
Latent Semantic Indexing via a Semi-Discrete MatrixDecompositionTamara G. Kolda� and Dianne P. O'LearyyNovember 20, 1996AbstractWith the electronic storage of documents comes the possibility ofbuilding search engines that can automatically choose documents rele-vant to a given set of topics. In information retrieval, we wish to matchqueries with relevant documents. Documents can be represented by theterms that appear within them, but literal matching of terms does notnecessarily retrieve all relevant documents. There are a number of in-formation retrieval systems based on inexact matches. Latent SemanticIndexing represents documents by approximations and tends to clusterdocuments on similar topics even if their term pro�les are somewhat dif-ferent. This approximate representation is usually accomplished using alow-rank singular value decomposition (SVD) approximation. In this pa-per, we use an alternate decomposition, the semi-discrete decomposition(SDD). For equal query times, the SDD does as well as the SVD and usesless than one-tenth the storage for the MEDLINE test set.1 IntroductionWith the electronic storage of documents comes the possibility of building searchengines that can automatically choose documents relevant to a given set oftopics. Information requests, or queries, are formatted according to the rules ofthe particular information retrieval (IR) system. For example, library catalogsare typically searched using a Boolean framework that connects key words usinglogical constructs such as and, or, and not [5]. Somewhat more complicatedtext pattern searches are used in systems such as the grep tool in UNIX [5].Both the Boolean and text pattern search systems are based on exact matches: a�Applied Mathematics Program, University of Maryland, College Park, MD 20742. Thework of this author was supported by the NSA, NPSC, and CCS. (kolda@math.umd.edu)yDepartment of Computer Science and Institute for Advanced Computer Studies, Univer-sity of Maryland, College Park, MD 20742. The work of this author was supported by theNational Science Foundation under Grant CCR-95-03126 (oleary@cs.umd.edu)1



search for \Samuel Clemens" would not retrieve documents that only containedthe pseudonym \Mark Twain".There are a number of information retrieval systems based on inexact matches.These systems use information about the distribution of terms among the storeddocuments. For instance, if many documents about Samuel Clemens also con-tained references to Mark Twain, then a query about \Samuel Clemens" mightwell produce a response including documents that refer to \Mark Twain" with-out mentioning Clemens. An example is the INQUERY system, which ranksdocuments according to the probability that they are relevant, determining theprobability via an inference net [2].The framework we are interested in here is the vector space framework suchas that used in the SMART system [8]. In the vector space framework, in-dexing terms and documents are represented in a matrix { one row per termand one column per document. The (i; j)th entry in the matrix represents theimportance of term i in document j. A query is a column vector with entriesrepresenting the importance of each term, and documents are scored for rele-vance by comparing the query with the corresponding column of the matrix.More details of this approach are given in Section 2.Latent semantic indexing (LSI) is based on the assumption that exact match-ing of the query does not necessarily retrieve the most relevant documents. Inan LSI system, only the most important features of the term-document ma-trix are stored, in hopes of revealing relations among documents while reducingthe storage burden. Ideally, the representations give conceptual links based onthe latent semantic information within the documents. The original approachto building an LSI representation, proposed by Deerwester et al.[3], uses a low-rank approximation derived from the singular value decomposition (SVD) of theterm-document matrix. LSI via the SVD will be discussed further in Section 3.The SVD has many nice theoretical properties, but we develop in this worka discrete decomposition to be used in place of the SVD. Our decomposition isfar more economical in storage but equally useful for information retrieval. Weintroduce this decomposition in Section 4. Computational comparisons with theSVD approach are presented in Section 5.2 Vector Space FrameworkSuppose we have a collection of n documents and m indexing terms. We rep-resent the collection as an m � n term-document matrix A. The entry aijrepresents the importance of term i in document j. This entry could be, forexample, the number of times that the term appears in the document, althoughmany other measures have been proposed in the literature. A query is repre-sented as a vector q where the entry qi represents the importance of term i inthe query. Documents are ranked by computing the inner product scores = qTA2



and documents corresponding to the largest entries in s are deemed most rele-vant.Although the matrix entries can be de�ned in many di�erent ways, in thispaper we use the de�nitionsaij = log(fij + 1)qPmk=1 (log(fkj + 1))2 ;and qi = �(f̂i) � log n�Pnj=1 �(fij)Pnj=1 �(fij) ! ;where fij is the frequency of term i in doc j, f̂i is the frequency of term i inthe query and � is the function that is one if its argument is nonzero and zerootherwise.3 LSI via the SVDIn latent semantic indexing, we represent the document and queries in a compactrepresentation with the hope that documents with similar concepts will appearmore similar. One way to do this is using the singular value decomposition. Wewill briey review the SVD and then explain its use in LSI.The rank-k SVD approximation to a matrix is a sum of k tripletsA � Ak � kXi=1 �iuivTi ;where the singular values, �i, are nonnegative scalars in decreasing order, andthe left and right singular vectors, ui and vi, each form orthonormal sets; thatis, each vector has length one and is orthogonal to all other vectors in the set.In matrix form, this is written asA � Ak � Uk�kVTk :It can be shown that Ak is the best rank-k approximation to A in the Frobeniusnorm and in the Euclidean norm [6].To score documents against queries, we compute the inner product betweenthe pseudo-query and the pseudo-documents where the pseudo-query is givenby ~q = UTk q;and the pseudo-document matrix is given by~A = �kVTkN;3



where N is a diagonal matrix of inverse column norms, i.e., it has the e�ect ofnormalizing the columns of �kVTk .The SVD has been used quite e�ectively for information retrieval, as doc-umented in numerous reports. We recommend the original LSI paper [3], apaper by Dumais reporting the e�ectiveness of the LSI approach on the TREC-3 dataset [4], and a more mathematical paper by Berry, Dumais and O'Brien[1] for further information.4 LSI via a Semi-Discrete DecompositionThe SVD contains a lot of information, probably more than is necessary for thisapplication. To save storage, we propose replacing the SVD by a semi-discretedecomposition.The decomposition we propose is not new. It was introduced by O'Learyand Peleg [7] in 1983 for digital image compression. We will briey describe thedecomposition but refer the reader to [7] for more detailed information. We stillwrite the matrix approximation as a sum of triplets,Ak = kXi=1 dixiyTi ;but this time the m-vector xi and the n-vector yi have entries taken from theset f�1; 0; 1g, while the scalar di can be any positive number. We write this inmatrix form as Ak = XkDkYTk :This decomposition does not reproduce A exactly, even if k = n, but the rank-kapproximation requires only the storage of 2k(n + m) bits plus k scalars andis thus much more economical than the SVD. A greedy algorithm is used toconstruct each triplet, and convergence is monotone.To construct the kth triplet, we do the following: Form the residual matrixA(c) = A � Xk�1Dk�1YTk�1. (Initially, the matrices Xk�1, Dk�1, and YTk�1are null.) We would like to choose d, x and y such that kA(c) � dxyTkF isminimized. We solve this problem inexactly and iteratively. First we choose ann-vector y with all entries in f�1; 0; 1g. Fixing that choice of y, we solveminx2f�1;0;1gmd2< kA(c) � dxyTkF :We can solve this problem exactly for x and d. We then �x x and solveminy2f�1;0;1gnd2< kA(c) � dxyTkF :4



This problem too can be solved exactly for y and d. We repeat this processuntil the change in deviation is below a given threshold. The current values ofx;y and d are added to the current decomposition to form Xk;Dk and Yk.We evaluate queries, in much the same way as we did for the SVD. We have~A = DkYkTN; ~q = XkTq:Here, N normalizes the columns of DkYTk .5 Computational ResultsInformation retrieval systems are compared via an average precision measure.To compute this measure, we assume that we have scored the set of documentswith respect to a given query and that we rank the documents in decreasingorder of score. Let ri denote the number of relevant documents among the topi documents. The precision for the top i documents, pi, is then de�ned aspi = rii ;i.e., the proportion of the top i documents that are relevant.The N -point (interpolated) average precision for a single query is de�ned as1N N�1Xi=0 ~p� iN � 1� :where ~p(x) = maxrirn�x pi:Typically, 11-point interpolated average precision is used. Each of our data setshas multiple queries, so we compare the mean average precision and the medianaverage precision, expressed as percentages. In other papers, average precisiongenerally refers to mean average precision.We did experiments with the MEDLINE data set. Characteristics of the dataset are listed in Table 1. The MEDLINE test set comes with a document �le,a query �le and a relevancy judgment �le. We �rst removed all the stop words(common words such as \the" or \because") from the document and query �lesusing the stop word removal program described in [5]. Any word that appearsin two di�erent documents after stop word removal was used as an indexingterm. Then we determined the entries in A and q as described in Section 4.In Figure 1, we present the results of our tests. The upper right �gurecompares the mean average precision to query time, and the upper left graphcompares the median average precision to query time. The query time is thetotal time required to execute all 30 queries. Observe that the SDD method has5



Number of Documents: 1033Number of (Indexing) Terms: 5526File size: 0.4 MBAvg. No. of Terms/Document: 48Avg. No. of Documents/Term: 9% Nonzero Entries in Matrix: 0.87Number of Queries: 30Avg. No of Terms/Query: 10Avg. No. Relevant/Query: 23Table 1: Characteristics of the MEDLINE Collection
SDD SVDQuery Time (Sec) 2.9 3.1Dimension (k) 120 10Mean Avg Prec 63.2 34.9Median Avg Prec 68.8 32.1Decomp Storage (MB) 0.2 0.5Decomp Time (Sec) 194.2 2.6Rel F-Norm of Resid 0.87 0.94Table 2: Comparison of the SDD and SVD methods on the MEDLINE data atthe query time where the SDD has the highest mean average precision.6



maximal precision at a query time of 3.1 seconds, corresponding to k = 120,a mean average precision of 63.2 and a median average precision of 68.8. TheSVD method reaches its peak at 8.4 seconds, corresponding to k = 110, andmean and median average precisions of 65.5 and 71.7 respectively.A comparison of the two methods on individual queries is given in Figure 2.The dimensions are chosen to be the best values for each method. The perfor-mance of the SDD method is on par with the SVD method except for queries26 and 27. We have no explanation for the SDD behavior on these two queries.In terms of storage, the SDD method is extremely economical. The mid-dle left graph of Figure 1 plots mean average precision vs. decomposition (inmegabytes (MB)) size and the middle right graph plots median average preci-sion vs. the decomposition size. Note that a signi�cant amount of extra storagespace is required in the computation of the SVD; this is not reected in thesenumbers. From these plots, we see that even a rank-30 SVD takes 50% morestorage than a 600-dimensional SDD, and each increment of 10 in rank addsapproximately 0.5 MB of additional storage to the SVD. The SVD requires over1.5 MB before it even begins to come close to what the SDD can do in less than0.2 MB.The lower left graph illustrates the growth in required storage as the di-mension of the decomposition grows. For a rank-600 approximation, the SVDrequires over 30 MB of storage while the SDD requires less than 1 MB.It is interesting to see how good these methods are at approximating thematrix. The lower right graph plots the ratio of the relative Frobenius norm(F-norm) of the residual to the Frobenius norm of A, as a function of storage(logarithmic scale).6 ConclusionsIn these limited experiments, the discrete decomposition was a competitive al-ternative to the SVD for latent semantic indexing and o�ers an improvementover the vector space method. The discrete model uses only a small fraction ofthe storage space.In a future report we will discuss results of more extensive tests and explorethe critical issue of dynamic updating of the document collection.AcknowledgementsWe are grateful to Duncan Buell, John Conroy, Ken Kolda, Steve Kratzer, JoeMcCloskey, and Doug Oard for helpful comments.7



0 10 20
20

40

60

80

Query Time (sec)

M
ea

n 
A

vg
 P

re
c

0 10 20
20

40

60

80

Query Time (sec)

M
ed

ia
n 

A
vg

 P
re

c

0 0.5 1 1.5
20

40

60

80

Decomp Size (MBytes)

M
ea

n 
A

vg
 P

re
c

0 0.5 1 1.5
20

40

60

80

Decomp Size (MBytes)

M
ed

ia
n 

A
vg

 P
re

c

0 200 400 600
0

20

40

k

D
ec

om
p 

S
iz

e 
(M

B
)

10
−2

10
0

10
2

0

0.5

1

Decomp Size (MB)

R
es

id
ua

l R
el

 F
−

N
or

mFigure 1: A comparison of the SVD (*) and SDD (o) on the MEDLINE dataset. We plot 60 data points for each graph corresponding to k = 10; 20; : : :; 600.The dotted lines show the corresponding data for the vector space method.
8



0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

Query

M
ea

n 
A

vg
 P

re
c

Figure 2: A comparison of the SVD (k = 110) and SDD (k = 120) methodson the 30 individual queries from the MEDLINE data set. The asterisks (*)represent the SDD method and the circles (o) represent the SVD method.
9



References[1] Michael W. Berry, Susan T. Dumais, and Gavin W. O'Brien. Using linearalgebra for intelligent information retrieval. SIAM Review, 37:573{595, 1995.[2] James P. Callan, Bruce Croft, and Stephen M. Harding. The INQUERYretrieval system. In Proceedings of the Third International Conference onDatabase and Expert Systems Applications, pages 78{83. Springer-Verlag,1992.[3] Scott Deerwester, Susan T. Dumais, George W. Furnas, Thomas K. Lan-dauer, and Richard Harshman. Indexing by latent semantic analysis. Journalof the Society for Information Science, 41:391{407, 1990.[4] Susan Dumais. Improving the retrieval of infomation from external sources.Behavior Research Methods, Instruments, & Computers, 23:229{236, 1991.[5] William B. Frakes and Ricardo Baeza-Yates. Information Retrieval: DataStructures and Algorithms. Prentice Hall, Englewood Cli�s, New Jersey,1992.[6] Gene H. Golub and Charles F. Van Loan. Matrix Computations. JohnsHopkins Press, 2nd edition, 1989.[7] Dianne P. O'Leary and Shmuel Peleg. Digital image compression by outerproduct expansion. IEEE Transactions on Communications, 31:441{444,1983.[8] Gerald Salton and Michael J. McGill. Introduction to Modern InformationRetrieval. McGraw-Hill, 1983.
10


