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Abstract. We discuss the dynamics of general linear functional differential

equations with solutions that exhibit asymptotic constancy. We apply fixed
point theory methods to study the stability of these solutions and we provide

sufficient conditions of asymptotic stability with emphasis on the rate of con-

vergence. Several examples are provided to illustrate the claim that the derived
results generalize, unify and in some cases improve the existing ones.

1. Introduction

The long term behavior of dynamical processes lies in the core of every sector of
the applied sciences and engineering. In the theory of delayed differential equations,
probably the simplest example one can discuss is the evolution of

(1.1) ẋ(t) = −ax(t) + bx(t− τ).

There is hardly a textbook in the field not mentioning this equation at the chapter
of stability of solutions [21, 19, 22]. It is indeed, in that particular chapter where the
text focuses on equations of the type (1.1) with the parameters a, b satisfying a > 0
and |b| ≤ a. In such case, the zero solution is shown to be stable for any τ > 0.
In the vast majority of these texts, the next sentence goes pretty much as follows:
“Moreover, if |b| < a, then the zero solution is asymptotically stable.[...]”. In any
advanced textbook or technical paper one may find the proof that the asymptotic
stability of such systems is exponential. This can be shown using any of the known
stability analysis methods. It is the purpose of the next subsection, to briefly review
these tools in the stability analysis of Eq. (1.1) for |b| < a.

1.1. The case |b| < a. Eq. (1.1) is states as the following initial value problem

(1.2)

{
ẋ(t) = −ax(t) + bx(t− τ), t ≥ 0

x(t) = φ(t), t ∈ [−τ, 0]
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where a > 0 and b ∈ R such that |b| < a. It is the latter condition which guarantees
that both x(t) and eγtx(t) are qualitatively equal for γ > 0 small enough. If x(t) is
a solution of (1.2) then y(t) = eγtx(t) satisfies:

(1.3)

{
ẏ(t) = −(a− γ)y(t) + beγry(t− τ), t ≥ 0

y(t) = eγtφ(t), t ∈ [−τ, 0]

We choose γ > 0 small enough so that

(1.4)
|b|eγτ

a− γ < 1

and such γ always exist only because |b| < a. We will review the main stability
analysis methods for the asymptotic behavior of y with respect to the zero solution
as asymptotic stability of y implies exponential stability of x with rate γ.

1.1.1. Frequency Methods. We choose the direct method (§2.2.3 of [22]). The quasi-
polynomial of (1.3) is

a(s, e−τs) = s+ (a− γ)− beγτe−sτ = a0(s) + a1(s)e−sτ

with a0(s) = s+ (a− γ) and a1(s) = −beγτ . At τ = 0, a(s, 1) = s+ (a− γ)− b and
it is stable a(s, 1) = 0 if and only if <(s) < 0. Then∣∣∣∣a1(jω)

a0(jω)

∣∣∣∣ =
|b|eγτ√

ω2 + (a− γ)2
< 1, ω ∈ R.

in view of (1.4). Then there is no solution of a(s, esτ ) = 0 with <(s) > 0 and the
stability result follows.

1.1.2. Liapunov-Krasovskii[19]. For the problem (1.3), the appropriate functional
to be selected is V (φ) = 1

2
φ2(0) + µ

∫ 0

−τ φ
2(θ)dθ so that

V̇ (φ) = −(a− γ − µ)φ2(0) + |b|eγτφ(0)φ(−τ)− µφ2(−τ) ≤ 0

if µ ∈
( |b|eγτ

2 , a − γ − |b|e
γτ

2

)
which exists in view of (1.4). Then the result follows

in view of (1.4) and Theorem 2.1, in [19].

1.1.3. Liapunov-Razumkhin[19]. The Lyapunov function in this case is V (x) = x2

2 .
Then

V̇ (x(t)) ≤ −(a− γ)x2(t) + |b|eγτ |x(t)| · |x(t− τ)| ≤ −(a− γ − |b|eγτ )x2(t) ≤ 0

whenever |x(t)| ≥ |x(t− τ)|. Then the result follows in view of (1.4) and Theorem
4.1, in [19].

1.1.4. Fixed Point Theory[20]. This technique does not directly rely on the trans-
formation y(t) = eγtx(t). The condition |b| < a suffices to prove that the solution
operator defined by inverting (1.2) as

(1.5) (Qx)(t) =

{
e−atφ(0) + b

∫ t
0
e−a(t−s)x(s− τ)ds, t ≥ 0

φ(t), t ∈ [−τ, 0]

is a contraction in the complete metric space (M, ρ) where

M = {x ∈ C0[−τ,∞) : x = φ|[−τ,0], sup
t≥−τ

eγt|x(t)| <∞}

and ρ(x1, x2) = supt≥0 e
γt|x1(t)− x2(t)|, whenever condition (1.4) holds. Then by

the Contraction Mapping Principle, Q attains a unique fixed point in M. This is a
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de facto proof of the asymptotic convergence of the solution to zero (see p. 41 of
[20]).4

There is no doubt that the critical condition which characterizes (1.1) as “simple”
is |b| < a and consequently condition (1.4). Neither the constancy of the weights
a and b nor the nature of delay (large, time/state dependent) play any substantial
role in the asymptotic behavior of the solution x. So long as the magnitude of the
undelayed term dominates the magnitude of the retarded term the effect of delay
acts as a harmless perturbation of the the solutions in the qualitative sense. This
property can be readily generalized to more complex systems and it is therefore
generally exploited in different contexts for the establishment of delay-independent
stability results [22]. But the crucial condition (1.4) seizes to hold when a = b.

1.2. The case b = a. At this “bifurcation” value, a number of new phenomena
occur. Since Eq.(1.4) does not hold, one cannot use the transformation y(t) =
eγtx(t). Also Eq. (1.1) reads

(1.6) ẋ(t) = −ax(t) + ax(t− τ)

and every real constant is a solution. In particular if from (1.2), φ ∈ ∆ where
∆ = {y ∈ C0[−τ, 0] : y(t) ≡ const., t ∈ [−r, 0]} then the solutions stay in ∆ for all
times. However, no solution in ∆ is asymptotically stable in the classical sense: if
y1, y2 ∈ ∆ with |y1 − y2| < ε for any ε > 0, with φ = y1 then y(t) ≡ y1 and it will
never converge to y2. As a result none of the above methods is applicable any more.
For instance, the direct method of Section 1.1.1 gives for Eq. (1.2)

a√
ω2 + a2

≤ 1, ω ∈ R

which by no means imply asymptotic stability of the solutions, let alone the conver-
gence rate. However, we may still conclude stability. The same result occurs for the
Liapunov-Krasovski and Liapunov-Rhazumikhin methods, whereas the mapping Q
in the Fixed Point Theory approach seizes to be a contraction for any value of τ .

It is this class of delayed differential equations for which Invariance Principles
may take over in the Liapunov-based approaches and prove asymptotic stability
of the solutions with respect to the invariant set ∆ [3]. These techniques however
suffer from the standard drawback that they provide no information on the rate at
which the solutions convergence to such an invariant subset. A feature that is of
utmost importance for real-world problems.

1.2.1. A brief history of ẋ = −ax+axt. To the best of our knowledge, equations of
such type have so far appeared in the literature from two different fields of applied
science.
The Cooke-Yorke model. The first occurrence of this equation dates back in 1973
with the seminal work of Cooke and Yorke [10]. The authors developed a theory of
biological growth and epidemics by introducing and analyzing the system

(1.7) ẋ = g(x(t))− g(x(t− τ))

where g is an arbitrary Lipschitzian function. The authors proved that whenever
the solution of Eq.(1.7) exists in the large, it approaches asymptotically a constant
value. Their work has ever since attracted enormous attention from the mathe-
matical community and caused an abundance of convergence results of these types

4This approach does not include however the step of the stability of solutions with respect to
the classical definition. This part must be handled separately (usually with an ε− δ argument).
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of functional differential equations, known in the literature as equations with as-
ymptotic constancy of solutions [11, 12, 16, 15, 14, 13, 17, 18, 20]. A similar field
of study where such equations appear is this of the motion of a classical radiating
electron [5]. In the following we will review a number of past works that emphasize
both on the asymptotic stability and on the rate of convergence.

In [12, 11] the authors develop conditions which ensure that all solutions of certain
functional differential equations are asymptotically constant as t → ∞. Equation
(1.6) is a special case of their work for which it must hold that

(1.8) |aτ | < 1

so that solutions x tend to a constant so that x ∈ L1. In [11], it is proved that the

rate is exponential with exponent γ ∈ (0,− ln (aτ)
τ ).

In his monograph [20], T.A. Burton explains that, since the solution operator of
(1.6) can be expressed as

x(t) = −a
∫ t

t−τ
x(s)ds+ x(0) + a

∫ 0

−τ
φ(s)ds,

condition (1.8) ensures that this solution form can be a contraction in the complete
metric space (M, ρ) defined in Sect. 1.1.4 with the origin translated to the fixed
constant

(1.9) k =
φ(0) + a

∫ 0

−τ φ(s)ds

1 + aτ

and γ small enough to satisfy |a| e
γτ−1
γ < 1. The approach of Burton is more general

in the sense that it sheds light upon the asymptotic value k as well as it can be
readily applied to non-linear versions of (1.6) such as Eq. (1.7).

Finally, Krizstin [16], developed a Liapunov-Rhazumikhin argument, based on
the monotonicity of (1.6) (i.e. the fact that we can take a > 0). He estimated the
rate of convergence without the condition (1.8). In particular, assuming

aτ <∞

he proved that the rate of convergence of solutions to a constant is exponential with

rate proportional to 1−e−aτ
2τ which is a delay-independent result.

The main conclusion of the discussion should be that as far as (1.6) is concerned,
the convergence to a constant value is independent of the magnitude of the delay τ
only when a > 0 but is restricted to conditions like (1.8) whenever a < 0.
Monotone Dynamical Systems. In a rather different vein, multi-dimensional systems
with delays appear in the study of Monotone Dynamical Systems. In his monograph
[7], Smith discusses systems of the type

ẋ1(t) = −ax1(t) + ax2(t− τ)

ẋ2(t) = −bx2(t) + bx1(t− τ)
(1.10)

The dynamical systems involved, are categorized either as competitive or as coop-
erative, depending on their monotonicity (here again the sign of the parameters, a
and b in the example above). Whenever a, b are positive the system is cooperative
and the asymptotic behavior is a constant value for any bounded τ . Systems of the
type of (1.10) are known from the control community as linear distributed agree-
ment (consensus) dynamics and in the un-delayed case (τ = 0) are treated with
Algebraic Graph Theory methods [23] and form the core of Networked Control
Theory [24]. Despite the abundance of results in the control community, the case
of distributed delayed dynamics is treated only on the part of simple convergence
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results. It is still an open problem to estimate the rate of convergence to a constant
value for the general case as a function of the delay.

1.3. This work: Motivation and Contribution. In a series of papers,[28, 26,
27], the authors discussed this problem in a wide variety of systems of the type (1.10)
with the use of fixed point theory methods. Despite the fact that the connectivity
weights a, b in Eq. (1.10) were taken positive, the delay conditions were of the
type (1.8) and therefore the resulting delay bounds (as they were depicted in the
contraction condition) were unnecessary restrictive. Within the context of fixed
point theory this peculiarity occurs as a result of the way the solutions are expressed
and the corresponding solutions operators are defined.

Motivated by this shortcoming, in this work we discuss a one dimensional variant
of (1.10) which sustains similar restrictive phenomena. In fact, we revisit the topic of
stability of scalar linear functional equations with asymptotically constant solutions,
within the framework of fixed point theory on the base of the following observation:
A more careful inspection of Eq. (1.8) reveals that this condition simply neglects the
sign of a. Indeed, the solution x for (1.6) also converges to a constant exponentially
fast if (1.8) holds. Moreover one may suspect that instability occurs at |aτ | = 1
exactly because, it may mean aτ = −1 for which value k as defined in (1.9), is not
finite. From now on, we will focus on fixed point theory methods. The first remark
is that for the solution of (1.6) can be expressed either as

(1.11) x(t) = −a
∫ t

t−τ
x(s)ds+

(
φ(0) + a

∫ 0

−τ
φ(s)ds

)
or as

(1.12) x(t) = e−a(t−t0)x(t0) +

∫ t

t0

e−a(t−s)ax(s− τ)ds

for any t, t0 with t ≥ t0. These are two forms with different information on the
dynamics of x. Eq. (1.11) shows that the value of x(t) exclusively depends on
the information of x in [t − τ, t] and Eq. (1.12) shows that x(t) is based on the
information of x in [t− τ, t0] whereas this form also exploits the dissipative nature
of the dynamics, due to a > 0. The problem with Eq. (1.12) is that, unlike Eq.
(1.5), it is not a contraction in any useful metric space with regards to asymptotic
stability. This is exactly because a = b from (1.1). Since in the Fixed Point Theory
framework it is the representation of the solution as of much importance as the
form of the Lyapunov function in the Lyapunov theory, we will combine (1.11) and
(1.12), to obtain a new representation of the solution that in many cases will yield
asymptotic stability results independent of the magnitude of the delays. Motivated
by recent results in the study of stability of scalar functional differential equations
with the use of fixed points [2, 8], we revisit the problem of type (1.6) and in
particular we study the general equation

ẋ(t) = −
∑
i

ai(t)x(t) + ai(t)x(t− τi(t)), ai(t), x ∈ R

The novelty of our approach lies on a combination of two different expressions of
the solution x so as to obtain new forms of the solution which will be used as
self-mapping contraction operators in suitably designed complete metric spaces.

1.4. Organization. The paper is organized as follows. §2 discusses the notation
that will be used throughout this work, introduces fundamental notions and defini-
tions the Theory of functional differential equations.

In §3 we begin our study for both ai’s and τi’s constant. In §4 we generalize to
time varying ai’s and τi’s and in §5 we revisit the same problem from a different
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perspective where old rate estimate are re-established [16]. In §6 we work a number
of illustrative examples as applications to the derived theoretical results.

2. Notation and Definition

Throughout this work, m ∈ Z+ with i to denote a number in {1, . . . ,m}, t0 ∈ R
and τi ∈ [t0,∞) → R+ is a continuous function such that λi(t) := t − τi(t) is non-
decreasing with limt→∞ λi(t) = ∞, for any i = 1, . . . ,m. Whenever the subscript
i is omitted we understand the maximum over i, i.e. τ(t) := maxi τi(t) whereas
λ(t) = t−τ(t) = mini λi(t). Also λ(j)(t) will denote the jth composition of λ(t) and
for t ≥ t0 Iλ(j−1)t := [λ(j)(t), λ(j−1)(t)] with the convention Iλ(0)(t) = It. For any

real a, a+ := max{0, a} and a− := min{0, a}. The space of continuous functions
defined in I and taking values in S is denoted by C0(I, S). A subspace of interest is
this of functions that are constant in a subset of I in particular we define ∆ = {x ∈
C0([−τ, 0],R) : x ≡ k, k ∈ R}. Let ai|m1 be a family of members in C0([t0,∞),R).
Then a+

i (t) = max{0, ai(t)} and a−i (t) = min{0, ai(t)} and a(t) :=
∑
i a

+
i (t). Next,

for any t1, t2 ≥ t0 we denote φ(t1, t2) = e−
∫ t1
t2
a(s)ds. By rate function we understand

any arbitrary function h : C0([t0,∞),R+) with the property that h is increasing
and h(t) → ∞. In this work, we shall restrict to either exponential or polynomial
rate functions.

For s ≥ t0 consider the linear functional differential equation

ẏ(t) = A(t)yt, t ≥ s

and it’s unique solution y(t, s, φ) where φ ∈ C0(Is,R) is the initial condition.
Since for any fixed s ≥ t0 and t ≥ s y(s, ·)(t) = y(t, s, φ) is a continuous lin-
ear operator in C0(It0 ,R) we can associate a family of continuous linear opera-
tors T (t, s) : C0(Is,R) → C0(Is,R), t ≥ s by defining for any φ ∈ C0(Is,R),
T (t, s)φ = y(t, s, φ). Since solutions are continuous in t, s for t0 < s ≤ t <∞, T (t, s)
is strongly continuous for t0 < s ≤ t <∞ with T (t, t) = Id, T (t, s)T (s, a) = T (t, a)
for t0 < a ≤ s ≤ t < ∞. Additionally one can define a solution of y with φ
being piecewise continuous function so that for any constant c, φ(s) = δ(t0 − s)c
whenever s ∈ It0 can be an appropriate initial condition. This extension of the so-
lutions will come in hand in §5 where a variation of constants formula for functional
equations will be used. Also Mt,φ =

[
mins∈It φ(s),maxs∈It φ(s)

]
and |Mt,φ| =

maxs∈It φ(s)−mins∈It φ(s) stands for it’s length.

2.1. Elements of Fixed Point Theory. The two main fixed point theorems to be
applied in this work are the Banach’s Contraction Mapping Principle and Shauder’s
first fixed point theorem that we state here for reference.

Theorem 2.1. Let (M, ρ) be a complete metric space and let P : M→M. If there
is a constant α < 1 such that ρ(Pφ1,Pφ2) ≤ ρ(φ1, φ2), ∀φ1, φ2 ∈M, we have

ρ(Pφ1,Pφ2) ≤ αρ(φ1, φ2)

then there is a unique φ∗ ∈M with Pφ∗ = φ∗.

Theorem 2.2. Let M be a non-empty compact convex subset of a Banach space
and let P : M→M be continuous. Then P is a fixed point in M.

The proofs of these theorems can be found, for example, in [9].



ON THE DYNAMICS OF ẋ = −ax+ axt 7

3. Time Invariant Dynamics

The first set of results concerns the following initial value problem

(3.1)

{
ẋ(t) =

∑m
i=1−aix(t) + aix(λi(t))

x(t) = φ(t), t ∈ I0,

with ai ∈ R constant λi(t) = t − τi for τi constant and φ given initial datum. We
re-write (3.1) as

ẋ = −ax(t) +
∑
i

a+
i x(λi(t)) +

∑
i

|a−i |
d

dt

∫ t

λi(t)

x(s)ds

so as to separate the dissipation dynamics from the non-dissipation ones. Then the
solution x satisfies both

x(t) = e−aτx(λ(t)) +

∫ t

λ(t)

e−a(t−s)
∑
i

a+
i x(λi(s))ds+

+

∫ t

λ(t)

e−a(t−s)
∑
i

|a−i |
d

ds

∫ s

λi(s)

x(w)dwds, t ≥ τ
(3.2)

and

x(t) = c0 −
∑
i

ai

∫ t

λi(t)

x(s)ds(3.3)

with c0 := φ(0)+
∑
i ai
∫ 0

−τi φ(s)ds. For t ≥ τ we substitute x(λ(t)) of the first form

with the right hand-side equivalent of the second form and we derive the following
form of the solution of (3.1):

x(t) = e−aτc0 +
∑
i

∫ λ(t)

λi(λ(t))

(
e−a(t−w−τi) − e−aτ

)
a+
i x(w)dw

+
∑
i

∫ λi(t)

λ(t)

e−a(t−w−τi)a+
i x(w)dw +

∑
i

|a−i |
∫ t

λi(t)

x(w)dw

−
∑
i

∫ t

λ(t)

e−a(t−s)a|a−i |
∫ s

λi(s)

x(w)dwds

= e−aτc0 +
∑
i

∫ λ(t)

λi(λ(t))

[(
e−a(t−w−τi) − e−aτ

)
a+
i −

∫ gi(w)

λ(t)

e−a(t−s)a|a−i |ds
]
x(w)dw

+
∑
i

∫ λi(t)

λ(t)

[
e−a(t−w−τi)a+

i −
∫ gi(w)

w

e−a(t−s)a|a−i |ds
]
x(w)dw

+
∑
i

∫ t

λi(t)

|a−i |
[
1−

∫ t

w

ae−a(t−s)ds

]
x(w)dw

(3.4)

where the last step is due to the change of the order of integration on the term∑
i

∫ t
t−τ e

−a(t−s)a|a−i |
∫ s
s−τi x(w)dwds. This will be our solution operator, for t ≥ τ .

We exploit the monotonicity of the integrand functions to arrive in the following
condition

Assumption 1. There exists α ∈ [0, 1) such that

1− e−aτ −
∑
i

[
τi|ai|e−aτ −

|a−i |
a

(
1− e−aτi − e−aτ + e−a(τ−τi)

)]
≤ α

Remark 1. We outline the following two special cases:
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(1) a−i ≡ 0: The condition reduces to 1 − e−aτ −
∑
i aiτie

−aτ =: α < 1 and it
is satisfied for any magnitude of τi, ai <∞.

(2) a+
i ≡ 0: Then a = 0 and the condition reduces to

∑
i |aiτi| ≤ α < 1.

For γ ∈ (0, a) we define the quantities

Γ1(i, γ) = |a−i |e
aτie−(a−γ)τ 1− e−(a−γ)τi

a− γ − |a−i |e
γτ e

γτi − 1

γ

Γ2(i, γ) = |a−i |(e
aτi − 1)

e−(a−γ)τi − e−(a−γ)τ

a− γ

Γ3(i, γ) = |a−i |
e(a−γ)τi − 1

a− γ

and we pick γ small enough so that

(3.5)
∑
i

a+
i

(
eγτi

1− e−aτ

a− γ − e−aτ e
γτi − 1

γ

)
+

3∑
j=1

Γj(i, γ) ≤ 1.

One can always find such γ to satisfy this condition since in the limit γ ↓ 0 (3.5)
coincides with Assumption 1. We state and prove now the first result of this work.

Theorem 3.1. Under Assumption 1, the solution of (3.1) is exponentially asymp-
totically stable with respect to ∆. More specifically, the solution converges to

(3.6) k =
φ(0) +

∑m
i=1 ai

∫ 0

−τi φ(s)ds

1 +
∑m
i=1 aiτi

exponentially fast with exponent γ that satisfies (3.5).

Proof. At first, we see that k is well-defined as if, 1 +
∑m
i=1 aiτi ↓ 0 then the left

hand side of the expression in the Assumption 2 gets greater than 1.
Next, we prove stability of the solution with respect to ∆. Fix ε > 0 and k. We

pick φ and δτ = δτ (ε, k) < ε so that |x(t, φ) − k| < δτ for t ∈ [−τ, τ ]. Such a δτ
can always be found by the continuous dependence on initial conditions. Next we
pick δ ≤ δτ satisfying δ(1 +

∑
i aiτi)e

−aτ + αε < ε, consider the first time t∗ ≥ τ
such that |x(t∗, φ) − k| = ε and express x as in (3.4) to arrive in a contradiction.
Finally, we prove exponential convergence to k by a fixed point argument. Consider
the metric space (M, ρ) with

M =
{
y ∈ C0([−τ,∞),R) : y = x̃|[−τ,τ ], sup

t≥τ
eγt|y(t)− k| <∞

}
and ρ(x1, x2) = supt≥τ e

γt|x1(t) − x2(t)|. It is a standard exercise to show that
(M, ρ) is a complete metric space [20]. Next, we define the operator

(Px)(t) =

{
x̃(t), t ∈ [−τ, τ ]

x(3.4)(t), t ≥ τ

To show that P is a member of M we observe that it is continuous and it agrees in
[−maxi τi, τ ] with any member of M, by definition. Next supt≥τ e

γt|(Px)(t)− k| is
finite, for γ < a. Finally, we show that P is a contraction in (M, ρ): For x1, x2 ∈M
we calculate an upper bound of eγt|Px1 − Px2| and we arrive at

eγt|Px1(t)− Px2(t)| ≤ Γ(t, γ)ρ(x1, x2)

where supt≥τ Γ(t, γ) is equal to (3.5). Then Theorem 2.1 can be applied concluding
the proof. �
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4. The General Model

The purpose of this section is to generalize the equation (3.1) in the case of time
varying weights and delays and study the stability of solutions in a similar way.

(4.1)

{
ẋ(t) =

∑m
i=1−ai(t)x(t) + ai(t)x

(
λi(t)

)
, t ≥ t0

x(t) = φ(t), t ∈ It0 .

where ai(t) are functions to be determined and λi(t) = t − τi(t) as defined in §2.
As opposed to §3 there is a number of reasons to focus on the dynamics of the first
derivative of the state w := ẋ for Eq. (4.1), rather than the study of x itself. It
should be intuitively clear that there is no hope to try to express the asymptotic
value k in a closed form due to the time-varying nature of the system. Then since x
always converges to R whenever

∫∞
w(s)ds exists, it is desirable to seek the solution

w in (4.1) in L1. To outline this method, let the simplified system

ẋ(t) = −a(t)x(t) + a(t)x(λ(t)).

We note that w satisfies both

w(t) = −a(t)

∫ t

λ(t)

w(s)ds

and

ẇ(t) = −a(t)w(t) + a(t)w(λ(t))λ̇(t)− ȧ(t)

∫ t

λ(t)

w(s)ds

The latter is an integrodifferential equation which will be handled with the method
of resolvents [25] in order to express the solution w in a suitable form. Prior to the
analysis, we state the following set of assumptions:

Assumption 2. ∀i = 1, . . . ,m, ai(·) ∈ C0([t0,∞), [−M,M ]) for some M > 0 and
uniformly bounded integrable first derivative.

Assumption 3. ∀i = 1, . . . ,m, τi(t) ∈ C1([t0,∞),R+) with t − τi(t) → +∞ as
t→ +∞ and τ̇i(t) < 1.

This condition is a very mild one and it is involved with deterministic issues. It
also implies that t− τi(t) are invertible functions with gi(·) to denote their inverses.

Assumption 4. ∀i = 1, . . . ,m it holds that:

sup
t

∫ t

λ(t)

ai(s)ds <∞.

4.1. The dynamics of w and the solution operator. Consequently w = ẋ
satisfies the following initial value problem

(4.2)

{
ẇ(t) =

∑m
i=1−ai(t)w(t) + ai(t)w(λi(t))λ̇i(t)− ȧi(t)

∫ t
λi(t)

w(s)ds, t ≥ g(2)(t0)

w(t) = φw(t), t ∈ [t0, g
(2)(t0)]

We separate the positive ai(t)’s from the negative ones and we observe that w
satisfies both

ẇ =

m∑
i=1

−a+
i (t)w(t) + a+

i (t)w(λi(t))λ̇i(t)− ȧ+
i (t)

∫ t

λi(t)

w(s)ds− d

dt

(
a−i (t)

∫ t

λi(t)

w(s)ds

)(4.3)

and

(4.4) w(t) = −
m∑
i=1

ai(t)

∫ t

λi(t)

w(s)ds
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The notation ȧ
+/−
i stands for d

dt (a
+/−
i (t)). We take P (s) = R(t, s)w(s) for a func-

tion R(t, s) so that R(t, t) ≡ 1 to be determined. Then

Ṗ = Rs(t, s)w(s) +R(t, s)ẇ(s) = Rs(t, s)w(s) +R(t, s)ẇ(4.3)(s)

= Rs(t, s)w(s) +R(t, s)

( m∑
i=1

−a+
i (s)w(s) + a+

i (s)w
(
λi(s)

)
λ̇i(s)− ȧ+

i (s)

∫ s

λi(s)

w(u)du

)

−R(t, s)

m∑
i=1

d

dt

(
a−i (t)

∫ t

λi(t)

w(s)ds

)
.

For any t ≥ g(g(t0)) we invert the latter equation from λ(t) to t and we apply
Fubini’s theorem, integration by parts and substitute Eq. (4.4):

w(t)−R(t, λ(t))w(λ(t)) = w(t)−R(t, λ(t))w(4.4)(λ(t)) =

∫ t

λ(t)

Rs(t, s)w(s)ds+

+

m∑
i=1

[ ∫ t

λ(t)

R(t, s)

(
− a+

i (s)w(s) + a+
i (s)w

(
λi(s)

)
λ̇i(s)− ȧ+

i (s)

∫ s

λi(s)

w(u)du

)
ds−

−
∫ t

λ(t)

R(t, s)
d

ds

(
a−i (s)

∫ s

λi(s)

w(u)du

)]
ds

⇒

w(t) =

=

m∑
i=1

[ ∫ λ(t)

λi(λ(t))

(
R(t, gi(s))a

+
i (gi(s))−R(t, λ(t))a+

i (λ(t))−
∫ gi(s)

λ(t)

R(t, u)ȧ+
i (u)du

)
w(s)ds+

+

∫ λi(t)

λ(t)

(
1

m
Rs(t, s)−R(t, s)a+

i (s) +R(t, gi(s))a
+
i (gi(s))−

∫ gi(s)

s

R(t, u)ȧ+
i (u)du

)
w(s)ds+∫ t

λi(t)

(
1

m
Rs(t, s)−R(t, s)a+

i (s)−
∫ t

s

R(t, u)ȧ+
i (u)du

)
w(s)ds+

−
∫ t

λ(t)

R(t, s)
d

ds

(
a−i (s)

∫ s

λi(s)

w(u)du

)
ds−R(t, λ(t))a−i (λ(t))

∫ λ(t)

λi(λ(t))

w(s)ds

]

w(t) =

m∑
i=1

[ ∫ λ(t)

λi(λ(t))

(∫ gi(s)

λ(t)

Ru(t, u)a+
i (u)du

)
w(s)ds+

+

∫ λi(t)

λ(t)

(
1

m
Rs(t, s) +

∫ gi(s)

s

Ru(t, u)a+
i (u)du

)
w(s)ds+∫ t

λi(t)

(
1

m
Rs(t, s)− a+

i (t) +

∫ t

s

Ru(t, u)a+
i (u)du

)
w(s)ds−

− a−i (t)

∫ t

λi(t)

w(s)ds+

∫ λ(t)

λi(λ(t))

∫ gi(s)

λ(t)

Ru(t, u)a−i (u)duw(s)ds+

+

∫ λi(t)

λ(t)

∫ gi(s)

s

Ru(t, u)a−i (u)duw(s)ds+

∫ t

λi(t)

∫ t

s

Ru(t, u)a−i (u)duw(s)ds

]
From the expression of w(t) above we draw our attention to the term

Si =

∫ λi(t)

λ(t)

(
1

m
Rs(t, s) +

∫ gi(s)

s

Ru(t, u)a+
i (u)du

)
w(s)ds+∫ t

λi(t)

(
1

m
Rs(t, s)− a+

i (t) +

∫ t

s

Ru(t, u)a+
i (u)du

)
w(s)ds
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The first part of Si is equal to∫ λi(t)

λ(t)

(
1

m
Rs(t, s) +

∫ t

s

Ru(t, u)a+
i (u)du

)
w(s)ds−

∫ λi(t)

λ(t)

(∫ t

gi(s)

Ru(t, u)a+
i (u)du

)
w(s)ds

and the second term of those above equals

−
∫ λi(t)

λ(t)

(∫ t

gi(s)

Ru(t, u)a+
i (u)du

)
w(s)ds = −

∫ λi(t)

λ(t)

a+
i (t)w(s)ds+

+

∫ λi(t)

λ(t)

R(t, gi(s))a
+
i (gi(s))w(s)ds+

∫ λi(t)

λ(t)

(∫ t

gi(s)

R(t, u)ȧ+
i (u)du

)
w(s)ds

All in all,

Si =

∫ λi(t)

λ(t)

(
R(t, gi(s))a

+
i (gi(s)) +

∫ t

gi(s)

R(t, u)ȧ+
i (u)du

)
w(s)ds+

+

∫ t

λ(t)

(
1

m
Rs(t, s)− a+

i (t) +

∫ t

s

Ru(t, u)a+
i (u)du

)
w(s)ds

We group the components of w in [λi(λ(t)), λ(t)], [λ(t), λi(t)] and [λi(t), t] and sum
over i to obtain the following form of w:

w(t) =

m∑
i=1

[ ∫ λ(t)

λi(λ(t))

(∫ gi(s)

λ(t)

Ru(t, u)a+
i (u)du

)
w(s)ds

+

∫ λi(t)

λ(t)

(
R(t, gi(s))a

+
i (gi(s)) +

∫ t

gi(s)

R(t, u)ȧ+
i (u)du

)
w(s)ds+∫ t

λ(t)

(
1

m
Rs(t, s)− a+

i (t) +

∫ t

s

Ru(t, u)a+
i (u)du

)
w(s)ds+

− a−i (t)

∫ t

λi(t)

w(s)ds+

∫ λ(t)

λi(λ(t))

∫ gi(s)

λ(t)

Ru(t, u)a−i (u)duw(s)ds+

+

∫ λi(t)

λ(t)

∫ gi(s)

s

Ru(t, u)a−i (u)duw(s)ds+

∫ t

λi(t)

∫ t

s

Ru(t, u)a−i (u)duw(s)ds

]
Consequently,

w(t) =

m∑
i=1

[ ∫ λ(t)

λi(λ(t))

I1(i, t, s)w(s)ds+

∫ λi(t)

λ(t)

I2(i, t, s)w(s)ds+∫ t

λ(t)

I3(i, t, s)w(s)ds+

∫ t

λi(t)

I4(i, t, s)w(s)ds

]
where
I1(i, t, s) :=

∫ gi(s)
λ(t)

Ru(t, u)ai(u)du

I2(i, t, s) := a+
i (t)−

∫ t
gi(s)

Ru(t, u)a+
i (u)du+

∫ gi(s)
s

Ru(t, u)a−i (u)du

I3(i, t, s) := 1
mRs(t, s)− a

+
i (t) +

∫ t
s
Ru(t, u)a+

i (u)du

I4(i, t, s) := −a−i (t) +
∫ t
s
Ru(t, u)a−i (u)du

If R(t, s) is defined by:

R(t, s) = 1− a(t)

∫ t

s

e−
∫ t
u a(y)dydu
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where a(t) =
∑m
i=1 a

+
i (t) and R(t, t) ≡ 1. Then we see that

m∑
i=1

∫ t

λ(t)

I3(i, t, s)w(s)ds =

=

∫ t

λ(t)

(
a(t)e−

∫ t
s a(y)dy −

m∑
i=1

a+
i (t) + a(t)(1− e−

∫ t
s a(y)dy)

)
w(s)ds = 0

so the I3 term is canceled and finally the solution w satisfies

w(t) =

m∑
i=1

[ ∫ λ(t)

λi(λ(t))

I1(i, t, s)w(s)ds+

∫ λi(t)

λ(t)

I2(i, t, s)w(s)ds+

∫ t

λi(t)

I4(i, t, s)w(s)ds

](4.5)

Assumption 5. There exists α ∈ [0, 1]

(4.6) sup
t≥g(2)(t0)

m∑
i=1

∫ λ(t)

λi(λ(t))

|I1(i, t, s)|ds+

∫ λi(t)

λ(t)

|I2(i, t, s)|ds+

∫ t

λi(t)

|I4(i, t, s)|ds < α

Theorem 4.1. Under Assumptions 2,3,4,5 the solution of (4.1) is asymptotically
stable with respect to ∆ and the rate of convergence is governed by a rate function
h satisfying

sup
t≥t0

h(t)

m∑
i=1

∫ λ(t)

λi(λ(t))

|I1(i, t, s)|
h(s)

ds+

∫ λi(t)

λ(t)

|I2(i, t, s)|
h(s)

ds+

∫ t

λi(t)

|I4(i, t, s)|
h(s)

ds < 1

Proof. Since x(t) = x(t0) +
∫ t
t0
w(s)ds where w is the solution of (4.2) for φw = ẋ

defined on [t0, g(g(t0))]. If w(t) ∈ L1 then obviously k = x(t0) +
∫∞
t0
w(s)ds. It

suffices then to prove that w being the solution of (4.2) is integrable. Consequently
it is bounded by a rate function h that is integrable. The part of stability of x with
respect to ∆ is identical to the proof of Theorem 3.1 and it will be omitted. Then
we only need to prove the part of asymptotic convergence. Define

Mh =

{
y ∈ C0([t0,∞),R) : y = φw|[t0,g(2)(t0)], y ∈ L

1, sup
t≥t0

h(t)|w(t)| <∞
}

i.e. the space of absolutely integrable functions that vanish at rate 1/h, together
with the metric ρh(y1, y2) = supt≥t0 h(t)|y1(t)− y2(t)|. The couple (Mh, ρh) consti-
tutes a complete metric space. For w ∈Mhwe define the operator

(Ew)(t) =

{
φw(t), t ∈ [t0, g

(2)(t0)]

w(4.5)(t), t ≥ g(2)(t0)

where w(4.5) is the right hand-side of (4.5). To show that Ey is in Mh we use
Assumptions 2, 3 and 4 to show that Ii are bounded. It is a tedious but straightfor-
ward exercise. Therefore h(t)(Ey)(t) <∞ for h that for the scopes of this work can

be either exponential h(t) = eγt for some γ > 0 or sub-exponential h(t) =
(
t+ t0

)δ
for some δ > 1 depending on whether τ(t) is bounded or unbounded. Again it is a

straightforward exercise to show that supt≥t0 h(t)
∫ t
λ(t)

ds
h(s) < ∞ and similarly for

the rest of the two integrals of w(4.5).

Next, we show that
∫∞

(Ew)(s)ds is finite. To see this take∣∣∣∣ ∫ ∞
g(g(t0))

∫ λ(t)

λi(λ(t))

I1(i, t, s)w(s)dsdt

∣∣∣∣ ≤ ∫ ∞
t0

(∫ g(gi(s))

g(s)

|I(i, t, s)|dt
)
w(s)ds.

The inner integral is bounded in view of Assumption 4 and for w ∈ L1, Ew is in L1,
as well. For the rest of the terms we argue in the same way. Finally we can show
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that E is a contraction in Mh using Assumption 5 and Theorem 2.1 can be applied
concluding the proof. �

Remark 2. Let ai(t) = a(t) ≥ 0 and ġ smooth enough. From Eq. (4.5) w satisfies

w(t) =

m∑
i=1

[ ∫ λ(t)

λi(λ(t))

I1(i, t, s)w(s)ds+

∫ λi(t)

λ(t)

I2(i, t, s)w(s)ds

]
where
I1(i, t, s) :=

∫ gi(s)
λ(t)

Ru(t, u)ai(u)du and I2(i, t, s) := ai(t)−
∫ t
gi(s)

Ru(t, u)ai(u)du.

Then direct calculation yields

∫ λ(t)

λi(λ(t))

|I1(i, t, s)|ds =

∫ λ(t)

λi(λ(t))

a(t)ai(gi(s))

a(gi(s))
e
−

∫ t
gi(s)

a(q)dq
ds

− a(t)ai(λ(t))

a(λ(t))

(
λ(t)− λi(λ(t))

)
e
−

∫ t
λ(t) a(q)dq − a(t)

∫ λ(t)

λi(λ(t))

∫ gi(s)

λ(t)

e−
∫ t
u a(q)dq

(
ai(u)

a(u)

)′
duds

=
a(t)ai(gi(λ(t)))

a2(gi(λ(t)))ġi(λ(t))
e
−

∫ t
gi(λ(t)) a(q)dq−

− (1− τ̇i(λ(t)))a(t)ai(λ(t))

a2(λ(t))
e
−

∫ t
λ(t) a(q)dq − a(t)

∫ λ(t)

λi(λ(t))

e
−

∫ t
gi(s)

a(q)dq

(
ai(gi(s))

a2(gi(s))ġi(s)

)′
ds

− a(t)ai(λ(t))

a(λ(t))

(
λ(t)− λi(λ(t))

)
e
−

∫ t
λ(t) a(q)dq − a(t)

∫ λ(t)

λi(λ(t))

∫ gi(s)

λ(t)

e−
∫ t
u a(q)dq

(
ai(u)

a(u)

)′
duds

and

∫ λi(t)

λ(t)

|I2(i, t, s)|ds ≤
∫ λi(t)

λ(t)

a(t)ai(gi(s))

a2(gi(s))ġi(s)

d

ds

(
e
−

∫ t
gi(s)

a(q)dq

)
+

+

∫ λi(t)

λ(t)

a(t)

∫ t

gi(s)

e−
∫ t
u a(q)dq

∣∣∣∣(ai(u)

a(u)

)′∣∣∣∣duds
≤ ai(t)(1− τ̇i(t))

a(t)
− a(t)ai(gi(λ(t)))

a2(gi(λ(t)))ġi(λ(t))
e
−

∫ t
gi(λ(t)) a(q)dq−

−
∫ λi(t)

λ(t)

e
−

∫ t
gi(s)

a(q)dq

(
a(t)ai(gi(s))

a2(gi(s))ġi(s)

)′
ds+

+

∫ λi(t)

λ(t)

a(t)

∫ t

gi(s)

e−
∫ t
u a(q)dq

∣∣∣∣(ai(u)

a(u)

)′∣∣∣∣duds
Where we used the fact that ġi(λi(t)) = 1

1−τ̇i(t) . So, summing over i and canceling

the common terms, the condition of Assumption 5 reduces to

1− a(t)

a(λ(t))
e
−

∫ t
λ(t) a(s)ds −

m∑
i=1

a(t)ai(λ(t))

a(λ(t))
(λ(t)− λi(λ(t)))e

−
∫ t
λ(t) a(s)ds

+ F (ȧi, τ̇i) < 1

with F

F : =

m∑
i=1

[
ai(t)τ̇i(t)

a(t)
− a(t)

∫ λi(t)

λi(λ(t))

e
−

∫ t
gi(s)

a(q)dq

(
a(t)ai(gi(s))

a2(gi(s))ġi(s)

)′
ds+

+
τ̇i(λ(t))a(t)ai(λ(t))

a2(λ(t))
e
−

∫ t
λ(t) a(q)dq − a(t)

∫ λ(t)

λi(λ(t))

∫ gi(s)

λ(t)

e−
∫ t
u a(q)dq

(
ai(u)

a(u)

)′
duds+

+

∫ λi(t)

λ(t)

a(t)

∫ t

gi(s)

e−
∫ t
u a(q)dq

∣∣∣∣(ai(u)

a(u)

)′∣∣∣∣duds]
to be a function with the property that F (0, 0) = 0.
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Remark 3. Let simplify further to m = 1, a(t) ≥ 0 and τ(t) ≡ τ . Then for
at = mins∈It a(t)

a(t)

∫ t−τ

t−2τ

e−
∫ t
s+τ a(y)dyds− a(t)τe−

∫ t
t−τ a(s)ds =

a(t)

at

(
1− e−atτ

)
− a(t)τe−

∫ t
t−τ a(s)ds

and consequently delay independent results occur for ȧ ≤ 0. We speculate that such
a result holds for m > 1 as well.

Remark 4. If ai ≤ 0 then R(t, s) ≡ 1, I1 = I2 = I3 = 0 while I4 = −ai(t).
Consequently, the condition of Assumption 5 reduces to

∑m
i=1 |ai(t)τi(t)| < 1.

5. The General Model: Another Approach

In this section we generalize the results of Sect. 3 by considering the problem

(5.1)

{
ẋ(t) =

∑m
i=1−ai(t)x(t) + ai(t)x

(
λi(t)

)
, t ≥ t0

x(t) = φ(t), t ∈ It0 .

The method of the preceding Sections relies on the observation that either x or ẋ
have an integral of motion (Eqs. (3.3) and (4.4) respectively). Here we study the
stability of the solutions of Eq. (5.1), by means of fixed point theory, but this time
we follow another approach. We will separate the systems parameters ai(t)’s as
before and we will use only one form of the solutions in segments intervals of time
in which Schauder’s first fixed point theorem will be applied [9]. This way we will
recover the estimates of [16]. Next we will extend to the overall dynamics using a
variation of parameters formula. At first we re-write (5.1) as

(5.2) ẋ(t) = f1(t, xt) + f2(t, xt)

where

f1(t, xt) = −
m∑
i=1

a+
i (t)x(t) +

m∑
i=1

a+
i (t)x(t− τi(t))

f2(t, xt) = −
m∑
i=1

a−i (t)x(t) +

m∑
i=1

a−i (t)x(t− τi(t))

and we will study the system in two steps. At the first step only the dynamics of

(5.3) ẏ(t) = f1(t, yt)

are involved. At the second step, we will obtain convergence result for (4.1) as
a whole by considering the stability of (5.2) where f2 is a perturbation whenever
f1 6≡ 0. Otherwise the results of Theorem 4.1 are directly applied.

Inverting (5.3) from λ(t) to t we see that y satisfies

y(t) = φ(t, λ(t))y(λ(t)) +

∫ t

λ(t)

φ(t, s)
∑
i

a+
i (s)y(λi(s))ds

Proposition 1. Under Assumptions 2, 3 and 4, the solution y(t, t0, φ) of (5.3)
satisfies

1. y(s) ∈Mλ(t),y for s ∈ It and

2. maxs∈It |y(s)− y(λ(t))| ≤ (1− e−Θ)lt |Mt0,φ|
where Θ = Θt0 := supt≥t0

∫ t
t−τ(t)

a(s)ds, lt = l ∈ Z+ such that λ(2l)(t) ≥ t0.

Proof. We begin with the proof of the first part. Fix a time t ≥ t0 and observe that
if τ(t) = 0 then the result trivially follows. So for τ(t) 6= 0 we consider the solution
segment y(s, t0, φ), s ∈ Iλ(t). Consider the space
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L1 =
{
z ∈ C0(Iλ(t)∪It,R) : z(s) = y(s), s ∈ Iλ(t) and z(s) ∈ [ min

q∈Iλ(t)

y(q), max
q∈Iλ(t)

y(q)], s ∈ It
}

and the operator

(Qz)(s) =

{
y(s), s ∈ Iλ(t)

φ(s, λ(t))y(λ(t)) +
∑m
i=1

∫ s
λ(t)

φ(s, q)a+
i (q)z(λi(q))dq, s ∈ It.

Now, L1 is a set of continuous and bounded functions defined in Iλ(t)∪It equipped
with the supremum norm. Since

w(s) =

{
y(s), s ∈ Iλ(t),
maxq∈Iλ(t)

y(q)−y(λ(t))

τ(t) s+
y(λ(t))·t−maxq∈Iλ(t)

y(q)λ(t)

τ(t) , s ∈ It
is a member of L1 the set is non-empty and we can easily show that it is convex.

Obviously |ẇ(s)| ≤ |Mλ(t),y|
τ(t) . Observe that Q : L1 → L1 because

(Qz)(s) ≤ φ(s, λ(t)) max
q∈Iλ(t)

y(q) + (1− φ(s, λ(t))) max
q∈Iλ(t)

y(q) = max
q∈Iλ(t)

y(q)

and similarly for the lower bound.
Clearly, Q is continuous in L1 and | dds (Qz)(s)| ≤ 2Ammaxq∈Iλ(t)

y(q). The

maximum of the two upper bounds of |ẇ| and | dds (Qz)(s)| is taken to form for an
equi-continuous subset of L1, denoted by L∗1, into which both w and (Qz) belong.
This is then compact by the Arzela-Ascoli Lemma and still non-empty and convex
so that finally Theorem 2.2 can be applied and Q admits a fixed point in L∗1.

We proceed now with the second part. For ε ∈ [0, 1) consider the space

Lε2 =
{
z ∈ L∗1 : max

q∈Iλ(t)∪It
|z(q)− z(λ(t))| = max

q∈Iλ(t)

|z(q)− z(λ(t))|,

|z(s)− z(λ(t))| ≤ ε max
q∈Iλ(t)

|z(q)− z(λ(t))|, s ∈ It
}
.

and this is a convex subset of L∗1. We observe that

|(Qz)(s)− z(λ(t))| ≤
∫ t

λ(t)

∣∣∣∣φ(s, q)

m∑
i=1

a+
i (q)

(
z(λi(q))− z(λ(t))

)∣∣∣∣dq
≤ (1− e−Θ) max

q∈Iλ(t)∪It
|z(q)− z(λ(t))|

we set ε := (1 − e−Θ). Clearly, z(s) = y(s)|s∈Iλ(t)
identical for all z ∈ Lε2. Now, if

the maximizer of |Qz(q) − y(λ(t))| is in Iλ(t) it follows that Q : Lε2 → Lε2. If not
then the maximizer lies in It and then

max
q∈Iλ(t)∪It

|(Qz)(q)− z(λ(t))| = max
q∈It
|(Qz)(q)− z(λ(t))|

≤ ε max
q∈Iλ(t)∪It

|z(q)− z(λ(t))|

= ε max
q∈Iλ(t)

|z(q)− z(λ(t))|

= ε max
q∈Iλ(t)

|(Qz)(q)− z(λ(t))|

but this is a contradiction. Using the same argumentation as above, Q’s fixed point
lies in Lε2. Furthermore, as t ≥ t0 is arbitrary we can repeat the same argument for
t = s where s is a maximizer of z(s) in Iλ(t) and so and so forth.
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This recursive argumentation can be used at most l = lt times so that λ(2l)(t) ≥
t0. By the first part of the proposition,

max
q∈I

λ(2l)(t)

∣∣z(q)− z(λ(2l−1)(t))
∣∣ ≤ |Mt0,φ|

concluding the proof of the second part. �

Now we are ready to state and prove the first main result of this section

Theorem 5.1. Under Assumptions 2, 3 and 4, the solution y(t, t0, φ) of 5.3 satisfies

|y(t)− k| ≤ (1− e−Θ)lt |Mt0,φ|

for some k ∈Mt0,φ, Θ = supt
∫ t
t−τ(t)

a(s)ds and lt = l ∈ Z+ : λ(2l)(t) ≥ t0.

Proof. From the second part of Proposition 1, we can show that for an arbitrary
sequence {tn}n≥1 with n → ∞, tn → ∞, yn = y(tn) is Cauchy. Indeed fix ε > 0,
N > 0, m,n ≥ N such that tm > tn > N : From Proposition 1 we take λ(t) = tn so
that for s ∈ [tn, λ

−1(tn)] we have |y(s) − y(tn)| < |Mt0,φ|γlN . This procedure will
be repeated l times until tm is reached so that the admitted estimate is calculated

|y(tn)− y(tm)| ≤ |Mt0,φ|γ
lN (1 + γ + γ2 + · · ·+ γl) ≤ |Mt0,φ|

γlN

1− γ

Then for N so large that lN >
log(

ε(1−γ)
M )

log(γ) the result follows. Next, since tn is

arbitrary any two such sequences can form a new one which will be Cauchy and
from this we conclude that k := limt y(t) ∈ R

From the first part of Proposition 1 we see that k must lie in [µ1(t), µ2(t)] for
µ1, µ2 as defined in it’s proof. So for any t there exists t∗ ∈ Iλ(t) such that y(t∗) = k
and then from the second part of Proposition 1,

|y(t)− y(t∗)| = |y(t)− k| ≤ (1− e−Θ)
∣∣ max
s∈I(2)

t

y(s)− k
∣∣

Define the sequence tn = t, tn−1 = argmax
s∈I(2)

t
y(s) to obtain

|y(t)− k| = |y(tn)− k| ≤ (1− e−Θ)
∣∣y(tn−1)− k

∣∣ ≤ (1− e−Θ)lt |Mt0,φ|.
�

Remark 5. If τ(t) ≤ τ <∞ then λ2l(t) ≥ t−2lτ and it suffices to take lt = t−t0
2τ −1

so that
|y(t)− k| ≤Mt0,φ(1− e−Θ)−1e

1
2τ

ln(1−e−Θ)·(t−t0)

Remark 6. The obtained rate estimates are the same with the ones obtained in
[16] where a Lyapunov-Rhazumikhin type of argument was used.

Based on Theorem 5.1 we proceed now to consider the overall (5.1) and we
establish sufficient conditions for the asymptotic stability of solutions with respect
to ∆. For this we will need the following auxiliary result:

Lemma 5.2. Let ξ(t, u) : [t0,∞) × [t0,∞) → R , f, g : [t0,∞) → R be integrable
bounded functions with the properties that

(1) limt→∞ f(t) = 0
(2) limt→∞ ξ(t, u) = 0 for any fixed u ≥ t0.

(3) supt≥t0
∫ t
t0
|ξ(t, u)g(u)|du <∞.
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Then ∫ t

t0

ξ(t, u)g(u)f(u)du→ 0 as t→∞

Proof. Fix ε > 0 and set B1 = supt≥t0
∫ t
t0
|ξ(t, u)g(u)|du and B2 =

∫ t1
t0
|g(u)f(u)|du.

From Property 1, there exist t1 > t0 such that |f(t)| < ε
2B1

for t > t1 and t2 > t1
such that q(t, s) < ε

2B2
for s ≤ t1 and t ≥ t2. Then for such t∫ t

t0

ξ(t, u)g(u)f(u)du <

∫ t1

t0

|ξ(t, u)g(u)f(u)|du+

∫ t

t1

|ξ(t, u)g(u)f(u)|du

<
ε

2B2

∫ t1

t0

|g(u)f(u)|du+
ε

2B1

∫ t

t1

|ξ(t, u)g(u)|du < ε.

For arbitrary ε > 0 the result follows. �

Remark 7. Notice that if ξ(t, s) = ξ(t−s) for ξ ∈ L1 then Lemma 5.2 is the classical
result of Real Analysis that the convolution of an L1 function with a function that
goes to zero, vanishes as well.

The outcome of Theorem 5.1 implies the existence of a rate function 1/q(t, t0)
with the property that q(t, t0)→ 0 for t→∞ for any fixed t0 such that

|y(t)− k0| ≤ q(t, t0)|Mt0,φ|

for some limit point k0 ∈Mt0,φ.

Theorem 5.3. Consider the initial value problems (5.1) and (5.3) with solutions
x(t, t0, φ) and y(t, t0, φ) respectively and the rate function q(t, t0) associated with
y(t, t0, φ). The following cases are considered:

Case I: a(t) 6≡ 0 and there exists a rate function h with the properties:

1.
∫∞
t0

|a−i (u)|
h(u) du <∞, i = 1, . . . ,m

2. supu
h(λi(u))
h(u) <∞, i = 1, . . . ,m

3. supt≥t0 h(t)q(t, t0) <∞.
4. There exists t∗ such that

sup
t≥t∗

{
h(t)

m∑
i,j=1

∫ λi(t)

t0+τ(t0)

∫ gi(u)

u

(
q(t, s) + q(t, gi(u))

)
|a−i (s)|

(
|aj(u)|
h(u)

+
|aj(u)|
h(λj(u))

)
dsdu

+ h(t)

m∑
i,j=1

∫ ∞
λi(t)

∫ gi(u)

u

(q(gi(u), s) + 1)|a−i (s)|
(
|aj(u)|
h(u)

+
|aj(u)|
h(λj(u))

)
dsdu

}
< 1

Case II: a(t) ≡ 0 and there exists a rate function h with the properties

1. 1
h ∈ L

1

2. supt≥t0+τ(t0) h(t)
∑m
i=1 |a

−
i (t)|

∫ t
λi(t)

ds
h(s) ≤ 1.

Then the solution of (5.1) converges to a constant with rate 1
h .

Proof. We begin with Case I. Denote by y(t, t0, φ) be the unique solution of (5.3).

Next, consider the fixed solution of (5.1) in Ĩt0 := It0 ∪ [t0, t̃0], t̃0 = t0 + τ(t0) ,

φ̃ as initial condition. Given φ, growth estimates of x ∈ [t0, t̃0] can be established
with the use of Gronwal’s inequality or with contraction mappings. This step will
be omitted. Using the variations of constants formula for functional differential
equations [4], the solution of (5.1) satisfies for t ≥ t̃0
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x(t, t0, φ) = T (t, t̃0)φ̃−
∫ t

t̃0

T (t, s)

m∑
i=1

a−i (s)

∫ s

s−τi(s)
ẋ(u)duds

= T (t, t̃0)φ̃+

m∑
i,j=1

∫ t

t̃0

∫ s

s−τi(s)
T (t, s)a−i (s)aj(u)

(
x(u)− x(λj(u))

)
duds

= T (t, t̃0)r0 +

m∑
i,j=1

∫ λi(t)

t̃0

∫ gi(u)

u

T (t, s)a−i (s)aj(u)
(
x(u)− x(λj(u))

)
dsdu

+

m∑
i,j=1

∫ t

λi(t)

∫ t

u

T (t, s)a−i (s)aj(u)
(
x(u)− x(λj(u))

)
dsdu

= R1 +R2 +R3

(5.4)

where T (t, s) is the linear operator defined in §2 and

r0 := φ̃+

m∑
i,j=1

∫ t̃0

λi(t̃0)

∫ gi(u)

t̃0

T (t0, s)a
−
i (s)aj(u)

(
φ̃(u)− φ̃(λj(u))

)
dsdu

For any e(s) ∈ R, T (t, s)e(s) represents the solution of (5.3) y(t, s, φ∗) with
φ∗(s) = δ(s− u)e(u), u ∈ Is. Consequently |ks| ∈ [0, |e(s)|]. Consider the space

L3 =
{
z ∈ C0([λ(t0),∞),R) :z(s) = φ̃(s) if s ∈ Ĩt0 , sup

t≥t̃0
h(t)|z(t)− kz| ≤ C, |kz| ≤W

}
Where h is the rate function with the properties in the statement of the Theorem
and C,W are positive constants to be determined. Following the same steps as in the
proof of Theorem 5.1 we can show that L3 is a non-empty, compact, convex subset
of the space of continuous bounded functions in [λ(t0),∞) with the supremum norm
[20]. The only significant difference we need to take into consideration is that L3 is a
family of functions defined on the infinite interval [λ(t0),∞) so that the conventional
Arzela-Ascoli lemma does not apply but a certain modification of it applies in view
of the rate function h (see Theorem 1.2.2 of [20]). Define the operator

(Lx)(t) =

{
φ̃, Ĩt0
x(5.4)(t, t0, φ), t ≥ t̃0

where x(5.4) is the right hand side of (5.4). L is continuous in t and in x. Next
we need to determine k(Lz). Given z ∈ L3, we have

R1 → k0

R2 →
m∑

i,j=1

∫ ∞
t̃0

e(gi(u))

∫ gi(u)

u

T (gi(u), s)a−i (s)aj(u)
(
z(u)− z(λj(u))

)
dsdu

R3 → 0

where in R2 we used the property T (t, s) = T (t, gi(u))T (gi(u), s). Then,

k(Lz) = k0 +

m∑
i,j=1

∫ ∞
t̃0

e(gi(u))

∫ gi(u)

u

T (gi(u), s)a−i (s)aj(u)
(
z(u)− z(λj(u))

)
dsdu

where the last integral is well defined in view of the properties of h and Assumption
4. Next it is desirable to establish a suitable relationship between C and W . If we
set
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W := |k0|+ C

m∑
i,j=1

∫ ∞
t̃0

∫ u+τi(u)

u

|a−i (s)|
(
|aj(u)|
h(u)

+
|aj(u)|
h(λj(u))

)
dsdu

it is easy to see that |k(Lz)| is bounded by W . The final step for proving that
L : L3 → L3, is to show that supt≥t̃0 h(t)|z(t) − kz| ≤ C, if C is appropriately
chosen. Take any t∗ ≥ t0 + τ(t0 + τ(t0)) and for t ≥ t∗

sup
t≥t∗

h(t)|(Lz)(t)− k(Lz)| ≤ I1 + I2C + I3C

where

I1 := h(t)q(t, t̃0)JMt̃0,φ̃

I2 := h(t)

m∑
i,j=1

∫ λi(t)

t̃0

∫ gi(u)

u

(
q(t, s) + q(t, gi(u))

)
|a−i (s)|

(
|aj(u)|
h(u)

+
|aj(u)|
h(λi(u))

)
dsdu

I3 := h(t)

m∑
i,j=1

∫ ∞
λi(t)

∫ gi(u)

u

(q(gi(u), s) + 1)|a−i (s)|
(
|aj(u)|
h(u)

+
|aj(u)|
h(λj(u))

)
dsdu

From the first and second conditions of the theorem we set

C :=
I1

1− I2 − I3
<∞

so that L : L3 → L3. The case a ≡ 0 is identical to the corresponding one of
Theorem 4.1.

�

6. Examples

In this section, we will discuss the results of the previous sections with several
illustrative examples. It is our goal to consistently compare the applicability and
strength of the results especially those between §4 and §5. In the first part of this
we will focus on one dimensional examples and in the second part we will discuss
a two dimensional example that nearly lies within the scopes of this work, yet it
merges with the discussion in the introduction.

6.1. One dimensional examples. As a numerical application of Theorem 3.1
consider the following delayed equation

Example 1 (Stability bounds in LTI systems). Consider the initial value problem{
ẋ = −1.2x(t) + 1.2x(t− τ) + 2.3x(t)− 2.3x(t− σ), t ≥ 0

x(t) = φ(t), t ∈ [−max{τ, σ}, 0]

We will discuss the asymptotic behavior of solutions with respect to τ and σ and we
will compare the results of §3 and §5.

σ = 0: In this case both methods yield delay independent results, so we will compare
the estimates that Theorems 3.1 and 5.1 provide for τ = {1, .., 10}.
(1) Theorem 3.1 asks for

F (τ, 0) = 1− e−1.2τ − 1.2τe−1.2τ < 1

which is always satisfies and thus we have delay-independent exponen-
tial stability with respect to ∆ with rate γ = γ3.1 which satisfies

G(τ, γ3.1) = 1.2eγ3.1τ 1− e−1.2τ

1.2− γ3.1
− 1.2e−1.2τ e

γ3.1τ − 1

γ3.1
≤ 1.
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(2) Theorem 5.1 calculates Θ = 1.2τ and from Remark 5

|x(t)− k| ≤ |M0,φ|(1− e−1.2τ )−1e
1
2τ

ln(1−e−1.2τ )t

so that the estimated rate is γ5.1 = 1
2τ ln(1− e−1.2τ ).

In Fig. 1b we compare the two curves γ3.1 : G(τ, γ3.1) = 1 and γ5.1 for τ =
1, .., 10. We conclude that the estimates of Theorem 3.1 clearly outperform
these of Theorem 5.1. Simulations for τ = 5 indicate that, in general both
estimates are still away from the numerically verified ones by an order of
10 (see Fig. (1c)).

σ > 0: In this case the convergence is guaranteed for small values of σ. Again we
will compare the particular estimates that the Theorems provide.
(1) Assumption 1 asks for F (τ, σ) < 1 where

F (τ, σ) := 1− e−1.2τ −
[
1.2τe−1.2τ + 2.3σe−1.2τ−

− 1.9
(
1− e−1.2σ − e−1.2τ + e−1.2(τ−σ))]

In Fig. (1a) the function σ = σ(τ) is plotted for the values such that
F (τ, σ(τ)) = 1 which is the stability bounds of the system.

(2) From Theorem 5.3 we identify q(t, s) = e−γ5.1(t−s) with γ5.1 = γ5.1(τ) =
− 1

2τ ln(1 − e−1.2τ ) and rate that is estimated by Theorem 5.1, so that
condition 4 of Theorem 5.3 requires

(6.1)
2.76(1 + eγ5.3τ ) + 5.29(1 + eγ5.3σ)

γ5.1(γ5.1 − γ5.3)

(
eγ5.1σ − 1 + σeγ5.1σ

)
< 1

which is always satisfied for any τ and for σ small enough.
As a numerical application take τ = 1. Fig. (1a) yields stability for σ ≤
0.325 so we fix σ = 0.32. Then condition (3.5) of Theorem 3.1 yields a
rate equal to γ3.1 = 0.175 whereas Eq. (6.1) from Theorem 5.3 cannot reach
this estimate. Numerical inspection of this condition gives for σ ≈ 0.001 an
estimate γ(5.3) ≈ 0.071. Fig. (1d) has the solution for τ = 1, σ = 0.32 and
the estimated rate is 0.4.

Example 2. Consider the time-varying system{
ẋ = −a(t)x(t) + a(t)x(t− τ(t)) + b(t)x(t)− b(t)x(t− σ(t)), t ≥ t0
x(t) = φ(t), t ∈ [t0 − τ(t0), t0]

under the following cases:

(i) t0 = 0, a(t) = max{0, sin t}, b ≡ 0, τ(t) = τ + 0.9 cos t for τ ≥ 1, then
λ(t) = t− τ(t).

We begin with the application of Theorem (5.1). For this we numerically

calculate Θ(τ) = supt≥0

∫ t
λ(t)

a(s)ds and consequently the rate q̄(τ) as it is

estimated from Remark 5 (Figs. 2a and 2b respectively).
Next we will compare the result with this Theorem 4.1. Assumption 5

reads
F (τ) = sup

t
F (t, τ) < 1

with F (t, τ) = a(t)
∫ λ(t)

λ(2)(t)
e−

∫ t
g(s)

a(w)dwds−a(t)
(
λ(t)−λ(2)(t)

)
e−

∫ t
λ(t)

a(w)dw

and λ(t) = t− τ − 0.9 cos(t). Numerical calculation of F (τ) yields the val-
ues in Fig. 3 where we see that the condition is violated for τ ≥ 4 and
we conclude that the results of this method are not delay-independent. We
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Figure 1. Numerical investigations for Example 1. (A) σ 6= 0. and
the stability curve σ = σ(τ). The shaded region is the region of
stability i.e. (σ < σ(τ)). (B) The rate estimates between Theorem
3.1 (γ1) and Theorem 5.1 (γ2). (C) The solution of Example 1
with σ = 0, τ = 5 and φ(s) = sin(8s) + 2s , s ∈ [−5, 0] and
the (t, y(t)) curve defined by y(t) = ±(x(0) − k)e−0.05t + k. (D)
The solution of Example 1 with τ = 1, σ0.32 and identical initial
datum as in (C). The rate curves (t, y(t)) are defined by y(t) =
±(x(0)− k)e−0.4t + k. Both simulations were carried through with
MATLAB and the ddesd function.
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Figure 2. Numerical investigations for Example 2(i) based on
Theorem 5.1. The results are delay-independent but the estimated
rates are very conservative (see also Table 1).

report, however, that further calculations for the estimation of the rate of
convergence for τ = 1, . . . , 4, based on Theorem 4.1, reveals improved in
connection with the ones obtained with Theorem 5.1 (see Table 1). Simu-
lation of the solution x(t) is depicted in Figs. 4a with τ = 1 and 4b with
τ = 4. We see that the numerically obtained rate estimates are close to the
theoretically calculated ones from Theorem 4.1 and when τ = 1.

Table 1. Rate Estimates for Example 2(i). γrefthm2 stands for
the estimates obtained via Theorem 4.1 and γ5.1 stands for the
estimates obtained via Theorem 5.1

Delay Rate γ4.1 Rate γ5.1

1 0.540 0.150
2 0.144 0.056
3 0.079 0.022
4 0.062 0.016

(ii) t0 = 0 , a(t) = sin t, b(t) = b(1 + 0.3 cos t), and σ(t), τ(t) are posi-
tive, bounded, invertible functions of time and classify τ(t) = τ1, whenever
a(t) > 0 and τ(t) = τ2 otherwise. In this case we will exclusively apply the
results of §5. Given γ > 0 the problem is to derive a sufficient condition
on τ1(t), b(t), τ2(t), σ(t) so as to guarantee convergence to a constant value
exponentially fast with rate γ. Recall the notation a+(t), a−(t). At first, we
calculate the kernel q(t, s) that occurs from the study of the system

ẋ = −a(t)x(t) + a(t)x(t− τ(t))
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Figure 3. Numerical investigations for Example 2. The appli-
cation of Theorem 4.1 does not yield delay independent results
contrary to Theorem 5.1.
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Figure 4. Numerical investigations for Example 2. (A) τ = 1:
The rate curves (t, y(t)) are defined by y(t) = ±(x(0)−k)e−0.65t+k.
(B) τ = 4: The rate curves (t, y(t)) are defined by y(t) = ±(x(0)−
k)e−0.2t + k.

Note that

sup
t≥0

∫ t

t−τ(t)

a+(s)ds ≤ τ̄1

Then
|x(t)− k1| ≤ |M0,φ|(1− e−τ̄1)−1 · e−qt
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with

q := − ln(1− e−τ̄1)

2τ̄1

so that q(t, s) = (1 − e−τ̄1)−1e−q(t−s). Next, for h(t) = eγt, we see that
Properties (1)-(3) from Theorem 5.3 are satisfied and Property (4) yields
the condition[

(eγτ̄ + 1) + b(eγσ̄ + 1)

][
(1− e−τ̄1)−1 b(e

qσ̄ − 1) + (eqτ̄2 − 1)

q(q − γ)
+

+ (1− e−τ̄1)−1 bσ̄ + τ̄2
q − γ + (1− e−τ̄1)−1 b(1− e−qσ̄) + (1− e−qτ̄2)

qγ
+
bσ̄ + τ̄2
γ

]
< 1

This condition is fulfilled if γ < q and b, σ̄, τ̄2 are sufficiently small.
As a numerical application, take a(t) = sin t, τ̄1 = 1 so that q = 0.23,

(1− e−1)−1 = 1.59 and convergence is achieved with rate γ = q
2 if

b ≤ 0.05, σ̄ ≤ 0.02, τ̄2 ≤ 0.01.

(iii) a(t) ≡ 0. In this case Theorems 4.1 and 5.3 coincide. We have no dis-
sipation and the sufficient condition from the second part of Theorem 5.3
is

sup
t

b(t)(eγσ(t) − 1)

γ
≤ 1

(iv) t0 = 1, a(t) = 1
t+4 , τ(t) = t

4 + 1, b(t) ≡ b
t+5 , σ(t) = σ. In this example

we have unbounded delays so the rate function we will try is going to be
sub-exponential. We also ask σ < t0

4 + 1.
(a) For the results of §4 we choose h(t) = (t+h0)γ and we see that Theorem

4.1 imposes the condition:

A(γ, b, σ) := sup
t≥t0

(
A1 +A2 +A3 +A4

)
(t) ≤ 1

where

A1 =
(t+ h0)γ

(t+ 4)2

∫ 3
4
t−1

9
16
t− 7

4

(
4

3
s+

7

3
− 3

4
t

)
(s+ h0)−γds

A2 = b
(t+ h0)γ

(t+ 4)2

∫ 3
4
t−1

3
4
t−1−σ

∣∣∣∣34 t− s− σ − 1 + log

(
s+ σ + 5

3
4
t+ 4

)∣∣∣∣(s+ h0)−γds

A3 = b
(t+ h0)γ

(t+ 4)2

∫ t−σ

3
4
t−1

∣∣∣∣σ − log

(
s+ σ + 5

s+ 5

)∣∣∣∣(s+ h0)−γds

A4 = b(t+ h0)γ
∫ t

t−σ

∣∣∣∣ 1

t+ 5
−
(
t− s+ log

(
s+ 5

t+ 5

))∣∣∣∣(s+ h0)−γds

Let, initially, b = 0. Then for t0 = 1 we must choose h0 > 19/16,
say h0 = 5/4 and A(γ, 0, 0) ≤ for γ ≤ 3.21. Consequently the rate of
convergence to a constant is of order t−2.21. For b = 0.67, σ = 1 we
calculate A(γ, 0.67, 1) = 2.4 so that the rate is of order t−1.4.

(b) Assumption 4 is satisfied since

sup
t≥t0

∫ t

t
4
−1

a(s)ds = ln 4

Application of Theorem 5.1 requires to determine l : λ2l(t) ≥ t0. For

t ≥ t0 λ2l(t) =
(

3
4

)2l
t− 4 + 3

(
3
4

)2l−1
so that

l ≤ 1

2
log3/4

t0 + 4

t+ 4
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so that the integer part is lower bounded by 1
2 log3/4

t0+4
t+4 − 1. Finally

Theorem 5.1 gives the estimate

|x(t)− k0| ≤ 1.34|Mt0,φ|
√
t0 + 4

t+ 4
.

We apply Theorem 5.3 with a candidate rate function h(t) = (t + 1)γ

with γ < 0.5. We take a−(t) = b
t+5 and verify that the Properties

(1) − (3) of the Theorem for such h are satisfied. Then for Property
(4) we have for σ < t0

4 + 1

1.34(t+ 1)γ
∫ t−σ

5t0
4

+1

∫ u+σ

u

(√
s+ 4

t+ 4
+

√
u+ σ + 4

t+ 4

)
b

s+ 5
ds×[

1

u+ 4

(
(u+ 1)−γ + (u/4)−γ

)
+

b

u+ 5

(
(u+ 1)−γ + (u− σ + 1)−γ

)]
du+

(t+ 1)γ
∫ ∞
t−σ

∫ u+σ

u

(
1.34

√
s+ 4

u+ σ + 4
+ 1

)
b

σ + 5
ds×[

1

u+ 4

(
(u+ 1)−γ + (u/4)−γ

)
+

b

u+ 5

(
(u+ 1)−γ + (u− σ + 1)−γ

)]
du

which is bounded by

J(t, γ, b, σ) := 1.34b(t+ 1)γ
[ ∫ t−σ

5t0
4

+1

F1(u, σ)Γ(u, γ, σ, b)du+

∫ ∞
t−σ

F2(u, σ)Γ(u, γ, σ, b)du

]
where

F1(u, σ) =

(
2(
√
u+ 4 + σ −

√
u+ 4)√

t+ 4
+

√
u+ σ + 4

t+ 4
log

u+ σ + 5

u+ 5

)
F2(u, σ) =

(
2.78(

√
u+ 4 + σ −

√
u+ 4)√

u+ σ + 4
+ log

u+ σ + 5

u+ 5

)
Γ(u, γ, σ, b) =

(u+ 1)−γ + (u/4)−γ

u+ 4
+
b
(
(u+ 1)−γ + (u− σ + 1)−γ

)
u+ 5

As a numerical application we take t0 = 1 b = 0.67, σ = 1 so that numerical
integration with the trapezoidal rule of J(t, 0.2, 0.67, 1), yields a supremum
over t ≥ 1 at 0.81.

Example 3 (Direct Linearization of a non-linear system). In this example we will
show how our results can be applied in the study of nonlinear systems{

ẋ = a(t)f
(
x(t− τ(t))− x(t)

)
, t ≥ t0

x(s) = φ(s), s ∈ It0

where 0 ≤ a(t) ≤ a+ , τ(t) ≤ τ and f satisfies f(q)
q > 0 for q 6= 0 and |f(q)| ≤ |q|.

Claim 1. The solutions of the system satisfy x(t) ∈Mt0,φ.

Proof. Let the first time t∗ ≥ t0 such that x(t∗) = maxs∈It0 φ(s) with ẋ(t∗) > 0.

But ẋ(t∗) = a(t∗)f
(
x(t∗ − τ(t∗)) − x(t∗)

)
< 0 by virtue of the property of f , a

contradiction. Similarly for the lower bound. �

Given the unique solution x of the system ẋ = f(t, xt) we define the linear system

ż = a(t)c(t)
(
z(t− τ(t))− z(t)

)
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Figure 5. Example 2

with c(t) = c(x(t)) := f(x(t−τ(t))−x(t))
x(t−τ(t))−x(t) > 0. We observe that the solution z is

indistinguishable from x. From Claim 1 we conclude that cM := supx∈Mt0,φ

f(x)
x > 0

is well defined and thus c(t) ≥ cM . Then Theorem 5.1 can be applied with remark
5 and we get the estimate:

|z(t)− k| ≤Mt0,φ(1− e−cMaτ )−1e
1
2τ

ln(1−e−cMaτ )(t−t0).

We can extend this example to include negative a(t) and work similarly to the case
(1) if we ask f to grow sub-linearly, e.g. f(x) = sin(x).

6.2. Two-dimensional delayed consensus. This last example belongs to the
family of problems which motivated this work. This is a cooperative system of two
autonomous agents which exchange information with a constant uniform delay{

ẋ1 = −ax1(t) + ax2(t− τ)

ẋ2 = −bx2(t) + bx1(t− τ)

for t ≥ 0 and x(s) = φ(s), s ∈ [−τ, 0], with a+ b 6= 0. This is the system introduced
in Eq. (1.10). We will apply the results of Theorem 3.1 appropriately modified for
the two-dimensional case. In vector form, the system reads

ẋ(t) = −Dx(t) +Ax(t− τ)

where

D =

[
a 0
0 b

]
, A =

[
0 a
b 0

]
The solution x satisfies

(6.2) x(t) = e−Dτx(t− τ) +

∫ t

t−τ
e−D(t−s)Ax(s− τ)ds
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which is equivalent to Eq. (3.2). Also, if we add and subtract the terms ay(t) and
bx(t) in each subsystem, we obtain

ẋ1 = −ax1(t) + ax2(t)− a d
dt

∫ t

t−τ
x2(s)ds

ẋ2 = −bx2(t) + bx1(t)− b d
dt

∫ t

t−τ
x1(s)ds

which in vector form reads

ẋ(t) = −Lx(t)−A d

dt

∫ t

t−τ
x(s)ds

where

L :=

[
a −a
−b b

]
= D −A

Remark 8. The matrices D,A,L are the Valency, the Adjacency and the Laplacian
matrices respectively. These matrices are the main tools for matrix representation of
graphs. Their use is fundamental in Algebraic Graph Theory [23]. The eigenvalues
of L are λ1 = 0 and λ2 = a + b and the left eigenvector of L with respect to λ1 is
qT = ( b

a+b ,
a
a+b ). Direct calculation of e−Lt yields gives

e−Lt = I − L 1

a+ b
(1− e−(a+b)t)⇒ e−Ltz→ qT z

and
e−LtL = Le−(a+b)t

Now, using the variation of constants and integration by parts formulae we see
that x(t) must satisfy

x(t) = e−Ltφ(0)−
∫ t

0

e−L(t−s)A
d

ds

∫ s

s−τ
x(w)dwds

= e−Ltr0 −A
∫ t

t−τ
x(s)ds+

∫ t

0

e−L(t−s)LA

∫ s

s−τ
x(w)dwds

(6.3)

where r0 =
(
φ(0) + A

∫ 0

−τ φ(s)ds
)

which is equivalent to Eq. (3.3). Then we

combine (6.3) and (6.2) in a similar manner to (3.3) and (3.2) and obtain

x(t) = e−Dτe−L(t−τ)r0 +

∫ t−τ

t−2τ

(
e−D(t−τ−s) − e−Dτ

)
Ax(s)ds+

+ e−Dτ
∫ t−τ

0

e−L(t−τ−s)LA

∫ s

s−τ
x(w)dwds

(6.4)

For the uniques solution x = x̃ of the system in [−τ, τ ] we define the space

M∗ =
{
y ∈ C0([−τ,∞),R2) : y = x̃|[−τ,τ ], sup

t≥τ
eγt|y(t)− 1k| <∞

}
for |y| = maxi |yi| the p = 1 norm and 1k = (k, k)T . This is the space of continuous
functions that take value in R2 and converge to a common value k at least as slow
as e−γt. Together with the metric

ρ(y1,y2) = sup
t≥τ

eγt
∣∣y1(t)− y2(t)

∣∣
the pair (M∗, ρ) constitutes a complete metric space. We define the solution operator

(Sx)(t) =

{
x̃, t ∈ [−τ, τ ]

x(6.4)(t), t ≥ τ
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At first we prove that S : M∗ → M∗. This is true if 0 < γ < min{a, b} for
min{a, b} > 0, else γ < a and

k =
bφ1(0) + aφ2(0) + ab

∫ 0

−τ (φ1(s) + φ2(s))ds

a+ b+ 2baτ

Next we show that S can be a contraction for γ small enough: For and x1,x2 ∈M∗
we take the difference

eγt|(Sx1)(t)− (Sx2)(t)|
which is upper bounded by∫ t−τ

t−2τ

∣∣∣∣(e−D(t−τ−s) − e−Dτ
)
Ax12(s)

∣∣∣∣ds+ e−Dτ
∫ t−τ

0

∣∣∣∣e−L(t−τ−s)LA

∫ s

s−τ
x12(w)dw

∣∣∣∣ds
where x12 := x1 − x2. With careful algebra (see also Remark (8)) we get that the
first row is bounded by

aeγτ
1− e−aτ

a− γ − e−aτ e
γτ − 1

γ
+ e−aτ

eγτ − 1

γ

b(a+ b)

a+ b− γ e
γτ

and the second row is bounded by

beγτ
1− e−bτ

b− γ − e−bτ e
γτ − 1

γ
+ e−bτ

eγτ − 1

γ

a(a+ b)

a+ b− γ e
γτ

modulo ρ(x1,x2). Then a small γ to make S a contraction in M∗ can always be
found since γ ↓ 0 drives these bounds down to

1− e−aτ and 1− e−bτ

respectively.

7. Discussion and Concluding Remarks

In this paper we studied the stability of solutions for the general class of linear
differential equations with multiple time-varying delays that exhibit asymptotically
constant solutions, purely by means of fixed point theory. We approached the
problem with two different strategies:

I. In §3 and §4 our results are based on the existence of multiple forms of
solutions which we combined into a new one. In §3, the existence of an
integral of motion (Eq. (1.11)) allows for combining two forms of the so-
lution to obtain a new one which will serve as a solution operator that is
a self-mapping contraction in a suitable metric space. Then the Contrac-
tion Mapping Principle is applied to ensure the existence and uniqueness
of a point in the metric space with the desired stability properties. Our
contraction condition is general and it includes both positive and negative
ai’s whereas the asymptotic constant has a closed form that depends on the
parameters and the initial datum. In particular, we show that whenever
ai’s are non-negative, delay-independent result are obtained and the rate
of convergence is exponential with an estimate to be explicitly determined
from ai’s and τi’s.

The approach we followed in §4 is a generalization of that in §3 but
concerns the dynamic behavior of ẋ and the rate at which it vanishes, since
x converges to a real constant provided

∫∞
ẋ(s)ds exists. We showed that

ẋ, satisfies both an integrodifferential equation together with an integral of
motion. Consequently the new solution expression is obtained with the use
of resolvent functions from the theory of integrodifferential equations [25].
Contrary to §3 and the existing literature the results of this section are not
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clearly delay-independent when simply ai(t) ≥ 0 as the imposed conditions
rather ask for ai > 0 and ȧi ≤ 0. It is still an open problem to improve
the first method to the point of delay independent results whenever the
weights ai(t) are non-negative. We suspect that a different combination of
the solutions may be the answer.

II. In view of this drawback in §5 we studied the same problem following a
different approach. We begun with the study of the sub-system of posi-
tive ai(t)’s and recover the same rate estimates [16] by means of fixed point
theory. Based on this result we implemented again fixed point theory meth-
ods for the stability analysis of the overall system, after deriving a solution
operator derived from the variation of parameters formula for functional dif-
ferential equations [4]. Contrary to §4, Schauder’s first fixed point theorem
was applied.

As a supplementary remark on the second method we note that a standard ad-
vantage of fixed point theory over the Lyapunov is that, instead of the functionals
of Lyapunov theory, fixed point methods rely on non-trivial expressions of the so-
lutions (usually obtained through variation of constants formulae) to be used as
operators. Hence, mild sufficient conditions for stability may be obtained as it is
only necessary to regard the average behavior of the system’s parameters, contrary
to the stricter pointwise conditions, the Lyapunov methods impose. This advan-
tage can be easily illustrated in systems where the un-delayed part dominates the
delayed one, as for example in Eq. (1.2). In this work, we examined a system that
does not meet this convenient characteristic. Yet separating the dissipative from
the non-dissipative dynamics (as in Eq. (5.2)) we were able to create a similar
argument by means of stability in variation.

Conclusively, each approach attains their advantages and disadvantages. For the
first one, we see that in the simple case of time-invariant dynamics the results are
remarkably satisfying. However, in the case of time-varying dynamics this method
is yet to be improved. On the other hand, the second method, provides delay-
independent results with estimates already obtained in the literature, but these
rates are far from optimal. In the examples sections we showed that for delay
bounds where the first method applies, it’s estimates are much better than those of
the second method. Additionally, we see that the second method is not applicable
to multi-dimensional systems as Eq. (1.10).

7.1. Extensions and future work. As an extension of the linear case one may
consider systems of the type

ẋ(t) = −ax(t) + ax(t− τ)− g(x(t)) + g(x(t− τ))

with g being is a Lipschitzian function. The way to attack such problems are a
combination of the methods developed in this paper and these in [20]. Another
direction of extending the models of this work can be the case of neutral delayed
functional equations as discussed in [8]. Finally, another approach of interest is to
study the effects of state-dependent delays and weights.

In any case we emphasize that the major challenge is to be able to improve this
combination of solution forms to derive delay-independent stability results for the
time-varying version of the model, as well.
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