dataflow representation

for part of the overall DPD system. This DPD algorithm operates in two stages.

In the coefficient estimation stage, the DPD filtering coefficients are estimated.

The estimated coefficients are then employed in the DPD filtering stage for actual

predistortion of the input signal. Since the coefficient estimation stage of this system

is performed off-line [5], and our objective is to investigate FPGA implementation
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of the on-line (real-time) part, we implement only the second stage — predistortion

filtering — in the dataflow graph.

The structure of the predistortion filtering system is shown in Fig. 2.1. The

DPD system is split into two branches, namely direct and conjugate predistortions.

The output of the predistortion filter can be expressed as

zn =
∑
p∈IP

fp,n ? ψp(xn) +
∑
q∈IQ

f̄q,n ? ψq(x
∗
n) + c′ , (2.1)

where ? denotes convolution; xn and x∗n are the direct and conjugate input samples,

respectively; IP and IQ are the employed sets of direct and conjugate term orders,

respectively; ψp and ψq are polynomial basis functions for the direct and conjugate

branches, respectively; fp,n and f̄q,n are the Finite-Impulse-Response (FIR) filter

coefficients for the direct and conjugate polynomials, respectively; and c′ is the LO

leakage compensation component. The maximum polynomial order used can be

different for the direct and conjugate branches of the predistorter [5].

Given r ∈ {p, q}, the polynomial basis function ψr can be expressed as

ψr(xn) =
∑
k∈Ir

uk,r|xn|k−1xn, r ∈ IR , (2.2)

where IR denotes the set of term orders employed in the given DPD configuration

(IR = IP if r = p, and IR = IQ if r = q); Ir denotes the subset of IR that contains

only of term orders up to r in IR; and {uk,r} denotes the polynomial weights. Here,

given a polynomial ρ = a0 + a1x + . . . + anx
n, we define each monomial aix

i to be

a term of ρ, and we define i to be the associated term order. According to [5], only
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Figure 2.1: Predistorter structure for the joint predistortion of PA and I/Q modu-
lator impairments.

odd-order polynomials are used to avoid the computation of the square-root within

|xn|k−1, which is a computation-saving option that has been applied in the proposed

implementation.

The dataflow model for this second stage is illustrated in Fig. 2.2. The actor

labeled Poly Compt. in Fig. 2.2 represents a polynomial computation module that

produces a polynomial basis function ψp, which is used for both the direct and

conjugate branches.

2.2.1 Optimization Metrics

The power consumption of the DPD system is an important metric that we

carefully take into account in our design optimization approach. We implement the

FIR filters in Fig. 2.2 in hardware using the Altera EP2C35F672C6 FPGA from

the Cyclone II family, and we estimate the total power consumed by all of the

instantiated filters by modeling the power consumption as a function of the DPD
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Figure 2.2: Dataflow graph model of the predistortion filter.

parameters. We employ such a model-based estimation approach for assessing power

consumption because detailed measurement of total power consumption would be

time-consuming when exploring the large multidimensional DPD design space, which

is elaborated on in the following section.

Our approach to system-level DPD power estimation starts by first measuring

the total power consumption of a single branch under all valid filter order and

bit-width values using Altera PowerPlay Analyzer. The power consumption for a

specific DPD configuration is then estimated as

Powerest =
∑
p∈IP

Powerp(bwp , fop) +
∑
q∈IQ

Powerq(bwq , foq) , (2.3)

where bwx and fox are the bit-width and filter order for branch x, respectively, and

Powerx (bwx , fox ), the power consumed by branch x with bit-width bwx and filter

order fox , is obtained from the aforementioned power measurement process.
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During MOO, we are interested in the power comparison result of two config-

urations instead of their actual power consumption levels. This is because, as we

explore different pairs of design points during the search process, we are interested

in determining which configuration in any given pair is “better” than the other.

Thus, we can validate the utility of the above power estimator in our estimation

context using the estimation fidelity, which is defined by (e.g., see [18]):

Fidelity =
2

M(M − 1)

(
M−1∑
i=1

M∑
j=i+1

fij

)
, (2.4)

where M is the number of configurations that we generate to calculate the fidelity.

Here, fij = 1 if sign(Si − Sj) = sign(Fi − Fj), and fij = 0 otherwise. The terms

Si and Sj denote the simulated average power consumption levels of configurations

i and j, respectively; Fi and Fj are the corresponding estimates from the power

estimation function F ; and sign(x) equals −1 if x<0, 0 if x = 0, and 1 if x>0.

We generate 100 uniformly distributed system configurations to calculate the

fidelity of the power estimators used in our work for three LTE modulation schemes

— QPSK, 16–QAM, and 64–QAM. The respective fidelity values resulting from

these experiments are 0.79, 0.78, and 0.81. The proposed power estimation method

and corresponding fidelity calculation method are not restricted to FPGA implemen-

tation, and can be adapted readily to implementations on other types of platforms.

In addition to imposing constraints on system power consumption, the LTE

standard requires the ACPR and error vector magnitude (EVM) levels of the trans-

mitted signal to stay below certain values. Different modulation schemes impose dif-
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ferent constraints on the transmitter; thus, we incorporate ACPR and EVM as two

distinct optimization objectives in our MOO framework. ACPR is commonly used

to quantitatively assess the extent of out-of-band energy leakage [12], while EVM

measures the distortion of the original signal under the influence of non-linearities

introduced by the PA and DPD subsystems. More details of ACPR metric for DPD

systems are discussed in Section 3.4.1.2.

2.2.2 Design Space for DPD Implementation

2.2.2.1 Polynomial Orders

Since the DPD algorithm proposed in [5] splits its signal processing into a

direct part and a conjugate part, which enables use of different polynomial orders

for direct and conjugate signal terms. For example, a DPD system can be realized

with fifth-order for the direct signal and only third-order for the conjugate signal.

We denote the polynomial order for the direct signal by P , and that for the conjugate

signal by Q. The ordered pair (P,Q) is referred to as the polynomial order parameter

in the DPD design space. Following [5], we allow only odd-valued term orders. For

example, if P = 5 and Q = 3, then IP ={1, 3, 5}, and IQ ={1, 3}. If x denotes the

input signal to be filtered, then each term order i ∈ IP corresponds to the processing

of |x|i−1x by an FIR filter, and similarly, each term order j ∈ IQ corresponds to FIR

filtering of |x ∗ |j−1x∗. Thus, the number of instantiated FIR filters for this example

in Fig. 2.2 is 5.
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2.2.2.2 FIR Filter Orders

We define the filter order parameter in our DPD design space to be the ordered

pair (λP , λQ), where λP represents the FIR filter order for the direct branch, and

similarly, λQ represents the common FIR filter order for the conjugate branch. Thus,

we allow heterogeneous filter orders across branches, but all filters in the same branch

have the same order.

2.2.2.3 Bit-width

We introduce the bit-width B of the input data samples and FIR filter coeffi-

cients as another DPD design space parameter. We assume that all of the employed

filters have the same bit-width, which is defined by the design space parameter B.

2.3 Experimental Setup and Simulation Results

As described in Section 2.2, the design space for our DPD system is based

on the following parameters: (P,Q), (λP , λQ), and B. We explore the design space

defined by these parameters across the following ranges of admissible values for the

different parameter components — P and Q: {1, 3, 5}; λP and λQ: {1, 2, 3, 4,

5}; and B: {5, 6, . . . , 15}. This results in a total of 32 × 52 × 11 = 2475 distinct

configurations, which we evaluate exhaustively with the aid of our proposed power

estimator.

The constraint on ACPR used in this chapter for all three modulation schemes

is −45.0 dBc. The constraints on EVM are −15.1 dB, −18.1 dB, and −21.1 dB for
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QPSK, 16–QAM, and 64–QAM, respectively. We also impose a constraint on the

symbol error rate (SER), which is measured as the average rate of erroneous symbol

transmissions. We filter out the configurations with non-zero SER levels to further

increase the accuracy of the DPD system. To measure the ACPR, EVM, and SER

for a given DPD configuration under a specific modulation scheme, we generate

10,240 OFDM symbols with a baseband sampling rate of 5 MHz and an upsampling

rate of 8. This procedure is repeated 100 times and averages are calculated over

these 100 trials to derive values for the three performance metrics.

After the aforementioned DPD design space exploration, we obtain 26, 27, and

8 Pareto-optimal configurations for QPSK, 16–QAM, and 64–QAM, respectively.

We find that for most of the derived Pareto-optimal settings, P ≥ Q, which validates

the argument in [5] that the higher orders of the conjugate predistorters are weak,

and a smaller Q value is therefore preferred. To further explore the utility of this

kind of asymmetry between the direct and conjugate branches, we define the branch

asymmetry attribute (BAA) of a DPD configuration as the associated value of (P −

Q), and we plot the BAA distribution of the obtained Pareto-optimal settings in

Fig. 2.3.

From Fig. 2.3, we see that there is a high concentration of design points with

(P − Q) = 2 for all three modulations. This concentration involving asymmet-

ric direct and conjugate branch processing validates the utility of decomposing

DPD signal processing into these two separate parts. Our validation here, which is

implementation-oriented, is complementary to the algorithm-level validation in [5]

of such decomposed processing.
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Figure 2.3: BAA distribution of the derived Pareto-optimal settings.

For each LTE modulation scheme, we select three representative DPD config-

urations among the Pareto-optimal design points derived from our multiobjective

optimization approach. These configurations are selected from diverse regions of

the design evaluation space. The selected configurations along with their associated

figures of merit are listed in Table 2.1.

To further evaluate the effectiveness of the selected DPD structures, we also

provide — in Table 2.1 — a comparison of transmitter performance with (a) a

randomly-selected, fixed-configuration DPD system, and also with (b) a transceiver

setup that does not use DPD. Values in boldface violate the aforementioned con-

straints. From the results in Table 2.1, we see that the fixed-configuration DPD sys-

tem does not satisfy the ACPR constraint of any of the three modulation schemes,

the EVM constraint of 64–QAM, and the SER constraint of 16–QAM and 64–QAM.

18



Table 2.1: Pareto-optimal configurations for three LTE modulation schemes. The
configurations are shown in the format (P , Q, λP , λQ, B), and the measurements
in the format (Power, ACPR, EVM, SER) with units (mW, dBc, dB, error per
symbol). The configuration of the fixed DPD system is (5, 1, 5, 2, 14).

Mod. Configuration Pareto-optimized DPD Config.-fixed DPD Without DPD
(3,1,1,1,10) (349.98,-45.61,-27.97,0)
(3,1,1,2,12) (356.02,-46.35,-28.07,0)QPSK
(3,3,1,3,15) (376.61,-46.68,-28.07,0)

(387.50,-44.53,-37.98,0) (NA,-40.85,-21.21,0)

(3,1,2,1,10) (352.86,-45.79,-27.88,0)
(3,1,4,4,14) (376.74,-46.49,-28.34,0)16–QAM
(3,3,5,3,15) (392.67,-46.55,-28.66,0)

(383.95,-40.98,-25.41,+) (NA,-40.82,-11.24,0)

(3,1,2,2,10) (354.98,-45.15,-21.54,0)
(3,3,3,1,10) (360.32-46.07,-22.17,0)64–QAM
(3,1,2,4,14) (369.79,-46.34,-22.27,0)

(388.59,-42.58,-20.39,+) (NA,-40.84,-4.98,+)

Furthermore, we see that most of the constraints are violated when no DPD is used.

In contrast, the DPD system with our selected set of optimized configurations can

meet the modulation-specific requirements in all cases, and with relatively low power

consumption.

Next, we consider an optimized adaptive DPD (OAD) system that can switch

itself to the most power-efficient configuration (as obtained from Table 2.1) associ-

ated with the current modulation scheme so that the DPD system can always satisfy

the relevant real-time constraints with optimized power consumption. In Fig. 2.4,

we compare predistortion figures of merit among transmitters with our OAD sys-

tem; the non-optimized, fixed-configuration DPD system represented in Table 2.1;

and a transmitter that does not use DPD. We perform this comparison using a

time-varying sequence M of LTE modulation schemes, where M is derived from

simulations using the ns-3 network simulator. In these simulations, we consider a

single-user scenario where the COST231 path loss channel model from ns-3 is se-

lected, base station position is constant, and user equipment mobility is modeled

using a Gaussian Markov model. This comparison neglects the overhead (expected
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to be relatively small) of switching between alternative configurations in the OAD

system. A more comprehensive evaluation that accounts for this overhead is a useful

direction for further work.
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Figure 2.4: Real-time power and performance comparison involving the OAD sys-
tem. ACPR and EVM measurements are presented using absolute values — thus,
higher values indicate better performance.

The results in Fig. 2.4 demonstrate the potential of the OAD system, which is

derived using our proposed DPD design optimization approach as a foundation, in

achieving significantly improved trade-offs compared to the fixed-configuration and

no-DPD alternatives.

2.4 Summary

In this chapter, we have developed new methods for exploring the design space

for digital predistortion (DPD) system implementation. Our methods are developed

to jointly optimize power consumption and multiple DPD performance objectives
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subject to constraints imposed by the given modulation scheme. We have also

demonstrated the utility of an adaptive DPD technique that switches among opti-

mized configurations that are derived using our multidimensional design optimiza-

tion methods. As part of the design space exploration process, we have applied

an approach to efficiently estimate DPD system power, and we have validated the

fidelity of this estimation approach. Simulation results demonstrate the capability

of our proposed DPD design optimization techniques to support diverse signal pro-

cessing trade-offs, and to significantly outperform a fixed-configuration DPD design

under time-varying operational scenarios.
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Chapter 3

Evolutionary Optimization for DPD Architectures

In Chapter 2, we introduced a design space exploration method for DPD that

performs exhaustive search over a reduced subset of the design space. This process

can be time-consuming and may not sufficiently explore the overall (original) design

space. It is therefore useful to investigate more automated and thorough methods

to search large DPD design spaces.

Additionally, to help maximize effectiveness, such design space exploration

should be performed based on multidimensional operational criteria. With this mo-

tivation, we develop in this chapter a novel evolutionary algorithm framework for

multiobjective optimization of DPD systems. We demonstrate our framework by

applying it to develop an adaptive DPD architecture, called the adaptive, dataflow-

based DPD architecture (ADDA), where Pareto-optimized DPD parameters are

derived subject to multidimensional constraints to support efficient predistortion

across time-varying operational requirements and modulation schemes. Through

extensive simulation results, we demonstrate the effectiveness of our proposed mul-

tiobjective optimization framework in deriving efficient DPD configurations for run-

time adaptation.

Material in this chapter has been published in [19] and [20].
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3.1 Introduction

A major challenge in deploying DPD architectures for cognitive radio systems

is the dynamic optimization of key DPD parameters subject to time-varying and

multidimensional constraints on system performance. A general approach to such

optimization is to perform efficient search at design time (i.e., off-line) across alter-

native DPD configurations, and to then select from the search results a set of con-

figurations that are Pareto-optimal, and that effectively cover the targeted range of

operational scenarios and their trade-offs. These selected, “Pareto-optimized” con-

figurations can then be stored in memory, and switched across during system oper-

ation based on time-varying changes in communication system requirements. Here,

“Pareto-optimized” configurations refer to configurations that are Pareto-optimal

with respect to the applied search process, while “Pareto-optimal” configurations

refer to configurations that are globally optimal in a Pareto sense.

In this chapter, we develop a novel framework for systematic derivation of

Pareto-optimized DPD system configurations that can be applied to adaptive DPD

implementations. Our framework builds on the methodology of multiobjective evolu-

tionary algorithms (e.g., see [21]), and incorporates adaptations of this methodology

to efficiently handle distinguishing characteristics of DPD system optimization. We

refer to our framework for DPD system optimization as the framework for Evolu-

tionary Adaptive DPD Implementation (EADI) or (“EADI Framework”).

We demonstrate the EADI Framework in this chapter by applying it to de-

velop an adaptive DPD architecture, called the adaptive, dataflow-based DPD ar-

23



chitecture (ADDA), where Pareto-optimized DPD parameters are derived subject to

multidimensional constraints to support efficient predistortion across time-varying

operational requirements and modulation schemes. While the ADDA architecture is

used to concretely demonstrate the capabilities of the EADI Framework, the EADI

Framework is not specific to any particular DPD architecture, and can readily be

adapted to work across a variety of parameterized DPD architectures. Exploring

such adaptations is a useful direction for future work that emerges from the devel-

opments of this chapter.

Similar to the work in 3, the design evaluation metrics (optimization objec-

tives) targeted in our development of the EADI Framework and ADDA architec-

ture in this chapter are system energy consumption, adjacent channel power ratio

(ACPR), and system accuracy. We abbreviate this set of metrics as EAA. The

ADDA is a parameterized architecture that can be configured dynamically to achieve

a range of EAA trade-offs. The DPD design space that we consider consists of

three design parameters: the polynomial order, bit-width, and filter order. This

design space is modeled in the EADI Framework, and optimization results from the

framework are used to extract a subset of generated Pareto-optimized configurations

(settings of the DPD parameter values). This subset of configurations provides the

set of DPD system modes that will be implemented in the ADDA architecture.

The set of DPD modes provided in the ADDA configuration set is made available

during operation such that predistortion trade-offs can be reconfigured among the

different options in the configuration set based on dynamically changing operational

requirements.
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To demonstrate and experiment with the ADDA, we apply the lightweight

dataflow environment (LIDE), which is a design tool for dataflow-based design and

implementation of signal processing systems [22]. Dataflow graphs provide a useful

form of model-based design in many areas of signal processing, and wireless commu-

nications (e.g., see [23]). We map the signal flow structure of the ADDA into actors

(dataflow-based signal processing components) in LIDE, and implement the internal

functionality of these actors using the Verilog hardware description language (HDL).

We demonstrate the effectiveness of the EADI Framework through extensive

simulations, and validate the capabilities of the ADDA through hardware synthesis.

3.2 Related Work

In this chapter, we exploit the decomposed, parallel structure of the DPD

method introduced in [5], and we present new methods to search the design space,

and derive Pareto-optimized realizations for this form of DPD architecture.

In architectures for cognitive radios, adaptive DPD systems that operate un-

der Pareto-optimized configurations are highly desirable due to the multidimensional

space of relevant implementation metrics. However, prior work on system-level DPD

optimization has emphasized single-objective optimization of ACPR [13, 9]. These

works employ a form of search technique called genetic algorithms, which are closely

related to evolutionary algorithms, to optimize DPD ACPR performance. However,

the resulting solutions may not be efficient in terms of energy consumption or accu-

racy. Furthermore, the underlying design methodology does not produce multiple
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alternative configurations that may be employed for dynamic reconfiguration based

on time-varying changes in operational requirements. The methods that we develop

in this chapter address these limitations, respectively, through development of the

(1) EADI Framework for multidimensional, Pareto-optimized DPD configuration,

and (2) ADDA for reconfigurable DPD architecture implementation based on con-

figurations that are derived by the EADI Framework.

The DPD design optimization problem addressed in our work can be viewed as

a multiobjective optimization problem, where the multiple objectives are generally

conflicting, preventing simultaneous optimization of all objectives. One approach to

such a problem is to transform all of the objective functions into a single composite

function — a common method for such an approach is to use a weighted sum of

the objective functions. In this case, small changes to the weights may lead to large

differences in the solution set, and proper selection of the weights can be a major

problem. Also, the optimization method generally returns a solution set that is

preferred by the applied weights, and thus has less diversity [24]. Another general

approach is to attempt to compute a representative subset of the entire Pareto set

of design points. The EADI framework developed in this chapter adopts this second

approach, and therefore, does not suffer from the aforementioned limitations of the

weighted sum approach.

A preliminary version of this chapter has been presented in [19]. This chapter

goes beyond the previous optimization framework presented in [19] by employing

fidelity-based validation of our employed power estimation approach, and applying

an improved system accuracy measurement for DPD design space exploration. More
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specifically, in Section 3.4, computation of estimation fidelity is integrated to verify

the accuracy of the proposed power estimator, and the EVM measurement is mod-

ified to better represent the accuracy of the system. In Section 3.6, the simulation

results are updated based on this new EVM measurement approach.

3.3 Adaptive Dataflow-based DPD Architecture

The ADDA architecture developed in this chapter is based on the algorithm

presented in [5]. Since the first stage is intended for off-line computation, the ADDA

architecture and EADI optimization process are focused only on the second (filter-

ing) stage.

The structure of the predistortion filtering system is shown in Fig. 2.1. Details

of the DPD structure have been shown in Section 2.2 of Chapter 2.

Fig. 3.1 illustrates the dataflow model of the DPD filtering subsystem that

is employed in the ADDA. Here, the mode selection actor dynamically selects the

DPD operational mode based on the current application scenario (i.e., based on

the current modulation and requirements on EAA) and finds the corresponding

parameter settings for that mode in its local memory, and distributes these DPD

parameter values to the polynomial computation actor and all of the filter actors.

Following [5], we decompose the signal processing for the applied DPD algorithm

into separate direct and conjugate parts.

With the parameters obtained from the mode selection actor, the polynomial

computation actor computes the polynomial basis function defined in Equ. 2.2 for

27



Figure 3.1: Dataflow graph model of the predistortion filter.

both the direct and conjugate branches. The computed polynomials are then sent

to their corresponding branches and filtered by the filter actors in those branches.

These filter actors are implemented with integrated use of LIDE and Verilog, as

described in Section 3.1. As shown in Fig. 3.1, according to Equ. 2.1, the filtered

samples (one output sample from each filter) are summed to produce a single sample

as the final predistorted output.

Based on the analysis in [11], where a similar dataflow model is constructed

for the DPD algorithm in [5], most of the computation and energy consumption is

concentrated in the filter actors. Thus, in this chapter, we map only the filter actors

to hardware, and focus our design optimization processes on the filter actors.

3.4 Optimization Metrics and Design Space

3.4.1 Optimization Metrics

In this subsection, we elaborate on the three objectives in our targeted design

optimization problem. As defined in Section 3.1, we refer to these metrics collectively

as EAA.
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3.4.1.1 Energy Measurement

As explained in Section 3.3, we focus our energy measurement on the energy

consumed by the filtering subsystem, and the figure of merit that we employ is the

filtering energy expended to producing a single output sample, which is denoted by

the energy per sample (eps). To calculate eps, we use the total power consumption

of all FIR filters used in the predistortion subsystem, which we denote as PFIR. The

eps metric is then defined as eps = PFIR × C/F , where C represents the average

number of clock cycles required by the filter actors to process a single new input

sample, and F represents the clock frequency. In our design, both F and C are

fixed for each configuration. Thus, eps is proportional to PFIR, and we can therefore

use PFIR as optimization objective for our evolutionary algorithm process. Also, we

report results for PFIR in Section 3.6 (instead of eps) as our assessment of the energy

efficiency of each configuration.

We implement the DPD filtering subsystem using the Altera EP2C35F672C6

field-programmable gate array (FPGA) from the Cyclone II family. To facilitate

efficient design space exploration within the EADI optimization process, we model

the power consumption as a function of the design vector [P Q BWT FOT ]T . The

definitions of the quantities P , Q, BW and FO are given in Section 3.5.

We apply the same system-level DPD power estimation as described in 2.2.1.
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3.4.1.2 ACPR Measurement

ACPR is a metric that is commonly used to assess the extent of out-of-band

energy leakage [12]. ACPR is defined as the ratio of the mean power centered on

the adjacent channel to the mean power centered on the desired channel, as shown

in (3.1).

ACPR = 10 log10

∫
ωA
S(ω)dω∫

ωD
S(ω)dω

. (3.1)

Here, S(ω) denotes the power spectral density of the postdistorter input signal

sn, and ωA and ωD denote the frequency bands of the adjacent channel and desired

channel, respectively.

3.4.1.3 Accuracy Measurement

We measure the accuracy of candidate DPD designs by the error vector mag-

nitude (EVM) and symbol error rate (SER). The former is considered as an op-

timization objective and the latter as a constraint on the derived configurations.

The EVM measures the distortion of original symbols under the influence of non-

linearities introduced by the PA and DPD. This distortion is calculated as

EVM(Pf) =

(∑K
k=1 |X0(k)− X̂Pf(k)|2∑K

k=1 |X0(k)|2

) 1
2

, (3.2)

where Pf represents a certain profile (finite sequence) X0(1), X0(2), . . . , X0(K) of

symbols to be transmitted, and X̂Pf(k) is the kth actual transmitted symbol under
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Pf.

SER is measured as the average rate of erroneous symbol transmissions. This

rate is determined as

SER(Pf) =
1

K

K∑
k=1

I(X0(k)− X̂Pf(k)) , (3.3)

where I(x) (the indicator function), has value 1 if x 6= 0 and 0 otherwise. We require

that all of the configurations extracted for mapping into the ADDA must have zero

SER.

3.4.2 Design Space

In this section, we elaborate on the selected DPD parameters that define the

predistorter design space associated with the ADDA.

3.4.2.1 Polynomial Orders

In this chapter, polynomial orders are defined in the same way as Section 2.2.2.1.

Thus, the number of branches (or filter actors) that is employed in a specific DPD

configuration is given by Nbranch = (P + 1)/2 + (Q + 1)/2. In our experiments, we

set the domain D of valid values for both P and Q as D = {1, 3, 5, 7, 9}. Thus,

there are in total 25 P −Q combinations in our targeted design space.
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3.4.2.2 Bit-widths

Intuitively, smaller bit-widths for data storage and computation lead to less

energy consumption. However, signal processing accuracy may be traded off as a

consequence. To incorporate this trade-off between energy efficiency and accuracy,

we incorporate bit-width as a parameter of ADDA, and as a design space com-

ponent of EADI. Considering requirements on system accuracy and constraints on

hardware resources, we set the range of allowable bit-widths in our experiments

as {5, 6, . . . , 15}. Additionally, we allow different branches to be configured with

different bit-widths in the same design. This leads to great flexibility in design opti-

mization, and a correspondingly large design space — if there are m branches used

in a specific design, then the total number of valid bit-width combinations is 11m.

3.4.2.3 Filter Orders

Similar to the bit-width design, the filter used in each branch may also have

different number of coefficients. We denote this parameter as filter order. The

filter order parameters would also significantly affect the trade-offs among EAA.

The range of filter order in this chapter is set to be {1, 2, 3, 4, 5}.

According to the above description, our design space is too huge for exhaustive

search. As a numerical example, given the aforementioned ranges for the system

parameters, the design space would contain more than 5510 configurations.
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3.5 Multiobjective Optimization Using Evolutionary Algorithm

As motivated in Section 3.4, the DPD design space addressed in this work is a

complex multidimensional space that is too large to be evaluated using exhaustive

search techniques. Therefore, we apply a heuristic search strategy called evolution-

ary algorithms (EAs), including a particular form of EA, called strength Pareto EA

(SPEA), that is suited for multiobjective optimization [21]. We select the SPEA

approach due to its efficiency and scalability in addressing complex optimization

problems, and its customizability to different kinds of design spaces and optimiza-

tion criteria. This latter feature makes the EADI Framework readily adaptable

across different kinds of DPD architectures and communication system constraints.

3.5.1 Problem Encoding

The parameters involved in the DPD design optimization problem are poly-

nomial orders, bit-widths, and filter orders. Each configuration can be represented

throughout the EA process by a vector, specified as [P Q BWT FOT ]T . Here, P and

Q are the direct and conjugate polynomial order, respectively. As described in Sec-

tion 3.4, the maximum number of branches considered in the design space is 10 (at

most 5 branches for both the direct signals and the conjugate signals). Thus, BW

is a vector with 10 dimensions representing bit-width settings for up to 10 branches,

where each dimension represents the bit-width associated with the corresponding

branch. For the branches that are not used, the corresponding vector elements are

set to zero. Similar conventions are applied to generate the 10-dimensional vector
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FO of filter order settings.

As discussed in Section 3.1, the objective space of the EADI Framework en-

compasses average power consumption, ACPR and EVM. Thus, the objective vector

can be formulated as [PFIR ACPR EVM] with units (mW, dBc, %). Here, PFIR is

the power consumption, as estimated by the method discussed in in Section 3.4, and

ACPR and EVM are calculated according to (3.1) and (3.2), respectively.

3.5.2 Optimization Process

The EADI optimization process is executed separately for each modulation

type that is to be supported in the targeted ADDA platform. The resulting Pareto-

optimized configurations for the different modulation types are then collected and

stored in the ADDA memory. This enables the ADDA to dynamically to select

among different modulation types, and among different operational trade-offs for

each modulation type.

As mentioned previously, the work flow of the EADI optimization process is

based on the SPEA methodology for multidimensional search. For details on SPEA,

we refer the reader to [21].

The SPEA-based optimization workflow used in our work is illustrated in

Fig. 3.2.

According to SPEA, the population set (set of candidate solutions or indi-

viduals) ρ contains the individuals generated during each SPEA iteration, and the

external set ρ̄ maintains selected non-dominated individuals among all individuals
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Figure 3.2: Multiobjective optimization model for DPD system.

generated so far up through the current iteration. Here, we say that an individual

x dominates another individual y if x is superior to y in terms of at least one design

evaluation metric, and x is not inferior to y in terms of any metric. A non-dominated

individual is one that is not dominated by any individual.

We initialize ρ with a well-distributed population across the design space. For

each possible P − Q combination, we generate two design vectors by selecting the

corresponding bit-width and filter order values randomly from their valid ranges.

Thus, the size of ρ, denoted by N, is 50 individuals.

During each iteration, each individual in ρ is evaluated to generate the ob-

jective vector [PFIR ACPR EVM]. The individuals that do not satisfy certain

modulation-specific constraints (defined in Section 3.6) are ignored. Only the re-
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maining non-dominated individuals are copied to ρ̄. If the size of ρ̄ exceeds a pre-

defined maximum population size N̄max , a k-means clustering algorithm is used to

classify the members in ρ̄ into N̄max groups. This allows us to limit the size of ρ̄ while

maintaining a diverse population in ρ̄ by retaining a “representative” individual of

each group in ρ̄ [21].

After updating of ρ̄ during an optimization iteration (generation), individuals

from both ρ and ρ̄ are selected to generate a “mating pool” ρ′. This selection pro-

cess is performed randomly in a manner such that the probability of an individual’s

selection for the mating pool is larger for individuals with smaller fitness values.

Here, “fitness” is a measure of the quality of an individual; smaller fitness values

imply higher quality solutions. The recombination operator selects pairs of individ-

uals (“parents”) in ρ′, and for each selected pair, two new individuals (“children”)

are generated with probability pr.

Each generated child (from recombination) undergoes a process of random

modification by a mutation operator with probability pm. After all recombination

and mutation operations are completed on the mating pool ρ′, the resulting new

population is assigned as the current population ρ for the next generation. The

individuals that comprise the set ρ̄ after T generations are the Pareto-Optimized

solutions obtained by the EADI Framework. Here, T is a pre-defined number of

optimization iterations that is to be executed by the SPEA.

The values pr, pm, and T are design parameters of the optimization process

that can be set through experimentation or by selecting commonly-used values from

the literature.
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These general concepts of fitness measures, recombination operators, and mu-

tation operators are standard components of EAs. They are applied to form an

optimization process that has analogies to processes by which living species evolve.

However, these three operators need to be designed specifically for each optimization

context. In the remainder of this section, we discuss how these operators have been

designed in the EADI Framework.

3.5.3 Fitness Measure

Based on the SPEA approach, each individual i ∈ ρ̄ is assigned a real value

S(i) ∈ [0, 1), which is referred to as the strength of i. If N represents the number

of individuals in the set ρ, then S(i) is calculated as the ratio of (a) the number of

individuals in ρ that are dominated by i to (b) (N + 1). The fitness of i is equal to

S(i). The fitness of an individual i ∈ ρ is calculated by summing the strengths of

all individuals j ∈ ρ̄ that dominate i, and then adding one to this sum. We add one

to the sum here in order to guarantee that members in ρ̄ have better fitness than

members in ρ (since fitness is to be minimized).

3.5.4 Recombination Operator

Recombination is a process of selecting parent solutions and producing child

solutions from them that integrate properties of the corresponding parent solutions.

The inputs of the recombination operation are the configuration vectors of the two

selected parents Y1 and Y2, and the outputs are either (a) the same two parents Y1
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and Y2 (with probability (1− pr)) or (b) the configuration vectors of two generated

children (with probability pr), denoted by C1 and C2.

In the latter case (when children are generated), the process of generating each

child individual Ck, k = 1, 2 from the two parents is summarized as follows: (i)

assign P , Q values (polynomial orders) from Y1 or Y2 to Ck with equal probability

subject to the requirement that the generated pair of P and Q values for C1 and C2

cannot be identical to each other; (ii) set the bit-width and filter order values of each

child Ck to the corresponding values of an average vector Yavg : Yavg = γ(Y1, Y2),

where γ(Y1, Y2) first computes the average (Y1 + Y2)/2, and for each component in

this average vector that is not integer-valued, the operator replaces the component

by its floor or ceiling with equal probability; and (iii) set the bit-widths and filter

orders of the unused branches in the children to be zero.

3.5.5 Mutation Operator

In EAs, mutation operators are employed to help promote diversity from one

generation of a population to the next by randomly modifying selected solution

components (“genes”) within individuals. In the EADI Framework for ADDA im-

plementation, the genes for potential mutation are taken to be the vector-valued

settings of BW and FO. The specific gene (BW or FO) to which modification is

to be applied is selected randomly with equal probability, and then a single compo-

nent of the selected vector that is to be modified is selected randomly (with equal

probability among all vector components). The mutation operator replaces the value
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of the selected vector component with a uniform random value drawn between the

given upper and lower bounds for that component.

3.6 Experimental Setup and Simulation Results

To validate the EADI Framework and ADDA platform, and to demonstrate

their capabilities, we experiment with three Long-Term Evolution (LTE) modula-

tion schemes — Quadrature Phase Shift Keying (QPSK), 16–QAM, and 64–QAM.

The multiobjective optimization process is performed separately for each of the

three modulation schemes, and then the resulting Pareto-optimized solution sets

are integrated into the ADDA as discussed in Section 3.5. For all three modulation

schemes, we employ the following SPEA parameter settings: (i) T = 100 (number

of generations); (ii) N = 50 (population size); (iii) N̄max = 20 (maximum size of

external set); (iv) pr = 0.8 (recombination rate); (v) pm = 0.2 (mutation rate).

These values for generic SPEA settings are values that are commonly used in the

literature (e.g., see [21, 25]).

The constraint on ACPR used in the EADI Framework for all three modula-

tions is −45.0 dBc. The constraints on EVM are 17.5% , 12.5%, and 8% for QPSK,

16–QAM, and 64–QAM, respectively. The constraint on SER is that it should be

zero.

To help validate the effectiveness of the EADI Framework in deriving high

quality DPD configurations, we apply a partial search (PS) method to solve the same

multiobjective optimization problem. PS involves performing a complete search on
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a reduced design space. PS is also a widely-applied method for obtaining Pareto

fronts in multiobjective optimization problems (e.g., see [26]).

In our PS approach, we reduce the search space by equalizing the bit-widths

and filter orders of all the filters used in all branches and apply the same valid

parameter value ranges as used in the SPEA process. Thus, the reduced design

space contains 5 × 5 × 11 × 5 = 1375 configurations. We evaluate these 1375

configurations exhaustively with the PFIR, ACPR, SER and EVM computations,

as described in Section 3.4. We then remove the undesirable solutions based on

the same SER, ACPR and EVM constraints as applied in the SPEA. Finally, we

collect all of the non-dominated configurations from the resulting design space as

the Pareto front obtained by the PS.

In the PS process, we estimate PFIR using relevant FPGA design tools (Altera

PowerPlay Analyzer), while in the EADI process, we estimate PFIR using the power

estimator introduced in Section 3.4. The estimator of Section 3.4 enables faster

power estimation (at some expense in accuracy), which is important because very

large numbers of candidate solutions are evaluated during the EADI process. For

the Pareto-optimized configurations achieved by EADI, we also estimate PFIR using

FPGA tools to obtain more accurate power estimation results for the derived Pareto

front. In the results that we report in the remainder of this section, the comparison

between the quality of the two solution sets (PS and EADI) is based on the same

(more accurate) power estimation method — i.e., using FPGA tools.

The Pareto fronts derived by the EADI Framework and PS for the three se-

lected modulations are shown in Fig. 3.3(a) to 3.3(c). We use coverage of two sets
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Figure 3.3: Pareto-optimized solutions obtained from the EADI Framework and PS
for (a) QPSK, (b) 16–QAM, (c) 64–QAM.

41



(Cov) measurements [21] to evaluate the quality of the solution sets produced by

the EADI Framework and PS, which we denote by SEF and SPS , respectively. Given

a multiobjective design space, and two sets α and β of candidate solutions in this

space, Cov(α, β) = dom(α, β)/size(β), where dom(α, β) is the number of solutions

in β that are dominated by at least one solution in α. Coverage results for each of

the three modulation schemes are given in Fig. 3.3(a) to 3.3(c) along with plots of

SEF and SPS . Here, we see that Cov(SPS , SEF ) is uniformly zero over all three mod-

ulations, while the values for Cov(SEF , SPS ) indicate that significant proportions of

the PS solutions are dominated by results from the EADI Framework.

We also measured that the PS method requires approximately 91 hours to

evaluate the three optimization metrics for the 1375 given configurations, and extract

the Pareto front, while the evaluation and Pareto front extraction by the EADI

Framework takes only about 1 hour. We conclude from these results involving Cov

and optimization time that the EADI Framework significantly outperforms the PS

method in terms of both the quality of the obtained Pareto fronts and run-time

efficiency.

To concretely demonstrate DPD performance trade-offs realized in the pro-

posed ADDA architecture, we first classify the individuals in the Pareto front ob-

tained by EADI into three groups according to their power consumption levels.

Then we select one representative individual in each group and store it in ADDA as

a DPD working mode. The selected design vectors and their corresponding PFIR-

ACPR-EVM measurements under three modulations in LTE are listed in Table 3.1.

From this table, we see that for the Pareto-optimized parameter settings obtained
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Power Level P ,Q
BW FO

Performance
Direct Conj. Direct Conj.

QPSK
Low 3, 1 11, 9 5 3, 2 3 352.27,−45.35, 1.20

Medium 3, 1 11, 9 9 2, 2 4 354.91,−47.22, 0.75
High 3, 1 14, 10 11 4, 2 2 361.84,−50.13, 0.64

16–QAM
Low 3, 1 11, 8 11 3, 1 1 353.11,−45.16, 1.09

Medium 3, 3 11, 10 11, 5 3, 1 3, 1 359.04,−46.48, 0.84
High 3, 1 15, 11 13 5, 4 5 375.71,−49.30, 0.96

64–QAM
Low 3, 3 11, 9 11, 5 3, 2 1, 1 354.64,−46.19, 1.38

Medium 3, 3 13, 9 11, 5 3, 2 3, 1 361.16,−48.33, 1.15
High 5, 1 15, 12, 9 15 5, 4, 3 3 381.53,−47.35, 0.74

Table 3.1: Selected Pareto-optimized parameter settings for LTE under different
modulations. The design evaluation metrics are shown in the format (PFIR, ACPR,
EVM) with units (mW, dBc, %).
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DPD, with DPD under configuration obtained from PS and EF.
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Figure 3.5: Output constellation of the ideal linear PA, the Wiener PA model with-
out DPD, with DPD under configuration obtained from PS and EF.
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by EADI, P is always greater than or equal to Q, which validates the argument

in [5] that the higher orders of the conjugate predistorters are weak, and a smaller

Q value is therefore preferred. Also, in general, the branches corresponding to the

lower polynomial orders are configured with higher bit-widths and filter orders com-

pared to the branches corresponding to higher polynomial orders. This results from

the the higher order signals being relatively weak for both direct and conjugate

parts. Fig. 3.4 and Fig. 3.5 show the power spectral density (PSD) and constellation

of the PA output without DPD, with DPD under one configuration obtained by

SPEA, and with DPD under one configuration obtained by PS with a similar power

level for LTE QPSK modulation as an example. PSD and constellation of the output

with an ideal linear PA is also presented as a reference. It can be seen from Fig. 3.4

and Fig. 3.5 that working under the same power level, the DPD system with the

configuration selected from SPEA results outperforms that with the configuration

selected from PS results in terms of both ACPR and system accuracy.

3.7 Summary

In this chapter, we have presented a novel framework, called the Evolutionary

Adaptive DPD Implementation (EADI) Framework, for multiobjective optimization

of digital predistortion (DPD) systems. The targeted optimization objectives include

system energy consumption, adjacent channel power ratio (ACPR), and system

accuracy. We apply the EADI Framework to develop an architecture, called the

adaptive, dataflow-based DPD architecture (ADDA), where Pareto-optimized DPD
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parameter settings are derived to support efficient, adaptive predistorter operation.

Simulation results demonstrate the effectiveness of the EADI Framework in deriving

efficient DPD configurations across time-varying modulation schemes subject to

multidimensional constraints. The extracted Pareto-optimized configurations also

help to validate assumptions in the DPD literature about preferred DPD parameter

settings. Finally, the EADI Framework is shown to significantly outperform a partial

search method in terms of both optimization time efficiency and the quality of the

derived Pareto fronts.
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Chapter 4

Design of Adaptive Signal Processing Systems Using Markov

Decision Processes

In Chapter 2 and Chapter 3, we proposed two different schemes for design space

exploration of DPD systems. In this chapter, we apply the framework of Markov

decision processes (MDPs) for design optimization in adaptive embedded signal

processing systems. In contrast to the contributions of Chapter 2 and Chapter 3,

which are specialized for DPD systems, the contribution in this chapter is more

general, and can be applied across a wide variety of signal processing applications.

The design optimization framework introduced in this chapter, called the Hier-

archical MDP framework for Compact System-level Modeling (HMCSM), embraces

MDPs to enable autonomous adaptation of embedded signal processing under multi-

dimensional constraints and optimization objectives. The framework integrates au-

tomated, MDP-based generation of optimal reconfiguration policies, dataflow-based

application modeling, and implementation of embedded control software that car-

ries out the generated reconfiguration policies. HMCSM systematically decomposes

a complex, monolithic MDP into a set of separate MDPs that are connected hier-

archically, and that operate more efficiently through such a modularized structure.

We demonstrate the effectiveness of our new MDP-based system design framework

through experiments with an adaptive wireless communications receiver.
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Material in this chapter has been published in [27].

4.1 Introduction

Modern signal processing applications impose increasing demands of adaptiv-

ity, flexibility and reconfigurability. This trend presents challenges at many levels

of system design, implementation and optimization. On one hand, adaptive signal

processing systems must adjust to dynamically-changing environmental conditions,

system status or user requirements; on the other hand, the systems must often

satisfy stringent constraints on energy-efficiency and real-time performance.

In this chapter, we apply Markov decision processes (MDPs) to address this

challenge of autonomous adaptation of embedded signal processing under multidi-

mensional constraints and optimization objectives. MDPs have been used in many

application areas as a foundation for dynamic determination of system configurations

in stochastic environments. Representative areas include artificial intelligence [28],

mobile systems [29], and wireless sensor networks [30].

Various methods have been developed to improve the practical utility of MDPs

in complex design problems involving dynamically adaptive systems. For example,

Boutilier et al. propose factored MDPs as a method for compact representation of

large, structured MDPs [31]. Benini et al. introduce a finite-state, abstract sys-

tem model for power-managed systems [32]. In their approach, the system and its

external environment are modeled as a service provider and a service requester, re-

spectively, in the format of Markov chains. Each of these Markov chains has a set of
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states and a matrix of state transition probabilities. The computed state-to-policy

mapping is then stored in a local memory or controller and is used in real time to

dynamically reconfigure the system according to its current state.

However, the complexity of the MDP algorithms in general grows exponen-

tially with increases in the size of the state space. Jonsson and Barto present an

algorithm that performs hierarchical decomposition of factored MDPs to help alle-

viate this growth in complexity [33]. Their approach to hierarchical decomposition

systematically allows irrelevant state variables to be ignored. However, their devel-

opment of hierarchical MDPs is focused on algorithms and theoretical analysis for

state abstraction and MDP computation, and the connection to implementation of

the hierarchical MDPs and application to real-world systems is not addressed. One

objective of this chapter is to help bridge this gap in the context of embedded signal

processing systems.

In particular, in this chapter, we integrate the MDP schemes presented in [34]

and [33]. This results in a novel approach to formulating MDPs for policy optimiza-

tion in embedded signal processing systems with complex state spaces, and stringent

implementation constraints. In our proposed design framework, we apply hierarchi-

cal MDPs to decompose the modeling of the application and embedded processing

system into multiple MDPs. Each smaller MDP is formulated using an approach

similar to that developed in [32]. We refer to this hybrid MDP approach as the

Hierarchical MDP approach for Compact System-level Modeling (HMCSM).

To promote systematic derivation of embedded implementations using the

HMCSM approach, we integrate the approach into the framework of dataflow-
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based design of signal processing systems. Model-based design in terms of dataflow

graphs helps to ensure properties, such as determinacy, deadlock-free operation, and

bounded memory requirements, which are of great importance in the reliable imple-

mentation of embedded signal processing systems (e.g., see [3]). Dataflow also or-

thogonalizes the implementation of individual functional components (actors) from

the system-level control and coordination among the actors. In our context, this

separation of concerns is especially useful because it enables efficient and reliable

switching across different system-level configurations while reusing individual ac-

tors across the configurations. With these motivations, we develop in this chapter

a dataflow-based framework for design and implementation of adaptive signal pro-

cessing systems using HMCSM.

To demonstrate the efficiency and flexibility of the proposed design framework

and the corresponding libraries and tools, we implement an adaptive wireless com-

munication receiver that dynamically optimizes its system configuration in response

to changes in different use cases. As a key part of the receiver, the channelizer

extracts multiple radio channels of distinct bandwidths from a digitized wideband

input signal. Among various computing components of the receiver, the channelizer

operates at the highest sampling rate in the system and accounts for most of the

computational complexity and energy consumption [35]. By adapting the configu-

ration of the channelizer based on the communication scenario, we seek to optimize

its energy efficiency while ensuring that it extracts the number of channels that is

required by the communication scenario at any given time. We design an HMCSM

MDP to perform this adaptation, and apply our dataflow-based MDP implementa-
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tion framework to realize the resulting adaptive signal processing on a state-of-art

embedded processing platform. Through experiments based on this embedded im-

plementation, we demonstrate the effectiveness of our proposed design framework

on the adaptive channelizer application.

4.2 Background

In Section 4.1, we introduced MDP methods and dataflow-based design as two

key foundations of the contributions in this chapter. In this section, we elaborate on

background in these areas that is relevant to development of our proposed HMCSM

design framework.

4.2.1 MDP Methods

In Benini’s work on MDP-based methods for system-level power management,

the service provider, service requester, and power manager are defined as key system

components. The policy is composed of a finite discrete sequence of decisions taken

by the power manager. A generic deterministic stationary policy can be represented

as a table with the rows representing all possible states and the columns representing

all possible actions. The size of the policy table grows geometrically when the

number of system states increases. As a result, the policies derived from the MDP

techniques proposed in [32] are practical only for problems with relatively small

numbers of system states.

A factored MDP only requires specification of the conditional probabilities
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with respect to dependent state variables, in contrast with traditional MDPs where

the probabilities with respect to independent variables must be specified. The re-

sulting modeling components are smaller in size and their policies are more compact

compared to traditional MDPs. A more detailed and systematic introduction to fac-

tored MDPs can be found in [31]. Based on the idea of factored MDPs, a number

of factorization methods has been proposed (e.g., see [36]).

As mentioned in Section 4.1, hierarchical factored MDPs are explored by Jon-

sson and Barto [33]. They use a dynamic Bayesian network and a causal graph to

identify relationships among state variables and construct a hierarchical MDP for

a given policy optimization problem. In this work, we build on these theoretical

foundations of hierarchical factored MDPs, and apply this class of MDPs to design

and implementation of adaptive signal processing systems. Through a case study

involving a reconfigurable wireless communications channelizer, we experimentally

evaluate an embedded implementation derived using hierarchical factored MDPs,

and we compare its performance with an implementation that is based on a tradi-

tional, single-MDP scheme.

The application of MDP techniques to reconfigurable channelizer implementa-

tion has been presented recently in [34]. Our chapter goes significantly beyond this

previous work on channelizer implementation; details on these novel developments

are discussed in Section 4.4.2.
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4.2.2 Dataflow-based Modeling and Design

An important contribution of this chapter is the integration of MDP-based

design methods into a model-based design framework based on dataflow models of

computation. In the form of dataflow that we apply, signal processing applications

are modeled as directed graphs, called dataflow graphs, in which vertices (actors)

represent computations of arbitrary complexity; edges represent first-in, first-out

(FIFO) communication channels between actors; and actors represent discrete units

of computation, called firings, that consume and produce well-defined amounts of

data from and to the incident FIFOs [2].

Conceptually, data is encapsulated in objects called tokens as they pass through

FIFOs from one actor to another. In signal processing oriented dataflow models,

special attention is given to the rates at which actors produce and consume data

to and from their ports, respectively. These rates are referred to as the production

rates and consumption rates of the associated actor ports or incident edges. Col-

lectively, production rates and consumption rates are referred to as dataflow rates.

Analysis in terms of dataflow rates can be useful for many kinds of optimizations,

such as those involving scheduling and memory management (e.g., see [3]). Different

forms of dataflow have been proposed based on different restrictions on the dataflow

rates or how dataflow rates across an actor or throughout a graph are related. Ex-

amples are cyclo-static dataflow [37], scenario-aware dataflow [38], and synchronous

dataflow (SDF) [39].

In this chapter, we apply a form of dataflow called parameterized synchronous
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dataflow (PSDF) to demonstrate the model-based integration of the proposed MDP-

based design techniques [40]. We use PSDF because it is useful in modeling dataflow

graphs that have dynamically varying parameters. Quasi-static scheduling tech-

niques have also been developed for these graphs that systematically derive param-

eterized looped schedules [41]. A parameterized looped schedule involves loops that

iterate across subsets of actors, and have iteration counts that can be symbolic ex-

pressions in terms of static or dynamically-varying actor, edge or graph parameters.

We apply parameterized dataflow due to its natural match with our objective

of developing a model-based framework for adaptive signal processing. However, we

envision that the framework can be adapted into modeling environments that are

based on other parametric dataflow models, such as Boolean parametric dataflow [42]

and the parameterized and interfaced dataflow meta-model [43]. Investigating such

adaptations along with application of the distinguishing tools and analysis tech-

niques available for such alternative models is an interesting direction for future

work.

To implement PSDF-based models of adaptive signal processing systems, we

apply the Lightweight Dataflow Environment (LIDE) [1]. LIDE is a software tool

for dataflow-based design and implementation of signal processing systems. LIDE

is based on a compact set of application programming interfaces (APIs) that is used

for constructing and connecting dataflow actors, edges, and graphs. These APIs

have been implemented in a variety of implementation languages. In this chapter,

we apply LIDE-C, which is based on C language implementation of the LIDE APIs.

LIDE includes facilities for dynamically manipulating actor, edge and graph param-
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eters. We use these facilities to incorporate PSDF semantics in the LIDE-based

implementations that we develop when applying the HMCSM framework.

4.3 Hierarchical MDP Approach for Compact System-level Modeling

The HMCSM framework is illustrated in Figure 4.1. At design time, the ap-

plication functionality is modeled using dataflow techniques, as illustrated in the

top right region of the figure. The design process also involves modeling the envi-

ronmental and system-level dynamics, and reconfiguration process in the form of a

hierarchical MDP, as illustrated by the part of Figure 4.1 that is labeled Hierarchical

MDP Subsystem. As part of this modeling process, Markov models are created of

both the processing demands imposed on the system by the application, and the

dynamics of the processing system components. In a classical MDP formulation,

these elements are combined into a single MDP. In this chapter, we additionally

explore the use of Hierarchical MDPs in comparison to a single MDP to address the

scaling problems that are well known to be a major weakness of classical MDPs (see

Section 4.1).

The single MDP is transformed into a hierarchy of multiple MDPs by first

factoring the elements in the MDP based on their stochastic interdependencies.

Once the MDP has been factored, it can be decomposed into sub-problems that

can be independently solved by multiple MDPs arranged in a hierarchy. For details

on the processes involved in factoring and transforming the original MDP, we refer

the reader to [33]. In the HMCSM framework, the factoring and decomposition are
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Figure 4.1: An illustration of the HMCSM framework for design and implementation
of adaptive signal processing systems.

carried out by hand, using knowledge of the application domain and the processing

system.

The Configuration Control Machine (CCM), shown in the lower (run time) por-

tion of Figure 4.1, is used to manage dynamic system-level reconfiguration through-

out operation of the embedded signal processing system. Here, by dynamic recon-

figuration, we mean changes to any system-level parameters, including software,

platform, and algorithmic parameters, that can be manipulated while the system is

executing. At run-time, the CCM executes periodically, where the period Tc of its

execution is a system parameter.

We refer to each periodic execution of the CCM as a reconfiguration round.
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During a given reconfiguration round, the CCM determines, based on the current

environmental state and system state, whether or not to perform a dynamic re-

configuration operation. Furthermore, if the determination is to perform such an

operation, the CCM also determines the specific reconfiguration operation that is to

be applied to the system. The blocks labeled System Sensor, System State Model,

Environmental Sensor, and Environmental State Model represent measurements and

models that are used by the CCM to determine the system and environmental state

during a given reconfiguration round.

The block labeled Control Actions, in the design time portion, encompasses

the set of possible reconfiguration operations that can be applied by the CCM in a

given reconfiguration round. Examples of control actions in the context of HMCSM

are changes to the type of digital filter that is applied to process a given signal in

the application flowgraph, changes to the coefficients in a filter of a fixed type, and

changes to the input port from which a given actor will read input data.

If A denotes the set of control actions, then the CCM can be viewed as an

implementation of a function P : Se×Ss → A, where Se is the set of environmental

states, and Ss is the set of system states. This function P is referred to as the

reconfiguration policy or simply “policy” in an adaptive signal processing system

that is developed using the HMCSM framework. In HMCSM, the policy is applied

at run-time, and derived at design-time. It is derived using an MDP Solver, which is

a software module that automatically generates optimized policies from MDP model

specifications.

The Policy Mapping Engine, shown near the center of Figure 4.1, translates
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control actions into updates to dynamic parameters in the embedded software that

achieve the intended actions. In our implementation of the HMCSM framework,

these parameter updates are made by setting appropriate variables in an implemen-

tation of the application dataflow graph that is developed using the Lightweight

Dataflow Environment (LIDE) (see Section 4.2.2). This dataflow graph implemen-

tation is represented by the block labeled Parameterized LIDE Implementation, and

the software tool that we use to construct this implementation is represented by the

block labeled LIDE Library.

In the HMCSM framework, each control action is formulated in terms of

specific changes to specific parameters in the parameterized dataflow application

model M . In other words, a given control action A can be represented as A =

{(p1, v1), (p2, v2), . . . , (pN(A), vN(A))}, where each pi is a distinct parameter in the

application model M , each vi is an admissible value of parameter pi, and N(X) is

the number of parameters in M that are manipulated by a given control action X.

Execution of the control action A at run-time involves setting each parameter pi to

the corresponding value vi such that subsequent operation of M will be performed

using these new parameter settings. Operation continues with the new parameter

settings until a new control action is applied to the system (in some subsequent

reconfiguration round).

The formulation of an MDP in HMCSM includes three main components,

which are represented by the blocks in Figure 4.1 that are labeled Stochastic Models

of Environment and System, Reward Function, and Control Actions. These compo-

nents are developed by hand using well-established foundations of MDP modeling,
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along with domain knowledge of the targeted application.

We have discussed the Control Actions part of the MDP formulation earlier in

this section. The Stochastic Models of Environment and System include, for each

of the two models (environment and system), the definition of the state space and

the state transition matrix (STM). The STM is a stochastic matrix that defines the

probability of the transition to the next state given the existing state, and condi-

tioned on a given action. Intuitively, the Reward Function maps state-action pairs

into scores that assess the utility of performing the associated action (control action)

during the given state. We apply an approach for incorporating multidimensional

design objectives into the scores produced by the reward function. For details on

this multidimensional reward function approach, we refer the reader to [34]. In our

wireless communications case study, which we present in Section 4.4, the specific

design objectives that we target are (a) energy consumption and (b) probability of

packet collisions.

In summary, the HMCSM framework presented in this section provides a

comprehensive methodology and supporting tools for design and implementation

of adaptive embedded signal processing systems. The specific tools that we ap-

ply in our demonstration of the framework are MDPSOLVE [44] and LIDE, which

correspond to the blocks labeled MDP Solver and LIDE Library, respectively, in Fig-

ure 4.1. However, the framework is not intended to be specific to these tools, and can

readily be adapted to other tools for solving MDPs and implementing parametric

dataflow graphs, respectively.
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4.4 Case Study of Channelizer/Receiver Application

4.4.1 Background

In this section, we describe a detailed case study as an illustrative example of

the methodology introduced in Section 4.3. In addition to providing a demonstration

of our proposed HMCSM design framework on a practical, adaptive signal processing

application, the case study also serves as a demonstration of a novel, application-

specific, MDP-based system design.

4.4.2 Adaptive Receiver Architecture

Our case study is a wireless receiver for a Low Power Wide Area Network

(LPWAN) used in a “Smart Cities” Internet of Things (IoT) application [45]. The

example network consists of a basestation centrally located in a star topology pro-

viding coverage to hundreds or thousands of end nodes.

A key aspect of popular LPWAN protocols, such as LoRaWan and SigFox, is

that the frequency subcarriers are not orthogonal, and hence are Frequency Division

Multiplexed (FDM) but not orthogonal FDM (OFDM) systems. This represents a

notable change of direction in wireless networks compared to modern protocols (all

OFDM-based) that have dominated the landscape in recent years, for instance,

Long-Term Evolution (LTE), Wi-Fi, and WiMax. The signal processing in an FDM

receiver is quite different from an OFDM receiver, and has different design chal-

lenges. Another differentiation in LPWAN protocols compared to OFDM-based

systems is that these protocols do not have explicit centralized scheduling of the
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frequency spectrum (i.e., time and frequency reservations). Rather, the end nodes

use decentralized heuristics like Carrier Sense Multiple Access (CSMA), commonly

referred to as a Listen Before Transmit scheme, in order to avoid transmission col-

lisions.

These two system aspects are a result of the design goal of minimizing com-

plexity at the sensor nodes, to enable years of battery life in some applications.

This long battery life is not currently possible on the OFDM-based systems it re-

places. There are a number of major implications of these system aspects. For

example, the removal of the explicit centralized transmit coordination by the bases-

tation means that end nodes occasionally transmit in the same time and frequency,

leading to packet collisions. Such a collision represents a wasted transmission that

cannot be demodulated properly by the basestation. Additionally, the removal of

the OFDM scheme means that subcarriers must be separated by guard bands. This

in turn implies that the receiver must split the received signal into channels and run

parallel banks of demodulators to recover the transmitted data. Correspondingly,

the physical layer signal processing workload (and power consumption) increases

proportionally with the number of channels enabled.

In order to address these challenges in LPWAN systems, we propose an adap-

tive LPWAN receiver that dynamically adjusts the system bandwidth continually,

and periodically transmits the new bandwidth setting to end nodes through the

use of a downlink beacon. This case study implements the physical layer signal

processing for such an adaptive receiver. The implemented architecture consists

of reconfigurable channelizer and baseband processing algorithms. In this chapter,
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we build on the dynamically reconfigurable channelizer presented in [34]. In that

work, a parameterized channelizer was designed for a reconfigurable platform and

the channelizer was created with multiple implementation options optimized for

different use cases and applications. An MDP was employed to determine reconfig-

uration decisions at runtime and was shown to produce a dynamic system that was

more robust to changing environments and use cases when compared to the prior

state of the art.

Our work on this case study and the underlying HMCSM framework devel-

oped in this chapter goes beyond the developments of [34] by (1) our application of

hierarchical MDP techniques; (2) integrating MDP-based control with model-based

methods for signal processing system implementation; (3) expanding the role of the

MDP to control not just the channelizer configuration, but also the system band-

width; and (4) comparing a baseline MDP framework with our proposed hierarchical

MDP approach that reduces the model size.

4.4.3 Application Specification

Figure 4.2 shows a block diagram of the adaptive receiver architecture that

is investigated in this case study. The channelizer is used to separate the incom-

ing wideband signal into multiple data streams, where each of the data streams is

associated with a distinct channel. Each channel is then oversampled for symbol

timing recovery, and then processed by a Generalized Likelihood Ratio Test (GLRT)

detector, which looks for the transmission preamble. Once a detection is successful,
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Figure 4.2: Block diagram of receiver signal processing and two MDP schemes.

a matched filter demodulator recovers the transmitted data and confirms it with an

error detection function (e.g., CRC32).

In our case study, we compare the relative merits of two separate MDP schemes,

labeled MDP-I and MDP-II. These two schemes are illustrated together in Fig-

ure 4.2. MDP-I consists of a single MDP employed for control of both the dynamic

bandwidth as well as the channelizer processing configuration. MDP-II splits the

modeling into two MDPs arranged in a hierarchy. These two MDPs are labeled

MDP-II-a and MDP-II-b.
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The channelizer can be implemented by one of two options, as detailed in [34]

— a bank of M polyphase decimators and mixers (labeled as DCM[1],DCM[2], . . . ,

DCM[M ]) or a Discrete Fourier Transform Filter Bank (labeled as DFTFB). Both

options are capable of meeting the processing requirements of the channelizer sub-

system. However, they do so using different algorithmic means, and the DCM is

generally a more power-efficient implementation when a relatively small number of

channels is enabled. Conversely, the DFTFB is more efficient when a higher number

channels is enabled. The exact crossover point of efficiency is highly platform- and

implementation-dependent. This is one of the primary advantages to the MDP-

based technique: the reconfiguration policy is optimized for the exact processing

characteristics of a specific platform (e.g., measured power consumption). This will

in general lead to an application-specific, MDP-generated control policy for one sys-

tem that is different from that of another system where the efficiency crossover of

the DCM vs. DFTFB occurs at a different point.

4.4.4 PSDF Model

Since the reconfiguration in our adaptive receiver system is focused on the

channelizer subsystem, we implement this subsystem as a PSDF design with dy-

namic parameters. Our PSDF model of the channelizer system is illustrated in

Figure 4.3. Here, M is a static parameter of the application that represents the

total number of available channels.

At run-time, the MDP-generated reconfiguration policy determines how many
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channels to enable, based on the data rate, and whether to apply DCM processing

or DFTFB processing. These policy decisions are used to manipulate a set of dy-

namic parameters {Y1, Y2, . . . , YM} that is associated with M distinct DCM actors

DCM[1],DCM[2], . . . ,DCM[M ] (one DCM actor for each channel). The policy de-

cisions are also used to manipulate a parameter Z that is associated with an actor

labeled DFTFB, which represents DFTFB processing on all of the enabled channels.

Each of these (M +1) parameters is binary valued — that is, it takes on values only

within the set {0, 1}. In particular, for each i ∈ {1, 2, . . . ,M} if DCM processing is

enabled, and the ith channel is enabled, then Yi = 1. Conversely, if DFTFB pro-

cessing is enabled, then Z = 1, and Yi = 0 for all i. If DCM processing is enabled,

then Z = 0.

After each reconfiguration round, updated values of {Y1, Y2, . . . , YM} and Z

are propagated to the adaptive channelizer flowgraph through the Init Graph, as

illustrated in Figure 4.3. The channelizer flowgraph is parameterized in terms of

these (M + 1) dynamic parameters and encapsulated within the Body Graph, as

shown in the figure. The Init Graph and Body Graph are modeling constructs in

PSDF that are used, respectively, for reconfiguration functionality (determination

and propagation of new parameter values), and core signal processing functionality

associated with an application. For details on the semantics of PSDF and operation

of the Init and Body Graphs, we refer the reader to [40].

The Config. (configuration) Sink actor in Figure 4.3 is a special actor that

we use in LIDE to propagate parameter updates from the Init Graph to the Body

Graph in PSDF-based implementations. The shaded actors in the Body graph are
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dynamically parameterized actors. The expressions next to the input and output

ports represent the consumption and production rates associated with the ports,

respectively. The Distrib. (distributor) actor takes its input data and distributes

copies of it to the appropriate subset of DCM/DFTFB actors depending on the

current values of the dynamic parameters in the graph.

For example, suppose that DCM processing is enabled, and that Channels 1,

2, and 3 are enabled. Then Y1 = Y2 = Y3 = 1, Yj = 0 for j > 3, and Z = 0. This

means that the production rates on the three leftmost output ports of the Distrib.

actor will be M , while the production rates on all of the other ports of this actor will

be 0. Similarly, the consumption rates on the left-side input ports of Chn[1], Chn[2],

and Chn[3] are identically equal to 1, while all of the other input ports across the

bank of Chn actors have consumption rates that are identically equal to 0.

The actors labeled Chn[1],Chn[2], . . . ,Chn[M ] in Figure 4.3 simply copy data

from their input ports to their output ports based on which (if any) input ports are

“active” (have nonzero consumption rate). These actors generate samples on each

of the M output channels of the channelizer subsystem.

4.5 Experiments

In this section, we discuss our experiments and results based on the case study

developed in Section 4.4.
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4.5.1 Comparison of Alternative MDP Configurations

As mentioned in Section 4.4, we compare the relative merits of a conventional,

monolithic MDP approach with our proposed hierarchical MDP approach to adap-

tive signal processing system design. The conventional and hierarchical approaches

are labeled MDP-I and MDP-II, respectively. In both cases, the MDP formulations

require suitable definitions for the core MDP components: the state space, action

space, STMs, and reward function. These definitions are detailed as follows.

4.5.1.1 MDP-I

In MDP-I, the (single) MDP state space consists of the instantaneous rate of

uplink packets generated by all end nodes, and the configuration of the basestation

processor (number of channels enabled and channelizer configuration).

The action space consists of the next configuration of the basestation processor

(number of channels enabled and channelizer configuration).

The STM for the packet generation rate is computed a priori from the traffic

rate measured in a design-time simulation. The STM for the processing system is

obtained from the dynamics of the implementation on the reference platform.

The MDP reward metric is a linear combination of two competing metrics: the

probability of packet collision and the power consumption expended in basestation

processing. This linear combination of conflicting metrics tasks the MDP with find-

ing an optimal trade-off at any time based on relative weightings that are provided

by the designer for the two metrics.
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4.5.1.2 MDP-II

In MDP-II, the control task is split across two hierarchically arranged MDPs:

MDP-II-a and MDP-II-b. The decomposition serves to separate two independent as-

pects of the control, namely the optimal system bandwidth (MDP-II-a) and the op-

timal configuration to implement a specified system bandwidth (MDP-II-b). MDP-

II-a is used to determine the optimal number of channels to enable at a given time,

while being agnostic to what processing configuration is actually used in the re-

ceiver to implement that configuration. MDP-II-b is used to determine the optimal

processing configuration for an exogenously specified number of channels.

4.5.2 Implementation

The configurable components of the processing system were implemented using

the method detailed in Section 4.3, and deployed to a Raspberry Pi 3 Model B

computing platform. Each of the available configurations was run in a test mode,

and the average processing power consumed was measured and tabulated as shown

in Table 4.1. The device we used for measuring power consumption is the Tektronix

Keithley Series 2280 Precision Measurement DC Power Supply. The measurements

were then provided as input to the MDP models, and used to generate control

policies using these empirically measured characteristics of the processing system.
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Table 4.1: Platform measurements.

Processing Num Channels Average
Configuration Processed Power

DCM 1 1.4406 W
DCM 2 1.4781 W
DCM 3 1.5203 W
DCM 4 1.5660 W
DCM 5 1.6025 W
DCM 6 1.6524 W
DCM 7 1.7013 W
DCM 8 1.7453 W

DFTFB 8 1.6754 W

4.5.3 Simulation Results

We performed a physical layer signal processing simulation in MATLAB to

generate uplink traffic from 1,000 end nodes. The simulation compared the use

of the two (adaptive) MDP Schemes and also (non-adaptive) cases where only the

fixed channelizer configurations were used. Each run of the simulation generated

results of the form shown in Figure 4.4. This figure shows results from one of the

runs where the MDP was used. In this figure, the MDP (MDP-I) is in control of

the number R of receiver channels enabled, and makes decisions in response to the

exogenous end node traffic rate as it is incoming. Note that when the traffic rate

is high, the system increases R in order to reduce packet collisions. Also notable is

that the MDP jumps from 5 channels to 8 (skipping the cases R = 6 and R = 7)

during peak hours. This is a result of the processing characteristics in Table 4.1 —

the MDP determines that it is preferable (with respect to both performance metrics)

to transition directly from R = 5 to R = 8.

In our experiments, the two competing MDP schemes, MDP-I and MDP-II,
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Figure 4.4: Simulation results for MDP-I.
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produced the same control policy. However, a key difference is that the hierarchical

MDP reduced the model size from 1.63MB to 265kB, which is a factor of 6.1 times

smaller than the original size. This reduction becomes especially relevant when

housing the MDP model and policy generation code on the processing platform

itself. Such an embedded MDP realization is useful because it allows the MDP

and generated policy to adapt dynamically based on learned characteristics of the

operating environment. Integration of embedded MDP techniques into the HMCSM

framework is a useful direction for future work.

All of the simulation runs that we carried out are compared in Figure 4.5.

Different simulations for the MDP-generated policy were carried out using different

relative weightings for the two performance metrics. Simulations were also carried

out for fixed signal processing configurations. The square-shaped points in Figure 4.5

correspond to DCM-based channelizer operation with the number of enabled chan-

nels ranging from 1 to 8. The fixed configuration DFTFB case is represented by

the triangle-shaped point in the top left region of the figure. In the context of all

of the design points evaluated and the two performance metrics, we see from the

figure that the MDP-based approach generates a Pareto front. This demonstrates

that the adaptive reconfiguration capability provided by the MDP leads to better

performance in comparison with fixed configurations for each of the available signal

processing algorithms.
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4.5.4 Solver Running Time

The Hierarchical MDP also provides a benefit in the execution time required

for the MDP solver to compute the optimal policy. In our experiments, we applied

the MATLAB-based open source solver called MDPSOLVE [44]. The execution

times were measured as 294ms for MDP-I, 50.8ms for MDP-II-a and 41.5ms for

MDP-II-b. A key feature of the Hierarchical MDP is that the stochastic model of

the changing external environment is captured in MDP-II-a, and the model of the

processing system is captured separately in MDP-II-b. As a result, in a deployment

with a fixed processing system that periodically re-computes the control policy in

response to a changing external environment, the hierarchical MDP scheme reduces

the solver time from 294ms to 50.8ms, which is a factor of over 5.7X smaller.

4.6 Summary

In this chapter, we have developed the Hierarchical MDP framework for HM-

CSM and its application to design and implementation of adaptive embedded signal

processing systems. HMCSM provides a structured design methodology that in-

tegrates model-based design for embedded signal processing in terms of dataflow

methods; MDP formulation using compact, hierarchical models; optimal policy gen-

eration from these models at design time; and dynamic, system-level reconfiguration

at run time. The framework enables systematic derivation of system-level reconfig-

uration policies that are based on application-specific functional requirements and

operational constraints. We have demonstrated the utility of HMCSM concretely
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through a case study involving an adaptive receiver for wireless communications.

Useful directions for future work include adapting the HMCSM framework for use

with other parametric dataflow models (beyond PSDF), development of tools to help

automate the factoring and hierarchical decomposition of MDPs, and integration of

embedded MDP techniques into HMCSM.
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Chapter 5

An Integrated Hardware/Software Design Methodology for Signal

Processing Systems

In the previous chapters, we proposed two frameworks for design space ex-

ploration of signal processing systems, with an emphasis on embedded software

implementation. This chapter presents a new methodology for design and imple-

mentation of signal processing systems on system-on-chip (SoC) platforms, which

may in general include a mix of software and hardware (field programmable gate

array) subsystems. The methodology is centered on the use of lightweight applica-

tion programming interfaces for applying principles of dataflow design at different

layers of abstraction.

The development processes integrated in the approach of this chapter are soft-

ware implementation, hardware implementation, hardware-software co-design, and

optimized application mapping. The proposed methodology facilitates development

and integration of signal processing hardware and software modules that involve

heterogeneous programming languages and platforms.

As a demonstration of the proposed design framework, we present a dataflow-

based deep neural network (DNN) implementation for vehicle classification that is

streamlined for real-time operation on embedded SoC devices. Using the proposed

methodology, we apply and integrate a variety of dataflow graph optimizations that
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are important for efficient mapping of the DNN system into a resource constrained

implementation that involves cooperating multicore CPUs and field-programmable

gate array (FPGA) subsystems. Through experiments, we demonstrate the flexibil-

ity and effectiveness with which different design transformations can be applied and

integrated across multiple scales of the targeted computing system.

A preliminary, partial version of the material in this chapter has been published

in [46, 47]. The work in this chapter was developed through a collaboration across

different institutions — the University of Maryland, USA; University of Cagliari,

Italy; University of Sassari, Italy; and Tampere University of Technology, Finland.

My contribution to the work presented in this chapter has been focused on the

dataflow-based design methodologies, software design and optimization, and the

overall design space exploration in the case study of the DNN system.

5.1 Introduction

Model-based design has been widely studied and applied over the years in

many domains of embedded processing. Dataflow is well-known as a paradigm for

model-based design that is effective for embedded digital signal processing (DSP)

systems [3]. Many dataflow-based design methods for DSP systems have been ex-

plored in recent years to support various aspects of design and implementation,

including modeling and simulation; scheduling and mapping of actors to heteroge-

neous platforms; and buffer management (e.g. see [3, 48]).

The diversity of design scales and dataflow techniques that are relevant to sig-
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nal processing systems poses major challenges to achieving the fully potential that

is offered by signal processing platforms under stringent time-to-market constraints.

While automated techniques, such as those referred to above for scheduling and

buffer mapping, are effective for specialized combinations of platforms and dataflow

models (e.g., multicore CPUs and synchronous dataflow, respectively), they are lim-

ited in their ability to support more comprehensive assessment of the design space,

where the models and target platforms themselves have great influence on address-

ing implementation constraints and optimization objectives. System designers must

therefore resort to ad-hoc methods to explore design alternatives that span multiple

implementation scales, platform types, or dataflow modeling techniques.

In this work, we propose a design methodology and an integrated set of tools

and libraries that are developed to help bridge this gap. We refer to this method-

ology as the STMC Methodology or STMCM, which is named after the different

institutions across which it is developed (Sassari, Tampere, Maryland, Cagliari).

STMCM focuses on enabling experimentation across different levels of abstraction

throughout the design process, and allowing designers to experiment productively

and iterate rapidly on complex combinations of design options, including dataflow

models, heterogeneous target platforms, and integration with platform-specific lan-

guages and back-end tools. Special emphasis is placed on enabling effective experi-

mentation with hardware/software design trade-offs, as well as trade-offs involving

performance, resource utilization, and power consumption. These are trade-offs that

are especially important and challenging to navigate efficiently in design processes

for system-on-chip implementation of signal process systems.
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The utility of STMCM is facilitated by the use of lightweight dataflow (LWDF)

programming [22], and its underlying core functional dataflow (CFDF) model of

computation [49]. LWDF provides a compact set of application programming inter-

faces (APIs) that allows one to apply signal-processing-oriented dataflow techniques

relatively easily and efficiently in the context of existing design processes, target

platforms, and simulation- and platform-oriented languages, such as MATLAB, C,

CUDA, and VHDL. Additionally, CFDF is a general form of dataflow that accommo-

dates more specialized forms of dataflow, such as Boolean dataflow [50], cyclo-static

dataflow [37], synchronous dataflow [39], and RVC-CAL [51] as natural special cases.

This accommodation of different dataflow models in turn provides potential to in-

tegrate designs with other dataflow frameworks and DSP libraries, such as those

described in [51, 52, 53, 54, 55, 56]. Furthermore, LWDF is granularity-agnostic, in

the sense that actor complexity does not limit the applicability of the framework.

To demonstrate the capabilities of STMCM in addressing the challenges of

mapping practical dataflow-based structures on heterogeneous signal processing

platforms, we explore different implementations of a deep neural network (DNN)

for vehicle classification on an heterogeneous, embedded system-on-chip (SoC), the

Xilinx Zynq Z-7020 SoC. DNN applications pose great challenges in their deploy-

ment on embedded devices. Investigation of DNN implementations on embedded

SoC devices is challenging due to the limited resources for processing and storage in

these devices, and especially, due to the high computational complexity of DNNs.

They involve very large and complex signal flow structures that involve intensive

computation, data exchange, and multi-layer processing. These characteristics make
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embedded DNN implementation highly relevant as a case study for STMCM.

5.2 Related Work

Dataflow provides valuable model-based design properties for signal processing

systems, and has been adopted in a wide variety of tools for both software and hard-

ware design. For example, LWDF APIs for CUDA and C have been targeted in the

DIF-GPU tool for automated synthesis of hybrid CPU/GPU implementations [57].

The CAL programming language and the Open RVC-CAL Compiler (Orcc) toolset

provide a dataflow environment for generating dataflow implementations in a num-

ber of languages, such as C, Jade, and Verilog [51, 52, 58] (note that the Verilog

backend of Orcc has been discontinued and Xronos synthesizer has been replaced).

The CAPH language and framework generate hardware description language (HDL)

code from high-level dataflow descriptions [53]. The work in [59] presents an inte-

grated design flow and tools for the automatic optimization of dataflow specifications

to generate HDL designs. The Multi-Dataflow Composer (MDC) tool is a dataflow-

to-hardware framework able to automatically create multi-functional reconfigurable

architectures. In addition to this baseline functionality MDC offers three additional

features: (1) a structural profiler to perform a complete design space exploration,

evaluating trade-offs among resource usage, power consumption and operating fre-

quency [60]; (2) a dynamic power manager to perform, at the dataflow level, the

logic partitioning of the substrate to implement at the hardware level, and apply

a power saving strategy [61]; (3) a coprocessor generator to perform the complete
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dataflow-to-hardware customization of a Xilinx compliant multi-functional IP [59].

All of the methodologies and tools described above are limited by the pro-

gramming language, adopted dataflow description, or implementation target. For

example, HDL code can be highly optimized for a given target (such as a Xilinx

FPGA) but not usable for an application specific integrated circuit (ASIC) flow

(e.g., see [58, 62, 63]). Automatic methods and tools require significant effort in

development and maintenance of graph analysis and code generation functional-

ity, and may be too costly for models and design approaches that are not mature.

Such scenarios may arise for emerging applications or platforms that do not match

effectively with the models or methods supported by available tools.

STMCM is complementary to these efforts that emphasize dataflow design au-

tomation. By applying LWDF APIs in novel ways, STMCM facilitates implemen-

tation of and iterative experimentation with new dataflow-based hardware/software

architectures and design optimization techniques. LWDF is applied as an integral

part of STMCM because of LWDF’s minimal infrastructure requirements and its

potential for rapid retargetability to different platforms and actor implementation

languages. Furthermore, LWDF does not have any restriction in terms of actor gran-

ularity and can be extended with different combinations of dataflow graph transfor-

mations, as well as other forms of signal processing optimizations (e.g., see [3]).

In [46], we presented an efficient integration of the LWDF methodology with

hardware description languages (HDLs). Building on this HDL-integrated form of

LWDF, we developed methods for low power signal processing hardware implemen-

tation, and system-level trade-off exploration. In this chapter, we apply the hard-
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ware design techniques introduced in [46] as part of a general methodology that

spans software, hardware, and mixed hardware/software design, implementation,

and trade-off exploration. Thus, while the focus in [46] is on rigorous integration

across digital hardware design, lightweight dataflow programming, and low power

optimization, the emphasis in this work is on a methodology for applying LWDF

concepts in an integrated manner across complete hardware/software development

processes for embedded signal processing systems.

In summary, STMCM provides methods to seamlessly and comprehensively

integrate LWDF-based actor implementation techniques with design processes for

real-time, resource-constrained signal processing systems. STMCM can be used

as an alternative to or in conjunction with more conventional automated dataflow

tools (e.g., for disjoint subsystems). STMCM requires more effort in programming

compared to fully automated toolchains, however it provides more agility in terms

of retargetability and experimentation, as described above. This is a useful trade-off

point to have available for model-based design of complex signal processing systems.

5.3 Proposed Design Methodology

Our proposed methodology STMCM is illustrated in Figure 5.1. As motivated

in Section 5.1 and Section 5.2, STMCM is a design methodology that emphasizes

LWDF concepts, and is specialized for SoC-based signal processing systems. The

upper part of Figure 5.1 represents application-specific and algorithmic aspects,

while the lower part represents the general part of the methodology that is reusable
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across different applications. The upper part is illustrated concretely in the context

of DNN system design; this part can be replaced with other application/algorithm

level design aspects when applying STMCM to other applications.
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Figure 5.1: An illustration of STMCM in the context of DNN system design.

5.3.1 Overview of Dataflow Models

Enable-invoke dataflow (EIDF) is a general dataflow model of computation

that supports dynamic dataflow behavior in actors [64]. In EIDF, each actor is

divided into a set of modes, where each mode, when it executes, has static dataflow

rates — i.e., each mode has a fixed consumption rate and production rate associated

with each input and output port, respectively. Dynamic dataflow behavior can be

83



achieved by switching among different modes of the same actor that have different

dataflow (production or consumption) rates associated with the same port. The

firing rule for a given EIDF actor is dependent on the current mode M of the actor.

Intuitively, this mode-dependent firing rule is that there must be sufficient data on

the actor input buffers (as determined by the fixed consumption rates associated

with M), and sufficient vacant space on the actor output buffers (as determined

by the production rates associated with M). For more details on the semantics of

EIDF, we refer the reader to [64].

The specification of an EIDF actor includes a method called the enable method,

which checks whether there is sufficient data available on the actor’s input ports and

sufficient data available on its output ports to fire the actor in its current mode. The

enable method returns a Boolean result that is true-valued when the aforementioned

availability conditions are met. Each EIDF actor also has an invoke method, which

executes the actor operation according to its current mode, consumes and produces

data on actor ports with the fixed dataflow rates of the current mode, and returns

a set of admissible next modes that can be used for the next firing of the actor. Any

mode in the set of next modes can be further checked for readiness by the enable

method, and invoked once the enable method returns true. Since the next mode for

firing is not uniquely specified (in cases where the admissible set of next modes has

more than one element), EIDF can be used to specify non-deterministic behaviors.

CFDF, which the LWDF programming approach is based on, is a special case

of the EIDF model. In CFDF, the set of admissible next modes for an actor has

exactly one element. In other words, the invoke method only returns one valid mode
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of execution, which means that the sequence of executed actor modes proceeds down

a single deterministic path.

A key feature of EIDF and CFDF is a clean separation of the enable and invoke

capabilities. Once the invoke function is enabled, it assumes that sufficient data is

available to execute the actor operation associated with the current mode — the fir-

ing condition is assumed to have already been checked by the corresponding enable

function, through appropriate compile-time analysis, or through some combination

(e.g., using quasi-static scheduling analysis). This feature improves the predictabil-

ity of actor firings and facilitates efficient scheduling techniques. The modeling

approach imposes restrictions (“dataflow design rules”) only on the structure and

interface of dataflow actors instead of on details of actor implementation, which in

turn facilitates retargetability of actors that are developed using the approach.

5.3.1.1 Software-based Actor Implementation Using LWDF

For software implementation, an LWDF actor is implemented as an abstract

data type that has four interface functions, which are referred to as the construct,

enable, invoke, and terminate functions. The construct and terminate functions can

be viewed as an object-oriented constructor and destructor for instantiation and

removal of actors, respectively. The enable and invoke functions in LWDF provide

concrete mechanisms for implementing in software the corresponding functions of

the same name from the abstract CFDF semantics. The LWDF enable function

returns a Boolean value; the returned value is true if (1) there is sufficient data
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Figure 5.2: Switch actor in CFDF. (a) Switch Actor, (b) Dataflow Table, (c) Mode
Transition Diagram between CFDF Modes.

on the actor’s input edges to execute the current mode; and (2) the output edges

of the actor have sufficient empty space to accommodate the data that would be

produced if the next mode were to be executed. This formulation makes sense in

LWDF because of the restriction in CFDF semantics that the dataflow rate on a

given port is constant for a given mode.

The invoke function of an LWDF actor a carries out a single firing of a accord-

ing to its current mode; determines the next mode for a; and changes the current

mode of a to be equal to this newly-determined next mode just before returning.

We present the switch actor as an example of CFDF actor. Switch actor has

three modes: Control, True and False. In Control mode, the switch actor consumes

one token from Control port. In True or False mode, the switch actor consumes

one token from Data port and forward that token to True or False Output port

accordingly. The dataflow table and mode transition diagram between CFDF modes

of switch actor are illustrated in Figure 5.2.

The enable and invoke functions provide interfaces for implementing schedulers

to coordinate execution of dataflow graphs that are implemented using LWDF. A

broad class of schedulers can be implemented using these interfaces, including many
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types of static, quasi-static, and dynamic schedulers (e.g., see [49, 65]). Static sched-

ules are generated at compile time and specify fixed sequences of actor firings, thus,

the actors can be directly invoked by static schedulers without checking the firing

conditions using enable functions. Quasi-static schedules are generated at compile-

time, but may contain code for performing some data-dependent, scheduling-related

computations at run-time. Dynamic schedulers schedule dynamic dataflow applica-

tions in ways that involve relatively large amounts of run-time decision-making.

A simple example of a dynamic scheduler is a canonical CFDF scheduler [49].

A canonical scheduler S calls the enable functions of the actors in some order in a

round robin fashion. Each time the enable function of an actor A is called by S and

the function returns “true”, the invoke function of A is immediately executed. This

process of visiting and conditionally invoking actors is repeated until no actors are

enabled or some other termination condition of the application is satisfied.

5.3.1.2 LWDF FIFO Implementation

As with actor design, LWDF provides a compact set of interfaces for imple-

menting the FIFO buffers that correspond to dataflow graph edges. These interfaces

provide standard functions that are used in LWDF-based actors and schedulers to

work with FIFOs. Details of the implementation are unspecified so that designers

have full flexibility in developing and applying different FIFOs in different applica-

tions or in different parts of the same application to achieve desired trade-offs in

inter-actor communication performance (e.g., by mapping dataflow edges into dif-
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ferent types of memories). LWDF is formulated to orthogonalize FIFO, actor, and

scheduler implementation so that, for example, modifications to or replacement of a

FIFO implementation do not require modifications to actors that communicate with

the FIFO or scheduling logic that coordinates execution of the graph. For general

background on the utility of orthogonalization in system-level design, we refer the

reader to [66]. LWDF interface functions defined for FIFOs include functions for

construction and termination (as with actors); reading tokens from FIFOs; writing

tokens into FIFOs; and checking their token populations and amounts of available

free space.

In STMCM, we apply the LWDF programming model through the Lightweight

Dataflow Environment (LIDE). LIDE is a software tool for dataflow-based design

and implementation of signal processing systems [22, 67]. LIDE is based on a com-

pact set of application programming interfaces (APIs) that is used for instantiating,

connecting, and executing dataflow actors. These APIs have been implemented in

a variety of implementation languages. For example, LIDE-C [67] and LIDE-V [46]

provide C and Verilog language implementations of the LIDE APIs, respectively.

In the remainder of this section, we discuss in detail the

application-, software-, and hardware-specific processes illustrated in Figure 5.1.

5.3.2 Application-specific Tools and Processes

In Figure 5.1, application-specific tools and associated design processes are

illustrated by gray blocks. Throughout this chapter, we adopt a DNN application
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as a concrete demonstration of how such application-specific aspects are used as an

integral part of STMCM. The DNN-focused design process illustrated in Figure 5.1

starts with the derivation of DNN hyperparameters and the network configuration.

Then the parameters associated with the derived DNN structure are extracted and

the DNN algorithm is carefully validated to ensure that target levels of accuracy are

satisfied.

The block labeled “Design Requirements and Constraints” refers to the application-

and platform-specific requirements and constraints on the DNN implementation.

Examples of these include the accuracy and throughput requirements for image clas-

sification DNN systems, and constraints on available power and hardware resources

for a targeted SoC platform.

In the remainder of this section, we introduce the software-related and hardware-

related design processes that provide the core of STMCM. These processes are ap-

plied in an integrated manner for hardware/software co-design, as represented by the

lower left hand part of Figure 5.1. Detailed explanations of the major components

in STMCM are provided in Section 5.4.3.

5.3.3 Software-related Process

In the next main phase of the proposed design methodology, the DNN network

configuration derived using application-specific, algorithm-level tools is mapped to

a software implementation using LIDE-C. LIDE-C-based implementations are not

restricted to DNN systems, and can be adapted readily to facilitate the implementa-
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tion and optimization of other signal processing systems. For example, in the work

of [19], the design space exploration of a digital predistortion system in wireless

communication is based on the LIDE-C implementation. In [27], LIDE-C has been

extended to support parameterized synchronous dataflow and applied to the imple-

mentation of an adaptive wireless communication receiver. In [68], vectorization is

applied to LIDE-based actors for throughput optimization. When the vectorized

actor is scheduled to run on a processor that supports data-parallel execution, its

throughput can be improved. For more details about LIDE-C and the development

of DNN components in LIDE-C, we refer the reader to [67, 69].

Working with the LIDE-C implementation of the DNN, a number of optimiza-

tion processes are carried out iteratively to streamline the software implementation

in terms of the relevant design objectives and constraints. This iterative optimiza-

tion process is illustrated in Figure 5.1 by the cyclic path that involves the blocks

labeled Dataflow Representation, LIDE-C Implementation, and Optimized LIDE-C

Implementation. The proposed approach supports efficient application of commonly-

used DNN software optimization methods such as for-loop tiling and buffer memory

sharing among dataflow graph edges. We refer the reader to Section 5.4.1 for more

details about these optimization methods and the integration of them with the

LIDE-C implementation.

Next, software profiling is performed on the optimized LIDE-C implementation

of the DNN system to extract profiling data. This data is extracted for each dataflow

component of the DNN architecture. In the profiling process applied in STMCM,

the memory sizes of the buffers and execution time of the actors in the graph are
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measured. According to the characteristics of DNN architecture, the DNN system

is divided into multiple computation layers. In our application of STMCM, software

profiling is specialized to DNN implementation by measuring the total memory sizes

for the buffers both inside each layer and between pairs of adjacent layers. We also

measure the total time complexity of each DNN layer.

5.3.4 Hardware-related Process

The dataflow model of the subgraph to accelerate is implemented in hardware

using LIDE-V. Hardware profiling based on the specific implementation platform is

performed on the LIDE-V implementation. This profiling is used to collect mea-

surements on hardware performance and help identify possible optimizations. In [8],

LIDE-V is applied to the implementation of digital predistortion filters and specific

power estimation methods are developed to facilitate the design space exploration of

the predistortion systems. Details on hardware profiling are demonstrated concretely

through the case study presented in Section 5.4.2. Like the software implementa-

tion, the hardware implementation will in general go through multiple optimization

iterations before it is finalized.

As discussed in Section 5.1, LWDF has primarily been targeted to DSP soft-

ware implementation. In this section, we extend the general LWDF methodology

for efficient digital hardware implementation. As part of this extension, we adapt

the LWDF methodology based on HDL coding styles. In particular, we adapt the

methodology based on the standard convention of HDL design construction in terms
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of module definitions — e.g., as opposed to classes, methods, and functions, which

are standard units of program construction in languages that are oriented to software

implementation.

The design techniques developed in this section are formulated concretely in

the context of the Verilog HDL. We refer to this integration of LWDF with Verilog

as LWDF-V. The design concepts underlying LWDF-V can be adapted to other

HDLs as they do not depend on specialized aspects within the Verilog language

(i.e., aspects that do not have natural counterparts in other common HDLs). Such

adaptation of LWDF for use with other HDLs is a useful direction for future work.

In LWDF-V, the enable, invoke and scheduling functions for an actor are

implemented as three coupled Verilog modules, which we refer to as the actor enable

module (AEM), actor invoke module (AIM) and actor scheduling module (ASM),

respectively. Dataflow edges are implemented as dataflow edge modules (DEMs) to

provide communication channels for connections between actors. Since DEMs buffer

data through a first-in first-out protocol, we refer to them also simply as FIFOs.

Figure 5.3 illustrates an example of an LWDF-V actor.
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Figure 5.3: Illustration of an LWDF-V-based actor.
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In the remainder of this section, we provide details on the design and interfac-

ing conventions for the central module types — AIM, AEM, ASM, and DEM — in

LWDF-V.

5.3.4.1 Actor Invoke Module

Recall that LWDF imposes minimal constraints on component designs and

the only requirement for an AIM is that the standard AIM operational states and

interfaces (described below) are maintained. Beyond that, we allow the AIMs to

be decomposed into arbitrary hierarchies of sub-modules, and described using any

Verilog coding style, including behavioral, structural, or mixed behavioral/structural

coding.

LWDF-V enhances the reusability and retargetability of the modules, and also

facilitates evolutionary design, where sub-module designs associated with different

subsystems can be progressively refined as more and more details of the targeted

implementation are determined.

The high level operation of the AIM is required to have two states: the actor

idle state and actor firing state, which are called the AIM operational states of the

associated actor. The interfacing requirements of AIMs are defined in terms of these

two states. The required interface ports for the AIM are divided into the following

four groups.

• Dataflow-related input ports: This group of ports contains one input port

corresponding to each input port X of the associated CFDF actor A, and a Boolean
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input port called invoke to initiate the next firing of the actor on the next clock

cycle if the actor is currently in the idle state. In Figure 5.3, examples of signals

sent to ports within this group include in_AX and invoke_A .

• Dataflow-related output ports: This group of ports contains one output port

corresponding to each actor output port Y, one Boolean write enable port corre-

sponding to each output port for submitting write requests to the output edge,

and one Boolean read enable port corresponding to each input port X for submit-

ting read requests to the input edge. Examples in Figure 5.3 of signals sent from

ports in this group include out_AY, wr_en_AY, and rd_en_AX.

• Platform-related input ports: This group of ports contains a clock input

port for relevant synchronization with interfacing circuitry, and a synchronous

Boolean reset input port to bring the actor to its idle state on the next clock

cycle. Examples in Figure 5.3 of signals sent to ports in this group are clk_A and

rst_A.

• Control-related input ports: For a given actor A, this group contains a port

called mode that provides the current CFDF mode of the actor. In Figure 5.3,

examples of signals sent to this port are mode_A and FC_A .

• Control-related output ports: For a given actor A, this group contains a port

called next_mode that provides the next possible CFDF mode of the actor, and

a port called FC, which stands for firing complete, that sends a Boolean signal to

indicate when a firing of A completes during the current clock cycle. In Figure 5.3,
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examples of signals sent from these ports include next_mode_A and FC_A .

Figure 5.4 provides an example of the FSM control flow for an AIM with three

modes. The AIM stays in the current mode x until the firing related to the mode

is completed. When this firing is completed, the FC signal is driven high, and the

next_mode is suggested. In each mode, a sub-FSM controls the execution; the AIM

waits in an IDLE state until invoke is high, then the state is updated to FIRING,

where the AIM consumes input data, executes the actor operation and produces

output data according to the current mode.

mode a mode b

mode c

!FC !FC

!FC

FC

FC
FC

IDLE

!invoke

FIRING

!FC

invoke

FC

Figure 5.4: Example of an AIM FSM for a CFDF actor with three modes.

5.3.4.2 Actor Enable Module

To provide a standard interface for the CFDF-based enable function described

in Section 5.2, the AEM module for an LWDF-V actor contains the following re-
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quired interface ports.

• Population and free space ports: for each input port X of the associated

CFDF actor A, the AEM has one input port for accessing information about the

buffer state. This port provides the current buffer population (the number of

tokens in the input buffer) for the FIFO I that is connected to port X. Similarly,

for each output FIFO O that is connected to an output port Y, the AEM has one

input port that provides the free space level (the output buffer capacity minus

the population). These input ports are named, in terms of the associated FIFO

names, as pop_fifoI and fs_fifoO, respectively.

Figure 5.5 shows two examples of inter-actor communication. In the first example,

two actors A and B exchange data through two FIFOs. Actor A has three ports to

access the buffers’ state: pop_fifo1 provides the population of FIFO1 connected

to input 1, and fs_fifo2 and fs_fifo3 provide the free space levels of FIFO2

and FIFO3 connected to output ports output 1 and output 2. In the second

example, an actor C sends output data to two actors D and E through two FIFO

channels, FIFO5 and FIFO6. For each output FIFO C has one free space input

signal — these signals are labeled as fs_fifo5 and fs_fifo6.

• Mode port: This input port is used to specify the CFDF mode (for the enclos-

ing actor A) relative to which the AEM will perform its next fireability testing

operation (i.e., its operation to determine whether or not there is sufficient data

and free space available to permit a firing of the actor). This port is named in

terms of the enclosing actor A as mode_A. Figure 5.6 shows an example with three
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different firing conditions {Cx} for three different modes mode x. When the firing

condition is true, the enable signal is set high.

• Enable port: This output port is driven with the Boolean result produced by

checking the fireability of the enclosing actor in the mode specified by the AEM

mode port. This port is named in terms of the enclosing actor A as enable_A.
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Figure 5.5: Illustration of LWDF-V-based actors communication.
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Cb = (pop_fifo1 >= consumption_rate_of_b)&&(fs_fifo2 >= production_rate_of_b)

Cc = (pop_fifo1 >= consumption_rate_of_c)&&(fs_fifo2 >= production_rate_of_c)
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Figure 5.6: Example of a AEM with three different firing condition for three possible
modes.
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The AEM can be implemented using combinational or sequential logic. The

latter form may be preferred, for example, if large numbers of ports are involved

and it is desired to share hardware resources across the comparison operations that

are involved in the fireability checking process. However, for many practical actors

and implementation scenarios, the number of inputs is relatively small and combi-

national AEM realization is a reasonable design choice. Thus, in the remainder of

this chapter, we assume combinational AEM implementation. An additional subset

of standard ports is used in LWDF-V to support sequential AEM implementation;

further details on their implementation are beyond the scope of this chapter.

5.3.4.3 Actor Scheduling Module

The ASM is an actor-level subsystem that determines the next mode of the

associated actor after the actor firing is completed, and invokes the actor firing after

the actor is enabled again. Compared to schedulers discussed in Section 5.2, which

control groups of actors (i.e., related to specific design subsystems or to the entire

digital system that is being developed), the ASM can be used to implement a fully

distributed scheduling approach. In such an approach, an actor is scheduled to begin

a new firing whenever it is idle and its enable condition is satisfied. Scheduling of

LIDE-V actors is not restricted to such a fully distributed scheduling approach. For

example, with appropriately-designed control logic, subsets of actors can be serial-

ized to allow sharing of resources within the subsets. In this chapter, however, we

restrict our attention to fully distributed scheduling. Fully distributed scheduling of
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dataflow graphs has been analyzed in various contexts. For example, Ghamarian el

al. have developed methods for throughput analysis of synchronous dataflow graphs

that are scheduled in a fully distributed manner [70]. Such analysis techniques can

be applied to hardware subsystems in STMCM.

The interface ports of an ASM are listed as follows. For an ASM that is

associated with a given actor A, these ports are described here in relationship to

the AIM and AEM of the same actor A.

• Dataflow-related input ports: This group of ports contains a Boolean input

port that is connected to the output port FC of the AIM, a Boolean input port

that is connected to the output port enable of the AEM, and an input port that

is connected to the output port next_mode of the AIM.

• Platform-related input ports: This group of ports is the same as the platform-

related input ports introduced in Subsection 5.3.4.1.

• Control-related output ports: This group contains an output port called

mode and an output port that is connected to the input port invoke of the AIM.

The ASM makes the decision on the current actor mode and sends the resulting

mode signal to the AEM and AIM through the output port mode. Thus, the

ASM is responsible for carrying out mode transitions of the actor after firings are

completed. Generally, the ASM can either set the actor mode to be the next mode

signal received from the next_mode input port or ignore the next mode signal and

set the mode according to some user-defined logic that is integrated as part of

the ASM. The ASM also launches the next actor firing once the previous firing is
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completed and the actor is enabled again.

Figure 5.7 shows an example of an FSM that controls an ASM. The ASM waits in

the state WAIT_EN for the enable signal to become high. When enable = 1, the

ASM invokes the AIM (invoke = 1). Then the ASM waits in the state WAIT_FC for

the firing completion (FC = 1), and sets the next actor mode.

WAIT_EN

!enable

WAIT_FC

!FC

enable

FC

state enable invoke

WAIT_EN

WAIT_FC

1

WAIT_EN 0

x

1

0

0

state FC mode

WAIT_EN

WAIT_FC

x

WAIT_FC 0

1

current_mode

current_mode

next_mode

Figure 5.7: An example of an FSM that controls an ASM.

The example in Figure 5.8 illustrates temporal relationships among the enable,

invoke and FC signals. After the enable signal is high, the ASM raises the invoke

signal. The AIM then executes its operation and the ASM waits for the firing

completion signal FC.

Here, as illustrated in Figure 5.8, we define Tei to be the elapsed time between

the instant when the actor becomes enabled, and when the corresponding firing

is invoked. Similarly, Tic is the invocation to firing completion time, and Tci is

the time between the firing completion for one invocation and the start of the next

invocation. Finally, Tec is the enable to firing completion time, and Tii is the elapsed

time between two successive invocations. One can, for example, measure average

values for these timing characteristics across all firings of an actor within a given
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Figure 5.8: Examples of signal waveforms during execution of an LWDF-V actor.

execution of the enclosing dataflow graph. Such measurements can provide insight

into the performance of the given actor in the context of the applied scheduling

strategy.

5.3.4.4 Dataflow Edge Module

The DEM is used in LWDF-V to implement a dataflow edge. The required

interface ports include the following.

• Enable ports: These two Boolean input ports provide read enable and write

enable signals, rd_en and wr_en, for accessing the FIFO storage.

• Data input/output ports: These ports, named in and out, are used by the

FIFO to read input data and send output data, respectively, when a read or write

operation is initiated.
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• Population port: This output signal, named pop, is driven with a non-negative

integer value that gives the number of tokens that is currently stored in the FIFO.

• Free space port: This output signal, fs, provides the current value of (c − p),

where c and p are the capacity and population, respectively, of the buffer.

Figure 5.9 depicts an overview of an LWDF-V-based synchronous FIFO design.

Once the FIFO read or write operation is enabled, the rd_addr or wr_addr module

will update the read or write pointer accordingly. The population pop and free space

fs signals will be updated as well. In this chapter, we optimized the synchronous

FIFO design by further streamlining the design developed in [47]. The optimized

FIFO contains fewer registers while achieving the same functionality as the original

FIFO design. Further details about the resource utilization of the two FIFO designs

are presented in Section 5.3.4.5.5.

wr_addr rd_addr

clk

fs

clk

wr_addr_bin

rd_addr_bin

FIFO

memory

wr_en rd_en

data_in data_out

rst rst

pop

clk

Figure 5.9: Synchronous FIFO design

Similar to the AIM, the DEM also has clock and reset ports, named clk and

rst. To support asynchronous DEM integration, two separate clock inputs are
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provided — a read clock rd_clk and write clock wr_clk. More about asynchronous

design using LWDF-V is discussed in Section 5.3.4.5.

5.3.4.5 Low Power Techniques for LWDF-V

The class of dataflow-based signal processing applications that we target with

LIDE-V encompasses complex systems whose actors may exhibit large variations in

complexity. Such variation is common when applying dataflow based techniques at

the application level rather than restricting their use to the level of standard signal

processing modules, such as digital filters and FFT computations. In this section, we

demonstrate capabilities in LIDE-V that help to address challenges brought about by

the need to handle actors with arbitrary variations in complexity, and we also discuss

the relevance of these capabilities to low power signal processing. In particular, we

propose an asynchronous and GALS-oriented design methodology using LIDE-V for

heterogeneous-complexity and low power implementation. Specifically, our proposed

methodology applies (1) asynchronous communication between actors that utilizes

multiple clock domains, where the bottleneck actors are executed at higher clock

frequencies and the others at lower frequencies; and (2) a clock gating technique

that “switches off” idle actors to reduce dynamic power consumption.

The novelty of this development centers on the systematic integration of asyn-

chronous design, GALS, and clock gating techniques with lightweight dataflow pro-

gramming interfaces and their underlying CFDF model of computation. This inte-

gration with CFDF is notable in turn due to the utility of CFDF as a foundation for
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working with various specialized and heterogeneous forms of dataflow (e.g., see [49]).

Furthermore, the orthogonality among CFDF components lays a valuable founda-

tion for asynchronous design, and our proposed clock gating techniques exploit the

enable/invoke semantics in CFDF.

5.3.4.5.1 Asynchronous LIDE-V Design

We define a dataflow clock domain (or simply “clock domain” when the dataflow

context is understood from context) as a maximal set of actors that is driven by the

same clock signal. In asynchronous LIDE-V designs, different parts of a dataflow

graph can be driven by different clock signals, thus forming multiple clock domains.

This in turn allows “slower” actors to be placed in higher frequency clock domains,

so that they can be accelerated without having to increase the power consumption of

the whole design linearly with the clock frequency, and “faster” actors to be placed

in relatively low frequency clock domains, so that the downtime between “faster”

and “slower” actors can be reduced.

Figure 5.10 depicts an example of a LIDE-V design with two clock domains,

where actor A is driven by clk_1, and actors B and C are driven by clk_2. Commu-

nication channels between actors in the same clock domain are called synchronous

FIFOs. These FIFOs outline the “synchronous islands” within the overall GALS

design. The problem of passing data between synchronous islands is addressed us-

ing the asynchronous DEM implementations introduced in Section 5.3.4. We also

refer to asynchronous DEMs as clock domain crossing (CDC) FIFOs. In Figure 5.10

FIFO3 is a synchronous FIFO while FIFO2 is a CDC-FIFO.
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Figure 5.10: Illustration of an LWDF-V-based implementation of a CFDF graph
that consists of three actors.

Figure 5.11 illustrates the CDC FIFO design adopted in LIDE-V, which is

based on Cummings’s design presented in [71]. CDC FIFOs are driven by two

different clock signals, one for read operations (rd_clk), and another for write op-

erations (wr_clk). We made some adaptations to Cummings’s design so that it

is consistent with the LIDE-V framework. For example, Cummings’s design only

provides the empty and full signals, calculated inside the wr_addr and rd_addr

modules. In order to generate the required population pop and free space fs sig-

nals, the wr_addr and rd_addr modules are modified to calculate these signals by

computing the offset between the write pointer and read pointer.

To support clock gating within FIFOs, we make another modification com-

pared to Cummings’s design. The objective here is to allow all of the logic units

belonging to the corresponding clock domain to be turned off when rd_clk or wr_clk

is off. In Figure 5.11, for example, the modules in gray are disabled when the rd_clk

signal is off. This behavior is not considered in Cummings’s design and if the syn-

chronization circuits are off, in that design, the read and write pointers would not

be sent to the wr_addr and rd_addr modules. In order to guarantee that the up-

dates of population pop and free space fs are performed properly, the syn_r2w and
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Figure 5.11: Asynchronous FIFO design in LIDE-V.

sync_w2r modules both have multiplexers that are responsible for sending read and

write pointers, respectively, when one or both of the two clocks is disabled.

5.3.4.5.2 Clock Gating

In LIDE-V, clock gating is applied at the actor level to switch off idle com-

ponents in the dataflow graph. Figure 5.12 depicts an overview of a clock-gated

LIDE-V design. Actor-level clock gating is achieved systematically as a natural by-

product of the LIDE-V design technique, which in turn allows designers to apply

clock-gating more thoroughly and more reliably. We apply clock gating to a LIDE-V

actor by adding a clock gating module CGM_A to the original LIDE-V actor design

illustrated in Figure 5.3.

The LIDE-V-based clock gating technique exploits the graph execution in-
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Figure 5.12: Clock gating in a LIDE-V actor.

formation provided by the enable enable_A and the firing complete FC_A signals.

Figure 5.13 illustrates how the signals are related: when enable_A from the AEM_A

is high, CGM_A enables the clock (en_clk is high), and switches the clock off when

the actor has finished its computation — i.e., when the FC_A signal from AIM_A is

high.

...

...

...

...

...

...

clk

enable_A

FC_A

enable_out

en_clk

clk_gate

Figure 5.13: Signal waveforms in the clock gating module.

From a technical point of view, the clock is disabled in two different ways,
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depending on the target technology. In ASIC designs, it is possible to modify the

clock by exploiting some custom logic (e.g., a simple AND gate can be used to

disable the clock signal), while in FPGAs it is necessary to use dedicated blocks

(BUFGCEs) to switch it off. The CGM_A also delays the enable_A signal by two

clock cycles so that, after an OFF-to-ON transition, the AIM has enough time to

be active before it receives the invoke_A signal from the scheduler.

5.3.4.5.3 Clock Gating of Dataflow Edge Modules in Asynchronous De-

signs

The clock gating technique introduced above can be applied to both syn-

chronous and asynchronous designs. Moreover, in asynchronous designs, the clock

gating technique can be applied not only to actor modules but also to the CDC

FIFO modules, as mentioned in Section 5.3.4.5.1. When an actor is idle, it does

not read/write data from/to its input/output FIFOs, so the read clock of its input

FIFOs and the write clock of its output FIFOs can be disabled to save even more

power. Then the CDC FIFO will turn off the corresponding logic units as mentioned

in Section 5.3.4.5.1.

To ensure correct updates of the output signals pop and fs, one additional

signal called en_sync is sent from the CGM to the CDC FIFO module indicating that

either one or both of the rd_clk and wr_clk is/are disabled .
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5.3.4.5.4 Clock Gating of Dataflow Edge Modules in Synchronous De-

signs

In synchronous designs, the clock gating technique cannot be applied to the

synchronous FIFO design introduced in Section 5.3.4.4 because the modules that

update the signals related to read and write operations are driven by the same clock

signal.

One way to enable clock gating of DEMs in synchronous designs is to re-

place the synchronous FIFOs with the CDC FIFOs mentioned in Section 5.3.4.5.3.

However, compared with synchronous FIFOs, CDC FIFOs require more hardware

resources and consume more power. Thus, the power saved by switching off the

unused logic units may be counteracted by the power overhead introduced by the

additional resources. For this reason, we designed a new FIFO, where the wr_addr

and rd_addr blocks are synchronized to different clock signals, and a dual-clock

FIFO memory is developed. This new FIFO design, which we call a pseudo-CDC

FIFO, is illustrated in Figure 5.14. Compared with the CDC FIFO design, the

pseudo-CDC FIFO design does not contain synchronization or gray coding circuits,

since the wr_clk and rd_clk clock signals are always connected to the main clock.

Similar to CDC FIFOs, the unused logic units in the pseudo-CDC FIFOs can be

turned off by clock gating technique to save more power.

5.3.4.5.5 FIFOs comparison

Table 5.1 compares the resource utilization of the synchronous, asynchronous

(CDC) and pseudo-asynchronous (pseudo-CDC) FIFO designs presented in this
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Figure 5.14: Pseudo-CDC FIFO design in LIDE-V.

chapter, and the synchronous FIFO we presented in [47]. The data is extracted

from the post-implementation reports of the four FIFOs, all with the capacity being

768 and bit-width being 64.

Table 5.1: Resource utilization of the implemented FIFOs.

FIFO Type LUTs REGs BRAMs
FIFO Synch. 73 22 2
CDC FIFO Asynch. 199 88 2
Pseudo-CDC FIFO Pseudo-Asynch. 73 22 2
[47] FIFO Synch. 90 105 2

As we can see from Table 5.1, the CDC FIFO requires the most resources

compared to the other FIFO designs. This is due to the additional synchronization

and gray coding circuits in the CDC FIFO. Additionally, the pseudo-CDC FIFO has

the same resource utilization as the synchronous FIFO, but is adapted to support

clock gating in synchronous designs.

Through the comparisons between the synchronous FIFOs that are developed

in this chapter and in [47], we conclude that the former requires less resources than
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the latter. This is because in the latter design, the population and free\_space

signals are two counters that are updated after every read/write operation, while in

the former design, these signals are calculated as offsets between the write and read

pointers by means of a combinational circuit. Additionally, the bypass circuit has

been removed in the former FIFO design.

The orthogonality (separation of concerns) among actor, edge, and sched-

uler design in LIDE-V lays a valuable foundation for rigorous integration of power-

management within the associated APIs. In particular, we demonstrated in [47]

and [46] that methods for asynchronous design, Globally Asynchronous Locally Syn-

chronous (GALS) design, and clock gating can be applied efficiently through natural

extensions of the LIDE-V APIs. We also demonstrated the use of these extensions

to power optimization.

To manage complexity and improve reuse of subsystems within and across

designs, one can encapsulate subgraphs in LIDE-V within hierarchical actors (HAs).

An HA in LIDE-V appears from the outside as a regular (non-hierarchical) LIDE-V

actor with an associated AEM, AIM, and ASM. Execution of an HA as an actor

in the enclosing dataflow graph is coordinated by the external scheduler associated

with the HA. When an HA is fired by its external scheduler, the internal scheduler

of the HA coordinates the firings of actors that are encapsulated within the HA

(nested actors). The internal scheduler carries out the set of nested actor firings

that must be completed for a given firing of the HA. An example of an HA with

internal and external schedulers is discussed in detail and illustrated in Figure 5.18.

Since it appears from the outside as a regular actor, an HA can be clock gated

111



in exactly the same way, allowing the designer to efficiently switch off the whole

subgraph at appropriate times during operation.

5.4 Case Study: A Deep Neural Network for Vehicle Classification

As a concrete demonstration of STMCM, we adopt a DNN use-case for au-

tomatic discrimination among four types of vehicles — bus, car, truck, and van.

This implementation is based on a neural network design presented in [72], where

a network configuration — i.e., the number and types of layers and other DNN

hyperparameters — was carefully derived and demonstrated to have very high ac-

curacy. The accuracy of the methods is validated with a database of over 6500

images, and the resulting prediction accuracy is over 97%. The work in this chapter

and the work in [72] have different focuses. This prior work focused on deriving

hyperparameters, network design, and demonstrating network accuracy, and did

not address aspects of resource-constrained implementation or hardware/software

co-design. In this chapter, we go beyond the developments of [72] by investigat-

ing resource constrained implementation on a relevant SoC platform, and optimized

hardware/software co-design involving an embedded multicore processor and FPGA

acceleration fabric that are integrated on the platform. In [72], the proposed DNN

architectures are evaluated based on the classification accuracy, while in our work,

the objectives that we are trying to optimize are system throughput, memory foot-

prints and power efficiency. In addition, this work could be generalized to the design

and implementation of any DNN architectures and the work in [72] is selected as a
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case study to demonstrate the usage of the methodology proposed in this work. In

relation to Figure 5.1, we apply the results from [72] in the block labeled “deriva-

tion of hyperparameters and DNN design” as part of the design methodology that

is demonstrated in this chapter.
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Figure 5.15: DNN for automatic discrimination of four types of vehicles.

The DNN network design that we implement in this work is composed of

two convolutional layers, two dense layers and one classifier layer, as depicted in

Figure 5.15. The first convolutional layer takes an RGB image (3 × 96 × 96) as

input, and produces 32 feature maps, each with dimensions (48 × 48). The second
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convolutional layer takes these 32 feature maps as input and produces 32 smaller

feature maps, each having dimensions (24 × 24). We refer to a subsystem that

processes multiple input images to produce a single feature map as a branch. Thus,

the first and second convolutional layers have 32 branches each. The two dense

layers combine to transform the feature maps into a (1 × 100) vector, which is

then multiplied in the classifier layer by a (100 × 4) matrix to determine the (1 ×

4) classification result. Each of the four values in the result corresponds to the

likelihood that the vehicle in the input image belongs to one of the four vehicle

types (i.e., bus, car, truck and van).

The studied use case is relatively easy to solve compared to common image

recognition benchmarks, such as MSCOCO [73], or ImageNet [74]. Therefore, one

can reach high accuracy with a relatively simple network requiring significantly

lower resources than common network topologies intended for mobile use (such as

Mobilenets). As such, the focus of our work is not in mobile devices (e.g., smart-

phones), but in simpler IoT devices targeted to solving less complex machine learning

problems at low cost. For further details on the DNN network design and hyperpa-

rameter specifications, we refer the reader to [72].

The specific platform and associated platform-based tools that we employ are

based on the Xilinx Zynq Z-7020 SoC. The remainder of this Section focuses on

details associated with STMCM and its associated design processes. These details

are presented concretely through the development of this DNN case study.
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5.4.1 Software Implementation and Optimization

In this section, we discuss dataflow-graph- and actor-level optimizations and

associated design iterations, as illustrated in Figure 5.1 by the blocks labeled Dataflow

Representation, LIDE-C Implementation, and Optimized LIDE-C Implementation.

We start with a dataflow graph implementation that is derived using LIDE-C [22,

67], which provides a C-language implementation of the LWDF APIs so that CFDF-

based actors and dataflow graphs can be implemented in a structured manner using

C. The initial (sequential) LIDE-C design is developed in a design phase that cor-

responds to the block labeled LIDE-C Implementation in Figure 5.1.

After validating the correct, dataflow-based operation of the initial DNN dataflow

graph implementation in LIDE-C, we experiment with various transformations at

the actor, subgraph, and dataflow graph levels. Here, we exploit the orthogonality of

actor, edge, and graph implementation in LIDE-C, which allows designers to flexibly

and efficiently perform experimentation with a wide variety of transformations, and

with different combinations of applied transformations. The actor-level transforma-

tions performed here are focused on optimization methods applied to the convolution

actor, which is a major performance bottleneck in the design. The subgraph-level

transformations involve memory management optimizations performed on FIFOs

both inside each subgraph (DNN layer) and between pairs of adjacent layers.
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5.4.1.1 Actor-Level Optimization

We demonstrate actor-level optimization at this stage of the design process

using the convolution actor in our DNN example. In our LIDE-C implementation

of this actor, we apply a transformation of the convolution computation that is

commonly used to simplify the design, and improve classification speed. The trans-

formation involves loop tiling to reduce the cache miss rate. The utility of loop tiling

in DNN implementation has been demonstrated previously, for example, in [75]. Us-

ing loop tiling, we decompose the main loop of the convolution computation into an

inner loop that iterates within contiguous “strips” of data, and an outer loop that

iterates across strips. Applying loop tiling in this way allows one to enhance cache

reuse based on an array size (strip length) that fits within the cache.

Figure 5.16 shows a segment of code from our application of the tiling trans-

formation to the convolution actor.

Figure 5.16: The code segment that implements loop tiling within the LIDE-C actor
for convolution.

Through the orthogonality provided by the model-based design rules in LIDE-

C, this transformation can be applied at a late stage in our design process, in a

way that is interoperable with previously applied transformations, and in a way
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that requires no modifications to other actor or edge implementations. In this case,

no modification is needed to the dataflow graph scheduler implementation as well,

although for some transformations, scheduler adjustments can be useful to integrate

transformed actors into the overall system in an optimized way. The CFDF-based

APIs (enable and invoke functions) in LIDE-C for scheduler implementation allow

the designer to experiment efficiently with such scheduling adjustments as needed.

5.4.1.2 Buffer Memory Management

A major challenge in resource-constrained implementation of a DNN archi-

tecture is managing the large volume of data transfers that are carried out during

network operation. Each DNN layer typically processes a large amount of data, and

requires memory to store the input data from the previous layer or subsystem, the

intermediate data during the computation processing, and the computation results

that will be transmitted to the following layer or subsystem.

Consider, for example, the buffer memory costs (the storage costs associated

with the dataflow graph edges) for the DNN of Figure 5.15. In our LIDE-C imple-

mentation, the second convolutional layer requires the most buffer memory. In this

layer, each of the 32 branches is composed of 32 convolution actors, 31 addition ac-

tors and one actor performing both maxpooling and ReLU (Rectified Linear Unit).

Given that the size of the input feature map processed by each branch is 48 × 48

pixels, the buffer memory required for actor communication inside each branch is

image size × (number of conv actors + number of output feature maps),
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which is 48 × 48 × (32 + 1) = 76,032 pixels. Thus, the total buffer memory inside

the second convolutional layer is 76,032 × 32 = 2,433,024 pixels. The buffer mem-

ory required for data communication between the first and the second layer can be

computed as 48× 48× 32 = 73,728 pixels.

In STMCM, we apply a buffer memory optimization technique that is use-

ful for resource-constrained DNN implementation. In particular, we incorporate

a new FIFO abstract data type (ADT) implementation in LIDE-C, called shared

FIFO, that enables multiple dataflow edges in a graph to be implemented through

FIFO ADT instances that share the same region of memory. Such buffer sharing

in dataflow implementations has been investigated in different forms for various

contexts of automated scheduling and software synthesis (e.g., see [76, 77, 78]). In

STMCM, we make it easy for the system designer to apply buffer sharing explic-

itly within her or his implementation rather than depending on its implicit support

through the toolset that is used. This is an example of the agility that is supported

in STMCM, as described at the end of Section 5.2.

Again, by exploiting the orthogonality among dataflow components, buffer

sharing in STMCM is performed only on the targeted dataflow edges and requires no

modification to other actors or subgraphs. Through the support for such separation

of concerns in LIDE-C, different ADT implementations for a FIFO or group of

FIFOs can be interchanged without affecting overall system functionality.

There are three key aspects to our application of shared FIFOs in our LIDE-C

DNN implementation. First, at the input of each convolutional layer L, input data

from the previous layer is stored centrally instead of being copied separately into
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each branch of L. Second, edges in different layers share the same memory so that

the memory is time-division multiplexed between the layers — the processing of

a given layer overwrites memory in its shared FIFOs without introducing conflicts

that affect the computation results. Third, actors operate on data from shared

input FIFOs directly through their read pointers into the FIFO (rather than first

copying the data locally within the actor’s internal memory). This kind of copy-

elimination is similar to dataflow memory management techniques introduced by

Oh and Ha [77].

Improvements resulting from our application of shared FIFOs are demon-

strated quantitatively in Section 5.5.1.

5.4.1.3 Software Profiling

In this subsection, we demonstrate the process of software profiling, as illus-

trated in Figure 5.1, in the context of our optimized LIDE-C implementation of

the DNN architecture. The implementation platform is an Intel i7-2600K running

at 3.4GHz. Table 5.2 and Table 5.3 show layer- and actor-level software profiling

measurements, respectively.

Table 5.2: Layer-level software profiling. Here, the row labeled “T” gives the execu-
tion time of each layer, and the row labeled “T%” gives the percentage of the total
DNN execution time that is attributed to each layer.

Layer Total
1 2 3 4 5

T [ms] 18.71 22.08 0.0149 0.0034 0.0036 40.812
T% 45.84 54.10 0.04 0.01 0.01 100

In Table 5.3, Tic denotes the invoke to firing completion time of a given actor.
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Table 5.3: Actor-level software profiling.

Layer Convolution Layer 1 Convolution Layer 2
Actor Conv Add M&ReLU Conv Add M&ReLU
Tic [µs] 230.10 0.03 0.025 59.77 0.005 0.006

Layer Dense Layer 3 Dense Layer 4 Output Layer 5
Actor Mult ReLU Mult ReLU Mult Softmax
Tic [µs] 5.1 0.0012 0.029 0.0012 0.0023 0.0031

This is the average time that elapses between the time that an actor firing is initiated

and when the firing completes. We also refer to Tic as the average execution time

of the associated actor. The abbreviations Add, Conv, Mult, and M&ReLU stand,

respectively, for Addition, Convolution, Multiplication, and Maxpool-and-ReLU.

Layer- and actor-level software profiling provide insight into the processing

complexity of actors in each layer. According to Table 5.2, the convolutional layers

account for 99.94% of the system execution time. Also, the execution time of Layer

2 is very close to that of Layer 1. In both convolutional layers, the Conv actors

account for most of the processing time compared with the other two actors — Add

and M&ReLU — in the convolutional layers. Additionally, the average execution

time of the Conv actors in Layer 2 is only about a quarter of that of the Conv actors

in Layer 1. This is primarily because each of the Conv actors in Layer 1 processes

input images of size 96× 96, while the Conv actors in Layer 2 process input feature

maps that have size 48× 48.

5.4.2 Hardware Implementation and Design Exploration

In this section, we describe the main capabilities of the design flow depicted

in Figure 5.1 with respect to design and implementation of hardware accelerators.
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These capabilities are represented by the blocks in the region labeled “Hardware-

related Process”.

For example, through a preliminary hardware profiling phase of the DNN ap-

plication described in Section 5.4.2.1, we can identify three hardware design aspects

that are interesting to investigate in detail — the adoption of clock gating tech-

niques, exploitation of asynchrony that is inherent in dataflows, and exploration of

different levels of actor granularity.

We demonstrate the hardware-related design process of STMCM using a hard-

ware accelerator that is introduced in [46]. The accelerator provides a subsystem

for producing feature maps from the first convolutional layer of the DNN applica-

tion. In the remainder of this chapter, we refer to this subsystem as the Subtree for

Feature Map (SFM).

Due to the interfacing consistency that is maintained across LIDE actor imple-

mentations in different languages, one can readily convert the LIDE-C based SMF

subsystem implementation into hardware by replacing each software actor with a

hardware module that is designed in LIDE-V, and by connecting the derived hard-

ware actors with LIDE-V FIFOs. Following the general approach of realizing LIDE

actors in hardware, each LIDE-V actor implementation is decomposed into an AEM

and AIM. The AEM is reusable among different actors in our implementation, al-

though in general it can be useful to have specialized AEM implementations that

are streamlined for the specific requirements of individual actors [46].

The hardware implementation diverges from the LIDE-C design in two major

ways. First, we feed the input data in an interleaved format, reducing the complexity
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of the hardware interface and driver software since there is only one input FIFO to

manage. Second, the hardware actors are designed to produce one row per firing

instead of entire images. This reduces the FIFO size requirements in the first layer

from 96 × 96 pixels to only 96 pixels. The hardware actors in our implementation

are scheduled using a fully distributed approach.

The resulting SMF is shown in Figure 5.17. The implemented hardware is

verified against reference outputs extracted from the LIDE-C implementation. In

this Figure, production and consumption rates (dataflow rates) are annotated next

to actor ports, and w is the input image width. The convolution actor has multiple

operating modes (CFDF modes) with different consumption rates.

Region 1 Region 2 Region 1

ReLU

Figure 5.17: LIDE-V implementation for the accelerated SFM.

5.4.2.1 Hardware Profiling

We employ hardware profiling in STMCM to extract execution time data,

which is later used to guide the process of iterative design optimization. In this

section, we demonstrate hardware profiling in the context of our DNN application.

Profiling is performed using the target platform, which in our demonstration is the

Zynq Z-7020 SoC. We profile the LIDE-C implementation on the ARM A9 MPCores

provided by the target platform and develop a first version implementation of the
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SFM on this platform and extract execution time data from this implementation.

Table 5.4 depicts various data associated with execution times and waiting

times for the SFM hardware accelerator illustrated in Figure 5.17. Here, the symbol

ttot represents the total time necessary to execute the SFM ; Tic is the average time

period between an actor invocation and its corresponding firing completion; Tci is

the average time period that an actor has to wait to be fired after its previous firing

completion; firings is the number of firings of a given actor during execution of

SFM ; Tot , calculated as (Tic) × (firings), gives the total execution time of a given

actor during the execution of SFM ; Tii = (Tic +Tci) denotes the average time period

between the beginning of one invocation to the beginning of the next; and the ratio

Tii/Tic measures the extent of actor idleness.

This rich collection of metrics, which is supported by the underlying CFDF

model computation, provides various insights on the dataflow-based system archi-

tecture and its implementation. For example, the Tii/Tic ratio provides insight on

differences in processing speed that are useful in exploiting the inherent asynchrony

between dataflow actors.

Table 5.4: Measured data associated with actor execution times and waiting (idle)
times.

SFM ttot 232,831
Tic Tci firings Tot (Tot%) Tii/Tic

Deinterleave 3 2 9216 27,648 (11.87) 1.67
Convolution 2402 2 96 230,592 (99.04) 1.00
Sum 107 2297 96 10,272 (4.41) 22.46
Maxpool&ReLU 195 4613 48 9360 (4.02) 24.66

From analysis of our hardware profiling results (Table 5.4), we can derive

different versions of the SFM hardware accelerator with different trade-offs among

123



power consumption, system throughput, and hardware resource cost. Firstly, look-

ing at column Tot%, we see that all of the actors except for Convolution are inactive

throughout most of the execution time. The maximum proportion of active time

among these actors is 11.87%, reached by Deinterleave. Gating the clock of these

frequently inactive actors can provide more energy efficient accelerator operation by

eliminating dynamic power consumption during idle phases.

Furthermore, the Deinterleave and Convolution actors have relatively small

idleness levels (Tii/Tic), with a waiting time Tci equal to 2 clock cycles for both of

them. On the other hand, Sum and Maxpool&ReLU exhibit much larger waiting

times and idleness levels. An important hint coming from the Tci values is that,

thanks to the inherent asynchrony of dataflow actors, it is possible to partition the

design into different clock regions working at different frequencies, thus obtaining a

GALS design. In particular, the Deinterleave and Convolution actors can be placed

in one clock region (Region 1), driven by clock 1, while Sum and Maxpool&ReLU

can be placed in another region (Region 2), driven by clock 2. On the basis of the

measured Tii/Tic values, we can set clock 2 to be 20 times slower than clock 1.

Moreover, the subgraph included in Region 2 can be encapsulated into a hi-

erarchical actor (see Section 5.3.4). This actor, seen from the “outside”, is like any

other LIDE-V actor. The actor and its encapsulated subsystem can be clock gated

or clocked with a different frequency, providing additional candidate solutions for

SFM accelerator optimization.
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5.4.2.2 SFM Exploration

Based on the hardware profiling analysis discussed in Section 5.4.2.1, we ex-

plored six different variants of the SFM design:

• SFM a: This is an asynchronous design where actors belonging to different logic

regions run at different clock frequencies. In particular, the clock frequency for

clock 1 is set to 100 MHz, and the clock frequency for clock 2 is set to 5 MHz.

Referring to Figure 5.17, the only modification required in the design is the re-

placement of FIFOs that are placed between the two clock regions. These FIFOs

need to be replaced with asynchronous FIFOs — for this purpose, we employ

the clock domain crossing (CDC) FIFOs presented in [46]. CDC FIFOs are de-

signed with read and write logic that can be driven by different clocks. At the

same time, their module interfaces conform to standard LIDE-V edge interfaces

so they can replace other FIFO implementations without requiring changes to

actors that communicate with them.

• SFM CG : Based on our hardware profiling results, we apply clock gating to the

Deinterleave, Sum and Maxpool&ReLU actors. To be clock gated, a LIDE-V

actor needs only the instantiation of a clock gating module (CGM) [46]. The CGM

involves a BUFG primitive that physically enables/disables the clock signal in the

target SoC. Thus for each clock gated actor A in SFM CG , a CGM is instantiated

and connected to the clock inputs of A and to the read- and write-clock inputs,

respectively, of the FIFOs that A reads from and writes to.

• SFM aCG : This design incorporates both asynchronous design and clock gating
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techniques. As in SFM a, the FIFOs between the two clock regions are replaced

with CDC FIFOs. Additionally, the Deinterleave, Sum and Maxpool&ReLU ac-

tors are clock gated as in SFM CG , and a CGM is instantiated for each of these

actors.

• SFM h: This is a hierarchical SFM design, which can be viewed as a baseline

for evaluating our enhanced hierarchical design SFM hCG (defined below). In

SFM h, Region 2 (see Figure 5.17) is encapsulated in a hierarchical actor H. An

illustration of this hierarchical actor is provided in Figure 5.18. The subgraph that

is encapsulated byH contains three actors A1, A2 and B. We denote this subgraph

by GH . Actors A1 and A2 correspond to Sum 1 and Sum 2, respectively, which

are two actors that add outputs from the three convolution actors. Actor B

corresponds to the Maxpool&ReLU actor.

When H is viewed as a single actor from the outside, a firing of H starts when

the internal scheduler I ASM HA for GH receives the invoke HA signal from the

external scheduler E ASM HA. Inside the subgraph GH , the invoke HA signal is

received by ASM A1, which is the ASM of actor A1. Once ASM A1 receives the

invoke HA signal, the firing of the subgraph GH starts.

• SFM hCG : This design is the same as SFM h, except that the Deinterleave actor

and the hierarchical actor are clock gated. It is important to highlight that the

application of clock gating at the region level is advantageous if the execution

times of the actors within the region are overlapped. In this design, however,

the execution times of the three actors are not overlapped. When one actor

is executed, the others wait in an idle state and waste power. Therefore, we
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Figure 5.18: An illustration of the hierarchical actor associated with Design SFM h.

expect that this configuration would not be really effective in reducing power

consumption as SFM CG in the targeted DNN case. However, we include the

test in our explorations to present the complete wide variety of options made

available by STMCM (even if some of them may be less efficient than others for

this particular application scenario).

• SFM auto : This is a version of the SFM that is synthesized and implemented by

enabling the automatic power optimization available within the adopted Xilinx

Vivado environment. This design applies fine-grain clock-gating and fine-grain

logic-gating at the Verilog level and excludes all of the higher-level, dataflow-

based optimizations (coarse-grain asynchronous design, clock-gating, and hier-

archical decomposition) that are applied in the other five investigated designs.

Thus, SFM auto is useful as a common baseline to assess the higher-level mod-

els and transformations provided by STMCM compared to existing off-the-shelf
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synthesis techniques.

5.4.3 Joint Hardware/Software Implementation and Optimization

This section shows how the proposed design flow (summarized in Figure 5.1)

provides a variety of interesting hardware/software co-design implementation choices

and optimization possibilities. In particular, these features are represented by the

“Co-design-related Process” area of Figure 5.1. For a given high-level LWDF model,

the interaction between software (see Section 5.4.1) and hardware (see Section 5.4.2)

actors or subgraphs can be shaped and refined depending on the specific constraints

and requirements of the application.

In particular, we demonstrate two main implementation aspects that can be ef-

ficiently explored with STMCM: parallelism across actor execution, and the adopted

communication interfaces. The degree of parallelism can be tuned depending on the

number of software and/or hardware cores adopted for the execution of a certain

computational step, while different communication interfaces allow different levels

of coupling between hardware and software actors. Both of these dimensions for

exploration therefore represent important sources of trade-offs to consider during

the implementation process.

For the purpose of our co-design explorations, the DNN application has been

split into two parts to be executed respectively in software (PS) and hardware (PL).

Here, PS and PL stand for Processing System and Programmable Logic, respectively.

In our experiments, we consider the SFM subsystem introduced in Section 5.4.2

128



as the portion of DNN application that will be accelerated in the PL, while the

remaining part, involving the second convolutional layer, two dense layers and final

classification layer, will be executed by the PS.

Note that the first convolutional layer constitutes only one of the main com-

putationally intensive steps of the DNN application. According to software profiling

results that are based on the SoC platform that we applied for hardware/software

co-design (see Table 5.9), the first convolutional layer only accounts for about 27% of

the prediction time. For this reason, the speedup brought by hardware acceleration

to the overall DNN application is not dramatic, as will be discussed further in Sec-

tion 5.5. However, the results concretely demonstrate how STMCM can be applied

to perform extensive design space exploration across a variety of diverse designs

to achieve system performance enhancement under highly-constrained hardware re-

source availability.

The SFM accelerator has been integrated into the LIDE-C design presented

in Section 5.4.1 by replacing the SFM software implementation with function calls

to driver software that is capable of offloading the computation to the PL. We have

experimented with using a Linux kernel driver based on the Userspace I/O (UIO)

framework [79], and a driver that is independent of the Linux kernel and operates

by directly accessing memory with the mmap system call. The UIO approach is

more suitable for production use, while mmap works well for prototyping, and this

latter approach has been used in this work for evaluation. The PS and PL can

communicate by means of AXI interfaces exploiting General Purpose (GP) ports;

32-bit width PS master or slave ports with 600 Mbps bandwidth for both read
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and write channels; High Performance (HP) ports or Accelerator Coherency Ports

(ACP); and 64-bit width PS slave ports with 1200 Mbps bandwidth for both read

and write channels.

Figure 5.19 depicts the reference configuration for the co-design explorations.

In order to integrate the accelerator into the SoC, a generic AXI wrapper for hard-

ware dataflow subgraphs has to be provided. The wrapper is compliant with the

adopted AXI interface and lets the programmer access the input and output FIFOs

of the dataflow graph and monitor their populations. For this purpose, the wrapper

includes all the necessary logic for the communication management.

In our hardware acceleration approach, we map the SFM subsystem to hard-

ware. This subsystem produces a 48x48 feature map on each execution. Thus, in

order to perform the entire first convolution layer of the DNN application, which

must produce 32 48x48 feature maps, the SFM accelerator has to be executed 32

times with the appropriate convolution coefficients. For each of these SFM execu-

tions, the PS will send the corresponding convolution coefficients to the accelerator.

The input image, which remains the same across all 32 executions, is sent only once

from the PS and stored within a local buffer within the accelerator. All 32 exe-

cutions of the SFM access the input image from this local buffer. In this way, we

avoid the large amount of data transfer that would be required if the input image

had to be sent separately from the PS to the PL for each SFM execution. Upon

completion of each SFM execution, the PS retrieves the resulting feature map from

the accelerator.

In the remainder of this section, we discuss in detail three different sets of
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Figure 5.19: Reference configuration for hardware/software co-design exploration in
our experiments.

co-design implementations and optimizations that are facilitated by STMCM:

• the amount of parallelism that is exploited in the software and hardware subsys-

tems;

• two alternative communication interfaces that offer different trade-offs in terms

of resource requirements and execution speed; and

• local buffering to avoid redundant transmission of common data across different

branches of the SFM accelerator.

These three sets of co-design explorations are discussed further in Section 5.4.3.1,

Section 5.4.3.2, and Section 5.4.3.3, respectively.
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5.4.3.1 Exploiting Parallelism

STMCM allows the designer to experiment efficiently with the amounts of

parallelism that are exploited in both the hardware and software subsystems (see the

dashed squares in Figure 5.19). In particular, depending on the specific application

requirements, multiple parallel instances of software cores or hardware accelerators

can be utilized. While software cores are able to execute all DNN application steps,

hardware accelerators can only perform the steps that they have been conceived for.

Generally speaking, hardware accelerators achieve higher efficiency than software

cores when executing a given computational step, both in terms of execution time

and resource efficiency (resource utilization and consumption).

In the targeted Xilinx Zynq Z-7020 SoC platform, a pair of homogeneous cores

is available, so that the maximum degree of software parallelism in our implemen-

tations is 2. The available cores are both ARM A9 MPCores with two levels of

cache and access to a 512 Mb off-chip DDR RAM. In our experiments, we have

exploited software parallelism for the two most computationally intensive steps of

the application — the two convolutional layers.

When using FPGA fabric, designers have the possibility to utilize as much

parallelism as the FPGA resources allow. In this work, we have investigated three

alternative designs that utilize 1, 2 or 4 parallel SFM instances, respectively, in

the same hardware accelerator. In the first case, the accelerator is executed 32

times in order to complete the 32 branches of the first convolutional layer. This

design executes a different branch with different convolution coefficients for each

132



accelerator invocation. In the second case (2 parallel SFM instances), the accelerator

execution time is halved, but for each run, two new sets of convolution coefficients

are necessary. Finally, with 4 parallel SFM instances, only 8 accelerator executions

are needed, with each requiring the updating of four different sets of coefficients.

5.4.3.2 Communication Interfaces

During the process of co-design exploration, STMCM gives the designer sig-

nificant flexibility to select interfaces for communicating data between the hardware

and software subsystems. This flexibility is provided by the general dataflow model

of computation that underlies STMCM. Flexibility in selecting a communication

interface can be very useful in the context of resource- or performance-constrained

design. This is demonstrated, for example, by the work of Silva et al., which analyzes

trade-offs among the different AXI interface options [80].

We investigated the usage of two different AXI communication interfaces lo-

cated at the extremes of the resource-versus-performance trade-off:

• the memory-mapped AXI4-lite (mm-lite) interface; and

• FIFO-based AXI4-stream (stream) interface.

Compared to the stream interface, the mm-lite interface has lower resource

requirements, but it also exhibits lower performance. The mm-lite interface uses

memory-mapped, one-by-one transfer of data items. The interface is particularly

intended for control signals and small-scale data accesses. It does not need any

additional modules beyond those depicted in Figure 5.19, and it uses only one of
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the PS master GP ports. For example, the execution of one branch of the first

layer requires the input images (3 RGB images with 96× 96 pixels each) and kernel

coefficients (3 kernels with 5 × 5 coefficients each). Since the mm-lite interface

uses a separate data transfer operation for each pixel, this results in a total of

3 × 96 × 96 + 3 × 5 × 5 data transfer operations. Once the accelerator completes

its computation, the mm-lite interface requires 48 × 48 data transfer operations to

enable the processor to read the output feature map.

Unlike the mm-lite interface, which performs data transfers one-by-one, the

stream interface employs a DMA engine that transfers data between processor mem-

ory and the accelerator in blocks, where the block size can be up to 256 bytes. Suc-

cessive data items within a block are transferred in consecutive clock cycles. The

stream interface requires a DMA engine, as mentioned above, and additional FIFO

buffers, and therefore incurs significant overhead in terms of resource requirements.

Note that the additional hardware required by the stream interface is not depicted

in Figure 5.19. The DMA engine is configured through one of the PS master GP

ports, and requires two different PS slave HP ports to directly access the memory

where data to be transferred to/from the accelerator is stored.

To execute one branch of the first DNN layer, the stream interface performs

(a) 96 memory-to-accelerator DMA operations to send the input images, with 96×3

pixels for each DMA operation, and (b) one memory-to-accelerator DMA operation

to send 5 × 5 × 3 kernel coefficients. Additionally, the stream interface needs 48

accelerator-to-memory DMA operations to retrieve the computed feature map, with

48 pixels for each DMA operation.
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5.4.3.3 Local Buffering

As mentioned previously, we incorporate local buffering of image pixels in the

SFM accelerator to avoid redundant transmission of common data across different

branches of the accelerator. This local buffering optimization is applied to both the

mm-lite-interface- and stream-interface-based accelerator implementations.

For an accelerator configuration with a single SFM instance, the input image

data is transferred to the accelerator only during execution of the first branch.

After being transferred, this data is retained in a local buffer within the accelerator

for reuse by the remaining 31 executions. For accelerator configurations that have

multiple (parallel) SFM instances, the input image is also transferred only once to

the accelerator. For these configurations, the image data is reused by the remaining

executions of all of the SFM instances. Thus, our incorporation of local buffering

optimization eliminates input image data transfers for all branches except the first

one.

5.5 Results

In this section, we present experimental results to demonstrate the design and

implementation methods provided by STMCM based on the detailed case study

presented in Section 5.4. The main contribution of this section is to demonstrate

that the proposed methodology facilitates efficient experimentation with alterna-

tive dataflow-based architectures, design optimization methods, and implementation

trade-offs.
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5.5.1 Embedded Software Implementation

In this section we present results of our experimentation using STMCM to

explore alternative embedded software implementations. We focus specifically on

the optimized application of loop tiling and buffer memory management.

5.5.1.1 Loop Tiling

As introduced in Section 5.4.1.1, in the optimization of our LIDE-C imple-

mentation of the DNN application, we explored loop-tiled convolution actor designs

with different tile sizes. Specifically, we measured the number of cache load misses

and the cache load miss rates during execution of a convolution actor. The valid

tile sizes for each convolution actor were those within the range of 1 to D, where

D is the dimension of input images to the actor. For example, for the convolution

actors in Layer 1, which process input images with size 96× 96 pixels, we explored

tile sizes within the range of 1–96.

Figure 5.20 shows the number of cache load misses and cache load miss rate

under different tile sizes for convolution actors with different input image dimensions

(48× 48, 96× 96, 750× 750, and 1500× 1500). As we can see from the results, the

cache load miss rates are very small for image dimensions D ∈ {48, 96, 750}. This

indicates that the data can be fully stored or almost fully stored in the cache with

any valid tile size.

For D = 1500, however, there is significant variation in the cache load miss

rate across different tile sizes. The rate reaches its lowest value when the tile size
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Figure 5.20: Performance evaluation of convolution actors with different image di-
mensions: (a) 48× 48, (b) 96× 96, (c) 750× 750, (d) 1500× 1500.

is approximately 400. With careful setting of the tile size, loop tiling significantly

reduces the cache miss rate for convolution actors that have relatively large image

dimensions.

Additionally, we can see that there is a large average CPU cycle count for
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small tile sizes in all figures. We expect that this is due to the overhead caused by

the additional for loops that are introduced by the loop tiling transformation.

In summary, based on our simulation analysis for small image dimensions

(96× 96 and 48× 48), loop tiling does not help to reduce the cache miss rate on the

target platform, and furthermore, it introduces overhead due to the additional for

loops. Thus, loop tiling should not be applied to this DNN application for low image

dimensions. However, our experiments also show that for larger image dimensions,

loop tiling does help to improve the efficiency by reducing the cache load miss rate.

5.5.1.2 Buffer Memory Management

Figure 5.21 shows the amount of memory required for data storage in each

DNN layer. We report memory requirements in this section in terms of pixels. In our

experiments, we used a 4-byte floating point data type for each pixel. Figure 5.21

also shows the amount of data communication that is needed between adjacent

layers, and the amount of memory that must be active simultaneously during the

computation associated with each layer. The memory needed for input is calculated

as input image size × number of input images . The memory needed for execution

of each layer is calculated as input image size × (number of input images + 1) ×

number of output feature maps .

As we can see from Figure 5.21, the processing in Layer 2 requires the largest

amount of active memory, and a minimum of 2,525,184 pixels must be allocated

for buffer storage. The memory size can be optimized subject to this constraint
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Figure 5.21: Buffer memory and communication requirements in the DNN architec-
ture.

through the application of shared FIFOs, which were introduced in Section 5.4.1.2.

The buffer memory allocation that we propose for this DNN application based on

shared FIFOs is illustrated in Figure 5.22.
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Figure 5.22: Buffer memory allocation for the DNN application.

Table 5.5 summarizes the memory requirements for dataflow edges (FIFO

buffers) and actors in the two convolutional layers, which require most of the memory

among the five layers. These memory requirements are shown both with and without

the use of shared FIFOs. As discussed in Section 5.4.1.2, actors operate on data
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from shared input FIFOs directly without copying data to its internal memory.

Thus, convolution actors only need memory for its intermediate computation results.

Add and Maxpool&ReLU actors do not require additional memory. The results

presented in this table quantitatively demonstrate the utility of shared FIFOs for

this application. In particular, the application of shared FIFOs reduces the memory

requirements by 65%.

Table 5.5: Memory requirements (in pixels) for the first two layers. In bracket in
the last column: the percentage of memory requirement of DNN with shared FIFOs
with respect to that of DNN with common FIFOs.

FIFOs
Convolutional Layer 1 Convolutional Layer 2

Total
Conv. Add Maxpool&ReLU Conv. Add Maxpool&ReLU

Common FIFOs 6875136 1806720 1179648 368640 5128192 2433024 92160 17883520
Shared FIFOs 2525184 921984 0 0 2768896 0 0 6216064 (34.8)

5.5.2 Hardware Implementation

In this section, we investigate trade-offs among the variants of the SFM de-

sign that were introduced in Section 5.4.2.2. STMCM and the underlying LIDE-V

approach allow one to perform such trade-off exploration, based on different com-

binations of high-level optimization techniques, in a systematic manner. In partic-

ular, STMCM allows the designer to focus on different strategies for instantiating,

configuring, and coordinating different combinations of actor and buffer (edge) im-

plementations, and eliminates the need for modification inside the actor and edge

implementations. We exploited these advantages of STMCM when deriving the

results presented in this section.

Table 5.6 depicts resource utilization data that is extracted from the post-

place and route reports generated by the Xilinx Vivado tool using the targeted
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Zynq Z-7020 SoC. From the results in Table 5.6, we see that the different design

variants all exhibit similar levels of resource cost. The asynchronous designs SFM a

and SFM aCG incur the highest resource costs due to the additional logic required

by the CDC FIFOs. The number of BUFGs varies significantly among the different

designs, depending on the number of clock domains and the number of clock gated

actors.

Table 5.6: Resource utilization. In parentheses: the percentage of utilization with
respect to the resources available on the targeted FPGA.

LUTs REGs BUFGs BRAMs DSPs
Available 53200 106400 32 140 220
SFM 5188 (9.75) 3472 (3.26) 1 (3.1) 11 (7.9) 13 (5.9)
SFM a 5430 (10.20) 3687 (3.47) 2 (6.3) 11 (7.9) 13 (5.9)
SFMCG 5206 (9.79) 3496 (3.29) 5 (15.6) 11 (7.9) 13 (5.9)
SFM aCG 5479 (10.30) 3704 (3.48) 6 (18.8) 11 (7.9) 13 (5.9)
SFM h 5170 (9.72) 3472 (3.26) 1 (3.1) 11 (7.9) 13 (5.9)
SFM hCG 5198 (9.77) 3480 (3.27) 3 (9.4) 11 (7.9) 13 (5.9)
SFM auto 5230 (9.83) 3472 (3.26) 1 (3.1) 11 (7.9) 13 (5.9)

Each of the implemented designs has been simulated in order to generate a

switching activity file, which has been back-annotated to Vivado Power Estimation

to extract power consumption data. Since the designs have different execution

times, the energy consumption levels do not vary in the same proportions as the

power consumption levels. Table 5.7 summarizes the power consumption, execution

time and energy consumption of the six alternative designs.

In these experiments, the clock frequencies of the synchronous designs and of

Region 1 (CLK 1) in the asynchronous designs are all set to 100 MHz, which is the

maximum achievable frequency for the targeted platform. For Region 2 (CLK 2) in

the asynchronous designs, the frequency is set to 5 MHz. This setting of 5 MHz is

derived from the hardware profiling data (see Table 5.4) as 1/20 of CLK 1. These
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clock frequencies are specified in Table 5.7 with the suffix F, where F represents

the frequency value in MHz.

Table 5.7: Dynamic power consumption, execution time and energy consumption of
the different SFM variants. In parentheses: the percentage difference with respect
to the baseline SFM .

Power [mW ] Time [ns] Energy [µJ ]
SFM 115 2329165 268
SFM a 5 89 (-22.61) 2407300 (+3.354) 214 (-20.01)
SFMCG 89 (-22.61) 2329245 (+0.003) 207 (-22.61)
SFM aCG 5 88 (-23.48) 2408100 (+3.389) 212 (-20.89)
SFM h 117 (+1.74) 2329155 (-0.000) 273 (+1.74)
SFM hCG 105 (-8.70) 2329175 (+0.000) 244 (-8.70)
SFM auto 113 (-1.74) 2329165 (+0.000) 263 (-1.74)

According to Table 5.7, the clock gated designs SFM CG and SFM aCG 5 have

the best capabilities for saving energy, reducing the total energy consumption by

22.61% and 20.89%, respectively. Design SFM aCG 5 saves less energy than SFM CG

since the former employs one more BUFG. Furthermore, in SFM aCG 5 , the actors in

the slower domain (Region 2) are active for a relatively large portion of the execution

time, and thus, they cannot be switched off for large proportions of time. In contrast,

according to Table 5.4, the Deinterleave actor in Region 1 can be switched off for

almost 90% of the total execution time.

The designs SFM aCG 5 and SFM a 5 , both of which employ two clock domains

with CLK 1 at 100 MHz and CLK 2 at 5 MHz, have similar capabilities to save

energy. The former design is slightly more energy efficient compared to the latter.

The results for these two designs show that the energy saved by switching off the

actors, when inactive, and also the saving of the unused logic in the CDC FIFOs

counterbalance the energy overhead due to the additional circuitry.

As expected, SFM h has a small amount of energy overhead due to the logic
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necessary to encapsulate Sum1, Sum2 and Maxpool&ReLU into the hierarchical

actor. The design SFM hCG , among the clock gated designs, is not as advantageous

as the previously analyzed designs in terms of energy saving. This is because even

though it employs only three BUFGs, the hierarchical actor is switched off only

when none of the underlying actors are working. This means that, for instance,

while Sum1 is active, the actors Sum2 and Maxpool&ReLU will have an active

clock even when the actors are in an idle state (so that they keep wasting energy).

Finally SFM auto is the design with the smallest energy saving, only 1.74% compared

to SFM . Even considering the same optimization technique (clock gating), the level

on which it is applied turns out to be fundamental: at a low level (single flip-flops

in SFM auto) only the dynamic power of a restricted number of gates can be saved.

On the other hand, at a coarse-grain level (groups of dataflow actors in SFM CG),

it is possible to act also on the clock tree, which is highly effective for improving

power saving.

5.5.3 Hardware/Software Co-design Results

In this section, we investigate different hardware/software co-design configu-

rations. As anticipated in Section 5.4.1, depending on the portion of the application

that is accelerated in hardware and on the given requirements and constraints, dif-

ferent design choices regarding the hardware/software communication interface lead

to different trade-offs between resource requirements and performance. For the SFM

accelerator, we investigated several implementation and optimization solutions, ex-
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ploring three key aspects: exploiting parallelism, communication interfaces and local

buffering (see Section 5.4.3). In this section, by an SFM accelerator, we mean specif-

ically a hardware accelerator.

Different software and hardware configurations that we explored in our co-

design exploration are summarized as follows.

• SW1 — The application runs in software on a single ARM core.

• SW2 — The application runs in software by using both of the ARM cores on the

target platform.

• HW1 — A single-branch SFM accelerator is employed to execute the first convo-

lutional layer.

• HW2 — An SFM accelerator with two parallel branches. In this configuration, a

local buffer is shared between the branches.

• HW4 — An SFM accelerator with four parallel branches. Again, a local buffer is

shared among the branches.

For multicore software implementations and hardware implementations with

multiple branches, the layer or layers that are executed in parallel (i.e., intra-layer

parallelism is exploited) are indicated in parentheses. Similarly, hardware configura-

tions are annotated with -mm or -s depending, respectively, on whether a memory-

mapped AXI-lite communication interface is used, or a FIFO-based AXI-stream

interface is used.

For example, SW2(L1, L2) represents a software-only implementation in which

layer 1 and layer 2 are executed in parallel. As another example, SW2(L2)/HW2(L1)-
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mm represents a hardware/software implementation based on configurations SW2

and HW2; in this implementation, layer 2 is executed across multiple cores, layer

1 is parallelized in hardware with 2 parallel branches, and AXI-lite is used as the

communication interface.

Note that the SFM accelerators are able to execute only the first convolutional

layer. Thus, in all of the DNN system implementations, the accelerators are coupled

with one of the software configurations.

5.5.3.1 Resource Costs of Accelerator Implementations

Table 5.8 depicts the resource occupancy in the targeted Zynq Z-7020 device

for the different SFM accelerator implementations that we experimented with. As

expected, a higher level of parallelism (going from HW1-mm to HW4-mm) requires

more resources, and our experiments here help to quantify the associated trends. For

example, fine-grained and computation-related resources (LUTs, REGs and DSPs)

increase linearly with the number of parallel branches placed in the accelerator

(about +100% with one more branch and about +300% with three more branches),

while coarse-grained memory resources (BRAMs) exhibit a gentler slope. We expect

that this gentler slope results because the primary BRAM-demanding module, the

local buffer, is shared across parallel branches.
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Table 5.8: Resource occupancy for different SFM accelerator implementations. In
parentheses: the percentage of utilization with respect to the resources available on
the targeted FPGA. The bottom part of the table depicts the percentage of variation
with respect to HW1-mm.

LUTs REGs BRAMs DSPs
Available 53200 106400 140 220
HW1-mm 5395(10.14) 4668(4.39) 43 (30.71) 13 (5.91)
HW2-mm 10890 (20.47) 8197 (7.70) 54 (38.57) 26 (11.82)
HW4-mm 21474 (40.36) 16331(15.35) 76 (54.29) 52 (23.64)

HW2-mm +101.85 +75.60 +25.58 +100.00
HW4-mm +298.04 +249.85 +76.74 +300.00

5.5.3.2 Comparison of Co-Design Solutions

Table 5.9 presents performance results for different software-only and hard-

ware/software solutions that we investigated using STMCM. In particular, the ta-

ble reports the execution time in terms of milliseconds (ms) for different execution

phases: reading the input file (column input), computing the first and the second

layers, and computing the deep layers (Layers 3, 4 and 5). The table also reports

the execution time of the overall application (prediction) for different degrees of

software and hardware parallelism.

The reference time is given by the execution of the entire DNN application on

a single ARM core (SW1), which is capable of completing the prediction in about

2.4 seconds. From this reference configuration, it is also possible to appreciate the

computational load of the different application phases. The heaviest part is Layer

2, which is responsible for more than 65% of the overall execution time, while most

of the remaining load is attributable to Layer 1 (around 25%), and to reading of the

input file (about 5%). For this reason, software parallelization has been evaluated

only on Layer 1 (SW2(L1)), and on both Layers 1 and 2 together (SW2(L1,L2)).
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Table 5.9: Performance of different co-design solutions. The top part of the table
depicts execution time in milliseconds (ms). The bottom part depicts the percentage
of execution time variation for each configuration with respect to SW1.

input Layer prediction
1 2 3:5

SW1 118.9 640.3 1594.7 34.4 2388.2
SW2(L1) 118.7 368.3 1609.8 34.0 1639.5
SW2(L1,L2) 117.4 354.7 842.1 33.8 1348.0
SW2(L2)/HW1(L1)-mm 118.9 118.5 856.7 35.4 1129.5
SW2(L2)/HW2(L1)-mm 118.4 74.6 866.5 35.1 1094.5
SW2(L2)/HW4(L1)-mm 117.9 54.5 859.0 35.4 1066.8

SW2(L1) -0.13 -42.48 +0.95 +1.12 -10.75
SW2(L1,L2) -1.22 -44.61 -47.19 -1.72 -43.56
SW2(L2)/HW1(L1)-mm -0.00 -81.49 -46.28 +2.89 -52.71
SW2(L2)/HW2(L1)-mm -0.40 -88.36 -45.66 +2.09 -54.17
SW2(L2)/HW4(L1)-mm -0.81 -91.48 -46.13 +2.85 -55.33

The execution time needed by each of the major execution phases is almost

halved when two cores are adopted. A precise 50% reduction is not reached because

of the software overhead necessary to manage multitasking. With software paral-

lelization only, the overall execution time is reduced to 1.13 seconds, about 44%

less than the SW1 configuration. Hardware acceleration and related parallelization

are only applied to the first convolutional layer, while only software paralleliza-

tion is applied to Layer 2. If we consider only the execution time of layer 1, then

SW2(L2)/HW1(L1) reduces execution time by more than 80% compared to SW1,

and more than 65% compared to SW2(L1,L2).

If multiple branches of Layer 1 are processed in parallel, the hardware acceler-

ator achieves further performance benefits — a time saving up to 88% for a 2-branch

configuration (SW2(L2)/HW2(L1)-mm), and up to 91% for a 4-branch configura-

tion (SW2(L2)/HW4(L1)-mm). These performance improvements are with respect
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to SW1. Note that the speed-up obtained by doubling the number of branches (go-

ing from 1 to 2 and from 2 to 4) is less than 2 in either case (1.6 from 1 to 2 and

1.4 from 2 to 4). This is due to the software overhead related to managing multiple

branches. Due to the limited computational load of Layer 1, the benefits of hard-

ware acceleration and parallelization on the overall system are somewhat limited.

The best solution, SW2(L2)/HW4(L1)-mm, requires 1.07 seconds to perform the

whole application, 55% less than a full software execution on a single core (SW1)

and 21% less than a full software execution on two cores (SW2(L1,L2)).

Another aspect that has been studied in our co-design experiments is the in-

terfacing between system components. As discussed in Section 5.4.3.2, the adopted

communication interface between software and hardware portions of a design can

have a significant impact on overall system performance. In our co-design experi-

ments, we have applied two very interfaces — mm-lite and stream, which are dis-

cussed in Section 5.4.3.2.

Table 5.10 helps to understand differences between the resource costs of these

two interfaces. The first row of this table shows resource availability on the target

platform. The second and third rows show resource costs for the HW1-mm accelera-

tor, and HW1-s accelerator. The fourth and fifth rows show resource costs for FIFO

and DMA modules (external to the accelerator) that are necessary for the stream

interface. The sixth row shows total resource costs induced by use of the stream

interface (the sums of the costs in the preceding three rows). The last two rows of

the table represent percentage increases in resource costs relative to the HW1-mm

accelerator.
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From Table 5.10, we see that the HW1-mm and HW1-s accelerators alone

require approximately the same amount of resources: HW1-s requires 7.21% more

LUTs and 6.66% less REGs compared to HW1-mm. However, when the overhead

due to the DMA and FIFO modules necessary for AXI-stream communication is

considered, significantly more resources are required when the stream interface is

used: about 38% more LUTs and REGs are required by the overall stream design

((1)+(2)+(3)), while over 50% more BRAM cost is incurred.

Table 5.10: Differences in resource costs between communication interfaces when
applied to HW1. In parentheses: percentage of utilization with respect to the
resources available on the targeted FPGA. The bottom part of the table depicts the
percentage utilization variation with respect to HW1-mm.

LUTs REGs BRAMs DSPs
Available 53200 106400 140 220
HW1-mm 5395(10.14) 4668(4.39) 43 (30.71) 13 (5.91)
(1) HW1-s 5784 (10.87) 4357 (4.09) 43 (30.71) 13 (5.91)
(2) FIFOs (stream) 212 (0.40) 242 (0.23) 10 (7.14) 0 (0.00)
(3) DMA (stream) 1490 (2.80) 1881 (1.77) 3 (2.14) 0 (0.00)
(1)+(2)+(3) 7486 (14.07) 6480 (6.09) 56 (40.00) 13 (5.91)

HW1-s +7.21 -6.66 +0.00 +0.00
(1)+(2)+(3) +38.75 +38.81 +53.49 +0.00%

To make the stream interface a useful option in our system design, its signif-

icant increase in resource costs should be accompanied by tangible advantages in

execution performance. Table 5.11 shows results pertaining to the impact of the

communication interface on execution time. In order to better expose the effects of

the selected communication interface, details on data transfers (input, convolution

coefficients and outputs) between the hardware (accelerator) and software subsys-

tems is reported. For the HW1-s design, two different sets of results are reported

depending on whether program data is directly accessible by the DMA engine. For

one set, the program data is located in a memory that is not directly accessible
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by the DMA. This scenario corresponds to the design that we have implemented.

It requires an additional copy of the program data in a memory that is accessed

directly by the DMA. For the other set, the program data is located in a memory

that is directly accessible by the DMA. This set is indicated in Table 5.11 using the

annotation HW1-s dir. We have not implemented HW1-s dir; instead, we have esti-

mated the corresponding results to gain some idea about the maximum achievable

performance. Details on the estimation approach are omitted for brevity.

Table 5.11: Results pertaining to the impact of the communication interface on
execution time. The top part of the table depicts the execution time of the different
DNN application steps. The bottom part depicts the execution time variation of
each configuration with respect to HW1-mm.

File input [ms]
Layer 1

Layer 2 [ms] Layers 3, 4, 5 [ms] Prediction [ms]
input tx [µs] coeffs tx [µs] output tx [µs] total [ms]

HW1-mm 118.9 5222 15 2339 118.5 856.7 35.4 1129.5
HW1-s 117.5 854 5 2333 114.6 864.3 34.9 1131.3
HW1-s dir 118.3 418 3 2333 114.1 869.5 35.0 113.7

HW1-s -1.17 -83.65 -66.67 -0.26 -3.27 +0.87 -1.39 +0.16
HW1-s dir -0.49 -92.00 -80.00 -0.26 -3.69 +1.49 -1.22 +0.66

The results in Table 5.11 demonstrate the utility of the resource-hungry HW1-

s design, and quantify its clear ability to outperform HW1-mm. In particular, the

input data and transmission of convolution coefficients are respectively about 84%

and 67% faster when the AXI-stream protocol is adopted. This leads to an estimated

time saving of up to 92% and 80%, respectively, when the DMA has direct access

to the program data (HW1-s dir).

On the other hand, the output data transmission time is the same among

all of the reported configurations. We expect that this is because the outputs are

produced in a row-by-row fashion (48 data units at a time), and the timing of output

production is determined by the computation latency, which is greater than the
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communication latency for all of the interfacing configurations. However, looking at

the total Layer 1 and DNN application execution times, we see that the advantages of

adopting the stream interface are no longer visible. Indeed, for the considered SFM

accelerator, the input data is transmitted only during the first branch execution

due to our use of local buffering. Additionally, even though the coefficients are

transmitted for each branch, their transmission requires a relatively small amount

of time.

These results involving communication interface selection illustrate the impor-

tance of comprehensive system-level evaluation of alternative design options, which

is one of the key parts of the design process that is facilitated by STMCM.

5.6 Conclusions

In this chapter, we have introduced a design methodology, called the STMC

Methodology or STMCM, and an integrated set of tools and libraries that support

the application of this methodology. STMCM is developed to assist designers of

signal processing systems in exploring complex design alternatives that span multi-

ple implementation scales, platform types, and dataflow modeling techniques. We

have demonstrated the capabilities of STMCM through a detailed case study in-

volving a deep neural network (DNN) for vehicle classification. The demonstra-

tion encompasses dataflow-based application modeling, profiling, embedded soft-

ware optimization, hardware accelerator design, hardware/software co-design, and

hardware/software interface design, all in the context of mapping the given DNN
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into an efficient implementation on a resource-constrained, system-on-chip platform.

Through this case study, it is shown how STMCM provides a unified, model-

based framework for conducting comprehensive empirical evaluations of diverse

hardware/software design alternatives. Through its application of lightweight dataflow

techniques, STMCM is complementary to dataflow tools that emphasize specialized

design flows and high degrees of automation.
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Chapter 6

Conclusions and Future Work

In this chapter, we first summarize the contributions presented in the previous

chapters of this thesis. Then, we enumerate several directions for future research.

6.1 Conclusions

In this thesis, we have developed novel design space exploration methods us-

ing compact system level models, and dataflow-based techniques for design and

implementation of signal processing systems. The models and methods developed

are geared toward digital signal processing (DSP) systems having complex, multi-

dimensional design spaces involving conflicting objectives and constraints. Based

on these contributions, we have developed new signal processing systems and asso-

ciated design optimization techniques for relevant applications in adaptive wireless

communications and deep learning.

First, we have presented an adaptive digital predistortion (DPD) system that

reconfigures itself across multiple Pareto-optimized DPD configurations. Different

from most works in the literature on DPD optimization, which consider a single

objective, namely, the adjacent channel power ratio (ACPR), we have taken ACPR,

error vector magnitude (EVM), and power consumption jointly into consideration.

We have taken these three design evaluation metrics into account to treat DPD
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optimization as a multiobjective optimization problem. We have developed efficient

methods to (1) extract Pareto-optimized DPD configurations at design time, and

then (2) integrate these configurations with a run-time controller in an optimized

adaptive DPD (OAD) system. The OAD controller switches among different DPD

configurations to satisfy constraints on ACPR and EVM with optimized power con-

sumption. We have performed extensive simulations to validate that the proposed

OAD system can support highly diverse signal processing trade-offs and significantly

outperform a fixed DPD configuration under time-varying operational conditions.

Second, we have presented a new design framework, called the Evolutionary

Adaptive DPD Implementation (EADI) Framework, for systematic derivation of

Pareto-optimized DPD configurations that can be applied to adaptive DPD imple-

mentations. We have shown the effectiveness of the EADI Framework by applying it

to derive a novel DPD architecture, called the adaptive, dataflow-based DPD archi-

tecture (ADDA). The design of this architecture applies multiobjective evolution-

ary algorithms to derive Pareto-optimized DPD configurations. A reconfigurable

dataflow graph implementation is then used to adapt the DPD system efficiently

among the derived configurations at run-time. We have presented experiments to

show the effectiveness of the proposed EADI framework in generating efficient DPD

configurations subject to multidimensional constraints with performance exceeding

the OAD scheme.

Third, we have presented the Hierarchical MDP framework for Compact System-

level Modeling (HMCSM), and its application to the implementation of adaptive em-

bedded signal processing systems. HMCSM provides a structured design methodol-
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ogy that integrates model-based, reconfigurable embedded signal processing system

design using parameterized dataflow models, and Markov decision process (MDP)

methods for optimal control policy generation. HMCSM enables systematic deriva-

tion of dynamic reconfiguration policies based on functional requirements and op-

erational constraints. The effectiveness of the framework has been demonstrated

through a detailed case study on the design of a channelizer for wireless communi-

cations.

Finally, we have developed a compact set of retargetable application program-

ming interfaces (APIs) and associated libraries and software tools for dataflow-based

digital hardware design. We have also built upon these new design components to

develop a dataflow-based methodology, along with supporting software tools and li-

braries, for integrated hardware/software co-design and design optimization of signal

processing systems. Our developed APIs, libraries, and tools extend the previously-

developed lightweight dataflow environment (LIDE) tool with new capabilities for

model-based design and implementation of digital hardware systems. Our contri-

butions to LIDE and hardware/software co-design methodologies have been demon-

strated on a dataflow-based, deep neural network (DNN) implementation for vehicle

classification that is streamlined for real-time operation on embedded system-on-chip

(SoC) devices.
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6.2 Future Work

Various useful directions for future work are motivated from the developments

of this thesis. These include the following.

1. The hierarchical structure of the MDP architecture proposed in Chapter 4

is developed manually. An interesting future direction is the development of

tools to help automate the factoring and decomposition processes involved in

this architecture, and to further investigate optimization issues involved in

these processes.

2. In the current implementation of MDP methods in the HMCSM Framework,

the optimal policies are pre-computed offline. A useful direction for future

work is to study schemes for incorporating real-time MDP solvers into the

framework. Such solvers would be capable of allowing the MDP and gener-

ated policy to adapt dynamically based on learned characteristics of the op-

erating environment. Moreover, the study of methods for dataflow modeling

and design optimization of real-time, embedded MDP solvers is an interesting

direction for future work to improve the efficiency of this class of solvers.

3. We have employed parameterized dataflow modeling in our design of the

HMCSM Framework. Various other kinds of parametric dataflow modeling

methods have been introduced in recent years, such as Boolean parametric

dataflow [42] and the parameterized and interfaced dataflow meta-model [43].

Adapting and experimenting with the HMCSM Framework based on para-
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metric dataflow approaches such as these is an interesting direction for future

work.

4. In relation to the work presented in Chapter 5, interesting directions for future

work include development of automation support for the lightweight dataflow

models and methods introduced in this chapter, adaptation of lightweight

dataflow for use with other hardware description languages (HDLs) beyond

Verilog, defining automatic system optimization support for extracting In-

struction Level Parallelism (ILP) from lightweight dataflow models, and the

targeting of application specific integrated circuit (ASIC) technology.
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[5] L. Anttila, P. Händel, and M. Valkama, “Joint mitigation of power amplifier
and I/Q modulator impairments in broadband direct-conversion transmitters,”
IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 4, pp.
730–739, 2010.

[6] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, MIT Press, 2016.

[7] Y. Jia, “Delivering real-time AI in the palm of your hand,” https://code.fb.

com/android/delivering-real-time-ai-in-the-palm-of-your-hand/,
2016, Posted in November 2016, visited on October 12, 2018.

[8] L. Li, A. Ghazi, J. Boutellier, L. Anttila, M. Valkama, and S. S. Bhattacharyya,
“Design space exploration and constrained multiobjective optimization for dig-
ital predistortion systems,” in Proceedings of the International Conference on
Application Specific Systems, Architectures, and Processors, London, England,
July 2016, pp. 182–185.
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