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Design researchers have struggled to produce quantitative predictions for exactly why and

when diversity might help or hinder design search efforts. This thesis addresses that problem

by studying one ubiquitously used search strategy—Bayesian Optimization (BO)—on different

ND test problems with modifiable convexity and difficulty. Specifically, we test how providing

diverse versus non-diverse initial samples to BO affects its performance during search and in-

troduce a fast ranked-DPP method for computing diverse sets, which we need to detect sets of

highly diverse or non-diverse initial samples.

We initially found, to our surprise, that diversity did not appear to affect BO, neither help-

ing nor hurting the optimizer’s convergence. However, follow-on experiments illuminated a key

trade-off. Non-diverse initial samples hastened posterior convergence for the underlying model

hyper-parameters—a Model Building advantage. In contrast, diverse initial samples accelerated

exploring the function itself—a Space Exploration advantage. Both advantages help BO, but



in different ways, and the initial sample diversity directly modulates how BO trades those ad-

vantages. Indeed, we show that fixing the BO hyper-parameters removes the Model Building

advantage, causing diverse initial samples to always outperform models trained with non-diverse

samples. These findings shed light on why, at least for BO-type optimizers, the use of diversity

has mixed effects and cautions against the ubiquitous use of space-filling initializations in BO.

To the extent that humans use explore-exploit search strategies similar to BO, our results pro-

vide a testable conjecture for why and when diversity may affect human-subject or design team

experiments.

The thesis is organized as follows: Chapter 2 provides an overview of existing studies that

explore the impact of different initial stimuli. In Chapter 3, we explain the methodology used

in the subsequent experiments. Chapter 4 presents the results of our initial study on the diverse

initialization of BO (Bayesian Optimization) applied to the wildcat wells function. In this chapter

we also investigate the conditions under which less diverse initial examples perform better and

expand on these findings in Chapter 5 by considering additional ND continuous functions. The

final chapter discusses the limitations of our findings and proposes potential areas for future

research.
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Chapter 1: Introduction

Design in engineering is a complex task and often requires some examples or analogies

during the design process. This is in-fact a well studied field within design engineering, DbA

(Design-by-Analogy). Examples/analogies have shown to be helpful to designers during the

ideation process and help them come up with innovative solutions [1, 2]. For example, a team

of engineers wanted to soften the sonic boom effect that high-speed trains face. A solution came

from an analogy in nature: a kingfisher can slice through the air at high speeds to catch its prey.

Engineers used this and constructed the train’s front end to imitate a kingfisher [3].

This work looks at when and how providing diverse versus non-diverse stimuli affects the

solution quality of a design search process. There has been past research, particularly in the

field of design cognition, that has shown how providing diverse examples helps produce better

results [1, 4]. These studies are excellent examples of showing how initial solutions help and

hinder design processes. The current literature contains a wide range of results regarding the

impact of diversity on the outcome of a problem, making it difficult to accurately predict whether

it will be helpful for a new problem or individual. There are several examples that demonstrate

the positive effects of diversity on novelty and the diversity of ideas [5, 6, 7], but substantially

more mixed results on the effects of diversity on solution quality, with some observations of

positive effects [8, 9, 10], some null or contingent effects [6, 11, 12, 13, 14, 15, 16], and even
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some negative effects on solution quality [17, 18].

Diversity is an important consideration in optimization research, and there are various

strategies for incorporating it into search algorithms. Common approaches include initializing

algorithms with different strategies, such as Latin Hypercube Sampling (LHS)[19] and quasi-

random methods[20, 21, 22], which aim to uniformly cover the search space [23]. In addition,

some meta-heuristic optimizers [24] like Particle Swarm Optimization (PSO), Simulated Anneal-

ing (SA), and Genetic Algorithms (GA) incorporate diversity-encouraging loss functions into

their core search algorithms, with NSGA-II [25] being one of the most well-known diversity-

inducing ones. For Bayesian optimization (BO), diversity can be built directly into the acquisi-

tion function used to sample new points from the Gaussian Process posterior [26]. However, the

effect of diversity on optimization performance is often problem-specific and challenging to pre-

dict apriori [24]. While encouraging initial diversity is generally thought to improve convergence

speed and find better global optima, it is important to consider when and why diversity might hurt

rather than help our search for good designs.

In the context of this thesis, quantifying the diversity of a set of samples is a crucial but

challenging task. Common approaches involve using hyper-volume maximizing methods that

can maximize coverage over a fixed amount of points. However, these methods become com-

putationally expensive as they scale combinatorially. To address this challenge, researchers have

used Determinantal Point Processes (DPPs) [27] to enable fast polynomial time approximations

of diverse sets. Among the different types of DPPs, k-DPPs are a popular tool that enables

sampling diverse sets with polynomial complexity [28]. Thus, researchers can sample diverse

sets with relative ease, which is essential for optimization and design engineering applications.

Despite the usefulness of k-DPPs, there are still limitations to consider. For instance, sampling
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percentile sets from the DPP distribution to obtain the top 5%, median, or lowest 5% of diverse

sets can become exceedingly slow when dealing with a large sample pool. Therefore, it is crucial

to develop a new approach to allow us to quantify diversity in optimization and design engineer-

ing.

Building upon this approach, this thesis investigates the effect of diverse initialization on

BO (Bayesian Optimization). We initialize a global optimization routine on a ND continuous

landscape generated using a test function generator that was developed for this study. While

undertaking this study we learned that both less-diverse and diverse samples provide different

advantages to the search process. The less-diverse samples gain an advantage with their ability

to study the local landscape, we call this the ‘Model Building Advantage’, while the diverse

designs experience a ‘Space Exploration’ advantage. In the following sections I will provide a

more detailed overview of the structure of this thesis, highlighting the key contributions of each

chapter:

Summary of Chapter 2: This chapter answers 4 important questions: Why should one model

design search as Bayesian optimization? Why do we need a modular benchmark function gener-

ator for this study? What does it even mean for samples to be diverse? And how does diversity

in initial inputs affect optimizers? It does so by reviewing literature in the respective areas and

identifying the need for the specific contribution.

Summary of Chapter 3: This chapter presents the methodology required to understand the ex-

perimental setup found in the studies in Chapters 4 and 5. The chapter begins with an extensive

background on Bayesian Optimization (BO), followed by a discussion on the specific methodol-
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ogy employed for the utilization of BO in this design study. Next, the details of the wildcat-wells

test function generator are explored, encompassing its design and implementation. Lastly, the

chapter elucidates the approach employed for diverse sampling and also presents how the upper

error bound for the diverse sampling method is constructed.

Summary of Chapter 4: In this chapter, we look at the results from our initial study on the effects

of diversity on the performance of BO for the wildcat wells surface. The chapter provides insights

about our surprising findings that non-diverse examples outperform diverse examples in several

cases. We then try to answer the question of why the low-diversity examples outperform the

diverse examples, given the historical precedent for deferring to space-filling initialization. We

do so by taking on two studies: the first confirms our hypothesized advantage for low-diversity

samples in terms of faster posterior convergence for the BO kernel. We show that this is the

causal effect of the improved performance through an ablation study that fixes the kernel to a

known ground truth, confirming our hypothesis.

Summary of Chapter 5: In this last study, we extend the results from wildcat wells to three other

widely used test functions —namely, the Sphere, Rosenbrock, and Rastrigin functions. We also

test how the effect changes as a function of the problem dimension.

Finally, in Chapter 6, we summarize our findings, discuss the implications of our results,

and suggest areas for future research. Chapter 6 also explores the limitations of this thesis and

how these limitations can be addressed, as well as future research directions for this work. Por-

tions of the work presented in this thesis were also published as an archival paper in [29].

4



Chapter 2: Background and Related Work

Before describing our particular experiment and results, we will first review why BO is a

meaningful and generalizable class of search algorithm to use, as well as past work that has tried

to understand how diversity affects search processes such as optimization.

2.1 Why model design search as Bayesian optimization?

While this thesis addresses only BO, this is an important algorithm in that it plays an out-

sized role within the design research and optimization community. For example, BO underlies

a vast number of industrially-relevant gradient-free surrogate modeling approaches implemented

in major design or analysis packages, where it is referred to under a variety of names, including

Kriging methods or meta-modeling [30, 31]. Its use in applications of computationally expensive

multidisciplinary optimization problems is, while not unilateral [32], quite widespread. Likewise,

researchers studying human designers often use BO as a proxy model [33] to understand human

search, due to the interplay between exploration and exploitation that lies at the heart of most

BO acquisition functions like Expected Improvement. More generally, there is a robust history

of fruitful research in cognitive science modeling human cognition as Bayesian processing [34],

such as concept learning in cognitive development [35], causal learning [36], and analogical

reasoning [37].
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Even though, studies in areas like airfoil and material design optimization have highlighted

the impact of selecting the correct initial designs with BO on reducing run-time for experi-

ments [38, 39], the bulk of BO-related papers focus on new algorithms or acquisition functions,

few papers focus on how BO is initialized, preferring instead the general use of space-filling ini-

tializations that have a long history in the field of Optimal Experiment Design [32]. In contrast,

this thesis shows that in certain situations that faith in space-filling designs might be misplaced,

particularly when the BO kernel hyper-parameters are adjusted or fit during search.

2.2 Why do we need a modular benchmark function generator?

To rigorously test our hypothesis and to generalize the solution it was important to test our

hypothesis against problems of varying complexity and several problems of similar complexity.

However, most benchmark functions are not modular and do not allow for generating surfaces of

varying complexities or similar complexity, limiting their usefulness for algorithm comparison

and analysis. In recent years, there has been a growing interest in developing modular benchmark

functions that can generate surfaces of varying complexities with different seeds in dynamic

optimization problems, as noted in recent surveys [40, 41]. For example, the work by Ali Ahrari et

al. [42] generates benchmark functions by composing a set of fixed functions, there is a parameter

that can be used to control the complexity of the problem, but the generator lacks the ability to

generate functions of similar complexity because the generator is deterministic.

Our proposed function generator, wildcat wells, which we detail in Chapter 3, addresses

all the mentioned concerns by generating test functions using a mixture of simplex noise and

multivariate normal distribution. This provides a flexible way to generate surfaces of varying
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complexities as well as similar complexity. We present the details of the wildcat-wells test func-

tion generator, including its design and implementation in Section 3.1. In addition, we show in

Chapter 5 how our primary results vary as we change the target optimization function.

2.3 What does it even mean for samples to be diverse?

As a practical matter, if we wish to study how diverse samples impact BO, we face a subtle

but surprisingly non-trivial problem: how exactly do you quantify whether one set of samples

is more or less diverse than another? This is a set-based (i.e., combinatorially large) problem

with its own rich history too large to cover extensively here, however our past work on diversity

measurement [43, 44, 45], computation [46], and optimization [47] provides further pointers for

interested readers, and in particular the thesis of Ahmed provides a good starting point for the

broader literature and background in this area [48].

For the purposes of understanding how this thesis relates to existing approaches, it suffices

to know the following regarding common approaches to quantifying diversity: (1) most diversity

measurement approaches focus on some variant of a hyper-volume objective spanned by the set of

selected points; (2) since this measure depends on a set rather than individual points, it becomes

combinatorially expensive, necessitating fast polynomial-time approximation, one common tool

for which is a Determinantal Point Process (DPP) [27]; however, (3) while sampling the most

diverse set via DPPs is easy, sampling percentile sets from the DPP distribution to get the top

5%, median, or lowest 5% of diverse sets becomes exceedingly slow for a large sample pool.

In contrast, for this thesis, we created a faster DPP-type sampling method to extract dif-

ferent percentiles of the distribution without actually needing to observe the entire DPP distri-
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bution and whose sampling error we can bound using concentration inequalities. Section 3.4

provides further mathematical background, including information on DPP hyper-parameters and

how to select them intelligently, and the Supplemental Material provides further algorithmic de-

tails. With an understanding of diversity distribution measures in hand, we can now address

diversity’s specific effects on optimization more generally.

How does diversity in initial inputs affect optimizers? While there are a number of papers that

propose either different initialization strategies or benchmarking of existing strategies for opti-

mization, there is limited prior work addressing the direct effect of initial sample diversity.

For general reviews and benchmarking on how to initialize optimizers and the effects of

different strategies, papers such as [21, 24] compare initialization strategies for particular opti-

mizers and quantify performance differences. An overall observation across these contributions

is the inability of a single initialization method to improve performance across functions of vary-

ing complexity. These studies also do not directly measure or address the role of sample diversity

directly, only noting such behavior as it correlates indirectly with the sampling strategy.

A second body of work tries to customize initialization strategies on a per-problem basis,

often achieving faster convergence on domain-specific problems [20, 23, 49, 50, 51]. While

useful in their designed domain, these studies do not directly address the role of diversity either.

In contrast, this thesis addresses diversity directly using properties of BO that are sufficiently

general to apply across multiple domains and applications.

Lastly, how to initialize optimizers has garnered new interest from the machine learning

community, for example in the initial settings of weights and biases in a Neural Network and

the downstream effects on network performance [52, 53]. There is also general interest in how
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to collect diverse samples during learning, either in an Active Learning [54] or Reinforcement

Learning context [55, 56]; however, those lines of work address only diversity throughout data

collection, rather than the impact of initial samples considered in this thesis.

2.4 What does this thesis contribute beyond past work?

This thesis’s specific contributions are:

1. To compute diversity: we describe a fast DPP-based diversity scoring method for selecting

diverse initial examples with a fixed size k. Any set of size k with these initial examples

can be then used to approximate the percentile of diversity that the set belongs to. This

method requires selecting a hyper-parameter relating to the DPP measure. We describe a

principled method for selecting this parameter in Section 2, and provide numerical evidence

of the improved sampling performance in the Sec. 3.4. Compared to prior work, this makes

percentile sampling of DPP distributions computationally tractable.

2. To study effects on BO: we empirically evaluate how diverse initial samples affect the con-

vergence rate of a Bayesian Optimizers on ND continuous problems. Section 4.2 finds

that low diversity samples provide a Model Building advantage to BO while diverse sam-

ples provide a Space Exploration advantage that helps BO converge faster. Section 4.4

shows that removing the model building advantage makes having diverse initial samples

uniformly better than non-diverse samples.1

The next chapter describes our overall experimental approach and common procedures used
1For grammatical simplicity and narrative flow, we will use the phrase “non-diverse” throughout the thesis to

refer to cases where samples are taken from the 5th percentile of diverse sets—these are technically “low-diversity”
rather than being absolutely “non-diverse” which would occur when all points in the set are identical, but we trust
that readers can keep this minor semantic distinction in mind.
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across all three of our main experiments. This will also introduce our diverse sampling method

as well as wildcat wells function generator.
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Chapter 3: Experiment Methodology

This chapter describes the main methodology and choices behind how we chose to study

the effect of diversity on Bayesian Optimization. This includes (1) our choice of test function

generator, (2) how we set up the Bayesian Optimization (BO), (3) how we determined the ground

truth BO kernel parameters, and (4) how we sampled diverse sets.

3.1 Methodology wildcat wells

Our function generator derives its idea from a static test function used in Mason et al. [57].

To modulate the functions we used four factors, which are described below:

1. The ruggedness amplitude, in the range of [0,1], controls the relative height of noise added

to the search environment, compared to the height of the peaks. Increasing this param-

eter makes the noise being added more influential. Setting this parameter to 1 at a low

smoothness would give the wildcatwells function infinite peaks.

2. The smoothness, in the range of [0,1], controls the degree of local correlation of X in the

grid. Intuitively, if smoothness was high (closer to 1), then the surface would mean that the

points around each other are of relatively the same value. Thus, gradient based optimizer

should benefit directly from increasing this parameter.
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3. The number of peaks controlled the number of objectives in the search environment. Math-

ematically, this parameter controlled the number of layers of multivariate normal with sin-

gle peaks.

4. The distance between peaks, in the range of [0,1], which prevented overlap of peaks when

the function was generated with more than 1 peak.

For our experiments we wanted a single objective function, thus, number of peaks and dis-

tance between peaks are not varied and instead we focus on varying the ruggedness amplitude

and smoothness between [0.2, 0.8] with increments of 0.2 to limit observing functions of vary-

ing complexity. Apart from being able to control the complexity of the generated surface, our

generator can produce multiple random surfaces of similar complexity, each setting of the func-

tion generator can be seeded to observe surfaces of similar complexity. These surfaces that have

the same generator parameters, but only vary in their seed form a family of wildcatwells family.

Using surfaces from the same family provide a useful tool for benchmarking optimization algo-

rithms. A grid showing the variability in ruggedness as the smoothness and ruggedness amplitude

parameters are changed is visualized in Fig. 3.1.

Algorithm 1 Constructing the Wildcat Wells search environment with given ruggedness (noise)
amplitude (Rugamp), smoothness (Smt), number of peaks (N ) and distance between peaks
(Rugfreq).

1: for Rugamp, Smt,N,Rugfreq do

2: Get Xcenters = f(N,Rugfreq)

3: Sample
∑N

i surf ∼ N(Xi)

4: Sample Noise ∼ OpenSimplex(Smt)

5: end for

6: Return surf + noise× g(Rugamp).

Next, we will provide a basic introduction to Bayesian optimization and provide specifics
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Figure 3.1: The grid plot shows how the landscape of wildcat wells changes as smoothness is
varied between [0.2,0.8] in increments of 0.2 across the y-axis and ruggedness amplitude varied
between [0.2,0.8] on the x-axis. So, the bottom-left plot in the grid corresponds to the smoothest
family of wildcatwells functions and the top-right corresponds to the most rugged family.

on how BO is used in our experiments.

3.2 Bayesian Optimization

Bayesian optimization (BO) has emerged as a popular sample-efficient approach for opti-

mization of these expensive black-box (BB) functions. BO models the black-box function using

a surrogate model, typically a Gaussian process (GP) as seen in Eq. 3.1. The next design to eval-

uate is then selected according to an acquisition function. The acquisition function uses the GP
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posterior and makes the next recommendation for function evaluation by balancing between ex-

ploration and exploitation. It allows exploration of regions with high uncertainty in the objective

function, and exploitation of regions where the mean of the objective function is optimum. At

each iteration, the GP gets updated according to the selected sample, and this process continues

iteratively according to the available budget.

f(x) ∼ GP (µ(x), k(x, x′)) , (3.1)

,where µ(.) and k(., .) are the mean function and a real-valued kernel function encoding

the prior belief on the correlation among the samples in the design space. In Gaussian process

regression, the kernel function dictates the structure of the surrogate model we can fit. An im-

portant kernel for Bayesian optimization is the Matérn kernel, which incorporates a smoothness

parameter ν to permit greater flexibility in modeling functions:

kMatern(x, x
′) = σ2

f

21−ν

Γ(ν)

(√
2ν∥x− x′∥

θ

)ν

Kν

(√
2ν∥x− x′∥

θ

)
, (3.2)

where σ2
f is the variance of the function, ν controls the smoothness of the function, θ is the

length-scale parameter, and Kν is the modified Bessel function.

Each data point in the context of Bayesian optimization is extremely expensive; thus, there

is a need for selection of an informative set of initial samples for the optimization process. The

core BO algorithm is relatively straightforward and involves iteratively selecting the next design

to evaluate based on the current GP model. The algorithm for a simple BO model using a GP

with Matern kernel is shown in Algorithm 2.

14



Algorithm 2 Bayesian Optimization with a Matern kernel and Expected Improvement
1: Input: objective function f , initial design set D, acquisition function A, GP model with

Matern kernel
2: Initialize X = D, y = f(X), and m(·) and k(·, ·) for the GP model
3: while not converged do
4: Update GP model parameters θ using marginal likelihood maximization
5: Compute acquisition function A(X, θ, y)
6: Select next design xnext = argmaxx∈X A(x, θ, y)
7: Evaluate objective function ynext = f(xnext)
8: Update X = X ∪ xnext, y = y ∪ ynext, and GP model
9: end while

As seen above in Step 5, one needs to select an acquisition function. The acquisition

function we used in this thesis for BO is the Expected Improvement (EI) function, which balances

the trade-off between exploration and exploitation. The EI function is defined as:

EI(x) =


(ymin − µ(x))Φ(Z) + σ(x)ϕ(Z) σ(x) > 0

0 σ(x) = 0,

(3.3)

where µ(x) and σ(x) are the mean and standard deviation of the GP at point x, ymin is

the minimum observed value so far, and Z = (ymin − µ(x))/σ(x). Φ(·) and ϕ(·) are the stan-

dard normal cumulative distribution function and density function, respectively. The intuition

behind the EI function is to select points with high uncertainty (large σ(x)) and high potential for

improvement (large ymin − µ(x)).

We use the BOtorch [58] library to implement BO with EI acquisition function. BOtorch

is an open-source Python library that provides a simple and modular framework for Bayesian

optimization.

The Model Building advantage that we referred to earlier corresponds to learning these

hyper-parameters of the Matérn kernel, which plays an important role in understanding the key
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results of this thesis. So, let’s take a closer look at these hyperparameters that Bayesian optimizers

learn during the optimization process:

Lengthscale of the Matérn Kernel In Eq. 3.2, where θ is the lengthscale parameter of the kernel.

This parameter controls the ruggedness expected by the Bayesian optimizer in the black box

function being studied. The effects of lengthscale on GP can be seen in Fig. 3.2(b).
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Figure 3.2: Effect of ν and lengthscale on Gaussian Process.

Output scale of Scale Kernel Output scale is used to control how the Matérn kernel is scaled for

each batch. Since our Bayesian optimizer uses a single task GP, we do not use batch optimization.

Thus, this parameter is unique for us and the way it’s implemented using BoTorch can be seen

Equation 3.4.

Kscaled = θscaleKorig (3.4)
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Figure 3.3: Grid plot showing how changing ν affects the relative performance of diverse and
non-diverse initialization on Bayesian optimizers. To understand the plot better quantitatively,
each subplot also has the Net Cumulative Optimality Gap (NCOG) for each value of ν. No
trends are seen when relative performance of the diverse and non-diverse samples.

Noise for likelihood calculations The noise parameter is used to model measurement error or

noise in the data. So, as the Gaussian Process gets more data the noise term decreases. So,

ideally, this term should converge to 0 when the Bayesian optimizer has found an optimal value

since our test functions did not have any added noise.

Constant for Mean Module This constant is used as the mean for the Normal distribution that

forms the prior of the Gaussian Process as shown in Equation 3.1.
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ν of the Matérn Kernel The hyper-parameter (ν) dictates how smooth or differentiable the func-

tion is. Changes in this parameter then influence the expectation of the Gaussian Process in terms

of its acquisition function. A more differentiable function or a higher ν means that the acquisition

function samples assuming a smoother Gaussian Process function. It can be seen in Fig. 3.2(a)

how changes in ν changes the prior of the GP.
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Figure 3.4: Figure depicts the first step in finding optimal hyperparameters for a wildcat wells
function with smoothness 0.6 and ruggedness amplitude 0.4 and seed 88. Each hyperparameter
in the grid plot has subsequent two adjacent plots. The observed hyperparameter values, when
BOTorch is used to maximize the Marginal Log Likelihood, given 1000 to 1200 random points
(left), the kernel density function derived from this data (right).

While ν controls the prior, µ and ‘lengthscale’ control how the data is scaled and thus

indirectly controls the expectations of the GP. The effects of ‘lengthscale’ are similar to that of

the parameter ν. Thus, we can conclude that ‘lengthscale’ can be used to control the expectations

of the GP. Since, ν is not a parameter that is learned during the optimization process it does not

have significant effect on “Model Building advantage”. This can be seen in Fig. 3.3, even as ν

is changed there is no significant change in the performance of the optimizer, and thus we can
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conclude that ν is an insignificant factor in studying “Model Building advantage”.

To provide some empirical evidence to the importance of ‘lengthscale’ as a hyper-parameter

we will look at the performance of all hyper-parameters across diverse and non-diverse samples.

But before we do that we have to understand what optimal hyper-parameter for a family of wildcat

wells function is and how do we find them?

3.3 Finding the optimal BO kernel hyper-parameters for a given objective func-

tion

To compute the ‘optimal hyper-parameter’ we first use a Binary search method to discern

a robust range (of 200 points) over which all families of wildcat wells functions has a noise

parameter value of < 10−5. This essentially means that Bayesian optimizer has found an optimal

set of hyper-parameters for the Gaussian Process that accurately imitates the given black-box

function.

This robust range for all the families of wildcat wells function used in the experiment was

determined as 1000-1200 points.

Once, this range is determined the data is collected over the 200 points by maximiz-

ing the Marginal Log Likelihood for the Single Task GP model using BOTorch’s ‘fit-gpytorch-

model’ [58] method. The resulting data (left side of every subplot) is the hyperparameters that

BoTorch learns using the given data points (1000-1200). The resulting data (learnt hyperpa-

rameters) is then used to build a kernel density function as indicated by the red line-plot (right

side of every subplot) next to the data observed over the 200 points in Fig. 3.4. Then using

‘scipy.signal.find-peaks’ [59], peaks are found in the density function labeled by red dots in
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Figure 3.5: Figure depicting the second step in determining optimal hyperparameters. Each
subplot shows the kernel density function learnt in the previous step. Each peak corresponds
to the a potential optimal hyperparameter. The area under the curve of each peak is used as a
tie-breaker. The shaded points that are used to calculate the area under the corresponding peak.

Fig. 3.5. Sometimes more than one peak is observed this is because there are multiple modes

of hyperparameters that provide a stable solution for the problem. For the purpose of this thesis

we only focus on extracting the most observed mode as our optimal hyperparameter.

To find the most observed mode, we use the width of the peaks in the kernel density func-

tion. The width of the peak is estimated by calculating a numerical gradient on the density

function as seen in Fig. 3.5. The width of the each peak can be seen highlighted/labeled in each

subplot using a different color. The peak with the largest area is selected as the optimal hyper-

parameter for the particular instance of wildcat wells function.

Following this methodology Fig. 3.6 shows how well do the initial samples learn the hy-

perparameters (less-diverse in blue and diverse in orange) vs the ground truth (blue horizontal

lines). To the right of each box-plot in Fig. 3.6 is also 100 kernel density functions that have been

used to estimate the ‘optimal hyper-parameter’ for each instance of that family (smoothness =0.6,
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ruggedness amplitude =0.4) of wildcat wells function.

Now, as it can be seen in Fig. 3.6 the optimal noise hyper-parameter is close to 0 for all the

instances in the family. While in the box-plot, the ones estimated using a sample size (k) of 10

are not. The performance for both diverse and non-diverse is relatively similar for this hyperpa-

rameter. This can be seen as the case for both the ‘Mean function’ (µ) and the ‘Outputscale’ as

well. In contrast, ‘lengthscale’ is the only hyper-parameter that has varying performance across

diverse and non-diverse samples. This is why in the next chapter to study ‘modeling advantage’

we will exclusively use the ‘lengthscale’ hyperaparameter. This same procedure will be used

again to further generalize the result to other function settings in subsequent chapters.
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Figure 3.6: Box plots showing the distribution of different hyper-parameters of the Gaussian
Process as learned by Bayesian optimizer when fitted with just the initial examples as training
data. The shown hyper-parameters are specific to Wildcatwells configuration with smoothness =
0.6 and ruggedness amplitude =0.4. The data is collected over 100 seeds. The horizontal lines
across the boxplot indicate the optimal hyper-parameters learned over 100 different seeds.
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3.4 Diverse Sampling Method

To measure how the diversity of the initial set of points impacts the optimizer, we need

to specify how we are assembling diverse or non-diverse sets. Our approach measures diversity

of a set of examples using Determinantal Point Processes (DPP), which get their name from the

fact that the probability of sampling a set from a DPP distribution is directly correlated to the

determinant of a matrix referred to as an L-ensemble (as seen in Eq. 3.5) that correlates with the

volume spanned by a collection or set of examples (Y ) taken from all possible sets (Y) given a

diversity/similarity (feature) metric.

P (LY ) ∝ det(K(LY )) (3.5)

Here L is the ensemble defined by any positive semi-definite matrix [27], and K is the

kernel matrix. For sampling diverse examples, this positive semi-definite matrix is defined using

similarity measures on pairs of examples. For this thesis, we use a standard and commonly used

similarity measure defined using a Radial Basis Function (RBF) kernel matrix [60]. Specifically,

each entry in LY for two examples with index i and j is:

[LY ]i,j = exp
(
−γ · ||xi − xj||2

)
(3.6)

The hyper-parameter γ in the DPP kernel can be set in the interval (0,∞) and will turn out to be

quite important in how well we can measure diversity. The next section explores this choice in

more depth, but to provide some initial intuition: set γ too high and any selection of examples

looks equally diverse compared to any other set, essentially destroying the discriminative power
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of the DPP, while setting γ too low causes the determinant of L to collapse to zero for any set of

cardinality greater than the feature-length of x.

With L in hand, we can now turn Eq. 3.5 into an equality by using the fact that
∑

Y⊂Y det(LY ) =

det(L+ I) [27], where I is an identity matrix of the same shape as the ensemble matrix L. Then,

using Theorem 2.2 from [27], we can write the P (Y ∈ Y) as follows:

P (Y ) =
det(LY)

det(L+ I)
(3.7)

This is the probability that a given set of examples (Y ) is highly diverse compared to other

possible sets (Y)—that is, the higher P (Y ) the more diverse the set. The popularity of DPP-type

measures is due to their ability to efficiently sample diverse examples of fixed size k. Sampling

a set with k examples from a DPP is done using a conditional DPP called k-DPP [28]. k-DPP

are able to compute marginal and conditional probabilities with polynomial complexity, in turn

allowing sampling from the DPP in polynomial complexity. k-DPPs are also well researched and

there exists several different methods to speed up the sampling process using a k-DPP [61, 62].

Our approach allows sampling in constant complexity however there is a trade-off in com-

plexity in generating the DPP distribution, this can be seen in Fig. 3.8. The complexity for

generating traditional DPP distributions is independent of ‘k’, while our approach has linear de-

pendence on ‘k’. Since, existing k-DPP approaches lack the ability to efficiently sample from

different percentiles of diversity, which our approach permits without any additional cost.

23



Figure 3.7: Correlation matrix showing the relative correlation between two gammas by comparing the way our
DPP approach ranks 10,000 sampled sets of cardinality k=10. The gamma values in both axes here are logarathmic
values with base 10.

3.4.1 Selecting the hyper-parameter for the DPP kernel

As mentioned above, the choice of γ impacts the accuracy of the DPP score, and when we

initially fixed γ to |Yi|
10

, where Yi is the set of data points over which the RBF kernel is calculating

the DPP score as suggested by [63], the DPP seemed to be producing largely random scores. To

select an appropriate γ we designed a kernel-independent diagnostic method for assessing the

DPP kernel with four steps.
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First, we randomly generate M samples of size k sets (think of these as random k-sized

samples from Y). Second, we compute their DPP scores for different possible γ values and

then sort those M sets by that score. Third, we compute the rank correlation among these sets

for different pairs of γ—intuitively, if the rank correlation is high (toward 1) then either choice

of γ would produce the same rank orders of which points were considered diverse, meaning

the (relative) DPP scores are insensitive to γ. In contrast, if the rank correlation is 0, then the

two γ values produce essentially random orderings. This rank correlation between two different

γ settings is the color/value shown in each cell of the matrix in Fig. 3.7. Large ranges of γ

with high-rank correlation mean that the rankings of DPP scores are stable or robust to small

perturbations in γ. Lastly, we use this “robust γ” region by choosing the largest range of γ values

that have a relative correlation index of 0.95 or higher. We compute the mean of this range and

use that as our selected γ in our later experiments. We should note that the functional range of

γ is dependent on sample size (k), and so this “robust γ” needs to be recomputed for different

initialization sizes.

The detailed settings for the results as seen in Figure 3.7 are as follows: the M = 10000;

k = 10; γ ∈ [e − 7, e − 2]. The correlation matrix shows a range of γ with strongly correlating

relative ordering of the test sets. All γ within this range provide a consistent ranking.

3.4.2 Our Sampling Approach

Our approach is designed to sample efficiently from different percentiles, this is made pos-

sible by creating an absolute diversity score. This score is generated by taking a logdeterminant

of the kernel matrix defined over the set Y . Randomly sampling the k-DPP space allows us to
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bound errors in generating this absolute score through the use of concentration inequalities.

Our idea seeks to reduce the complexity of the sampling method and the construction time

for DPP as well as investigate a Diverse sampling method that can generate both low-diversity

and high-diversity examples. To do this we build on the work from [47] to rank and compare the

diversity of the two sets. To define our diversity measure, let’s assume X ⊂ RF , where |F| is the

number of features of X. Then we can define a set of examples as Sk
Y ⊂ X of size k. This means

Sk
Yi

∈ RF × Rk, then using a similarity measure (RBF kernel) W on this set, we can define the

DPP score for a set Sk
Yi

as follows:

f(WYi
) =

log(det(K(WYi
)))−

(∑∥Sk∥
i log(det(K(WYi

)))
)

√∑∥Sk∥
i (log(det(K(WYi

)))−
(∑∥Sk∥

i log(det(K(WYi
)))
)
)

2 (3.8)

As we can see in Eq. 3.8, where ∥Sk∥ =
((∏dim(X)

i dim(Fi)
)

k

)
the number of sets or cardinality

of the distribution ∥Sk∥ needed to be sampled grows combinatorially with the changes in the size

of the example space for Xs, and the size of the set k. For example, for a X ∈ Z2 where each

feature Zi ∈ [0, 100] the number of possible sets of size k is given by
(
100×100

k

)
, thus normalizing

the distribution using a mean and standard distribution is an expensive task. We can re-write

Eq. 3.8 in words as follows:

DPP Score(Sk
Yi
) =

DPPScore(K(WYi
)− mean score

s.d. of DPP scores for the k-HDPP

Given the above, the sampling method for our DPP approach is straightforward. Based

on the constructed sampling distribution, our approach samples randomly from either above a
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Figure 3.8: Compares the relative performance/speed-up of our method over the traditional k-dpp
methods. The figure contains two plots showing the tradeoff between the two methods. In the
traditional method constructing the DPP distribution is costly but generating a distribution is only
dependent on the number of points in X , and independent of training size (k). While, sampling
from a k-DPP has a polynomial complexity on the training size (k), while both these facts are
inverted for our approach.

certain percentile or below a certain percentile. As shown in Fig. 3.8(b), our approach’s sampling

time is faster than that of a regular k-DPP, where the cost of sampling increases as a function

of training size (k). Conversely, generating the distribution for our approach is dependent on ‘k’

this is because we are sampling same number of sets but it has now more elements, while the

for k-DPP(s) the distribution generated is over the whole data and computes correlations in all

data, thus sampling the k most diverse points doesn’t require re-generating the distribution. Our

approach’s biggest benefit is the ability to draw examples of different levels of diversity. Using

our approach this is as simple as sampling from different percentiles of the distribution.

A clear shortcoming of this approach is the need to generate the distribution whenever the

k is changed. But, because of the faster construction speed for our approach, this cost outweighs

using a k-DPP. Another, shortcoming our approach faces is the limited number of examples that
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Algorithm 3 Generating a ranked distribution of example sets with Determinantal Point Process
(DPP) approach [27], M is batch size (10000). Sk is a combinatorial set defined on a finite set
X ∈ R2, where each element Sk

Yi
∈ Sk is k elements long.

1: for i ∈ range(M) do

2: Sample Sk
Yi
∼ IID(Sk) [identically sampling unordered sets without replacement]

3: Calculate g(Sk
Yi
) = gyi and append this to ScoresSk

4: end for

5: Return DPP Score of sets of examples = Score
Sk−mean(Score

Sk )

s.d.(score
Sk )

.

can be drawn from the distribution, which requires us to construct a new distribution if more than

M examples need to be drawn.

The uniqueness of our approach lies in our ability to upper bound the error on the generated

DPP scores, and thus our approach can provide certain guarantees on whether the sampled Sk
Y is

in fact from the percentile that the method claims it is from.

3.4.3 Upper bounding DPP sampling errors

The guarantee is based on method’s independence of choosing the SK
Y from a combinato-

rially large set. For IID sampling each set, SK
Yi

, needs to be sampled independent of the other

and the sampling should be done with replacement. But since the distribution of Sk needs to

mirror that of a k-DPP, all the sets in the space are sampled over X without replacement and are

unordered because DPP scores for two Sk with the same points (Y ) will always correspond to the

same score. Thus, sampling IID on Sk means identically sampling unordered sets of X without

replacement.

If we sample the sets Sk
Yi

such that they are Independent Identical Distributed (I.I.D.) sets,

then we can upper bound the Expected Value of population mean through the use of Hoeffding’s
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inequality: Eq. 3.9 as discussed in [64]. The inequality states that if a distribution is sampled

using i.i.d random variables, we can then put a bound on the Error for estimating Expected Values

of the population mean (|Mn = 1
n

∑n
i [Mi]|), where Mn is the mean of the distribution of all sets

in Sk of size n.

P{∥Mn − E(Sk)∥ ≤ ϵ} ≥ 1− 2 · exp
{

−2 · n2ϵ2∑n
i=1(bi − ai)2

}
(3.9)

Using Eq. 3.9 we can guarantee the probability of this error to be some 1− δ, where the δ

term is given by the exponential. This allows us to limit the cardinality of the |Sk| to M given

we choose an ϵ. Based on this guarantee a schematic explanation for the construction of our

sub-distribution using the approach detailed till now is then documented well in Algorithm 3.

With these tools in hand, the next chapter can now move to the core experiments that

measure the effect of diverse initializations on BO performance.
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Chapter 4: Does Diversity Affect Optimization Convergence?

To test the effects of diversity of initial samples on optimizer convergence, we first gener-

ated a set of initial training samples of size (k) 10 either from low (5th percentile of diversity) or

high diversity (95th percentile of diversity) using our procedure in Sec. 2. Next, we created 100

different instances of the wildcat wells function with different randomly generated seeds for each

cell in a 4x4 factor grid of 4 values each of the smoothness and ruggedness amplitude parame-

ters of the wildcat wells function (ranging from 0.2 to 0.8, in steps of 0.2). For simplicity here,

we refer to these combinations as families of the wildcat wells function. This resulted in 1600

function instances.

4.1 When Bayesian Optimization is allowed to fit its kernel hyperparameters

Our first experiment consisted of 200 runs of the Bayesian Optimizer within each of the

smoothness-ruggedness function families, where each run consisted of 100 iterations, and half

of the runs were initialized with a low-diversity training sample, and half were initialized with a

high-diversity training sample. Importantly, as we will see, by default our BO library (BoTorch)

automatically optimizes the kernels hyper-parameters, as we described in the last chapter.

We then compared the cumulative optimality gap across the iterations for the runs with low-

diverse initializations and high-diverse initalizations within each smoothness-ruggedness combi-
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nation family. We did this by computing bootstrapped mean and confidence intervals within each

low-diverse and high-diverse sets of runs within each family. Given the full convergence data, we

compute a Cumulative Optimality Gap (COG) which is just the area under the Optimality Gap

curve for both the 5th and 95th diversity curves. Intuitively, a larger COG corresponds to a worse

overall performance by the optimizer. Using these COG values we can numerically calculate the

improvement of the optimizer in the 95th percentile. The net improvement of COG value while

comparing the 5th and 95th percentile is also presented as text in each subplot in Figure 4.1.

To confirm what we observed was not limited to 2 dimensions we decided to run our current

study with wildcatwells in 3 dimensions. To make the results comparable in a single figure for

both 2D and 3D case it was necessary to limit the variability of ruggedness from a 4x4 grid to

3 levels of ‘ruggedness’. These ‘levels of ruggedness’ are ‘low’, ‘medium’ and ‘high’, which

correspond to (smoothness : 0.8, ruggedness amplitude : 0.2), (smoothness : 0.4, ruggedness

amplitude : 0.4) and (smoothness : 0.2, ruggedness amplitude : 0.8) respectively.

4.1.1 Results

As Figs. 4.1,4.2 show, the Cumulative Optimality Gap does not seem to have a consistent

effect across the grid. Diversity produces a positive convergence effect for some cells, but is neg-

ative in others. Moreover, there are wide empirical confidence bounds on the mean effect overall,

indicating that should an effect exist at all, it likely does not have a large effect size. Changing the

function ruggedness or smoothness did not significantly modulate the overall effect. As expected,

given sufficient samples (far right on the x-axis) both diverse and non-diverse initializations have

the same optimality gap, since at that point the initial samples have been crowded out by the new
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Figure 4.1: Experiment 1: Optimality gap grid plot showing the difference in current Optimality Gap between
optimizers initialized with 5th vs 95th percentile diverse sample (y-axis) as a function of optimization iteration (x-
axis). The different factors in the factor grid plot the effects of diversity as the noise amplitude and smoothness
are varied in the range [0.2,0.8]. Each plot also has text indicating the Net Cumulative Optimality Gap (NCOG), a
positive value corresponds to a better performance by high diversity samples compared to the low diversity samples.
The plot shows that BO benefits from diversity in some cases but not others. There is no obvious trends in how the
NCOG values change in the grid. The results are further discussed in §4

samples gathered by BO during its search.

4.1.2 Discussion

Overall, the results from Figs. 4.1,4.2 seem to indicate that diversity helps in some cases

and hurts in others, and regardless has a limited impact one way or the other. This seems counter

to the widespread practice of diversely sampling the initial input space using techniques like LHS.

Figure 4.1 shows that it has little effect.

Why would this be? Given decades of research into initialization schemes for BO and
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Figure 4.2: Optimality gap grid plot showing the difference in current Optimality Gap between
optimizers initialized with 5th vs 95th percentile diverse sample (y-axis) as a function of opti-
mization iteration (x-axis). The different factors in the factor grid plot are the dimensions across
the rows and the ruggedness level across the columns. Each plot also has text indicating the Net
Cumulative Optimality Gap (NCOG), a positive value corresponds to a better performance by
high diversity samples compared to the low diversity samples. The plot shows that BO benefits
from diversity in some cases but not others. There is no obvious trends in how the NCOG values
change in the grid. The results are further discussed in Sec. 4

Optimal Experiment Design, we expected diversity to have at least some (perhaps small but

at least consistent) positive effect on convergence rates, and not the mixed bag that we see in

Figs. 4.1,4.2. How were the non-diverse samples gaining such an upper hand when the diverse

samples had a head start on exploring the space—what we call a Space Exploration advantage?
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Figure 4.3: Experiment 2: Box plot showing the distribution of ‘Lengthscale’ hyper-parameter learned by BO
when initiated with diverse (orange) and non-diverse samples (blue) for 16 different families of wildcat wells func-
tions of the same parameters but 100 different seeds. The optimal hyper-parameter for each of the 100 wildcat wells
instances from each family is also plotted as horizontal (blue) lines—in many but not all cases these overlap. Each
cell in the plot also has the 95th percentile confidence bound on Mean Absolute Error (MAE) for both diverse and
non-diverse samples. The results show that MAE confidence bounds for non-diverse samples are smaller compared
to diverse samples for all the families of wildcat wells function. Thus, indicating a presence of Model Building
advantage for non-diverse initial samples. The results of this figure are further discussed in §4.2

4.2 Do Lower Diversity Samples Improve Hyper-parameter Posterior Conver-

gence?

After reviewing the results from Fig. 4.1, we tried to determine why the Space Exploration

advantage of diversity was not helping BO as we thought it should. We considered as a thought

experiment the one instance where a poorly initialized BO model with the same acquisition func-

tion might outperform another: if one model’s kernel hyper-parameter settings were so grossly
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incorrect that the model would waste many samples exploring areas that it did not need to if it

had the correct hyper-parameters.

Could this misstep be happening in the diversely sampled BO but not in the non-diverse

case? If so, this might explain how non-diverse BO was able to keep pace: while diverse samples

might give BO a head start, it might be unintentionally blindfolding BO to the true function

posteriors, making it run ragged in proverbial directions that it need not. If this hypothesis was

true, then we would see this reflected in the comparative accuracy of the kernel hyper-parameters

learned by the diverse versus non-diverse BO samples. Our next experiment set out to test that

hypothesis.

4.2.1 Methods

The key difference from our study above is that, rather than comparing the overall opti-

mization convergence, we instead focus on how the initial samples’ diversity affects BO’s hyper-

parameter posterior convergence, and compare how far each is from the “ground truth” optimal

hyperparameters.

As with the above, we used the same smoothness and ruggedness amplitude families of

the wildcat wells function. To then generate the data for each instance in one of these families,

we sampled 20 sets of initial samples. Half of the sampled 20 sets were low (5th percentile of

diversity) and the other half from high diversity (95th percentile of diversity) percentiles.

For each initial sample, we then maximized the GP’s kernel Marginal Log Likelihood (via

BOTorch’s GP fit method). We then recorded the hyper-parameters obtained for all 20 initial

samples. The mean of the 10 samples from low diversity was then used as one point in the
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box plot’s low diversity distribution as seen in Fig. 4.3. We then repeated this process for the

high-diversity initial samples. Each point in the box plot can be then understood as the mean

hyper-parameter learned by BOTorch given just the initial sample of size (k) 10 points. To get

the full box plot distribution for each family the above process is repeated over 100 seeds and

Fig. 4.3 provides the resulting box plot for both diverse and non-diverse initial samples for all the

16 families of wildcat wells function as described in Experiment 1 1.

To provide a ground truth for the true hyper-parameter settings, we ran a Binary search to

find the size of the sample (koptimal) for which BO’s kernel hyper-parameters converged for all

families. The hyper-parameter found by providing koptimal amount of points for each instance in

the family was then plotted as a horizontal line in each box plot. An interesting observation is that

some families have non-overlapping horizontal lines. This is because for some families there are

more than one modes of ‘optimal hyper-parameters’. The mode chosen as the ‘optimal hyper-

parameter’ is the more observed mode. The process for finding the ‘optimal hyper-parameter’

and which mode is chosen as the optimal hyper-parameter has been described later.

If an initial sample provides a good initial estimate of the kernel hyper-parameter posterior,

then the box plot should align well or close to the horizontal lines of the true posterior. Figure 4.3

only shows the results for the Matérn Kernel’s Lengthscale parameter, given its out-sized im-

portance in controlling the GP function posteriors compared to the other hyper-parameters (e.g.,

output scale, noise, etc.), which we do not plot here for space reasons. We provide further details

and plots for all hyper-parameters in the Appendix.

To quantify the average distance between the learned and true hyper-parameters, we also

1At several places throughout this thesis, experiment and the word study has been used interchangeably. Experi-
ment 1 refers to our study in Sec. 4, Experiment 2 refers to our study in Sec. 4.2 and Experiment 3 refers to the study
in Sec. 4.4
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plot on Fig. 4.3 the Mean Absolute Error (MAE) for both highly diverse (95th) and less diverse

(5th) points. The MAE is the sum of the absolute distance of each predicted hyper-parameter

from the optimal hyper-parameter for the particular surface of each wildcat wells function. The

range as seen in each cell in Figure 4.3 corresponds to a 95th percentile confidence bound on the

Mean absolute error across all the 100 runs.
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further discussed in Sec. 4.3
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4.2.2 Results and Discussion

The results in Figure 4.3 show that the MAE values for low diversity samples are always

lower compared to the MAE for high diversity samples. This general behavior is also quali-

tatively visible in the box plot. This means that after only the initial samples, the non-diverse

samples provided much more accurate estimates of the kernel hyper-parameters compared to

diverse samples. Moreover, BO systematically underestimates the correct lengthscale with di-

verse samples—this corresponds to the diverse BO modeling function posteriors that have higher

frequency components than the true function actually does.

This provides evidence for the Model Building advantage of non-diverse samples that we

defined in Sec. 3.2. It also confirms our previous conjecture from the thought experiment that

diverse samples might be impacting BO by causing slower or less accurate convergence to the

right BO hyper-parameters. The Space Exploration advantage of the diverse samples helps it

compensate somewhat for its poor hyper-parameters, but BO trained with non-diverse samples

can leverage the better hyper-parameters to make more judicious choices about what points to

select next.

We did not see major differences in the other three kernel hyper-parameters such as Output

Scale, Noise, or the Mean Function; however, this is not surprising, since BO is not highly

sensitive to any of these parameters and the lengthscale parameter dominates large changes in

BO behavior.

Comparing the different smoothness and ruggedness settings, when the function is more

complex (the top right of the grid at low smoothness and high ruggedness amplitude values) the

function’s lengthscale is lower and closer to the value learned by the diverse samples. Looking
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at the low diversity MAE values (‘MAE 5’), we can see they are much closer to those of the

high diversity samples (‘MAE 95’), in contrast to when the function is less complex (bottom

left side of the grid). Under such conditions, low diversity samples lose some of the relative

Model Building advantage they have over high diversity samples. This conjecture aligns with

Experiment 1 (Fig 4.1) where the COG values on the top right part are positive while those on

the bottom left are negative.

4.3 How is this phenomenon affected by the initial training set size?

While trying to replicate the results for the 3D case we observed that the ‘modeling advan-

tage’ we observed for less diverse examples was also influenced by the number of examples in

the initial set. This was because if we initialized the 3D case with the same number of initial

samples as the 2D case, the optimizer in the 3D case would not be able to accurately estimate

the appropriate hyperparameters regardless of the sampling (less diverse or diverse) method and

would just set the hyperparameters to zero.

This is perhaps obvious if we think about how space coverage degrades for a fixed number

of samples as we increase the dimensionality of a design space. What we observed, and show

below in Fig. 4.4, is that there are essentially three “initial sample size regimes” that determine

whether or not non-diverse sampling can use its ‘modeling advantage’, although this advantage

exists in both the 2D and 3D case:

1. Sample-deficient: This is when we provide each optimizer with too few initial examples,

such that irrespective of that set’s diversity the BO will not be able to meaningfully learn

hyperparameters and will instead set them to zero. For example, in Fig. 4.4 bottom, with
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fewer than 26 initial samples, both the 5th and 95th percentile samples cannot provide good

estimates of the kernel hyper-parameters

2. The ‘modeling advantage’ region: With this number of samples, the 5th percentile is able

to reasonably estimate the hyperparameter values but the 95th struggles to do so. For

example, in Fig. 4.4 top (2D), we can observe this at 10 samples, which, by coincidence,

was the original setting for our 2D example in our initial manuscript. We see that in Fig. 4.4

bottom (3D) this transitions somewhere between 35 to 75 initial samples. In this region,

5th percentile sampling can exercise its modeling advantage while the 95th percentile still

does not have enough initial samples to consistently and accurately estimate the kernel

hyper-parameters.

3. Sample-saturated: In this region, the shear number of initial points we provide BO is

sufficiently high such that it can estimate the kernel hyper-parameters well, regardless of

whether the initial points are diverse or not. For example, in Fig. 4.4 top, this occurs after

around 40 initial samples. In Fig. 4.4 bottom this occurs after around 100 initial samples. In

this ‘sample-saturated’ case, the modeling advantage of non-diverse sampling disappears,

often because this is a sufficient number of points that the optima become easy to find at

that point (see Fig. 4.2 where the BO often converges at those same number of samples).

Once, the training size was fixed to 40 examples for the 3D case we can see that Figure 4.5

demonstrates our hypothesized Model Building advantage that non-diverse initial samples confer

to BO. But how do we know that this is the actual causal factor that accelerates BO convergence,

and not just correlated with some other effect? If correct, our conjecture posits a natural testable

hypothesis: if we fix the values of the hyper-parameter posteriors to identical values between the
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non-diverse and diverse samples and do not allow the BO to update or optimize them, then this

should effectively eliminate the Model Building advantage, and diverse samples should always

outperform non-diverse samples.
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Figure 4.5: Box plot showing distribution of ‘Lengthscale’ hyper-parameter learned by BO when
initiated with diverse (orange) and less-diverse samples (blue) for 3 different families of wildcat
wells functions of the same parameters but 100 different seeds in each dimension. The optimal
hyper-parameter for each of the 100 wildcat wells instances from each family is also plotted
as horizontal (blue) lines—in many but not all cases these overlap. Each cell in the plot also
has the 95th percentile confidence bound on Mean Absolute Error (MAE) for both diverse and
non-diverse samples. The results show that MAE confidence bounds for non-diverse samples
are smaller compared to diverse samples for all the families of wildcat wells function. Thus,
indicating a presence of Model Building advantage for non-diverse initial samples. The results
of this figure are further discussed in Sec. 4.3
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Figure 4.6: Optimality gap plot showing effects of diversity when the optimizer is not allowed to
fit the hyper-parameters for the Gaussian Process and the hyper-parameters are instead fixed to
the values found in Experiment A2. The results from this plot show positive NCOG values for
all families of wildcat wells function even as dimensions increase, showing that once the ‘Model
Building advantage’ is taken away the diverse samples outperform non-diverse samples. Further
discussion on this plot can be read in Sec. 4.3

4.4 How does Diversity affect Optimization Convergence if the hyper-parameters

are fixed to the optimal values?

This experiment is identical to our earlier study described at the beginning of the chapter,

with two key differences: (1) we now fix the kernel hyper-parameters to the ‘optimal hyper-

parameter’ values we found in Experiment 2 for all the instances in each family of the wildcat

wells function, (2) and we do not allow either BO model to further optimize the kernel hyper-

parameters. This should remove the hypothesized Model Building advantage of non-diverse
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samples without altering any other aspects of Experiment 1 and the results in Fig. 4.1.

Figures 4.7 and 4.6 show that once the kernel hyper-parameters are fixed—removing the

Model Building advantage of non-diverse samples—diverse samples consistently and robustly

outperform non-diverse initial samples. This holds for both the initial Optimality Gap at the be-

ginning of the search as well as the Cumulative Optimality Gap and is not qualitatively affected

by the function smoothness or roughness amplitude. Unlike in Experiment 1 where diversity

could either help or hurt the optimizer, once we remove the Model Building advantage, diversity

only helps. This illustrates the causal effect that non-diverse samples are providing that acceler-

ates BO convergence: they hasten the convergence of BO toward more accurate hyper-parameter

estimates, which in turn accelerate optimization.
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Figure 4.7: Experiment 3: Optimality gap plot showing effects of diversity when the optimizer is not allowed
to fit the hyper-parameters for the Gaussian Process and the hyper-parameters are instead fixed to the values found
in Experiment 2. The results from this plot show positive NCOG values for all families of wildcat wells function,
showing that once the Model Building advantage’ is taken away the diverse samples outperform non-diverse samples.
Further discussion on this plot can be read in §4.4
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Chapter 5: Extending Our Results to Other ND Functions

A natural question is whether our results are limited to just our choice of the wildcat-

wells class of function generators, or do they transfer across different functions? To test this,

we repeated the experiments described in Section 4 for three different but commonly used N-

Dimensional optimization test functions: the Sphere, Rosenbrock and Rastrigin functions as

seeen in Eq. 5.1. The only major difference with the previous experiments is that the differ-

ence plot for Rosenbrock is really zoomed out due to large values that the y-values can take in

the function as seen in Fig. 5.3.

Sphere(X) =
dims∑
i=1

x2
i

Rastrigin(X) = 10× dims +
dims∑
i=1

[
x2
i − 10 cos(2πxi)

]
Rosenbrock(X) =

dims-1∑
i=1

[
100(xi+1 − x2

i )
2 + (1− xi)

2
]

(5.1)

As seen in Fig. 5.1, when the hyperparameters are allowed to be optimized, in general low-

diversity samples led to faster convergence than high-diversity initial samples. This is not always

that case, as the 4D and 5D Rastrigin functions cases shows—in such cases non-diverse samples

have comparatively marginal improvement in the longer term. For reference, this plot is designed
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Figure 5.1: Optimality gap grid plot showing the absolute difference in current Optimality Gap
between optimizers initialized with 5th vs 95th percentile diverse sample (y-axis) as a function of
optimization iteration (x-axis). The different factors in the factor grid plot are the dimensions
across the rows and the different test functions across the columns. Each plot also has text
indicating the Percentage Cumulative Optimality Gap (PCOG), a positive value corresponds to
a better performance by high diversity samples compared to the low diversity samples. The plot
shows that BO benefits from diversity in some cases but not others. There are no obvious trends
in how the PCOG values change in the grid. The results are further discussed in Sec. 5

to be a replication of study in Section 4, but just for different test functions.

Fig. 5.2 shows that 5th-percentile diversity (low diversity) initial samples learns the kernel

hyperparameter more accurately using fewer samples compared to 95th-percentile diversity ini-

tial samples in two dimensions and that this holds true irrespective of the choice of test function.

However, as the function dimension increases this effect diminishes since the number of initial

samples needed to activate this “modeling advantage” regime increases (See earlier Fig. 4.4).
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Figure 5.2: Box plot showing distribution of ‘Lengthscale’ hyper-parameter learned by BO when
initiated with diverse (orange) and less-diverse samples (blue) for Sphere, Rosenbrock and Rast-
rigin test functions over 200 different seeds in each dimension. For refernce to how many training
samples were used please check Table. 5.1. The optimal hyper-parameter for each test function
over 10 different runs is also plotted as horizontal (blue) lines—in many but not all cases these
overlap. Each cell in the plot also has the 95th percentile confidence bound on Mean Absolute
Error (MAE) for both diverse and non-diverse samples. The results show that MAE confidence
bounds for non-diverse samples are smaller compared to diverse samples for most test functions
but at least does as well as the 95th. Thus, indicating a presence of Model Building advantage for
non-diverse initial samples. The results of this figure are further discussed in Sec. 5

With this additional set of data, samples from from the 95th-percentile of diversity learn the hy-

perparameters as well as 5th-percentile samples. For reference, like with Fig. 4.5 above, this plot

was designed to be a replication of our study in Sec. 4.2, but just for different test functions and
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across increased dimensions. Unlike in Fig. 4.5 here we see that our proposed causal explanation

for the “modeling advantage” is less clear since for certain functions the high-diversity samples

have better posterior convergence than the 5th-percentile samples, and vice versa depending on

the specific function and dimension.
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Figure 5.3: Optimality gap plot showing effects of diversity when the optimizer is not allowed
to fit the hyper-parameters for the Gaussian Process and the hyper-parameters are instead fixed
to the values found in Experiment A2. The results from this plot show signficantly improved
PCOG values compared to Fig. 5.1. ‘Rosenbrock’ is the only test function that does not benefit
from the diverse samples, its performance remains the same as it was when hyperparameters were
optimized, Further discussion on this plot can be read in Sec. 5

In Fig. 5.3 where the kernel hyper-parameters are fixed to what should be optimal values,

(compared to Fig. 5.1 where the kernel hyper-parameters are learned) we can see several effects.

First, we see that the low diversity initial samples had, on average, better initial starting points

on these test functions as seen by the PCOG values on the x-axis at “0”. This could largely be
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Figure 5.4: Box plot showing the lengthscale parameter as learned by Rastrigin test function
in 2D and 3D as the training samples are increased. The plot also confirms the existence of a
‘modeling advantage’ for training samples of a particular size. The results are further discussed
in Sec. 5

luck or a peculiarity with the three test functions, since common optimization test functions often

have their optimal points toward the center of the domain, which non-diverse starting points

are likely to sample with higher frequency compared to diverse starting points. (Note in our

wildcat wells function this was not the case and the optimal point was likely to occur at any

point in the domain depending on the seed of the random function generator.) Second, we see

compared to Fig. 5.1 that high diversity initial samples appear to be able to benefit from the
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‘Space Exploration’ advantage we hypothesized in Sec. 4 and do catch-up almost instantaneously

compared to the lower-diversity samples. For reference, this plot is designed to be a replication

of our study in Sec. 4.4, but just for different test functions. We still see a similar effect, in the

sense that fixing the BO hyper-parameters aids the diverse initial sample condition, on average,

which mirrors qualitatively the phenomenon we observed on the wildcat wells function (compare

this supplemental material document’s Fig. 5.1 with Fig. 5.3).
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in Sec. 5
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In Figs. 5.4, 5.5, and 5.6 we can see how increasing the number of initial training samples

induces convergence on the learned kernel hyper-parameters for the Rastrigin, Rosenbrock, and

Sphere functions, respectively. We used these plots to choose the number of training samples to

be used in Figs. 5.1, 5.2, and 5.3 by selecting the number of samples within the “model building

advantage” regime (as opposed to the sample deficient or sample saturated regime). The specific

number of training samples used for each function at each dimension can be seen in Table 5.1.

We can see that the performance of high diversity samples is significantly better when compared

to the performance in Fig. 5.1. The high diversity samples still struggle to improve performance

for ‘Rosenbrock’ function, our hypothesis is that because the number of samples needed to learn

the hyperparameters is exceedingly large for the Rosenbrock function (see Fig. 5.5) our proposed

“modeling-advantage” is not that helpful to the optimizer, since it has already found a reason-

able optimum by the time it has collected sufficient samples to converge to reasonable kernel

estimates.

Dimension Sphere Rosenbrock Rastrigin

2 8 4 5
3 12 5 7
4 38 8 30
5 75 20 60

Table 5.1: Table showing the different training size/number of examples used to initialize BO for
different test functions in Figs. 5.1, 5.2, 5.3.
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Figure 5.6: Box plot showing the lengthscale parameter as learned by Sphere test function in 2D
and 3D as the training samples are increased. The plot also confirms the existence of a ‘modeling
advantage’ for training samples of a particular size. The results are further discussed in Sec. 5
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Chapter 6: Discussion and Conclusion

This thesis’s original goal was to investigate how and when diverse initial samples help

or hurt Bayesian Optimizers. Overall, we found that the initial diversity of the provided sam-

ples created two competing effects. First, Experiment 2 showed that non-diverse samples im-

proved BO’s abilities to quickly converge to optimal hyper-parameters—we called this a Model

Building advantage. Second, Experiment 3 showed that conditioned on the same fixed hyper-

parameters diverse samples improved BO’s convergence to the optima through faster exploration

of the space—we called this a Space Exploration advantage. In Experiment 1, diversity had

mixed-to-negligible effects since both of these advantages were in play and competed with one

another. This interaction provides insight for academic or industrial BO users since common

practice recommends initializing BO with space-filling samples (to take advantage of the Space

Exploration advantage), and ignores the Model Building advantage of non-diverse samples.

Beyond our main empirical result, our improvements to existing diverse sampling ap-

proaches (Sec. 2) provide new methods for studying how different percentile diversity sets affect

phenomena. Researchers may find this contribution of separate technical and scientific interest

for related studies that investigate the impact of diversity.

Beyond the individual results we observed and summarized in each experiment, there are

some overall implications and limitations that may guide future work or interpretation of our
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results more broadly, which we address below.

6.1 Where does this Model Building advantage induced by non-diverse samples

come from?

As we conjectured in Experiment 2 (§4.2), and confirmed in Experiment 3 (§4.4), the key

advantage of using non-diverse initial samples lies in their ability to induce faster and more ac-

curate posterior convergence when inferring the optimal kernel hyper-parameters, such as length

scale and others. This allowed the BO to make more judicious and aggressive choices about what

points to sample next, so while the diversely initialized models might get a head start on explor-

ing the space, non-diversely initialized models needed to explore less of the space overall, owing

to tighter posteriors of possible functions under the Gaussian Process.

What this behavior implies more broadly is that non-diverse samples, whether given to an

algorithm or a person, have a unique and perhaps underrated value in cases where we have high

entropy priors over the Gaussian Process hyper-parameters or kernel. In such cases, sacrificing

a few initial non-diverse points to better infer key length scales in the GP model may well be a

worthwhile trade.

We also saw that in cases where the BO hyper-parameters were not further optimized (as

in Experiment 3 where hyper-parameters were fixed to optimal values), using diverse points only

helped BO. Researchers or practitioners using BO would benefit from carefully reviewing what

kernel optimization strategy their library or implementation of choice actually does since that will

affect whether or not the Model Building advantage of non-diverse samples is actually in play.
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6.2 What if Hyper-parameters are fixed to non-optimal values?

We showed in Experiment 3 that fixing BO hyper-parameters to their optimal values ahead

of time using an oracle allowed diverse initial samples to unilaterally outperform non-diverse

samples. An interesting avenue of future work that we did not explore here for scope reasons

would be to see if this holds when hyper-parameters are fixed to non-optimal values. In practi-

cal problems, we will not often know the optimal hyper-parameters ahead of time as we did in

Experiment 3 which caused diversity’s unilateral advantage, so we do not have evidence to gen-

eralize beyond this. However, our explanation of the Model Building advantage would predict

that, so long as the hyper-parameters remain fixed (to any value), BO would not have a practical

mechanism to benefit much from non-diverse samples, on average.

6.3 What are the implications for how we currently initialize BO?

One of our result’s most striking implications is how it might influence BO initialization

procedures that are often considered standard practice. For example, it is common to initialize

a BO procedure with a small number of initial space-filling designs, using techniques like Latin

Hypercube Sampling (LHS) before allowing BO to optimize its acquisition function for future

samples. In cases where the BO hyper-parameters will remain fixed, Experiment 3 implies that

this standard practice is excellent advice and far better than non-diverse samples. However, in

cases where you plan to optimize the BO kernel during search, using something like LHS be-

comes more suspect.

In principle, from Experiment 1 we see that diverse samples may help or hurt BO, depend-
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ing on how much leverage the Model Building advantage of the non-diverse samples can provide.

For example, in the upper right of Fig. 4.1 the function is effectively random noise, and so there

is not a strong Model Building advantage to be gained. In contrast, in the lower left, the smooth

and well-behaved functions allowed non-diverse initialization to gain an upper hand.

Our results propose a perhaps now obvious initialization strategy: if you plan on optimizing

the BO hyper-parameters, use some non-diverse samples to strategically provide an early Model

Building advantage, while leveraging the rest of the samples to diversely cover the space.

6.4 How might other acquisition functions modulate diversity’s effect?

While we have been referring to BO as though it is a single method throughout this thesis,

individual BO implementations can vary, both in terms of their kernel structure and their choice of

acquisition function—or how BO uses information about the underlying fitted Gaussian Process

to select subsequent points. In the studies in Chapter 4 and 5, we used Expected Improvement

(EI) since it is one of the most widespread choices, and behaves qualitatively like other com-

mon improvement-based measures like Probability of Improvement, Posterior Mean, and Upper

Confidence Bound functions. Indeed, we hypothesize that part of the reason non-diverse initial

samples are able to gain a Model Building advantage over diverse samples is due to a faster col-

lapse in the posterior distribution of possible GP functions which serves as strong input to EI

methods and related variants.

Yet EI and its cousins are only one class of acquisition function; would our results hold

if we were to pick an acquisition function that directly attacked the GP’s posterior variance?

For example, either Entropy-based or Active Learning based acquisition functions? This thesis
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did not test this and it would be a logical and valuable future study. Our experimental results

and proposed explanation would predict the following: the Model Building advantage seen by

non-diverse samples should reduce or disappear in cases where the acquisition function explicitly

samples new points to minimize the posterior over GP function classes since in such cases BO

itself would try to select samples that reduced overall GP variance, reducing its dependence on

what the initial samples provide.

6.5 To what extent should we expect these results to generalize to other types

of problems?

We selected a simple 2D function with controllable complexity in this thesis to aid in ex-

perimental simplicity, speed, replicability, and ease of visualization; however, this does raise

the question of whether or not these results would truly transfer to more complex problems of

engineering interest. Chapter 5 addressed additional common optimization test functions with

different properties, though it is impossible to claim in general that the phenomena studied by

this thesis would extend to every design problem. While future work would have to address a

larger class of more complex problems, we can look at a few critical problem-specific factors and

ask what our proposed explanatory model would predict.

For higher dimensional problems, standard GP kernel choices like RBF or Matérn begin

to face exponential cost increases due to how hyper-volumes expand. In such cases, having

strong constraints (via hyper-parameter priors or posteriors) over possible GP functions becomes

increasingly important for fast BO convergence. Our results would posit that any Model Build-

ing advantages from non-diverse sampling would become increasingly important or impactful in
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cases where it helped BO rapidly collapse the hyper-parameter posteriors.

For discontinuous functions (or GP kernels that assumed as much), the Model Building

advantage of non-diverse samples would decrease since large sudden jumps in the GP posterior

mean and variance would make it harder for BO to exploit a Model Building advantage. How-

ever, in discontinuous cases where there were still common global smoothness parameters that

governed the continuous portions the Model Building advantage would still accelerate advantages

for BO convergence.

6.6 How might the results guide human subject experiments or understanding

of human designers?

One possible implication of our results for human designers is that the effects of example

diversity on design outcomes may vary as a function of designer’s prior knowledge of the de-

sign problem. More specifically, the Model Building advantage observed in Experiment 2 (and

subsequent removal in Experiment 3) suggests that when designers have prior knowledge of how

quickly the function changes in a local area of the design space, they can more reliably benefit

from the Space Exploration advantage of diverse examples. This leads to a potentially counter-

intuitive prediction that domain experts may benefit more from diverse examples compared to

domain novices since domain experts would tend to have prior knowledge of the nature of the

design problem (a Model Building advantage). Additionally, perhaps under conditions of un-

certainty about the nature of the design problem, it would be useful to combine the strengths of

diverse and non-diverse examples; this could be accomplished with a cluster-sampling approach,

where we sample diverse points of the design space, but include local non-diverse clusters of
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examples that are nearby, to facilitate learning of the shape of the design function.

59



Bibliography

[1] Katherine Fu, Joel Chan, Jonathan Cagan, Kenneth Kotovsky, Christian Schunn, and Kristin
Wood. The Meaning of “Near” and “Far”: The Impact of Structuring Design Databases and
the Effect of Distance of Analogy on Design Output. Journal of Mechanical Design, 135
(2), January 2013. ISSN 1050-0472. doi: 10.1115/1.4023158. URL https://doi.
org/10.1115/1.4023158.

[2] Joel Chan, Katherine Fu, Christian Schunn, Jonathan Cagan, Kristin Wood, and Kenneth
Kotovsky. On the Benefits and Pitfalls of Analogies for Innovative Design: Ideation Perfor-
mance Based on Analogical Distance, Commonness, and Modality of Examples. Journal
of Mechanical Design, 133(8), August 2011. ISSN 1050-0472. doi: 10.1115/1.4004396.
URL https://doi.org/10.1115/1.4004396.

[3] Suzana Linic, Vojkan Lucanin, Srdjan Zivkovic, Marko Rakovic, and Mirjana Puharic. Ex-
perimental and Numerical Methods for Concept Design and Flow Transition Prediction
on the Example of the Bionic High-Speed Train. In Nenad Mitrovic, Goran Mladenovic,
and Aleksandra Mitrovic, editors, Experimental and Computational Investigations in En-
gineering, Lecture Notes in Networks and Systems, pages 65–82, Cham, 2021. Springer
International Publishing. ISBN 978-3-030-58362-0. doi: 10.1007/978-3-030-58362-0 5.
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