
SI R
INSTITUTE FOR SYSTEMS RESEARCH

Sponsored by
the National Science Foundation
Engineering Research Center Program,
the University of Maryland,
Harvard University,
and Industry

TECHNICAL RESEARCH REPORT

Controllability of Lie-Poisson Reduced 
Dynamics

by V. Manikonda, P.S. Krishnaprasad

T.R. 97-59



Controllability of Lie-Poisson Reduced Dynamics �

Vikram Manikonda and P.S. Krishnaprasad

fvikram, krishnag@isr.umd.edu

Department of Electrical Engineering and Institute for Systems Research

University of Maryland, College Park, MD 20742

Abstract

In this paper we discuss controllability of Lie-Poisson reduced dynamics of a

class of mechanical systems. We prove conditions (boundedness of coadjoint orbits

and existence of a radially unbounded Lyapunov function) under which the drift

vector �eld (of the reduced system) is weakly positively Poisson stable (WPPS).
The WPPS nature of the drift vector �eld along with the Lie algebra rank condition

is used to show controllability of the reduced system. We discuss the dynamics,

Lie-Poisson reduction, and controllability of hovercraft, spacecraft and underwater

vehicles, all treated as rigid bodies.

1 Introduction

A geometric approach to the study of mechanical systems has had a profound in
u-
ence in recent years on our understanding of dynamics and control aspects. Playing
an essential role in this are recent developments in reduction theory (cf. [1]), i.e. the
exploitation of invariance of the controlled dynamics to a group of transformations (the
symmetry group). The existence of a symmetry group permits dropping of the dynamics
to a lower dimensional (reduced) space. Lagrangian reduction [2, 3] involves dropping
the Euler-Lagrange equations to the quotient of the velocity phase space given by the
symmetry group while Hamiltonian reduction involves projecting the Poisson bracket to
the reduced (quotient) space which also inherits a Poisson structure (attributed to Lie
and Berezin-Kirillov-Kostant-Souriau, see the work of Weinstein for historical remarks
[4]). In particular, if the con�guration space of the system can be identi�ed with a Lie
group G, a left invariant Hamiltonian on T �G gives rise to reduced dynamics on T �G=G

�This research was supported in parts by grants from the National Science Foundation's Engineer-
ing Research Centers Program: NSFD CDR 8803012 and by the Army Research O�ce under Smart
Structures URI Contract No. DAAL03-92-G0121.
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which is isomorphic to G� the dual of the Lie algebra of G. The reduced bracket is now
the Lie-Poisson bracket. The complete dynamics can then be reconstructed from the
reduced system. The geometric phase [5] associated with a trajectory of the reduced
system describes the motion of the complete (lifted) system. There has also been recent
progress in the area of control in the presence of nonholonomic constraints [6, 7, 3, 8].

For a large class of mechanical systems, the con�guration space can be identi�ed with
a Lie group G. Often the dynamics of such systems are G-invariant and hence they
can be reduced to obtain a set of Lie-Poisson reduced dynamics on T �G=G. Examples
of such systems include hovercraft, spacecraft and underwater vehicles modeled as rigid
bodies. The design and control of autonomous versions of these vehicles has been of
much recent interest. For example the amphibious versatility of hovercraft has given
them a role in specialized applications including search and rescue, emergency medical
services, ice breaking, Arctic o�-shore exploration, and recreational activities [9]. Certain
environmental aspects (such as ice-roughness, Arctic rubble �elds etc.) also provide a
niche for operations by hovercraft. Similarly a growing industry in underwater vehicles
for deep sea explorations has led to the demand for more versatile, robust and high
performance autonomous vehicles that can cope with actuator failures, disturbances,
exploit sensor based local navigation etc.

In this paper we discuss the controllability of the Lie-Poisson reduced dynamics of a
class of mechanical systems which include as examples hovercraft, spacecraft and bottom
heavy underwater vehicles. In each case we identify the con�guration space with a Lie
group G. The G-invariance of the Hamiltonian and the forcing term (control) is used to
obtain a set of Lie-Poisson equations on T �G=G which is isomorphic to G� the dual of
the Lie algebra of G. We show that depending on the existence of a radially unbounded
Lyapunov type function, the drift vector �eld (of the reduced system) is weakly positively
Poisson stable (WPPS). The WPPS nature of the drift vector �eld along with the Lie
algebra rank condition is used to show controllability of the reduced system.

The paper is organized as follows. In section 2 we present a brief overview of Lie-Poisson
reduction. In section 3 we present our main result on controllability of Lie-Poisson
reduced dynamics. In section 4 we discuss in some detail, the dynamics, reduction and
reduced space controllability of the hovercraft, the spacecraft and the underwater vehicle.
Conclusions and future work is discussed in section 5.

2 Lie-Poisson Reduction

Recall (cf. [1, 10]) that ifG is a symmetry group acting on a Poisson manifoldM , then the
quotient manifold M=G inherits a Poisson structure so that whenever eP; eQ :M=G! IR
correspond to G invariant functions, P;Q : M ! IR, their Poisson bracket f eP; eQgM=G

corresponds to the G-invariant function fP;QgM . If H : M ! IR is a G-invariant
Hamiltonian, then H descends to fH : M=G! IR and determines the reduced dynamics
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on M=G. The solutions of the reduced Hamiltonian system on M=G are projections of

the solutions of the complete system de�ned on M . In particular if M
4
= T �G and

G acts on itself by left translations then M=G � G�, the dual of the Lie algebra of G,
a left invariant Hamiltonian on T �G gives rise to reduced dynamics on G�� (the space
G� associated with the minus Poisson structure). The reduced bracket is now the minus
Lie-Poisson bracket, f�; �g� de�ned in its coordinate free from by

fF;Hg�(x) = � < x; [rF (x);rH(x)] > :

Let fX1; � � � ; Xrg and fXb
1; � � � ; X

b
rg be a basis for the Lie algebra G and the dual basis

G� respectively, i.e. < Xb
i ; Xj >= �ij. Any � 2 G�� can be expressed as � =

Pr
i=1 �iX

b
i

and the Lie-Poisson bracket of two di�erentiable functions P;Q 2 C1(G�) is given by

fF;Hg�(�) = �
rX

i;j;k=1

ckij�
k @F

@�i
@H

@�j
(1)

where ckij; i; j; k = 1; � � � ; r are the structure constants of G relative to a basis fX1; � � � ; Xrg.
Equivalently (1) can be written as

fF;Hg�(�) = rF T�(�)rH (2)

where

[�(�)]ij = �
rX

k=1

ckij�
k

The rank of Poisson tensor � determines the nontrivial Casimirs of �. The Lie-Poisson
reduced dynamics can now be expressed

_�i = f�i; fHg�; i = 1; � � � ; r (3)

where fH is the reduced Hamiltonian.

In the rest of this paper we will denote the Lie-Poisson reduced dynamics

with the following notation.

_� = f�;fHg� (4)

The ith component on the right hand side being f�i; ; fHg� , i = 1; � � � ; r.

The induced symplectic foliation by Lie-Poisson bracket on G� has a particularly nice
interpretation in terms of the dual to the adjoint representation of the underlying Lie
group G on the Lie algebra G. This is given by the following theorem, which appears
to be due to Kirillov[11, 12], Arnold [13], Kostant [14] and Souriau [15], though similar
ideas �rst appear in the work of Lie, Borel and Weil.
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Theorem 1 Let G be a connected Lie group with coadjoint representation Ad�G on G�.
Then the orbits of Ad�G are immersed submanifolds of G� and are precisely the leaves
of the symplectic foliation induced by the Lie-Poisson bracket on G�. Moreover, for each
g 2 G, the coadjoint map Ad�G is a Poisson mapping on G� preserving the leaves of the
foliation.

As 
ows of (4) remain on coadjoint orbits on which they started, the geometry of coadjoint
orbits plays an important role in understanding the dynamics of the Lie-Poisson reduced
equations.

3 Poisson Stability and Controllability

The state space of a large class of mechanical systems such as hovercraft, spacecraft
underwater vehicle etc. can be identi�ed with a Lie group G. The Hamiltonian dynamics
(de�ned on T �G) of these systems subject to external forces can be written in the form
of a control system as

_x = f(x) +
mX
i=1

gi(x)ui (5)

where x 2 T �G, f(x) = fx;Hg and u = (u1; � � �um). (H is the Hamiltonian de�ned on
T �G). Here we do not assume that gi are Hamiltonian vector �elds. Often we observe
that the vector �elds f and gi's are G-invariant. This allows us to drop the the vector
�elds f and gi from T �G to T �G=G and the reduced dynamics take the form

_� = ef(�) + mX
i=1

egi(�)fui (6)

where � 2 T �G=G, ef and egi are the projections of f and g on T �G=G. From the discussion
in section 2 we know that ef = f�; fHg� where fH is the reduced Hamiltonian. Hence (6)
can be written as

_� = f�;fHg� +
mX
i=1

egi(�)fui (7)

Studying controllability of systems of the form (7) or of more general systems of the form

_x = f(x) +
mX
i=1

gi(x)ui; x 2 IRn u = (u1; � � �um) 2 U (8)
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is usually a hard problem. We know that if a system of the form (8) satis�es the Lie
algebra rank condition (LARC) then it is locally accessible, and in addition if f = 0
then LARC implies that the system is controllable. (See appendix for details.) While
the kinematic equations of motion can often be written as a drift free system, once
dynamics are included LARC does not imply controllability. Proving controllability is
usually much harder than proving accessibility. In [16] su�cient conditions are given, in
terms of a \group action", that a locally accessible system is also locally reachable. In
[17] su�cient conditions for the controllability of a conservative dynamical polysystem on
a compact Riemannian manifold are presented. More recently this result was extended
by [18] to dynamical polysystems where the drift vector �eld was required to be weakly
positively Poisson stable. We extend this result to Lie-Poisson reduced dynamics. We
prove conditions under which the reduced dynamics are controllable. Before we present
our results we introduce some de�nitions and related theorems regarding Poisson stable
systems. We follow the development in [18, 19, 20, 21, 22, 23].

Let X be a smooth complete vector �eld on M and let �Xt (�) denote its 
ow.

De�nition: A point p 2 M is called positively Poisson stable for X if for all T > 0 and
any neighborhood Vp of p, there exists a time t > T , such that �Xt (p) 2 Vp. The vector
�eld X is called positively Poisson stable if the set of Poisson stable points for X is dense
in M .

De�nition: A point p 2 M is called nonwandering point of X if for all T > 0, any
neighborhood Vp of p, there exists a time t > T such that �Xt (Vp)

T
Vp 6= �, where

�Xt (Vp) = f�Xt (q) j q 2 Vpg.

One should observe here that though it is a su�cient condition that the nonwandering
set of a positively Poisson stable vector �eld is the entire manifold M , there could exist
weaker conditions under which the nonwandering set isM . This gives rise to the de�nition
of a weakly positively Poisson stable (WPPS).

De�nition: The vector �eld X is called weakly positively Poisson stable if its nonwan-
dering set is M .

The following theorem on controllability is due to Kuang-Yow Lian et. all. [18]. Earlier
versions of this theorem and the corollary that follows, where the hypothesis required f
to be only Poisson Stable, are due to Lobry [17], Bonnard and Crouch [24].

Theorem 2 If the system

_x = f(x) +
mX
i=1

gi(x)ui; u = (u1; � � �um) 2 U � IRm

where U contains fu j juij � Mi 6= 0; i; � � � ; mg is such that f is a weakly positively
Poisson stable vector �eld, then the system is controllable if the accessibility LARC is
satis�ed.
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Corollary 1 If the system

_x = f(x) +
mX
i=1

gi(x)ui; u = (u1; � � �um) 2 U

is such that f is a weakly positively Poisson stable vector �eld, and accessibility LARC
is satis�ed, then the system with controls constrained by ui 2 f�Mi;Mig;Mi > 0; i =
1; � � � ; m is controllable.

In the setting of Lie Poisson reduced dynamics we can make the following observation.

Theorem 3 Let G be a Lie group that acts on itself by left (right) translations. Let
H : T �G! IR be a left (right) invariant Hamiltonian. Then,

(i) If G is a compact group, the coadjoint orbits of G� = T �G=G are bounded and the Lie-
Poisson reduced Hamiltonian vector �eld XeH de�ned by XeH(�) = f�; fHg�(+) is WPPS.

(ii) If G is a noncompact group then the Lie-Poisson reduced Hamiltonian vector �eld
XeH is WPPS if there exists a function V : G� ! IR such that V (�) is bounded below,

V (�)!1 as �!1 and _V = 0 along trajectories of the system.

Here fH = HjG� is the restriction of H to the quotient manifold G� = T �G=G and f�; �g�(+)
is the induced minus (plus) Lie-Poisson bracket on the quotient manifold G� = T �G=G.

Proof: (i) The map � : T �G ! G�� is a Poisson map, and the Poisson manifold G�� is
symplectically foliated by co-adjoint orbits, i.e. it is a disjoint union of symplectic leaves
that are just the co-adjoint orbits. Any Hamiltonian system on G�� leaves invariant the
symplectic leaves and hence restricts to a canonical Hamiltonian system on a leaf. To
study the dynamics of a particular system with initial condition �(0) 2 G��, we therefore
restrict attention to the co-adjoint orbit through �(0). By hypothesis, each co-adjoint
orbit is compact. The 
ow starting at �(0) preserves the symplectic volume measure on
the orbit. Hence by the Poincar�e Recurrence Theorem, we know that for almost every
point p 2 G�� and any neighborhood Vp of p there exists a time t > T such that �Xt (p)
returns to Vp i.e. XeH is WPPS.

(ii)Let D = f� j V (�) � Eg and Orb(�) denote the coadjoint through �(0) in G��. Then
the integral curve of XeH starting at �(0) lies entirely in the set S = D\Orb(�). Since S
closed and bounded in G��, it is compact in Orb(�), and hence as before XeH is WPPS. 2

In many situations the function H� = fH + �(Ci) where fH is the reduced Hamiltonian
and Ci are the Casimirs are a good choice for V (�).

Remark: In our present setting of Lie-Poisson reduced dynamics, WPPS conditions in
theorem 2 can be veri�ed whenever the hypotheses of theorem 3 hold. Once WWPS of the
drift vector �eld has been established theorem 2 can be used to conclude controllability.
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4 Examples

In this section we discuss the controllability of the Lie-Poisson reduced dynamics of
hovercraft, spacecraft and the underwater vehicles. These systems satisfy conditions of
theorem 3. The kinematics and dynamics of these examples can also be found in [1, 25, 26]
for completeness we present necessary details here.

4.1 Hovercraft - Planar Rigid Body with a Thruster

In this section we discuss the dynamics of a planar rigid body with a thruster. The
con�guration of the system is shown in Figure 1. Let fer1; e

r
2; e

r
3g be an inertial frame of

reference �xed atO and feb1; e
b
2; e

b
3g be a body frame �xed on the rigid body B at its center

of mass. Since the rigid body is restricted to move in the er1e
r
2 plane, a typical material

point qb in the rigid body is then represented in the inertial frame as qr = Rqb+ r where
R is an element of SO(2), the special orthogonal group of 2� 2 matrices and r = (x; y)
is a vector from O to the center of mass of B. Hence at any instant, the con�guration
X(t) of B can be uniquely identi�ed by the pair (R; r) or equivalently as an element of
SE(2), the Special Euclidean group of 2� 2 matrices. Recall

SE(2)
4
= f

 
R r
0 1

!
j R 2 SO(2); r 2 IR2g

Let us assume that the thruster is mounted at the point C de�ned by the vector db in
body coordinates and dr in the inertial frame of reference. The thrusters exert a force
f r in inertial coordinates such that the line of action of the force passes through C and
makes an angle � with the vector db. We now derive the equations of motion of a rigid
body subject to a force f r along a speci�ed line of action.

4.1.1 Symmetry and Reduction

We assume for now that the rigid body (which will later be approximated to a hovercraft)
has su�cient lift and can glide on the surface with no friction. The Lagrangian L :
TSE(2)! IR for this case is simply the kinetic energy, i.e.

L(R; r; _R; _r) =
1

2
I
2 +

m

2
k _rk2 (9)

where m is the total mass, I is the moment of inertia of B in the body frame, 
 is the
scalar body angular velocity about the center of mass. The corresponding Hamiltonian
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Figure 1: Planar rigid body with thruster

is given by

H =
1

2I
�2 +

kpk2

2m
(10)

where � = I
 is the body angular momentum and p = m _r is the spatial linear momen-
tum.

Collecting together the Newton-Euler balance laws one can write the dynamics in spatial
(inertial) variables (R; r; �; p) as

_R = Rb
 (11-a)

_r = p=m (11-b)

_� = dr � f r (11-c)

_p = f r (11-d)

where

b
 =

 
0 �1
1 0

!

; :

We observe that the lifted action of G on TSE(2) de�ned by

�g� : TSE(2)! TSE(2)

(R; r; _R; _r) 7! ( �RR; �Rr + �r; �R _R; �R _r)
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leaves the Lagrangian (9) invariant. Hence the Hamiltonian is also G-invariant. We can
now induce a Hamiltonian on the quotient space, T �SE(2)=SE(2), and express the dy-
namics in terms of the appropriate reduced variables. The quotient space T �SE(2)=SE(2)
is isomorphic to se(2)�, the dual of the Lie algebra of SE(2) and the reduced variables
are:

�; the body angular momentum,
P = RTp; the convected linear momentum.

The reduced Hamiltonian fH is given by

fH =
1

2I
�2 +

kPk2

2m
(12)

Choosing

X1 =

0B@ 0 0 1
0 0 0
0 0 0

1CA ; X2 =

0B@ 0 0 0
0 0 1
0 0 0

1CA and

X3 =

0B@ 0 �1 0
1 0 0
0 0 0

1CA

as a basis for se(2) we have the commutation relations: [X1; X2] = 0; [X1; X3] = �X2 and
[X2; X3] = X1. The Lie-Poisson bracket of two di�erentiable functions G;H on se(2)� is
then given by

fG;Hg�(�) = rGT�(�)rH (13)

where � = (P1; P2;�) 2 se(2)� and

� =

264 0 0 P2

0 0 �P1

�P2 P1 0

375 :
The reduced equations take the form

_� = f�;fHg� + fext (14)

where fext is the external force projected appropriately. In the present setting fext =
(jF j cos�; jF j sin�; jF jjdj sin�)T , where F = RTf r and j � j denotes the norm (see [25] for
more details).
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Depending on the control authority we distinguish two versions of the problem.

Case 1: The Jet-Puck Problem: Here we assume that the line of action of the force
is �xed (i.e. � is �xed) but its direction can be reversed. Written as a control system,
equations (13) take the form

_P1 = P2�=I + �u (15-a)
_P2 = �P1�=I + �u (15-b)
_� = d�u (15-c)

where � = cos�; � = sin� and u 2 [1;�1].

Case 2: The Hovercraft Problem: Here we assume that we now have control over
both the magnitude of the thrust and �. The equations now take the form

_P1 = P2�=I + u1 cos(u2) (16-a)
_P2 = �P1�=I + u1 sin(u2) (16-b)
_� = du1 sin(u2) (16-c)

where u1 2 [�1; 1] and u2 2 [�min; �max]

4.1.2 Controllability of the Reduced Dynamics

Proposition 1: The jet-puck dynamics de�ned by (9) are controllable.

Proof: We �rst show that LARC is satis�ed. To show that

dim(spanLff;gg)(p) = 3; 8p 2 se(2)�

where f = (P2�=I;�P1�=I; 0)
T and g = (�; �; d�)T , observe that

det(g; [[f; g]; g]; [[f; g]; [[f; g]; g]])

= det

264 � 2d
I
�2 �2d

2

I2
�2�

� �2d
I
�� �2d

2

I2
�3

d� 0 0

375
= �4 (d�)

4

I3
(�2 + �2)

= �4 (d�)
4

I3
(since �2 + �2 = 1)

Hence dim(spanLff;gg)(p) = 3 8p 2 se(2)� as long as � = sin� 6= 0, i.e. as long as the
line of action of F does not pass through the center of mass.
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Figure 2: Energy surface and coadjoint orbits in se(2)�

We observe that the reduced Hamiltonian

fH =
1

2I
�2 +

kPk2

2m
(17)

is bounded below, radially unbounded and is such that
_fH = 0. Hence it follows from

theorem 3 that f is WPPS and hence from theorem 2 we conclude that the jet-puck
dynamics are controllable. 2

In fact we one observes that every orbit of f is periodic and hence trivially Poisson stable.

Remark: Observe that the coadjoint orbits in se(2)� are cylinders

f(P1; P2;�) 2 <
3 j P 2

1 + P 2
2 = constant 6= 0g:

The surfaces de�ned by D = f(P1; P2;�) j
P 2

1

2m
+

P 2

2

2m
+ �2

2I
= constg are ellipsoids. From

theorem 3 the integral curves of the the vector �eld P2�
I

@
@P1

� P1�
I

@
@P2

are restricted to the

set S = D\Orb(�), which in this case is simply S1 (see �g (2)).

Proposition 2: The hovercraft dynamics de�ned by (10) are controllable.

Proof: In (10) setting u2 = k, where k is some constant not equal to zero, the equa-
tions reduce to those of the jet-puck and hence from Proposition 1 the dynamics are
controllable. 2
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4.1.3 Cotangent Space Controllability

We now investigate the controllability in the cotangent space. We show that the complete
(unreduced) system is locally strongly accessible. The complete set of equations for the
jet-puck take the form

_x = p1=m (18-a)

_y = p2=m (18-b)
_� = �=I (18-c)

_p1 = (cos(� + �))u (18-d)

_p2 = (sin(� + �)u (18-e)
_� = (d sin�)u (18-f)

Proposition 3 : For the system de�ned by (17) the cotangent space T �SE(2) is locally
strongly accessible.

Proof: To show that

dim(spanLff;gg)(p) = 6; 8p 2 T �SE(2)

where f = (p1=m; p2=m;�=I; 0; 0; 0)
T ;

and g = (0; 0; 0; cos(� + �); sin(� + �); d sin�)T , observe that

det(g; �1; �2; �3; �4; �5)
= 16K(cos2(� + �) + sin2(� + �))2

= 16K

where

�1 = [f; g]; �2 = [[f; g]; g]; �3 = [[[f; g]; f ]; g];
�4 = [[[[f; g]; f ]; g]; [f; g]];
�5 = [[[[f; g]; f ]; g]; [[f; g]; g]] and
K = ( 1

m
)2(1

I
)7(d sin�)8

Hence again if sin� 6= 0, dim(spanLff;gg)(p) = 6; 8p 2 T �SE(2). Also [f;X] 2
span(g; �1; �2; �3; �4; �5); 8X 2 fg; �1; �2; �3; �4; �5g. Hence the complete system is locally
strongly accessible. 2
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4.1.4 Small-Time local controllability

Recall that a control system (8) is said to be small time locally controllable (STLC) from
x0 2M if it is locally accessible from x0 and x0 is in the interior of RV (x0;� T ) 1 for all
T > 0 and each neighborhood V of x0. If this holds for any x0 2 M then the system is
called STLC.

In [27] Sussmann proves the following su�cient condition for scalar input systems.

Theorem 4 Consider an analytic system

_x = f0(x) + f1(x)u ju(t)j � A (19)

and a point x0 such that

[f1; [f0; f1]](xo) 2= S
1(f0 + euf1; f1)(x0)

where S1(X1; X2) is the linear span of X1; X2, and the brackets (adX1)
jX2 for j � 1 and

feu j f0(x0) + euf1(x0) = 0g. Then (19) is not STLC from x0.

We use the above result to show that the jet-puck dynamics are not STLC

Proposition 4 The jet puck dynamics de�ned (17) are not STLC from the origin.

Proof: It is su�cient to consider STLC of the reduced dynamics. With eu = 0 ob-
serve that S1(f; g)(0) is a one-dimensional space spanned by � @

@P1
+ � @

@P2
+ d� @

@�
while

[g; [f; g]](0) = �2d
I
�2 @

@P1
+ 2d

I
�� @

@P2
. Hence [g; [f; g]](0) 2= S1(f; g)(0) 2

4.2 Attitude control of spacecraft

We now discuss the dynamics describing spacecraft attitude control with gas jet actuators.
Let feb1; e

b
2; e

b
3g be a body frame �xed on the rigid body (spacecraft) B at its center of

mass and let fer1; e
r
2; e

r
3g be an inertial frame of reference with origin coincident with the

origin of the body �xed frame (see Fig 3). A typical material point qb in the rigid body
is then represented in the inertial frame as qr = Rqb where R is an element of SO(3), the
special orthogonal group of 3 � 3 matrices. Hence the con�guration space of the rigid
body may be identi�ed with an element of SO(3), the velocity space is with the tangent
bundle TSO(3) and the momentum phase space with the cotangent bundle T �SO(3).
Let b1; � � � bm be the axis about which the corresponding control torque of magnitude

1RV (x0;� T ) =
S

0�t�T

RV (x0; t) where R
V (x0; T ) is the reachable set from x0 at time T > 0, following

trajectories which remain for t � T in the neighborhood V of x0
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Figure 3: Spacecraft with gas jets

kbikui is applied by means of opposing pairs of gas jets. The dynamic equations for the
controlled space craft are then given by

_R = Rb
 (20-a)

I _
 = I
� 
 +
mX
i=1

biui (20-b)

where 
 = (
1;
2;
3) is the body angular velocity, b
 is a 3�3 skew symmetric matrices
given by

b
 =

264 0 �
3 
2


3 0 �
1

�
2 
1 0

375

and I = diag(I1; I2; I3) is the inertia matrix. In the rest of the discussion b de�nes a mapb: IR3 ! so(3), such that b�� = �� �; �; � 2 IR3. Thus

b� =

264 0 ��3 �2

�3 0 ��1

��2 �1 0

375

4.2.1 Symmetry and Reduction

The Lagrangian L : TSO(3)! IR is again simply the kinetic energy and is given by

L(R; _R) =
1

2
< 
; I
 >

14



and the corresponding Hamiltonian H : T �SO(3)! IR is given by

1

2
< �; I�1� >

where � = I
 is the body angular momentum. Observe that the lifted action of g =
�R 2 SO(3) on TSO(3) de�ned as

�g� : TSO(3)! TSO(3)

(R; _R) 7! ( �RR; �RRb
)
the lifted action of g = �R 2 SO(3) on TSO(3) de�ned as leaves the Lagrangian (and
hence also the Hamiltonian) invariant. Hence one can induce a Hamiltonian on the
quotient space, T �SO(3)=SO(3), and express the dynamics in terms of the appropriate
reduced variables. The quotient space T �SO(3)=SO(3) is isomorphic to so(3)�, the dual
of the Lie algebra of SO(3) and the reduced variables are � = (�1;�2;�3) the body
angular momentum. Choosing

X1 =

0B@ 0 0 0
0 0 �1
0 1 0

1CA ; X2 =

0B@ 0 0 1
0 0 0
�1 0 0

1CA and

X3 =

0B@ 0 �1 0
1 0 0
0 0 0

1CA
as a basis of so(3) and with the commutation relations [X1; X2] = X3; [X3; X1] = X2 and
[X3; X2] = �X1, the Lie-Poisson bracket of two di�erential functions G;H on so(3)� is
given by

fG;Hg�(�) = rGT�(�)rH (21)

where � = (�1;�2;�3) 2 so(3)� and

� =

264 0 ��3 �2

�3 0 ��1

��2 �1 0

375 :
The reduced equations take the from

_�1 = I2�I3
I2I3

�2�3

_�2 = I3�I1
I1I3

�2�3

_�3 = I1�I2
I1I2

�1�2

+
mX
i=1

ebiui (22)

15



where ebi = RT bi. Assuming that we have only one control and I1 = I2 (21) can be written
as

_�1 =
(I1 � I3)

I1I3
�2�3 + �u (23-a)

_�2 = �
(I1 � I3)

I1I3
�1�3 + �u (23-b)

_�3 = 
u (23-c)

4.2.2 Controllability of reduced dynamics

Observe the similar structure of base space equations for the jet-puck and those of the
controlled Euler equations. Hence we can make similar claims regarding controllability
and STLC. Proofs are omitted as they are similar to those of the jet-puck dynamics.

Proposition 5 The spacecraft dynamics de�ned by (22) are controllable if �2 + �2 6= 0
and 
 6= 0

Proposition 6 The spacecraft dynamics (22) are not STLC from the origin.

Remark: The coadjoint orbits in so(3)� are spheres (see �g(4))

f(�1;�2;�3) 2 IR3 j �2
1 +�2

2 +�2
3 = constg:

In this case since the coadjoint orbits are compact manifolds one can conclude from
theorem 2 that the drift vector �eld is WPPS. Fig (4) shows the intersection of the
coadjoint orbits and the energy surface.

4.3 Autonomous Underwater Vehicle

In this section we discuss the reduced space controllability for a neutrally buoyant un-
derwater vehicle (UV). We distinguish between the cases of coincident and noncoincident
centers of buoyancy and gravity. The Lie-Poisson dynamics for these cases have been
derived in [26]. We only present a brief overview of the Lie-Poisson dynamics and then
use the results of theorem 2 and theorem 3 to make necessary conclusions about control-
lability.

Let fer1; e
r
2; e

r
3g be an inertial frame of reference (see �g 5) �xed at O and feb1; e

b
2; e

b
3g be

a body frame �xed on the vehicle at its center of buoyancy (CB). A material point qb in
the UV is then represented in the inertial frame as qr = Rqb+ r where R is an element of
SO(3), the special orthogonal group of 3� 3 matrices and r = (x; y; z) is a vector from
O to the center of buoyancy (CB). Hence at any instant, the con�guration X(t) of the

16
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UV can be uniquely identi�ed by the pair (R; r) or equivalently as an element of SE(3),
the Special Euclidean group of 3� 3 matrices. Recall

SE(3)
4
= f

 
R r
0 1

!
j R 2 SO(3); r 2 IR3g

While deriving the dynamics we assume that the UV is submerged in an in�nitely large
mass of incompressible, inviscid 
uid. Further, we assume that the 
ow is irrotational
(the motion of the 
uid is entirely due to that of the UV). Under these assumptions the
motion of the 
uid can be characterized by the existence of a single valued potential �
which satis�es

r2� = 0

r� = 0 at in�nity

�
@�

@n
= n:(v + 
� rb) at body surface,

where rb is a vector from the CB to the vehicle's surface, n is the unit outward normal vec-
tor of the vehicle, 
 = (
1;
2;
3)

T are the body angular velocities, and v = (v1; v2; v3)
T

are the linear velocity components along the body-�xed frame. Under these assumptions
Kirchho� showed that

� = v1�1 + v2�2 + v3�3 + 
1�1 + 
2�2 + 
3�3 (24)

where �1; �2; �3; �1; �2; �3 are functions of x; y; z determined by the con�guration of the
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Figure 5: Autonomous Underwater Vehicle

surface of the solid. Using the form of � as expressed in (23) the kinetic energy of the

uid

Tf =
1

2
�0

Z Z Z
((
@�

@x
)2 + (

@�

@y
)2 + (

@�

@s
)2)dxdydz;

where �0 is the 
uid density, can be expressed as a quadratic from as

Tf =
1

2
W T�W; � =

 
�11 �12

�21 �22

!
:

�11 is referred to as the added mass matrix and �22 as the added inertia matrix

Assume that the center of gravity (CG) does not coincide with the center of buoyancy
(CB) and lies on the eb3 axis at a distance l > 0 (bottom heavy) from the CB i.e rg = li3
where i3 denotes a unit vector (in body coordinates) along the eb3 axis. Also let ig denote
a unit vector (in inertial coordinates) in the direction of gravity, i.e. along the er3 axis.
Let m be the mass of the vehicle, Jb the inertia matrix for the vehicle. The Lagrangian
L : TSE(3)! IR is then given by

L(R; r; _R; _r) =
1

2
(
TJ
 + 2
TDv + vTMv + 2mgl(ig:Ri3))

where J = Jb + �11, D = mlcrg + �12 and M = mI + �22 (I is the 3 � 3 identity
matrix). In the rest of the discussion the UV is approximated as an ellipsoid and hence
�12 = �21 = 0.

18



Observe that the Lagrangian is invariant under the action of the group

G = f(R; r) 2 SE(3) j RT ig = igg = SE(2)� IR:

and hence the Hamiltonian system on T �SE(3) (which is also left invariant under the
action of SE(2)� IR) can be reduced to a Hamiltonian system on S�, the dual of the Lie
algebra of the semi-direct product S = SE(3)�� IR

3 (see [26] for details). The reduced
Hamiltonian on S� is

fH(�; P;�) =
1

2
(�TA� + 2�TBTP + P TCP � 2mgl(�:i3));

where

A = (J �DM�1DT )�1; B = �CDTJ�1; C = (M �DTJ�1D)�1;

� = J
 +Dv; P = Mv +DT
; and � = RT ig:

Choosing

Bi =

 
Ai 0
0 0

!
; i = 1; � � � ; 6; Bi =

 
0 ei�6
0 0

!
; i = 7; 8; 9:

where

Ai =

 bei 0
0 0

!
; i = 1; 2; 3 Ai =

 
0 bei
0 0

!
; i = 4; 5; 6

as a basis for S the Lie algebra of S the Lie-Poisson bracket of two di�erentiable functions
G;H on S� is given by

fG;Hg�(�) = rGT�(�)rH

where � = (�; P;�) and

� =

264
b� bP b�bP 0 0b� 0 0

375 :

The Lie-Poisson reduced equations (see [26] for a complete description of reduction pro-
cedure) are then given by

_�i = f�i; fHg�(�)
19



or explicitly as

_� = �� (A�+BTP ) + P � (CP +B�)�mgl�� i3 (25-a)
_P = P � (A� +BTP ) (25-b)
_� = �� (A�+BTP ) (25-c)

Proposition: The Lie-Poisson reduced Hamiltonian vector �eld (given by (25)) de�ned
on S� is WPPS.

Proof: Choose V (�; P;�) = fH(�; P;�)+�T�. Observing that V is radially unbounded
and that _V = 0 along trajectories of (25) the result follows form theorem 3. 2

Remark : In the case of coincident center of gravity and center of buoyancy (i.e. l = 0),
the Hamiltonian system on T �SE(3) is left invariant under the SE(3) action of rotations
and translations, and we can derive a set of reduced Lie-Poisson equations on se(3)�.
Choosing

Ai =

 bei 0
0 0

!
; i = 1; 2; 3 l Ai =

 
0 bei
0 0

!
; i = 4; 5; 6

as the basis for se(2) the structure matrix [�(�)]ij = �
P6

k=1 c
k
ij�k is given by

�(�) = �(�; P ) =

" b� bPbP 0

#

where � = J
 and P = Mv. The Lie-Poisson reduced equations are given by

_� = �� (A�) + P � CP (26-a)
_P = P � A� (26-b)

Choosing V (�; P ) = fH = 1
2
(�TA�+P TCP ), the reduced Hamiltonian, we observe that

the Lie-Poisson reduced Hamiltonian vector �eld de�ned on se(3)� is WPPS.

4.3.1 Controllability of Reduced Dynamics

Assuming that we have three controls u1, u2, u3 such that u1 provides a pure torque
about eb1, u2 provides a pure torque about eb2 and u3 provides a pure translation along
the eb1 axis. The Lie-Poisson reduced dynamics with controls for the underwater vehicle
with coincident CB and CG are

_�1 =
I2 � I3
I2I3

�2�3 +
m2 �m3

m2m3

P2P3 + u1 (27-a)
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_�2 =
I3 � I1
I3I1

�3�1 +
m3 �m1

m3m1
P3P1 + u2 (27-b)

_�3 =
I1 � I2
I1I2

�1�2 +
m1 �m2

m1m2
P1P2 (27-c)

_P1 =
P2�3

I3
�
P3�2

I2
+ u3 (27-d)

_P2 =
P3�1

I1
�
P1�3

I3
(27-e)

_P1 =
P1�2

I2
�
P2�1

I1
(27-f)

(27-g)

Proposition: The Lie-Poisson reduced dynamics, de�ned by (27), of the underwater
vehicle with coincident center of buoyancy and center of gravity are controllable if I1 6= I2.

Proof: Observing that

det(g1; g2; g3; [[f; g1]; g2]; [[f; g2]; g3]; [[[f; g2]; [f; g3]]; g1]) =
I1 � I2
I1I22I3

6= 0

if I1 6= I2 where

f =

0BBBBBBBBB@

I2�I3
I2I3

�2�3 +
m2�m3

m2m3
P2P3

I3�I1
I3I1

�3�1 +
m3�m1

m3m1
P3P1

I1�I2
I1I2

�1�2 +
m1�m2

m1m2

P1P2
P2�1

I3
� P3�2

I2
P3�1

I1
� P1�3

I3
P1�2

I2
� P2�1

I1

1CCCCCCCCCA
; u1 =

0BBBBBBBB@

1
0
0
0
0
0

1CCCCCCCCA
; u2 =

0BBBBBBBB@

0
1
0
0
0
0

1CCCCCCCCA
; u1 =

0BBBBBBBB@

0
0
0
1
0
0

1CCCCCCCCA

i.e. dim(spanLff;g1;g2;g3g)(p) = 6; 8p 2 se(3)�, and that f is WPPS the result follows
from theorem 2. 2

5 Conclusions and Future Work

We have discussed the controllability of the Lie-Poisson reduced dynamics of a class of
mechanical systems and present an approach to conclude controllability. The Lie-Poisson
reduced dynamics and controllability of hovercraft, spacecraft and underwater vehicle are
discussed.

Current research includes the design of feedback laws to stabilize the origin of the reduced
system. We are also studying the use of periodic controls to generate loops in the base
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space, and thereby steer in the �ber. Some future research includes control laws to steer
hovercraft and hybrid architectures for generation of \scripts" for obstacle avoidance and
navigation.
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Appendix

A Accessibility and Controllability

We brie
y review de�nitions and related theorems on accessibility and controllability of
smooth a�ne nonlinear systems,

_x = f(x) +
mX
i=1

gi(x)ui; (28)

where x = (x0; � � � ; xn) are local coordinates for a smooth manifoldM and u = (u1; � � �um) 2
U � IRm. We follow the development in [19] (see historical references therein). It is as-
sumed that -

(i) The input space U is such that the set of associated vector �elds of (28) F = ff(x)+Pm
i=1 gi(x)uij(u1; � � �um) 2 Ug contains the vector �elds f; g1; � � � ; gm.

(ii) The set of admissible controls consists of piecewise constant functions which are
piecewise continuous from the right.

Let RV (x0; T ) be the reachable set from x0 at time T > 0, following trajectories which
remain for t � T in the neighborhood V of x0. Let R

V (x0;� T ) =
S

0�t�T
RV (x0; t)

De�nition: The system (28) is locally accessible from x0 if RV (x0;� T ) contains a
non-empty open set of M for all neighborhoods V of x0 and all T > 0. If this holds for
any x0 2M the the system is called locally accessible.

Let L(x) = fspanX(x) j X vector �eld in L; x 2 Mg where L, the accessibility Lie
algebra, is the smallest subalgebra of the Lie algebra of vector �elds on M that contains
f; g1; � � � ; gm. The system is said to satisfy the accessibility Lie algebra rank condition
(LARC) if

L(x) = TxM; 8x 2M (29)

Theorem 5 If dimL(x) = n 8x 2M then the system system (28) is locally accessible.

De�nition: The system (28) is said to be locally strongly accessible from x0 if for any
neighborhood V of x0 the set RV (x0; T ) contains a non-empty open set for any T > 0
su�ciently small.

Let L0 be the smallest Lie subalgebra which contains g1; � � � ; gm and satis�es [f;X] 2
L0; 8X 2 L0 and L0(x) = fspanX(x) j X vector �eld in L0; x 2Mg. The system is said
to satisfy the strong accessibility Lie algebra rank condition if

L0(x) = TxM; 8x 2 M (30)
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Theorem 6 If dimL0(x0) = n, then the system (28) is locally strongly accessible from
x0.

Let x(t; 0; x0; u) denote the solution of (28) at time t � 0 for a particular input function
u(�) and initial condition x(0) = x0.

De�nition: The system (28) is called controllable if for any two points x1; x2 inM there
exists a �nite time T and an admissible function u : [0; T ]! U such that x(t; 0; x1; u) =
x2.

Theorem 7 (Chow)[28] The nonlinear system

_x =
mX
i=1

gi(x)ui; u = (u1; � � � ; um) � U (31)

is controllable if the accessibility LARC is satis�ed.
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