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For several decades now, the study of environmental impacts on human well-

being has been informed by what are called “People and Pixels” methods: the

combining of remotely sensed data about environmental conditions with geolocated

data from household surveys about health and nutrition. However, much of this

work has been conducted at the scale of individual countries and often relies on

only one or two survey waves, which creates substantial issues around spatial au-

tocorrelation and endogeneity. Furthermore, much of this work uses simple linear

regression as its analysis technique, which is limited in its ability to describe spatial

variation as well as non-linearities in the relationship between the environment and

human well-being. Thus, this dissertation uses several insights from the emerging

field of data science to advance these methods. First, this analysis draws on large,

multinational datasets from dozens of surveys, making it possible to better estimate

the non-linear effects of climate extremes on human well-being as well as examine



spatial heterogeneities in vulnerability. Secondly, this analysis uses techniques at

the boundary between traditional econometric regression models and more complex

machine learning models, such as using Generalized Additive Models (GAMs) as

well as LASSO estimation. This permits the creation of spatially-varying terms

as well as nonlinear effects. Applying these techniques, the dissertation has yielded

several insights that could be beneficial to policymakers in governments, non-profits,

and multinational organizations. The initial chapters analyze the effects of rainfall

anomalies on food security and malnutrition, finding that the effect of an anomaly

varies considerably depending on the local socioeconomic and environmental con-

texts, with low-income, poorly-governed, and arid countries, such as Somalia and

Yemen, being the most vulnerable. The latter chapters look at the role of ecosystem

services in improving human livelihoods, as well as how land cover is associated with

dependence on local provisioning ecosystem services.
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Chapter 1: Introduction

The dissertation aims to push the frontier of the “People and Pixels” approach

to human-environment research by incorporating methods from the emerging field

of data science to generate policy-relevant insights. The phrase “People and Pixels”

comes from a book published by the National Research Council (NRC) in 1998

(Liverman et al., 1998) which showcased a number of studies that take an approach

of combining geolocated survey data on “People” with data from remote sensing,

aka “Pixels”. This approach has been used to study both how the environment has

affected people, in terms of livelihoods, health, and income; as well as how people

have affected the environment through land cover change, land degradation, and

land restoration. For my dissertation research, the focus is primarily on indicators

of human well-being – child nutrition especially, but some chapters also focus on

food security and livelihoods more broadly. For the environmental component of

my research, which is based on remote sensing and products derived from remote

sensing, I am interested in both how the environment can harm human well-being,

through climate shocks like heat waves, droughts and flooding, as well as how the

environment benefits human well-being, through ecosystem services.

Beyond utilizing geolocated household surveys and remotely-sensed data sources,
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my research draws on methods and techniques that could be broadly characterized

as data science. Data science is a still-emerging field of inquiry, combining statis-

tics, computer science, and domain expertise. It is characterized by facets such as

drawing on large volumes of data and integrating disparate data sets in novel ways;

using advanced quantitative methods like machine learning with less concern for

parametric approaches traditionally used in statistics; as well as a focus on appli-

cability and empiricism, aiming to solve problems and answer questions with data,

rather than to speak only to theory. Thus, my research combines household survey

data with a variety of global datasets, and, for some chapters, draws on large global

datasets of child nutrition outcomes across many countries and surveys. Managing

and modeling these datasets would not be possible without using cloud computing

approaches, as extracting climate indicators for all those observations or running

large models using the entire dataset would not be possible on a personal computer.

Finally, this research seeks to be policy relevant. Thus, each of the chapters

of my dissertation is intended to have some application to policymakers and answer

questions like “Where could establishing a protected area have the most benefit for

local food security?” or “What factors are most important for making child nutrition

resilient to future climate shocks?” My dissertation has been funded by small grants

from the International Food Policy Research Institute (IFPRI) and Conservation

International (CI), and I intend for my research to assist these two organizations in

their missions. As a geographer, I am particularly concerned in my research with

the question of “where?” and thus an output from two of my chapters are maps

highlighting the locations where child nutrition is most vulnerable to climate shocks

2



or most dependent on local ecosystem services.

1.1 Dissertation Structure

This dissertation has two components: one on climate shocks and human well-

being, and one on ecosystem services and human well-being. These two halves

of the dissertation each have two body chapters: an initial chapter where I use

smaller regional datasets to explore associations, and a larger chapter drawing on the

entire Demographic and Health Surveys (DHS) dataset with a significant mapping

component focused on stunting.

The first half of the dissertation analyzes precipitation shocks, and Chapter 2

focuses on both nutrition and food security in Ghana and Bangladesh. This work

draws on Feed the Future datasets from IFPRI, and finds that, in both countries,

food security, as measured by the Household Hunger Scale (HHS) is more sensitive

to precipitation shocks than child malnutrition is. The study further finds that,

as the literature would suggest, the types of climate shocks that most affect food

security are dependent on baseline environmental conditions. An innovative aspect

of this study was the use of a Spatial Error Regression (SER), which is not often

used in national-level surveys of climate and food security, but, I argue, is necessary.

This study was published in the summer of 2019 in the journal Population and Envi-

ronment. The second part in this section, Chapter 3 draws on much of the Chapter

2, including modeling the impacts of precipitation shocks on child malnutrition, as

well as the role of moderating factors like mean annual precipitation. However, the
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scope of this study is much larger, drawing on Demographic and Health Survey

(DHS) data from 53 different countries and focusing on several factors that mitigate

or amplify the effects of climate shocks, such as Gross Domestic Product (GDP),

crop production, mean annual precipitation, land cover, stability and violence, gov-

ernment effectiveness, market access, and trade per capita. Having estimated the

role that various geographic factors play in moderating the effects of climate shocks,

I then combined global datasets on each of these factors to create a map of vulner-

ability to shocks, measured by how much child malnutrition would be expected to

increase in a given location under a given shock. Furthermore, I validated the model

with data on food insecurity severity from the Famine Early Warning Systems Net-

work (FEWS NET), finding that my models predictions of where stunting would

increase under drought corresponded closely to where food security was observed to

deteriorate during recent droughts in East and Southern Africa. Chapter 4 has also

been published, in the Proceedings of the National Academy of Sciences.

The second half focuses on ecosystem services, the validity of land cover as a

proxy for ecosystem services, as well as and their role in buffering nutrition from

climate shocks. Thus, Chapter 4 is a study which uses data from the Vital Signs

project at Conservation International to show that, across four African countries,

households near forests are more likely to collect wild foods and other Non-Timber

Forest Products (NTFP). This study, which was published in Forest Policy and

Economics, helps to bolster the case that, where forests and natural land cover

are associated with improved child nutrition outcomes, it is reasonable to assume

that people are consuming food and other resources from those areas – a critical

4



assumption I am making the in Chapter 5. This Chapter uses DHS data to test

the hypothesis that natural areas provide ecosystem services during climate shocks

that can act as a “safety net” when less food would be otherwise available. Because

remote sensing can not detect ecosystem services per se, but rather land cover, I

draw heavily on frameworks that see ecosystem services a being “bundled” in land

cover types, with trade-offs between land cover types being congruous to trade-offs

in ecosystem services (Raudsepp-Hearne et al., 2010). After sub-setting the data to

various agro-ecological zones, under the premise that the ecosystem services offered

by natural land vary significantly across zones, I estimate how natural, uncultivated

land cover moderates the effect of drought on nutrition outcomes. This component

of the analysis highlights areas where the safety net effect is strongest – and thus

where conservation organizations should focus their efforts if they want to have

co-benefits for food security.

1.2 Background

1.2.1 Food Security and Nutrition

In the 1970s, food security work focused on either mortality (Puffer and Ser-

rano, 1973) or child nutrition as measured by anthropometry (Habicht et al., 1974).

Habicht et el showed that environmental conditions play a larger role than ethnic

differences in explaining children growth outcomes, and thus child anthropometry

is a valid means of studying malnutrition (Habicht et al., 1974). Any efforts to

look at food security in adults or independent of child nutrition outcomes usually
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consisted of national and regional efforts to determine the amount of grain or arable

land per capita (Maxwell and Frankenberger, 1992). Much of what was considered

food security at that time would now be seen as the study of food availability, a

sub-component of food security.

Today, there is still no sine qua non metric for food security, largely because

it has many different facets that are the result of processes at various scales (ie,

national, regional, community, household, individual). A variety of metrics for

food security and nutrition have been proposed, many of which developed from

objective standards for behavioral markers of adaptation to food insecurity (Webb

et al., 2006). In the “Food Security and Livelihoods Field Manual” published by

Action Against Hunger, 25 different tools for measuring food security and sustain-

able livelihoods were mentioned, including Mid Upper Arm Circumference (MUAC),

the Coping Strategies Index (CSI), Household/Individual Dietary Diversity Scores

(HDDS/IDDS), and the Food Consumption Score (FCS), among others. Increas-

ingly, researchers have called for work examining and validating these different met-

rics, to see which indicators capture acute or chronic food insecurity as well as

which indicators are most useful for needs assessment or measuring the success of

an intervention (Webb et al., 2006).

Recently, focus has again returned to anthropometry, often as an outcome

variable in regression analyses. This is in part because anthropometric indicators

are standardized, comparable, and have been collected in a wide variety of contexts

over long periods of time. While some work has associated adult stature with nu-

trition and health (Steckel, 2009), most work focuses on child anthropometry. A
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analysis using country-level statistics looked at underlying and basic determinants

of malnutrition, and found that health environments, women’s education, women’s

relative status, and per capital food availability were underlying determinants of

rates of child underweight, while per capital national incomes and democracy were

basic determinants (Smith and Haddad, 2000). Another analysis focused on individ-

ual outcomes found that improving food availability was strongly associated with

reducing child undernutrition and had the greatest marginal effect in developing

countries (Smith and Haddad, 2001).

One of the consequences of poor child nutrition is stunting, which affects more

than one in three children in many developing countries (UNICEF et al., 2017).

Stunting can lead to a higher risk of mortality as a child (Black et al., 2010), as

well as reduced physical, cognitive, and educational attainments and lifelong health

problems from reduced immunity and increased disease susceptibility (Arthur et al.,

2015). The effects of stunting on a population are long term: the children of par-

ents who experienced early childhood stunting are in turn at higher risk for lower

developmental levels (Walker et al., 2015). Due to decreased earnings and economic

output, child stunting can hamper a countries long-term economic growth for gen-

erations (Heltberg, 2009). Thus, ameliorating child stunting is a critical component

of sustainable development (Daelmans et al., 2017). While rates of stunting have

been in decline globally over the past few decades, hot-spots of stunting remain in

Africa and in South Asia Osgood-Zimmerman et al. (2018), Phalkey et al. (2015),

and climate change could stall or even reverse current gains.
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1.2.2 Climate Impacts on Food Security and Nutrition

The Intergovernmental Panel on Climate Change (IPCC) states in the Fifth

Assessment Report with high confidence that increases in temperature will increase

the risk of food insecurity through impacts such as drought, flooding, precipitation

variability and precipitation extremes (IPCC, 2013). While rates of undernutrition

and food security have been falling overall for the past few decades, there has been

an increase in these statistics more recently, which is somewhat attributable to

climate shocks (FAO et al., 2018). Currently, the world is not on track to meet

nutrition targets such as the second Sustainable Development Goal of zero hunger

by 2030 (IFPRI, 2016), and meeting these targets will require significant investments

in climate-resilient agriculture and supply chains (WBG, 2016). While increasing

precipitation extremes induced by climate change are broadly known to be a threat

to nutrition, the interacting effects of short-term rainfall shocks, long-term changes

in precipitation patterns, and the current water requirements of livelihood systems,

are underexplored.

Substantial literature exists on the pathways by which precipitation shocks

can affect food security and nutrition. The most immediate impact of unusually

low or high rainfall levels on food security is through harming yields, decreasing

the overall food availability in a location (Schlenker and Lobell, 2010, Thornton

et al., 2009) (See Figure 1.2.2). Subsistence farmers in low income countries often

plant crops that are adapted to local long-term rainfall, but when a given season has

rainfall levels that are far from long-term norms, yields can suffer. Insufficient water
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decreases the overall crop productivity, while at the same time, overabundant water

can delay planting, prevent waterlogged roots from absorbing nutrients, increase the

presence of crop pests, and increase lodging, rot and spoilage in harvests (Tefera,

2012). In addition to harming the yields of grain and vegetable crops, rainfall

shocks can affect the abundance of grazing areas, leading to lower availability of

animal protein. A decrease in food available can then cascade to constraints in

food access: when yields and livestock productivity decrease, food prices increase,

making food access difficult for poor households (Brown and Kshirsagar, 2015).

At the same time, households that rely on sales of agricultural products and cash

crops can be hit by decreasing incomes, while those relying on agricultural wage

labor or trading with farmers can also be negatively affected. Finally, excessive

rainfall can increase the risk of infectious diseases such as malarial, parasitic and

diarrheal disease, in turn harming proper food utilization and increasing rates of

undernutrition (Delpla et al., 2009, Paterson and Lima, 2010). Households often

adopt strategies of livelihood and agricultural diversification to protect their income

and food security from these shocks (Scoones, 1998).

While climate change is recognized to be a major threat to child nutrition,

a 2015 review paper of the effects of climate change on undernutrition noted that

current evidence associating climate change and undernutrition is “scattered and

limited” (Phalkey et al., 2015). The paper documented 15 studies that used re-

gression techniques to find an association between meteorological or agricultural

variables and child stunting (Phalkey et al., 2015). In this literature review, only

two studies were multinational, and the largest sample size was about 19,000 chil-
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Figure 1.1: Pathways by which precipitation anomalies affect nutrition, as well as
mitigating factors. Both low and high precipitation anomalies affect crop yields and
grazing land, which in turn affect food prices and household income, while high
rainfall can also affect infectious disease conditions, all of which ultimately affect
food security and, eventually, child nutrition outcomes. However, factors like access
to markets as well as ecosystem services can stabilize food prices, increase income,
and raise crop yields, ultimately improving nutrition outcomes or at least stabilizing
them in the event of precipitation shocks.

dren. Since 2015, more work has been done to confirm associations between low

rainfall and rates of stunting (Kinyoki et al., 2016, Lopez-Carr et al., 2015, Shiv-

ely et al., 2015), as well as to examine factors that can mitigate the effects of low

rainfall (Shively, 2017). Nevertheless, there is still a significant dearth of research

that draws on empirical observations of child nutrition and climate impacts, espe-

cially using large pools of data with the spatio-temporal variability that is needed

to model outcomes across geographies.
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1.2.3 Ecosystem Service Impacts on Food Security and Nutrition

Ecosystem services provided by natural areas play a large role in agricultural

production, as these areas provide pollination and pest regulation services, create

micro-climates via shading and windbreaks, retain soil moisture, and are essential

for soil formation in areas that practice swidden agriculture (Reed et al., 2016).

In addition to supporting agriculture, natural land cover types also provide wild

foods like bushmeat, fish, insects, wild plants, nuts, seeds, and honey. These wild

foods are a major part of the diets of agrarian people, and provide a wider range of

micronutrients than agricultural foods alone (DeClerck et al., 2011), as well as Non-

Timber Forest Products (NTFP), which can supplement income. Ecosystem services

availability can be proxied using vegetation indices (Mart́ınez-Harms and Balvanera,

2012) as well as land and tree cover, which is especially useful for measuring tradeoffs

at landscape scales (Raudsepp-Hearne et al., 2010).

Another major benefit provided by ecosystem services is that they make liveli-

hoods, and therefore human health and nutrition, more resilient to shocks that affect

food production. Natural vegetation retains water and increases soil moisture dur-

ing dry years, while pest regulation services are critical for crops that are already

stressed from heat waves or too much humidity (Reed et al., 2016). Provisioning

services like wild foods are a critical safety net for communities during droughts,

floods, and heat waves (Robledo et al., 2012). For example, during extreme shocks

communities with nearby natural areas can rely on “famine foods” - foods that are

not commonly eaten but are known to be edible (Mavengahama et al., 2013). These
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foods are critical to sustain adequate nutrition during years of agricultural failure.

It has been estimated that NTFP provide income and nutrition for over two-

thirds of Africa’s population (CIFOR, 2005). These products can provide significant

income to households and communities, with some products like shea oil and gum

arabic being collected and exported to international markets (Mujawamariya and

Karimov, 2014, Rousseau et al., 2017). Many other products, such as fuelwood

and building materials, are also sold locally and are an income source. A global

literature review of 51 case studies across 17 developing countries estimated that,

on average, forests provide 22% of a household’s total income (Vedeld et al., 2007).

NTFPs can also provide fuel, food and materials to households for free and lessen

their dependency on goods purchased from markets – thus, households with less

income tend to be the most dependent on forest products (Vedeld et al., 2007).

Thus, ecosystem services like NTFP are critical to human well-being (Haines-

Young and Potschin, 2010). Throughout the world, natural and human-impacted

areas provide regulating, cultural and provisioning ecosystem services (Bennett

et al., 2009). In agrarian parts of the developing world, communities depend signifi-

cantly on local provisioning ecosystem services for their health and income (Altieri,

2004). While agricultural production often provides the bulk of food and income in

these areas, provisioning ecosystem services from forests, shrublands and grasslands

also make significant contributions to communities’ livelihoods (Ambrose-Oji, 2003,

Heubach et al., 2011, Kar and Jacobson, 2012). Understanding the geographic and

demographic characteristics of areas that depend on these services is key to con-

servation priority setting to maximize ecosystem service provisioning and human
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well-being (Angelsen et al., 2011, Kareiva, 2011).
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Chapter 2: Precipitation Anomalies, Nutrition and Food Security

2.1 Introduction

The Intergovernmental Panel on Climate Change (IPCC) states in the Fifth

Assessment Report with high confidence that climate change will increase the risk of

food insecurity through impacts such as droughts, flooding, and shifting precipita-

tion patterns (IPCC, 2013). While rates of undernutrition and food insecurity have

been falling overall for the past few decades, there have been recent increases in these

statistics in some locations, which is somewhat attributable to climate shocks (FAO

et al., 2018). Currently, the world is not on track to meet nutrition targets such as

the second Sustainable Development Goal of zero hunger by 2030 (IFPRI, 2016), and

meeting these targets will require significant investments in climate-resilient agri-

culture and supply chains (WBG, 2016). While increasing precipitation extremes

induced by climate change are broadly known to be a threat to food security and

nutrition, the interacting effects of rainfall shocks at various temporal scales, overall

changes in precipitation patterns, and the current water requirements of livelihood

systems, are underexplored. Furthermore, much of the work that has been done

has not sufficiently controlled for the effects of spatial autocorrelation in the pat-

terns of precipitation shocks as well as in food security and nutrition outcomes.
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Thus, we here explore these interrelationships, taking care to account for spatial

autocorrelation.

2.2 Background and Previous Literature

Substantial literature exists on the pathways by which precipitation shocks

can affect food security (Funk et al., 2008, Lobell et al., 2008), with smallholder and

subsistence farmers being particularly vulnerable (Morton, 2007). The most im-

mediate impact of unusually low or high rainfall levels on food security is through

harming yields, decreasing the overall food availability in a location (Afifi et al.,

2014, Hanjra and Qureshi, 2010, Schlenker and Lobell, 2010, Thornton et al., 2009).

Subsistence farmers in low income countries often plant crops that are adapted to

local long-term rainfall patterns (Altieri et al., 2012, Altieri and Nicholls, 2017), but

when a given season has rainfall levels that are far from long-term norms, yields

can suffer (Amikuzino and Donkoh, 2012, Di Falco and Chavas, 2015). Insufficient

water decreases the overall crop productivity, while at the same time, overabundant

water can delay planting, prevent waterlogged roots from absorbing nutrients, in-

crease the presence of crop pests, and increase lodging, rot and spoilage in harvests

(Alam et al., 2011, Mirza, 2011, Tefera, 2012). In addition to harming the yields of

grain and vegetable crops, rainfall shocks can affect the abundance of grazing areas,

leading to lower availability of animal protein (Barrett and Santos, 2014, Patton

et al., 2007). A decrease in food availability can then cascade to constraints in food

access: when yields and livestock productivity decrease, food prices increase, making
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food access difficult for poor households (Brown and Kshirsagar, 2015, Devereux,

2007, Sen, 1983, Webb, 2010). At the same time, households that rely on sales

of agricultural products can experience decreasing incomes, while those relying on

agricultural wage labor or trading with farmers can also be negatively affected (Bola

et al., 2014, Cunguara et al., 2011, Kazianga and Udry, 2006, Pandey et al., 2007,

Udmale et al., 2015). Finally, excessive rainfall can increase the risk of infectious

diseases such as malarial, parasitic and diarrheal disease, in turn harming proper

food utilization and increasing rates of undernutrition (Delpla et al., 2009, Paterson

and Lima, 2010). To deal with such shocks, households often adopt strategies of

livelihood and agricultural diversification to protect their income and food security

from these shocks (Lay et al., 2009, Maxwell, 2002, Scoones, 1998), while in some

areas government social protection programs and international aid can also provide

relief (Calow et al., 2010, Haile, 2005, Wilhite et al., 2014).

A recent review paper of research on precipitation and child undernutrition

noted that there is “limited comprehensive empirical evidence at the household

level” of an association (Phalkey et al., 2015). While it is broadly known that cli-

mate change will affect precipitation patterns and food security, much work remains

to be done to understand which types of precipitation impacts will affect food secu-

rity and which populations are most vulnerable. Several studies have found linkages

between mean annual precipitation and child anthropometry (Akresh et al., 2011,

Grace et al., 2012, Huss-Ashmore and Curry, 1994), suggesting that changing pre-

cipitation patterns induced by climate change may affect child nutrition outcomes.

Other researchers have focused on deviations from long-term norms, and have found
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that both droughts and periods of excessive rainfall can impact child nutrition due

to the effects of these precipitation extremes on agricultural production and overall

food availability (Alderman, 2010, Chotard et al., 2011, Rodriguez-Llanes et al.,

2011). However, there is much disagreement about the timescales at which precipi-

tation shocks are most relevant to child undernutrition, with some studies focusing

on early-life rainfall (Alderman, 2010, Rodriguez-Llanes et al., 2011), others fo-

cusing on prenatal precipitation (Woldehanna and Lives, 2010), others testing for

rainfall shocks in recent seasons (Skoufias and Vinha, 2012), and still others looking

at rainfall extremes during any single year in an individual’s first five years of life

(Alderman, 2010). Overall, it seems that little work to date has examined how pre-

cipitation extremes at multiple time scales relate to child anthropometry outcomes.

The relationship between the timing of precipitation impacts and levels of child

stunting is complicated by the fact that while the first thousand days of a child’s

life are most critical for anthropometric attainment (Black et al., 2013, du Plessis

et al., 2016), there is a well-established phenomenon of catch-up growth, whereby

a child can experience accelerated linear growth after the cessation of a nutritional

shock (Behrman, 2015, Godoy et al., 2010, Stobaugh et al., 2018, Wit and Boersma,

2002). Thus, the linkages between the timing and duration of rainfall shocks and

their impact on food security and nutrition merit further study.

While child anthropometry has been used as a metric of food security for

decades, some researchers have raised important concerns regarding its lack of in-

formation on qualitative aspects of food insecurity (Coates et al., 2003, Maxwell,

1996), and the fact that is a lagged signal of previous household food insecurity
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(Carletto et al., 2013). For these reasons, a number of new rapid indicators of food

security have been developed, including the Household Hunger Scale (HHS) (Jones

et al., 2013). However, linkages between these newer household food security met-

rics and climate and precipitation shocks, as well as their performance in relation

to traditional child anthropometry metrics, remain underexplored.

We begin to address these questions by using geospatial data on precipita-

tion patterns, population densities, and irrigation infrastructure in combination

with the United States Agency for International Development (USAID) Feed the

Future (FTF) household survey data. These surveys were commissioned by the

USAID and conducted by the International Food Policy Research Institute (IF-

PRI) in Bangladesh and the Monitoring, Evaluation and Technical Support Ser-

vices (METSS) team in Ghana. By comparing surveys from both Bangladesh and

Ghana, we have the opportunity to compare the response of HAZ, WHZ, and HHS

scores to precipitation extremes in two very different agro-ecological contexts: in

Bangladesh, with high annual precipitation and high levels of irrigation, as well

as in northern Ghana, with low annual precipitation and no large-scale irrigation.

These surveys were designed to measure food security and child nutrition as well as

critical co-variates such as household wealth and demographics (Feed The Future,

2011). Additionally, some FTF surveys collected GPS points at each household,

facilitating the extraction of meteorological data at the location of each household

to explore relationships between household characteristics, precipitation conditions,

and nutrition and food security outcomes (Brown et al., 2014). We utilized geolo-

cated FTF surveys from Ghana (2012) and Bangladesh (2011, 2015) to test for an
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observable impact of rainfall levels and rainfall extremes on household food security,

measured by the HHS, and child undernutrition, measured by child height-for-age

Z-scores (HAZ) and weight-for-height Z-scores (WHZ) using Spatial Error Regres-

sion (SER) where necessary to account for possible spatial autocorrelation in the

regressions.

2.3 Data

2.3.1 Sources

For this analysis we used data on rural households from Feed the Future sur-

veys conducted in Ghana and Bangladesh, taking care to properly account for effects

of spatial autocorrelation (see Modeling Methods section). The 2012 survey from

Ghana was targeted at the Feed the Future Zone of Influence (ZOI) in the northern

part of the country where Feed the Future interventions had taken place, while the

survey from Bangladesh was a nationally representative panel survey from the years

2011 and 2015. In Ghana, enumeration areas (EAs) were established in the ZOI in

the Upper West, Upper East, and Northern regions, as well as in parts of the Brong-

Ahafo region. Households were randomly sampled from these EAs and sampling

weights were generated to make the data representative of the ZOI. In Bangladesh,

households were selected from 325 primary sampling units (PSUs) throughout the

country, and sampling weights were devised based on population census data to

make the survey nationally representative. Rural households with less access to

high-quality roads and food markets generally have lower agricultural productivity
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(Stifel and Minten, 2008). Thus, children in such areas are more affected by lo-

cal precipitation patterns (Mulmi et al., 2016, Shively, 2017) and typically exhibit

higher rates of stunting (Thapa and Shively, 2018). Therefore, we focused our anal-

ysis on rural households, as other researchers have done in similar studies (Phalkey

et al., 2015). For Ghana, we only use data on households from PSUs designated as

rural in the sampling frame of the Ghana survey, while for Bangladesh, because EAs

were not classified into urban and rural, we excluded households within 30 minutes

travel time to cities of over 20,000 people, with the time to travel to cities calculated

using a methodology developed by IFPRI (Guo and Cox, 2014). This yielded a final

dataset of 2,362 Ghanaian households and 4,878 unique Bangladeshi households. Of

the Bangladeshi households, 4,464 were observed twice, 342 where only observed in

2011, and 72 were only observed in 2015, yielding a dataset of 9,342 observations.

Finally, for our analysis of HAZ and WHZ scores, we had a final dataset of 3,271

children from Bangladesh and 1,346 children from Ghana. There were fewer children

than households in both countries because not all households had children under 5

years old.

2.3.2 Outcome Variables

Our anthropometric outcome variables were height-for-age z-scores (HAZ) and

weight-for-height z-scores (WHZ) of children under five years old. This approach

involves comparing the height and weight/height ratio of a child under five years

old to the distributions of these measurements for children of the same age and
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gender in a healthy population and assigning a Z-score (WHO, 1995). A child’s

HAZ score is a common indicator of stunting, which results from long-term, chronic

undernutrition, while a child’s WHZ score is an indicator wasting, which results from

recent and acute undernutrition (Lewit and Kerrebrock, 1997). These metrics have

been used for decades and have been found to be a salient indicator of child health

status (Black et al., 2013), and strongly related to agricultural variables (Bezner

Kerr et al., 2011, Cunningham et al., 2015, Shively, 2017, Webb and Kennedy,

2014), environmental variables (Akseer et al., 2018, Buttenheim, 2008, Chagomoka

et al., 2018, Grace et al., 2017), as well as other child health metrics (Black et al.,

2008, Caulfield et al., 2006, Dewey and Begum, 2011). The population-level rates

of stunting and wasting can be derived from the percentage of children with HAZ

and WHZ scores less than -2, although natural variation in human height as well

as the arbitrary cutoff of -2 makes it inappropriate to classify an individual child

as stunted or wasted from anthropometry alone (Perumal et al., 2018). Stunting

and wasting can bear long-term effects on educational outcomes, disease risk, and

potential adult income (Badham and Sweet, 2010, Dewey and Begum, 2011), and so

reducing the rates of these indicators of undernutrition is a critical part of sustainable

development (Daelmans et al., 2017).

In addition to child HAZ and WHZ scores, we also analyzed the Household

Hunger Scale (HHS), a common indicator of household food insecurity (Jones et al.,

2013), measured in both the Ghana and Bangladesh surveys. The HHS consists

of three questions about a household’s experience of insecurity (Ballard, 2011), ex-

pressed by:
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1. Was there ever no food to eat of any kind in your house because of lack of

resources to get food?

2. Did you or any household member go to sleep at night hungry because there

was not enough food?

3. Did you or any household member go a whole day and night without eating

anything because there was not enough food?

Households report how frequently they had experienced these events over the

previous four weeks and a score is given for each question (never: 0, rarely or some-

times: 1; often: 2). The frequency scores across all three questions are summed to

yield the final HHS score, with a value of 0 indicating no experiences of hunger, and

a value of 6 indicating frequent experiences of all three forms of hunger over the

previous four weeks. The HHS was developed from applications of the Household

Food Insecurity Access Scale (HFIAS), which consisted of nine questions (Deitchler

et al., 2010). Both the HHS and the HFIAS grew out of a recognized need for indi-

cators of food security that could be rapidly deployed and that capture experiential

aspects of food insecurity (Carletto et al., 2013, Coates et al., 2003). However, some

of the nine questions in the HFIAS were found to be difficult to translate into other

languages, while the item-step severity of the scale did not always change monoton-

ically (Deitchler et al., 2010, Jones et al., 2013). Thus, the HHS is based on only

three questions from the HFIAS which are most readily translatable and applicable

to other cultural settings and are most likely to show item-step severity trends that

are monotonic. Overall, compared to the HFIAS, the HHS is recognized to have the
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highest potential to be internally, externally and cross-culturally valid (Deitchler

et al., 2010). While it has been pointed out that the HHS measures hunger and

not food security per se (Jones et al., 2013), food security itself cannot be measured

directly (Vaitla et al., 2017) and the HHS certainly captures an important aspect

of food security. Thus, in this paper we take increased hunger as measured by the

HHS score as indicative of worse food security.

2.3.3 Predictor Variables

We used rainfall data from the Climate Hazards Group InfraRed Precipitation

with Station (CHIRPS) dataset (Funk et al., 2015), and we calculated the long-term

rainfall norm as well as the Standardized Precipitation Index (SPI) at intervals from

one to five years for each household. The SPI is a derived measure of wetness/dryness

for a given location based on long-term norms at that site, with a positive SPI score

indicating a wetter-than-normal period and a negative SPI score indicating a drier-

than-normal period (Guttman, 1999). The time scale used to calculate the SPI varies

depending upon the application, with studies focusing on agriculture using SPI a

shorter timescales of up to 12 months (Brown and Funk, 2008), studies focusing on

WHZ scores calculating SPI over shorter windows such as 3 months (Delbiso et al.,

2017, Lazzaroni and Wagner, 2016), and studies focusing on other health impacts

calculating SPI over longer windows of up to 48 months (Dinkelman, 2017, Hyland

and Russ, 2019), with most studies finding a significant association between SPI

and various outcome variables of interest.
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SPI Range Interpretation
<-2 Extremely Dry
-1.5 - -2 Moderately Dry
-1 - -1.5 Dry
-1 - 1 Normal Precipitation
1 - 1.5 Wet
1.5 - 2 Moderately Wet
>2 Extremely Wet

Table 2.1: Summary of variables included as co-variates in the regressions as well
as their availability by country. Where applicable, variable units are given.

To explore how rainfall aberrations over different time periods can affect food

security and nutrition, for our analysis we ran separate regressions with SPI values

measured at 12, 24, 36, 48, and 60-month intervals for each country and outcome

variable. For each survey analyzed, spatial variation in SPI scores is substantial.

The maps in Figure 1 show the observed 48-month SPI values in the Ghana and

Bangladesh household surveys. In Ghana, precipitation in the north was slightly

higher than normal, and near the Volta Basin in the east it was significantly wet-

ter than normal. Bangladesh had showed similar rainfall patterns in the north in

both 2011 and 2015, with households in north and central Bangladesh experiencing

drier-than-average periods, with farmers in the northeast of the country in the Syl-

het region experiencing wetter-than-average periods. In the south of Bangladesh,

precipitation patterns differed between 2011 and 2015. Households in Barisal were

experiencing ample rainfall in 2011 but experienced a dry period leading up to 2015,

while households in Chittagong in the southeast experienced a mildly wet period in

2011 and a very wet period in 2015.
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Figure 2.1: Locations of households used in the analysis, as well as observed 48-
month SPI values at each household. Figure was made using ArcMap.

2.3.4 Control Variables

To better assess the relationship between precipitation and food security and

nutrition, we control for several other geographic-, household-, and individual-level

variables. Household wealth is a strong determinant of both household food security

status and child nutrition status (Ahmed et al., 2012). Because there was no measure

of income or expenditure in the surveys, we constructed an index of household

wealth through Principal Component Analysis (PCA) on household assets and other

indicators of wealth (Vyas and Kumaranayake, 2006). For each country, the first

principal component factor explained a large proportion of the variance (68% and

65% of the variance in Bangladesh and Ghana, respectively). The assets we used

varied by country and are summarized in Appendix A.

In addition to an asset index, other variables included were the household size,

household head characteristics such as sex, religion, and education, as well as the

fraction of a household not of working age. The two datasets did not have identical

information on household or individual characteristics and in some cases, variables
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were frequently missing or incomplete, so different control variables were used in

the country-level analyses. In Bangladesh, the interview month was included in the

regressions in order to control for seasonal effects; however, these were not included

in Ghana as the entire survey took place over the course of a month. These variables

are summarized in Table 2.2.

Variable Ghana Bangladesh
Outcome Variables
Household Hunger Scale Yes Yes
Height-for-Age Z-Score Yes Yes
Geographic Variables
Population within 7.5km (Count of People) Yes Yes
Percent of Agricultural Area Irrigated No Yes
Household Variables
HH Size (Number of Individuals) Yes Yes
Asset Index Yes Yes
HH Head Religion Yes Yes
HH Head Age (Years) Yes Yes
HH Head Literate Yes Yes
HH Head Education Level No Yes
HH Head Sex Yes Yes
Percentage of Household Under 12 or Over 60 Years of Age Yes Yes
Interview Month No Yes
Survey Year n.a. Yes
Individual Variables (Used in Nutrition Analyses)
Age (Months) Yes Yes
Gender Yes Yes
Child’s Birth Order Yes No
Siblings Born Within 24 Months Yes No

Table 2.2: Description of Variables Used in Regressions

2.4 Descriptive Statistics

To generate hypotheses to be tested in the multivariate regression framework

and facilitate the interpretation of estimation results, in this section we graph prob-
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ability density and probability mass functions, as well as summary statistics of

several key statistics in the regressions. Additionally, complete summary statistics

are provided in Appendix A.

2.4.1 Standardized Precipitation Index

For each country, the SPI values provided ample variation in each regression.

SPI scores in Bangladesh varied more than in Ghana, often from less than -2, signal-

ing extremely dry conditions, to 2, signaling moderately wet conditions, depending

on the period. In both 2011 and 2015, the majority of households were subject to

lower rainfall than the long-term norm for SPI values calculated at all time windows.

For Ghana, none of the households experienced drought at the time of the survey,

and only a few households had SPI values less than 0 when calculated by the 12

month window, meaning that we can only examine the effects of extreme rainfall on

food security and anthropometry outcomes in Ghana and not the effects of drought.

For most time windows, SPI values ranged from near-normal to moderately wet

conditions.
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Figure 2.2: Density plots of observed SPI scores, by survey and the period over
which the SPI was calculated. Figure was made in R using the ggplot2 library.
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2.4.2 Average Annual Precipitation

The density plots below report the distribution of average annual precipitation

levels among households in the two countries. Bangladesh receives significantly more

rainfall than Ghana, with the minimum rainfall in Bangladesh being similar to the

maximum rainfall in Ghana. Bangladesh shows much greater variation in rainfall

distribution, from 1420mm to 5000mm per year, whereas Ghana only ranges from

912mm to 1370mm per year.
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Figure 2.3: Density plots of average annual precipitation levels across observed
households, by country. Figure was made in R using the ggplot2 library.

2.4.3 Household Hunger Scale

In Bangladesh, 10.1% of households had experienced hunger in the previous

four weeks at the time of the 2011 survey and 11.7% had experienced hunger in

the previous four weeks at the time of the 2015 survey, with progressively fewer

households at each level of increasing severity. Ghana, on the other hand, showed
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higher scores, with 56.7% households reporting some level of hunger. The count and

percent distribution of households for each value of the hunger scale is provided in

Appendix A.
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Figure 2.4: Frequency plot of observed Household Hunger Scale (HHS) scores, by
survey. Lower scores indicated less hunger.

2.4.4 Child HAZ and WHZ Scores

Rates of stunting and were very high in both Ghana and Bangladesh, at 38%

and 43% respectively, while rates of wasting were lower, at 14% in Bangladesh and

11% in Ghana. While the Z-scores of children clustered well below 0 in each country,

there was still substantial variation in heights.

2.5 Modeling Methods and Results

In this analysis, we took care to control for spatial autocorrelation. This is be-

cause outcomes such as HHS and HAZ scores are often correlated spatially: nearby

households are likely to show similar nutrition and food security outcomes. The cor-

relations in outcomes could be due to a variety of factors, such as spatial clustering

in the distribution of poverty, disease burden, market access, soil fertility, pest out-

29



WHZ

Ghana 2012

WHZ

Bangladesh 2011

WHZ

Bangladesh 2015

HAZ

Ghana 2012

HAZ

Bangladesh 2011

HAZ

Bangladesh 2015

−6 −3 0 3 6 −6 −3 0 3 6 −6 −3 0 3 6

0.0

0.1

0.2

0.3

0.4

0.0

0.1

0.2

0.3

0.4

Child’s Height−for−Age Z−score

D
en

si
ty

Observed Children Reference Population

Figure 2.5: Density plot of observed child height-for-age Z-scores (HAZ) and weight-
for-age Z-scores in comparison to a reference healthy population, by country. An
HAZ score of less than -2 is considered stunted and a WHZ score of less than -2 is
considered wasted. Figure was made in R using the ggplot2 library.

breaks, or farming practices. Thus, it is necessary to use a Spatial Error Regression

because OLS assumes that each observation is independent. If there is an under-

lying spatial structure to the error terms, a simple ordinary least-squares (OLS)

regression will tend to underestimate the variance and therefore will overestimate

the p-values in the model (Ward and Gleditsch, 2008b).

To verify that there is a need to conduct a Spatial Error Regression and to

determine the distance cutoffs for the spatial weights matrix, we first conducted an

Exploratory Spatial Data Analysis (ESDA). For each outcome and each country, we

tested to determine whether or not the residuals of an OLS regression show spatial

autocorrelation, and we did this using a Moran’s I test. Then, for outcomes for which

spatial autocorrelation was detected by a Moran’s I test, we plotted a correlogram

for the outcome variable to determine the distance at which spatial autocorrelation
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disappears and then used this distance to construct a spatial weights matrix.

We modeled outcome variables for which we observed spatial autocorrelation

using a Spatial Error Regression, which uses a spatial weights matrix to correct the

error term and obtained unbiased coefficients and p-value estimates (Anselin, 2001,

Bivand et al., 2005, Ward and Gleditsch, 2008b). The SER differs from the Spa-

tially Lagged Regression (SLR) model in that it models spatial correlation in the

error term due to unobservable processes affecting households across space, while

the SLR explicitly models the spatial correlation in the dependent variable due to

observable characteristics spatially correlated across households (Ward and Gled-

itsch, 2008b). A SLR is more appropriate when the value of one observation affects

the value of nearby observations, whereas a SER is more appropriate when the val-

ues of observations are independent from each other but affected by unobservable

underlying spatial processes. Since child nutrition and household food security sta-

tuses are more affected by unobserved spatial conditions than by the correlation of

the observed characteristics among children and households across space, we used a

SER.

Specifically, a Spatial Error Regression takes the form:

y = β0 + βX + λWξ + ε (2.1)

where, as in a typical regression, y is the outcome variable, β0 is the intercept,

β is a vector of coefficients, and X is a matrix of observed covariates. In a SER,

the error term is decomposed into ε, the spatially uncorrelated error component
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and ξ, the spatial error component, which is estimated using the matrix of spatial

connectivities Wand the parameter λ, which indicates the degree to which error

terms are spatially correlated. We estimated the matrix of spatial connectivities W

for neighbors within the cutoff distance determined by the correlograms. In every

regression, we included sample weights.

For each country, we ran separate regressions for child WHZ, HAZ and HHS

scores across all 5 SPI windows and included the relevant co-variates in each regres-

sion. Due to the number of hypothesis tested (30), we use a Bonferroni correction

when testing for statistical significance of the coefficient of the SPI term to avoid the

possibility of a Type I error of incorrectly rejecting the null hypothesis and hence

we use an alpha value of α=0.05/30=0.00167. In the case of Bangladesh, given the

availability of the panel dataset for Household Hunger Scores, we first conducted a

Chow test to identify a possible structural change over time, in absence of which

it would be appropriate to pool the two waves of data (Wooldrige, 2013). The test

statistic was not significant for any SPI value (α = 0.01), and there was no a priori

reason to expect the effects of precipitation shocks on food security and nutrition

to be different between 2011 and 2015, so we pooled the waves and included a fixed

effect for the survey year. Parameter estimates and test statistics are presented in

Appendix A.
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2.5.1 Exploratory Spatial Data Analysis (ESDA)

We tested for spatial autocorrelation in our outcome variables as well as in

the residuals of an OLS using a Moran’s I test for each outcome variable and each

country. This showed that there was spatial autocorrelation for the HHS score in

Bangladesh and in Ghana, as well as for the HAZ and WHZ score in Bangladesh;

however, there was no autocorrelation for HAZ or WHZ scores in Ghana.

Country Variables Observed Expected Std. Dev. P Value
Ghana HAZ 0.00247 -0.00074 0.00549 0.559
Ghana WHZ 0.00603 -0.00074 0.00549 0.217
Ghana HHS 0.0477 -0.00042 0.00384 0
Bangladesh HAZ 0.00887 -0.00031 0.00236 0.000105
Bangladesh WHZ 0.00496 -0.00031 0.00236 0.0261
Bangladesh HHS 0.00422 -0.00011 0.000911 0.00000203

Table 2.3: Results of a Moran’s I test for spatial autocorrelation for WHZ, HAZ,
and HHS residuals in Bangladesh and Ghana.

For the three outcome variables for which there was spatial autocorrelation, we

examined a correlogram to determine the distance at which autocorrelation persists.

The distance at which the 95% error bar dips below 0 is the distance at which a

Moran’s I test no longer shows significant spatial autocorrelation. This showed

that there was significant (p <0.05) spatial autocorrelation to 80 kilometers for the

HHS score in Bangladesh, to 30 kilometers for the HAZ score in Bangladesh, to

20 kilometers for the WHZ score in Bangladesh, and to 125 kilometers for the HHS

score in Ghana. We used these distances to establish the cut-off distances in defining

our spatial weights matrices for the Spatial Error Regressions.
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Figure 2.6: Correlograms showing Moran’s I at various spatial lags, with a 95%
confidence interval shaded in grey. These estimates were used to create the spatial
weights matrices used in the regressions.

2.5.2 Ghana

Although we varied the SPI window from one to five years, the covariates

remained mostly unchanged and had similar estimates across the regressions. The

child’s age was a significant predictor of the child’s HAZ or WHZ score, with older

children having lower HAZ scores but larger WHZ scores. Household size and house-

hold religion were significant predictors of HAZ scores, with larger households being

associated with higher HAZ scores and households with no religion being associated

with children with lower HAZ scores. Various Regions were also significant as fixed

effects for child WHZ scores. For HHS scores, significant covariates included the

household size, household head age, whether the household head was literate, and

the household religion. Additionally, the average annual precipitation was signifi-

cant across many of the HHS regressions, with households receiving more annual

precipitation being associated with less hunger.

For SPI values, excessive rainfall over a short time window of 12 months was

associated with lower WHZ scores, whereas excessive rainfall over longer time win-

dows of 36 months were associated with lower HAZ scores. Excessive rainfall over
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periods of 36 and 48 months were also associated with lower HHS scores.
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Figure 2.7: Coefficient estimates for Ghana for SPI values calculated at varying win-
dows. Errors bars and significance values are shown after accounting for a Bonferroni
correction. Note: while higher HAZ and WHZ scores indicate good nutrition, higher
HHS scores indicate poor food security. Figure was made in R using the ggplot2
library.

2.5.3 Bangladesh

Many of the covariates were significant in the Bangladesh regressions. Similar

to Ghana, the child’s age was significant for both HAZ and WHZ scores, however

in Bangladesh, older children had both lower HAZ and WHZ scores. Household

head education had significant effects on both WHZ and HAZ scores, with more

educated household heads being associated with better nourished children. The

month of the household survey also had a significant effect on both HAZ and WHZ

scores, especially for months earlier in the calendar year. For covariates of HHS,

education played a significant role, with more educated household heads having

lower HHS scores, indicating less hunger, and less educated household heads having

higher HHS scores, indicating more hunger. Other household demographic factors
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were also important, with households with a larger fraction of young and old having

higher HHS scores, and larger households having lower scores. Many of the Divisions

of Bangladesh were also significant predictors of a household’s HHS score. Finally,

mean annual precipitation was never a significant predictor of a household’s HHS

score.

For nutrition and food security outcomes across all of the SPI time windows,

the recent SPI was never a significant predictor of child nutrition outcomes like

HAZ and WHZ. However, the 48-month SPI was a significant predictor of household

hunger scores, with greater rainfall being associated with higher scores, indicating

more hunger. None of the other time windows were significant predictors of hunger.
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Figure 2.8: Coefficient estimates for Bangladesh for SPI values calculated at vary-
ing windows. Errors bars and significance values are shown after accounting for a
Bonferroni correction. Note: while higher HAZ and WHZ scores indicate good nu-
trition, higher HHS scores indicate poor food security. Figure was made in R using
the ggplot2 library.
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2.6 Discussion

This study has contributed to the literature on precipitation shocks and food

security and nutrition in three ways. First, it has demonstrated the utility of Spa-

tial Error Regression in accounting for geographic autocorrelation in food security

outcomes. This type of model can reduce the impact of unobserved spatial pro-

cesses that can confound results in a simple OLS regression. Such an approach

is important for disentangling the effects of climate from other variables that also

have a spatial component, such as wealth, market access, and livelihood systems.

Secondly, this study has compared how shocks over various time periods may af-

fect food security and nutrition outcomes in both an arid country as well as in a

country with relatively high average rainfall. Finally, this study has examined how

both anthropometric measures and the Household Hunger Scale response to precip-

itation shocks and demonstrates that the Household Hunger Scale is a useful and

informative metric of studying household food security.

The distribution of both precipitation regimes and precipitation shocks have

a spatial component – nearby households are likely to have similar precipitation

patterns and experience similar precipitation shocks. Similarly, nearby households

are likely to have similar levels of food security and nutrition, as these are affected

by a variety of underlying spatial processes such as the distribution of wealth, in-

frastructure, and livelihood systems. Thus, when assessing the relationship between

precipitation patterns and food security outcomes, it is important to control for this

autocorrelation to minimize the possibility of a Type I error and incorrectly reject
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the null hypothesis. In this paper, we demonstrate this approach, beginning with

an Exploratory Spatial Data Analysis (ESDA) to identify for which regressions a

Spatial Error Regression is necessary.

Examining SPI calculated across different windows allowed us to compare how

rainfall levels over different periods of time affected child nutrition and household

food security. In Ghana, the response of WHZ and HAZ scores to different rainfall

windows were in line with what the literature would suggest: short term rainfall

shocks over 12 months were significant predictors of WHZ scores, an indicator of

short-term undernutrition, whereas longer periods of 36 months were significantly

associated with HAZ scores, which indicate long-term, chronic undernutrition (Lewit

and Kerrebrock, 1997, WHO, 1995). In both cases, increased rainfall was associated

with worse nutrition outcomes. While HAZ and WHZ scores respond differently to

rainfall shocks over different time periods, in both Ghana and Bangladesh household

hunger was affected by longer term processes. This suggests that most households

will not experience food insecurity after a single poor crop season or even a year

of poor yields. Rather, in the two countries examined, it is the compounding ef-

fects of multiple years of precipitation extremes that make households vulnerable to

hunger. This suggests that some studies which have examined the impacts of short-

term SPI on malnutrition would benefit from also examining SPI calculated over

longer timescales (Delbiso et al., 2017, Lazzaroni and Wagner, 2016). Finally, in

Ghana, higher average annual precipitation levels were associated with lower house-

hold hunger scores. This suggests that there may be impacts on food security as

areas experience gradual drying over multiannual and decadal periods, rather than
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just precipitation extremes over shorter periods.

By comparing Ghana and Bangladesh – two countries with similar levels of

wealth per capita and large agrarian populations but starkly divergent precipitation

regimes – we can get a better sense of what kind of precipitation shocks affect food se-

curity in which contexts. Overall, with regard to hunger, it seems that in arid Ghana,

more rainfall improves food security, as decreased hunger was associated with both

increased precipitation over 36 and 48 month windows as well as increased average

annual precipitation. It is particularly noteworthy that all households in Ghana

were observed during wet periods, and even exceptionally high precipitation levels

were not associated with increased hunger. In contrast to Ghana, in Bangladesh,

increased rainfall was associated with more hunger. This is not entirely surpris-

ing, given that flooding in Bangladesh has been associated with increased stunting

and food insecurity (Del Ninno et al., 2003, Douglas, 2009, Monirul Qader Mirza,

2002). These findings indicate that precipitation shocks will not necessarily harm

food security in all contexts. Rather, whether or not a shock affects food security

is depended on prevailing agro-ecological conditions. In comparing Bangladesh and

Ghana, results further indicate that food security and nutrition in northern Ghana

may be more sensitive to rainfall deviations from long-term norms than Bangladesh

is, as WHZ, HAZ, and HHS scores were affected by precipitation in Ghana, but

only HHS scores were affected by precipitation in Bangladesh. This may be due to

the fact that Bangladesh has extensive irrigation infrastructure, making agricultural

production less affected by local rainfall.

Another contribution of this study to the literature was the comparison of

39



the Household Hunger Scale to child anthropometry. In Ghana, counter-intuitively,

greater rainfall was associated with less hunger but more undernutrition. Further-

more, the findings are more robust and less likely to be due to spurious correlation

because we controlled for both spatial autocorrelation and testing multiple hypoth-

esis by using a SER regression as well as a Bonferroni correction. These findings

may be explained in part by the role that infectious disease can play in affecting

child nutrition (Dowell, 2001, Patz et al., 2004). Excess rainfall can lead to increased

incidence of malaria (Briët et al., 2008, Odongo-Aginya et al., 2005, Thomson et al.,

2005), parasite infections (McCreesh et al., 2015, Raso et al., 2006), diarrheal disease

(Carlton et al., 2014), and other infectious diseases (Patz et al., 2005), especially

cholera (Hashizume et al., 2008, Moore et al., 2017). These effects may be especially

pronounced in areas without the appropriate infrastructure to handle large quanti-

ties of rainfall. Thus, it may be that increased rainfall has mixed results for food

security, because while it can lead to more food production and agricultural income,

it can also hamper food utilization due to an increased disease and parasite burden.

These results reinforce the notion that climate change will have complex impacts

on human well-being. Furthermore, these results echo previous findings that food

security is complex and multidimensional, and is more accurately characterized by

using multiple complementary metrics (Coates et al., 2003, Vaitla et al., 2017).

In Bangladesh, only the Household Hunger Scale was related to rainfall pat-

terns, while both HAZ and WHZ scores were uncorrelated with recent rainfall aber-

rations, even though previous literature had found a relationship between high rain-

fall and stunting in that country (Rodriguez-Llanes et al., 2011). This may be
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somewhat due to the fact that the dataset used in the analysis has relatively few

households with children under five years old (only 15% in Bangladesh in both 2011

and 2015), meaning that the regressions for HAZ and WHZ scores relied on data sets

of significantly reduced size. Thus, the regressions with anthropometric outcomes

had less statistical power for inference. These findings suggest that, while much

previous literature has focused on the relationship between rainfall and child an-

thropometry (Cornwell and Inder, 2015, Lopez-Carr et al., 2016, Maccini and Yang,

2009, Rodriguez-Llanes et al., 2011), rapidly deployable metrics of food security at

the household level such as the HHS may be more robust indicators of climate change

impacts than just child anthropometry, especially as birth rates decline worldwide

and households are less likely to have children under five present.

While this study made several contributions to the literature, there remain

further avenues for research. For example, while we controlled for additive effects

of irrigation in Bangladesh, future work could test for an interactive effect between

irrigation levels and SPI. Furthermore, future studies could account for temperature,

which has been shown to have a direct effect on child health outcomes (Grace et al.,

2015), and also plays a significant role in moderating the severity of drought on

agriculture because it affects evapotranspiration (Begueŕıa et al., 2014). Thus, future

work could model extend the SPI by using biogeophysical models to estimate local

evapotranspiration and calculate the Standardized Precipitation-Evapotranspiration

Index (SPEI).
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2.6.1 Implications

The present work has many implications for policymakers and researchers. We

showcase the utility of Spatial Error Regression and emphasize the importance of

testing for spatial autocorrelation in analysis of factors that vary through space,

such as food security and nutrition. Our study also highlights the utility of the

Household Hunger Scale as tool to measure food security in addition to commonly-

used anthropometric metrics such as the child anthropometrics z-scores. This is

because we found diverging impacts of excessive of precipitation on anthropometry

and household hunger in Ghana, as well as because we found the HHS to be more

sensitive than child anthropometry to precipitation extremes in Bangladesh. These

findings are indicative of the complex ways in which climate shocks can affect hu-

man well-being and highlight the importance of measuring multiple aspects of food

security to get a comprehensive characterization of foods security. More research

is needed on the HHS and similar rapid food security indicators, as policy tools

such as the Integrated Food Security Phase Classification may benefit from incor-

porating such indicators (IPC/FAO, 2015). Finally, we have presented evidence

that both drought and periods of excessive rainfall are significantly correlated with

food security outcomes, with dry areas potentially more vulnerable to drought and

wetter areas potentially more vulnerable to excessive rainfall. To better understand

the role that environmental and infrastructural context plays in moderating the im-

pacts of precipitation shocks and food security and nutrition, more comparative and

multinational studies are needed.
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Chapter 3: Mapping the Effects of Drought on Child Stunting

3.1 Overview

Currently, one in nine people around the world are undernourished and nearly

half of the deaths in children under five are caused by poor nutrition (FAO et al.,

2018). One of the consequences of poor child nutrition is stunting, which affects

more than one in three children in many developing countries (UNICEF et al.,

2017). Stunting can lead to a higher risk of mortality as a child (Black et al.,

2010), as well as reduced physical, cognitive, and educational attainments and life-

long health problems from reduced immunity and increased disease susceptibility

(Arthur et al., 2015). The effects of stunting on a population are long term: the

children of parents who experienced early childhood stunting are in turn at higher

risk for lower developmental levels (Walker et al., 2015). Due to decreased earnings

and economic output, child stunting can hamper long-term economic growth for

generations (Heltberg, 2009). Thus, ameliorating child stunting is a critical compo-

nent of sustainable development (Daelmans et al., 2017). While rates of stunting

have been in decline globally over the past few decades, hot spots of stunting remain

in Africa and South Asia (Osgood-Zimmerman et al., 2018). Furthermore, because

stunting has been shown to be very sensitive to climate shocks (Grace et al., 2012,
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Shively, 2017), climate change could stall or even reverse current gains (FAO et al.,

2018).

Climate change is now widely acknowledged to be a threat to food security and

nutrition globally. Rising temperatures due to increased greenhouse gas emissions

will change patterns of precipitation and temperature around the world, in turn af-

fecting food production and infrastructure critical to food distribution (Porter et al.,

2014). All of these impacts will affect child nutrition outcomes, which is why both

the World Health Organization (WHO) and the Intergovernmental Panel on Climate

Change (IPCC) have identified undernutrition as a major expected health impact of

climate change (Smith et al., 2014, WHO, 2014). Most directly, climate change will

affect crop production and therefore food availability (Schlenker and Lobell, 2010).

In many parts of the world, precipitation shortfalls will become more frequent and

severe, while rising temperatures will increase rates of evapotranspiration and cause

drought conditions even in areas with sufficient rainfall (Milly and Dunne, 2016),

ultimately leading to lower crop yields and worsened food security and nutrition for

vulnerable populations (Wheeler and von Braun, 2013).

While climate change is recognized as a major threat to child nutrition, in-

sufficient research has been conducted associating the effects of precipitation and

temperature shocks with worsened nutrition outcomes. A 2015 review paper doc-

umented 15 studies that used regression techniques to find an association between

meteorological or agricultural variables and child nutrition outcomes, and the paper

ultimately characterized the current evidence as “scattered and limited” (Phalkey

et al., 2015). In this literature review, only two studies were multinational, and the
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largest sample size was about 19,000 children. Since 2015, more work has been done

to confirm associations between low rainfall and rates of stunting (Shively et al.,

2015), as well as to examine factors that can mitigate the effects of rainfall anoma-

lies on child nutrition (Shively, 2017). Nevertheless, there is still a significant dearth

of research that draws on empirical observations of child nutrition and climate im-

pacts, especially using large pools of data with the spatio-temporal variability that

is needed to model outcomes across geographic contexts.

Because the primary impact of climate change will be on food production,

much of the research on the expected impacts of climate change on food security

focuses on agricultural yields. While farmers in general and subsistence farmers in

particular will be quite affected by climate change, whether or not its impacts lead

to increased child undernutrition depends on a variety of factors that ultimately

affect food access, such as equitable food distribution, government safety nets, and

resilient trade systems (Baro and Deubel, 2006). As recent droughts in Southern

and Eastern Africa demonstrate (FEWS NET, 2016, 2017), there can be significant

spatial heterogeneity in which populations are most affected and vulnerability is

influenced by a variety of political, social, economic, agricultural and environmental

factors.

Focusing on these factors influencing vulnerability, some studies have been

conducted at global and continental scales to create indicators that highlight hot-

spots of risk. Such studies include efforts to map drought risk (Carrão et al., 2016),

the risk of climate change impacts on food security (Ericksen et al., 2011, Krish-

namurthy et al., 2014, Richardson et al., 2018), as well as mapping climate risks
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for security more broadly (Busby et al., 2014). While these studies recognize the

importance of locating the populations most vulnerable to climate impacts, they

often rely on highly aggregated data and make no predictions about actual impacts,

but simply highlight areas of general risk or severity. Furthermore, because these

studies lack an empirical basis to estimate how different factors affect climate change

vulnerability, they often weigh diverse variables equally when combining them into

an indicator - for example, deriving sub-indicators and taking the average (Carrão

et al., 2016, Krishnamurthy et al., 2014). In this study, we improve upon these meth-

ods by using an econometric approach to map the anticipated effects of drought on

child stunting globally.

To map where child nutrition is vulnerable to precipitation shocks and explore

which factors moderate vulnerability, we combine nutrition data from Demographic

and Health Surveys (DHS) with climatological data, as well as a variety of global

datasets on factors influencing both the sensitivity of local food systems to drought

as well as local adaptive capacity from sources such as the World Bank, the FAO, and

NASA, as well as datasets published in scientific journals. Deriving the Standard-

ized Precipitation-Evapotranspiration Index (SPEI) from the climatological data,

we show how precipitation anomalies are related to increased child stunting (Figure

3.1). We then model how various factors have historically either mitigated or am-

plified the effect of drought on child stunting (Figure 3.2), and combine global data

on these factors to estimate current drought vulnerability (Figure 3.3). Finally, for

two areas that have recently experienced drought, we make a qualitative comparison

of our model’s predictions of increases in stunting with observed increases in food
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insecurity during those droughts.

3.1.1 Justification for Stunting as an Outcome Variable

While many metrics of food insecurity, undernutrition, and famine exist, us-

ing child stunting data in this analysis has several advantages. Stunting has been

a widely accepted indicator of child undernutrition for decades, meaning that data

on child stunting has been collected in a wide variety of contexts, allowing us to

estimate how those contexts contribute to drought vulnerability. This is not the

case for newer metrics, such as the Household Hunger Score (HHS) (Ballard, 2011),

Household Dietary Diversity Score (HDDS) (Swindale and Bilinsky, 2006), House-

hold Food Insecurity and Access Score (HFIAS) (Coates et al., 2007), or even the

Integrated Food Security Phase Classification System (IPC) (IPC/FAO, 2015). Con-

versely, other metrics of food insecurity that have also been estimated for decades,

such as increases in mortality rates or decreases in staple crop production, have

the disadvantage that they are often aggregated to the country or provincial level.

Given the potential sub-national heterogeneity in drought severity, these food secu-

rity metrics measured at administrative levels are difficult to match with meteoro-

logical data. Using geolocated micro-data on stunting, on the other hand, has the

twin advantage of having been collected for many years across a variety of contexts,

as well as having the spatial specificity that makes it possible to estimate each in-

dividual child’s exposure to drought. Child stunting also has advantages over other

child health metrics that have been collected for decades in geolocated surveys. Be-
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cause stunting, measured with Height-for-Age Z Scores, is a continuous variable and

is sensitive even to small changes in nutrition, it is possible to measure the impact

of minor droughts on children, which would not be possible given dichotomous out-

comes that only occur under severe conditions, such as child mortality. Finally,

child stunting is a more appropriate outcome variable than other child anthropom-

etry metrics, such as underweight or wasting, because it is affected by the chronic,

long-term undernutrition that is likely to occur under drought.

3.2 Data Used

3.2.1 Nutrition Data

We use geolocated child nutrition data from the Demographic and Health

Surveys (DHS) program in combination with a variety of geographic datasets. Our

dataset consists of 584,662 children from 127 surveys conducted in 53 countries over

26 years, from 1990 to 2016 (See Appendix B). To focus the analysis on children

in households with livelihoods that are at least partially agricultural, we excluded

children that were from DHS sites in areas with greater than 95% of nearby land

cover classified as bare ground (Song et al., 2018) or with greater than 20% of

nearby land cover classified as built up (Pesaresi et al., 2015). This excluded 1.1%

of the children, and consisted mostly of children from extremely arid places, like

the central Sahara desert, or highly urban places. While DHS surveys are often

conducted periodically within a given country, they do not intentionally revisit the

same communities, so the surveys are not longitudinal and every child is observed
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only once.

For children under five, environmental factors explain more variation in height

than ethnic differences (Habicht et al., 1974). Thus, child heights are a widely ac-

cepted indicator of child nutrition. For this analysis, our outcome variable is the

height-for-age Z-score (HAZ) for children under 5 years old, which is a standardized

measure of child heights and a common indicator of stunting. This indicator com-

pares a child’s height to the distribution of heights of healthy children of the same

age and gender and assigns a Z-score. The percent of children with a Z-score less

than -2 in a given population is the rate of stunting for that population (Lewit and

Kerrebrock, 1997). Thus, while exact changes in the rate of stunting in a population

cannot be derived from changes in HAZ scores alone, decreases in mean HAZ scores

will lead to increases in stunting.

To better estimate the impact of rainfall anomalies on an individual child’s

HAZ score, it is important to control for individual and household level variables

that can also affect child health outcomes, such as the child’s birth order or household

wealth. The DHS includes many such variables, although few are collected in all

surveys. We identified 10 variables that were available in 127 DHS surveys and that

robustly predicted child HAZ scores (See Appendix B). While not all the surveys in

our dataset asked how long the households had been residing at the site or whether

they were visitors, for those that did, if the households were visitors or had been

residing at the site for less than three years, we excluded them from the dataset.
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3.2.2 Data on Shocks

As an indicator of precipitation extremes, we used the Standardized Precipitation-

Evapotranspiration Index (SPEI), a measure of how recent hydrological conditions

over a given time frame vary with respect to long-term norms, taking both rainfall

and evapotranspiration into account (Begueŕıa et al., 2014). By accounting for water

lost to evapotranspiration, the SPEI can more accurately indicate the overall water

availability and agricultural stress at a location. Furthermore, because this metric

is based on long-term norms for a given location, it characterizes precipitation ex-

tremes in a way that is comparable between locations. We used reanalysis datasets

of precipitation (Funk et al., 2015) and temperature (Sheffield et al., 2006) to calcu-

late the SPEI, and derived potential evapotranspiration (PET) using the Hargreaves

method. Finally, we calculated rainfall levels during the growing season at each site

(Kerdiles et al., 2017), and compared models with SPEI scored derived from full

year and growing season only precipitation at 12, 24, and 36-month intervals, as

well as for the duration each child’s lifetime, including time in utero.

3.2.3 Data on Factors Influencing Vulnerability

We modeled how various factors mitigate or amplify the impacts of rainfall

shocks on child HAZ scores. In our model, we draw on previous frameworks that

characterize vulnerability in terms of sensitivity, adaptive capacity and hazard (Kr-

ishnamurthy et al., 2014). We thus include geographic variables that describe the

sensitivity and adaptive capacity of a system vis-à-vis a hazard (i.e., drought). Vari-
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ables characterizing the sensitivity of the food system to shocks include primar-

ily agro-ecological variables, while variables characterizing the adaptive capacity of

households facing drought include primarily economic, demographic, and geopolit-

ical variables. For each of these geographic variables, we fit the model using data

for the year of the DHS survey, or the nearest available year, and for the final map

(Figure 3.3), we use data for the closest available year to 2020.

3.2.4 Overview of Geographic Data on Factors Influencing Vulnera-

bility

Official Development Assistance (ODA): ODA consists of financial flows from

developed countries to developing countries with the objective of promoting eco-

nomic development and welfare (Organization for Economic Co-operation and De-

velopment, 2008), and can include agricultural and nutritional aid as well as assis-

tance in climate change adaptation. In some developing countries, ODA can be up

to a quarter of Gross National Income (GNI) (The World Bank, 2016). While ODA

can take many forms, there is some evidence that IMF programs are associated with

improved child nutrition outcomes in rural areas when parents have less education

(Daoud et al., 2017).

GDP (PPP) Per Capita: Wealth is a major determinant of nutrition outcomes

both within and between nations. Countries with a higher Gross Domestic Product

(GD)P per capita have diverse economies that are less dependent on agriculture, are

better integrated into global trade, and have more infrastructure to support agricul-
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ture and distribute food during shocks. A 2000 study found that per capita national

incomes were a major determinant of a nation’s overall nutrition status (Smith and

Haddad, 2000). The dataset we draw on has GDP per capita in purchasing power

parity (PPP) at the sub-national level (Kummu et al., 2018), allowing us to explore

differences in GDP per capita even within a given country and year. One disadvan-

tage of GDP as an indicator is that is does not take into account income inequality

and many resource-rich but highly unequal countries may have both high GDP per

capita values and large populations that are impoverished and food insecure. While

data on the Gini index or below poverty line estimates was not available for every

country and year in our dataset, using sub-national GDP estimates does account

for some of the inequality within countries. This variable was log-transformed.

Government Effectiveness : Effective governments are critical for ensuring pop-

ulations receive adequate nutrition during years of climate shocks and decreased

yields. More effective governance can foster improved national infrastructure and

support national economies, which in turn have second-order effects on nutrition

outcomes. This indicator was developed by the World Bank as a World Develop-

ment Indicator, and has been used in studies of drought risk (Carrão et al., 2016)

as well as the climate change – food security vulnerability index (Krishnamurthy

et al., 2014).

Human Development Index (HDI): The HDI is a commonly used metric of

development that incorporates financial, educational, and health variables (Sen,

1994), and thus is a proxy for the financial and human capital that may be available

to people during periods of shocks. It is based in part on GDP per capita, which

52



has been shown to be a major predictor of a nation’s overall nutrition status (Smith

and Haddad, 2001). While detailed educational and health data is not available for

every country in the DHS for the years in which surveys have been conducted, overall

HDI has been estimated annually at sub-national levels for the globe (Kummu et al.,

2018).

Political Stability and Absence of Violence: Violence can be a major cause

of undernutrition and reduced adaptive capacity to shocks, as it disrupts markets

and infrastructure providing access to food and agricultural inputs. There is some

evidence that the impacts of violence disproportionately affect children (Ghobarah

et al., 2003). For this indicator, which is a proxy for the overall social capital in a

country, we use annual national-level data from the World Bank’s World Governance

Indicators (Kaufmann et al., 2011).

Population Density : Population density can affect child undernutrition and

vulnerability to shocks in a variety of ways. In some cases, greater population

densities can lead to greater competition for limited resources, smaller farm sizes,

and a greater disease burden (Halpenny et al., 2012, Masters et al., 2013). At the

same time, population density can be an indicator of greater urbanization, available

infrastructure and trade, as well as opportunities for off-farm income (Masters et al.,

2013). To measure population density, we use the Gridded Population of the World

dataset, with global population estimates given by combining satellite imagery and

national censuses for the years 1990, 2000, 2005, 2010, 2015, and 2020 (Doxsey-

Whitfield et al., 2015). This variable was log-transformed.

Per Capita Value of Imports : Having access to food via imports can greatly
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increase overall food availability, even during periods where local agricultural output

is low. This can increase a household’s options for obtaining foods and overall

adaptive capacity. Greater imports per capita is also indicative of an economy

integrated into global markets, with more opportunities for off-farm labor. This

indicator is from the World Bank and is available annually at the national level

(The World Bank, 2016). This variable was log-transformed.

Primary School Enrollment : Rates of education and school attendance in a

country is associated with better overall child nutrition (Alderman, 2010, Bhutta

et al., 2013). Furthermore, because it increases local human capital and adaptive

capacity, education is widely recognized to be a critical part of climate adaptation

(Bowen et al., 2012, Laplante et al., 2010). While most studies of impacts on educa-

tion, climate-related shocks, and nutrition focus on parental education, we use data

on rates of primary school attendance, as this metric has greater global coverage

(The World Bank, 2016).

Average Monthly Maximum Temperature: Temperatures are rising globally.

Higher temperatures have been found to impact economic production (Burke et al.,

2015) as well as child birth weight (Grace et al., 2015), a major risk factor for lower

child HAZ scores later in life (Wrottesley et al., 2015). To account for the possible

effects of changing temperatures and shifting isotherms, we measure the average

daily maximum temperature for the decade before a child health observation rather

than the multidecadal temperature average. For our data on temperature, we use

a reanalysis product combining remote sensing, on-the-ground measurements and

geophysical models (Sheffield et al., 2006).
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Nutrition Diversity of Agriculture: Consuming a diversity of nutrients is crit-

ical for adequate nutrition (Arimond and Ruel, 2004) and at the national level,

nutritionally diverse food supplies have been associated with better anthropometric

outcomes (Remans et al., 2014). While agricultural production diversity has been

underexplored as a factor contributing to resilience during climate shocks, there is

some evidence that it mitigates the effects of other types of household-level shocks

(Malapit and Quisumbing, 2015). To model nutritional diversity, we draw on a

dataset created by Herrero et al (Herrero et al., 2017) which modeled the Mod-

ified Functional Attribute Diversity of 8 critical nutrients in agricultural systems

worldwide.

Mean Annual Precipitation: The amount of precipitation in a location affects

what types of crops can be grown, and what livelihood systems people undertake.

Areas that experience unusually high or low levels of annual precipitation, such

as the Sahel or areas affected by the South Asian Monsoon, may be particularly

sensitive to seasonal extremes (Mirza, 2011, Roudier et al., 2011). For this variable,

we use the Climate Hazards Group Infrared Precipitation with Station (CHIRPS)

dataset, taking the average annual precipitation for period from 1981 to 2016. This

variable was log-transformed.

Normalized Difference Vegetation Index: The Normalized Difference Vegeta-

tion Index, or NDVI, is a measure of the productivity of vegetation. It has been

associated with child nutrition outcomes in several studies (Brown et al., 2014, John-

son and Brown, 2014). The dataset on NDVI that we used is derived from Advanced

Very High Resolution Radiometer (AVHRR) data estimated annually (Song et al.,
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2018).

Irrigation: Because irrigated agriculture utilizes water from distant sources,

irrigated agriculture is much less sensitive to local rainfall deficits than rainfed agri-

culture. In our model, we use the spatially specific Food and Agricultural Orga-

nization (FAO) Global Map of Irrigated Areas, estimated for the year 2000. This

dataset was derived and validated using remote sensing observations and irrigation

statistics from 10,825 sub-national statistical units (Siebert, S., Döll, P., Feick, S.,

Frenken, K., Hoogeveen, 2013), and has been used in other assessments of drought

risk (Carrão et al., 2016).

Topographic Ruggedness : The topography of a region has a large impact on the

hydrology, agricultural practices and infrastructure in a location, all of which influ-

ence a systems ability to absorb climate shocks. While topographic variability can

increase soil moisture during periods of low rainfall by reducing water lost through

evapotranspiration (Cowley et al., 2017). In our model, we use the Topographic

Ruggedness Index, which is the difference between the maximum and minimum

elevation value in a 3x3 pixel window in a Digital Elevation Model (DEM). This

variable was log-transformed.

Bare Land Cover : Bare land cover consists of areas with no vegetation, such

as rocky or sandy areas (Gregorio and Jansen, 2005), and has no agricultural po-

tential. Areas that were once vegetated can become bare due to overgrazing and

land degradation (Bai et al., 2008), while areas that were previously bare can be-

come vegetated due to irrigation and agricultural expansion (Song et al., 2018). For

this variable, we use annual data on land cover dynamics (Song et al., 2018). This
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variable was log-transformed.

Per Capita Staple Crop Production: Food production is a major factor in-

fluencing child nutrition outcomes (Smith and Haddad, 2000). Area with greater

food production are also likely to be less sensitive to shocks, given that they are

probably using higher-yield varieties of crops and have more agricultural infrastruc-

ture. We used annual country-level data on per-capita food production from the

FAO and included cereals and grains as well as other starches that are staple foods

in some countries, such as roots and tubers (FAOSTAT, 2018). This variable was

log-transformed.
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3.3 Methods

3.3.1 Extracting Spatial Data

This analysis relies on combining geolocated DHS surveys with a wide variety

of geographic datasets. However, the GPS points given by the DHS are displaced to

maintain respondent anonymity. Urban points are displaced by up to 2 km, while

99% of rural points are displaced by up to 5 km and 1% are displaced by up to 10

km (Burgert et al., 2013). To account for this jittering when extracting geospatial

data we used the same methodology as Grace et al (Grace et al., 2012). We first

resampled all the geographic data to a 3 arc-minute resolution (between a 4 km

and 5.5 km resolution, depending on the latitude of the DHS site). We then took

the average value of the grid cell in which a GPS point fell, as well as all of the

neighboring grid cells. This accounts for the lack of specificity in the location of

the DHS GPS points and also reflects the fact that livelihoods can be affected by

processes over 5 km away, as households will sometimes farm on distant fields or

may travel several kilometers to collect water (Grace et al., 2012).

3.3.2 Rainfall Anomalies and Undernutrition

To control for individual, household, and national factors in our LOESS model

of rainfall anomalies and undernutrition, we first modeled HAZ scores as a function

of 10 individual and household covariates, with varying intercepts at the country

and DHS survey level. We then predicted the residuals from this regression as a
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function of the 24-month SPEI using a LOESS model with a 2nd degree polynomial

and tricubic weighting on a local window size of 75% of the data.

Factors Moderating the Effects of Rainfall Anomalies

Based on the results of the LOESS model, we identified the points at which

low and high rainfall levels are associated with worsened child nutrition outcomes,

and focused the rest of the analysis on children observed during droughts and during

normal rainfall periods. We thus excluded all observations with extremely high SPEI

values (SPEI >1.4), and created a categorical variable for the remaining observations

indicating whether the child was observed during a drought period (SPEI <-0.4) or

a normal period (-0.4 <SPEI <1.4).

We modeled child HAZ scores as a function of household, individual, and geo-

graphic factors, and we model each geographic factor interacting with the categorical

variable for whether the child was observed during a drought. Formally, we ran the

following linear regression:

yi = β0 + βXi + γGj(i)Dj(i) + εi (3.1)

Where i is the index for each individual child and j is the index for the DHS

site, yi is a child’s HAZ score, β is a vector of coefficients for a matrix of individual,

household and geographic factors Xi, and Dj(i) is a vector of binary values for

whether the observed 24-month SPEI score indicated drought at a DHS site at the

time the child health observation was made. The vector of drought conditions Dj(i)

60



at each DHS site interacts with a matrix of geographic variables, Gj(i), which are in

turn moderated by a vector of coefficients γ.

Because the geographic variables included in the regression explained much of

the DHS site-level variation in nutrition outcomes, we avoided including terms that

are typically used in multinational DHS analyses, such as a term for the interview

year, a term for whether the site was urban or rural, as well as varying intercepts

at the country or survey level (Shively, 2017). This allowed the spatio-temporal

variation in HAZ scores to be explained by only the geographic variables included

in the regression. We estimated our model using Least Absolute Shrinkage and

Selection Operator (LASSO) regularization, which is particularly apt for cases like

this one where regression is being used with a large number of covariates to make

predictions (Tibshirani, 2011). Using the LASSO, redundant covariates will drop

out of the model. To better fit the model and facilitate comparison between the

coefficients of the covariates, we first log-transformed some variables, and then scaled

all variables from 0 to 1.

3.3.3 Model Estimation with LASSO Regularization

We estimated the model using the Least Absolute Shrinkage and Selection

Operator, or LASSO, method (Tibshirani, 1996). This method performs regular-

ization by penalizing the size of the model coefficients to prevent over-fitting and

also facilitates variable selection by shrinking some of the model coefficients to zero

(Tibshirani, 1996). The LASSO method involves recasting the regression problem
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as a convex optimization, which simplifies model estimation (Taylor and Tibshirani,

2015). It solves the problem:

minimizeβ0,β

[
1

2

N∑
i=1

(
yi − β0 −

∑
j

xijβj
)2

+ λ
p∑
j=1

|βj|
]

(3.2)

Where βj is the parameter vector from the regression model [1], including

both the β and γ parameters, and the tuning parameter λ moderates the level of

penalization and regularization. As is typical, we estimated this parameter through

cross-validation (Taylor et al., 2015).

Using the LASSO, variables that are orthogonal to the outcome variable or

are correlated with other covariates are estimated with a coefficient of 0 and ”drop

out” of the model.

3.3.4 Mapping Vulnerability

We use the coefficients γ from Equation 3.1 to predict where HAZ scores would

be expected to decrease in the event of a drought, as well as the degree to which

they would decrease. Because the individual and household level covariates β were

not modeled as interacting with the drought variables Dj(i), we only need data

on geographic factors to estimate changes in HAZ related to drought. Just as we

excluded children from areas with greater than 20% built-up land cover or 95% bare

land cover from our nutrition dataset, we excluded these areas from our maps.
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3.3.5 Comparison with FEWS NET Reports

As a qualitative out-of-sample validation, we compare our model predictions

to observed changes in food security during recent droughts in Southern Africa

(FEWS NET, 2016) and East Africa (FEWS NET, 2017) as reported by the Famine

Early Warning Systems Network, or FEWS NET and measured with the Integrated

Food Security Phase Classification (IPC) 2.0 methodology, which includes a chronic

food insecurity component that incorporates rates of stunting (IPC Global Partners,

2012), (Figure 3.4). While food security and child nutrition are not synonymous,

because stunting is a consequence of food insecurity, they are likely to co-occur spa-

tially (Baig-Ansari et al., 2006, Isanaka et al., 2007). Furthermore, while geolocated

HAZ scores of children across the globe observed before and during droughts are

unavailable to validate our model, FEWS NET maps of IPC phases can provide an

indication of food security and nutrition with high temporal resolution at multina-

tional scales because FEWS NET publishes food security reports several times a year

for key world regions. Thus, data on where IPC phases have changed in response

to drought can provide a qualitative validation of our model and contextualize our

findings in relation to existing food security monitoring systems.

For these comparisons, we use GIS data published by FEWS NET to estimate

changes in IPC phases from before and during a drought for recent droughts in

Southern Africa in early 2016 (FEWS NET, 2016) and in East Africa in mid 2017

(FEWS NET, 2017). In the maps for the qualitative validation, we mask from

the FEWS NET maps the same areas that were masked in our model, and in our
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predictions, we mask areas that were excluded from the FEWS NET maps, such as

unpopulated natural protected areas. In calculating the differences in food security

status from before and during a drought, we use IPC maps from the same time of

year, to avoid misinterpreting seasonal changes in food security as drought-induced.

3.4 Results

3.4.1 Rainfall Anomalies and HAZ Scores

We began by determining the time window at which SPEI values best predict

child heights, and found that the 24-month SPEI performs better than SPEI values

calculated for other time windows, including each child’s age (See Appendix B). We

then explored the effects of rainfall anomalies on observed child Height-for-Age Z-

scores (or HAZ scores), an indicator of child stunting. We used a Locally Estimated

Scatterplot Smoothing (LOESS) regression because it can model the anticipated

non-linear relationship between anomalies and child stunting. After controlling for

the effects of individual, household, annual and national factors, there was a clear

relationship between the 24-month SPEI and child HAZ scores, a common indicator

of stunting (3.1). The fitted curve shows that children have the highest HAZ scores

when rainfall is between the long-term norm (SPEI=0) and a mildly wet period

(SPEI=1). As rainfall levels increase relative to long-term norms, HAZ scores decline

slightly, and then as the SPEI increases beyond 1.4, child HAZ scores decline sharply.

Child HAZ scores decrease monotonically with rainfall deficits at all levels. Even

when the previous 24 months were only slightly drier than the long-term norm,
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HAZ scores were slightly worse, and SPEI scores less than -0.4 were associated with

children shorter than other relevant factors would otherwise predict.

Figure 3.1: A: Relationship between the 24-Month Standardized Precipitation-
Evapotranspiration Index (SPEI) and residual Height-for-Age Z-Scores. During
periods of normal rainfall, children were typically taller than household and indi-
vidual factors would otherwise predict (residual >0). Conversely, during periods of
minor to severe drought and during periods of severe wetness, children were typi-
cally shorter (residual <0). This non-parametric analysis was used the discretize the
24-month SPEI variable into drought and normal periods and to exclude extremely
wet periods, based on the cut-offs at -0.4 and 1.4. B: Histogram of child nutrition
observations at various SPEI levels.
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3.4.2 Modeling Combined Effects of Geographic Factors

Based on the results of the LOESS model, we identified the points at which

low and high rainfall levels are associated with worsened child nutrition outcomes,

and focused the rest of the analysis on comparing children observed during droughts

(SPEI <-0.4) to those observed during normal rainfall periods (-0.4 <SPEI <1.4).

This was because higher-than-average rainfall was not related to lower HAZ scores

unless it was extreme, while lower-then-average rainfall was related to lower HAZ

scores even at minor levels, yielding a large number of children in a wide variety of

geographical contexts observed during drought, but fewer children observed during

excessively wet periods. Furthermore, the effects of drought on food production

occur at the location of the drought, while the effects of excess rainfall, such as

flooding and landslides, can be caused by rainfall far upstream from the location of

a child nutrition observation.

To determine how various geographic factors moderate this relationship be-

tween drought and stunting, we modeled a variety of geographic factors in interac-

tion with whether a child was observed during drought conditions, and we show that

many variables influence whether or not a drought will be associated with decreases

in HAZ scores (See Figure 3.2). Factors having a large effect on mitigating the im-

pacts of drought on HAZ scores include the nutritional diversity of local agricultural

systems, effective governments, greater imports and staple crop production, a higher

percentage of irrigated agriculture, political stability, and greater mean annual pre-

cipitation. Factors that exacerbate the effects of drought include higher population

66



densities, higher average monthly maximum temperature, a higher percentage of

bare land cover, and greater topographic ruggedness. The Normalized Difference

Vegetation Index (NDVI), Human Development Index (HDI), and Gross Domestic

Product (GDP) dropped out of the model (See Appendix B).

Population Density

Average Maximum Monthly Temperature

Percent of Bare Land Cover

Topographic Roughness

Percent of Children in Primary School

Official Development Assistance Per Capita

Mean Annual Precipitation

Political Stability and Absence of Violence

Percent of Agriculture Irrigated

Annual Import Value Per Capita

Annual Staple Crop Production

Government Effectiveness

Nutritional Diversity of Agriculture

−0.2 0.0 0.2

Adaptive Capacity Sensitivity

Figure 3.2: Coefficient estimates of geographic variables moderating the effects of
drought on child HAZ scores. Positive coefficients mitigate the effects of drought,
while negative coefficients exacerbate the effects of drought. Some variables were
log-transformed, and then all variables were scaled from 0-1. Variables are color-
coded according to whether they characterize a system’s sensitivity to shocks (green)
or adaptive capacity (blue).

We modeled the impact of drought as being moderated by only geographic

factors. Because of this, we were able to then predict changes in HAZ scores un-

der drought globally, including in countries that did not have DHS data, based on

geographic data for as close to the year 2020 as possible. Thus, we weighed global

data on factors that moderate the effects of drought according to the coefficients
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estimated from our model to predict changes in HAZ scores under drought (Figure

3.3). This map showed that the most drought vulnerable children are in arid areas

with weak governments and little international trade, such as Chad, Sudan, Eritrea,

South Sudan, Somalia, and Yemen. In addition to these hot-spots of drought vul-

nerability, other areas with some vulnerability included other countries throughout

Africa, central Asia, and the Middle East, as well as Papua New Guinea, North

Korea, and Haiti. Comparing our model’s predictions with observed changes in

food insecurity during recent droughts in southern and eastern Africa shows that

our model performs quite well.

−0.35 −0.30 −0.25 −0.20 −0.15 −0.10 −0.05 0.00

Figure 3.3: Expected decrease in mean child HAZ scores during drought conditions.

Comparing these maps shows broad spatial concordance between areas that

FEWS NET reported as having worsened food security during a recent drought and

where our model predicts higher rates of stunting during a drought. In southern

Africa, FEWS NET reported an increase of one IPC phase in all of Zimbabwe and

an increase of two phases in southern Zimbabwe, as well as IPC phase increases in

parts of Mozambique. Similarly, our model predicted slightly greater decreases in

HAZ scores in southern Zimbabwe, as well as decreases in HAZ scores in the same
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parts of Mozambique where increases in food insecurity were observed. In eastern

Africa, our model’s predictions of decreases in HAZ scores broadly concurred with

the IPC changes in Somalia, northern and eastern Kenya, eastern Ethiopia, much

of South Sudan, as well as coastal and sahelian Sudan.

Figure 3.4: Comparison of predicted changes in HAZ scores (A, C) with observed
changes in IPC phases (B, D) during recent droughts in Southern Africa and East
Africa.
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Discussion

A significant advantage of this study was using a very large dataset, which

allowed us to draw on child nutrition outcomes during droughts across a range of

economic, political, and agro-environmental conditions. We were thus able infer

how these conditions moderate the relationship between drought periods and child

HAZ scores. We found that precipitation deviations from long-term norms such as

minor to severe droughts or severely wet periods were associated with worse child

nutrition, as measured by child HAZ scores. Using geographic data associated with

the time and location of each child nutrition observation, we modeled how a variety

of geospatial factors amplify or mitigate the effects of drought. Finally, we used

this model to predict globally where current geographic contexts could contribute

to worsened child nutrition outcomes during the event of a drought, based on how

those factors have historically moderated the relationship between drought and HAZ

scores.

In assessing the relationship between rainfall anomalies and child undernutri-

tion, previous studies have taken varied approaches, with some measuring lifetime

growing season precipitation levels (Grace et al., 2012, Shively, 2017) and others

looking at rainfall in recent seasons (Skoufias and Vinha, 2012). Thus, we com-

pared precipitation deviations from long-term norms at multiple timescales for both

growing season precipitation and full-year precipitation, and we found that the full-

year 24-month SPEI performed the best in modeling child HAZ scores. Although

a child’s HAZ score is affected by chronic, long-term undernutrition, the 24-month
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SPEI score performed better than indicators over other time frames, including the

SPEI for the child’s lifetime. This may be due to children experiencing rapid growth

when they receive adequate nutrition following a period of poor nutrition, a phe-

nomenon known as compensatory growth or catch-up growth (Behrman, 2016, Wit

and Boersma, 2002).

We found that a variety of factors improve child nutrition outcomes under

drought. While many of these factors have been previously associated with pos-

itive nutrition outcomes, including agricultural and dietary diversity (Rah et al.,

2010), crop production (Smith and Haddad, 2000), and trade (Bryce et al., 2008),

relatively little research has been conducted exploring their role in mitigating the

effects of drought on child nutrition. Our results indicate that, to build climate-

resilient nutrition systems, policymakers at the national level should focus on effec-

tive governance and trade, while local interventions should focus on increasing the

nutritional diversity of agricultural systems as well as restoring degraded and bare

land. Our results further indicate that increasing crop yields in vulnerable countries

can improve drought resilience, while climate change may exacerbate vulnerability

by raising temperatures and lowering rainfall averages.

Beyond just showing which geographic factors amplify or mitigate vulnerabil-

ity, this study also mapped the expected impact of precipitation extremes on child

HAZ scores. This improves upon previous mapping efforts that have similarly fo-

cused on geographic variables that influence vulnerability (de Sherbinin, 2014), but

have relied on index-based methods that take an a priori approach to combining

these variables (Busby et al., 2014, Carrão et al., 2016, Ericksen et al., 2011, Krish-
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namurthy et al., 2014, Richardson et al., 2018). By using a more empirical approach,

we are able to map vulnerability by weighing various geographic factors according to

how much they have historically been observed to moderate the relationship between

drought and lower HAZ scores.

There are several assumptions and simplifications built into the model. For

the purposes of this paper, rainfall deficits across a wide range of levels were com-

bined into the category of drought. Most of these droughts were moderate and not

uncommon, with an SPEI between -0.4 and -1.5, and thus this map does not show

the anticipated effects of severe droughts that could become more common under

climate change. Many areas besides those highlighted in this map would likely see

nutritional decreases under severe droughts, and areas shown in this analysis to be

vulnerable to moderate drought, like Somalia and the Sahel, would likely see ex-

treme increases in stunting and even famine under severe droughts. Furthermore,

this analysis relies on some geographic data that is only available at the national

level, which may obscure significant sub-national vulnerability, for example in coun-

tries with pockets of instability, such as Nigeria (FEWS NET, 2018). Thus, our

map is less useful for local and national policymakers who already have substantial

understanding of the spatial distribution of drought vulnerability in the countries

where they work. Rather, is most applicable for NGOs, foundations, and multina-

tional organizations seeking to target vulnerable populations and prioritize aid at

global and continental scales.

While many of the areas identified by our model as vulnerable to drought

have been the location of previous studies associating precipitation and undernutri-
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tion (Alderman, 2010, Chotard et al., 2011, Grace et al., 2012, Hagos et al., 2014,

Jankowska et al., 2012, Mueller and Mueller, 1999), there were some areas where

previous literature had found associations between precipitation shortfalls and wors-

ened nutrition outcomes and where our model predicted little vulnerability, such as

Nepal (Panter-Brick, 1997, Shively, 2017), Rwanda (Akresh et al., 2011), Indonesia

(Maccini and Yang, 2009), Mexico (Skoufias and Vinha, 2012), and India (Mahap-

atra et al., 2000). This may be due in part due to the aforementioned issue of our

model relying on national indicators for countries with substantial within-country

heterogeneity, particularly for large middle-income countries such as Indonesia, Mex-

ico, and India. This suggests that our model might be best taken as a conservative

estimate of where drought-induced undernutrition is likely to occur, but not a pre-

diction of where it will not occur, given that poorer and more rural sub-populations

in many countries may be more vulnerable to climate change than national statis-

tics or historic population-level shifts in HAZ scores would indicate (Dennig et al.,

2015). However, another potential reason for our model disagreeing with previous

studies is that they may have taken place several years ago using datasets that were

even older, and increases in trade, wealth and stability over the previous few decades

have led to decreases in drought vulnerability. Indeed, using our model to predict

vulnerability based on geographic data from the years 2000 and 1990 (See Appendix

B) shows that droughts in those years would have led to greater decreases in mean

HAZ scores in many places than a drought would today, and that areas modeled as

drought-resilient in 2020, such as India, were previously more drought vulnerable.

Data on HAZ scores with high temporal frequency is unavailable at the global
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scale to validate our model, so we used reports on IPC phases from FEWS NET

in food insecure regions to perform a qualitative ground-truthing of our model’s

predictions. Indeed, we found that our model broadly agrees with FEWS NET’s re-

ports of where food security worsened after the onset of recent droughts in Southern

Africa and East Africa. This suggests that our model is useful as a framework for

using empirical methods to estimate vulnerability spatially and also suggests that

there is validity to the geographic factors that our model identified as amplifying or

moderating the effects of drought.

Overall, our findings have significant implications for policymakers, founda-

tions, and multinational organizations interested in targets such as Sustainable De-

velopment Goal (SDG) 2 of achieving zero hunger, as well as SDG 13 of taking action

to combat climate change impacts. First, we show that precipitation extremes are

associated with worse child nutrition outcomes throughout much of the developing

world. This supports the assertions of the WHO and IPCC that climate change,

which will make extremes both more common and more severe, is a significant threat

to adequate nutrition for much of the world (Smith et al., 2014, WHO, 2014). Sec-

ondly, we highlight the factors that can increase both vulnerability and resilience

to droughts. Nutritionally diverse agricultural systems and effective governance,

staple crop production and international trade were found to have a large impact

on drought resilience, and thus investing in these aspects of food systems would be

expected to pay large dividends in increasing climate resilience. Finally, we mapped

areas where droughts would be expected to lead to increased rates of undernutrition,

with the expectation that such maps would assist global policymakers in targeting
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aid to improve climate resilience for the world’s most vulnerable populations.
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Chapter 4: Geographic Factors and Provisioning Ecosystem Services

4.1 Introduction

Ecosystem services are critical to human well-being (Haines-Young and Potschin,

2010). Throughout the world, natural and human-impacted areas provide regulat-

ing, cultural and provisioning ecosystem services (Bennett et al., 2009), and non-

timber forest products (NTFPs) are a provisioning ecosystem service that supports

human livelihoods in both developed and developing countries (Shackleton et al.,

2015, Sisak et al., 2016, Živojinović et al., 2017). In agrarian parts of the developing

world, communities depend significantly on local provisioning ecosystem services

for their health and income (Altieri, 2004, Zenteno et al., 2013). While agricultural

production often provides the bulk of food and income in these areas, provision-

ing ecosystem services from forests, shrublands and grasslands also make significant

contributions to communities’ livelihoods (Ambrose-Oji, 2003, Heubach et al., 2011,

Kar and Jacobson, 2012). Understanding the geographic and demographic char-

acteristics of areas that depend on provisioning services in the form of NTFPs is

key to conservation strategies that maximize NTFP availability to support human

livelihoods and well-being (Angelsen et al., 2011, Kareiva, 2011).

It has been estimated that NTFPs provide income and nutrition for over two-
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thirds of Africa’s population (CIFOR, 2005). These products provide significant

income to households and communities, with some products like shea oil and gum

arabic being collected and exported to international markets (Mujawamariya and

Karimov, 2014, Rousseau et al., 2017). Many other products, such as fuelwood and

building materials, are also sold locally and are an income source. A global literature

review of 51 case studies across 17 developing countries estimated that, on average,

forests provide 22% of a household’s total income (Vedeld et al., 2007). While access

to NTFPs is often moderated by political and cultural institutions (Lambini and

Nguyen, 2014, Ludvig et al., 2016), a common feature of NTFPs is that they do not

require financial capital to procure. Thus, households with less income tend to be

the most dependent on forest products for food, fuel and materials (Vedeld et al.,

2007).

In addition to providing income and supplying goods that households would

otherwise have to purchase from markets, NTFPs also support nutrition outcomes,

and many wild foods are consumed directly by the household that collected them.

Given that forests and other natural areas offer significantly more species for con-

sumption than agriculture alone, wild foods can significantly increase a household’s

dietary diversity (Powell et al., 2015, Remans and Smukler, 2013) and also provide

an income source (Ingram et al., 2017). A study in Madagascar found that removing

households’ access to wildlife for consumption would increase rates of child anemia

by 29% due to decreased meat consumption (Golden et al., 2011). While some wild

foods are consumed continuously, many others are a reserve food supply used dur-

ing times of famine. These “famine foods” are not preferred but are essential for
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households during hungry seasons or years when agricultural output is low (Maven-

gahama et al., 2013). Such foods increase household resilience to climate shocks. In

surveys of households’ climate adaptation strategies in Mali, Tanzania, and Zambia,

forests were found to play a key role in reducing vulnerability during droughts and

floods by providing alternative food and income sources (Robledo et al., 2012).

While forests are significant providers of NTFP and provisioning ecosystem

services, products sourced from other natural areas like shrublands and grasslands

also play a significant role in households’ livelihoods (Pouliot and Treue, 2013).

Because access to forested land is sometimes more regulated than access to grassland

and shrubland, these non-forested areas can be a significant resource to less well-

connected or less wealthy rural people, such as women or ethnic minorities (Pouliot

and Treue, 2013). Whether products sourced from these areas can be included in the

term “NTFP” is debatable, as a NTFP can often refer to many types of products

sourced from a wide variety of environmental areas and land cover types (Belcher,

2003). For example, some trees that provide products typically classified as NTFPs,

such as the Gum Arabic tree (Senegalia senegal), often grow in areas with less

than the 10% canopy cover required to meet the FAO definition of a forest (FAO,

2012). Furthermore, products sourced from uncultivated non-forest areas have the

basic fundamental economic characteristics of NTFPs identified in a comprehensive

paper from the Center for International Forestry Research (CIFOR) on NTFPs and

rural livelihoods: (i) they have low returns per unit area; (ii) they are primarily

used for subsistence and often fill income gaps; and (iii) they are not planted, and

are only managed indirectly, if at all (Angelsen and Wunder, 2003). Thus, while
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this paper examines foods from both forested and non-forested areas like grasslands

and shrublands, we use the term NTFP to refer to provisioning ecosystem services

sourced from any natural area following the characterization laid out by CIFOR

(Angelsen and Wunder, 2003). In our analyses, we split NTFP into two categories:

“wild foods” for NTFP like nuts, seeds, bushmeat, honey, or insects, and “nonfood

NTFP” for other products such as building materials, medicines, and fibers. When

speaking about both wild foods and nonfood NTFP, we use the general term NTFP.

While the benefit that NTFPs provide in supporting rural livelihoods has been

clearly demonstrated in many case studies, few studies have been conducted at na-

tional and multinational scales relevant to policymakers or conservation and devel-

opment practitioners (Reed et al., 2016). Indeed, a recent literature review lamented

that this body of work is “limited by the propensity for small-scale and short-term

evaluations” (Reed et al., 2016). Some notable exceptions to the preponderance of

case studies include literature reviews on topics like wild food consumption (Powell

et al., 2015) and environmental income from forests (Vedeld et al., 2007), as well as

the Population-Environment Network (PEN) dataset on household NTFP use based

on surveys conducted in 24 developing countries (Angelsen et al., 2014, Hickey et al.,

2016). While these literature reviews and the PEN study have made significant

contributions to our understanding of characteristics of households that depend on

NTFPs and the degree of their dependence, they have a significant sampling bias,

with most of the case studies and sample sites established opportunistically in areas

with significant forest cover and where communities were already known to utilize

forest resources. Thus, findings from these studies showing that NTFPs provide
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22% of total income (Vedeld et al., 2007) or 28% of total income (Angelsen et al.,

2014) cannot be taken as representative of all rural developing countries or as rep-

resentative of any one country.

The fact that studies of household use of NTFPs are usually only conducted

in highly localized case studies is unfortunate, as a growing body of literature is

beginning to associate various environmental data metrics from satellite imagery

with indicators of income, health, and food security from household surveys. Such

research has found relationships between an increased Normalized Difference Vege-

tation Index (NDVI) and decreased child mortality (Brown et al., 2014); more forest

cover and greater dietary diversity (Ickowitz et al., 2014); and more forest cover and

decreased child stunting (Johnson et al., 2013). Many of these studies have found

significant associations, but the specific mechanisms underlying linkages between

environmental indicators like NDVI and forest cover with human well-being remain

under-explored at relevant scales. This is largely because multinational surveys

on human well-being, such as Demographic and Health Surveys (DHS) and Living

Standards Measurement Surveys (LSMS), do not collect data on the accessibility

and collection of wild foods and non-food products in a standardized manner across

countries. On the other hand, datasets that do include data on NTFP use, such

as individual case studies or the PEN dataset, do not include detailed data on key

measures of human well-being, such as agricultural production, health, and food

security. Thus, datasets that can be used to find a significant relationship between

vegetation indices or land cover and human well-being at multinational scales are

often lacking data on the exact causal linkages. For example, a recent study showed
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that forest cover was associated with dietary diversity across 21 African countries

(Ickowitz et al., 2014), but could not explain the exact linkages, stating:

While we have found clear evidence linking tree cover and indicators of

diet quality, we are not able to determine the drivers of this relationship.

Our data do not allow us to distinguish between natural forests, old

fallows, and agro-forests; thus we cannot ascertain if people living near

forests are collecting more nutritious foods from the forest or if they are

cultivating them on farms and in agroforests, or a combination.

This paper aims to bridge these gaps – to provide a characterization of house-

holds that gather both food and nonfood NTFP in terms of both household char-

acteristics and environmental characteristics. We do this by examining which geo-

graphical and household level variables are significant predictors of household wild

food and nonfood gathering from 25 agro-ecological landscapes in 4 countries. While

the landscapes in this study were not selected at random, they were selected purpo-

sively to monitor a variety of topics such as agricultural intensification, livelihoods,

and environmental quality. Thus, landscapes were not selected with the specific

intention of examining wild food or NTFP collection, and some of the landscapes

selected had no households that reported collecting any NTFPs. This dataset there-

fore provides a unique opportunity to examine variation in NTFP gathering across

and within multiple African countries and agro-ecological regions, as well as the

factors associated with that variation, without relying on sample data that was col-

lected in areas already known to have high levels of NTFP gathering. A geographic
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characterization of households that collect NTFP can, in turn, begin to fill in gaps in

knowledge of the mechanisms by which ecosystem provisioning services (measured

by satellite-derived environmental indices) could be contributing to positive human

health outcomes. Finally, an understanding of which landscapes contain households

that collect NTFP in significant numbers can aid conservation priority setting efforts

that aim to maximize ecosystem service provision.

4.2 Methods and Data

For household survey data, we used data from the Vital Signs project (Sc-

holes et al., 2013). Vital Signs is an integrated monitoring system that collects data

on agriculture, the environment and livelihoods in a number of agricultural land-

scapes in Africa. The sampling design involves six to seven 10 x 10 km agricultural

landscapes per country, with about 30 households per landscape. Landscapes were

purposively placed within the identified regions in each country with the intention

to cover a wide distribution of agro-ecological zones in areas where smallholder agri-

culture predominates (Scholes et al., 2013). Each household was interviewed about

agricultural practices and production, off-farm and on-farm income, food security,

and collection of food and nonfood NTFPs. A total of 751 households were in-

terviewed across 25 landscapes in Ghana, Uganda, Rwanda and southern Tanzania

(See Fig 4.1). Data was collected from 2013 to 2016, with interview dates varying by

landscape and country. The median amount of time spent in a landscape conducting

household surveys was 20 days.
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Figure 4.1: Location of landscapes within the four Vital Signs countries. Each
landscape is 10x10km.

This study used multilevel logit models to determine the most significant geo-

graphic and household predictors of whether a household reported collecting NTFPs.

Two separate regressions were run: one for whether the household collected wild

foods and one for whether the household collected any nonfood NTFPs. The regres-

sions were based on 751 households from Ghana, Uganda, Rwanda, and southern

Tanzania.

While many analyses of wild foods include all undomesticated species, in-

cluding those sourced from farmlands and villages (Powell et al., 2015), the Vital

Signs questionnaire specifically asked about wild foods and other nonfood products

collected from ”nearby fallow lands, forest, woodland, shrubland, rivers, creeks,

or other areas.” Households were specifically asked about wild meat, wild insects,

fish from local rivers/creeks, nuts or seeds, honey, building materials and medicinal
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plants but were also given the option to specify other NTFPs. Other products spec-

ified were snails, crabs, mushrooms, green vegetables, sisal, and palms for making

mats. Because the particular NTFPs that households collected varied widely from

one area to another, regressions were not run for each individual product. We used

the same predictor variables for both regressions and allowed intercepts to vary at

the landscape level and the country level. Additionally, although ancillary data was

collected on frequency of collection and market value of NTFPs, the questionnaires

were not designed to allow accurate estimation of values or quantities of all food

products. To avoid the possibility of erroneous comparisons between areas, we only

used simple binary outcomes.

4.2.1 Household Survey Data

Household-level data used in the regressions included measures of food security

and household wealth, as well as demographic characteristics that have been shown

in the literature to be significant predictors of wild product use, including the gender

of the household head, average household age, household size, and education as

measured by the percent of the household that could read in any language and

the average years of schooling for all household members (Coulibaly-Lingani et al.,

2009). All household-level data was collected using the Vital Signs household survey

questionnaire (Scholes et al., 2013).

As a measure of household food security, an adjusted version of the Household

Food Insecurity and Access Scale (HFIAS) was used (Coates et al., 2007). This
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consisted of eight different coping strategies that a household might have to take in

response to food insecurity, such as skipping meals or limiting the variety of food

eaten. The scale was calculated as the total number of days in the past week the

household had to undertake a given coping strategy, summed across all eight coping

strategies. In addition to the HFIAS, because food security does not just con-

sist of food access, availability, and utilization, but also requires temporal stability

(Wheeler and von Braun, 2013), we added a temporal aspect with a binary variable

of whether the household reported not having enough food to feed the household at

any point in the previous year.

For measures of household economic status, we included household income

from non-agricultural sources, such as off-farm wage labor and running a household

business; the total cost of all expenditures made in the previous year by a household

for both food and nonfood products; and the total estimated value of all agricultural

products produced in the previous year by a household, estimated as the summed

production value of field crops, permanent crops, crop byproducts, crop residue,

livestock, and livestock byproducts. Monetary estimates were calculated in local

currencies for each country, and then converted to 2015 US dollars.

4.2.2 Household-Level Geographic Data

Because not all of the households fell perfectly within the 10 x 10 km land-

scape in which they were intended to be sampled, and because there was signif-

icant within-landscape variation in land cover types, land cover was measured as
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a household-level variable. Land cover and protected area data was summarized

within a given distance of a household. Regression results for land cover within

7.5 km of a household are included in the body of this paper. However, because

the distance people travel to collect resources can vary significantly based on the

resource and location (Maukonen et al., 2014) regression results within 2.5km, 5km,

10km, and 15km are included in Appendix C.

Two variables were generated at the household level as indicators of the preva-

lence of land cover types that might provide wild foods and nonfood NTFPs: one

for area covered by only forest and another for area covered by any non-forest,

non-agricultural land cover types. Land cover data came from the 300 m spatial

resolution European Space Agency Climate Change Initiative (ESA CCI) land cover

dataset (Defourny et al., 2017). Forest categories consisted of any land cover type

with greater than 15% tree cover, including broadleaved, needleleaved, evergreen,

deciduous, and flooded areas, while non-forest, non-agricultural categories (hence-

forth referred to as “grassland”) consisted of shrubland, grassland, herbaceous and

sparsely vegetated areas with less than 15% tree cover. Because the ESA CCI

dataset has annualized data, land cover was extracted for each household for the

year in which the survey was conducted.

Additionally, data on protected areas was collected from the World Database

of Protected Areas (UNEP-WCMC and IUCN, 2017) and all areas within protected

areas (PAs) with International Union for the Conservation of Nature (IUCN) cat-

egories I through V were counted as protected, while areas permitting sustainable

resource use (category VI) or areas unclassified within the IUCN system were not

86



counted as protected. The variable was calculated as the percentage of total area

protected within a given distance of a household. Finally, the 12-month Standard-

ized Precipitation Index (SPI) (Mckee et al., 1993) was calculated for each house-

hold at the landscape centerpoint using the 1 km spatial resolution CHIRPS dataset

(Funk et al., 2015). The SPI was originally developed to allow inter-comparison of

drought and wet periods between stations. The 12-month SPI compares the precip-

itation total for each set of 12 months to all other 12-month periods in the record.

The value of the 12-month SPI in a given month is equal to the number of standard

deviations above or below the mean of the total precipitation received in the 12

preceding months (Guttman, 1999). Because households were not all interviewed

within the same month, two households in the same landscape could have different

SPI values.

4.2.3 Landscape-Level Geographic Data

For each of the 25 landscapes, data on distance to cities and population density

were extracted using Google Earth Engine. These factors were selected because they

could have an impact on household use of NTFPs, and they were measured at the

landscape level because they do not vary significantly over a distance of 10km.

Market distance was counted as the travel time in hours to the nearest town with

a population greater than fifty thousand people, and was sourced from the Harvest

Choice Market Distance dataset (Harvest Choice, 2011). Population density was

measured as the total number of people within each 10 x 10 km landscape in the
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year 2015, as measured in the 100 km resolution WorldPop dataset (Tatem, 2017).

Variable Source Description
Household Survey Data
Head Gen-
der

Vital Signs
Survey (Sc-
holes et al.,
2013)

Whether the head of household, defined as the
household member who occupies the role of de-
cision maker, is male.

Age Vital Signs
Survey

The average age of all household members.

Years of
Schooling

Vital Signs
Survey

The average years of schooling for household mem-
bers over 5 years old.

Literacy Vital Signs
Survey

The percentage of individuals over 5 years old who
can read in any language.

Household
Size

Vital Signs
Survey

The number of individuals in the household.

Critical
Food Short-
age

Vital Signs
Survey

Whether the household was unable to meet their
basic dietary needs at any point within the past
year.

HFIAS Vital Signs
Survey

Household Food Insecurity and Access Score

Total Ag
Production

Vital Signs
Survey

The total value of all agricultural products pro-
duced in the past year, including field crops, per-
manent crops, crop byproducts, livestock and live-
stock byproducts in 2015 US dollars

Net Busi-
ness Income

Vital Signs
Survey

The net income from any business run by the
household from the previous year in 2015 US dol-
lars

Wage In-
come

Vital Signs
Survey

The total income from wage labor conducted by
members of the household over the past year in
2015 US dollars

Nonfood
Spending

Vital Signs
Survey

The total amount spent on nonfood items over the
previous year in 2015 US dollars

Food Spend-
ing

Vital Signs
Survey

The total amount spent on food over the previous
year in 2015 US dollars

Household-Level Geographic Data
Area Pro-
tected

WDPA
(UNEP-
WCMC
and IUCN,
2017)

The percentage of land area within a given dis-
tance from a household that falls inside of a pro-
tected area.

Forest Cover ESA-CCI
(Defourny
et al., 2017)

The percentage of land area within a given dis-
tance from a household that is of a forest land
cover type.
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Grassland ESA-CCI The percentage of land area within a given dis-
tance from a household that is of a grass, shrub,
or herbaceaous land cover type.

12 – month
SPI

CHIRPS
(Funk et al.,
2015)

The Standardized Precipitation Index (SPI) for
the 12 months before a survey was conducted.

Landscape-Level Geographic Data
Market
Distance
(Landscape
Level)

Travel Time
to Market
Centers
(Harvest
Choice,
2011)

The number of hours it would take to travel to a
town with over 50,000 people from the center of a
landscape.

Population
Density
(Landscape
Level)

WorldPop
(Tatem,
2017)

The total population of the 10km x 10km land-
scape from which the households were selected.

Table 4.1: Description of Variables Used in Regressions

Although we used multiple indices of household food security and household

income, none of these variables used were found to be multicollinear; however, other

potential indices were excluded because of multicollinearity with the indices that

we did use. The regression was run in R using the lme4 package version 1.1.12

(Bates et al., 2015) and significance estimates were generated using the lmerTest

package version 2.0.32, which uses Satterthwaite’s degrees of freedom method to

generate significance estimates (Kuznetsova et al., 2014). Variables were rescaled

and centered to yield values from -1 to 1 to facilitate model estimation.

4.3 Results

The households in the dataset had significant variation in income, agricultural

production, forest cover, and rates of NTFP collection. For example, in Mpataba,
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Product Number of Households Percentage of Households
Nuts or seeds 57 7.60%
Wild meat 54 7.20%
Honey 41 5.50%
Wild insects 18 2.40%
Fish from local rivers/creeks 13 1.70%
Other - Vegetables 7 0.90%
Other - Mushrooms 5 0.70%
Other - Snails 3 0.40%
Other - Crabs 3 0.40%
Any Wild Food 126 16.90%

Table 4.2: Number and percentage of households that collected specific wild foods.

Ghana the average agricultural production value per household was $5,994 over the

previous year, while it was only $286 in Kisoro, Uganda. Similarly, forest cover

within 7.5km of a household ranged from 0.004% in Nsobri, Ghana to 92.7% in

Atebubu, Ghana, and rates of NTFP gathering ranged from 0% in Nyungwe and

Volcanoes, Rwanda to 87% in Yumbe, Uganda. Finally, the landscapes were placed

in areas with ample variation in precipitation, from 861 mm/yr in Sumbawanga,

Tanzania to 1618 mm/yr in Mpataba, Ghana.

4.3.1 Types and Rates of NTFP Collecting

Our surveys find wide variability in the rates of collecting wild foods and non-

food NTFPs. The most common NTFP collected was building materials, followed

by medicinal plants, while the most common wild food collected was nuts or seeds,

followed closely by wild meat.

In looking at the rates of households collecting only wild foods, only nonfood

NTFPs, both types of NTFP, or neither wild food nor nonfood NTFPs, over half of
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Product Number of Households Percentage of Households
Building Materials 209 27.80%
Medicinal Plants 170 22.60%
Palms for Mats 2 0.26%
Sisal 1 0.13%
Any Nonfood NTFP 284 37.90%

Table 4.3: Number and percentage of households that collected specific nonfood
NTFPs.

Number of Households Percentage of Households
No NTFPs At All 426 56.60%
Only Nonfood NTFPs 200 26.60%
Only Wild Foods 42 5.60%
Both Wild Food 84 11.20%

Table 4.4: Tabulation of households that collected only wild foods, only nonfood
NTFPs, both wild foods and nonfood NTFPs, or no NTFP at all.

households reported collecting no NTFP at all. Additionally, many more households

collected nonfood NTFPs than wild foods.

4.3.2 Regression Results

Across the 25 landscapes, the most significant predictors of whether a house-

hold would report collecting wild foods were the presence of forests or grasslands.

Household characteristics like demographics, education, income, spending, and food

security had little significance in determining whether a household would report

collecting wild foods when geographic variables were included in the regressions.

Estimate Std. Error z value Pr(<z)
(Intercept) -3.4 1.24 -2.74 0.01**

Head Gender 0.59 0.45 1.33 0.18
Age -0.45 0.9 -0.5 0.62

Years of Schooling -1.61 1.13 -1.42 0.15
Literacy 0.07 0.92 0.08 0.94

Household Size -0.05 0.75 -0.07 0.94
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Critical Food Shortage -0.04 0.35 -0.11 0.91
HFIAS 0.64 1.38 0.47 0.64

Total Ag Production 0.26 1.76 0.15 0.88
Net Business Income -0.01 1.4 -0.01 1

Wage Income -2.76 2.26 -1.22 0.22
Nonfood Spending -0.61 1.88 -0.32 0.75

Food Spending -0.52 0.99 -0.52 0.6
Area Protected -1.27 1.46 -0.87 0.39
12 – month SPI 0.07 0.49 0.14 0.89

Forest Cover 2.03 0.95 2.14 0.03*
Grassland 2.7 1.19 2.27 0.02*

Market Distance 0.19 2.35 0.08 0.93
Population Density 1.18 1.34 0.88 0.38
Table 4.5: Predictors of whether a household reported
collecting wild food NTFP. Note: variables were centered
and rescaled. n = 751. A p-value of less than 0.001 is
indicated with three stars (***), a p-value of less than
0.01 is indicated with two stars (**), a p-value of less
than 0.05 is indicated with one star (*), and a p-value of
less than 0.1 is indicated with a period (.).

Similar to wild foods, household characteristics had little significance for whether

a household would report collecting nonfood NTFP. Unlike wild foods, however, land

cover (forest cover or grassland) was not a significant predictor. Rather, the best

predictor of whether a household would report collecting nonfood NTFP across the

25 landscapes and four countries was lower population density. Additionally, lower

household literacy rates and higher HFIAS scores were both somewhat associated

with nonfood NTFP collection.

Estimate Std. Error z value Pr(<z)
(Intercept) -1.87 1.09 -1.71 0.09.

Head Gender 0.35 0.29 1.2 0.23
Age -0.4 0.72 -0.55 0.58

Years of Schooling 0.17 0.83 0.2 0.84
Literacy -1.23 0.74 -1.67 0.1.

Household Size -0.35 0.52 -0.67 0.5
Critical Food Shortage 0.37 0.25 1.49 0.14

HFIAS 1.81 0.99 1.83 0.07.

92



Total Ag Production 2.08 1.48 1.4 0.16
Net Business Income 1.36 1.45 0.94 0.35

Wage Income 1.91 1.69 1.13 0.26
Nonfood Spending 0.94 1.38 0.68 0.49

Food Spending -0.06 0.9 -0.06 0.95
Area Protected -1.19 0.99 -1.21 0.23
12 – month SPI -0.09 0.43 -0.21 0.83

Forest Cover -0.68 0.97 -0.7 0.48
Grassland 0.41 1.07 0.38 0.7

Market Distance -1.25 1.42 -0.88 0.38
Population Density -3.09 1.42 -2.17 0.03*
Table 4.6: Predictors of whether a household reported
collecting nonfood NTFP. Note: variables were centered
and rescaled. n = 751. A p-value of less than 0.001 is
indicated with three stars (***), a p-value of less than
0.01 is indicated with two stars (**), a p-value of less
than 0.05 is indicated with one star (*), and a p-value of
less than 0.1 is indicated with a period (.).

Regressions were also run at 2.5km, 5km, 10km, and 15km spatial scales, and

these results were included in Appendix C. Many of the variables that were signifi-

cant predictors at a 7.5km scale remained significant at all scales. Lower population

densities remained a significant predictor of nonfood NTFP collection, even as for-

est cover, grassland area, and area protected were measured at different scales. For

wild food collection, forests were a significant predictor of NTFP collection at all

spatial scales and increased in significance at smaller scales. Grassland was most

significant at 7.5 and 10km scales, but lost significance at both larger and smaller

scales. Additionally, a lower percentage of area protected was somewhat significant

as a predictor of wild food collection at 5km scales and was significant as a predictor

of nonfood NTFP collection at 10 and 15km scales.
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4.4 Discussion

One of the most striking results in this analysis is that geographic variables like

land cover and population density are better predictors of whether a household will

report collecting NTFP than any household level variables that have been shown

to be related to wild product gathering in other contexts (Bakkegaard et al., 2017,

Coulibaly-Lingani et al., 2009, Melaku et al., 2014). These findings are in line with

a similar study conducted in China, which found that geographic factors like soil

quality and forest distance were significant predictors of whether a household would

collect NTFP, while household socio-economic factors, such as annual per capital

income or education levels, were not (Zhu et al., 2017). The presence of both forests

and grasslands were significant predictors of whether a household would report col-

lecting wild foods, while lower population density was significantly associated with

higher collection of nonfood NTFPs. Given that there is also substantial variability

between landscapes in terms of socio-economic characterization, it is also appar-

ent that the geographic context, rather than socio-economic factors, is the greatest

determinant of whether households in that landscape will report gathering NTFP.

Interestingly, very different contexts determine whether a household will report

collecting wild foods or nonfood NTFPs. The fact that environmental land cover

types predicted whether a household will report collecting wild food suggest that

this land cover variable is likely capturing availability of wild foods in particular

land cover types. Both wild meats and wild nuts and seeds, the two most frequently

reported types of wild food collected, require some amount of natural habitat in
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order to grow, and thus are unavailable in areas without these land cover types.

Building materials, on the other hand, can often consist of mud bricks or other

products that don’t necessarily require the presence of a particular land cover type.

Even organic building materials, like thatch and wood, can be sourced from marginal

areas or small plots, whereas food species of wild meat and plants like shea (Vitellaria

paradoxa), locust bean (Parkia biglobosa), and Syzygium fruits require some natural

habitat (Naughton et al., 2015). The fact that lower population densities were

associated with greater collection of nonfood NTFPs could be duo to a number of

factors. It possible that in densely populated areas artificial building materials and

medicines are more readily available, that households have higher incomes in densely

populated areas to purchase these resources, that there is greater competition for

natural building materials and medicines in these areas, or that NTFP availability

is quickly exhausted in densely populated areas.

Another significant finding was that household level variables related to de-

mographics, education, food security, and income had little predictive power in

determining whether a household would report collecting NTFPs. This stands in

opposition to pre-existing work on household determinants, which has found that

factors like age, household size, education levels, and income sources are signifi-

cant determinants of whether a household would report having access to NTFPs

(Coulibaly-Lingani et al., 2009). Where our models did find that household level

predictors were somewhat significant, they concurred with previous literature: both

decreased household literacy and decreased food security were somewhat associated

with greater collection of nonfood NTFPs. This is likely because illiteracy and
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food insecurity are associated with poorer and marginalized members of commu-

nities, which previous studies have found to be more likely to depend on NTFPs

(Pouliot and Treue, 2013). It is possible that household-level variables do have sig-

nificant effects within a landscape, as prior research suggests, but that our sample

size was not large enough to detect these relationships. Coulibaly-Lingani sam-

pled over 1800 households in one province of Burkina Faso, and showed that within

this small area many household characteristics were significant predictors of NTFP

access (Bakkegaard et al., 2017, Coulibaly-Lingani et al., 2009). However, when

comparing between countries and agro-ecological zones, as the Vital Signs dataset

does, it seems that land cover and population density have more explanatory power

than household characteristics when determining if NTFP gathering is part of a

given household’s livelihood strategy. Thus, these geographic and land cover vari-

ables should be taken into account in future econometric work on NTFP access and

utilization.

Assessing the presence of forests, grasslands and protected areas within varying

distances (see Appendix C) also revealed interesting results. The percent of the land

covered by forest was most significant as a predictor of wild food collection at very

local scales, around 2.5km, while the percent of land covered by forest within 10 and

15 km of a household had a less significant effect. Grassland was only significant

at 7.5 and 10 km scales. Interestingly, the presence of protected areas was also

significant at some scales for both wild foods and nonfood NTFP, with a greater

presence of protected areas associated with less NTFP gathering. This could be

due to a variety of factors, such as exclusion of households from access to NTFPs
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within protected areas to greater competition for the NTFPs that fall outside of

PAs. It could also be due to respondent bias, with households being reluctant

to admit to behavior that is illegal or that may appear illegal. Nevertheless, our

findings at multiple scales do suggest that PAs have an effect on household’s reported

NTFP gathering, although not as salient of an effect as the presence of forests and

grasslands. This has significant implications for conservation policy, suggesting that

restrictive protected areas, such as those with IUCN categories I through IV, may

decrease local peoples access to wild foods and nonfood NTFPs. Thus, more research

is needed on policy strategies that allow people to maintain their livelihoods while

also meeting conservation goals, such as community-based forest management and

protected areas permitting sustainable use of resources (Ellis and Porter-Bolland,

2008).

While greater presence of forests and grasslands is significantly associated

with wild food collection and low population densities are associated with nonfood

NTFP collection, there are many areas in Africa with high population densities

where agricultural land use is predominant. In these areas households likely do not

collect NTFP, not only because forests and grasslands are less common, but also

because they are well protected or highly fragmented and not as productive of wild

food species. This is especially true in Rwanda and southwest Uganda, where the

Vital Signs data indicates very little wild food or nonfood NTFP collection and there

is little substantial natural land cover outside of national parks like Nyungwe and

Volcanoes in Rwanda or Bwindi Impenetrable forest in Uganda. Thus, our results

show there may be significant populations of smallholder farmers in Africa that rely
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on little to no NTFP resources. This suggests that the contribution of NTFP to

local incomes across all rural households in sub-Saharan Africa may be much lower

than the 22% calculated by Vedeld in a literature review or the 28% calculated

by the PEN study (Angelsen et al., 2014, Vedeld et al., 2007). At the very least,

our data and analyses suggest that NTFP dependence varies widely across different

parts of the continent.

One benefit of this study was its multinational approach, providing significant

variety in landscape characterization in terms of factors like landcover type, market

distance, and population density. This allows us to build on previous studies that

have mostly taken place in one country or setting and compare between landscapes

and countries to determine which geographical contexts are most associated with

households that collect NTFPs. The multilevel models used in this study take

advantage of the multinational approach to allow estimates in one country to borrow

strength from the other countries in the analysis. Conducting an analysis at this

scale also allows us to speak to previous studies conducted at similar scales finding

associations between natural landcover and positive human well-being outcomes

(Ickowitz et al., 2014, Johnson and Brown, 2014).

Furthermore, increasing food security and access to provisioning ecosystem ser-

vices is an increasing goal of conservation in developing countries (Shackleton et al.,

2015, Tscharntke et al., 2012), and this research can justify conservation schemes

designed to increase availability of provisioning ecosystem services to communities,

even in areas where case studies of NTFP collection have not been conducted. Nev-

ertheless, there are some risks to missing important local variables when creating
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multinational statistical models. While we did not have data on cultural diversity,

for example, we did allow for intercepts in the model to vary at the landscape scale

and the nation scale, with the intent to account for variation in community and

national factors among landscapes and countries.

This study had some limitations that must be noted. One issue is that while

the landscape locations were not sampled in a way that targets communities that are

known to collect NTFP, they were also not randomly sampled, and therefore may

exhibit some bias in the representativeness of the households interviewed. Another

limitation was that while this survey asked respondents if they collected NTFPs

and what kind they collected, it did not explore questions of frequency, uses, and

domestication status of NTFP that were collected, as previous work has done (Casas

et al., 2007, Heubach et al., 2011, Kar and Jacobson, 2012). Future work could build

on our findings to explore factors like how distance to natural land cover relates to

NTFP outcomes, how geographic factors affect outcomes such as the frequency of

collection of NTFPs or the market value of NTFPs, as well as how different land

cover types correspond to the types of NTFPs collected. Such initiatives should

increase the sample size to provide a reliable estimate of household characteristics

that are related to NTFP collection, and how these characteristics are affected by

geographic factors. Additionally, future work could provide more detailed analyses

of how the presence of protected areas and the severity of their restrictions affect

households’ propensity to collect various types of NTFPs. A final limitation in the

data is that it is a cross section that does not allow us to examine inter-annual

variability. Collection of data with higher frequency is recommended to control
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for heterogeneity among households as well as to examine trends in the supply of

NTFPs in a given region.

Overall, our findings suggest that the presence of forests and grasslands are

significant predictors of whether a household will report collecting wild foods, that

a greater presence of these areas leads to a greater likelihood that a household will

collect wild foods, and that these geographic variables in fact play a more significant

role than a household’s income levels or food security status. This is especially true

in the four countries where Vital Signs collected data but also likely true for house-

holds in areas with similar agro-ecological systems in sub Saharan Africa. These

findings are relevant to recent literature associating forest cover with positive out-

comes in terms of dietary diversity and child nutrition (Ickowitz et al., 2014, Johnson

et al., 2013), suggesting that the collection of wild foods may be playing a role in

these positive food security outcomes. This has implications for conservation pol-

icy, suggesting that forests and grasslands in Africa with a nearby human presence

are very likely providing wild foods to supplement people’s incomes and diets. Re-

strictive conservation and protected area policies could harm communities’ access

to these livelihood-supporting resources. Thus, the provisioning ecosystem services

offered by these areas could be a justification for supporting conservation efforts and

for sustainable use (IUCN Category VI) type protected areas.
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4.5 Conclusion

This study shows that communities in areas in Africa with low population

densities and high rates of forest and other natural areas are most likely to re-

port collecting wild foods and NTFP. This offers a useful counterpoint to literature

drawing only on areas known to have high rates of NTFP collection to examine

household characteristics that predict NTFP collection. Furthermore, the observed

association between forest cover and wild food collection suggests that wild foods

may be playing some role in previously observed associations between forest cover

and positive dietary and nutrition outcomes. This has implications for conservation

efforts in Africa, suggesting that increased food security via wild food collection can

be a justification for conservation, but also that protected areas permitting sustain-

able use of natural resources will be more beneficial to communities than protected

areas that do not give locals access to wild foods or NTFP. Finally, it shows that

NTFPs make important contributions to livelihoods in rural landscapes throughout

Africa and provides a characterization of landscapes where policy instruments could

be targeted to support livelihoods via NTFP.
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Chapter 5: Mapping the Safety Net Effect

5.1 Introduction

Currently, an estimated 58.8 million African children, representing nearly

one third of the continent’s under-5 population, suffer from chronic undernutri-

tion (United Nations Children’s Fund (UNICEF) et al., 2019). While progress has

been made in the past several decades to improve nutrition and food security out-

comes, climate change threatens to stall or even reverse current trends (FAO et al.,

2018). As climate change continues, the frequency and intensity of meteorological

extremes will affect food production, ultimately harming food security and nutrition

for many vulnerable communities. No continent is more vulnerable to these changes

than sub-Saharan Africa, where an estimated 95% of agriculture is rainfed (Wani

et al., 2009) and about 65% of households produce food for their own consumption

(Runge et al., 2004).

One factor that can play a major role in fostering food systems that are re-

silient to climate shocks is the presence of ecosystem services provided by forests,

savannas, and other natural, uncultivated land use types (Daily and Matson, 2008,

Pascual et al., 2017, Reed et al., 2016). Uncultivated areas provide a suite of reg-

ulating services that can buffer agricultural yields from the effects of shocks. For
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example, natural vegetation can provide shade and cooler temperatures during heat

waves, absorb water and protect against erosion during floods, as well as retain

soil moisture during droughts. Furthermore, natural areas can provide habitat for

pollinators and species that regulate pest outbreaks. Beyond regulating services,

natural, uncultivated land provides provisioning services in the form of wild foods

and other inedible Non-Timber Forest Products that can support local incomes and

food security when agricultural output is low.

While a great deal of literature has focused on the benefit that ecosystem ser-

vices can provide, much of this work has relied on studies that are site specific. For

example, detailed work conducted in case studies across Africa have found instances

of ecosystem services improving child nutrition (Golden et al., 2011), regulating crop

pests (Girma et al., 2000), improving yields through pollination (Gemmill-Herren

and Ochieng’, 2008, Munyuli, 2012), and improving soil nutrient quality (Boffa et al.,

2000, Sileshi et al., 2012, Siriri et al., 2009). Some work that is particularly rele-

vant to climate resilience has found that natural land cover can improve soil water

storage (Lott et al., 2009, Siriri et al., 2013), but nevertheless few empirical studies

have observed how ecosystem services affect human outcomes during climate shocks.

Rather, most studies that focus on ecosystems as a form of climate resilience use

surveys that ask respondents if they would rely on ecosystem services in the event

of a hypothetical shock (Robledo et al., 2012), with some studies indicating that

many people do not think of ecosystem services as an asset that they would rely on

during a shock (Wunder et al., 2014).

Beyond a multitude of case studies, an emerging body of work has begun to
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assess whether the benefits provided by various ecosystem services can be observed

at large multinational scales. This work typically draws on geolocated Demographic

and Health Surveys and tends to focus on Africa in particular, where DHS data is

particularly rich and where low levels of economic development mean that people

are particularly dependent on local ecosystem services. Such work has shown that

forest cover is associated with improved dietary diversity (Ickowitz et al., 2014,

Rasolofoson et al., 2018), that forested watersheds are associated with less diarrheal

disease (Herrera et al., 2017), and that protected areas are associated with a number

of positive benefits (Naidoo et al., 2019).

This study aims to build on this existing multinational work by examining

whether natural, uncultivated land cover types are associated with drought-resilient

nutrition outcomes in Africa. Furthermore, this study does not model the effects of

ecosystem services as uniform over space, but explores how the effects of ecosystem

services on fostering drought resilience varies across Agro-Ecological Zones (AEZs) in

Africa in order to identify where people are particularly dependent on local ecosys-

tem services. This research will therefore inform conservation priority setting by

highlighting where environmental conservation is most likely to lead to improved

nutrition outcomes during drought.
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5.2 Theoretical Framework

5.2.1 Land Cover and Ecosystem Services

The ecosystem services provided by nature are highly varied and operate across

different spatial scales. They are typically classified into provisioning, supporting,

regulating, and cultural services (Mart́ınez-Harms and Balvanera, 2012), although

other typologies exist (Fisher and Kerry Turner, 2008). A common approach for

mapping ecosystem services is to focus on land cover types, especially when pri-

mary data is unavailable (Mart́ınez-Harms and Balvanera, 2012). One approach is

to analyze each land cover type as providing a “bundle” of associated ecosystem ser-

vices (Raudsepp-Hearne et al., 2010). Thus, in an African context, cultivated land

provides food crops as a service, grasslands provide grazing for livestock as well as

habitat for pollinators and pest regulation services, while forests provide a variety of

wild foods, soil formation, cooking fuels, water quality regulation, and non-timber

forest products. This framework is especially useful for analyzing trade-offs: as nat-

ural vegetation is cleared to make room for crop production, the increase in food

crops necessitates a decrease in habitat for pollinators and wild food species, as well

as the regulating services provided by uncultivated land. Conversely, as agricultural

land is abandoned, it stops providing food crops but becomes available again for

timber production, water quality regulation, erosion protection, pollinator habitat,

and livestock grazing. Finally, previous work has shown that the presence of natu-

ral, uncultivated land is one of the best geographic predictors of whether households
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in Africa report collecting both wild foods as well as other provisioning ecosystem

services (Cooper et al., 2018).

5.2.2 Uncultivated Land and Commons

The regulating and supporting services provided by uncultivated land, such as

soil formation, pollination, and water retention are, by their very nature, beneficial

across boundaries of property and ownership. However, in cases when land is pri-

vately held, provisioning services such as food crops or timber only provide benefits

to landowners, who reserve the right to collect these goods.

In Africa, uncultivated land is often held as a commons, providing resources

to multiple members of a community rather than just one landowning household,

although specific practices of land tenure, ownership, access rights, and communal

domain vary widely across cultural contexts (Wily, 2008). This means that not

only regulating and supporting services but even provisioning services such as wild

foods and fuelwood provided by uncultivated land are available to many members

of a community. Thus, these areas are especially critical for the poorest members

of communities, and these commons are often framed as “possibly the only capital

asset of the poor” (Wily, 2008). Furthermore, empirical research has shown that

provisioning services provided by such areas are critical for the livelihoods of women,

migrants, and other marginalized groups in rural Africa (Coulibaly-Lingani et al.,

2009, Pouliot and Treue, 2013).

Thus, as cropland expands into previously uncultivated areas in Africa due
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to pressures of both population growth and agricultural commodification (Laurance

et al., 2014, Rudel, 2013), commons and the services they provide for communities

and the poor are becoming increasingly depleted. The conversion of communal land

to privately held, cultivated land often happens with no benefit to marginalized

community members because communally held land and commons are not well-

recognized or protected by African legal systems (Wily, 2011). Similarly, as agricul-

tural land is abandoned and is reforested through processes like shrub encroachment,

provisioning ecosystem services can become publicly available to communities again

(Eldridge et al., 2011, Laris, 2008, Venter et al., 2018).

5.3 Data Sources

5.3.1 Nutrition Data

For this analysis, we use data from Demographic and Health Surveys (DHS)

from throughout Africa. The DHS is often considered the “gold standard” of data

on health and nutrition from developing countries and is often used in environmental

health studies, because the GPS coordinates associated with each DHS cluster make

it possible to infer the environmental context at the time and location of the survey

(Brown et al., 2014). We utilize all surveys from sub-Saharan Africa that meet the

following criteria: (1) they have geolocated coordinates, to facilitate the extraction

of climate conditions and local land cover at the site of each DHS cluster, (2) they

have data on child nutrition outcomes, and (3) they have data on relevant household

and individual co-variates of malnutrition.
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As our metric of child nutrition, we use Height-for-Age Z-Scores (HAZ Scores).

This is an indicator of stunting, a consequence of long-term malnutrition, and has

been collected in the majority of DHS surveys for decades. HAZ Scores are derived

by comparing the height of a child under five years of age to the distribution of

heights of well-nourished children of the same age and gender, and then deriving a

Z-score. While natural variation in human height makes it impossible to diagnose

any one individual as stunted (Perumal et al., 2018), stunting can be defined at the

population level as the percentage of a population with an HAZ score less than -2,

and severe stunting is the percentage of a population with an HAZ score less than

-3. While human populations do vary in potential attainable height, for children

under 5, differences in height are mostly explained by environmental and dietary

conditions (Habicht et al., 1974).

5.3.2 Drought Data

For our data on drought, we use precipitation data from the Climate Hazards

Infrared Precipitation with Stations (CHIRPS) dataset (Funk et al., 2015) and tem-

perature data from a land surface re-analysis model (Sheffield et al., 2006). Because

direct observations of long-term climate conditions in Africa are scarce, both of these

datasets rely on remote sensing in combination with ground-truthed data as well as

modeling to infer meteorological conditions across space.

Using monthly estimates of precipitation as well as average daily monthly

maximum and minimum temperatures, we calculate the monthly water balance us-
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ing the Hargreaves method (Hargreaves and Samani, 1982) and then derive the

24-month Standardized Precipitation-Evapotranspiration Index (SPEI) (Begueŕıa

et al., 2014). This metric compares the water balance over the previous 24 months

and compares it to long-term trends in that location, deriving an index that can be

interpreted like a Z-Score. In previous studies of precipitation anomalies and child

malnutrition, the SPEI calculated for the 24 months before a survey was the best

predictor of child health outcomes (Cooper et al., 2019). Because the SPEI accounts

for both precipitation anomalies as well as water lost through heat-induced evap-

otranspiration, it can characterize both meteorological and hydrological droughts,

both of which are expected to become more common under climate change (Dai,

2013).

While drought has a strong and clear impact on children’s nutrition status

in many parts of Africa, excessive rainfall can also affect health outcomes (Cooper

et al., 2019). To focus only on the effects of drought relative to normal periods, we

exclude from our analysis children observed during relatively high levels of rainfall

(SPEI >1).

5.3.3 Land Cover

For data on land cover near a DHS cluster, we use a dataset created by the

European Space Agency Climate Change Initiative (Defourny et al., 2017), which is

available annually for the years 1992 to 2015 at a 300m resolution for 22 distinct land

cover classes. For uncultivated land providing regulating, supporting, and communal
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provisioning ecosystem services, we use all forms of tree, shrub and herbaceous cover,

as well as shrubland, grassland, and water bodies. Additionally, for mosaic land

cover types with both cropland and natural vegetation, we counted each pixel as

cultivated if it contained more than 50% cropland and uncultivated if it contained

less than 50% cropland. Finally, we do not count urban, bare, or permanent snow

and ice areas as uncultivated land, as they do not provide most of the local ecosystem

services that uncultivated land cover types do.

As our metric for the availability of ecosystem services, we determine the

fraction of land within 15 km of each DHS cluster that was uncultivated at the time

of the survey. We use a 15 km radius for three reasons. For one, DHS clusters are

spatially distorted to preserve respondent anonymity, with 99% of sites displaced

by up to 5 km and 1% of sites displaces by up to 10 km (Grace et al., 2012). Thus,

a 15 km radius more accurately captures landscape-scale land cover characteristics,

because the land cover in the immediate vicinity of a community can’t be known.

We also focus on a 15 km, landscape-scale area because many ecosystem services flow

over large scales, especially abiotic resources that move through space, such as water,

as well as ecosystem services from animals, such as bushmeat and pollination (López-

Hoffman et al., 2010). Finally, many individuals will travel significant distances to

farm and to collect resources, especially in swidden cropland systems as well as when

resources are scarce (Arku and Arku, 2010, Felardo and Lippitt, 2016).

Having derived nearby land-cover categories for each DHS cluster, we exclude

sites from our analysis that have greater than 1% of nearby land cover as urban

(19.1% of the original data) or greater than 5% of nearby land cover as water (14.1%
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of the original data). This is to ensure that we are basing our analysis only on rural,

agrarian households that are largely dependent on rainfed agriculture and ecosystem

services from non-agricultural areas, rather than households that have livelihoods

based on off-farm labor (such as those in urban areas) or livelihoods based on fishing

(such as those near coasts or large bodies of water). Excluding DHS clusters that

were either observed during a significantly wet period (SPEI >1) or in urban or

coastal areas, yields a dataset of 221,885 observations, or 59.6% of the original

372,197 observations.

5.3.4 Agro-Ecological Zones

Because both farm systems and ecosystem services vary according to local

biophysical variables, especially temperature, precipitation and elevation, we analyze

the effect of ecosystem services in providing drought resilience at the scale of Agro-

Ecological Zones (AEZs). We use AEZs rather than other potential groupings, such

as livelihood zones, because the response of agriculture to drought and the ecosystem

services that natural areas can provide are primarily determined by biophysical

conditions. Furthermore, most data on livelihood zones available at a continental

scale is broadly similar to any AEZ characterization (Lynam, 2002). Using the

FAO methodology (Fischer et al., 2006) AEZs are defined by elevation and length of

growing period, where the growing period is defined as days where precipitation plus

moisture stored in the soil exceeds half of potential evapotranspiration (Fischer et al.,

2006). In other parts of the world, temperature is an important factor in determining
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AEZ, but as nearly all of Africa is warm, it is not an important determinant in this

analysis. In cases where there are ample observations (Savanna and Sub-Forest), we

disaggregate each zone into roughly contiguous northern and southern hemisphere

zones. Conversely, in the case of arid zones, where there was fewer observations

we aggregated across across the entire continent to create one discontinuous zone,

assuming that the relationships between drought, ecosystem services, and nutrition

outcomes are comparable across all of arid Africa. In the end, each zone in our

analysis had over 10,000 child nutrition observations from multiple countries and

surveys (See Table 5.1).

Briefly, here is an overview of each AEZ in our analysis:

• Arid: This AEZ includes all parts of Africa with a growing period of less than

70 days a year throughout the Sahel and Sahara, the Horn of Africa as well

as the Kalahari desert. Livelihood systems in arid parts of Africa are often

completely pastoral, although in some cases arid-adapted crops like Sorghum

and Millet are grown. Population is typically quite sparse.

• Forest: This AEZ includes all areas over 270 days of growing period in a year.

Forests are primarily found in central Africa, but are also in mountainous and

coastal parts of West Africa, in Liberia and Sierra Leone, as well is in coastal

Southeast Africa, in Mozambique and Madagascar. Farming activities in these

areas are based around crops like rice and cassava, as well as commodity tree

crops like rubber and palm oil. Populations in agricultural areas are typically

sparse, although greater population density can be found along coasts and
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rivers.

• Highlands: For highlands, we included all areas at greater than 1200m of

elevation, irrespective of growing period. This included much of the highlands

of Ethiopia, Eastern and Southern Africa, as well as Lesotho. Livelihood sys-

tems in mountainous regions are primarily crop-based, although the particular

crops vary, with Teff and Wheat being prevalent in Ethiopia and crops like

Potatoes, Maize and Bananas being more prevalent in Southern and Eastern

Africa. Cash crops include Coffee and Tea. In much of the highlands of Africa

population and agriculture are quite dense.

• Northern Savanna: The Northern African Savanna, typically called Sahelian

Savanna is characterized by 70-180 day growing seasons and extends from

Senegal to the Sudan. Crops include maize, groundnuts, millet, and sesame,

and cattle production is high. Population densities vary substantially from

the dense Hausalands of northern Nigeria to more remote parts of Chad, but

generally high.

• Southern Savanna: Also characterized by 70-180 day growing seasons, South-

ern African Savanna occupies a swath of lowlands from southern Kenya, through

Tanzania and Zambia to the Victoria falls region of Southern Africa. Agri-

culture includes maize and cattle. Population densities vary but are generally

more sparse than the savannas of Northern Africa, with significant amounts

of uncultivated land providing habitat to wildlife.
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• Northern Sub-Forest: The Northern African Sub-Forest AEZ, sometimes

referred to as the Guinean Forest-Savanna Mosaic, is less densely populated

that the savannas farther north or the coastal forests farther south. Root

crops like yams and cassava are common, as are maize, sorghum and millet.

Pastoralism is practiced, and is more common in South Sudan. Population

densities vary widely, from Nigeria to the almost uninhabited border of the

Central African Republic and South Sudan.

• Southern Sub-Forest; The Southern African Sub-Forest AEZ often referred

to as Miombo woodlands, exists on the southern periphery of Central African

forests in northern Angola and Southeastern DRC, as well as in the region of

Tanzania, Mozambique and Malawi. Crops include cassava and maize, and

population densities are generally low.

AEZ Children Countries Surveys
Arid 11,739 9 25
Forest 20,203 17 38
Highlands 56,504 18 45
Northern Savanna 58,392 14 41
Northern Sub-Forest 32,815 15 42
Southern Sub-Forest 22,767 11 23
Southern Savanna 19,465 9 21

Table 5.1: Number of child nutrition observations per AEZ

5.4 Methods

For this analysis we model how access to ecosystem services affects the vul-

nerability of nutrition to drought in each agro-ecological zone. We start by using
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Figure 5.1: Agro-Ecological Zones and DHS clusters included in the study.

Covariate Balancing Generalized Propensity Scoring (CBGPS) (Fong et al., 2018a)

to derive weights for each observation to control for the effects of other geographic

factors that affect drought vulnerability and may be correlated with land cover

and land use, including population, subnational GDP per capita, access to larger

cities, and international trade. For example, because higher population densities

are correlated with less natural land cover, we weight the observations such that

high-population, high-natural land cover sites are given more weight. Using these

weights, we then use a special class of Generalized Additive Model (GAM) known

as a Varying-Coefficient model (Wood, 2017) with a nonlinear smooth to model how

the impact of droughts on HAZ scores varies according the amount of nearby natural

land cover. In the following sections, we give an overview of the CBGPS weighting

methodology as well as the modeling framework.
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5.4.1 Covariate Balancing Generalized Propensity Scoring

A number of factors are associated with the presence or absence of unculti-

vated land cover that also affect drought vulnerability. Thus, to be able to infer

that it is uncultivated land and the ecosystem services it provides that is having a

causal effect on reducing drought vulnerability, it is important to control for these

variables. Propensity score weighting is a common method to deal with this is-

sue; however, most traditional methods involve a binary treatment variable, which

must be dichotomized if it is initially measured in continuous terms (Hirano et al.,

2003, Robins et al., 2000). Because our treatment variable, uncultivated land, is

continuous, and we have no theoretical priors on how it could be dichotomized, we

opt instead to use Covariate Balancing Generalized Propensity Scoring (CBGPS),

which can be used for continuous treatments and is more robust to mis-specification

(Fong et al., 2018a). Moreover, we use the non-parametric method to estimate

the generalized propensity score, which finds weights that leave each confounding

variable uncorrelated with the treatment variable, while maximizing the empirical

likelihood of observing the data. The non-parametric approach makes it possible to

avoid assumptions about the functional form of the propensity score, but is more

computationally costly (Fong et al., 2018a).

We balance for demographic and economic factors that can influence both

drought vulnerability as well as land cover. These are: population, from the World-

Pop project (Tatem, 2017), which can affect land cover by increasing pressure for

agricultural production, as well as drought vulnerability by increasing access to off-
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farm labor opportunities but also increasing pressure for resources; subnational GDP

per capita (Kummu et al., 2018), which can drive agricultural expansion, while also

decreasing drought resilience through financial capital; national imports per capita

(World Bank, 2017), which can drive agricultural expansion (Meyfroidt et al., 2013)

while also increasing food access, even when local food production is low; and time

to travel distance to major cities (Uchida and Nelson, 2008, Weiss et al., 2018),

which is an indicator of both market pressure on agriculture as well as access to

financial capital that can buffer child nutrition from the effects of droughts. By

balancing for these factors at the AEZ level, we can draw on such a large data set

of over 200,000 children rather than having to subset the data to specific AEZ or

socio-economic contexts.

After using the non-parametric CBGPS methodology to generate weights for

each of these variables with respect to the availability of uncultivated land, we tested

to see whether the correlation between these variables and uncultivated land cover

decreased (Fong et al., 2018a). We run the algorithm separately for each AEZ in

our analysis. To conduct the balancing we use the CBPS package for R (Fong et al.,

2018b), with the default value of 0.1/N for the tuning parameter ρ, which moderates

the trade-off between completely reducing correlation and avoiding extreme outlier

weights.
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5.4.2 Modeling Framework

Having derived weights for the propensity of each observation to have uncul-

tivated land in its vicinity, we then model nutrition outcomes as a function of the

local 24-month SPEI score, where the coefficient for SPEI is modeled as a function of

uncultivated land cover, controlling for typical household and individual factors as

well as the spatially-varying rate of malnutrition using a spherical spline. This is a

specific form of Generalized Additive Model (Hastie and Tibshirani, 1986) known as

a varying coefficient model (Wood, 2017). Specifically, our model takes the following

form:

y = β0 + βX + s(latitude, longitude) + s(ν)spei+ ε (5.1)

Where y is a given child’s HAZ score, β0 is a fixed intercept, X is a matrix

of individual and household covariates, modified by a vector of fixed coefficients β,

s(latitude, longitude) is a spatially varying effect estimated by a spherical spline

basis (Wahba, 1982), and s(ν) is a coefficient for the effect of the 24-month SPEI

on nutrition outcomes, with the coefficient varying as a function of uncultivated

land cover ν, and with each function s(ν) estimated separately for each AEZ. The

basis we use for the varying coefficient s(ν) is estimated using thin plate splines

(Duchon, 1977), and the smoothing parameter for this smooth is estimated through

Generalized Cross Validation (GCV) (Wood, 2017).
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5.4.3 Modeling Contribution of Uncultivated Land to Drought-Resilient

Nutrition

To estimate the contribution of uncultivated land to nutrition outcomes, we

model two scenarios for every AEZ where natural land cover was found to buffer

children from the effects of drought: one estimating the impact of drought on child

HAZ scores based on current levels of natural land cover, and one counterfactual

scenario estimating the impact of drought on child HAZ scores if natural land cover

were converted to agriculture.

Our model estimates changes in mean HAZ scores under drought conditions,

but not increases in rates of stunting, which is a more familiar metric for policy-

makers. Given that HAZ scores are normally distributed and the rate of stunting is

the percentage of children under 5 years old with an HAZ score of less than -2, it is

possible to convert changes in mean HAZ scores into increases in rates of stunting

given prevailing mean HAZ scores, which can in turn be derived from prevailing

rates of stunting and the standard deviation of HAZ scores. Thus, for estimates

of current HAZ scores, we use data from a recent analysis of rates of stunting in

Africa (Osgood-Zimmerman et al., 2018). Because this analysis estimated rates of

stunting for the years 2000-2015, we draw on trend analysis methods common in

epidemiology to conduct a pixel-wise forecast to the year 2020 (Fullman et al., 2017,

Osgood-Zimmerman et al., 2018). For standard deviation, overall standard devia-

tions in HAZ scores have been observed to vary independently of mean HAZ scores

(Mei and Grummer-Strawn, 2007) and to not change significantly over time. Thus,
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we simply use the standard deviation for our dataset (1.62), which matches previous

literature on the standard deviation of HAZ scores in surveys in Africa (Mei and

Grummer-Strawn, 2007).

Using these values and the definition of a normal distribution, we estimate

the current HAZ scores as well as the decrease in HAZ scores under drought for

scenarios of natural land cover as well as a counterfactual scenario with no natural

land cover. Then we derive a pixelwise estimate of increases in rates of stunting

under drought in the absence of natural land cover providing ecosystem services.

5.5 Results

5.5.1 Covariate Balancing

After estimating weights using CBGPS, the correlation between uncultivated

land cover and the various confounding variables that we attempted to control for

was significantly reduced. Tables 5.2 and 5.3 show the reduction in correlation

between these variables based on the weighting.

Import Value Per Capita Population Density

AEZ Unweighted Weighted Unweighted Weighted
Arid 0.22 0.01 0.27 0

Forest 0.1 0.1 -0.47 0.04
Highlands 0.37 0.03 -0.64 -0.14

Northern Savanna 0.02 0.03 -0.45 0.02
Northern Sub-Forest 0.16 -0.03 -0.41 -0.01

Southern Savanna 0.45 0.01 -0.62 -0.03
Southern Sub-Forest 0.46 -0.09 -0.7 0.18

Table 5.2: Summary of correlation between uncultivated land cover and confounding
variables before and after weighting using CBGPS
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Subnational GDP Per Capita Time to Travel to Major City

AEZ Unweighted Weighted Unweighted Weighted
Arid 0.16 -0.01 -0.15 0

Forest 0.19 0.08 0.31 -0.03
Highlands 0.17 -0.04 0.33 0.12

Northern Savanna -0.16 0.02 0.24 0.01
Northern Sub-Forest -0.03 -0.04 0.12 0.03

Southern Savanna 0.47 0.02 0.24 0.05
Southern Sub-Forest 0.22 0.06 0.17 0.05

Table 5.3: Summary of correlation between uncultivated land cover and confounding
variables before and after weighting using CBGPS

5.5.2 Role of Natural Land Cover in Moderating Drought by AEZ

Having estimated the model, we here graph the smooths for how uncultivated

land cover affects the impact of drought in each AEZ (Figure 5.2), and include full

model results in the Appendix.

Figure 5.2 shows how the coefficient for the 24-month SPEI varies as a function

of the percent of nearby natural land cover. The error band around the parameter

indicates the 95% confidence interval, so areas where the error band does not cross 0

(at the dotted line) indicates that, at that level of natural land cover, precipitation

anomalies have a significant effect on child nutrition outcomes at α = 0.05. Thus,

for example, in the Southern Sub-Forest AEZ, when 100% of nearby landcover is

cultivated, an a decrease of -1 in the SPEI score is associated with a decrease in

HAZ scores of 0.2 and this effect is significant. However, in the same AEZ, when

only 50% of nearby landcover is cultivated, a decrease of -1 in the SPEI score is

only associated with a very small decrease in HAZ scores, and this effect is not
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Figure 5.2: Varying effect of droughts on child nutrition outcomes by Agro-
Ecological Zone (AEZ). In arid, savanna, and highland zones, more natural land
cover was associated with greater drought vulnerability, while in sub-forest zone,
natural land cover was associated with less drought vulnerability. Error bands in-
dicate the 95% confidence interval.

significant because the 95% confidence interval crosses 0 and is not entirely positive.

For studies from the environmental sciences and epidemiology that used a similar

model, see Zhao et al. (2014) and Snickars et al. (2015).

In many AEZs, increasing rates of natural land cover are modeled to have a

higher coefficient for the 24-month SPEI, signaling greater drought vulnerability.

However, in the sub-forest AEZ of both northern and southern Africa, decreasing

natural land cover is associated with greater drought vulnerability. At low levels
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of natural land cover in both northern and southern sub-forest Africa, a moderate

drought (SPEI = -2) decreases mean HAZ scores by 0.2 to 0.4, whereas at high

levels of natural land cover, drought has no significant effect on nutrition outcomes.

5.5.3 Modeling Ecosystem Service Dependence Over Space

Our model indicates that in sub-forest parts of Africa, natural land cover

buffers child nutrition from the effects of drought. Thus, focusing on these AEZs,

we model the impact of drought on child nutrition outcomes in scenarios of both

current natural land cover levels as well as with no natural land cover, and estimate

potential increases in stunting.

Figure 5.3 shows several outputs from the steps from extrapolating the param-

eters from our model to estimating the total number of children dependent on local

ecosystem services for drought resilience per country. The most drought vulnerable

areas are arid and savanna AEZs, especially in the Sahel, the Horn of Africa, as

well as in arid parts of Southwest Africa. However, the areas that would see an

increase in stunting in the absence of local natural land cover were mostly in the

sub-forest regions on Northern and Southern Africa, such as the Guinean forest-

savanna mosaic of Northern and Western Africa as well as the Miombo Woodlands

of Southern Africa. Examining the potential increase in stunted child under drought

in each of these eco-regions shows that many of them would be located in the wood-

lands of southern DRC and northern Angola, as well as in parts of Mozambique and

southern Tanzania. Throughout Africa, an additional 1.5 million children would
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Figure 5.3: A) The effects of the 24-month SPEI on HAZ scores across Africa.
Positive values indicate drought vulnerability. B) Increase in the rate of stunting
under drought if local uncultivated land were entirely converted to agriculture. C)
The gross number of additional stunted children per pixel in a no natural land cover
scenario. D) The fraction of children under 5 dependent on local natural land cover
for drought resilience by country.

be stunted under drought without local ecosystem services. Finally, examining the

total number of vulnerable children, which would see any decrease in HAZ scores

without necessarily becoming stunted without local ecosystem services shows that

the countries with the highest rates of dependence on natural land cover are South

Sudan, Central African Republic, Swaziland, Togo, and Mozambique.

5.6 Discussion

This paper assessed how the prevalence of uncultivated land cover moderated

the impact of drought on child nutrition outcomes throughout several agro-ecological
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zones in Africa. We took care to control for the potential confounding effects of sev-

eral factors that could influence both the presence of uncultivated land as well as

drought vulnerability, such as GDP per capita, distance to major cities, population

density, and the per capita value of national imports. We found that the man-

ner in which natural land cover moderated the effect of drought on child nutrition

outcomes varied by AEZ, and that there is an observable “safety net” effect in semi-

forested landscapes throughout Africa, although natural land cover is associated

with greater drought vulnerability in arid and savanna AEZs. Finally, examining a

counterfactual scenario of the impact of droughts without uncultivated land cover

and the ecosystem services it provides shows that millions of children are dependent

on ecosystem services to meet their nutrition needs in times of drought.

A major contribution of this paper to the literature is its scale. Most other

studies of the role in ecosystem services in buffering human well-being from climate

shocks tends to focus on case studies (Debela et al., 2012) as well as use hypotheti-

cal scenarios (Robledo et al., 2012) or retrospective analyses (Muller and Almedom,

2008). This paper provides a large scale analysis of nutrition outcomes observed dur-

ing varying levels of drought as well as across sites with varying access to ecosystem

services.

While a large body of research attests to the fact that ecosystem services play

a large role in food production and nutrition, especially for smallholder farmers,

comparatively little work in the field of environmental conservation has been con-

ducted to identify areas where conservation interventions could lead to improved

food security and nutrition outcomes. This is in spite of the fact that the prac-
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tice of conservation relies heavily on mapping for priority setting - for example,

mapping ecosystem services such as carbon sequestration and storage or water pro-

vision as well as mapping biodiversity hot spots. Thus, mapping which natural areas

contribute the most to climate-resilient nutrition systems could further catalyze con-

servation investment, as well as identify locations where conservation interventions

could lead to synergies between Sustainable Development Goals (SDGs) related to

environmental conservation (13 & 15) and human well-being (1 & 2).

One of the only multinational analyses of the role of ecosystem services as a

buffer during shocks found that households did not rank forest resources as a very

important resource during shocks (Wunder et al., 2014). This paper differed in

significant ways from our analysis: it focused on forests rather than all uncultivated

land cover types, it focused on a variety of types of shocks beyond just drought, it

asked households retrospectively about previous shocks rather than observing them

in situ, and it asked households about their preferences. Thus, there are several

possible reasons why we observed natural land cover as playing as significant effect

in buffering households from drought in semi-forested landscapes while Wunder et al.

did not find such an effect. First, it may be that households do not pivot towards

forest resources during drought; rather, households that are always using forest

resources are simply less affected by agricultural shocks like drought. Second, by

focusing only on forest resources like timber, Wunder et al. are unable to explore the

benefit that supporting and regulating ecosystem services have on local agricultural

production.

An important aspect of this analysis was using weighting to ameliorate the
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effects of potential confounding variables. Because we controlled for the effects of

several demographic and economic variables, we can more confidently ascribe the

observed drought mitigation to the land cover itself rather than to another factor

that is correlated with land cover. However, given that weighting each covariate to

achieve a correlation of perfectly 0 would be either impossible or would require ex-

treme weights, we did not reduce the correlation between our confounding variables

and natural land cover all the way to 0 (See Tables 5.2 and 5.3). Nevertheless, we

diminished the correlation to the extent that a causal interpretation of the observed

mitigation effect of natural land cover is now more plausible. This, combined with

the fact that we excluded households with greater than 1% urban land cover and

greater than 5% water land cover means that we are making the best apples-to-

apples comparison we can.

While the model estimated the moderating effect of natural land cover on

drought vulnerability as varying across AEZs, we found that natural land cover

played a similar function in ecologically similar zones. In arid and savanna zones,

greater natural land cover was associated with greater drought vulnerability. On

the other hand, in the ecologically similar but geographically disjoint semi-forested

regions, natural land cover had a safety net effect during drought. The fact that

ecologically similar eco-regions were modeled as having similar effects in terms of

drought vulnerability, even though they were modeled with independently estimated

smoothing splines, suggests that this effect is real and is ecologically based.

One potential interpretation of these findings is that the ecosystem services in

arid and savanna environments are more vulnerable to drought and therefore less
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able to provide a safety net effect. This could be due to lower overall biodiver-

sity leading to a smaller range of functional responses to drought as well as fewer

available ecosystem services. In more humid environments, many plant species are

perennial and continue to provide services even during drought, whereas in arid

and savanna environments, the primary plant species are annual grasses, which are

more drought affected. Moreover, many of the regulating and supporting ecosystem

services provided by natural land cover, such as wind breaking, shading and tem-

perature regulation, and moisture retention are specifically a function of trees (Reed

et al., 2016), where as the primary ecosystem service provided by grasses is grazing

for animals. Thus, areas lacking in trees and biodiversity are not only unable to

provide a safety net in times of drought but are in fact as drought-vulnerable as

agricultural land. Finally, for very humid and mesic areas, drought vulnerability

does not seem to be a major issue: even when precipitation is well below historic

norms, it is still high enough to support food production. This may be why there

was almost no effect of SPEI in the forest AEZ. Thus, the semi-forested parts of

Africa present a middle ground, where rainfall levels are low enough that a precip-

itation anomaly can lead to increases in stunting, but rainfall is still high enough

that natural land cover has both the biodiversity and biomass to provide a safety

net.

While the association between natural land cover and reduced drought vul-

nerability in certain AEZs is certainly suggestive that people are relying on ecosys-

tem services as a safety net, this analysis cannot speak to the particular pathways

through which people are benefiting from nature. For example, the relative impor-
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tance of provisioning ecosystem services such as wild foods versus regulating services

such as shading to prevent moisture loss cannot be ascertained. Nevertheless, pre-

vious work in Africa has found that greater natural land cover is associated with

greater collection of wild foods and nonfood NTFPs, suggesting that provisioning

ecosystem services are a part of the pathway (Cooper et al., 2018).

5.7 Conclusion

These findings are have important implications for the study of food security,

climate change vulnerability, and environmental conservation. We showed that na-

ture can be a critical part of reducing climate change vulnerability, but the specific

role that nature plays is highly context-specific. While mapping ecosystem services

has traditionally focused on variables like carbon stocks and biodiversity hotspots,

this analysis shows that the contributions of nature to food security can also be

mapped to support greater food security. Given the increasing threat of a more

drought prone world under climate change (Dai, 2013) combined with the severe

precarity of Africa’s agrarian poor, dampening the effects of drought and providing

alternative food and income sources when agriculture fails may indeed be one of

nature’s most important contributions to people.
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Chapter 6: Conclusion

6.1 Summary of Findings

The four chapters in this dissertation, which focused on the role of precipitation

shocks and ecosystem services in affecting livelihoods, food security, and nutrition,

had several novel findings, methodological innovations, and contributions to the

academic literature.

The analysis of rainfall anomalies and food security and nutrition in Ghana

and Bangladesh in Chapter 2 made the important insight that the impacts of precip-

itation anomalies depend on local baselines, with wetter countries like Bangladesh

potentially more vulnerable to excessive rainfall and drier countries like Ghana more

vulnerable to droughts. This analysis also used a Spatial Error Regression (SER),

which corrects for spatial auto-correlation, a method that is not used enough in

national-level analyses of the environment and human well-being.

Building on the analysis in Ghana and Bangladesh, the analysis in Chapter 3

used data from 53 countries to map drought vulnerability globally. This greatly im-

proved on existing studies, which are typically at the nation scale with much smaller

sample sizes, and estimate a linear and spatially uniform effect of precipitation

anomalies on health outcomes (Phalkey et al., 2015). Furthermore, by examining
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the factors that mitigate vulnerability, this analysis provided several policy-relevant

insights, especially that nutritionally diverse agricultural systems are key for re-

silience. This study also illustrates the values of a “big data” approach: only by

drawing on 600,000 child nutrition observations under a wide range of climatolog-

ical, agricultural, economic, political and demographic conditions was it possible

to estimate the non-linear relationship between drought and stunting, as well as

how a variety of different factors moderate this relationship. Finally, this analysis

disagreed with some of the conventional wisdom around the timing and duration of

shocks and child nutrition outcomes. While much of the child nutrition literature

focuses on the first thousand days of a child’s life, we found that rainfall during this

period had a lesser explanatory effect on child heights than rainfall in the two years

before a survey, no matter the child’s age. We attributed this to the oft-overlooked

phenomenon of catch up growth (Behrman, 2016, Wit and Boersma, 2002).

The analysis of users of provisioning ecosystem services and land cover in

Chapter 4 was the first-ever analysis of geographic predictors of households collect-

ing wild foods and nonfood ecosystem services. This is significant, given that much

of the previous work on access to such resources focused on household and individ-

ual characteristics, often finding that women and the poor are more dependent on

these provisioning ecosystem services (Pouliot and Treue, 2013). However, given

the substantial between-landscape variation in rates of access to ecosystem services,

this analysis made the important step of examining correlates of this variation, and

set the stage for an analysis of geographic correlates of drought resilience.

The final study, in Chapter 5, drew on insights from all of the previous chap-
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ters, synthesizing approaches and findings related to both precipitation anomalies

and ecosystem services. It is potentially the first ever map of ecosystem services

relevant to climate-resilient food security conducted at a continental scale with the

aim to improve conservation priority setting. While most large scale analysis of the

environment and human health and nutrition estimate a linear and spatially uniform

effect (Herrera et al., 2017, Ickowitz et al., 2014, Naidoo et al., 2019, Rasolofoson

et al., 2018), we estimated a nonlinear effect of natural land cover as well as a

separate effect according to Agro-Ecological Zone, finding substantial heterogeneity

across zones.

6.2 Overall Synthesis and Contribution to the Literature

This dissertation has built on existing research in several ways. For the two

chapters drawing on larger data sets (Chapters 3 and 5), my work made the contribu-

tion of potentially being the first People and Pixels papers to (1) use global empirical

data, (2) create bivariate analyses and (3) have a spatial component (Figure 6.2).

Many different studies have done significant work drawing on two of these themes,

but my work has sought to incorporate all them. For example, there are many bi-

variate analyses that draw on large, multinational datasets, including work showing

relationships between forest cover and dietary diversity, (Ickowitz et al., 2014, Ra-

solofoson et al., 2018); work showing that forested watersheds are associated with

lower rates of diarrheal disease (Herrera et al., 2017); work showing precipitation

impacts on food security (Niles and Brown, 2017); and work showing that higher
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temperatures are associated with low birthweights in Africa (Grace et al., 2015).

However, each of these studies simply show an association between two important

variables at large scales, rather than look at how this association varies over space

in order to map “hot spots” of climate vulnerability or ecosystem service depen-

dency. Most human-environment studies with a significant mapping component, on

the other hand, take one of two approaches. Many use empirical datasets like the

DHS to map single variable over space, using methods like kriging. This include

maps of malaria prevalence (Bhatt et al., 2015), child mortality (Burke et al., 2016),

and child stunting (Osgood-Zimmerman et al., 2018), all of which were published

in premier journals. However, they merely show an outcome variable, rather than

how that variable would be expected to respond to climate shocks or deforestation.

Other mapping approaches are index-based (Busby et al., 2014, Carrão et al., 2016,

Ericksen et al., 2011, Krishnamurthy et al., 2014, Richardson et al., 2018). They

consider all the factors that would be expected to moderate the relationship between

two variables – i.e., factors influencing vulnerability. However, they combine these

variables in simple ways, often scaling variables from 0-1 and taking the average,

with little empirical support. Both Chapters 3 and 5, on the other hand, aim to

synthesize all three of these themes, whereas previous work has only incorporated

up to two themes in any one of these studies.

One major consideration in each of these studies was selecting an outcome

variable to model. In three of the four studies, child stunting, measured with HAZ

scores, was one of the outcome variables. This was largely because the HAZ score is a

standardized metric that has been collected around the world for decades. However,
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Figure 6.1: Schematic representation of the various components of previous studies
that my work brings together, resulting in some of the first ever People-and-Pixels
analyses that were spatial, bivariate, and global.

the HAZ is only indicative of child malnutrition, and while increases in child stunting

certainly imply concurrent increases in adult malnutrition, this is not necessarily the

case. Thus, an ideal metric would take into account adult malnutrition. Potential

alternative metrics that are indicative of household food security are dietary diversity

scores, which have been associated with both ecosystem services (Ickowitz et al.,

2014, Rasolofoson et al., 2018), as well as child stunting (Arimond and Ruel, 2004).

Other potential newer metrics include the Food Insecurity Experience Score (FIES),

Household Food Insecurity and Access Scale (HFIAS), and Household Hunger Score
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(HHS), used in Chapter 2. However, there are several issues with these metrics

that would make it challenging to incorporate them into a global analysis of the

environment and food security. For one, that they have not been collected for long

enough to truly observe how they respond to climate shocks in a variety of contexts,

although this could be solved with time. Secondly, they are often discrete or integer

based measurements, and are therefore not measured with as much precision as an

anthropometric Z-Score. Given the amount of variance in food security outcomes

that must be controlled with household and individual variables to measure the

effects of the environment on nutrition outcomes, this imprecision may make it

impossible to see an effect of the environment on food security without a very large

dataset. Finally, many alternative food security metrics are not even collected by

the DHS, including the FIES, HFIAS, and HHS, as well as other key variables, such

as gathering forest resources used in Chapter 4. These variables are more frequently

used in specialized surveys conducted by smaller organizations, such as the Feed the

Future surveys by IFPRI and the Vital Signs surveys conducted by Conservation

International.

These four analyses also drew on different but related methodological ap-

proaches. Two issues were of primary concern for these approaches: one was finding

a modeling approach with enough flexibility to make accurate predictions, describe

non-linearities, and perform feature selection where necessary, while the other con-

cern was controlling for spatial autocorrelation and endogenous variables to make a

causal interpretation of any observed relationships more valid.

In modeling, there is, to some extent, a trade-off between flexibility and in-
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terpretability of models (See Figure 6.2). Many models more generally referred to

as machine learning models, such as neural networks and random forests, are very

flexible in their structure, accounting for interactions between predictor variables

and making predictions with great accuracy. However, these models are difficult

to interpret and are not very informative about the actual structure of a system.

Conversely, many regression-type econometric models allow the analyst to interpret

exactly why the model is making certain predictions, but are less accurate and can

only incorporate simple interactions between variables. Finally, to model estimates

of complex interactions between variables and make predictions in machine learning

models, large data sets are necessary, while econometric models can be estimated

from smaller datasets.

Figure 6.2: This graphic illustrates the trade-off between more flexible but less
interpretable approaches, often referred to as “Machine Learning,” and less flexible
but more interpretable and structured approaches, often referred to as “Econometric
Modeling.”

For Chapters 2 and 4, due to the available data size, which in both cases was no

more than several hundred observations, econometric models were used and a linear

effect was estimated between each predictor variables and the outcome variables of

interest. While these were not as simple as OLS regression (Chapter 2 use Spatial
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Error Regression and Chapter 4 used Hierarchical Regression), they were still linear

models.

For Chapters 3 and 5, I had the data size to estimate more complex mod-

els. However, I also wanted to specify some structure in the models. If I simply

wanted to predict rates of malnutrition on a per-pixel basis, a “black box” ma-

chine learning approach like neural networks or random forests would have been the

most appropriate. However, my research questions were not “What are the rates of

malnutrition globally?” but “Where is malnutrition vulnerable to drought?” and

“Where do ecosystem services support nutrition during drought?” Thus, because

my research questions had some structure as part of their premise, it was neces-

sary to use an approach that let me control the model structure to some extent.

However, I still wanted to perform feature selection and regularization in Chapter

3, and I also wanted to model non-linearities in 5. Thus, I ended up using LASSO

regression and Generalized Additive Models, two approaches that balance the flex-

ibility/interpretability trade-off (See Figure 6.2). Interestingly, these approaches

were both invented by the same researchers at Stanford University, who often refer

to this class of models as Statistical Learning (Hastie et al., 2009).

Another concern with respect to modeling approaches beyond the structure

of the model is appropriately controlling for both spatial autocorrelation as well

endogenous variables. Spatial autocorrelation is when there is a spatial structure to

predictor and outcome variables in a way that biases the model. This can arise for

a number of reasons, such as when variables are inherently spatial and thus model

errors have a spatial component, as well as when a variable can have “spillover”
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effects and influence the values of observations that are nearby spatially (Ward

and Gleditsch, 2008a). An example of the former would be when mean annual

precipitation is a predictor variable, as this obviously has a spatial component.

An example of the latter would be an outcome variable like wealth, which can

spillover to affect the wealth of nearby areas. The chapter that most thoroughly

assessed for spatial autocorrelation was Chapter 2, which showed the distance at

which autocorrelation could be detected in various outcome variables in Figure 2.6.

I dealt with spatial autocorrelation in a variety of ways, depending on the

specific chapter. Across the four chapters, the techniques I used to control for spa-

tial autocorrelation grew more advanced over time. In Chapter 4, I simply used

landscape-level fixed effects, making the reasonable assumption that any within-

landscape autocorrelation was negligible, while in Chapter 3 I simply assumed that

including a large number of geographic variables related to malnutrition and nu-

tritional vulnerability to climate shocks would be sufficient to explain global-scale

heterogeneity. In Chapter 2, on the other hand, I specifically used a Spatial Error

Regression to deal with spatial autocorrelation in Bangladesh and Ghana, where

much of the drivers of subnational spatial variation of nutrition and food security

outcomes, such as cultural practices, are more difficult to quantify and include in a

model. Finally, in Chapter 5, I control for spatial autocorrelation in Africa using a

spherical spline (Wahba, 1982).

Beyond spatial autocorrelation is the issue of endogeneity. An endogenous

variable is one that can affect both the predictor variable and the outcome vari-

able in a way that makes the two variables correlated. Thus, a correlation between
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two variables cannot be interpreted as causal unless these variables are accounted

for. This was primarily a concern in Chapter 5, where I used Covariate Balancing

Generalized Propensity Scores (CBGPS). In Chapter 4, we were unconcerned with

ascribing causality to the gathering of provisioning ecosystem services; rather we

simply interested in the correlates. In Chapters 2 and 3, on the other hand, the

occurrence of drought or excessive rainfall is independent of other drivers of mal-

nutrition outcomes such as wealth or maternal education. Thus, there is no other

underlying variable that could be theoretically having an endogenous effect on both

drought and malnutrition, and we can interpret the relationship as causal on a priori

grounds.

6.3 Future Work

There are several ways this work could be improved upon in future studies.

Newer outcome variables based on richer DHS data, such as on child mortality, could

be incorporated. Whereas many geolocated DHS do not include data on nutrition

or relevant nutrition covariates, nearly every DHS collects data on the children born

to each woman. Furthermore, because this data is longitudinal, it allows for a

retrospective analysis of mortality. Thus, with nutrition, data is only available for

children at the time of a survey, but mortality outcomes are available on a monthly

basis for up to several years before a survey. This has significant implications for

data completeness. For example, if a major drought happened a couple of years

before a survey and there was an associated increase in mortality, this would be

139



reflective in the mortality data. However, it would not be apparent in the nutrition

data. Thus, child mortality presents a promising future avenue for people and pixels

research.

Additionally, future work should take into account the effect of temperature

on food security and nutrition. A number of studies have linked temperature with

decreased crop yields (Asseng et al., 2011, Peng et al., 2004, Schlenker and Roberts,

2009) as well as with worse health outcomes (Chen et al., 2016, Gasparrini et al.,

2017, Green et al., 2019, Guo et al., 2017). However, temperature can be more

difficult to model, because it is often absolute temperature that leads to increased

mortality and harmed crop yields, whereas it is precipitation anomalies that are most

associated with negative human outcomes. This presents an endogeneity issue for

estimating the effects of temperature on human well-being. For example, a simple

model would associate higher temperatures with higher mortality, and an analyst

must take care to tease apart whether this effect is causal (i.e., higher temperatures

cause more malnutrition) or simply correlative (i.e., less developed areas tend to be

in warmer places and also tend to have higher rates of malnutrition).

A further challenge of working with temperature data is that many of the

effects of temperature on human outcomes are based on daily temperatures. For

example, daily temperature has been associated with mortality (Gasparrini et al.,

2017), intimate-partner violence (Sanz-Barbero et al., 2018), and suicide (Burke

et al., 2018). However, most data on nutrition and food security outcomes from

household surveys like the DHS are collected with monthly but not daily specificity.

Thus, it is not possible to pair an event like child mortality with the temperature
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on the day of the mortality event. Nevertheless, it would be possible to aggregate

temperature to a monthly scale, for example by taking the average maximum tem-

perature for the month or by taking the count of days above a given threshold, and

such metrics have already been used in DHS analyses (Geruso and Spears, 2018).

Finally, future work could take into account future scenarios of climate and

development to estimate future impacts of climate change on food security and nutri-

tion. Models could be trained on historic data from the entire DHS, and these models

could be used to derive estimates of the future malnutrition burden under different

scenarios. Such an analysis could answer questions like: How many more people

will be malnourished if we do not meet the Paris targets? What does malnutrition

look like in a high-emissions, high-development world versus a low-emissions, low-

development world? Shared Socioeconomic Pathway (SSP) projections have already

been developed at the country level for variables like demographic structure and edu-

cation (KC and Lutz, 2017), wealth (Dellink et al., 2017), and inequality (Rao et al.,

2019), while spatially explicit projections exist for urbanization (Jiang and O’Neill,

2017) and population (Jones and O’Neill, 2016). Similarly, bias-corrected climate

projections from the Inter-Sectoral Model Inter-Comparison Project (ISIMIP) as

well as forthcoming models from the 6th Climate Model Inter-Comparison Project

(CMIP6) would enable predictions of the future exposure to climate shocks under

various RCPs. Based on a model trained with historic data on these variables, one

could make projections of a variety of outcomes under various combinations of SSPs

and RCPs. This analysis could inform policymaking by estimating which scenarios

meet the child mortality objectives set forth in the SDGs, as well as in analyz-
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ing trade-offs between economic development, pollution reduction (Goodman et al.,

2004, Heft-Neal et al., 2018, Roberts, 2004), and climate mitigation. Furthermore,

because it is spatially explicit, such a model would provide maps of future vulner-

ability to climate shocks, based on location-specific estimates of how vulnerability

and the local climate will change in the coming years.

6.4 Policy Recommendations

This work has several critical implications for policymakers at various scales.

The work on the effects of precipitation on food security and nutrition in Chap-

ters 2 and 3 shows that precipitation anomalies and drought in particular can have

a major impact on food security and nutrition, but that the particular impact of

drought varies significantly based on the specific food system. For example, Chap-

ter 2 found that drought is associated with worsened food security in Ghana while

flooding is associated with worsened food security in Bangladesh. Chapter 3, on the

other hand, found many places where drought is associated with worsened nutri-

tion, with some of the most vulnerable places being in the horn of Africa. Chapter

3 also identified factors associated with increased nutritional resilience, including

government effectiveness, nutritionally diverse cropping systems, and increased in-

ternational trade. Thus, that study provides clear insights for improved policies

around drought resilience at different scales, suggesting that national actors should

focus on governance and trade, while more local actors should focus on mitigating

land degradation and improving agricultural diversity.
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In addition to the chapters on precipitation anomalies, Chapters 4 and 5 pro-

vide policy-relevant insights related to the role of ecosystem services in improving

food security. Chapter 4 showed that people all over Africa collect provisioning

ecosystem services from forests and grasslands to supplement their livelihoods and

food security, and that the greater the amount of nearby forests and grasslands, the

more likely people were to report collecting these provisioning ecosystem services.

Chapter 5, on the other hand, demonstrated that in certain African ecosystems, par-

ticularly the semi-forested areas on the periphery of the equatorial tropical forests,

natural, uncultivated land cover can provide a safety during drought, and this safety

net effect is likely through the pathways of both provisioning and regulating ecosys-

tem services. Thus, both of these chapters indicate that natural, uncultivated areas

like forests and grasslands can provide a significant improvement to food security

and nutrition in Africa, and policymakers should seek to implement conservation

schemes that encourage community-based protected area management as well as

protected areas that permit the sustainable harvesting of some ecosystem services

(Porter-Bolland et al., 2012).

This analysis relied in large part on household survey data, and thus provides

several insights with regards to the type of household survey variables that are

valuable for food security and nutrition research. For one, having household-specific

GPS points is tremendously useful or any type of research related to health, food

security, and the environment. For both the DHS and Feed the Future surveys used

in these studies, a large number of household surveys were collected without GPS

data. Thus, these surveys were not included in the analyses, and the statistical
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power of the analyses were significantly diminished.

Other variables that should be included in household surveys include those

that are useful for determining the vulnerability of livelihoods to climate shocks,

such as where they source their food. The Vital Signs household surveys asked

about collecting wild foods, which provided an immensely useful outcome variable

in Chapter 4, but this data is not collected in other household surveys like the DHS.

Other questions that could be included in such household surveys include those that

address the provenance of food - how much of it is purchased at the market, and

how much of it comes from own production? While the DHS has begun including

questions about dietary diversity in its household surveys, including more data on

the diversity of food origins would be important for better assessing households’

vulnerability to local food production shocks.

6.5 Conclusion

Perhaps the most important contribution of this dissertation to the scientific

literature was to highlight the agrarian poor are affected by the twin processes of

ecological and climatological change. For high income countries, the weather outside

or the local land cover have little impact on people’s food security and nutrition.

Whether it is hot or cold, wet or dry outside, individuals in rich countries will have

the same access to food, often sourced from thousands of miles away. Similarly, while

the loss of nearby public and natural land may be a pedestrian concern for people

in high income countries, it hardly means diminished access to foods, medicines,
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building materials, and income sources. In poor countries, on the other hand, climate

shocks and environmental degradation can lead to higher rates of malnutrition, as

this dissertation has shown. Thus, the actions of consumers and policymakers in rich

countries can have distal effects that can either mitigate or amplify human suffering

in poorer countries. It is my hope that the research contained here plays a small

role in improving our understanding of patterns of vulnerability among the worlds

poor so that we might work to mitigate that suffering.
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Appendix A: Appendix A

Asset Index Variables
Ghana
The asset index for Ghana included: dwelling conditions; whether the house was
rented, owned or borrowed; water treatment, source for light and fuel; garbage
disposal; roof and walls material; type of toilet; and water sources, all variables
reported in Module 9.
Bangladesh
The asset index for Bangladesh included: the household’s total land area cultivated,
rented, owned; house ownership, number of rooms in the house; whether house had
electricity; water source; toilet type; roof, walls, and floor material; number of cat-
tle, poultry, sheet, goats, and other livestock owned; television, radio, motorbike,
telephone, tractor, or cart plough ownership; and whether the household used or-
ganic or chemical fertilizer.
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Summary Statistics

Ghana Bangladesh

Child’s Age (Months)
max 59 60
mean 32.4 29
min 7 0

Child’s Sex (%)
Female 49.6 49.1
Male 50.4 50.9

Child’s Birth Order
max 18
mean 4.2
min 1

Number of Siblings
Born Within 24 Months

max 4
mean 0.4
min 0

Child’s Height-for-Age Z-Score
max 5.5 5.9
mean -1.5 -1.7
min -6 -5.9

Child’s Weight-for-Age Z-Score
max 4.9 4.9
mean -0.2 -0.8
min -5 -4.9

Asset Index
max 5 5
mean 3 3.1
min 1 1

Fraction of Dependent Age
Individuals in Household

max 0.9 1
mean 0.5 0.5
min 0.1 0.1

Household Size
max 28 14
mean 7.6 5.2
min 2 2

Household Head Age (Years)
max 97 90
mean 39.2 39.2
min 18 18

Household Head’s Education (%)

High School 2.6
Never 41.9
Primary 49.5
Secondary 5.4
University 0.6

Household Head Sex (%)
Female 12.2 15.9
Male 87.8 84.1

Household Head Literacy (%)
Illiterate 79.6 18
Literate 20.4 82

Household Head Religion (%)

Christian 37.1 0.3
Hindu 9.5
Muslim 40.4 90.2
None 1.6
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Traditional 20.9

Percent of Rice Area Irrigated
max 1
mean 0.5
min 0

Population Within 7.5km
of Household (1000 people)

max 43 529
mean 10.2 185
min 1.3 11.9

Year (%)
2011 52.7
2012 100
2015 47.3

12-Month Standardized
Precipitation Index

max 1.5 2.6
mean 0.8 -0.2
min -0.5 -1.7

24-Month Standardized
Precipitation Index

max 1.7 2.2
mean 1.1 -0.5
min 0.3 -2.3

36-Month Standardized
Precipitation Index

max 2.3 2.3
mean 1.4 -0.6
min 0.4 -2.3

48-Month Standardized
Precipitation Index

max 2.2 2.3
mean 1.4 -0.7
min 0.3 -2.2

60-Month Standardized
Precipitation Index

max 2.5 3.1
mean 1.6 -0.4
min 0.4 -2.5

Average Annual
Precipitation (1000mm)

max 1.4 5
mean 1.1 2.5
min 0.9 1.4

Table A.1: Child Stunting

Ghana Bangladesh

Asset Index
max 5 5
mean 3 3
min 1 1

Fraction of Dependent Age
Individuals in Household

max 1 1
mean 0.4 0.4
min 0 0

Household Size
max 28 14
mean 5.8 4.4
min 1 1

Household Head Age (Years)
max 100 105
mean 45.1 45.2
min 15 17
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Household Head Gender (%)
Female 18.2 18.6
Male 81.8 81.4

Household Head Literacy (%)
Literate 21 78.3
Illiterate 79 21.7

Household Head Education (%)

Primary 44.9
Education 5.8
High School 2.3
University 0.6
None 46.3

Household Head Religion (%)

Christian 40.9 0.3
Hindu 11.2
Muslim 35.1 88.6
None 2.1
Traditional 21.9

Household Hunger
Scale (HHS) Score

0 1022
(43.2%)

8328
(89.1%)

1 261 (11.0%) 548 (5.9%)
2 507 (21.5%) 269 (2.9%)
3 549 (23.2%) 140 (1.5%)
4 15 (0.6%) 32 (3.4%)
5 5 (0.2%) 10 (0.1%)
6 3 (0.2%) 15 (0.2%)

Percent of Rice Area Irrigated
max 1
mean 0.5
min 0

Population Within
7.5km of Household

max 43000 577000
mean 10700 185000
min 1340 11900

Year (%)
2011 51.4
2012 100
2015 48.6

12-Month Standardized
Precipitation Index

max 2.6 1.5
mean -0.2 0.7
min -1.9 -0.5

24-Month Standardized
Precipitation Index

max 2.2 1.7
mean -0.6 1
min -2.3 0.3

36-Month Standardized
Precipitation Index

max 2.3 2.3
mean -0.8 1.3
min -2.5 0.4

48-Month Standardized
Precipitation Index

max 2.3 2.2
mean -0.8 1.3
min -2.2 0.3

60-Month Standardized
Precipitation Index

max 3.1 2.5
mean -0.6 1.5
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min -2.7 0.4

Average Annual
Precipitation (1000mm)

max 1.4 5
mean 1.1 2.3
min 0.9 1.4

Table A.2: Household Hunger Scale
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Parameter Estimates for Regressions
Parameter estimates for models run predicting HAZ, WHZ, and HHS scores

in Ghana and Bangladesh from SPI calculated at 12, 24, 36, 48, and 60 month
windows. For Spatial Error Regressions, the parameter Lambda is given. Stars
denote significance at α=0.1 (.), α=0.05 (*), and α=0.01 (**). Significance estimates
for SPI variables have been Bonferroni corrected

HAZ WHZ HHS
(Intercept) −0.66 0.18 2.68∗∗∗

(0.94) (0.80) (0.63)
asset index 0.05 −0.01 0.01

(0.04) (0.03) (0.02)
admin1Northern 0.15 −0.12 −0.01

(0.22) (0.19) (0.14)
admin1Upper East 0.55 −1.02∗∗∗ 0.06

(0.34) (0.29) (0.18)
admin1Upper West 0.44 −0.15 −0.30

(0.27) (0.23) (0.24)
hh size 0.07∗ −0.03 0.02∗

(0.03) (0.03) (0.01)
hhhead religionMuslim −0.05 −0.06 −0.05

(0.12) (0.10) (0.06)
hhhead religionNone −0.87∗ 0.30 −0.19

(0.42) (0.36) (0.17)
hhhead religionTraditional 0.12 0.16 0.35∗∗∗

(0.15) (0.13) (0.07)
mean annual precip 0.00 −0.00 −0.00∗∗

(0.00) (0.00) (0.00)
hhhead age 0.00 −0.00 0.00∗∗

(0.01) (0.00) (0.00)
hhhead literateTRUE 0.22 0.12 −0.26∗∗∗

(0.13) (0.11) (0.06)
hhhead sexfemale 0.22 −0.21 0.11

(0.17) (0.14) (0.06)
dependents −0.62 0.12 −0.17

(0.41) (0.35) (0.11)
genderMale −0.11 0.15

(0.10) (0.09)
age −0.02∗∗∗ 0.02∗∗∗

(0.00) (0.00)
pop −0.00 0.00∗ 0.00

(0.00) (0.00) (0.00)
birth order −0.10∗ 0.05

(0.04) (0.04)
within24 0.10 0.05
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(0.09) (0.07)
spi12 −0.32∗ −0.40∗∗ −0.09

(0.15) (0.13) (0.09)
λ 0.92∗∗∗

(0.05)
R2 0.05 0.05
Adj. R2 0.04 0.04
Num. obs. 1346 1346 2362
RMSE 1.84 1.56
Parameters 18
Log Likelihood -3894.58
AIC (Linear model) 7841.57
AIC (Spatial model) 7825.16
LR test: statistic 18.41
LR test: p-value 0.00

Table A.3: spi12 in Ghana

HAZ WHZ HHS
(Intercept) −0.32 0.48 2.77∗∗∗

(0.93) (0.79) (0.62)
asset index 0.04 −0.02 0.01

(0.04) (0.03) (0.02)
admin1Northern −0.04 −0.28 −0.01

(0.20) (0.17) (0.13)
admin1Upper East 0.39 −1.21∗∗∗ 0.01

(0.33) (0.28) (0.18)
admin1Upper West 0.31 −0.29 −0.35

(0.26) (0.22) (0.23)
hh size 0.07∗ −0.04 0.02∗

(0.03) (0.03) (0.01)
hhhead religionMuslim −0.02 −0.03 −0.05

(0.12) (0.10) (0.06)
hhhead religionNone −0.85∗ 0.31 −0.20

(0.42) (0.36) (0.17)
hhhead religionTraditional 0.12 0.16 0.35∗∗∗

(0.15) (0.13) (0.07)
mean annual precip 0.00 −0.00 −0.00∗

(0.00) (0.00) (0.00)
hhhead age 0.00 0.00 0.00∗∗

(0.01) (0.00) (0.00)
hhhead literateTRUE 0.21 0.11 −0.26∗∗∗

(0.13) (0.11) (0.06)
hhhead sexfemale 0.25 −0.16 0.12
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(0.17) (0.14) (0.06)
dependents −0.69 0.05 −0.16

(0.41) (0.35) (0.11)
genderMale −0.10 0.16

(0.10) (0.09)
age −0.02∗∗∗ 0.02∗∗∗

(0.00) (0.00)
pop −0.00∗ 0.00 0.00

(0.00) (0.00) (0.00)
birth order −0.10∗ 0.04

(0.04) (0.04)
within24 0.10 0.04

(0.09) (0.07)
spi24 −0.26 −0.60∗ −0.30∗

(0.29) (0.24) (0.13)
λ 0.91∗∗∗

(0.05)
R2 0.05 0.05
Adj. R2 0.04 0.04
Num. obs. 1346 1346 2362
RMSE 1.84 1.57
Parameters 18
Log Likelihood -3892.52
AIC (Linear model) 7836.29
AIC (Spatial model) 7821.03
LR test: statistic 17.26
LR test: p-value 0.00

Table A.4: spi24 in Ghana

HAZ WHZ HHS
(Intercept) −1.39 0.64 2.36∗∗∗

(0.97) (0.83) (0.58)
asset index 0.05 −0.02 0.01

(0.04) (0.03) (0.02)
admin1Northern 0.53∗ −0.38 0.09

(0.25) (0.22) (0.13)
admin1Upper East 0.80∗ −1.18∗∗∗ 0.15

(0.35) (0.30) (0.18)
admin1Upper West 0.59∗ −0.32 −0.16

(0.27) (0.23) (0.22)
hh size 0.07∗ −0.04 0.02∗

(0.03) (0.03) (0.01)
hhhead religionMuslim −0.03 −0.02 −0.07
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(0.12) (0.10) (0.06)
hhhead religionNone −0.88∗ 0.34 −0.20

(0.42) (0.36) (0.17)
hhhead religionTraditional 0.16 0.17 0.36∗∗∗

(0.15) (0.13) (0.07)
mean annual precip 0.00 −0.00 −0.00

(0.00) (0.00) (0.00)
hhhead age 0.00 −0.00 0.00∗∗

(0.01) (0.00) (0.00)
hhhead literateTRUE 0.22 0.09 −0.26∗∗∗

(0.12) (0.11) (0.06)
hhhead sexfemale 0.25 −0.17 0.12

(0.17) (0.14) (0.06)
dependents −0.63 0.02 −0.17

(0.41) (0.35) (0.11)
genderMale −0.11 0.16

(0.10) (0.09)
age −0.02∗∗∗ 0.02∗∗∗

(0.00) (0.00)
pop −0.00 0.00∗ 0.00

(0.00) (0.00) (0.00)
birth order −0.11∗ 0.04

(0.04) (0.04)
within24 0.10 0.04

(0.09) (0.07)
spi36 −0.76∗∗∗ −0.08 −0.37∗∗∗

(0.21) (0.18) (0.11)
λ 0.86∗∗∗

(0.07)
R2 0.06 0.05
Adj. R2 0.05 0.03
Num. obs. 1346 1346 2362
RMSE 1.83 1.57
Parameters 18
Log Likelihood -3889.86
AIC (Linear model) 7825.60
AIC (Spatial model) 7815.71
LR test: statistic 11.89
LR test: p-value 0.00

Table A.5: spi36 in Ghana

HAZ WHZ HHS
(Intercept) −0.19 0.77 2.76∗∗∗
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(0.92) (0.79) (0.56)
asset index 0.04 −0.02 0.01

(0.04) (0.03) (0.02)
admin1Northern 0.08 −0.51∗∗ 0.06

(0.21) (0.18) (0.13)
admin1Upper East 0.45 −1.24∗∗∗ 0.15

(0.33) (0.28) (0.17)
admin1Upper West 0.21 −0.33 −0.25

(0.26) (0.22) (0.21)
hh size 0.07∗ −0.04 0.02∗

(0.03) (0.03) (0.01)
hhhead religionMuslim 0.00 −0.03 −0.05

(0.12) (0.10) (0.06)
hhhead religionNone −0.84∗ 0.35 −0.18

(0.42) (0.36) (0.17)
hhhead religionTraditional 0.12 0.17 0.35∗∗∗

(0.15) (0.13) (0.07)
mean annual precip 0.00 −0.00 −0.00∗

(0.00) (0.00) (0.00)
hhhead age 0.00 −0.00 0.00∗∗

(0.01) (0.00) (0.00)
hhhead literateTRUE 0.21 0.09 −0.26∗∗∗

(0.13) (0.11) (0.06)
hhhead sexfemale 0.28 −0.18 0.12

(0.17) (0.14) (0.06)
dependents −0.70 0.01 −0.17

(0.41) (0.35) (0.11)
genderMale −0.11 0.16

(0.10) (0.09)
age −0.02∗∗∗ 0.02∗∗∗

(0.00) (0.00)
pop −0.00∗ 0.00 0.00

(0.00) (0.00) (0.00)
birth order −0.10∗ 0.05

(0.04) (0.04)
within24 0.10 0.04

(0.09) (0.07)
spi48 −0.39∗ 0.15 −0.41∗∗∗

(0.20) (0.17) (0.10)
λ 0.82∗∗∗

(0.09)
R2 0.05 0.05
Adj. R2 0.04 0.03
Num. obs. 1346 1346 2362
RMSE 1.84 1.57
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Parameters 18
Log Likelihood -3887.41
AIC (Linear model) 7816.82
AIC (Spatial model) 7810.81
LR test: statistic 8.01
LR test: p-value 0.00

Table A.6: spi48 in Ghana

HAZ WHZ HHS
(Intercept) −0.09 0.68 2.83∗∗∗

(0.93) (0.79) (0.58)
asset index 0.04 −0.02 0.01

(0.04) (0.03) (0.02)
admin1Northern −0.10 −0.46∗∗ −0.02

(0.19) (0.16) (0.13)
admin1Upper East 0.37 −1.21∗∗∗ 0.08

(0.33) (0.28) (0.18)
admin1Upper West 0.11 −0.20 −0.32

(0.31) (0.26) (0.23)
hh size 0.07∗ −0.04 0.02∗

(0.03) (0.03) (0.01)
hhhead religionMuslim −0.00 −0.03 −0.05

(0.12) (0.10) (0.06)
hhhead religionNone −0.83∗ 0.34 −0.18

(0.42) (0.36) (0.17)
hhhead religionTraditional 0.12 0.18 0.35∗∗∗

(0.15) (0.13) (0.07)
mean annual precip −0.00 −0.00∗ −0.00∗∗

(0.00) (0.00) (0.00)
hhhead age 0.00 −0.00 0.00∗∗

(0.01) (0.00) (0.00)
hhhead literateTRUE 0.21 0.09 −0.26∗∗∗

(0.13) (0.11) (0.06)
hhhead sexfemale 0.27 −0.19 0.12

(0.17) (0.14) (0.07)
dependents −0.71 0.02 −0.17

(0.41) (0.35) (0.11)
genderMale −0.10 0.16

(0.10) (0.09)
age −0.02∗∗∗ 0.02∗∗∗

(0.00) (0.00)
pop −0.00∗ 0.00∗ 0.00

(0.00) (0.00) (0.00)
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birth order −0.10∗ 0.04
(0.04) (0.04)

within24 0.10 0.04
(0.09) (0.07)

spi60 −0.20 0.18 −0.20∗

(0.19) (0.16) (0.09)
λ 0.86∗∗∗

(0.07)
R2 0.05 0.05
Adj. R2 0.04 0.03
Num. obs. 1346 1346 2362
RMSE 1.84 1.57
Parameters 18
Log Likelihood -3893.21
AIC (Linear model) 7828.86
AIC (Spatial model) 7822.42
LR test: statistic 8.44
LR test: p-value 0.00

Table A.7: spi60 in Ghana

HAZ WHZ HHS
(Intercept) −1.41∗∗∗ −0.71∗∗ 0.26∗

(0.31) (0.24) (0.10)
asset index 0.04∗ −0.00 0.00

(0.02) (0.01) (0.00)
admin1Chittagong −0.03 −0.09 −0.07

(0.16) (0.11) (0.05)
admin1Dhaka −0.04 −0.04 −0.12∗∗

(0.15) (0.10) (0.04)
admin1Khulna 0.16 0.10 −0.11∗

(0.18) (0.12) (0.05)
admin1Rajshahi −0.19 −0.03 −0.14∗∗

(0.17) (0.12) (0.06)
admin1Rangpur −0.07 −0.08 0.14∗

(0.16) (0.11) (0.07)
admin1Sylhet −0.01 −0.06 −0.05

(0.20) (0.14) (0.07)
hh size −0.01 −0.01 −0.02∗∗∗

(0.02) (0.01) (0.00)
hhhead age 0.01∗ 0.00 0.00

(0.00) (0.00) (0.00)
interview month2 0.11 −0.16∗ 0.01

(0.08) (0.07) (0.02)
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interview month3 0.27∗∗ −0.27∗∗∗ −0.05
(0.09) (0.08) (0.03)

interview month4 0.32∗∗∗ −0.47∗∗∗ −0.02
(0.09) (0.07) (0.04)

interview month5 0.21∗ −0.48∗∗∗ −0.08
(0.09) (0.08) (0.04)

interview month6 0.34 −0.65∗∗∗ −0.07
(0.18) (0.15) (0.06)

interview month8 0.39 −0.59 −0.41
(0.58) (0.50) (0.31)

interview month9 0.21 −0.21 −0.14
(0.68) (0.59) (0.35)

interview month11 0.19 −0.29 0.07∗

(0.18) (0.15) (0.03)
interview month12 −0.10 −0.21∗∗ 0.03

(0.09) (0.07) (0.02)
hhhead religionHindu −0.01 0.12 −0.01

(0.09) (0.08) (0.02)
hhhead religionChristian 0.32 0.13 −0.28∗

(0.48) (0.41) (0.14)
hhhead literateTRUE 0.11 −0.05 −0.10∗∗∗

(0.07) (0.06) (0.02)
hhhead educationprimary 0.09 0.06 −0.11∗∗∗

(0.06) (0.05) (0.02)
hhhead educationsecondary 0.38∗∗∗ 0.20∗ −0.19∗∗∗

(0.11) (0.10) (0.03)
hhhead educationhigh school 0.73∗∗∗ 0.19 −0.19∗∗∗

(0.16) (0.14) (0.04)
hhhead educationuniversity 1.36∗∗∗ 0.05 −0.21∗∗

(0.33) (0.29) (0.08)
hhhead sexfemale 0.12 0.16∗ 0.13∗∗∗

(0.07) (0.06) (0.02)
dependents −0.19 −0.30 0.17∗∗∗

(0.17) (0.15) (0.03)
genderMale −0.12∗∗ 0.06

(0.05) (0.04)
age −0.01∗∗∗ −0.00∗∗∗

(0.00) (0.00)
pop 0.00 0.00∗∗∗ −0.00

(0.00) (0.00) (0.00)
mean annual precip −0.00 0.00 0.00

(0.00) (0.00) (0.00)
spi12 0.02 0.04 0.01

(0.05) (0.04) (0.02)
irrigation 0.11 0.00 0.01
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(0.10) (0.08) (0.03)
λ 0.25∗∗ −0.07 0.85∗∗∗

(0.08) (0.13) (0.06)
survey year2015 0.10∗∗

(0.03)
interview month7 −0.07

(0.64)
interview month10 0.16∗∗∗

(0.04)
Num. obs. 3271 3271 9342
Parameters 36 36 37
Log Likelihood -5706.41 -5256.83 -8890.70
AIC (Linear model) 11491.77 10584.04 17857.02
AIC (Spatial model) 11484.83 10585.66 17855.40
LR test: statistic 8.94 0.37 3.61
LR test: p-value 0.00 0.54 0.06

Table A.8: spi12 in Bangladesh

HAZ WHZ HHS
(Intercept) −1.47∗∗∗ −0.68∗∗ 0.27∗

(0.33) (0.25) (0.11)
asset index 0.04∗ −0.00 0.00

(0.02) (0.01) (0.00)
admin1Chittagong −0.02 −0.09 −0.07

(0.16) (0.11) (0.05)
admin1Dhaka −0.04 −0.04 −0.12∗∗

(0.15) (0.10) (0.04)
admin1Khulna 0.16 0.09 −0.11∗

(0.17) (0.12) (0.05)
admin1Rajshahi −0.18 −0.02 −0.14∗∗

(0.17) (0.11) (0.06)
admin1Rangpur −0.08 −0.09 0.14∗

(0.16) (0.11) (0.07)
admin1Sylhet −0.00 −0.07 −0.05

(0.20) (0.14) (0.08)
hh size −0.01 −0.01 −0.02∗∗∗

(0.02) (0.01) (0.00)
hhhead age 0.01∗ 0.00 0.00

(0.00) (0.00) (0.00)
interview month2 0.11 −0.17∗ 0.01

(0.08) (0.07) (0.02)
interview month3 0.26∗∗ −0.28∗∗∗ −0.05

(0.09) (0.08) (0.03)
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interview month4 0.31∗∗∗ −0.46∗∗∗ −0.01
(0.09) (0.08) (0.04)

interview month5 0.21∗ −0.44∗∗∗ −0.07
(0.10) (0.08) (0.04)

interview month6 0.32 −0.64∗∗∗ −0.06
(0.18) (0.16) (0.06)

interview month8 0.44 −0.53 −0.38
(0.58) (0.50) (0.31)

interview month9 0.23 −0.21 −0.13
(0.68) (0.59) (0.35)

interview month11 0.21 −0.28 0.08∗

(0.18) (0.15) (0.03)
interview month12 −0.10 −0.21∗∗ 0.03

(0.09) (0.07) (0.02)
hhhead religionHindu −0.01 0.12 −0.01

(0.09) (0.08) (0.02)
hhhead religionChristian 0.32 0.13 −0.28∗

(0.48) (0.41) (0.14)
hhhead literateTRUE 0.11 −0.04 −0.10∗∗∗

(0.07) (0.06) (0.02)
hhhead educationprimary 0.09 0.06 −0.11∗∗∗

(0.06) (0.05) (0.02)
hhhead educationsecondary 0.38∗∗∗ 0.20∗ −0.19∗∗∗

(0.11) (0.10) (0.03)
hhhead educationhigh school 0.73∗∗∗ 0.19 −0.19∗∗∗

(0.16) (0.14) (0.04)
hhhead educationuniversity 1.36∗∗∗ 0.05 −0.21∗∗

(0.33) (0.29) (0.08)
hhhead sexfemale 0.12 0.16∗ 0.13∗∗∗

(0.07) (0.06) (0.02)
dependents −0.19 −0.30∗ 0.17∗∗∗

(0.17) (0.15) (0.03)
genderMale −0.12∗∗ 0.06

(0.05) (0.04)
age −0.01∗∗∗ −0.00∗∗∗

(0.00) (0.00)
pop −0.00 0.00∗∗∗ −0.00

(0.00) (0.00) (0.00)
mean annual precip −0.00 0.00 0.00

(0.00) (0.00) (0.00)
spi24 −0.02 0.04 0.01

(0.05) (0.04) (0.02)
irrigation 0.11 0.00 0.01

(0.10) (0.08) (0.03)
λ 0.24∗∗ −0.09 0.86∗∗∗
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(0.08) (0.13) (0.06)
survey year2015 0.09∗∗

(0.03)
interview month7 −0.05

(0.64)
interview month10 0.17∗∗∗

(0.04)
Num. obs. 3271 3271 9342
Parameters 36 36 37
Log Likelihood -5706.46 -5256.97 -8890.85
AIC (Linear model) 11490.93 10584.50 17857.66
AIC (Spatial model) 11484.91 10585.93 17855.69
LR test: statistic 8.02 0.57 3.97
LR test: p-value 0.00 0.45 0.05

Table A.9: spi24 in Bangladesh

HAZ WHZ HHS
(Intercept) −1.44∗∗∗ −0.61∗ 0.27∗

(0.33) (0.25) (0.11)
asset index 0.04∗ −0.00 0.00

(0.02) (0.01) (0.00)
admin1Chittagong −0.02 −0.09 −0.07

(0.16) (0.11) (0.05)
admin1Dhaka −0.04 −0.03 −0.12∗∗

(0.15) (0.10) (0.04)
admin1Khulna 0.16 0.11 −0.11∗

(0.17) (0.12) (0.05)
admin1Rajshahi −0.18 −0.02 −0.14∗∗

(0.17) (0.11) (0.06)
admin1Rangpur −0.07 −0.08 0.14∗

(0.16) (0.11) (0.07)
admin1Sylhet −0.01 −0.05 −0.05

(0.20) (0.14) (0.08)
hh size −0.01 −0.01 −0.02∗∗∗

(0.02) (0.01) (0.00)
hhhead age 0.01∗ 0.00 0.00

(0.00) (0.00) (0.00)
interview month2 0.11 −0.16∗ 0.01

(0.08) (0.07) (0.02)
interview month3 0.26∗∗ −0.26∗∗∗ −0.05

(0.09) (0.08) (0.03)
interview month4 0.31∗∗∗ −0.44∗∗∗ −0.01

(0.09) (0.08) (0.04)
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interview month5 0.22∗ −0.45∗∗∗ −0.07
(0.09) (0.08) (0.04)

interview month6 0.33 −0.62∗∗∗ −0.06
(0.18) (0.16) (0.06)

interview month8 0.43 −0.51 −0.38
(0.58) (0.50) (0.31)

interview month9 0.22 −0.21 −0.13
(0.68) (0.59) (0.35)

interview month11 0.20 −0.28 0.08∗

(0.18) (0.15) (0.03)
interview month12 −0.10 −0.22∗∗ 0.03

(0.09) (0.07) (0.02)
hhhead religionHindu −0.01 0.11 −0.01

(0.09) (0.08) (0.02)
hhhead religionChristian 0.32 0.13 −0.28∗

(0.48) (0.41) (0.14)
hhhead literateTRUE 0.11 −0.04 −0.10∗∗∗

(0.07) (0.06) (0.02)
hhhead educationprimary 0.09 0.06 −0.11∗∗∗

(0.06) (0.05) (0.02)
hhhead educationsecondary 0.38∗∗∗ 0.20∗ −0.19∗∗∗

(0.11) (0.10) (0.03)
hhhead educationhigh school 0.73∗∗∗ 0.19 −0.19∗∗∗

(0.16) (0.14) (0.04)
hhhead educationuniversity 1.36∗∗∗ 0.05 −0.21∗∗

(0.33) (0.29) (0.08)
hhhead sexfemale 0.12 0.16∗ 0.13∗∗∗

(0.07) (0.06) (0.02)
dependents −0.19 −0.30∗ 0.17∗∗∗

(0.17) (0.15) (0.03)
genderMale −0.12∗∗ 0.05

(0.05) (0.04)
age −0.01∗∗∗ −0.00∗∗∗

(0.00) (0.00)
pop −0.00 0.00∗∗∗ −0.00

(0.00) (0.00) (0.00)
mean annual precip −0.00 0.00 0.00

(0.00) (0.00) (0.00)
spi36 −0.00 0.06

(0.05) (0.04)
irrigation 0.11 −0.01 0.01

(0.10) (0.08) (0.03)
λ 0.24∗∗ −0.11 0.86∗∗∗

(0.08) (0.13) (0.06)
survey year2015 0.09∗∗
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(0.03)
interview month7 −0.05

(0.64)
interview month10 0.17∗∗∗

(0.04)
spi24 0.01

(0.02)
Num. obs. 3271 3271 9342
Parameters 36 36 37
Log Likelihood -5706.50 -5256.26 -8890.85
AIC (Linear model) 11491.34 10583.25 17857.66
AIC (Spatial model) 11485.00 10584.51 17855.69
LR test: statistic 8.33 0.74 3.97
LR test: p-value 0.00 0.39 0.05

Table A.10: spi36 in Bangladesh

HAZ WHZ HHS
(Intercept) −1.47∗∗∗ −0.62∗ 0.39∗∗∗

(0.33) (0.25) (0.08)
asset index 0.04∗ −0.00 0.00

(0.02) (0.01) (0.00)
admin1Chittagong −0.02 −0.08 −0.12∗∗∗

(0.16) (0.11) (0.04)
admin1Dhaka −0.05 −0.01 −0.13∗∗∗

(0.15) (0.10) (0.03)
admin1Khulna 0.16 0.10 −0.05

(0.17) (0.12) (0.03)
admin1Rajshahi −0.18 −0.01 −0.13∗∗∗

(0.17) (0.11) (0.04)
admin1Rangpur −0.08 −0.07 −0.01

(0.16) (0.11) (0.04)
admin1Sylhet −0.02 −0.02 −0.05

(0.20) (0.14) (0.05)
hh size −0.01 −0.01 −0.02∗∗∗

(0.02) (0.01) (0.00)
hhhead age 0.01∗ 0.00 0.00

(0.00) (0.00) (0.00)
interview month2 0.11 −0.16∗ 0.02

(0.08) (0.07) (0.02)
interview month3 0.26∗∗ −0.28∗∗∗ −0.06

(0.09) (0.08) (0.03)
interview month4 0.32∗∗∗ −0.47∗∗∗ −0.03

(0.09) (0.07) (0.04)
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interview month5 0.22∗ −0.46∗∗∗ −0.10∗

(0.09) (0.08) (0.04)
interview month6 0.33 −0.66∗∗∗ −0.07

(0.18) (0.15) (0.06)
interview month8 0.44 −0.52 −0.39

(0.58) (0.50) (0.31)
interview month9 0.23 −0.21 −0.15

(0.68) (0.59) (0.35)
interview month11 0.20 −0.27 0.09∗∗

(0.18) (0.15) (0.03)
interview month12 −0.10 −0.22∗∗ 0.03

(0.09) (0.07) (0.02)
hhhead religionHindu −0.01 0.11 −0.02

(0.09) (0.08) (0.02)
hhhead religionChristian 0.33 0.13 −0.28∗

(0.48) (0.41) (0.14)
hhhead literateTRUE 0.11 −0.04 −0.10∗∗∗

(0.07) (0.06) (0.02)
hhhead educationprimary 0.09 0.06 −0.11∗∗∗

(0.06) (0.05) (0.02)
hhhead educationsecondary 0.38∗∗∗ 0.20∗ −0.19∗∗∗

(0.11) (0.10) (0.03)
hhhead educationhigh school 0.73∗∗∗ 0.19 −0.19∗∗∗

(0.16) (0.14) (0.04)
hhhead educationuniversity 1.36∗∗∗ 0.05 −0.21∗∗

(0.33) (0.29) (0.08)
hhhead sexfemale 0.12 0.17∗∗ 0.13∗∗∗

(0.07) (0.06) (0.02)
dependents −0.19 −0.29 0.17∗∗∗

(0.17) (0.15) (0.03)
genderMale −0.12∗∗ 0.05

(0.05) (0.04)
age −0.01∗∗∗ −0.00∗∗∗

(0.00) (0.00)
pop −0.00 0.00∗∗∗ −0.00

(0.00) (0.00) (0.00)
mean annual precip −0.00 0.00 0.00

(0.00) (0.00) (0.00)
spi48 −0.02 0.06 0.05∗∗

(0.05) (0.04) (0.01)
irrigation 0.11 −0.00 0.02

(0.10) (0.08) (0.03)
λ 0.24∗∗ −0.11 0.15

(0.08) (0.13) (0.21)
survey year2015 0.12∗∗∗
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(0.03)
interview month7 −0.08

(0.64)
interview month10 0.17∗∗∗

(0.04)
Num. obs. 3271 3271 9342
Parameters 36 36 37
Log Likelihood -5706.44 -5256.28 -8888.13
AIC (Linear model) 11491.03 10583.33 17848.36
AIC (Spatial model) 11484.89 10584.55 17850.26
LR test: statistic 8.14 0.78 0.10
LR test: p-value 0.00 0.38 0.75

Table A.11: spi48 in Bangladesh

HAZ WHZ HHS
(Intercept) −1.39∗∗∗ −0.71∗∗ 0.28∗∗

(0.31) (0.24) (0.10)
asset index 0.04∗ −0.00 0.00

(0.02) (0.01) (0.00)
admin1Chittagong −0.03 −0.09 −0.07

(0.16) (0.11) (0.05)
admin1Dhaka −0.03 −0.03 −0.12∗∗

(0.15) (0.10) (0.04)
admin1Khulna 0.16 0.11 −0.10∗

(0.18) (0.12) (0.05)
admin1Rajshahi −0.17 −0.00 −0.14∗

(0.17) (0.11) (0.06)
admin1Rangpur −0.06 −0.08 0.14∗

(0.17) (0.11) (0.07)
admin1Sylhet −0.01 −0.06 −0.05

(0.20) (0.14) (0.07)
hh size −0.01 −0.01 −0.02∗∗∗

(0.02) (0.01) (0.00)
hhhead age 0.01∗ 0.00 0.00

(0.00) (0.00) (0.00)
interview month2 0.12 −0.16∗ 0.02

(0.08) (0.07) (0.02)
interview month3 0.29∗∗ −0.27∗∗ −0.05

(0.10) (0.08) (0.03)
interview month4 0.34∗∗∗ −0.45∗∗∗ −0.03

(0.09) (0.08) (0.04)
interview month5 0.24∗ −0.44∗∗∗ −0.09∗

(0.09) (0.08) (0.04)
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interview month6 0.36∗ −0.64∗∗∗ −0.08
(0.18) (0.15) (0.06)

interview month8 0.44 −0.50 −0.40
(0.58) (0.50) (0.31)

interview month9 0.20 −0.20 −0.16
(0.68) (0.59) (0.35)

interview month11 0.19 −0.27 0.07∗

(0.18) (0.15) (0.03)
interview month12 −0.11 −0.21∗∗ 0.03

(0.09) (0.07) (0.02)
hhhead religionHindu −0.01 0.12 −0.01

(0.09) (0.08) (0.02)
hhhead religionChristian 0.31 0.13 −0.28∗

(0.48) (0.41) (0.14)
hhhead literateTRUE 0.11 −0.05 −0.10∗∗∗

(0.07) (0.06) (0.02)
hhhead educationprimary 0.09 0.06 −0.11∗∗∗

(0.06) (0.05) (0.02)
hhhead educationsecondary 0.38∗∗∗ 0.20∗ −0.19∗∗∗

(0.11) (0.10) (0.03)
hhhead educationhigh school 0.73∗∗∗ 0.19 −0.19∗∗∗

(0.16) (0.14) (0.04)
hhhead educationuniversity 1.36∗∗∗ 0.05 −0.21∗∗

(0.33) (0.29) (0.08)
hhhead sexfemale 0.12 0.17∗∗ 0.13∗∗∗

(0.07) (0.06) (0.02)
dependents −0.19 −0.30 0.17∗∗∗

(0.17) (0.15) (0.03)
genderMale −0.12∗ 0.06

(0.05) (0.04)
age −0.01∗∗∗ −0.00∗∗∗

(0.00) (0.00)
pop 0.00 0.00∗∗∗ −0.00

(0.00) (0.00) (0.00)
mean annual precip −0.00 0.00 0.00

(0.00) (0.00) (0.00)
spi60 0.03 0.03 0.02

(0.04) (0.03) (0.01)
irrigation 0.11 0.00 0.01

(0.10) (0.08) (0.03)
λ 0.26∗∗∗ −0.10 0.84∗∗∗

(0.08) (0.13) (0.06)
survey year2015 0.12∗∗∗

(0.04)
interview month7 −0.08
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(0.64)
interview month10 0.16∗∗∗

(0.04)
Num. obs. 3271 3271 9342
Parameters 36 36 37
Log Likelihood -5706.23 -5256.93 -8890.12
AIC (Linear model) 11491.75 10584.49 17854.39
AIC (Spatial model) 11484.46 10585.85 17854.23
LR test: statistic 9.29 0.64 2.16
LR test: p-value 0.00 0.43 0.14

Table A.12: spi60 in Bangladesh
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Comparison of Regression Results for Aspatial Ordinal Logistic Re-
gression and Ordinary Least-Squares Regression

OLS Logistic
(Intercept) 0.58∗∗∗

(0.06)
asset index 0.01 0.13

(0.01) (0.14)
hh size 0.08∗ 0.80∗

(0.04) (0.35)
mean annual precip −0.53∗∗∗ −4.60∗∗∗

(0.06) (0.58)
hhhead religionMuslim −0.03∗∗∗ −0.30∗∗

(0.01) (0.09)
hhhead religionNone −0.04 −0.35

(0.03) (0.29)
hhhead religionTraditional 0.05∗∗∗ 0.47∗∗∗

(0.01) (0.11)
hhhead age 0.03 0.17

(0.03) (0.24)
hhhead literateTRUE −0.05∗∗∗ −0.40∗∗∗

(0.01) (0.10)
pop 0.07∗∗ 0.64∗∗

(0.02) (0.21)
hhhead sexfemale 0.00 0.04

(0.01) (0.10)
dependents 0.00 0.11

(0.02) (0.18)
spi12 −0.02 −0.19

(0.02) (0.14)
R2 0.11
Adj. R2 0.10
Num. obs. 2362 2362
RMSE 0.20
AIC 6061.85
BIC 6165.66
Log Likelihood -3012.92
Deviance 6025.85

Table A.13: spi12 in Ghana

OLS Logistic
(Intercept) 0.58∗∗∗

(0.05)
asset index 0.02 0.14
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(0.01) (0.14)
hh size 0.08∗ 0.81∗

(0.04) (0.35)
mean annual precip −0.42∗∗∗ −3.68∗∗∗

(0.07) (0.62)
hhhead religionMuslim −0.03∗∗∗ −0.28∗∗

(0.01) (0.09)
hhhead religionNone −0.04 −0.37

(0.03) (0.29)
hhhead religionTraditional 0.05∗∗∗ 0.47∗∗∗

(0.01) (0.11)
hhhead age 0.03 0.18

(0.03) (0.24)
hhhead literateTRUE −0.05∗∗∗ −0.40∗∗∗

(0.01) (0.10)
pop 0.04 0.38

(0.02) (0.22)
hhhead sexfemale 0.00 0.04

(0.01) (0.10)
dependents 0.00 0.12

(0.02) (0.18)
spi24 −0.14∗∗∗ −1.18∗∗∗

(0.03) (0.31)
R2 0.11
Adj. R2 0.11
Num. obs. 2362 2362
RMSE 0.20
AIC 6049.28
BIC 6153.09
Log Likelihood -3006.64
Deviance 6013.28

Table A.14: spi24 in Ghana

OLS Logistic
(Intercept) 0.59∗∗∗

(0.05)
asset index 0.01 0.13

(0.01) (0.14)
hh size 0.09∗ 0.89∗

(0.04) (0.35)
mean annual precip −0.46∗∗∗ −4.01∗∗∗

(0.06) (0.59)
hhhead religionMuslim −0.03∗∗ −0.24∗
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(0.01) (0.09)
hhhead religionNone −0.04 −0.37

(0.03) (0.29)
hhhead religionTraditional 0.06∗∗∗ 0.54∗∗∗

(0.01) (0.11)
hhhead age 0.02 0.12

(0.03) (0.24)
hhhead literateTRUE −0.05∗∗∗ −0.42∗∗∗

(0.01) (0.10)
pop 0.08∗∗ 0.68∗∗

(0.02) (0.21)
hhhead sexfemale −0.00 −0.00

(0.01) (0.10)
dependents 0.00 0.12

(0.02) (0.18)
spi36 −0.13∗∗∗ −1.20∗∗∗

(0.03) (0.27)
R2 0.11
Adj. R2 0.11
Num. obs. 2362 2362
RMSE 0.20
AIC 6044.28
BIC 6148.09
Log Likelihood -3004.14
Deviance 6008.28

Table A.15: spi36 in Ghana

OLS Logistic
(Intercept) 0.60∗∗∗

(0.05)
asset index 0.02 0.16

(0.01) (0.14)
hh size 0.09∗ 0.88∗

(0.04) (0.35)
mean annual precip −0.43∗∗∗ −3.67∗∗∗

(0.06) (0.59)
hhhead religionMuslim −0.02∗ −0.17

(0.01) (0.09)
hhhead religionNone −0.03 −0.33

(0.03) (0.29)
hhhead religionTraditional 0.06∗∗∗ 0.54∗∗∗

(0.01) (0.11)
hhhead age 0.02 0.15
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(0.03) (0.24)
hhhead literateTRUE −0.05∗∗∗ −0.41∗∗∗

(0.01) (0.10)
pop 0.06∗∗ 0.57∗∗

(0.02) (0.21)
hhhead sexfemale 0.00 0.04

(0.01) (0.10)
dependents 0.01 0.12

(0.02) (0.18)
spi48 −0.19∗∗∗ −1.75∗∗∗

(0.03) (0.27)
R2 0.12
Adj. R2 0.12
Num. obs. 2362 2362
RMSE 0.20
AIC 6021.14
BIC 6124.95
Log Likelihood -2992.57
Deviance 5985.14

Table A.16: spi48 in Ghana

OLS Logistic
(Intercept) 0.50∗∗∗

(0.06)
asset index 0.02 0.15

(0.01) (0.14)
hh size 0.09∗ 0.82∗

(0.04) (0.35)
mean annual precip −0.32∗∗∗ −2.65∗∗∗

(0.07) (0.66)
hhhead religionMuslim −0.02∗ −0.19∗

(0.01) (0.09)
hhhead religionNone −0.03 −0.30

(0.03) (0.29)
hhhead religionTraditional 0.05∗∗∗ 0.51∗∗∗

(0.01) (0.11)
hhhead age 0.03 0.17

(0.03) (0.24)
hhhead literateTRUE −0.04∗∗∗ −0.39∗∗∗

(0.01) (0.10)
pop 0.08∗∗ 0.70∗∗∗

(0.02) (0.21)
hhhead sexfemale 0.01 0.10
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(0.01) (0.10)
dependents 0.01 0.13

(0.02) (0.18)
spi60 −0.16∗∗∗ −1.49∗∗∗

(0.03) (0.25)
R2 0.12
Adj. R2 0.12
Num. obs. 2362 2362
RMSE 0.20
AIC 6026.46
BIC 6130.27
Log Likelihood -2995.23
Deviance 5990.46

Table A.17: spi60 in Ghana

OLS Logistic
(Intercept) −4.00∗∗∗

(1.21)
asset index −0.00 −0.08

(0.00) (0.12)
hh size −0.04∗∗∗ −1.14∗∗∗

(0.01) (0.32)
hhhead age 0.00 −0.29

(0.01) (0.27)
survey year 4.07∗∗∗ 208.89∗∗∗

(1.21) (38.19)
interview month 0.01∗∗∗ 0.50∗∗∗

(0.00) (0.12)
hhhead religionHindu 0.00 0.09

(0.00) (0.11)
hhhead religionChristian −0.03 −14.64∗∗∗

(0.02) (0.00)
mean annual precip 0.02 0.42

(0.01) (0.29)
hhhead literateTRUE −0.02∗∗∗ −0.36∗∗∗

(0.00) (0.09)
hhhead educationprimary −0.02∗∗∗ −0.71∗∗∗

(0.00) (0.09)
hhhead educationsecondary −0.03∗∗∗ −2.24∗∗∗

(0.01) (0.34)
hhhead educationhigh school −0.03∗∗∗ −2.36∗∗∗

(0.01) (0.59)
hhhead educationuniversity −0.03∗ −14.51∗∗∗
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(0.01) (0.00)
hhhead sexfemale 0.02∗∗∗ 0.46∗∗∗

(0.00) (0.09)
dependents 0.03∗∗∗ 0.79∗∗∗

(0.01) (0.15)
pop −0.05∗∗∗ −1.65∗∗∗

(0.01) (0.31)
spi12 −0.00 0.01

(0.01) (0.15)
R2 0.04
Adj. R2 0.04
Num. obs. 9342 9342
RMSE 0.10
AIC 8403.10
BIC 8567.37
Log Likelihood -4178.55
Deviance 8357.10

Table A.18: spi12 in Bangladesh

OLS Logistic
(Intercept) −4.96∗∗∗

(1.25)
asset index −0.00 −0.08

(0.00) (0.12)
hh size −0.04∗∗∗ −1.15∗∗∗

(0.01) (0.32)
hhhead age 0.00 −0.29

(0.01) (0.27)
survey year 5.04∗∗∗ 218.37∗∗∗

(1.25) (40.05)
interview month 0.01∗∗∗ 0.50∗∗∗

(0.00) (0.11)
hhhead religionHindu −0.00 0.08

(0.00) (0.11)
hhhead religionChristian −0.03 −14.57∗∗∗

(0.02) (0.00)
mean annual precip −0.00 0.23

(0.01) (0.37)
hhhead literateTRUE −0.02∗∗∗ −0.36∗∗∗

(0.00) (0.09)
hhhead educationprimary −0.02∗∗∗ −0.71∗∗∗

(0.00) (0.09)
hhhead educationsecondary −0.03∗∗∗ −2.24∗∗∗
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(0.01) (0.34)
hhhead educationhigh school −0.03∗∗∗ −2.37∗∗∗

(0.01) (0.59)
hhhead educationuniversity −0.03∗ −14.50∗∗∗

(0.01) (0.00)
hhhead sexfemale 0.02∗∗∗ 0.46∗∗∗

(0.00) (0.09)
dependents 0.03∗∗∗ 0.79∗∗∗

(0.01) (0.15)
pop −0.05∗∗∗ −1.60∗∗∗

(0.01) (0.31)
spi24 0.01∗ 0.11

(0.00) (0.14)
R2 0.04
Adj. R2 0.04
Num. obs. 9342 9342
RMSE 0.10
AIC 8402.54
BIC 8566.82
Log Likelihood -4178.27
Deviance 8356.54

Table A.19: spi24 in Bangladesh

OLS Logistic
(Intercept) −5.05∗∗∗

(1.32)
asset index −0.00 −0.08

(0.00) (0.12)
hh size −0.04∗∗∗ −1.16∗∗∗

(0.01) (0.32)
hhhead age 0.00 −0.29

(0.01) (0.27)
survey year 5.12∗∗∗ 230.64∗∗∗

(1.32) (41.03)
interview month 0.01∗∗∗ 0.48∗∗∗

(0.00) (0.12)
hhhead religionHindu 0.00 0.08

(0.00) (0.11)
hhhead religionChristian −0.03 −14.61∗∗∗

(0.02) (0.00)
mean annual precip −0.00 0.02

(0.01) (0.40)
hhhead literateTRUE −0.02∗∗∗ −0.36∗∗∗
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(0.00) (0.09)
hhhead educationprimary −0.02∗∗∗ −0.71∗∗∗

(0.00) (0.09)
hhhead educationsecondary −0.03∗∗∗ −2.24∗∗∗

(0.01) (0.34)
hhhead educationhigh school −0.03∗∗∗ −2.37∗∗∗

(0.01) (0.59)
hhhead educationuniversity −0.03∗ −14.49∗∗∗

(0.01) (0.00)
hhhead sexfemale 0.02∗∗∗ 0.46∗∗∗

(0.00) (0.09)
dependents 0.03∗∗∗ 0.79∗∗∗

(0.01) (0.15)
pop −0.05∗∗∗ −1.58∗∗∗

(0.01) (0.31)
spi36 0.01 0.21

(0.01) (0.15)
R2 0.04
Adj. R2 0.04
Num. obs. 9342 9342
RMSE 0.10
AIC 8401.20
BIC 8565.47
Log Likelihood -4177.60
Deviance 8355.20

Table A.20: spi36 in Bangladesh

OLS Logistic
(Intercept) −4.65∗∗∗

(1.19)
asset index −0.00 −0.08

(0.00) (0.12)
hh size −0.04∗∗∗ −1.20∗∗∗

(0.01) (0.32)
hhhead age 0.00 −0.29

(0.01) (0.27)
survey year 4.74∗∗∗ 219.34∗∗∗

(1.19) (37.94)
interview month 0.01∗∗ 0.40∗∗∗

(0.00) (0.12)
hhhead religionHindu −0.00 0.04

(0.00) (0.11)
hhhead religionChristian −0.03 −14.65∗∗∗
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(0.02) (0.00)
mean annual precip −0.02 −0.69

(0.01) (0.36)
hhhead literateTRUE −0.02∗∗∗ −0.36∗∗∗

(0.00) (0.09)
hhhead educationprimary −0.02∗∗∗ −0.72∗∗∗

(0.00) (0.09)
hhhead educationsecondary −0.03∗∗∗ −2.25∗∗∗

(0.01) (0.34)
hhhead educationhigh school −0.03∗∗∗ −2.37∗∗∗

(0.01) (0.59)
hhhead educationuniversity −0.03∗ −14.49∗∗∗

(0.01) (0.00)
hhhead sexfemale 0.02∗∗∗ 0.46∗∗∗

(0.00) (0.09)
dependents 0.03∗∗∗ 0.81∗∗∗

(0.01) (0.15)
pop −0.04∗∗∗ −1.28∗∗∗

(0.01) (0.31)
spi48 0.02∗∗∗ 0.65∗∗∗

(0.00) (0.14)
R2 0.05
Adj. R2 0.04
Num. obs. 9342 9342
RMSE 0.10
AIC 8381.40
BIC 8545.67
Log Likelihood -4167.70
Deviance 8335.40

Table A.21: spi48 in Bangladesh

OLS Logistic
(Intercept) −6.75∗∗∗

(1.41)
asset index −0.00 −0.08

(0.00) (0.12)
hh size −0.04∗∗∗ −1.22∗∗∗

(0.01) (0.32)
hhhead age 0.00 −0.30

(0.01) (0.27)
survey year 6.83∗∗∗ 281.70∗∗∗

(1.41) (43.55)
interview month 0.01∗∗ 0.39∗∗∗
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(0.00) (0.12)
hhhead religionHindu −0.00 0.05

(0.00) (0.11)
hhhead religionChristian −0.03 −14.63∗∗∗

(0.02) (0.00)
mean annual precip −0.01 −0.34

(0.01) (0.35)
hhhead literateTRUE −0.02∗∗∗ −0.37∗∗∗

(0.00) (0.09)
hhhead educationprimary −0.02∗∗∗ −0.72∗∗∗

(0.00) (0.09)
hhhead educationsecondary −0.03∗∗∗ −2.25∗∗∗

(0.01) (0.34)
hhhead educationhigh school −0.03∗∗∗ −2.37∗∗∗

(0.01) (0.59)
hhhead educationuniversity −0.03∗ −14.52∗∗∗

(0.01) (0.00)
hhhead sexfemale 0.02∗∗∗ 0.45∗∗∗

(0.00) (0.09)
dependents 0.03∗∗∗ 0.80∗∗∗

(0.01) (0.15)
pop −0.05∗∗∗ −1.46∗∗∗

(0.01) (0.31)
spi60 0.02∗∗∗ 0.54∗∗∗

(0.01) (0.16)
R2 0.04
Adj. R2 0.04
Num. obs. 9342 9342
RMSE 0.10
AIC 8391.34
BIC 8555.61
Log Likelihood -4172.67
Deviance 8345.34

Table A.22: spi60 in Bangladesh
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Appendix B: Appendix B

Comparison of SPEI Calculated at Different Windows Based on the
date of each child nutrition observation, we calculated the SPEI at 12, 24, 36 month
intervals, as well as for the childs age, including 9 months in utero. This reflects the
fact that children’s HAZ scores are an indicator of long-term, chronic undernutrition.
Some researchers have found that child undernutrition is particularly sensitive to
growing season rainfall (Hagos et al., 2014, Shively, 2017), so we also tested the
SPEI across all time intervals for both annual rainfall totals and growing-season
only rainfall.

We assessed the regressions using both the Akaike Information Criterion (AIC)
and Log Likelihood as well as by running Locally Estimated Scatterplot Smoothing
(LOESS) regressions to determine which indices were observed to be related to worse
nutrition outcomes during extremes. For the AIC and Log Likelihood tests, we ran
hierarchical linear models with the child’s HAZ score as the outcome variable, the
precipitation index, the square of the precipitation index, and relevant covariates as
predictors, as well as varying intercepts at the country, interview year, and survey
level. For the LOESS regression models, we first modeled HAZ scores as a function of
the household covariates, again using a hierarchical linear model, and then modeled
the relationship between the residuals from that model and each precipitation index.
After conducting these tests, we found that the 24-month SPEI using annual rainfall
performed best by both the shape of the LOESS curve as well as the AIC and Log
Likelihood in a linear regression.

Table B.1: Modeling Child Nutrition With SPEI Calcu-
lated at Various Timeframes (Part 1)

12-Month 12-Month
Growing
Season

24-Month 24-Month
Growing
Season

(1) (2) (3) (4)

Age −0.015∗∗∗ −0.015∗∗∗ −0.015∗∗∗ −0.015∗∗∗

(0.0001) (0.0001) (0.0001) (0.0001)

Birth Order −0.004∗∗∗ −0.004∗∗∗ −0.004∗∗∗ −0.004∗∗∗

(0.001) (0.001) (0.001) (0.001)

Child is Male −0.105∗∗∗ −0.105∗∗∗ −0.105∗∗∗ −0.105∗∗∗
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(0.004) (0.004) (0.004) (0.004)

Birthmonth - Febru-
ary

0.011 0.011 0.011 0.011

(0.010) (0.010) (0.010) (0.010)

Birthmonth - March 0.034∗∗∗ 0.034∗∗∗ 0.034∗∗∗ 0.034∗∗∗

(0.009) (0.009) (0.009) (0.009)

Birthmonth - April 0.057∗∗∗ 0.057∗∗∗ 0.057∗∗∗ 0.057∗∗∗

(0.010) (0.010) (0.010) (0.010)

Birthmonth - May 0.082∗∗∗ 0.082∗∗∗ 0.082∗∗∗ 0.082∗∗∗

(0.010) (0.010) (0.010) (0.010)

Birthmonth - June 0.100∗∗∗ 0.100∗∗∗ 0.100∗∗∗ 0.100∗∗∗

(0.010) (0.010) (0.010) (0.010)

Birthmonth - July 0.102∗∗∗ 0.102∗∗∗ 0.102∗∗∗ 0.102∗∗∗

(0.010) (0.010) (0.010) (0.010)

Birthmonth - August 0.127∗∗∗ 0.127∗∗∗ 0.127∗∗∗ 0.127∗∗∗

(0.010) (0.010) (0.010) (0.010)

Birthmonth - Septem-
ber

0.144∗∗∗ 0.144∗∗∗ 0.144∗∗∗ 0.144∗∗∗

(0.009) (0.009) (0.009) (0.009)

Birthmonth - October 0.194∗∗∗ 0.195∗∗∗ 0.194∗∗∗ 0.194∗∗∗

(0.010) (0.010) (0.010) (0.010)

Birthmonth - Novem-
ber

0.200∗∗∗ 0.200∗∗∗ 0.200∗∗∗ 0.200∗∗∗

(0.010) (0.010) (0.010) (0.010)

Birthmonth - Decem-
ber

0.236∗∗∗ 0.236∗∗∗ 0.235∗∗∗ 0.236∗∗∗

(0.010) (0.010) (0.010) (0.010)

Mother’s Years of Ed-
ucation

0.032∗∗∗ 0.032∗∗∗ 0.032∗∗∗ 0.032∗∗∗

(0.001) (0.001) (0.001) (0.001)

Toilet - No Facility −0.076∗∗∗ −0.076∗∗∗ −0.077∗∗∗ −0.076∗∗∗

(0.007) (0.007) (0.007) (0.007)
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Toilet - Other 0.019 0.018 0.018 0.019
(0.019) (0.019) (0.019) (0.019)

Toilet - Pit Latrine −0.101∗∗∗ −0.102∗∗∗ −0.101∗∗∗ −0.101∗∗∗

(0.006) (0.006) (0.006) (0.006)

Household Size −0.004∗∗∗ −0.004∗∗∗ −0.004∗∗∗ −0.004∗∗∗

(0.001) (0.001) (0.001) (0.001)

Household Head Age 0.002∗∗∗ 0.002∗∗∗ 0.002∗∗∗ 0.002∗∗∗

(0.0002) (0.0002) (0.0002) (0.0002)

Household Head is
Male

−0.023∗∗∗ −0.023∗∗∗ −0.023∗∗∗ −0.023∗∗∗

(0.006) (0.006) (0.006) (0.006)

Wealth Index - Poorer −0.103∗∗∗ −0.103∗∗∗ −0.102∗∗∗ −0.103∗∗∗

(0.006) (0.006) (0.006) (0.006)

Wealth Index - Poor-
est

−0.206∗∗∗ −0.206∗∗∗ −0.206∗∗∗ −0.206∗∗∗

(0.006) (0.006) (0.006) (0.006)

Wealth Index - Richer 0.131∗∗∗ 0.131∗∗∗ 0.131∗∗∗ 0.131∗∗∗

(0.007) (0.007) (0.007) (0.007)

Wealth Index - Rich-
est

0.400∗∗∗ 0.400∗∗∗ 0.399∗∗∗ 0.400∗∗∗

(0.007) (0.007) (0.007) (0.007)

SPEI 0.010∗∗∗ 0.006∗∗ 0.023∗∗∗ 0.017∗∗∗

(0.003) (0.003) (0.003) (0.003)

SPEI Squared −0.001 −0.001 −0.019∗∗∗ −0.009∗∗∗

(0.002) (0.002) (0.002) (0.002)

Intercept −1.003∗∗∗ −1.003∗∗∗ −0.988∗∗∗ −0.998∗∗∗

(0.055) (0.055) (0.055) (0.055)

Observations 567,065 567,065 567,065 567,065
Log Likelihood −1028015 −1028018 −1027971 −1028003
Akaike Inf. Crit. 2056094 2056101 2056006 2056069
Bayesian Inf. Crit. 2056454 2056461 2056366 2056429
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Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table B.2: Modeling Child Nutrition With SPEI Calcu-
lated at Various Timeframes (Part 2)

36-Month 36-Month
Growing
Season

Child’s
Age

Child’s
Age Grow-
ing Season

(1) (2) (3) (4)

Age −0.015∗∗∗ −0.015∗∗∗ −0.015∗∗∗ −0.015∗∗∗

(0.0001) (0.0001) (0.0001) (0.0001)

Birth Order −0.004∗∗∗ −0.004∗∗∗ −0.004∗∗∗ −0.004∗∗∗

(0.001) (0.001) (0.001) (0.001)

Child is Male −0.105∗∗∗ −0.105∗∗∗ −0.105∗∗∗ −0.105∗∗∗

(0.004) (0.004) (0.004) (0.004)

Birthmonth - Febru-
ary

0.011 0.011 0.011 0.011

(0.010) (0.010) (0.010) (0.010)

Birthmonth - March 0.034∗∗∗ 0.034∗∗∗ 0.034∗∗∗ 0.034∗∗∗

(0.009) (0.009) (0.009) (0.009)

Birthmonth - April 0.057∗∗∗ 0.057∗∗∗ 0.057∗∗∗ 0.057∗∗∗

(0.010) (0.010) (0.010) (0.010)

Birthmonth - May 0.082∗∗∗ 0.082∗∗∗ 0.082∗∗∗ 0.082∗∗∗

(0.010) (0.010) (0.010) (0.010)

Birthmonth - June 0.100∗∗∗ 0.100∗∗∗ 0.100∗∗∗ 0.100∗∗∗

(0.010) (0.010) (0.010) (0.010)

Birthmonth - July 0.102∗∗∗ 0.102∗∗∗ 0.102∗∗∗ 0.102∗∗∗

(0.010) (0.010) (0.010) (0.010)

Birthmonth - August 0.127∗∗∗ 0.127∗∗∗ 0.127∗∗∗ 0.127∗∗∗

(0.010) (0.010) (0.010) (0.010)

Birthmonth - Septem-
ber

0.144∗∗∗ 0.144∗∗∗ 0.144∗∗∗ 0.144∗∗∗

(0.009) (0.009) (0.009) (0.009)
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Birthmonth - October 0.194∗∗∗ 0.195∗∗∗ 0.195∗∗∗ 0.195∗∗∗

(0.010) (0.010) (0.010) (0.010)

Birthmonth - Novem-
ber

0.200∗∗∗ 0.200∗∗∗ 0.201∗∗∗ 0.201∗∗∗

(0.010) (0.010) (0.010) (0.010)

Birthmonth - Decem-
ber

0.235∗∗∗ 0.236∗∗∗ 0.236∗∗∗ 0.236∗∗∗

(0.010) (0.010) (0.010) (0.010)

Mother’s Years of Ed-
ucation

0.032∗∗∗ 0.032∗∗∗ 0.032∗∗∗ 0.032∗∗∗

(0.001) (0.001) (0.001) (0.001)

Toilet - No Facility −0.076∗∗∗ −0.076∗∗∗ −0.076∗∗∗ −0.076∗∗∗

(0.007) (0.007) (0.007) (0.007)

Toilet - Other 0.019 0.018 0.018 0.018
(0.019) (0.019) (0.019) (0.019)

Toilet - Pit Latrine −0.101∗∗∗ −0.102∗∗∗ −0.102∗∗∗ −0.102∗∗∗

(0.006) (0.006) (0.006) (0.006)

Household Size −0.004∗∗∗ −0.004∗∗∗ −0.004∗∗∗ −0.004∗∗∗

(0.001) (0.001) (0.001) (0.001)

Household Head Age 0.002∗∗∗ 0.002∗∗∗ 0.002∗∗∗ 0.002∗∗∗

(0.0002) (0.0002) (0.0002) (0.0002)

Household Head is
Male

−0.023∗∗∗ −0.023∗∗∗ −0.023∗∗∗ −0.023∗∗∗

(0.006) (0.006) (0.006) (0.006)

Wealth Index - Poorer −0.103∗∗∗ −0.103∗∗∗ −0.103∗∗∗ −0.103∗∗∗

(0.006) (0.006) (0.006) (0.006)

Wealth Index - Poor-
est

−0.206∗∗∗ −0.206∗∗∗ −0.206∗∗∗ −0.206∗∗∗

(0.006) (0.006) (0.006) (0.006)

Wealth Index - Richer 0.131∗∗∗ 0.131∗∗∗ 0.131∗∗∗ 0.131∗∗∗

(0.007) (0.007) (0.007) (0.007)
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Wealth Index - Rich-
est

0.400∗∗∗ 0.400∗∗∗ 0.400∗∗∗ 0.400∗∗∗

(0.007) (0.007) (0.007) (0.007)

SPEI 0.010∗∗∗ 0.005∗ −0.007∗∗ −0.007∗∗

(0.003) (0.003) (0.003) (0.003)

SPEI Squared 0.004∗ −0.005∗∗ 0.007∗∗∗ 0.007∗∗∗

(0.002) (0.002) (0.002) (0.002)

Intercept −1.008∗∗∗ −1.000∗∗∗ −1.008∗∗∗ −1.008∗∗∗

(0.055) (0.055) (0.055) (0.055)

Observations 567,065 567,065 567,065 567,065
Log Likelihood −1028012 −1028018 −1028014 −1028014
Akaike Inf. Crit. 2056088 2056099 2056092 2056092
Bayesian Inf. Crit. 2056448 2056459 2056452 2056452

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Variable Coefficient Estimate
Intercept -0.992
Child’s Age (Months) -0.017
Child Birthmonth - February 0.002
Child Birthmonth - March 0.018
Child Birthmonth - April 0.034
Child Birthmonth - May 0.055
Child Birthmonth - June 0.070
Child Birthmonth - July 0.077
Child Birthmonth - August 0.098
Child Birthmonth - September 0.116
Child Birthmonth - October 0.162
Child Birthmonth - November 0.184
Child Birthmonth - December 0.231
Child’s Birth Order -0.006
Child’s Sex - Male -0.104
Mother’s Years of Education 0.030
Household Size -0.001
Household Toilet - No Facility -0.149
Household Toilet - Other -0.138
Household Toilet - Pit Latrine -0.153
Household Head Age (Years) 0.003
Household Head Sex - Male -0.022
Household Wealth - Poorer -0.076
Household Wealth - Poorest -0.154
Household Wealth - Richer 0.115
Household Wealth - Richest 0.374
Child Was Observed During Drought -0.042
NDVI 0.118
Government Effectiveness 0.217
GDP (PPP) Per Capita 0.857
Human Development Index (HDI) -0.067
Mean Annual Precipitation -0.010
Nutritional Diversity of Agriculture -0.860
Population 0.100
Topographic Roughness -0.163
Political Stability and Freedom From Violence -0.271
Percent of Nearby Agriculture Irrigated 0.319
Average Maximum Monthly Temperature 0.483
Official Development Assistance (ODA) Per Capita 0.248
Crop Production Per Capita -0.197
Value of Imports Per Capita 0.353
Percent of Nearby Land Cover Bare 0.132
Rate of Primary School Enrollment -0.139
Drought * Government Effectiveness 0.126
Drought * Mean Annual Precipitation 0.025
Drought * Nutritional Diversity 0.192
Drought * Population -0.347
Drought * Topographic Roughness -0.046
Drought * Stability and Absence of Violence 0.031
Drought * Irrigation 0.037
Drought * Maximum Temperatures -0.190
Drought * ODA Per Capita 0.002
Drought * Crop Production 0.118
Drought * Imports Per Capita 0.116
Drought * Bare Land Cover -0.169
Drought * Rate of Enrollment -0.018

Table B.3: Predicting HAZ Scores, with Geographic Factors Moderating the Effects
of Drought. Note: Model was estimated using the LASSO method, which does not
give SE estimates.
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Model Predictions for 2000 and 1990

−0.30 −0.25 −0.20 −0.15 −0.10 −0.05 0.00

Figure B.1: Expected change in mean child HAZ scores during drought conditions
in the year 2000.

−0.30 −0.25 −0.20 −0.15 −0.10 −0.05 0.00

Figure B.2: Expected change in mean child HAZ scores during drought conditions
in the year 1990.
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Overview of Nutrition Data
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Figure B.3: Locations of all DHS sites used in the study.

Comparison of Household and Individual Variables

We first selected 10 variables that were included across a wide range of DHS
surveys that are commonly included in analyses of child nutrition. To determine
whether we should include more covariates at the expense of excluding all DHS
surveys that did not collect data on these additional covariates, we sub-set the data
to only surveys that included other covariates commonly used in child nutrition
regression models: whether the child was breastfed, had diarrhea in the past two
weeks, or was a twin, as well as household water sources. We found that including
these additional covariates improved the Mean Absolute Error (MAE) from 1.152 to
1.145. This represented a marginal improvement of only 0.007 while necessitating
the omission of hundreds of thousands of observations. Thus, we include only the
original 10 variables available across a broad range of DHS surveys in all our models.

Table B.5: Comparison of Model with 10 vs 14 Covariates

10 Covariates 14 Covariates

(1) (2)

Age −0.017∗∗∗ −0.018∗∗∗

(0.0001) (0.0001)

Birth Order −0.013∗∗∗ −0.009∗∗∗

(0.001) (0.001)

Child is Male −0.098∗∗∗ −0.097∗∗∗

(0.005) (0.005)
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Birthmonth - February 0.004 0.008
(0.012) (0.012)

Birthmonth - March 0.022∗ 0.024∗∗

(0.011) (0.011)

Birthmonth - April 0.048∗∗∗ 0.053∗∗∗

(0.011) (0.011)

Birthmonth - May 0.059∗∗∗ 0.065∗∗∗

(0.011) (0.011)

Birthmonth - June 0.081∗∗∗ 0.086∗∗∗

(0.011) (0.011)

Birthmonth - July 0.099∗∗∗ 0.100∗∗∗

(0.012) (0.011)

Birthmonth - August 0.105∗∗∗ 0.106∗∗∗

(0.011) (0.011)

Birthmonth - September 0.134∗∗∗ 0.135∗∗∗

(0.011) (0.011)

Birthmonth - October 0.176∗∗∗ 0.179∗∗∗

(0.011) (0.011)

Birthmonth - November 0.179∗∗∗ 0.179∗∗∗

(0.012) (0.012)

Birthmonth - December 0.223∗∗∗ 0.223∗∗∗

(0.012) (0.011)

Mother’s Years of Education 0.047∗∗∗ 0.042∗∗∗

(0.001) (0.001)

Toilet - No Facility −0.410∗∗∗ −0.314∗∗∗

(0.007) (0.007)

Toilet - Other −0.334∗∗∗ −0.274∗∗∗

(0.022) (0.022)

Toilet - Pit Latrine −0.371∗∗∗ −0.294∗∗∗

(0.006) (0.006)

187



Household Size 0.005∗∗∗ 0.005∗∗∗

(0.001) (0.001)

Household Head Age 0.003∗∗∗ 0.003∗∗∗

(0.0002) (0.0002)

Household Head is Male −0.029∗∗∗ −0.029∗∗∗

(0.006) (0.006)

Wealth Index - Poorer −0.026∗∗∗ −0.022∗∗∗

(0.007) (0.007)

Wealth Index - Poorest −0.037∗∗∗ −0.031∗∗∗

(0.007) (0.007)

Wealth Index - Richer 0.055∗∗∗ 0.040∗∗∗

(0.008) (0.008)

Wealth Index - Richest 0.220∗∗∗ 0.168∗∗∗

(0.008) (0.009)

Child Was Ever Breastfed −0.167∗∗∗

(0.016)

Child Had Diarrhea in Previous
Two Weeks

−0.219∗∗∗

(0.006)

Child Is Twin −0.471∗∗∗

(0.015)

Other Water Source - Purchased 0.083∗∗∗

(0.013)

Other Water Source - Surface Wa-
ter

−0.227∗∗∗

(0.008)

Other Water Source - Tube Well −0.269∗∗∗

(0.006)

Intercept −0.886∗∗∗ −0.542∗∗∗

(0.015) (0.022)

188



MAE 1.152 1.145
AIC 1490016.4165027 1485392.38717835
Observations 406,955 406,955
R2 0.101 0.111
Adjusted R2 0.101 0.111
Residual Std. Error 1.509 (df = 406929) 1.501 (df = 406923)
F Statistic 1,832.785∗∗∗ (df = 25;

406929)
1,645.358∗∗∗ (df = 31;
406923)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Level Variable
Individual Age
Individual Birth Order
Individual Birth Month
Individual Sex
Household Toilet facilities
Household Household Head Age
Household Household Head Sex
Household Household Size
Household Household Wealth Quintile
Household Mother’s Years of Education

Table B.4: Individual and Household Variables Included in Model.
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Appendix C: Appendix C

Estimate Std. Error z value Pr(<z)
(Intercept) -3.43 1.07 -3.19 0 **

Area Protected -2.22 2.07 -1.07 0.28
Forest Cover 2.29 0.85 2.7 0.01 **

Grassland 0.31 1.32 0.23 0.82
Head Gender 0.58 0.45 1.27 0.2

Age -0.52 0.89 -0.58 0.56
Years of Schooling -1.63 1.14 -1.43 0.15

Literacy 0.15 0.93 0.16 0.88
Household Size -0.09 0.75 -0.12 0.9

Market Distance -1.61 2.42 -0.67 0.51
Population Density -0.22 1.43 -0.15 0.88

12 – month SPI 0.1 0.53 0.19 0.85
Critical Food Shortage -0.03 0.35 -0.08 0.94

HFIAS 0.5 1.39 0.36 0.72
Total Ag Production 0.34 1.78 0.19 0.85
Net Business Income -0.11 1.41 -0.08 0.94

Wage Income -2.83 2.28 -1.24 0.22
Nonfood Spending -0.55 1.87 -0.29 0.77

Food Spending -0.51 0.99 -0.52 0.61
Table C.1: Regression for wild foods with geographic
variables measured at a 2.5km buffer around each house-
hold. A p-value of less than 0.001 is indicated with three
stars (***), a p-value of less than 0.01 is indicated with
two stars (**), a p-value of less than 0.05 is indicated with
one star (*), and a p-value of less than 0.1 is indicated
with a period (.).

Estimate Std. Error z value Pr(¿—z—)
(Intercept) -3.46 1.17 -2.95 0 **

Area Protected -3.57 1.96 -1.82 0.07 .
Forest Cover 2.02 0.93 2.16 0.03 *

Grassland 2.07 1.22 1.7 0.09 .
Head Gender 0.65 0.45 1.43 0.15
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Age -0.55 0.89 -0.62 0.54
Years of Schooling -1.46 1.13 -1.29 0.2

Literacy 0.14 0.93 0.15 0.88
Household Size -0.12 0.75 -0.16 0.88

Market Distance -0.19 2.31 -0.08 0.93
Population Density 0.74 1.33 0.56 0.58

12 – month SPI 0.07 0.5 0.15 0.88
Critical Food Shortage -0.06 0.35 -0.18 0.86

HFIAS 0.56 1.39 0.41 0.68
Total Ag Production 0.22 1.77 0.12 0.9
Net Business Income -0.09 1.4 -0.06 0.95

Wage Income -2.83 2.31 -1.23 0.22
Nonfood Spending -0.57 1.87 -0.3 0.76

Food Spending -0.61 0.99 -0.61 0.54
Table C.2: Regression for wild foods with geographic
variables measured at a 5km buffer around each house-
hold. A p-value of less than 0.001 is indicated with three
stars (***), a p-value of less than 0.01 is indicated with
two stars (**), a p-value of less than 0.05 is indicated with
one star (*), and a p-value of less than 0.1 is indicated
with a period (.).

Estimate Std. Error z value Pr(<z)
(Intercept) -3.36 1.23 -2.74 0.01 **

Area Protected -0.43 1.28 -0.33 0.74
Forest Cover 2.17 1.02 2.13 0.03 *

Grassland 2.47 1.18 2.09 0.04 *
Head Gender 0.56 0.45 1.25 0.21

Age -0.43 0.89 -0.48 0.63
Years of Schooling -1.62 1.13 -1.43 0.15

Literacy 0.08 0.92 0.09 0.93
Household Size -0.07 0.75 -0.09 0.93

Market Distance -0.07 2.45 -0.03 0.98
Population Density 1.05 1.38 0.76 0.45

12 – month SPI 0.11 0.49 0.23 0.82
Critical Food Shortage -0.04 0.35 -0.11 0.91

HFIAS 0.61 1.37 0.45 0.66
Total Ag Production 0.31 1.75 0.18 0.86
Net Business Income -0.02 1.41 -0.02 0.99

Wage Income -2.79 2.26 -1.23 0.22
Nonfood Spending -0.63 1.89 -0.33 0.74

Food Spending -0.47 1 -0.47 0.64
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Table C.3: Regression for wild foods with geographic
variables measured at a 10km buffer around each house-
hold. A p-value of less than 0.001 is indicated with three
stars (***), a p-value of less than 0.01 is indicated with
two stars (**), a p-value of less than 0.05 is indicated with
one star (*), and a p-value of less than 0.1 is indicated
with a period (.).

Estimate Std. Error z value Pr(¿—z—)
(Intercept) -3.38 1.2 -2.82 0 **

Area Protected -0.79 1.22 -0.65 0.52
Forest Cover 2.16 1.11 1.95 0.05 .

Grassland 2.27 1.29 1.76 0.08 .
Head Gender 0.59 0.45 1.31 0.19

Age -0.37 0.89 -0.42 0.68
Years of Schooling -1.63 1.13 -1.44 0.15

Literacy 0.19 0.92 0.21 0.83
Household Size -0.08 0.75 -0.1 0.92

Market Distance -0.16 2.52 -0.06 0.95
Population Density 1.11 1.42 0.79 0.43

12 – month SPI 0.13 0.48 0.28 0.78
Critical Food Shortage -0.01 0.34 -0.04 0.97

HFIAS 0.58 1.37 0.42 0.67
Total Ag Production 0.4 1.74 0.23 0.82
Net Business Income -0.04 1.41 -0.03 0.98

Wage Income -2.82 2.26 -1.24 0.21
Nonfood Spending -0.62 1.87 -0.33 0.74

Food Spending -0.48 0.99 -0.48 0.63
Table C.4: Regression for wild foods with geographic
variables measured at a 15km buffer around each house-
hold. A p-value of less than 0.001 is indicated with three
stars (***), a p-value of less than 0.01 is indicated with
two stars (**), a p-value of less than 0.05 is indicated with
one star (*), and a p-value of less than 0.1 is indicated
with a period (.).

Estimate Std. Error z value Pr(<z)
(Intercept) -2.33 1 -2.33 0.02 *

Area Protected 1.05 0.91 1.15 0.25
Forest Cover 0.41 0.84 0.49 0.63

Grassland 1.03 0.83 1.24 0.21
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Head Gender 0.34 0.29 1.16 0.24
Age -0.36 0.73 -0.5 0.62

Years of Schooling 0.21 0.83 0.25 0.8
Literacy -1.25 0.74 -1.68 0.09 .

Household Size -0.35 0.52 -0.67 0.51
Market Distance -1.06 1.52 -0.7 0.49

Population Density -2.99 1.49 -2 0.05 *
12 – month SPI -0.1 0.45 -0.21 0.83

Critical Food Shortage 0.37 0.25 1.51 0.13
HFIAS 1.91 0.98 1.95 0.05 .

Total Ag Production 2.09 1.47 1.42 0.16
Net Business Income 1.5 1.47 1.02 0.31

Wage Income 2.03 1.71 1.19 0.24
Nonfood Spending 1.01 1.39 0.73 0.46

Food Spending -0.03 0.91 -0.03 0.98
Table C.5: Regression for nonfood NTFP with geo-
graphic variables measured at a 2.5km buffer around each
household. A p-value of less than 0.001 is indicated with
three stars (***), a p-value of less than 0.01 is indicated
with two stars (**), a p-value of less than 0.05 is indi-
cated with one star (*), and a p-value of less than 0.1 is
indicated with a period (.).

Estimate Std. Error z value Pr(<z)
(Intercept) -2.11 1.06 -1.98 0.05 *

Area Protected -0.17 0.98 -0.18 0.86
Forest Cover -0.34 0.96 -0.36 0.72

Grassland 0.72 0.98 0.74 0.46
Head Gender 0.34 0.29 1.17 0.24

Age -0.36 0.72 -0.5 0.62
Years of Schooling 0.16 0.83 0.19 0.85

Literacy -1.23 0.74 -1.66 0.1 .
Household Size -0.34 0.52 -0.65 0.51

Market Distance -1.18 1.48 -0.8 0.43
Population Density -3.07 1.45 -2.12 0.03 *

12 – month SPI -0.07 0.44 -0.16 0.87
Critical Food Shortage 0.37 0.25 1.5 0.13

HFIAS 1.88 0.98 1.91 0.06 .
Total Ag Production 2.09 1.48 1.41 0.16
Net Business Income 1.42 1.46 0.98 0.33

Wage Income 2 1.71 1.17 0.24
Nonfood Spending 0.96 1.38 0.69 0.49

Food Spending -0.04 0.91 -0.04 0.97
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Table C.6: Regression for nonfood NTFP with geo-
graphic variables measured at a 5km buffer around each
household. A p-value of less than 0.001 is indicated with
three stars (***), a p-value of less than 0.01 is indicated
with two stars (**), a p-value of less than 0.05 is indi-
cated with one star (*), and a p-value of less than 0.1 is
indicated with a period (.).

Estimate Std. Error z value Pr(<z)
(Intercept) -1.96 1.11 -1.77 0.08 .

Area Protected -1.78 0.95 -1.87 0.06 .
Forest Cover -0.84 0.97 -0.86 0.39

Grassland 0.5 1.11 0.45 0.65
Head Gender 0.36 0.29 1.24 0.22

Age -0.43 0.72 -0.59 0.55
Years of Schooling 0.17 0.83 0.21 0.83

Literacy -1.24 0.74 -1.68 0.09 .
Household Size -0.36 0.52 -0.7 0.49

Market Distance -1.45 1.37 -1.06 0.29
Population Density -3.12 1.41 -2.22 0.03 *

12 – month SPI -0.11 0.42 -0.26 0.8
Critical Food Shortage 0.37 0.25 1.5 0.13

HFIAS 1.78 0.99 1.79 0.07 .
Total Ag Production 2.09 1.49 1.4 0.16
Net Business Income 1.32 1.44 0.92 0.36

Wage Income 1.91 1.69 1.13 0.26
Nonfood Spending 0.93 1.38 0.67 0.5

Food Spending -0.04 0.9 -0.05 0.96
Table C.7: Regression for nonfood NTFP with geo-
graphic variables measured at a 10km buffer around each
household. A p-value of less than 0.001 is indicated with
three stars (***), a p-value of less than 0.01 is indicated
with two stars (**), a p-value of less than 0.05 is indi-
cated with one star (*), and a p-value of less than 0.1 is
indicated with a period (.).

Estimate Std. Error z value Pr(<z)
(Intercept) -2.32 1.15 -2.02 0.04 *

Area Protected -2.12 0.86 -2.46 0.01 *
Forest Cover -0.95 1.09 -0.87 0.38

Grassland 0.96 1.18 0.81 0.42
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Head Gender 0.37 0.29 1.28 0.2
Age -0.48 0.72 -0.67 0.51

Years of Schooling 0.18 0.82 0.22 0.82
Literacy -1.23 0.74 -1.66 0.1 .

Household Size -0.36 0.52 -0.7 0.49
Market Distance -1.79 1.3 -1.37 0.17

Population Density -3.07 1.36 -2.26 0.02 *
12 – month SPI -0.07 0.4 -0.18 0.86

Critical Food Shortage 0.37 0.25 1.51 0.13
HFIAS 1.82 0.99 1.83 0.07 .

Total Ag Production 2.13 1.49 1.43 0.15
Net Business Income 1.33 1.44 0.92 0.36

Wage Income 1.93 1.71 1.13 0.26
Nonfood Spending 0.89 1.39 0.64 0.52

Food Spending -0.02 0.9 -0.03 0.98
Table C.8: Regression for nonfood NTFP with geo-
graphic variables measured at a 15km buffer around each
household. A p-value of less than 0.001 is indicated with
three stars (***), a p-value of less than 0.01 is indicated
with two stars (**), a p-value of less than 0.05 is indi-
cated with one star (*), and a p-value of less than 0.1 is
indicated with a period (.).
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Appendix D: Appendix D

age −0.02∗∗∗

(0.00)
birth order 0.01∗∗∗

(0.00)
hhsize −0.00

(0.00)
sexFemale −17.07∗∗∗

(1.44)
sexMale −17.19∗∗∗

(1.44)
mother years ed 0.03∗∗∗

(0.00)
toiletNo Facility −0.16∗∗∗

(0.01)
toiletOther −0.14∗∗∗

(0.03)
toiletPit Latrine −0.13∗∗∗

(0.01)
interview year 0.01∗∗∗

(0.00)
as.factor(calc birthmonth)2 −0.02

(0.02)
as.factor(calc birthmonth)3 0.04∗

(0.02)
as.factor(calc birthmonth)4 0.03∗

(0.02)
as.factor(calc birthmonth)5 0.03∗

(0.02)
as.factor(calc birthmonth)6 0.15∗∗∗

(0.02)
as.factor(calc birthmonth)7 0.11∗∗∗

(0.02)
as.factor(calc birthmonth)8 0.18∗∗∗

(0.02)
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as.factor(calc birthmonth)9 0.17∗∗∗

(0.02)
as.factor(calc birthmonth)10 0.23∗∗∗

(0.02)
as.factor(calc birthmonth)11 0.23∗∗∗

(0.02)
as.factor(calc birthmonth)12 0.44∗∗∗

(0.02)
head age 0.00∗∗∗

(0.00)
head sexMale −0.07∗∗∗

(0.01)
wealth norm 0.54∗∗∗

(0.02)
AEZ newafr.forest.4 −0.11∗∗∗

(0.03)
AEZ newafr.high.7 −0.22∗∗∗

(0.03)
AEZ newnafr.sav.5 0.00

(0.02)
AEZ newnafr.subforest.8 0.03

(0.03)
AEZ newsafr.subforest.9 0.06∗

(0.03)
AEZ newseafr.sav.6 −0.17∗∗∗

(0.03)
EDF: s(latitude,longitude) 45.17∗∗∗

(49.00)
EDF: s(natural):afr.arid.123 3.24∗∗∗

(3.74)
EDF: s(natural):afr.forest.4 3.20∗∗

(3.74)
EDF: s(natural):nafr.sav.5 2.73∗∗∗

(3.16)
EDF: s(natural):seafr.sav.6 3.20∗∗∗

(3.75)
EDF: s(natural):afr.high.7 2.76∗∗∗

(3.20)
EDF: s(natural):nafr.subforest.8 2.00∗∗∗

(2.00)
EDF: s(natural):safr.subforest.9 2.97∗∗∗

(3.46)
AIC 890428.85
BIC 891421.48
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Log Likelihood -445118.15
Deviance 16.37
Deviance explained 0.48
Dispersion 0.00
R2 0.11
GCV score 0.00
Num. obs. 221885
Num. smooth terms 8
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table D.1: Statistical models
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