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Using both density-functional theory calculations and Monte Carlo simula-

tions, we compute various key parameters that are used to model steps on vicinal

surfaces.

In the first part, we discuss the importance of multi-site interactions (trios and

quartos) in the lattice-gas characterization of adatom interactions. Using density-

functional theory calculations, we show that multi-site interactions with substantial

contributions from direct interactions are sensitive to adatom relaxations. Such

sensitivity to adatom relaxations complicates the lattice-gas approach to modeling

overlayer systems. Our results show that a careful consideration of relaxation effects

is required to make connections with experiments.

In the second part, we use both density-functional theory calculations and ki-

netic Monte Carlo simulations to identify the impurity atom responsible for growth

instabilities on Cu vicinals. In addition to that, we also show that a small quantity



of codeposited impurities significantly alters the growth behavior. Our results indi-

cate that growth morphologies could be controlled through the codeposition of an

appropriate impurity. Hence, impurities could play a crucial role in nanostructuring

of surfaces.

Step configurations have fruitfully been related to the worldlines of spinless

fermions in one dimension. However, in addition to the realistic no-crossing con-

dition, the fermion picture imposes a more restrictive non-touching condition. in

the third part of this thesis, we use Metropolis Monte Carlo method to study the

effects of loosening this non-touching condition on the resulting TWDs. Our results

show that allowing step touching leads to an effective attraction in the step-step

interaction strength measurements. We show that this effective attraction can be

incorporated into the fermion picture as a finite-size effect.
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Chapter 1

Introduction

There has been a continuous and consistent trend in the miniaturization of

devices in the recent decades. One of the fields in which this trend is clearly evi-

dent is the microelectronics industry, as exemplified by the sustained realization of

Moore’s law for more than forty years. Keeping pace with this rate of miniaturiza-

tion depends on the development of technological capability to fabricate devices and

components at nanometer length scales (0.1-100 nm) in the near future. This has led

to and fueled the enormous interest in the field of nanotechnology research. Broadly,

there are two approaches for fabrication of devices in the nanometer length scale -

the top-down and the bottom-up approaches [1]. In the top-down approach, desired

patterns are created on substrates through micropatterning techniques. Alternately,

in the bottom-up approach, devices and components are fabricated through growth

and subsequent self-assembly of atoms (or molecules) on substrates with well defined

physical characteristics. The choice of a good substrate and thorough knowledge

about the atomistic mechanisms related to growth are essential for the realization

of the bottom-up approach.

Vicinal surfaces [2, 3] are formed when a solid is cleaved along a direction close

to a crystalline high-symmetry orientation (cf. Fig. 1.1). Below the roughening tem-

perature of the high-symmetry orientation (𝑇 < 𝑇𝑅), a vicinal surface has distinct

1



Figure 1.1: A surface vicinal to the high symmetry ⟨1 0 0⟩ direction. The surface
consists of (1 0 0) terraces separated by close-packed steps that are oriented at an
angle 𝜃 = tan−1(1/4) to the close-packed ⟨1 1 0⟩ direction. The polar angle (𝜙)
is related to the mean spacing between steps (⟨ℓ⟩) through: ⟨ℓ⟩ = 1/tan(𝜙). The
tangent of the azimuthal angle (𝜃) gives the linear density of kinks (1/4 in this case).

physical features - high-symmetry terraces separated by steps and depending on the

miscut direction, these steps could contain kinks (geometric kinks). Due to con-

trolled number of defects, vicinal surfaces serve as ideal substrates for growth and

self-assembly processes in the bottom-up approach. In addition to acting as tem-

plates for growth of microstructures, such as quantum dots and nanowires, vicinal

surfaces are also widely used in the catalysis of chemical and biological reactions. At

𝑇 = 0K, the orientation of the steps and the density of kinks remain fixed. However

at the operating temperature of these devices (close to room temperature), thermal

2



Figure 1.2: Multi-scale modeling of steps: the top panels show the analytic method
appropriate at that particular length scale and the bottom panels show the respec-
tive experimental observations. (a)top: calculation of 𝐴- and 𝐵-step formation
energies using orientation-dependent trios on fcc (1 1 1) surfaces [4, 5], bottom: Pt
islands with a ratio of 1.16 between 𝐴- and 𝐵-step formation energies [6], (b)top:
kinetic Monte Carlo simulations of early stages of growth when 2% of W atoms are
codeposited with Cu atoms on Cu(1 0 0) (cf. Chapter 3), bottom: formation of tall
pyramids at higher coverages for the same system [7], (c)top: generalized Wigner
fits [8, 9] to the terrace width distributions of steps, bottom: 2800 × 2800 Å2 STM
image of Al/Si(1 1 1) [10]. The step-step interaction strength for this system was
estimated using the generalized Wigner formalism.

motion of atoms causes step fluctuations1 and the formation of adatom and vacancy

islands on terraces. As a result, thermal motion of atoms play a crucial role in al-

tering morphologies of vicinal surfaces. Hence, a thorough understanding of various

atomistic processes and step fluctuations is required to fabricate devices that remain

stable at room temperatures.

An accurate analytic treatment of morphological evolution of vicinal surfaces

should provide a description that is valid at vastly different length scales. It should

take into account atomic scale (sub-nanometer) properties while characterizing step

1The attachment and detachment of atoms at step edges creates additional kinks, known as
thermal kinks.
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fluctuations and surface morphologies at much larger length scales (few microm-

eters). Since the analytic description is required to span length scales that are

separated by several orders of magnitude, multi-scale models are normally used for

characterizing evolution of surface morphologies (cf. Fig. 1.2). A purely continuum

approach towards constructing such a multi-scale model, despite being computa-

tionally economical, is inadequate to capture the effects of atomistic processes. On

the other hand, a more accurate approach that accounts for the behavior of ev-

ery individual atom in the system is unsuitable for systems with more than a few

hundred atoms due to the very high computational cost associated with it. An

extremely successful approach that incorporates atomic scale properties with the

computational ease of a continuum approach is the continuum step model [2]. In

the continuum step model, steps are considered continuous along the step-edge di-

rection and discrete in the direction perpendicular to the step-edge; the evolution

of the surface is then described in terms of motion of steps. In general, the mean

direction of step edges is labeled 𝑦 and the perpendicular direction is labeled 𝑥; this

notation has become known as “Maryland notation”. The position of the 𝑖-th step

edge, 𝑥𝑖(𝑦), varies continuously with 𝑦.

In the continuum step model, the length scales are bridged in the following

way - the behavior of individual atoms is linked to a few key, experimentally mea-

surable parameters through statistical mechanics and these parameters are then

used to predict and understand the evolution of steps and surface morphologies

under various conditions. Hence, minimal statistical-mechanical models lie at the

core of the continuum step model. At the nanometer length scale, the main energy
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parameters in this model are adatom interactions and barriers for the diffusion of

single (or at most a few) adatoms. Traditionally, many theoretical methods, such as

tight-binding [11, 12], embedded atom method [13, 14], etc. have been employed to

compute these energy parameters. With recent advances in computational power,

these energy parameters can now be computed with reliable accuracy using more

sophisticated computational packages based on the density-functional theory (DFT)

[15, 16]. The computed energy parameters are then linked to macroscopic param-

eters like step formation energy, step stiffness (𝛽), etc., using ideas from statistical

mechanics. These macroscopic parameters are then used to simulate fluctuations of

steps (up to several thousand atoms) using Monte Carlo methods. The choice of sur-

face representation and the computational method depends on the physical property

under study. For instance, kinetic Monte Carlo (KMC) simulations on a solid-on-

solid (SOS) lattice are suited for studying growth and other non-equilibrium phe-

nomena and the Metropolis Monte Carlo method with the terrace-step-kink (TSK)

model is suited for studying equilibrium properties. Conversely, both microscopic

and macroscopic parameters can be measured through experimental or simulation

studies of step fluctuations. Hence, the continuum step model plays an important

role in studying morphologies of vicinal surfaces.

In short, analytic modeling of steps on vicinal surfaces routinely makes use

of minimal statistical-mechanical models to understand and predict morphologi-

cal evolution of surfaces. The success of this approach relies on the identification

and accurate computation of the model parameters. However, minimal statistical-

mechanical models fall short of providing a complete description of morphological
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evolution of vicinal surfaces in certain situations. This thesis discusses a few of these

cases and also provides the necessary modifications to the minimal model required

to make connection with experimental observations in each of these cases. Chapter 2

emphasizes the importance of non-pairwise multi-site interactions in the lattice-gas

picture. Through extensive calculations using DFT-based Vienna Ab initio Sim-

ulation Package (VASP) [17, 18, 19, 20] calculations on different high symmetry

surfaces, we show that adatom relaxations play a crucial role in the computations

of multi-site interaction strengths. In Chapter 3, we investigate the effect of code-

posited impurities on the resultant surface morphologies; we focus on Cu vicinals.

Experiments performed by Ernst and co-workers showed that Cu vicinals undergo

meandering and mounding instabilities during growth. Even though various insta-

bility mechanisms have been proposed to account for the observed instabilities, none

of them could explain all experimental observations. Recently, it was shown that

codeposition of small percentage of impurities with Cu atoms during growth could

reproduce the experimental results. To identify the impurity atom responsible for

the observed instabilities, we computed the binding energies and diffusion barriers

for various candidate impurity atoms. Using the energies for the candidate impurity

atoms from DFT calculations in KMC simulations, we then study the effect of im-

purity codeposition on the resulting surface morphologies. Our results presented in

Chapter 3 show that by codepositing a specific impurity atom during growth, we can

control the resultant surface morphologies. The terrace-width distribution (TWD)

is a useful quantity to parameterize both non-equilibrium and equilibrium step fluc-

tuations on vicinal surfaces. In addition to that, certain important parameters used
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for modeling steps can be extracted from TWD measurements. The fermion picture,

as exploited by Calogero and Sutherland [21], facilitates the theoretical treatment

of TWDs and provides a straightforward way to measure the step-step interaction

strength parameter (𝐴). However, the fermion picture depends on the assumption

that step edges do not touch each other during fluctuations. We study the effects of

loosening this non-touching condition on the TWDs of vicinal surfaces, and hence

𝐴 measurements. Our results are presented in Chapter 4. A summary of our results

and open questions are presented in Chapter 5.
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Chapter 2

Role of multi-site interactions in the lattice-gas modeling of steps:

Adatom relaxations1

2.1 Lattice-gas model and multi-site interactions

A thorough understanding and characterization of surface energetics is impor-

tant for fabricating nanostructures with desired morphological features. To this end,

lattice-gas models have been very successful in catergorizing structural properties,

energetics and evolution of adatoms and steps on surfaces, as discussed in a variety

of reviews [24, 25, 26, 27]. The general idea being that a set of interactions is suffi-

cient to understand both equilibrium and dynamic surface processes. The supercell

approach [28, 29] implemented in DFT-based [15, 16] computational packages, such

as VASP [17, 18, 19, 20], provides a direct way to compute these interactions with

reliable accuracy. Ref. [29] serves as an excellent guidebook for using DFT-based

software packages, especially VASP, to compute adatom interactions on vicinal sur-

faces. The lattice-gas interactions are then used in Monte Carlo simulations to test

whether they account adequately for experimentally observed properties such as

phase diagrams, equilibrium island shapes, or step fluctuations.

The basic assumptions that underlie lattice-gas models are: (i) all atoms sit

at high-symmetry positions and local relaxations produce the final structure, (ii) a

1Adapted from Refs. [22] and [23].
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finite set of effective interactions is sufficient to understand all the surface processes

and (iii) interactions are not sensitive to local positions of the adatoms. In the

simplest scenario, only pair interactions between nearest neighbors are considered.

However, in certain cases, like the orientation dependence of step stiffness and the

equilibrium shape of islands, long-range pair interactions and multi-site interactions

are required for a complete description [5, 22, 23, 30, 31, 32, 33, 34, 35, 36]. The

substrates in these studies are typically mid or late transition or noble metals, where

the electronic indirect interaction leads to rich behavior [26].

In the lattice-gas model, the Hamiltonian of adatoms on a surface is written

as:

𝐻 = 𝐸1

∑
⟨𝑖,𝑗⟩1

𝑛𝑖𝑛𝑗 + 𝐸2

∑
⟨𝑖,𝑗⟩2

𝑛𝑖𝑛𝑗 + ...+
∑
𝑇

𝐸𝑇

∑
⟨𝑖,𝑗,𝑘⟩𝑇

𝑛𝑖𝑛𝑗𝑛𝑘 +
∑
𝑄

𝐸𝑄

∑
⟨𝑖,𝑗,𝑘,𝑙⟩𝑄

𝑛𝑖𝑛𝑗𝑛𝑘𝑛𝑙

(2.1)

where 𝑛𝑖 is the occupancy of the high-symmetry lattice site indexed 𝑖; 𝑛𝑖 = 1 denotes

an occupied site and 𝑛𝑖 = 0 denotes an empty site. Interactions between adatom

pairs upto the 𝑚𝑡ℎ-neighboring pair (𝐸1, 𝐸2, ..., 𝐸𝑚) are included in the model; ac-

cordingly, interactions between adatom pairs that are separated by distances greater

than the𝑚𝑡ℎ-neighbor distance are expected to be insignificant. 𝐸𝑇 stands for three-

adatom non-pairwise interactions trio interaction, with the index running over all

trimer configurations of significant strength. Similarly, 𝐸𝑄 stands for four-adatom

non-pairwise quarto interaction. If necessary, pair interactions with a longer range

and/or higher-order multi-site interactions (possibly, five-adatom quintos) are in-
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cluded in the model till adequate convergence between theoretical predictions and

experimental observations is obtained. However, the inclusion of a large number

of interaction parameters makes the lattice-gas model intractable, thereby severely

undermining the efficacy of lattice-gas models in modeling overlayer systems.

In this chapter, we focus only on multi-site interactions in which the partici-

pating adatoms are close to each other and hence, share short-range lateral bonds.

Such multi-site interactions have significant contributions from direct interactions,2

especially due to covalent bonding. When the adatom-adatom interactions involve

such short-range lateral bonds, it is possible (even likely) that the adatoms can shift

non-negligibly from their high-symmetry favored positions. The shifting of adatoms

from high-symmetry positions can cause subtle relaxation effects that can complicate

the straightforward application of the lattice-gas framework. As we will show in this

chapter, such relaxation effects are especially significant for multi-site interactions,

where the relaxations are not along the bond directions. Also, multi-site interac-

tions, in general, have a large elastic component; hence, a careful consideration of

relaxation effects is essential for accurate computations of their strengths.

In the reminder of this chapter we stress the importance of multi-site interac-

tions in the lattice-gas picture and show that adatom relaxations could complicate

the computation of their strengths using three relevant examples. In section 2.2 we

discuss the computation of difference in formation energies between the two types of

close-packed steps (𝐴- and 𝐵-steps) on fcc (1 1 1) surfaces using a pair of orientation-

2These are interactions between adatoms that would occur even in the absence of a substrate.
The substrate provides only a minor perturbation to these interactions.
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dependent trios. Here we consider Pt(1 1 1), where this difference in energy between

the two orientations is known to be particularly large [6, 37]. Our VASP calculations

indicate that the strengths of the two orientation-dependent trios are very sensitive

to adatom relaxations on this surface [22]. Section 2.3 deals with bridging the

discrepancy between theoretical calculations and experimental observations of step-

stiffness anisotropy on Cu(1 0 0) [22]. Theoretical models actually require multi-site

interactions to account for the observed anisotropy in step-stiffness but adatom re-

laxations severely hamper their evaluation, which worsens the discrepancy between

theory and experimental observations. We show that a careful consideration of re-

laxation effects and the inclusion of a four-adatom quarto interaction resolves the

discrepancy between theory and experiments. In section 2.4, we present the results

of our VASP calculations of adatom interactions and single atom diffusion barriers

of Cu adatoms on Cu(1 1 0) [23]. On this surface, we find many strong multi-site

interactions that are comparable in strength to the strongest pair interactions. We

also show that these multi-site interactions are very sensitive to adatom relaxations.

A summary of our results and remarks about the lattice-gas approach to overlayer

systems are given in section 2.5.

2.2 Energy differences of close-packed steps on Pt(1 1 1)

2.2.1 Orientation-dependent trio interactions on fcc (111) surfaces

On fcc (1 1 1) surfaces, close-packed steps can be classified as either 𝐴-steps

[(1 0 0) microfacets] or 𝐵-steps [(1 1 1) microfacets]. The difference between them
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Figure 2.1: Two types of close-packed steps on fcc (1 1 1) surfaces. Throughout this
chapter, lighter (yellow/green) circles represent adatoms and darker (blue/orange)
circles represent atoms in the substrate layer. The view is from a point directly
above (𝑧) and normal to the surface plane. The translucent strips mark the (1 0 0)
microfacets and the (1 1 1) microfacets in the cases of 𝐴- and 𝐵- steps respectively.
For specificity in discussions, the vertical direction in the figure is called 𝑦 and the
horizontal direction is 𝑥 throughout this chapter.

lies in their arrangement relative to the substrate atoms. As can be seen in Fig. 2.1,

the centers of 𝐴-step atoms are aligned with the centers of underlying substrate

atoms along the 𝑥̂ direction forming square (1 0 0) microfacets, whereas centers of

𝐵-step atoms are shifted by 𝑎/2
√
2 along the 𝑥̂ direction with respect to the centers

of underlying substrate atoms forming triangular (1 1 1) microfacets. Since the

difference between 𝐴- and 𝐵-steps lies in their orientation relative to the substrate

atoms, pair interactions, however long-ranged, cannot distinguish between them.

To do that, one must introduce other non-pairwise multi-site interactions involving

at least three adatoms. Stasevich et al. [4, 5] showed that the minimal multi-site

interaction that can distinguish between these two steps is the orientation-dependent

trio, an equilateral triangle formed by NN (nearest-neighbor) legs, shown in Fig. 2.2.

Atoms on an 𝑎-trio share a common substrate atom between them and all of its edges
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Figure 2.2: Two orientation-dependent trios on a fcc (1 1 1) surface: (a) 𝑎-trio atoms
share a common substrate atom and all edges are 𝐴-steps, (b) 𝑏-trio atoms do not
share a common substrate atom and all edges are 𝐵-steps.

are 𝐴-steps, whereas atoms on a 𝑏-trio do not share a common substrate atom and

all of its edges are 𝐵-steps. With the inclusion of 𝑎- and 𝑏-trios in the lattice-

gas pciture, the step formation energies in terms of lattice-gas interactions can be

written as [5]

𝐸𝐴 = −(𝐸1 +
1

3
𝐸𝑎 +

2

3
𝐸𝑏 + 𝐸𝑐) (2.2a)

𝐸𝐵 = −(𝐸1 +
2

3
𝐸𝑎 +

1

3
𝐸𝑏 + 𝐸𝑐) (2.2b)

where 𝐸1 is the NN interaction3 and 𝐸𝑐 is the three-adatom non-pairwise interaction

formed by collinear adatoms along a close-packed direction. Since all other lattice-

gas interactions concerning these two steps are the same, the difference in the step

formation energies (Δ𝐸𝐴𝐵) are then related to the trios through

3The nearest-neighbor (NN) and next-nearest-neighbor (NNN) interactions are also denoted
by first- and second-neighbor interactions respectively in related literature.
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Δ𝐸𝐴𝐵 = 𝐸𝐴 − 𝐸𝐵 =
1

3
(𝐸𝑎 − 𝐸𝑏). (2.3)

Using Eq. (2.3), we can calculate Δ𝐸𝐴𝐵 through a straightforward computation of

𝑎- and 𝑏-trio interaction strengths. Since computing the strength of trios involves

the usage of few adatoms (three/six depending on whether adatoms are placed

on one/both sides of the slab), it eliminates the need for larger supercells that are

typically used in such calculations. This results in a significant reduction in the com-

putational cost normally associated with such step formation energy calculations.4

In addition to reducing the computational cost, the approach based on orientation-

dependent trios also allows us to test one of the fundamental assumptions of the

lattice-gas model. The local geometry of atoms, i.e. the number of occupied NN

and NNN sites surrounding each adatom, on orientation-dependent trios differ from

that of the atoms on long steps. Thus the method of computing Δ𝐸𝐴𝐵 directly

from the strengths of 𝑎- and 𝑏-trios is based on the assumption that local geometry

of adatoms do not affect lattice-gas interactions. Hence the success of this method

is intrinsically tied to the validity of assumption (iii) mentioned in the previous

section.

Using VASP, Stasevich et al. [5] computed the lattice-gas interactions for Cu

adatoms on Cu(1 1 1). Using Eq. (2.2a) and (2.2b), they found 𝐸𝐴 = 277 ± 23

meV/atom and 𝐸𝐵 = 267 ± 23 meV/atom, which results in the following ratio:

𝐸𝐴/𝐸𝐵 = 1.04±0.12. This ratio is in very good agreement with previous theoretical
4On Pt, we find that the computation time scales as a power-law with the number of atoms

with an exponent between 2 and 3.
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calculations [38, 39] and experimental observations [3]. Since the ratio is close to

unity, the case of Cu does not provide a convincing test for the success of the simple

trio-based method. To put this method to a sterner test, we studied the case of

orientation-dependent trios on Pt(1 1 1). From the ratio of lengths of adjacent

close-packed step edges of adatom islands, Michely and Comsa [6] determined the

ratio of the step formation energies at 625 K (finite-temperature generalization of

𝐸𝐴/𝐸𝐵) to be 1.15 ± 0.03, which translates to Δ𝐸𝐴𝐵 ≈ 50 mev/atom. Due to a

large value of Δ𝐸𝐴𝐵, Pt(1 1 1) becomes an apt surface for testing the applicability

of our simple trio-based model.

2.2.2 Step formation energies on Pt(1 1 1)

To compute the difference in step formation energies (Δ𝐸𝐴𝐵), we used VASP

with its ultrasoft pseudopotentials for Pt and the Ceperley-Alder local density ap-

proximation (LDA) [40]. We used LDA because Boisvert et al. [41] showed that

LDA produces a better estimate of the Pt surface energies than the generalized gra-

dient approximation (GGA). We used a cut-off of 14.1 Ryd for the plane-wave basis

set. We also used a Methfessel-Paxton [42] width of 0.2 eV to speed up the calcula-

tions.5 The lattice parameter for Pt was determined to be 3.91 Å from a bulk LDA

calculation using a (1 × 1 × 1) supercell sampled by a (13× 13 × 13) k-point grid.

Our straightforward calculation of the trio interaction energies from isolated trimer

configurations on Pt(1 1 1) (see Fig. 2.3(a)) used a (4 × 4 × 14) supercell sampled

by a (3× 3× 1) k-point grid. Our slab was five atomic layers thick and the rest of
5This is a recommended setting for calculations involving transition metal surfaces [43].
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Figure 2.3: Illustration of a basic isolated trimer and the large structure used by
Feibelman. Beneath each descriptor is the size of the supercell (𝑛𝑥 × 𝑛𝑦 × 𝑛𝑧) and
the layer structure # full atomic layers in the slab ⊕ # adatoms on top of slab +
# adatoms on bottom of slab. In the third row are tabulated the Δ𝐸𝐴𝐵 values in
meV/adatom with no relaxation → the comparable energy when only 𝑧-relaxation
is allowed → the comparable energy when total relaxation is allowed. In the figure
panels the arrows show the magnitude (amplified by a factor of ten for the sake
of clarity) and direction of the lateral relaxation. For compactness, each panel
combines a pair of configurations onto a single lattice. The upper configuration
(green circles) depicts an A-step while the lower configuration (yellow circles) shows
a B-step.

the supercell was filled with vacuum. We placed adatoms on both top and bottom

of the slab so that any charge-transer effects in computed energies cancel [44]. The

adatoms were sited so that they formed either an 𝑎-trio (𝐸𝑎) or a 𝑏-trio (𝐸𝑏). The

middle layer was fixed, and atoms in all other layers were allowed to relax in all

directions until the net force on the atoms was less than 0.01 eV/Å.

From our calculations, we found Δ𝐸𝐴𝐵 = +6 meV/atom consistent with the

experimental results of Michely and Comsa [6] that 𝐸𝐵 is smaller than 𝐸𝐴. However,

the magnitude of Δ𝐸𝐴𝐵 is only 1/8 that reported in the DFT calculations of Feibel-

man [37], who used an (8×8×4) slab with 28 adatoms on one side (cf. Fig. 2.3(b)).
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To predict confidently the magnitude of trio interactions, it is important to under-

stand the origin of this large difference between the results of these two calculations.

Since the computational parameters used in both calculations are identical, the ori-

gin of the difference in Δ𝐸𝐴𝐵 values should therefore lie in the relaxation of adatoms.

To verify that adatom relaxations are indeed causing the difference, we computed

Δ𝐸𝐴𝐵 values for both the “isolated trimer” and “Feibelman” configurations in the

no-relaxation scheme i.e. atoms are forced into their bulk-continuation positions and

relaxations along all directions are suppressed. In the case of no-relaxation, we find,

remarkably, that for both the isolated trimer and Feibelman configurations, Δ𝐸𝐴𝐵

becomes negative with values -40 and -23 meV/atom respectively (see Fig. 2.3); the

𝐵-step formation energy is higher than the 𝐴-step formation energy in both configu-

rations, contrary to experimental observations. This shows that adatom relaxations

are indeed required to get accurate values of trio interaction strengths. In addition

to that, since Δ𝐸𝐴𝐵 changes sign between no- and total relaxation, energy lowering

due to adatom relaxations is greater at the 𝐵-step than at the 𝐴-step.

Relaxations of atoms can be purely vertical (normal to the slab, i.e., along 𝑧

direction) or more generally can involve lateral displacements perpendicular to the

normal along with vertical relaxations (total relaxation). When atoms are allowed to

relax only along the vertical direction (𝑧-relaxation), the obtained Δ𝐸𝐴𝐵 values are

very close to each other: -38 meV/atom in the isolated trimer configuration and -39

meV/atom in the Feibelman configuration. However, similar to the no-relaxation

case, Δ𝐸𝐴𝐵 values are negative for both configurations, in contradiction with ex-

perimental observations. The ratio of relaxations of 𝐴- and 𝐵-steps along the 𝑧
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direction (i.e. the ratio of change in interlayer separation between adatom and sub-

strate layers) is Δ𝑧𝐵/Δ𝑧𝐴 = 0.70 in our isolated trimer configuration and Δ𝑧𝐵/Δ𝑧𝐴

= 0.68 in the Feibelman configuration. It should be noted that the ratio of relax-

ation is less than unity in both cases, i.e., 𝐴-step atoms relaxed inward more than

𝐵-step atoms. The negative Δ𝐸𝐴𝐵 values obtained from both configurations show

that vertical relaxations alone cannot guarantee accurate trio interaction strengths.

In fact, in the case of the Feibelman configuration, 𝑧-relaxation worsened the Δ𝐸𝐴𝐵

value by about 50%. As we will show later in this chapter, allowing relaxation only

in the vertical direction (𝑧-relaxation) actually exacerbates the problem for most of

the adatom configurations.

A crucial difference between our calculations and Feibelman’s calculations

is the relative amount of lateral relaxations (in-plane displacements from high-

symmetry lattice sites) of 𝐴- and 𝐵-step atoms. In Fig. 2.3, the arrows show the

lateral displacements of adatoms (magnified by a factor of 10 for clarity) in both

cases. It is evident from the figure that 𝐵-step atoms relax by a greater amount

compared to 𝐴-step atoms in the Feibelman configuration but the relaxations are

about the same in magnitude in our isolated trimer configuration. The ratio of

lateral relaxation of a 𝐵-step atom (averaged over all atoms in the step) to that

of an 𝐴-step atom is 1.65 in Feibelman’s calculations, whereas it is only 1.03 in

our isolated trimer calculations. In spite of the considerable difference in values,

the ratios indicate that the lateral relaxation of 𝐵-step atoms is greater than that

of 𝐴-step atoms. Since Δ𝐸𝐴𝐵 is positive only for total relaxation, this shows that

lateral relaxations alone are responsible for greater energy lowering at the 𝐵-step
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than at the 𝐴-step.

For the Feibelman configuration, the following physical picture emerges from

our Δ𝐸𝐴𝐵 calculations using different relaxation schemes: Δ𝐸𝐴𝐵 is unphysically

negative when atoms are forced onto their bulk positions; this does not change when

relaxations are allowed only along the vertical direction (𝑧-relaxation). However,

when atoms are further allowed to relax laterally (total relaxation), the 𝐵-step atoms

relax by a greater amount and hence undergo a greater reduction in energy compared

to 𝐴-step atoms, resulting in positive Δ𝐸𝐴𝐵 values very close to the experimental

observations. This picture also holds true for our isolated trimer configuration except

that in the case of total relaxation, the relative amounts of lateral relaxations of 𝑎-

and 𝑏-trios are not enough to guarantee accurate values of Δ𝐸𝐴𝐵. By computing

Δ𝐸𝐴𝐵 values for these two configurations for all three (no-, 𝑧- and total) relaxation

schemes, we have clearly shown that lateral relaxations of adatoms play a crucial

role in obtaining accurate values of step formation energies on Pt(1 1 1). Lateral

relaxations of adatoms are determined to a great extent by the local geometry of

adatoms. As a result, we can say that Δ𝐸𝐴𝐵 values depend on the local geometry

of 𝑎- and 𝑏-trios. Hence, we predicted that calculations employing intermediate

configurations between the isolated trimer and the Feibelman configuration should

result in a range of Δ𝐸𝐴𝐵 values. To verify this prediction, we computed Δ𝐸𝐴𝐵

for three intermediate adatom configurations. The following section talks about the

results of those calculations.
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2.2.3 Effect of local geometry on trio interactions

The intermediate configurations (cf. Fig. 2.4) were chosen in such a way as

to examine the dependence of lateral relaxations and hence of Δ𝐸𝐴𝐵 values, on the

following factors: (i) lateral width of the overlayer (the number of horizontal adatom

stripes used to represent the adatom island or upper terrace) and (ii) the interaction

between adjacent edge-atoms. From another perspective, the latter can be viewed as

interactions between the kink and anti-kink pairs that define the beginning and end

of the edge-atom chain along an edge. Similar to the isolated trimer configuration,

all intermediate configurations were studied with a (4× 4× 14) supercell and a five

atomic layer thick slab with adatoms on both sides of the slab. Edge-atoms were

placed on step edges to create 𝐴-kink-anti-kink pairs and 𝐵-kink-anti-kink pairs on

𝐴- and 𝐵-step edges respectively.

In decomposing the energies for all six upper configurations, we note that

the additional edge-atoms increase the total energy (per repeat length along the 𝑥̂

direction) by 𝐸𝐴 (the kink and the anti-kink each add 𝐸𝐴 but the overall length of

the 𝐴-step is decreased by one link, subtracting 𝐸𝐴; hence, a net increase by 𝐸𝐴.)

plus the number of edge-atoms times the energy of an atom in the close-packed

interior of the overlayer [45]. The straight and edge-atom decorated configurations

are viewed as having the same edge energies. Similarly, for the lower configurations

the difference per repeat length is raised by 𝐸𝐵 plus the number of edge-atoms

times the same 2D-bulk contribution. Thus, Δ𝐸𝐴𝐵 is just the difference in energy

per repeat length of the total energy of the upper configuration and the lower one
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Figure 2.4: Illustration of intermediate configurations considered in our study, pro-
gressing from an atom on a chain to larger structures leading towards Feibelman
configuration. The slab and adatom configurations are written using the notation
introduced in Fig. 2.3. The shaded rectangle in the upper part of panel (a) illustrates
the (4× 4) 2D unit cell for this case.

for each pair. The results are listed in the bottom row of the tabulation in Fig. 2.4.

For kinks on two adatom-wide stripes (see Figs. 2.4(b) and 2.4(c)), the step

formation energy of 𝐴-steps is greater than that of 𝐵-steps, in agreement with

previous theory and experiment and similar to results using the (8×8×11) supercell.

Evidently, this is due to the lateral relaxations since this inequality does not hold for

the cases of no- or 𝑧-relaxation. Comparing the intermediate configurations in Figs.

2.4(a) and 2.4(b), we can say that the addition of a row of adatoms changed Δ𝐸𝐴𝐵 by

40 meV/atom. When there are two edge-atoms per cell (cf. Fig. 2.4(c)), symmetry

no longer constrains the lateral relaxation of the edge-atoms to lie along 𝑦 direction.

Indeed, we see that the edge-atoms evidently attract each other modestly. This

behavior can be understood from bond-energy-bond-order (BEBO) [46] arguments,
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since the edge-atoms have the fewest lateral neighbors. As we move across the series,

the relaxations are stabilized as the overlayer structure becomes larger, and we see

more clearly the asymmetry in the relaxations around edge-atoms on the two types

of close-packed steps.

Comparing Figs. 2.4(c) and 2.3(b), we can see that this horizontal relaxation

of end of edge-atoms becomes greater for longer chains. This attraction between

edge-atoms, which favors the formation of a nascent chain along the step edge, can

be recast as a repulsion between the kink and the anti-kink bounding the minichain.6

Inspection of the upper and lower parts of Fig. 2.4(c) shows that the 𝑥̂ component of

relaxation is rather similar; correspondingly, the change in Δ𝐸𝐴𝐵 from Fig. 2.4(b)

is relatively modest. The major source of the change in Δ𝐸𝐴𝐵 comes from the

greater inward (along the 𝑦 direction) relaxation at the 𝐵- vs. the 𝐴-step, as seen

most clearly in Figs. 2.4(b) and 2.4(c). Compared to the double row configurations,

the magnitude of relaxation along 𝑦 direction is higher for the case of Feibelman

configuration (cf. Fig. 2.3(b)), leading to an even larger value of Δ𝐸𝐴𝐵.

For the no-relaxation scheme, we get the leftmost energies in the third row of

tabulated information in the figures. In all the intermediate configurations, Δ𝐸𝐴𝐵

remains - unphysically - negative. The negativity of Δ𝐸𝐴𝐵 does not change when

only vertical relaxation is allowed. In fact, except for the isolated trimer config-

6For large edge-atom chains, we expect that the 𝑥 relaxation is significant only for edge-atoms
near either end of the chain. Though this would seem at first glance to then amount to a negligible
finite-size correction, the prescription, described above, for computing the step energies subtracts
the energies of the edge-atoms nearer the middle of the chains from those of an edge without
edge-atoms, so that the values at the ends continue to be emphasized. While this feature turns out
not to be crucial in the present problem, it could in principle confound straightforward assessment
of step energies.
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uration, the magnitude actually increases, typically by at least 50%, making the

discrepancy from experiment worse. For both no- and 𝑧-relaxations schemes, the

Δ𝐸𝐴𝐵 values obtained for the two double row configurations, Figs. 2.4(b) and 2.4(c),

are very close to the corresponding values for the Feibelman configuration.

2.2.4 Comparison of lateral relaxations on Cu(1 1 1) and Pt(1 1 1)

surfaces

The minimal trio-based approach gives good results on Cu(1 1 1) but lat-

eral relaxations of adatoms render the approach ineffective on Pt(1 1 1). To check

whether adatom relaxations are more significant on Pt compared to Cu, we com-

puted the inward relaxation of both 𝐴- and 𝐵-step edges using an infinitely long

strip (4 atomic rows wide) of adatoms on a (1× 8× 14) supercell (see Fig. 2.5(a)).

For Cu, the lateral relaxations were 0.051 and 0.070 Å (ratio = 1.37) for 𝐴- and

𝐵-step edges respectively; for Pt they were about three times as large, 0.124 and

0.204 Å respectively (ratio = 1.65, same as the corresponding ratio of the Feibelman

configuration). Even after accounting for the slightly larger lattice constant of Pt

(3.91 Å) compared to Cu (3.64 Å), the magnitude of lateral relaxations are much

higher on Pt compared to Cu .

Further, we computed Δ𝐸𝐴𝐵 on Pt using a simple triad configuration in a

minimum-size (2× 3× 14) supercell shown in Fig. 2.5(b). Computations employing

such minimum-size supercells normally involve suppression of adatom relaxations,

resulting in distortions in the computed energy values due to frustrated relaxations.
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Figure 2.5: (a) Lateral relaxations of adatoms on Pt and Cu surfaces: the upper con-
figuration (green discs) correspond to Pt atoms and the lower configuration (yellow
discs) correspond to Cu atoms. The shaded parallelogram illustrates the (1×8×14)
supercell used in this calculation. (b) Computation of Δ𝐸𝐴𝐵 using a simple triad of
adatoms on a minimal (2× 3× 14) supercell (shaded parallelogram). The notation
used is the same as the one mentioned in Fig. 2.3. In both cases, the arrows mark
the amount of lateral relaxation of atoms amplified by a factor of ten.

On the other hand, such a minimal configuration proved adequate for obtaining

accurate 𝐸𝐴/𝐸𝐵 values on the Cu surface. However on Pt, our results show that

for the simple triad configuration, even with total relaxation, the formation energy

𝐸𝐵 is - unphysically - larger than 𝐸𝐴. Remarkably, the Δ𝐸𝐴𝐵 value obtained with

total relaxation is lower by 11 meV than the corresponding value for no-relaxation.

With the exception of a smaller kink-anti-kink separation, the simple triad

configuration is identical to the single-row intermediate configuration (Fig. 2.4(a)).

Even with total relaxation, the formation energy of 𝐵-steps was found to be greater

than that of 𝐴-steps in both configurations. The similarity between the two con-

figurations is also reflected in the adatom relaxations (see Figs. 2.5(b) and 2.4(a)).

In spite of their similarity in relaxations, the Δ𝐸𝐴𝐵 value is worse by 23 meV in
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our simple triad calculation. Due to periodic boundary conditions, the edge-atoms

are separated by two atomic distances in the simple triad configuration and by four

atomic distances in the single-row configuration. This results in a greater repulsion

between an edge-atom and its periodicity-replicated “images” due to the evident

frustration of relaxation, especially along the 𝑥̂ direction, in the stripe in Fig. 2.5(b)

compared to Fig. 2.4(a). As a result, the strength of the repulsive interaction be-

tween edge-atoms can be gauged from the difference between the Δ𝐸𝐴𝐵 values (23

meV) obtained using these two configurations.

Our step formation energy calculations on Pt(1 1 1) show that orientation-

dependent trio interactions are very sensitive to the lateral relaxations of adatoms

on this surface. As a result, the simple trio-based method seems inadequate for

computing Δ𝐸𝐴𝐵 values on Pt. The lateral relaxations of adatoms are in turn

dependent on the local geometry of adatoms and the size of the supercells used

in the calculations. The dependence of the lattice-gas interactions on the local

geometry of the adatoms brings into question one of the fundamental assumptions

of the lattice-gas model. In the next two sections, we show that the sensitivity of

lattice-gas interactions to local relaxations is not unique to Pt but present on other

metallic surfaces too.
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2.3 Step stiffness anisotropy on Cu(1 0 0)

2.3.1 Background

The stiffness of a step, denoted by 𝛽, is an important parameter in modeling

vicinal surfaces. At equilibrium, the stiffness (𝛽) determines the amount of fluctua-

tions of an isolated step around its mean position. Dieluweit et al. [47] measured the

dependence of step stiffness on Cu(1 0 0) surfaces on step orientation (𝜃), measured

relative to the close-packed direction (cf. Fig. 1.1), using two different methods: (i)

by measuring step-step distance correlation function and (ii) by analyzing equilib-

rium shapes of 2D islands. They found that the step stiffness decreased with the

step orientation on Cu(1 0 0). They also showed that the NN Ising model is not

adequate to account for the experimentally observed step stiffness anisotropy. The

behavior predicted by the Ising NN model significantly underestimated the value

of step stiffness for all orientations except ⟨1 1 0⟩ (cf. Fig. 3 in Ref. [48]). Subse-

quently, Van Moere et al. [49] and Zandvliet et al. [50] proposed that an attractive

NNN interaction (𝐸2 < 0) could account for the discrepancy between experimental

and theoretical observations.

In an earlier work from our group, Stasevich et al. [48], using the solid-on-solid

model, derived the following relation between stiffness (𝛽) and step orientation (𝜃)

𝑘𝐵𝑇

𝛽𝑎
=

𝑚
√
(1−𝑚)2 + 4𝑚𝑒

𝜖2
𝑘𝐵𝑇

(1 +𝑚2)
3
2

(2.4)

where 𝑎 is the lattice constant, 𝑚 = tan𝜃 and 𝜖2 is the effective NNN interaction.
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Since the effective NN interaction (𝜖1) is related to the kink formation energy (𝜖𝑘)

through 𝜖1 = −2𝜖𝑘 [48], we can recast the quantity 𝜖2/𝑘𝐵𝑇 in terms of the ratio of

the effective NNN and NN interactions

𝜖2
𝑘𝐵𝑇

= −2
(
𝜖2
𝜖1

)(
𝜖𝑘
𝑘𝐵𝑇

)
. (2.5)

In the same paper, they also showed a way to include contributions from multi-site

interactions to 𝜖1 and 𝜖2. Including contributions from the three-adatom right-

isosceles trio (𝐸𝑑) (see Fig. 2.6) merely shifts 𝜖1 and 𝜖2 by integral multiples of

𝐸𝑑:7

𝜖1 = 𝐸1 + 2𝐸𝑑 (2.6a)

𝜖2 = 𝐸2 + 𝐸𝑑. (2.6b)

The dependence of step stiffness on the step orientation for various values of the

ratio 𝜖2/𝜖1 is given in Fig. 3 of Ref. [48]. As is evident from that figure, this

model requires 𝜖2/𝜖1 to be 1/4 to correctly reproduce the experimentally observed

anisotropy.

To verify this, they also computed the lattice-gas interactions between Cu

adatoms on Cu(1 0 0) using DFT-based VASP [5]. They found 𝐸1 = −332 ± 16

meV, 𝐸2 = −47 ± 9 meV, yielding 𝐸2/𝐸1 ∼ 1/7, consistent with previous EAM

(embedded atom method)-based modeling of the system. However, they found a

large repulsive trio interaction, 𝐸𝑑 = 52 ± 12 meV, that roughly cancelled 𝐸2,

7In contrast, including contributions from the collinear trio interaction (𝐸𝑐) modifies 𝜖1 and 𝜖2
in a non-trivial manner.
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resulting in 𝜖2 ∼ 0. Therefore, their theoretical prediction was identical to the NN

Ising model which was known to be inadequate in the first place. Whereas the

inclusion of an attractive NNN interaction (𝐸2) in the theoretical model decreases

the discrepancy between theoretical prediction and experimental results in the case

of Cu(1 0 0), further inclusion of the multi-site right-isosceles trio interaction (𝐸𝑑)

actually aggravates the discrepancy.

2.3.2 Relaxation effects in step stiffness calculations

Since our calculations showed that the strengths of trios are sensitive to adatom

relaxations on Pt(1 1 1), we anticipated the presence of similar relaxation effects as

the reason behind the discrepancy between theory and experimental measurements

of step stiffness anisotropy on Cu(1 0 0). Our initial guess was supported by the fol-

lowing points about Ref. [5]: (i) the computations were carried out using small (3×2)

and (4×2) unit cells, and (ii) in all the configurations that included a right-isosceles

trio, adatoms were sited such that symmetry prohibits sizeable lateral relaxations.

To resolve this issue, we recalculated the strength of the right-isosceles trio (𝐸𝑑)

using VASP but with a careful consideration of relaxation effects. We used ultrasoft

pseudopotentials for Cu (with a plane-wave cut-off of 17.2 Ry) and the Perdew-

Wang ’91 generalized gradient approximation [40]. We used a Methfessel-Paxton

width of 0.2 eV [42] to speed up the calculations. The computational parameters

are the same as the ones used in Ref. [5] but we used a bigger (4× 4× 14) supercell

sampled by a (5 × 5 × 1) k-point mesh. Our slab was five atomic layers thick and
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Figure 2.6: Position-dependent right-isosceles trios, 𝐸𝑑 and 𝐸 ′
𝑑, used to obtain effec-

tive NN and NNN interactions on Cu(1 0 0). Such position-dependent interactions
can be accommodated into the lattice-gas picture through the introduction of a
four-adatom quarto interaction (𝐸𝑄).

the rest of the supercell (equivalent to the thickness of nine atomic layers) was filled

with vacuum. We placed adatoms on both the top and the bottom of the slab to

eliminate any charge-transfer effects in the computed energies [44]. The middle layer

of the slab was fixed, and all other layers were allowed to relax until the net force

on the atoms was less than 0.01 eV/Å.

Compared to the calculations in Ref. [5], relaxation effects were incorporated

into our calculations in the following ways: (i) we used a bigger supercell, which

reduces the amount of frustration in adatom relaxations, and (ii) as shown in Fig. 2.6,

we distinguished two types of right-isosceles trios, one in the dense interior of a

(1× 1) overlayer (𝐸 ′
𝑑), where symmetry precludes significant lateral relaxation, and

another at the step edge (𝐸𝑑), with one or two of the three atoms of the right-

isosceles trio being edge-atoms with just one or two (lateral) NN bonds. Since the
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local geometry of these adatoms differ, we could anticipate that the associated trio

interaction energies would differ. This is based on the idea that the isosceles-right

trio (𝐸 ′
𝑑) inside a stripe cannot relax laterally as much as the trios with vertices

on the step edge (𝐸𝑑). The trio interaction calculated in Ref. [5] corresponds to a

linear combination of 𝐸 ′
𝑑 and 𝐸𝑑, weighted predominantly by 𝐸 ′

𝑑. Since the step

stiffness depends on the strengths of the interactions involving step edge atoms, it is

appropriate to use the strength of 𝐸𝑑 for computing 𝜖1 and 𝜖2. To distinguish these

two trios, we calculated the energies of four different adatom configurations and

solved the resultant linear system of equations. We found the difference between

the energies of 𝐸 ′
𝑑 and 𝐸𝑑 to be

𝐸 ′
𝑑 − 𝐸𝑑 = 39.5± 0.5 meV, (2.7)

which gives the strength of the step-edge isosceles-right trio interaction

𝐸𝑑 = 12.5± 0.5 meV. (2.8)

Using this value of 𝐸𝑑, we get

𝜖1 = −307 meV and 𝜖2 = −34 meV, (2.9)

and the ratio of the effective NNN and NN interactions then becomes

𝜖2
𝜖1

≈ 1

9
. (2.10)

The plot of the step stiffness (𝛽) as a function of step orientation (𝜃) given in
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Figure 2.7: Step stiffness anisotropy on Cu(1 0 0): experimental measurements from
Ref. [47] (diamonds), behavior predicted by the Ising NN model 𝜖2 = 0 (red curve).
The solid blue curve corresponds to the behavior for 𝜖2/𝜖1 ≈ 1/9, obtained from our
computations using bigger (4× 4× 14) supercells and position-dependent trios.

Eq. (2.4) using this ratio is given in Fig. 2.7. As is evident from the plot, careful

consideration of the relaxation effects significantly reduce the discrepancy between

theoretical prediction and experimental observations of step stiffness anisotropy on

Cu(1 0 0). Based on our results, it can be confidently said that with bigger supercells

and thicker adatom stripes, similar to the ones employed by Feibelman in his Pt(1

1 1) calculations, the discrepancy can be narrowed down further.

To check if the strengths of pair interactions 𝐸1 and 𝐸2 also changed consider-

ably with adatom relaxations, we computed the strengths of 𝐸1 and 𝐸2 for the cases

of total and 𝑧-relaxation. To isolate the effects due to lateral relaxations alone, we

placed only two adatoms (at NN or NNN positions as relevant) on both top and
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bottom of the supercell. Coincidentally, we find that the strengths of both 𝐸1 and

𝐸2 interactions increase by 8.5 meV when lateral relaxations are suppressed. This

correction due to relaxation effects is negligible in the case of 𝐸1. Even though it

is a moderate correction to 𝐸2, it is nevertheless not as important as it is for 𝐸𝑑.

Since 𝐸1 and 𝐸2 are attractive, adding these corrections results in a minor shift of

the theoretical prediction towards the experimental behavior. Major portion of the

reduction in discrepancy between theory and experiments occurs only due to proper

consideration of relaxation effects near step edges.

2.3.3 Reconciling position-dependent interactions with the lattice-

gas model: Quarto interaction

Even though characterizing adatom interactions using position-dependent trios

seems adequate to bridge experimental observations and theoretical calculations on

Cu(1 0 0), such position-dependent interactions are not consistent with the lattice-

gas picture. As mentioned earlier in section 2.1, lattice-gas interactions should not

depend on local position and geometry. However, our calculations show that the

two trios 𝐸 ′
𝑑 and 𝐸𝑑 indeed have different interaction strengths. We can remedy

this problem by introducing a four-adatom, non-pairwise and non-trio quarto in-

teraction (𝐸𝑄) as shown in Fig. 2.6. If not included explicitly in the lattice-gas

parameterization, like in the case of Ref. [5], the quarto interaction gets added to

the strength of 2D-bulk trios. Hence, we get the following relation between 𝐸𝑄 and

the two right-isosceles trios (𝐸𝑑 and 𝐸 ′
𝑑)
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𝐸 ′
𝑑 = 𝐸𝑑 +

3

4
𝐸𝑄. (2.11)

Using equ. (2.11), the strength of 𝐸𝑄 on Cu(1 0 0) was calculated to be

𝐸𝑄 = 53± 16 meV. (2.12)

This is a significant energy in comparison to the collinear trio 𝐸𝑐 = -15 meV and

third neighbor interaction 𝐸3 = -8 meV. Hence, 𝐸𝑄 is likely to have consequences

in calculations of properties related to steps. Since this quarto interaction acts

to reconfine the adatoms to their laterally unrelaxed positions, it is repulsive and

rather substantial. Even though the possibility of such interactions has been known

for over three decades [26, 51], to the best of our knowledge, it has been invoked

only once prior to our calculations on Cu(1 0 0) [52]. A recent study has shown the

presence of such four-adatom quartos and even five-adatom quinto interactions on

homoepitaxial Al(1 1 0) and Al(1 0 0) systems [36].

2.4 Ab-initio calculations of interactions between Cu adatoms on

Cu(1 1 0)

2.4.1 Motivation

Experimental studies of Al(1 1 0) homoepitaxy have reported the formation

of regular pyramidal islands (nanohuts) under certain growth conditions [53]. Using

DFT calculations, Zhu et al. [54] computed the relevant diffusion barriers for un-
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derstanding the mechanism behind the formation of such nanohuts. Further, mech-

anisms for upward self-diffusion of individual adatoms and small adatom clusters

have also been found to exist on Al(1 1 0) and Cu(1 1 0) surfaces and the formation

of nanohuts is predicted on Cu(1 1 0) and other fcc metal (1 1 0) surfaces [55].

Ab-initio calculations [35, 36] have shown that a large number of trio interactions

of significant strengths and depending on the parameterization, strong four-atom

quarto and five-atom quinto interactions are present in the case of Al adatoms on

Al(1 1 0). In addition to that, among pair interactions, only NN interaction was

found to be attractive whereas all cross-channel pair interactions were repulsive. As

a result, the inclusion of multi-site trios in the lattice-gas parameterization was nec-

essary to account for the formation of 2D islands and nanohuts on Al(1 1 0). Due to

the more open nature of (1 1 0) surface compared to the other two high-symmetry

surfaces, relaxation effects are expected to be prominent on this surface, as observed

in the case of homoepitaxial Al/Al(1 1 0) system. Hence, the Cu/Cu(1 1 0) system

provides an ideal system for studying the effectiveness of lattice-gas characterization

in the presence of substantial relaxation effects.

As a substrate, Cu(1 1 0) finds application in the molecular self-assembly of a

large number of aromatic compounds; particularly in the case of a benzoate molecule,

the presence of Cu adatoms influences the orientation of the molecular assembly [56].

Ever since high magnetoresistance was found on Co/Cu [57] multilayers, Co thin-

film growth on Cu surfaces has generated much interest among surface scientists

due to potential applications in the field of spintronics. All of these findings make

the first-principles based study of surface energetics and thin film growth on Cu(1
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1 0) technologically important. To get a better understanding of nucleation and

growth on Cu(1 1 0) homoepitaxy, we have also computed the diffusion barriers for

the basic hops on this surface.

2.4.2 Computational Details

To compute the interactions between Cu adatoms on Cu(1 1 0), we used

density-functional theory [15, 16] based VASP [17, 18, 19, 20] along with ultra-

soft pseudopotentials and the Perdew-Wang ’91 generalized gradient approximation

(GGA) [40]. We used an energy cut-off of 17.2 Ry for the plane-wave basis set and,

to speed up the calculations, a Methfessel-Paxton [42] width of 0.2 eV. We used a

lattice parameter of 3.64 Å determined from a bulk calculation with a (1 × 1 × 1)

supercell sampled with an (11 × 11 × 11) k-point mesh. To check for consistency

in the computed energy values, we computed the energies using two supercells with

different lateral dimensions - (4 × 4 × 16) and (5 × 4 × 16) along ([1 1 0]×[0 0 1]

×𝑧) sampled by (4× 3× 2) and (3× 3× 2) k-point meshes, respectively. Our slab

was six atomic layers thick, and the rest of the supercell was filled with vacuum. In

Table 2.1, we list the changes in interlayer separations for a plain slab (without any

adatoms), computed using a (4× 3× 16) supercell sampled by a (4× 4× 2) k-point

mesh, as a percentage of their bulk separations. The values are in good agreement

with previous experimental measurements and theoretical calculations [58]. Since

the interlayer separation between the third and fourth layers is very small (less

than 1%, approximately 0.01 Å), we allowed only the top three layers to relax in
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Table 2.1: Change in the interlayer separation between 𝑖 and 𝑖+ 1 layers expressed
as a percentage of the corresponding bulk value. The values were calculated using
a (4× 3× 16) supercell with a slab that is 10 atomic layers thick. Only the top five
layers were allowed to relax; the rest of the layers were fixed at their bulk positions.
The error bars inside the parentheses give the range of variation of these values for
different supercells and different number of relaxing layers.

(𝑖, 𝑖+ 1) Δ𝑑𝑖,𝑖+1 (%)

(1,2) -9.7 (± 0.6)

(2,3) +4.0 (± 0.8)

(3,4) -1.9 (± 0.3)

(4,5) +0.4 (± 0.4)

(5,6) +0.08

our calculations. We put adatoms on only one side of the slab to avoid adatom

interactions through the slab because the interlayer spacing for layers on a (1 1 0)

surface is smaller than on (1 0 0) or (1 1 1) surfaces. Placing adatoms on only side

facilitates the usage of slabs of computationally feasible thickness for surface energy

calculations. Since charge transfer effects are not expected to be significant for this

case, this asymmetry should not have any significant effect. All atoms were allowed

to relax till the forces on them were less than 0.01 eV/Å.

We used the leave-𝑛𝜈 -out cross-validation method [59] to fit the computed

energies to the interaction parameters. This method is expected to perform better

than the commonly used leave-1-out cross-validation scheme [59]. The interaction

strengths were calculated in the following way: for a particular supercell, total

energies were computed for, say, 𝑛 different configurations of adatoms. In addition

to that, we posit the number of significant interactions (𝑛𝑖). We then use 𝑛𝑖 (out of

𝑛) equations to solve for the interaction energies. These interactions are then used
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to predict the energies of the remaining 𝑛𝜈 (𝑛𝜈 = 𝑛− 𝑛𝑖) equations. The prediction

error per adatom for a particular configuration 𝑗 (1 ≤ 𝑗 ≤ 𝑛𝜈) is calculated using

the following equation

Δ𝐸𝑗 =
𝐸𝑝𝑟𝑒𝑑(𝑗)−𝐸𝑉 𝐴𝑆𝑃 (𝑗)

𝑎𝑗
(2.13)

where 𝑎𝑗 denotes the number of adatoms in that configuration. The root mean

squared (rms) value of those errors

Δ𝐸𝑟𝑚𝑠 =

√√√⎷ 1

𝑛𝜈

𝑛𝜈∑
𝑗=1

(Δ𝐸𝑗)2 (2.14)

is then calculated. This procedure is repeated for different partitions of (𝑛,𝑛𝑖), and

sets of interactions from only those partitions whose Δ𝐸𝑟𝑚𝑠 values are lower than

a certain threshold value (10 meV/adatom) are considered for the final averaging

of interaction values. The number of significant interactions is varied, and the one

with the best convergence (𝑛𝑖 = 9 for lattice-gas model) is found. This procedure is

repeated for both supercells. To test for consistency, we also present cross-validation

(CV) scores (rms value of per adatom prediction errors) obtained when interaction

energies computed for a particular supercell, say (4 × 4 × 16), are used to predict

energies of adatom clusters in (5× 4× 16) supercell.
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2.4.3 Lattice-gas interactions between Cu adatoms on Cu(1 1 0):

Large multi-site interactions

The lattice-gas interactions of adatoms calculated using two different super-

cells are listed in Table 2.2. We considered six pair interactions with a maximum

range of 7.28Å (twice the lattice spacing), four trio interactions and three quarto

interactions. Except fifth-neighbor and sixth-neighbor interactions, all interactions

that were considered are shown in Fig. 2.8. The pair interactions 𝐸5 and 𝐸6 were

found to be very weak (around 5 meV) and including them worsened the CV scores.

Three of the multi-site interactions, 𝐸𝑇2, 𝐸𝑄2 and 𝐸𝑄3, were not found to be sig-

nificant. This makes the presence of sizable five-adatom quinto interactions on this

surface improbable; accordingly, we exclude them. Since 𝐸𝑄3 is small, presence of

a strong collinear quinto is unlikely. Also the two quintos that can be formed by

adding an adatom either along the in-channel or along the cross-channel direction

to the only sizable quarto interaction, 𝐸𝑄1, can be reasonably neglected due to the

smallness of 𝐸𝑄2 and 𝐸𝐶2 interactions.

The interaction energies computed using the two supercells are in very good

agreement with each other. The CV scores are very low (at most 9 meV/adatom)

and the maximum CV error for any case is only 23 meV/adatom (approximately 𝑘𝐵𝑇

at room temperature). As expected, the first-neighbor attraction is the strongest

interaction on the surface. Surprisingly, the next strongest interaction is the collinear

trio interaction, 𝐸𝐶1. The strong attractive nature of both interactions explain the

formation of long 1D islands at low temperatures (𝑇 < 220 K) along the in-channel
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Figure 2.8: Lattice-gas interactions used to characterize Cu adatom interactions on
Cu(1 1 0). In all the figures concerning Cu(1 1 0) surfaces, lighter mustard circles
represent adatoms and darker orange circles represent atoms in the substrate layer.
Multi-site interactions, 𝐸𝑇2, 𝐸𝑄2 and 𝐸𝑄3, were found to be insignificant. Table 2.2
gives the values of these interaction energies for different relaxation schemes.

direction as seen by Mottet et al. [60] in their kinetic Monte Carlo simulations. Also,

the computed values of 𝐸1 and 𝐸2 are in good agreement with their values. The

other pair interactions, 𝐸3 and 𝐸4, are small and repulsive. Remarkably, of the five

strongest interactions, three are multi-site interactions. Recently, such multi-site

interactions have been found on a variety of metallic surfaces [5, 22, 30, 31, 32, 33,

34, 35, 36]. Thus, multi-site interactions become vital for constructing a complete
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Table 2.2: Lattice-gas energies of Cu adatoms on Cu(1 1 0) computed using
(4×4×16) and (5×4×16) supercells with total, 𝑧- and no-relaxation schemes [23].
All energies are given in meV and the CV values are given in meV/adatom. The
numbers inside the parentheses indicate the absolute value of maximum CV error.

Total relaxation 𝑧-relaxation no-relaxation
Interactions (4× 4) (5× 4) (4× 4) (5× 4) (4× 4) (5× 4)

𝐸0 -3536 -3534 -3535 -3529 -3520 -3513

𝐸1 -223 -235 -209 -215 -230 -246

𝐸2 -31 -29 -35 -36 -33 -30

𝐸3 +5 +5 -19 -5 -7 +5

𝐸4 +13 0 +21 0 +19 0

𝐸𝐶1 -60 -45 -68 -57 -71 -54

𝐸𝐶2 -5 -10 -3 -7 -2 -6

𝐸𝑇1 +16 +17 +20 +16 +7 +3

𝐸𝑄1 -30 -19 -16 -6 +24 +32

CV(4× 4) 4(14) 9(23) 2(3) 9(19) 2(4) 9(19)

CV(5× 4) 3(6) 2(4) 5(13) 2(4) 6(13) 2(4)

lattice-gas picture [61].

2.4.3.1 Sensitivity of lattice-gas energies to adatom relaxations

When adatoms were allowed to relax along all directions, the displacements

were found to be primarily along the 𝑧 direction. The percentage changes in atomic

separations along the three directions due to relaxations are listed in Table 2.3. It is

evident that the reductions (both percentage and absolute) in adatom separations

along the 𝑧 direction are much greater than the corresponding values for the two

lateral directions. To assess the effect of relaxation on the interaction energies, we

computed interaction strengths with 𝑧- and no-relaxation schemes. The interaction
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Table 2.3: Percentage reduction in the distance between adatoms from the bulk
value due to adatom relaxation. To get absolute reduction, the values should be
scaled by 2𝑎 : 2

√
2𝑎 : 𝑎 where a = 3.64 Å is the lattice spacing.

Supercells Δ𝑑[11̄0] % Δ𝑑[001] % Δ𝑧 %

(4× 3× 16) -3.1 (%) -1.3 (%) -11.3 (%)

(4× 4× 16) -3.0 (%) -0.4 (%) -11.0 (%)

(5× 4× 16) -3.0 (%) -0.3 (%) -11.5 (%)

energies obtained for the cases of 𝑧- and no-relaxations are also given in Table 2.2.

Comparing the energy values computed using total and 𝑧-relaxation schemes

helps to identify the effects of lateral relaxations on lattice-gas energies. When

adatom interactions are computed using the 𝑧-relaxation scheme, almost all inter-

action energies, except 𝐸3 and 𝐸𝑄1, are close to the corresponding values obtained

with total relaxation. This could be attributed to the point mentioned above about

the relative magnitudes of relaxations along the three directions. It is surprising

that among the pair interactions, only 𝐸3 changes due to the suppression of lateral

relaxations. Since both the interaction and the corresponding change have small

magnitudes, we cannot tell whether the change is due to elastic interactions or some

unaccounted-for long-range interaction. On the other hand, the decrease in the mag-

nitude of the rectangular quarto interaction, 𝐸𝑄1, is readily explained: 𝐸𝑄1 arises

from the suppression of lateral relaxations of the trios, 𝐸𝑇1, when such trios are found

in the 2D-bulk layer of adatoms rather than near island edges. The same issue for

Cu(1 0 0) is discussed in detail in the previous section. Since lateral relaxations are

suppressed in the 𝑧-relaxation scheme, there is no difference in the values between

the 𝐸𝑇1 trios near the island edges and the ones in the 2D-bulk layer. Hence, the
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magnitude of 𝐸𝑄1 decreases significantly in the case of 𝑧-relaxation. The CV scores

for 𝑧-relaxation are as low as the ones obtained in the case of total relaxation.

Most of the interaction energies computed using the no-relaxation scheme do

not differ considerably from the ones computed using 𝑧-relaxation. The only in-

teractions whose values change remarkably are 𝐸𝑇1 and 𝐸𝑄1. Compared with the

corresponding values in the case of 𝑧-relaxation, 𝐸𝑇1 decreases by more than half;

from a moderately strong repulsion, it becomes vanishingly small. The change is

even more drastic for values of 𝐸𝑄1. From a strong attractive interaction (com-

parable in magnitude to 𝐸2) in total relaxation scheme, 𝐸𝑄1 changes to a weak

attraction when lateral relaxations are suppressed and, in turn, becomes a strong

repulsive interaction in the case of no-relaxation. The difference between the 𝑧- and

no-relaxation schemes is that in the latter, adatoms cannot optimize the lengths of

their bonds with underlying substrate atoms. Therefore, it is reasonable that the

corresponding changes in interaction values are drastic for those interactions (𝐸𝑇1

and 𝐸𝑄1) that share a common substrate atom.8 Once again, the cases of 𝐸𝑇1 and

𝐸𝑄1 stress the importance of relaxation effects while computing the strengths of

multi-site interactions. At the same time, the other two multi-site interactions, 𝐸𝐶1

and 𝐸𝐶2, seem insensitive to relaxation effects. Their values do not undergo any

significant change under different relaxation schemes. An explanation for the insen-

8In the 𝑧-relaxation scheme, among all the atoms in the substrate layer, the atom shared by
the 𝐸𝑄1 quarto adatoms, due to the highest value of its coordination number, gets closest to the
adatom layer. It is followed by the substrate atom shared by the 𝐸𝑇1 trio due to the same reason.
The change in the interlayer separation (measured along the 𝑧 direction) between the 𝐸𝑄1 quarto
and the shared substrate atom is -14.7% and the corresponding change for 𝐸𝑇1 trio and the shared
substrate atom is -13.4%. In comparison, the change in the interlayer separation of a lone adatom
and its nearest-neighbor substrate atom is -11.4%.
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sitivity of such collinear trios is presented in the summary section of this chapter.

In the lattice-gas parameterization of interactions between Cu adatoms on

Cu(1 1 0), certain multi-site interactions, and probably pair interactions, are found

to be very sensitive to adatom relaxations. It is noteworthy that the multi-site

interactions that are very sensitive to adatom relaxations, 𝐸𝑇1 and hence 𝐸𝑄1, are

the ones necessary to describe energies of adatoms near island edges. These are the

interactions relevant for computing experimentally verifiable physical quantities like

step stiffness and island shapes. Similar to the cases of Pt(1 1 1) and Cu(1 0 0), our

results on Cu(1 1 0) once again emphasize that in the lattice-gas modeling of steps,

relaxation effects are crucial for making connections with experiments.

2.4.3.2 Multi-site interactions as corrections to pair interactions -

discrepancy in 𝐸4 values

In all relaxation schemes, there is a difference between 𝐸4 values calculated

using (4×4×16) and (5×4×16) supercells. The interaction 𝐸4 is mildly repulsive

in (4 × 4 × 16) supercells, whereas it is negligible in (5 × 4 × 16) supercells. This

discrepancy can be understood if we consider 𝐸4 values along with 𝐸𝐶1 values in

these two supercells. In the case of total relaxation, the difference in 𝐸4 values is 13

meV with the (4×4×16) value being higher. At the same time, their 𝐸𝐶1 values differ

by -15 meV. The discrepancy between these two values is not surprising because the

collinear trio interaction (𝐸𝐶1) is, in fact, a correction term to fourth-neighbor (𝐸4)

interaction due to the presence of an adatom between the atoms that make up the
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pair. Also in (5 × 4 × 16) supercells, the numbers of 𝐸4 interactions in all of our

adatom configurations are either equal or very close to the corresponding numbers of

𝐸𝐶1 interactions. Thus, the difference in 𝐸4 is compensated by 𝐸𝐶1 values such that

the sums of those two interactions, calculated using the two supercells, are very close

to each other. The difference9 between 𝐸𝐶1+𝐸4 values is -2 meV for total relaxation

and 10 meV and 2 meV in the cases of 𝑧- and no-relaxations. Such discrepancies

might arise when multi-site interactions are used as corrections to pair interactions

and also when multi-site interactions that form a non-compact cluster (for example,

the quarto interaction, 𝐸𝑄2, is a compact cluster but the same arrangement without

the middle atom in the bottom row is a non-compact or an open cluster.) of adatoms

are used to parameterize adatom interactions. However, it does not pose a serious

problem to the accuracy of the interaction energies in this case can be seen from the

low CV scores.

2.4.4 Connector model characterization of adatom interactions

We also characterized the adatom interactions using the connector model [36],

which was recently developed as an alternative approach to deal with the presence of

many sizable multi-site interactions in a tractable way. In the connector model [36],

each adatom in a cluster is mapped onto a particular connector that has the same

number of each type of (first-, second-, and if necessary, third-) neighbor bonds. A

more accurate model should also take into account the orientations of these bonds.

9The energy difference (Δ𝐸) is calculated as the energy value computed using (5 × 4 × 16)
supercells subtracted from the corresponding energy value computed using (4× 4× 16) supercells.
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However, doing so would increase the total number of connectors needed to param-

eterize the interactions, thereby reducing the efficacy of the model. The energy of

the cluster is then written as the sum of the connector energies. One of the main

features of this model is that the type of connector contains information about the

local geometry of the adatom; hence relaxation effects are expected to be built into

the model. For adatom interactions on this surface, we find the number of signif-

icant interactions that gives the best convergence is 𝑛𝑖=10. The ten connectors

used to characterize adatom interactions on Cu(1 1 0) are shown in Fig. 2.9. Since

𝐸3 is weak, an adatom was mapped to the connector with the same number of

first-neighbor and second-neighbor bonds, i.e. adatoms with only a second-neighbor

bond are mapped to 𝐶3, while those with a second-neighbor bond along with one

or more third-neighbor bonds are mapped to 𝐶10.

Connector energies for all three relaxation schemes are listed in Table 2.4. The

CV scores are as good as those obtained using the lattice-gas approach. This success

is not surprising because each of the connector energies can be expressed as a linear

combination of lattice-gas energies. For example, the connector 𝐶6 can be written

as

𝐶6 = 𝐸0 +
𝐸1

2
+

𝐸2

2
+

𝐸3

2
+

𝐸𝑇1

3
+

𝐸𝑄1

4
(2.15)

The sensitivity of multi-site interactions is not apparent from the connector en-

ergy values due to the following reasons - (i) each connector has contributions from

adsorption energy (𝐸0 or 𝐶1) and other pairwise interactions that dominate over
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Figure 2.9: Connectors [36] used to characterize Cu adatom interactions on Cu(1 1
0). Table 2.4 gives the values of these interactions for different relaxation schemes.

contributions from multi-site interactions and (ii) also the contribution from a par-

ticular multi-site interaction is divided by the number of participating adatoms (see

Eq. (2.15)), further making the sensitivity of connector energies to adatom relax-

ations less apparent. However, this model incorporates such relaxation effects as

can be seen from the uniformly low CV scores for all relaxation schemes.

The connector model works well in the case of Cu(1 1 0), Al(1 1 0) and Al(1

0 0) [36]. It remains to be seen whether the connector model provides an adequate

solution, without the need for any ad hoc patches, to the overlayer problem. Re-

laxation effects become prominent during energy calculations of adatoms near step

edges; it is in such calculations the simple lattice-gas model runs into problems [22].
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Table 2.4: Connector energies of Cu adatoms on Cu(1 1 0) computed using
(4×4×16) and (5×4×16) supercells with total, 𝑧- and no-relaxation schemes [23].
All energies are given in meV and the CV values are given in meV/adatom. The
numbers inside the parentheses indicate the absolute value of maximum CV error.

Total relaxation 𝑧-relaxation no-relaxation
Connectors (4× 4) (5× 4) (4× 4) (5× 4) (4× 4) (5× 4)

𝐶1 -3540 -3533 -3538 -3530 -3522 -3512

𝐶2 -3647 -3651 -3641 -3639 -3635 -3638

𝐶3 -3561 -3549 -3559 -3547 -3537 -3528

𝐶4 -3795 -3815 -3796 -3809 -3810 -3822

𝐶5 -3555 -3555 -3553 -3553 -3535 -3535

𝐶6 -3649 -3655 -3647 -3646 -3642 -3643

𝐶7 -3800 -3791 -3794 -3791 -3800 -3795

𝐶8 -3669 -3661 -3665 -3661 -3656 -3651

𝐶9 -3795 -3791 -3804 -3798 -3797 -3794

𝐶10 -3532 -3538 -3521 -3535 -3508 -3519

CV(4× 4) 3(7) 9(25) 3(8) 8(21) 2(5) 7(17)

CV(5× 4) 6(13) 1(3) 6(12) 2(7) 6(11) 2(5)

At the same time, accommodating the relaxation effects encountered in such cal-

culations within the connector model might require the usage of connectors that

account for the orientations of neighbor bonds, resulting in an undesirably large

number of connectors in the model. A DFT-based study that compares these two

models on a surface like Pt(111), where such lateral relaxation effects are known to

complicate surface energy calculations, would shed some light on that matter.
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2.4.5 Diffusion barriers and formation of 2D islands

Diffusion barriers for Cu adatoms on Cu(1 1 0) have been calculated using

a variety of methods in the past [60, 62, 63] but, to our knowledge, not with a

DFT-based method.10 To this end, we calculated the diffusion barriers for the

most common hops on a (1 1 0) surface (cf. Fig. 2.10) using the nudged elastic

band (NEB) method [64, 65]. We did not compute the barriers for long jumps

and correlated exchange processes that are expected to occur on this surface at high

temperatures (𝑇 > 450K) [66] since these processes are tangential to the goals of this

chapter. The anisotropic bond-breaking model describes the diffusion barriers on

(1 1 0) surfaces accurately; Mottet et al. computed the barriers on Cu(1 1 0) using

Rosato, Guillopé and Legrand (RGL) potentials,11 and their results showed that

the barriers computed using the anisotropic bond-breaking model approximation

are very close (within 25 meV) to the directly computed barriers [60]. Hence, the

diffusion barriers for the most common hops are sufficient to model growth in the

low temperature (𝑇 < 300 K) range. Also, diffusion through metastable walk [68]

and leapfrog mechanisms [69, 70] are not relevant on this surface because Cu(1 1 0)

does not reconstruct. We used a (4×3×16) supercell sampled with a (4×4×2) k-

point mesh. The in-channel and cross-channel hopping barriers in the case of other

two bigger supercells, computed by placing an adatom at the respective bridge sites,

10Stepanyuk et al. [63] employed (VASP-GGA) to compute a few diffusion barriers for Co
adatoms on Cu(1 1 0) but the barriers for diffusion of Cu adatoms were computed using molec-
ular static (MS) calculations based on the second-moment approximation but fitted to ab-initio
calculations rather than to experimental data.

11The attractive part of the potential is derived using the second-moment approximation to the
tight-binding model and the repulsive part is assumed to be of a Born-Mayer type [67].
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Figure 2.10: Adatom hops along high-symmetry directions on a (1 1 0) surface. The
corresponding barriers are given in Table 2.5.

were found to be very close to the ones obtained using the (4 × 3 × 16) supercell.

Seven images were used to sample the potential energy surface.

The obtained barriers (cf. Table 2.5) are in good agreement with previous

theoretical calculations [60, 62, 63]. From the computed diffusion barriers, we can

say that the in-channel hopping and the exchange are the dominant mechanisms

responsible for intralayer diffusion. Our in-channel hopping and exchange barriers

computed using VASP (PW91-GGA) are higher than the corresponding values from

Table 2.5: Hopping barriers calculated using the NEB method. The hops are shown
in Fig. 2.10.

Hop Barrier (eV)

In-channel 0.322

Cross-channel 1.049

Exchange 0.351

Atop 1.448
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second-moment methods [60, 62, 63]. Our in-channel diffusion barrier is 0.12 eV

higher than the value computed using RGL potentials [60, 62] and by about 0.06 eV

higher than the value from MS calculation [63]. Similarly, the exchange barrier is

about 0.05-0.1 eV higher than the values from RGL potentials and MS calculations.

The reason behind the higher value of diffusion barriers in the case of VASP (PW91-

GGA) is not clear. However, it should be noted that the diffusion barriers for

Co on Cu(1 1 0) computed using VASP (PW91-GGA) are also higher than the

corresponding values from MS calculations [63]. Even though some cross-channel

interactions like 𝐸3 and 𝐸𝑇1 are repulsive, the attractive nature of 𝐸1, 𝐸2 and

𝐸𝐶1 and the small barrier for exchange hopping lead us to expect the formation of

compact 2D islands. In their kinetic Monte Carlo simulations, Mottet et al. [60] did

show such formation over a suitable temperature range.

2.5 Summary and discussion

Multi-site interactions are essential for sophisticated lattice-gas modeling of

steps on vicinal surfaces. Using DFT-based VASP calculations, we have shown that

multi-site interactions that have significant contributions from direct interactions are

very sensitive to relaxations on Pt and Cu homoepitaxial systems. In particular,

BEBO [46] arguments predict that the bond lengths decrease near step edges in a

way that compensates for the loss of NN atoms. As a result, adatom relaxations

are expected to be substantial for step edge atoms, which complicates the accurate

evaluation of multi-site interaction strengths. We showed that a straightforward

50



application of the lattice-gas model in such situations leads to incorrect theoretical

predictions.

Our calculation comparing lateral adatom relaxations on Pt and Cu(1 1 1)

surfaces using a (1 × 8 × 14) supercell provides a way to detect the presence of

substantial lateral relaxations near step edges. Similar calculations could provide

some insight into the possibility of relaxation effects on surfaces. However, relax-

ations need not be along lateral directions alone. As in the case of Cu(1 1 0) [23],

a major portion of atomic relaxations could take place along the vertical direction.

This makes difficult an a priori prediction about the existence of relaxation effects

on a particular surface. However, certain broad generalizations can be made about

situations in which lateral relaxations are likely to play a part. For configurations

that involve atoms that are sufficiently distant (usually second-neighbor or beyond)

such that the indirect (through-substrate) interaction accounts overwhelmingly for

the lateral interaction, such relaxation effects should be insignificant. Likewise, for

heteroepitaxial systems in which the adatoms are much smaller than the substrate

atoms, the direct interaction is likely to be unimportant even for nearest neighbors.

At the same time, it would be interesting to study relaxation effects on heteroepitax-

ial systems in the case of a small lattice mismatch. The cases of Cu(1 1 0) [23] and

Al(1 1 0) [35] show that relaxation effects are likely to be important on open surfaces,

so long as the adatoms are still close enough to experience direct interactions.

In Ref. [22], we gave the following argument for the higher sensitivity of multi-

site interactions to relaxations compared to pair interactions: in pair interactions,

owing to symmetry, lateral relaxations must occur along the bond direction. Since
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stretching or squeezing a bond is energetically expensive, the relative position of

those adatoms does not change much, thereby making pair interactions less sensitive

to relaxations. However, no such symmetry constraints exist for triangular trios

(𝐸𝑎 and 𝐸𝑏 on Pt(1 1 1), 𝐸𝑑 on Cu(1 0 0) and 𝐸𝑇1 on Cu(1 1 0)) and quartos

(𝐸𝑄 on Cu(1 0 0) and 𝐸𝑄1 on Cu(1 1 0)). Hence, the participating atoms can

shift by a considerable amount from their high-symmetry lattice sites along non-

bond directions. This results in significant changes in their interaction strengths,

thereby leading to a higher sensitivity to adatom relaxations. The same reasoning

also explains why certain multi-site interactions like 𝐸𝐶1 and 𝐸𝐶2 are not sensitive

to adatom relaxations. Due to symmetry, the adatoms in 𝐸𝐶1 and 𝐸𝐶2 interactions

on Cu(1 1 0) are forced to relax either along the close-packed [1 1 0] or the [0 0 1]

directions, the two primary bond directions on (1 1 0). As a result, the strengths of

𝐸𝐶1 and 𝐸𝐶2 interactions are unaffected by adatom relaxations. In addition to that,

among the pair interactions on Cu(1 1 0), only the 𝐸3 adatom pair is not compelled

by symmetry to relax along any bond directions. This could explain its fluctuations

with respect to relaxation schemes.

Accounting for relaxation effects in surface energies calculations normally in-

volves either the introduction of higher order multi-site interactions or the use of

large supercells (to minimize frustrated relaxations). On Cu(1 0 0) and Al(1 1 0)

surfaces, the relaxation effects could be handled efficiently through the introduction

of higher-order multi-site interactions. This approach does not work in the case

of Pt(1 1 1) because a four-atom parallelogram-shaped quarto interaction with NN

legs consists of both an 𝑎-trio and a 𝑏-trio and hence would not be able to distin-
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guish between the two steps.12 To distinguish between 𝐴- and 𝐵-step atoms using

compact clusters other than orientation-dependent trios, we need to introduce five-

atom quinto interactions in the model. The inclusion of a large number of multi-site

interaction parameters makes the lattice-gas model intractable. On Cu(1 1 0), our

results show that even such higher order multi-site interactions are not immune

to relaxation effects. In addition to increasing the computational cost associated

with the problem, such ad hoc approaches also severely undermine the efficacy of

lattice-gas models.

Our results provide a stark warning about blithely applying multi-interaction

lattice-gas models to overlayer systems involving adatoms having size comparable

to the substrate atoms and residing in structures with nearest-neighbor occupa-

tion. Given the fundamental place of the lattice-gas picture in modeling behavior,

such complications in the model could impede its applicability to a wide variety of

systems. Progress calls for imaginative approaches that go beyond ad hoc patches.

The connector model provides a good alternative for the lattice-gas model on certain

surfaces and holds some promise as a possible alternative for characterizing adatom

interactions. However, conclusive evidence has not yet been presented to show that

the connector model is immune to surface relaxation effects. We look forward to de-

velopment of parameterization methods that can consistently take subtle relaxation

effects on direct interactions into account.

12We consider only compact clusters because open clusters are again prone to relaxation effects.
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Chapter 3

Growth instabilities on Cu vicinals: Role of metallic impurities

3.1 Background

Spontaneous pattern formation through kinetically controlled epitaxial growth

provides a viable route for nanostructuring of surfaces. A thorough understanding

of atomistic mechanisms along with the knowledge of relevant surface energetics is

required to realize the potential of this method. The Cu surface is ideal for such

growth related studies because Cu(1 0 0) and its vicinals do not reconstruct. Ernst

and coworkers performed STM studies of homoepitaxial growth in the step-flow

mode on Cu(0 2 24) and Cu(1 1 17) [7]. Both surfaces have 2.17 nm wide (1 0 0)

terraces separated by open ⟨0 0 1⟩ (zigzag) steps on Cu(0 2 24) and close-packed ⟨0

1 1⟩ steps on Cu(1 1 17). The results of their experiments can be summarized as

follows - (i) in the 250-400 K temperature range, step meandering occurs on both

surfaces for deposition flux between 7.5× 10−4 and 1× 10−2 ML/s; the meandering

wavelength (𝜆𝑚) scales with the deposition rate (𝐹 ) as 𝜆𝑚 ∼ 𝐹−𝛾 with an exponent

𝛾 = 0.17 on Cu(0 2 24) and 0.21 on Cu(1 1 17), (ii) both close-packed ⟨0 1 1⟩

and open ⟨0 0 1⟩ steps undergo meandering instability and (iii) when deposition

is continued beyond 10 MLs at higher flux (𝐹 > 1 × 10−2 ML/s), small pyramids

appear on the surface [7]. The most common instability mechanism, the Bales-

Zangwill instability [71], caused by the presence of a sizeable Ehrlich-Schwoebel
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(ES) barrier [72, 73] (explained in detail in section 3.5), predicts 𝛾 = 1/2. In the

Bales-Zangwill mechanism, the presence of a large ES barrier makes the attachment

of adatoms to step edge from the terrace in front of the step edge more favorable than

the attachment of atoms from the terrace behind the step edge. This asymmetry

in adatom attachment makes the straight shape of the steps unstable and causes

step meandering. The experimental values of 𝛾 = 0.17 ± 0.09 on Cu(0 2 24) and

𝛾 = 0.21±0.08 on Cu(1 1 17) rule out the Bales-Zangwill mechanism as the possible

source of instability.

The failure of the Bales-Zangwill mechanism to account for the observed insta-

bilities led to the discovery of several alternate instability mechanisms [74, 75, 76, 77].

All of these alternate mechanisms rely on step edge diffusion (the dominant mode

of matter transport on metallic surfaces) of atoms as the possible source of in-

stability. Most of these models [74, 75, 76] showed that the presence of a kink

Ehrlich-Schwoebel barrier is sufficient to cause step meandering. Similar to the

Bales-Zangwill mechanism, the instability caused by the kink Ehrlich-Schwoebel ef-

fect (KESE) also predicts a power-law relation between the meandering wavelength

(𝜆𝑚) and the deposition rate (𝐹 ) with 𝛾 = 1/4. Even though this value of 𝛾 is closer

to the experimental observations, KESE also predicts that open ⟨0 0 1⟩ (zigzag) steps

do not undergo meandering, in contradiction to experimental observations. Subse-

quently, F. Nita and A. Pimpinelli [77] proposed a novel instability mechanism,

namely the unhindered step-edge diffusion (USED), in which atoms diffuse along

step edges in the presence of a vanishing or an extremely small kink ES barrier.

The USED mechanism makes both close-packed ⟨1 1 0⟩ and open ⟨1 0 0⟩ steps sus-
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ceptible to meandering. Further, with a small kink ES barrier of 0.01 eV, the USED

mechanism could reproduce morphologies very similar to experimentally observed

morphologies. However, the USED mechanism fails to account for the formation of

pyramids. Thus, both KESE and USED mechanisms could only account for some

of the key experimental observations. Also, it is known that step-edge diffusion-

induced meandering dominates over ES-barrier-induced meandering only for small

values of ES barrier [78]. However, low-energy electron microscopy (LEEM) ex-

periments give an ES barrier of 0.125 eV [79], and computational estimates based

on VASP give an ES barrier of 0.258 eV for close-packed steps and 0.143 eV for

open steps [80]. These results severely challenge the adequacy of the KESE and the

USED models in the case of Cu vicinals. As a result, a convincing explanation for

the experimental observations of Ernst and co-workers [7] was missing.

Using kinetic Monte Carlo simulations on a solid-on-solid lattice, A. B-H.

Hamouda et al. [81] showed that impurities codeposited on the surface (two-species

model) during growth could reproduce all the experimental observations. Their

simulations showed that, except for the appearance of pyramids, a combination of

the Bales-Zangwill and the USED mechanisms is sufficient to reproduce experimen-

tally observed morphologies (see Fig. 2 in Ref. [81]). However, impurity atoms are

required to obtain the observed 𝜆𝑚 − 𝐹 scaling behavior and also to account for

the formation of small pyramids. They considered only the case of (codeposited)

substitutional impurities (impurities that sit at high-symmetry lattice sites like Cu

atoms) in their model. Hence, the most important energetic parameters in their

model are the strengths of the Cu-Cu and Cu-impurity NN bonds and the barrier
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for hopping between NN sites (terrace diffusion) for an isolated atom. By varying

the strength of these energy parameters in simulations and comparing the results

with experimental morphologies, they found that only those impurity atoms (i)

whose nearest-neighbor (NN) bond to Cu adatom is about 1.6 times the strength of

the NN Cu-Cu bond and (ii) whose terrace diffusion barrier is greater than 1.6 times

the barrier of Cu adatom could cause the observed instabilities. Due to higher dif-

fusion barriers and higher binding energy to Cu adatoms, impurity atoms diffuse

more slowly than Cu adatoms. Also due to their stronger bonds with Cu adatoms,

impurity atoms obstruct Cu adatom diffusion and shorten their diffusion length.

This makes 𝜆𝑚 less sensitive to deposition rate (𝐹 ), resulting in smaller values of

the exponent 𝛾. Also, impurity atoms act as nucleation centers for the formation

of small pyramids. However, the impurity concentrations required to reproduce the

experimental value of 𝛾 is 2% on Cu(1 1 17) and 0.5% on Cu(0 2 24). In spite of its

reliance on impurity concentrations that are slightly above the normal values, the

impurity-based mechanism remains the only model that could account for all of the

experimental observations.

Kinetic Monte Carlo simulations of A. B-H. Hammouda et al. [81] have shown

that the presence of impurity atoms is responsible for the observed instabilities on

Cu. By computing the energy parameters in their model, i.e., NN binding ener-

gies and terrace diffusion barriers for certain candidate impurity atoms using ab

initio software packages, the relevant impurity atoms could be identified. In ad-

dition to providing an answer to the long-standing puzzle of growth instabilities

on Cu vicinals, knowledge about those impurity atoms could be used to achieve
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nanostructuring of Cu vicinals. Using DFT [15, 16]-based VASP [17, 18, 19, 20],

we have computed the NN binding energy (𝐸𝑁𝑁 ) and terrace diffusion barrier (𝐸𝑑)

for certain candidate impurity atoms. The specifics of our VASP calculations and

our results for candidate impurity atoms are given in the following section. We also

present surface morphologies after deposition of 40 MLs of Cu codeposited with

2% of impurities. Section 3.3 deals with simulations of growth in the submono-

layer regime in the presence of different impurity atoms. Remarkably, qualitative

differences in island nucleation behavior are observed based on the type of code-

posited impurity. In section 3.4, we discuss the distributions of capture-zone areas

in the submonolayer growth regime. In addition to terrace diffusion, there are other

adatom diffusion mechanisms on this surface, such as hopping over a step, exchang-

ing near a step edge, and embedding on a terrace (cf. Fig. 3.7). In section 3.5,

we present the barriers for these diffusion mechanisms for the most likely impurity

atoms (Fe, Mn and W) and the Cu atom. A summary of our results and concluding

remarks are presented in section 3.6.

3.2 What impurities are causing these instabilities?

To identify the impurity atom(s) responsible for meandering and mounding

instabilities on Cu vicinals, we initially chose a set of candidate impurity atoms

that consisted of both common vapor-phase impurities and heavier metallic atoms.

In typical growth experiments, there are two possible sources of impurities - (i) ele-

ments like O, S, and C that are present in the vapor phase and (ii) heavier metallic
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impurities like Fe, Sn, and Zn from the experimental apparatus, such as sample

holder, heating coil, etc. We calculated the 𝐸𝑁𝑁 and 𝐸𝑑 values for all candidate im-

purity atoms using VASP [17, 18, 19, 20] with the all-electron (frozen core) projector

augmented-wave (PAW) method [82]. For the exchange-correlation functional, we

used the generalized gradient approximation (GGA) of Perdew, Burke, and Ernz-

erhof (PBE) [83] supplied with the VASP package. The PAW-PBE potentials are

expected to give more accurate results than ultrasoft pseudopotentials for systems

involving transition metals with a large magnetic moment and transition metals at

the left side of the periodic table (e.g., Sc-Mn) [84]. The lattice constant was found

to be 3.64 Å (the same value as obtained in our calculations using GGA ultrasoft

pseudopotentials [22, 23]) from a bulk calculation using a (1 × 1 × 1) supercell sam-

pled by a (15 × 15 × 15) k-point mesh. We used a (4 × 4 × 14) supercell sampled

by a (5 × 5 × 1) k-point mesh. We modeled the Cu(1 0 0) surface on a slab of six

atomic-layer thickness. To speed up the calculations, we used a Methfessel-Paxton

width of 0.2 eV [42]. Adatoms were placed on only one side of the slab. To take into

account the effects of charge-transfer, we set the IDIPOL tag to 3 [85]. The sum

of dipole and quadrupole corrections were found to be on the order of a few meV

(maximum correction = 6 meV) for all impurity atoms. Such a small correction is

expected because of the few adatoms (a maximum of two) used in the calculations.

Atoms in the bottom three layers were fixed in their bulk positions, and all other

layers were allowed to relax until the net force on the atoms was less than 0.01

eV/Å. For VASP calculations involving more than one atomic species, unless spec-

ified explicitly in the INCAR file, the higher of the two ENMAX values prescribed
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in the POTCARs of the two species is used as the energy cut-off for the plane-wave

basis set [85]. For consistency in the calculated energy values, we set the energy

cut-off for the plane-wave basis to 400 eV, the highest prescribed ENMAX value [85]

among all candidate impurity atoms.

The NN bond strength (𝐸𝑁𝑁 ) between an impurity atom (𝑋) and a Cu adatom

is calculated using the following formula:

𝐸𝑁𝑁 (𝐶𝑢−𝑋) = 𝐸(𝑠𝑙𝑎𝑏⊕ 𝐶𝑢−𝑋)−𝐸(𝑠𝑙𝑎𝑏⊕ 𝐶𝑢)−𝐸(𝑠𝑙𝑎𝑏⊕𝑋) + 𝐸(𝑠𝑙𝑎𝑏)

(3.1)

where 𝐸(𝐴) denotes the total energy of the configuration 𝐴. The configurations are

written in the slab ⊕ adatom format; adatoms sit at high-symmetry lattice sites

and a hyphen (-) denotes a NN bond. To compute the energy barrier for terrace

diffusion (𝐸𝑑), we calculated the total energy of the configuration with the adatom

at a bridge site. A nudged elastic band (NEB) [64, 65] calculation for the terrace

diffusion of an isolated Cu atom using seven images showed that the bridge site is

indeed the saddle point along the path of terrace diffusion. The barrier for terrace

diffusion (𝐸𝑑) then becomes

𝐸𝑑 = 𝐸(𝑠𝑙𝑎𝑏⊕𝑋𝑏𝑟𝑖𝑑𝑔𝑒)− 𝐸(𝑠𝑙𝑎𝑏⊕𝑋). (3.2)

The computed 𝐸𝑁𝑁 and 𝐸𝑑 values for all candidate impurity atoms are listed in Ta-

ble 3.1. On this surface, the strength of the Cu-Cu NN bond is 0.350 eV (very close

to previous estimate based on VASP-GGA [5]), and the terrace diffusion barrier for
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Cu atoms is 0.564 eV. These values are much higher than the corresponding values

(𝐸𝑁𝑁 = 0.15 eV and 𝐸𝑑 = 0.4 eV) used in the simulations of Ref. [81]. Accordingly,

no significant adatom motions were observed in the experimental temperature range.

In order to simulate growth in the step-flow mode, the temperature was raised to

425 K in the simulations.1 The raising of the temperature in simulations is reason-

able because atoms deposited on surfaces during molecular-beam epitaxy initially

possess kinetic energy that could help them overcome such high barriers at lower

temperatures, the so-called “transient-mobility” [86, 87]. From the conditions de-

duced from KMC simulations in Ref. [81], the responsible impurity atoms should

have a bond strength of around 0.5 eV and a diffusion barrier greater than 0.8 eV

to cause the observed instabilities.

Based on their 𝐸𝑁𝑁 and 𝐸𝑑 values the candidate impurity atoms can be clas-

sified into four sets (cf. Fig. 3.1). The sets are named using the chemical symbols

of the elements in the set and the sequence of the elements in the set name is de-

termined by their 𝐸𝑁𝑁 value. Our simulations show that codeposition of Cu with

impurities from different sets results in qualitatively different surface morphologies;

at the same time, codeposition of Cu with different impurities from the same set

results in similar surface morphologies. All the vapor-phase impurity atoms, O,

C, and S, form the first set, henceforth called OCS set in this chapter. All of

these atoms, despite adsorbing strongly on Cu(1 0 0), actually repel Cu adatoms at

1The temperature used in the simulations of Ref. [81] falls in the experimental temperature
range. To see significant atomic motion for the case of barriers computed using VASP, we scaled
the simulation temperature (compared to the temperature used in Ref. [81]) by the same factor as
the ratio of the 𝐸𝑑 values for Cu used in the two sets of simulations. This is reasonable because
the diffusion of lone Cu atoms is the predominant atomic motion in this case.
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Table 3.1: Nearest-neighbor bond strengths and terrace diffusion barriers for several
impurity atoms on Cu(1 0 0) computed using VASP. Within each set, the impurities
are arranged based on their 𝐸𝑁𝑁 values. The values inside the parantheses are
computed with an energy cut-off of 275 eV for the plane-wave basis set.

Element 𝐸𝑁𝑁 (eV) 𝐸𝑑 (eV)

Cu 0.350 0.564 (0.563)

O -0.337 0.775
C -0.251 1.827
S -0.119 0.900

Ag 0.277 0.309
Sn 0.307 0.432
Zn 0.312 0.314
Al 0.422 0.493

Pd 0.343 0.698
Ni 0.384 0.795
Si 0.386 0.862

Co 0.414 0.891
Fe 0.444 0.909(0.902)
Mn 0.474 0.879(0.872)
W 0.639 (0.640) 0.913 (0.895)

nearest-neighbor positions. The repulsion is strongest in the case of O. Thus, these

impurity atoms do not satisfy the condition that they bind more strongly to Cu

atoms. At the same time, their 𝐸𝑑 values are very high and are well in the range

expected of responsible impurities. The surface morphology after deposition of 40

MLs of Cu atoms with 2% of C impurity atoms is shown in Fig. 3.2(a). From the

figure it can be seen that no mounds are formed in the presence of C impurities,

and there is very little variation in the height of the surface. Morphologies obtained

while doping Cu with other impurities in this set are very similar to the one shown in

Fig. 3.2(a). We later learnt from Dr. Thomas Maroutian, who was involved with the

experiments, that since S was a well known impurity in Cu samples during the time
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Figure 3.1: Plot of 𝐸𝑁𝑁 and 𝐸𝑑 values for candidate impurity atoms (except C,
whose values lie beyond the range of this plot) relative to the values for Cu (origin).
Each set is marked with a distinct symbol: blue triangles - OCS impurities, grey
discs - AgSnZnAl impurities, cyan squares - PdNiSi impurities and green diamonds
- CoFeMnW impurities.

this set of experiments was performed, the sample was desulfurized carefully; hence,

sulfur could not have caused the instabilities, which is consistent with our results.

These results conclusively show that vapor phase impurities are not responsible for

the growth instabilities on Cu observed in experiments.

The second set consists of the elements Ag, Sn, Zn, and Al. The 𝐸𝑁𝑁 (with

the exception of Al) and 𝐸𝑑 values of all the atoms in the AgSnZnAl set are smaller

than the corresponding values for Cu. The electronic configuration of all elements

in this set consists of either a completely filled d-orbital or a no valence d-orbital

(Al). Similar to the case of pure Cu, smooth layer-by-layer growth occurs when

one of these impurity atoms is codeposited with Cu. Also, no mounds form when
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Figure 3.2: Surface morphologies from our kinetic Monte Carlo simulations after
deposition of 40 MLs of Cu with 2% of (a) C, (b) Al, (c) Ni, and (d) W impurity
atoms. The color scheme covers a height range of 0-5 nm in (a) and 0-3 nm in
all other panels. The lateral dimensions of the panels are 800 × 800 in units of
lattice spacings (1 lattice spacing = 2.57 Å). Similar morphologies are obtained if a
particular impurity is replaced by another impurity from the same set.

any of these metallic impurities are codeposited on the surface during growth (see

Fig. 3.2(b)). The 𝐸𝑁𝑁 values of elements in the PdNiSi set are close to the 𝐸𝑁𝑁

value of Cu but their diffusion barriers are higher than (1.25-1.5 times) that of Cu.

Except for Si, the other elements in this set have nearly filled d-orbitals. Again

no mounds form during the codeposition of impurities in this set. The surface

morphology obtained with Ni impurity (see Fig. 3.2(c)) is very similar to the one

obtained with Al impurity. The main difference lies in the smaller meandering
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wavelength in the case of the PdNiSi set of impurities compared to AgSnZnAl set

of impurities.

The last set of impurities consists of the mid-transition elements Co, Fe, Mn

and W, hence called CoFeMnW set. Their 𝐸𝑁𝑁 values are higher than that of Cu

and their 𝐸𝑑 values fall in the range expected of impurity atoms. Of the four atoms,

only W has 𝐸𝑁𝑁 and 𝐸𝑑 values expected of responsible impurity atoms. At the

same time, square-shaped pyramids form on the surface for all impurity atoms in

this set except Co. Even though the energies for Co are comparable to those of

Fe and Mn, fewer mounds appear during its codeposition with Cu. Whether this

is due to the lower 𝐸𝑁𝑁 value of Co or due to an unsuitable temperature range

in the simulations is not clear. It could also be due to the fact that the 𝐸𝑁𝑁 and

𝐸𝑑 values for Co are close to those of Ni. A higher 𝐸𝑑 barrier does not make a

big difference, since impurity atoms are mostly immobile in the simulations. As

a result, Co could equally well be categorized in the PdNiSi set. An analysis of

whether Co actually belongs to the CoFeMnW set is tangential to the goal of this

study. Fig. 3.2(d) shows the morphology obtained when Cu is codeposited with W

atoms. This simulated surface morphology is very similar to the one obtained in

experiments (cf. Fig. 3(c) in Ref. [7]). The impurity concentration of 2% is much

higher than the typical impurity concentrations in experiments. At the same time,

the areal density of pyramids in Fig. 3.2(d) is also much higher than the areal density

observed in the experiments. Hence, experimentally observed surface morphologies

could be obtained at much lower (less than 1% impurity).

From our VASP calculations and KMC simulations, we have narrowed down
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the possible set of impurity atoms to Fe, Mn and W. Further narrowing down is pos-

sible only with more information regarding the experiments. There are two possible

sources of the impurities - (i) impurity atoms from the source that were activated

at higher temperatures and (ii) impurities from the experimental apparatus. If the

impurities really originated from the source, no further narrowing down is possible

because the exact composition of the sample is very difficult to ascertain. However,

if the responsible impurities originated from the experimental apparatus, then W

and Fe have a higher chance than Mn of being the responsible impurity atom. In

fact, Dr. Thomas Maroutian has confirmed that a W heating element was indeed

used in the experiments. Further evidence in favor of W comes from the fact that

in the experiments, pyramids begin to appear only when deposition flux is greater

than 1 × 10−2 ML/s. A higher deposition flux is attained by raising the tempera-

ture of the source and an increase in the temperature of the heating element results

in the evaporation of more W atoms from the wire. All of these points indicate

that W atoms from the heating element are most likely responsible for the observed

instabilities on Cu vicinals.

Our results show that impurity atoms codeposited during growth can signifi-

cantly affect the resultant surface morphologies. Depending on their 𝐸𝑁𝑁 and 𝐸𝑑

values relative to the corresponding values for Cu, codeposition of these impurity

atoms results in specific surface morphologies. Thus, by computing the 𝐸𝑁𝑁 and 𝐸𝑑

values for any element, we can predict the morphologies that would result during the

codeposition of Cu with a small concentration of atoms of that particular element.

Even though this study concerns only the case of impurities on Cu, these results can
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be easily extended to other metallic surfaces. Our results show that by introducing

the right type of impurity during growth, we can manipulate the resulting surface

morphology. Attaining the ability to manipulate resultant morphologies is an im-

portant step towards achieving nanostructuring of vicinal surfaces. From Fig. 3.2,

it is very clear that surface morphologies obtained after 40 MLs of deposition of Cu

with impurity atoms from different sets are different from each other. To explore if

such differences in morphologies are already present at early stages of island nucle-

ation, we simulated island growth in the presence of impurities in the submonolayer

regime. Our results are presented in the next section.

3.3 Island nucleation in the presence of impurities

To study the early stages of island nucleation in the presence of impurities, we

simulated surface morphologies for coverage (𝜃) up to 0.7 ML. In the submonolayer

regime, deposition of pure Cu results in the formation of monatomic height islands.

Fig. 3.3(a) shows the surface at 0.3 ML coverage. For the case of pure Cu, nucleation

in the second layer is very rare for 𝜃 ≤ 0.7 ML. This behavior is consistent with the

layer-by-layer growth observed in the step-flow mode for Cu. At the temperature

used in our simulations (T = 425 K), Cu atoms diffuse freely on the surface and

combine with already nucleated islands. The number of islands (𝑁𝑖) shows little

variation with 𝜃 (cf. Fig. 3.4(a)), whereas the average island size2 (AIS) increases

linearly with 𝜃 (cf. Fig. 3.4(b)). For 𝜃 > 0.4 ML, 𝑁𝑖 decreases with 𝜃, indicating the

2The island size is the areal spread of the island at the first layer measured in units of lattice
sites. Since the atoms in the second layer are not considered, this is not equal to the number of
atoms in islands.
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onset of coalescence of islands. Since the barriers for impurities in the AgSnZnAl

are smaller than the corresponding barriers for Cu, codepositing 2% of Zn or Al

impurities with Cu also leads to qualitatively similar results. Similar to the case

of pure Cu, nucleation in the second layer is very rare for Cu codeposited with

AgSnZnAl impurities (see Fig. 3.3(c)). Also, the variation of 𝑁𝑖 with 𝜃 in the

presence of these two impurities is very similar to the behavior observed for pure

Cu. For all coverages, the AIS obtained with the codeposition of either Zn or

Al impurities is very close to the value obtained for pure Cu (cf. Fig. 3.4(b)).

Fig. 3.3(b) shows that Al atoms are located in the interior of Cu islands.

In the case of C and O impurities, 𝑁𝑖 increases rapidly with 𝜃 throughout the

regime. Since O and C repel Cu atoms at NN positions, they separate from Cu

islands. Both impurities have very high barriers for terrace diffusion; hence, they

remain immobile at the simulation temperature. As a result, the surface consists of

two types of adatom structures - (i) large Cu islands with very few O or C atoms

in them and (ii) single O or C atoms (see Fig. 3.3(b)). For all coverages, single-

atom islands form a huge proportion (approximately 60-88%) of the total number of

islands. Further, the proportion of single-atom islands3 increases with 𝜃. When Ni

or Si atoms (impurities from the PdNiSi set) are codeposited with Cu, 𝑁𝑖 increases

linearly with 𝜃 for small coverages (𝜃 ≤ 0.3 ML) and remains almost constant in

the 0.4 ≤ 𝜃 ≤ 0.5 ML regime. Beyond a certain coverage (𝜃 = 0.5 for Ni, 0.6 for

Si), coalescence sets in, resulting in a decrease in 𝑁𝑖 with 𝜃. This behavior is very

3Since single O or C atoms remain isolated irrespective of 𝜃, we treat them as single-atom
islands throughout this study. Treating them as islands also provides notational ease during the
characterization of capture-zone areas (see following section).
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Figure 3.3: Surface morphologies after a deposition of 0.3 ML of (a) pure Cu and
Cu codeposited with 2% of (b) C, (c) Al, (d) Ni, and (d) W impurities. The darker
(brown) atoms denote substrate atoms, the lighter (bright red) atoms denote Cu
adatoms and the pale (whitish-gray) atoms on the adatom layer are the impurities.
The lateral dimensions of the panels are 100 × 100 in units of lattice spacings (1
lattice spacing = 2.57 Å).

similar to the cases of pure Cu and Cu with AgSnZnAl impurities. Fig. 3.3(d) shows

that the islands are smaller compared to the case of pure Cu which is also reflected

in the smaller values of average island size compared to the case of pure Cu (see

Fig. 3.4(a)). As is clear from Fig. 3.3(d), Ni impurities are found inside the islands.

Island nucleation behavior in the submonolayer regime is very similar for the

cases of Fe, Mn and W impurities. The 𝑁𝑖 and AIS values for both Fe and W

impurities are close to each other for all coverages (see Fig. 3.4). For both cases, 𝑁𝑖

increases with coverage (𝜃) but the rate of increase becomes smaller with coverage

69



Figure 3.4: Dependence of (a) number of islands (𝑁𝑖) and (b) average island size
(AIS) on coverage (𝜃).

(𝜃). For neither impurity does coalescence of islands occur. Similar behavior is

observed for Mn impurities but coalescence sets in near our highest examined cov-

erage (𝜃 = 0.6 ML). As is clear from Fig. 3.3(e), many small islands (≤ 10 atoms)

form on the surface during the codeposition of W impurities. Such small islands

also form for Fe impurities, as reflected in the much smaller (compared to pure Cu)

AIS values.4 All of these small islands contain an impurity atom, which shows that

4The proportion of small islands (≤ 10 atoms) to the total number of islands is 26-35% for Cu
with W impurities, 24-38% for Cu with Fe impurities and 18-38 % for Cu with Mn impurities but
it is only 2-11 % for pure Cu. The proportion monotonically decreases with 𝜃 for all of these cases,
and the lower end of the values correspond to 𝜃 = 0.7 ML.
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impurities act as nucleation centers for the formation of islands.

Some limited nucleation occurs in the second layer in the cases of PdNiSi

and CoFeMnW set impurities and extremely rare instances of third layer nucleation

occurs only for CoFeMnW set impurity atoms at high coverages (𝜃 ≥ 0.5 ML).

Neglecting the case of OCS impurities in which the presence of single-atom islands

clouds the picture, our results show that higher 𝐸𝑁𝑁 values between Cu and impurity

atom leads to higher 𝑁𝑖 values at all coverages (cf. Fig. 3.4(a)), consistent with the

results in Ref. [88]. Our KMC simulations have shown that distinct island nucleation

behavior is obtained depending on the type of impurity codeposited with Cu. In

addition to that, the panels in Fig. 3.4 show that similar behavior is obtained when

Cu is codeposited with two different impurities from the same set, justifying our

characterization of impurities into sets. To further quantify the differences in island

nucleation behavior, we have also computed the distribution of capture-zone areas.

The following section discusses these distributions.

3.4 Distribution of capture-zone areas

One of the important parameters in characterizing submonolayer epitaxial

growth is the critical-nucleus size (𝑖), i.e., the size of the largest unstable island on

that surface. The value of 𝑖 depends on quantities like the bond strength, tem-

perature and deposition flux (𝐹 ). Studies based on simulations have shown that 𝑖

uniquely determines the island-size distribution (ISD) [89]. This connection led to

several, albeit unsuccessful, attempts at finding an analytic expression for describ-
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ing ISDs. A simple description for ISDs has remained elusive due to the following

reasons - (i) the mean-field nature of the approach that neglects spatial fluctuations

in island sizes and (ii) the dependence of ISD on the ratio of the monomer diffusion

coefficient (𝐷) to that of the deposition flux (𝐹 ). To overcome these difficulties,

Mulheran and Blackman [90] proposed an alternative approach to extract 𝑖 from

the distribution of capture zone5 (CZ) areas. However, due to the complexity in-

volved in extracting 𝑖 in this approach, a semi-empirical formula was normally used

to extract 𝑖 from experimental data.

Random matrix theory has been very successful in handling fluctuations in

energy-level spacings [91], and the Wigner surmise [92] derived using random ma-

trix ideas gives an excellent description of spacing distributions in a wide range

of physical systems [91, 93]. In the field of surface science, the Wigner distribution

was generalized to describe the terrace-width distributions of steps [9]; this approach

provides a direct way to measure the step-step interaction strength. Chapter 4 deals

with this issue in greater detail. Recently, Pimpinelli et al. [93] showed that the fluc-

tuations in the CZ areas are similar to the fluctuations in level spacings and that

the generalized Wigner distribution (GWD)

𝑃𝛽(𝑠)=𝑎𝛽𝑠
𝛽e−𝑏𝛽𝑠

2

, 𝑏𝛽=

[
Γ(𝛽+2

2
)

Γ(𝛽+1
2
)

]2
, 𝑎𝛽=

2𝑏
(𝛽+1)/2
𝛽

Γ(𝛽+1
2
)

(3.3)

gives an excellent description of CZ area distribution during island growth. The

constants 𝑏𝛽 and 𝑎𝛽 are fixed by the conditions of unit-mean and normalization.The

fit parameter (𝛽) is related to the critical-nucleus size (𝑖)

5Capture zones are Voronoi polygons built around the nucleation centers of islands.
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𝛽 =
2

𝑑
(𝑖+ 1) (3.4)

where 𝑑 is the spatial dimension for 1D and 2D systems.6 The GWD gives an excel-

lent fit for the CZ areas for data from both simulations [93] and experiments [94, 96].

At the same time, the single-parameter gamma distribution (Π𝛼(𝑠) =
𝛼𝛼

Γ(𝛼)
𝑠𝛼−1𝑒−𝛼𝑠)

gives a comparably good description of the distribution of CZ areas. In 1D, the

spacing distribution of 𝑁 interacting particles is determined by the range of in-

terparticle interaction - interaction up to nearest-neighbors results in the single-

parameter gamma distribution (Π𝛼(𝑠)) whereas an infinite-range interaction results

in GWD [97]. Since it is hard to identify the range of interaction in the case of CZs,

no formal justification can be made for the choice of fitting function. Also, it is very

hard to identify the correct fitting function based on the quality of fits. Nevertheless

the GWD fit is preferable due to a simple connection between the fit parameter (𝛽)

and the critical-nucleus size (𝑖). In the case of the gamma distribution, there is no

way, to the best of our knowledge, to extract physical information about the system

from the fit parameter 𝛼.

Even though Eq. (3.4) was derived for the case of deposition of a single species,

it provided useful insights regarding the nucleation of pentacene islands in the pres-

ence of pentacenequinone impurities [96]. Also, the GWD gives a very good fit for

the areas of CZs constructed around InAs quantum dots on GaAs [94]. One of the

problems involved in extending the GW-based approach to two-species deposition

is the ambiguity in the definition of 𝑖. For impurities on Cu, this issue is especially

6𝑑 = 2 in 3D but its value in 4D is unclear [94, 95].
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Table 3.2: The values of 𝛽 obtained from the GW fits to our simulation data. The
impurity concentration is 2%. The values in bold font correspond to the island
coalescence regime.

𝜃(ML)→ 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Cu - 4.5 4.4 4.7 5.3 6.0 6.2 6.0

Cu + O - 1.9 1.6 1.7 1.4 1.3 1.2 1.1

Cu + O - 1.9 1.7 1.6 1.7 1.5 1.4 1.4

Cu + Zn - 4.5 5.7 5.6 6.5 6.7 7.2 7.1

Cu + Al - 5.2 5.3 5.8 6.0 6.2 6.3 7.0

Cu + Ni - 2.9 3.5 3.8 4.5 4.9 5.5 5.9

Cu + Si - 2.5 2.7 3.3 3.5 4.0 4.3 4.9

Cu + Fe 2.3 2.1 2.2 2.4 2.9 3.1 3.3 3.5

Cu + Mn 2.2 2.0 2.4 2.5 3.1 3.0 3.5 3.6

Cu + W - 2.2 2.0 2.3 2.6 2.7 2.8 2.9

important for the OCS and the CoFeMnW set impurities, whose 𝐸𝑑 values are much

higher than that of Cu atoms. Due to very high diffusion barriers, codeposition of

these impurities leads to the formation of either single-atom (in the case of OCS

impurities) or few atom (CoFeMnW set impurities) islands on the surface along

with large islands. In addition to that, the GW formalism is applicable only dur-

ing the early stages of nucleation, i.e., before the onset of coalescence. In spite of

these issues, our results show that the GWD gives a very good fit to our data (cf.

Fig. 3.5). The fits are good even for coverages beyond the onset of coalescence of

islands. To determine the fit parameter (𝛽) we used the non-linear fitting function

in MATHEMATICA
R⃝
. All the data points were weighed equally in obtaining the

fits. The 𝛽 values obtained from our fits are listed in Table 3.2. The variation of 𝛽

with coverage (𝜃) is plotted in Fig. 3.6.
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Figure 3.5: Distribution of CZ areas from our simulations (symbols) fitted with the
GWD (solid curves): pure Cu at 𝜃 = 0.6 ML (blue triangles) fitted with 𝑃6.2(𝑠) (blue
curve), Cu with 2% Ni impurities at 𝜃 = 0.4 ML (red circles) fitted with 𝑃4.5(𝑠) (red
curve) and Cu with 2% W impurities at 𝜃 = 0.2 ML (green diamonds) fitted with
𝑃2(𝑠) (green curve). The case of pure Cu at 𝜃 = 0.6 ML falls in the coalescence
regime.

Certain interesting results emerge from the GW fits to our simulation data

(refer Table 3.2). Except for the case of OCS impurities, 𝛽 tends to increase mono-

tonically with 𝜃. For pure Cu, 𝛽 remains a constant during the initial stages of

nucleation. From Eq. (3.4), we see that 𝑖 lies between 3 and 4 for 𝜃 ≤ 0.4 ML.

The fit parameter 𝛽 continues to increase for 𝜃 above 0.4 ML (coalescence regime).

Similar trends are obtained for Zn and Al impurities. For the same coverage, the 𝛽

values for AgSnZnAl impurities are slightly higher than the corresponding value for

pure Cu, which implies an increase in 𝑖 value during the codeposition of AgSnZnAl

impurities. This increase in 𝑖 is due to the higher mobility of AgSnZnAl impurities

compared to Cu atoms. For OCS impurities, 𝛽 decreases with coverage throughout

the regime. The 𝛽 values for O and C impurities lie between 1 and 2, denoting a
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Figure 3.6: Dependence of 𝛽 on coverage (𝜃) when Cu is codeposited with 2% of
impurity atoms.

critical-nucleus size between 0 and 1. The value of 𝛽 gets closer to 1 as coverage is

increased. As is clear from Fig. 3.3(b), the surface consists of many single-impurity-

atom islands interspersed with large Cu islands. Hence, the critical-nucleus size (𝑖)

becomes a weighted average of the corresponding value for these impurities (𝑖 =

0) and the value for Cu (3 < 𝑖 <4). Since the proportion of single-impurity-atom

islands increases with coverage, 𝑖 is weighed more by the value for impurities and

hence shifts towards 0 for higher 𝜃. This results in a decrease in 𝛽 values with 𝜃.

For the CoFeMnW set impurities, the obtained 𝛽 values are much less (by

2-4) than those for pure Cu, indicating a significant reduction in the critical-nucleus

size. This reduction in 𝑖 is understandable because the CoFeMnW impurities have

higher barriers for diffusion, and hence, are immobile at the experimental tempera-

ture range. Due to stronger bonds with Cu atoms, these impurities act as nucleation

centers for the formation of islands, as reflected in the large number of small islands
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in Fig. 3.3(e). Hence, similar to the OCS impurities, 𝑖 = 0 for the CoFeMnW im-

purities. Since they do not separate from Cu islands, unlike OCS impurities, the

behavior of 𝛽 with 𝜃 for the CoFeMnW impurities is similar to the cases of Cu

with AgSnZnAl, PdNiSi impurities and pure Cu. For all coverages, the 𝛽 values

for PdNiSi impurities lie between the 𝛽 values for pure Cu and those for Cu with

CoFeMnW impurities. The PdNiSi impurities have higher barriers for diffusion than

Cu and hence, have a smaller 𝑖 value than Cu. At the same time, unlike CoFeMnW

impurities, they are not immobile at the simulation temperature, which is also con-

firmed by the absence of small islands in the case of Ni impurity (cf. Fig. 3.3(d)).

Application of the GW-formalism developed in Ref. [93] provides valuable insights

about early stages of island nucleation for the case of impurities on Cu. Once again,

similar behavior is obtained for codeposition of impurities from the same set.

3.5 Embedding, Exchange, Hopping and Ehrlich-Schwoebel barriers

As mentioned in section 3.2, the 𝐸𝑑 values for all candidate impurity atoms

listed in Table 3.1 were computed as the difference in energies between the configu-

ration in which the impurity atom is at a FCC site and the configuration in which

the impurity atom is at a bridge site. Since a nudged elastic band (NEB) [64, 65]

calculation for the terrace diffusion of a Cu atom showed that the bridge site is the

point of highest energy, we did not perform NEB-based computations of 𝐸𝑑 for all

impurity atoms to minimize the expense of computational resources. In this section,

we present the results of our NEB calculations of 𝐸𝑑 for Fe, Mn and W. In addition
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to terrace diffusion, there are other adatom diffusion mechanisms, such as embed-

ding, hopping over a step-edge, and exchange near a step-edge (cf. Fig. 3.7) through

which adatom transport takes place on vicinal surfaces. The NEB method [64, 65]

implemented in VASP provides a useful way to compute the barriers for these dif-

fusion mechanisms.

The embedding process is a concerted diffusion process involving an adatom

and one of its NN substrate atoms (cf. Fig. 3.7). During embedding, an adatom

displaces one of its NN substrate atoms and gets embedded in the substrate layer

while the substrate atom is pushed to the adatom layer. For homoepitaxial systems,

this process leads to no net energy change. However when impurity adatoms that

bind more (less) strongly to Cu atoms undergo embedding, it results in a reduction

(increase) in the total energy of the system because four lateral Cu-Cu NN bonds

are replaced by four Cu-impurity NN bonds during embedding. The embedding of

adatoms in the substrate layer plays an important role during the early stages of

nucleation. For instance, the embedding process leads to a reduction in total energy

for a system of Co adatoms on Cu(1 1 0), and the embedding barrier for Co adatoms

was found to be comparable to their in-channel diffusion barrier [63]. As a result,

Co adatoms undergo embedding upon deposition and act as nucleation centers for

displaced Cu atoms. This behavior was crucial to explain the paramagnetic behav-

ior of Co thin films on Cu(1 1 0) [63]. Since Fe, Mn and W bind more strongly

to Cu atoms, embedding of these atoms leads to a decrease in the total energy of

the system. If their embedding barriers (𝐸𝑒𝑚𝑏) are not higher than their respective

terrace diffusion (𝐸𝑑) barriers, these atoms could undergo embedding upon deposi-
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Figure 3.7: Adatom diffusion mechanisms on a (1 0 0) surface: (1) terrace diffusion,
(2) embedding process, (3) hopping over a step, and (4) exchange process. The
green atoms represent the diffusing adatom, the blue atoms represent the topmost
layer of the substrate and the grey atoms represent atoms in the slab. The point
of intersection of the hopping path (3) and the horizontal line (red line) marks the
saddle point for this process.

tion. Once embedded, due to lower energies in the embedded state, these impurities

remain embedded and act as nucleation centers for the growth of pyramids. This

further strengthens the connection between impurity atoms and nucleation centers

for pyramids. Thus, it becomes important to compute 𝐸𝑒𝑚𝑏 values for all of these

impurity atoms.

One of the important parameters in KMC simulations of growth in the step-

flow mode is the ES barrier. The ES barrier is the extra energy required to diffuse

across a step edge (from an upper terrace to a lower terrace) compared to diffusion
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on a flat terrace

𝐸𝐸𝑆 = 𝐸ℎ𝑜𝑝 −𝐸𝑑. (3.5)

As mentioned earlier, a high ES barrier would rule out step-edge diffusion-induced

meandering as the dominant instability mechanism on this surface [78]. Hence, a

high ES barrier, if found, would exclude the KESE and the USED mechanisms

as the possible instability mechanism on this surface. Prior to the computation

of actual ES barriers, an ES barrier about half the strength of 𝐸𝑁𝑁 for Cu was

assumed for both Cu and impurity atoms in the simulations. In the case of Cu,

this value (𝐸𝐸𝑆 = 0.175 eV) is very close to a previous calculation of 𝐸𝐸𝑆 using

VASP [98]. In addition to hopping over a step, adatoms also diffuse to a lower

terrace through an exchange process (cf. Fig. 3.7). The relative magnitudes of the

hopping and exchange barriers determine the dominant adatom diffusion mechanism

between neighboring terraces. One of the experimental features that is absent from

the KMC simulations of Ref. [81] is the alignment of the pyramids along the step

direction. Since impurities act as nucleation centers for the growth of pyramids, the

diffusion of impurity atoms near the step edge could explain this minor discrepancy

between experimental observations and KMC simulations. Among these diffusion

mechanisms, only terrace diffusion and hopping over step edges are considered in the

KMC simulations of Ref. [81] and this study. Since both embedding and exchange

diffusion processes are concerted two-atom processes, it is harder to incorporate

them in kinetic Monte Carlo simulations; accordingly, they were neglected in our
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simulations. For a complete understanding of the step-flow growth on Cu vicinals in

the presence of impurities, it is important to include these diffusion mechanisms for

both Cu atom and impurity atoms in our study. This section discusses the results of

our barrier calculations for hopping (𝐸ℎ𝑜𝑝), embedding (𝐸𝑒𝑚𝑏) and exchange (𝐸𝑒𝑥𝑐)

processes.

To compute the terrace diffusion (𝐸𝑑) and embedding (𝐸𝑒𝑚𝑏) barriers, we used

a (4×6×14) supercell and sampled it with a (4×3×1) k-point mesh. We used a slab

that is six atomic layers thick, with the bottom three layers fixed, and all other layers

were allowed to relax until the net force on the atoms was less than 0.01 eV/Å. Since

Cu and the three impurity atoms are all transition metals, a high energy cut-off of

400 eV for the plane-wave basis set is not required to obtain reasonably accurate

values. The ENCUT values mentioned in the respective POTCAR files for all three

atoms fall in the 223-273.2 eV range. Hence, we used an energy cut-off of 275 eV

for the plane wave basis set in these calculations. To check that reducing the energy

cut-off does not affect the accuracy of the computed energy values significantly, we

recalculated 𝐸𝑑 values for Cu, Fe, Mn and W on a (4 × 4 × 14) supercell with an

energy cut-off of 275 eV. The results are listed inside the parentheses in Table 3.1.

Since the recalculated 𝐸𝑑 values are very close (maximum difference of 18 meV,

within 2% difference) to the values computed with 400 eV cut-off, an energy cut-off

of 275 eV was deemed sufficient for the barrier calculations. All of the diffusion

barriers were computed using the nudged elastic band (NEB) method [64, 65] in

VASP.

The terrace diffusion barrier (𝐸𝑑) was computed using the NEB method with
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Table 3.3: Embedding, hopping and exchange diffusion barriers for Cu, Fe, Mn and
W atoms on Cu(1 0 0) computed using VASP. The respective ES barriers are listed
inside the parantheses next to the hopping barriers. All energy values are given in
eV.

Element 𝐸𝑑 𝐸𝑒𝑚𝑏 𝐸ℎ𝑜𝑝 (𝐸𝐸𝑆) 𝐸𝑒𝑥𝑐

Cu 0.550 0.695 0.695 (0.145) 0.510

Fe 0.911 0.427 1.316 (0.405) 0.295

Mn 0.865 0.397 1.334 (0.469) 0.233

W 0.880 0.262 1.845 (0.965) 0.094

three images between the high-symmetry FCC site and the nearest bridge site. Since

the diffusion path is symmetric, it is sufficient to sample only half of the diffusion

pathway. Similar to Cu, our calculations show that, for all atoms, the bridge site is

the saddle point along the diffusion pathway. The 𝐸𝑑 values from our calculations

are listed in Table 3.3. It is clear that the terrace diffusion barriers computed using

the large (4 × 6 × 14) supercell are very close to the values from (4 × 4 × 14)

supercell.7 To compute 𝐸𝑒𝑚𝑏 values, we sampled the diffusion pathway using five

images. For the three impurity atoms, the final configurations are 0.76 eV (Fe), 0.86

eV (Mn), and 1.7 eV (W) lower in energy than the respective initial configurations.

The results of our embedding barrier calculations are listed in Table 3.3. Except

for Cu, the 𝐸𝑒𝑚𝑏 values of these elements are less than 1/2 the magnitude of their

corresponding 𝐸𝑑 values. Since the 𝐸𝑒𝑚𝑏 values for all three impurity atoms are

7Due to a very high adsorption energy (approximately 8 eV), subtle relaxation effects affect
the accurate computation of 𝐸𝑑 in the case of W. The value of 𝐸𝑑 for a path along 𝑥̂ is 0.767
eV and for a path along 𝑦 is 0.880 eV. For the path along 𝑥̂, substrate atoms in contact with
the diffusing W adatom are 5 atomic spacings (along 𝑦) apart from their periodicity-replicated
“images” compared to 3 atomic spacings (along 𝑥) for the path along 𝑦. Hence, the substrate
atoms in contact with the diffusing W atom can shift more in the former case than the latter,
resulting in a smaller separation between the W atom and the substrate layer. Since W adsorbs
strongly on the substrate, the saddle point is at a lower energy in the former case. Such relaxation
effects are known to complicate lattice-gas characterization of adatom interactions on many metallic
surfaces. Chapter 2 deals with this issue in detail.
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lower than the 𝐸𝑑 values for Cu, these atoms could undergo embedding easily at

the simulation temperature. As mentioned earlier, due to their stronger bond to

Cu, the embedded impurity atoms then act as nucleation centers for the growth of

islands. For Cu, even though 𝐸𝑒𝑚𝑏 is higher than 𝐸𝑑, Cu atoms can still undergo

embedding at the simulation temperature. Hence the embedding process becomes

an important adatom diffusion mechanism on this surface.

To compute the hopping (𝐸ℎ𝑜𝑝) and exchange (𝐸𝑒𝑥𝑐) barriers, we removed

three (four-atom) rows from the sixth layer to create a three atomic rows wide

upper terrace (sixth layer) and lower terrace (fifth layer) (cf. Fig. 3.7). For both

𝐸ℎ𝑜𝑝 and 𝐸𝑒𝑥𝑐 calculations, we sampled the pathway using five images. In the case of

hopping over a step, the saddle point was found to be on the upper terrace slightly

beyond the step edge towards the lower terrace (cf. Fig. 3.7). The 𝐸ℎ𝑜𝑝, and hence

𝐸𝐸𝑆, values are listed in Table 3.3. For Cu, we find 𝐸𝐸𝑆 to be 0.145 eV, close to the

previous theoretical calculations [80, 98] and the value used in our KMC simulations.

Compared to Cu, the hopping barriers (𝐸ℎ𝑜𝑝) of the responsible impurity atoms, Fe,

Mn, and W, are very high. The high values of 𝐸ℎ𝑜𝑝 would prohibit this process in the

temperature range at which the experiments were performed. Hence, the presence

of these impurities obstructs the smooth layer-by-layer growth observed in the case

of pure Cu.

In the case of the exchange process, the final configuration is about 0.98 eV

(Fe), 1.1 eV (Mn), and 1.8 eV (W) lower in energy compared to the initial config-

uration for impurity atoms. The 𝐸𝑒𝑥𝑐 values (cf. Table 3.3) for all four atoms are

much smaller than the respective 𝐸ℎ𝑜𝑝 values. Also, the 𝐸𝑒𝑥𝑐 values for all atoms are
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such that the exchange process can take place easily at the experimental tempera-

ture. This shows that the dominant mechanism for adatom diffusion from an upper

terrace to a lower terrace is via the exchange process. The 𝐸𝑒𝑥𝑐 values for all three

impurity atoms are much smaller than the value for Cu. This is consistent with the

reasoning in Ref. [99] that the exchange barrier for adatoms that are strongly bonded

to the substrate atoms should be smaller than that for weakly bonded adatoms. In

this study, we extend this generalization to other diffusion barriers - atoms with

higher NN binding energies with the substrate atoms (𝐸𝑁𝑁) have higher barriers for

terrace diffusion (𝐸𝑑) and hopping over a step (𝐸ℎ𝑜𝑝) but lower barriers for embed-

ding (𝐸𝑒𝑚𝑏) and exchange (𝐸𝑒𝑥𝑐) processes. Except for a high 𝐸𝑑 value for Fe, this

generalization holds true for the values listed in Table 3.3. Due to small barriers for

embedding and exchange processes in the case of responsible impurities, Fe, Mn and

W, these atoms undergo an embedding or exchange process after deposition. This

would explain why such a high concentration of impurity atoms went undetected

in the experiments. Both embedding and exchange processes result in the impurity

atom being lodged in a position with four NN atoms; this restricts further motion

of the impurity atoms. Hence, including these two process in the KMC simulations

should not change our results in any significant way. However, it would be interest-

ing to investigate the connection between the exchange process and the alignment

of pyramids along the direction of a step.
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3.6 Summary

Growth on Cu vicinals has been studied thoroughly by the late H.-J. Ernst

and co-workers [7]. However, the instabilities observed in their experiments lacked

proper explanation. The failure of the Bales-Zangwill instability mechanism to ac-

count for the observed instabilities has resulted in the discovery of several alternate

instability mechanisms. None of these instability mechanisms could account for all

experimental observations. The instability mechanism based on codeposition of im-

purities during growth [81] alone could reproduce all the experimental observations.

Using KMC simulations and DFT-based VASP calculations, we have narrowed down

to Mn, Fe and W the impurity atoms responsible for growth instabilites on Cu. Dis-

cussions with members of Ernst’s group who performed the experiments indicate

W atoms originating from the heater in the experimental apparatus as the possible

cause behind the observed instabilities.

In addition to identifying W as the most likely impurity atom responsible for

growth instabilities on Cu vicinals, our study has shown that impurity atoms can be

categorized into sets based on their 𝐸𝑁𝑁 and 𝐸𝑑 values relative to the correspond-

ing values for the substrate atoms (Cu in our case). Qualitatively similar surface

morphologies result when any one of the impurities from the same set is codeposited

with Cu during growth. As a result, by computing the 𝐸𝑁𝑁 and 𝐸𝑑 values for atoms

of a particular element and categorizing that element into an appropriate set, we can

predict the surface morphologies that would result when a small proportion of these

atoms is codeposited with Cu atoms. Our results also show that distinct surface
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morphologies are obtained when two impurities from different sets are codeposited

(separately) with Cu. Further, snapshots of the surface in the submonolayer regime

show that these differences in surface morphologies originate during early stages of

nucleation. We have also characterized the differences in the surface morphologies

in the submonolayer regime through GW fits to the distributions of CZ areas. Even

though our results pertain to the case of Cu, they can be easily generalized to other

surfaces. This study shows a method to achieve nanostructuring of surfaces through

the codeposition of suitable impurity atoms during growth.
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Chapter 4

Terrace-width Distributions of Touching Steps1

4.1 Overview

Physical quantities, such as the kink formation energy (𝜖𝑘) and the step-step

interaction strength (𝐴), that are normally used to understand and predict mor-

phological evolution of vicinal surfaces can be estimated from statistical analysis

of step fluctuations [2, 3]. With the development of advanced surface imaging

techniques, such as scanning tunneling microscopy (STM), low energy electron mi-

croscopy (LEEM), reflection electron microscopy (REM), step fluctuations can now

be studied thoroughly. The terrace-width distribution (TWD) provides an useful

quantity for characterizing both equilibrium and non-equilibrium step fluctuations.

It is expressed as the probability distribution, 𝑃 (ℓ), of finding neighboring steps at

separation ℓ.

At low-temperatures (relative to the roughening temperature of the terrace

plane), the predominant thermal excitations on vicinal surfaces are kinks along the

step, with kink formation energy (𝜖𝑘). There are negligibly few adatom or vacancy

excitations along the terrace, since their energy is much higher than 𝜖𝑘 (4𝜖𝑘 per atom

on a simple cubic lattice routinely used in Monte Carlo simulations). Hence, the

terrace-step-kink (TSK) model is well suited for modeling such surfaces. According

1Adapted from Ref. [8].
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to the “Maryland notation”, the position of the 𝑖-th step edge in this TSK model

is x𝑖(y𝑛), where sans serif denotes discreteness; y𝑛 is defined only at the centers of

step-edge atoms, with the index 𝑛 changing by 1 for unit displacement along 𝑦. The

energy contribution from kinks is 𝜖𝑘
∑
𝑖,𝑛 ∣x𝑖(y𝑛+1)− x𝑖(y𝑛)∣.

Since overhangs are energetically forbidden, steps cannot cross each other (no-

crossing condition). This leads to a decrease in configurational entropy whenever two

steps get closer to each other, resulting in an 1/ℓ2-type entropic repulsion between

steps. In addition to this entropic repulsion, there can also be an elastic (or possibly

dipolar) repulsion between steps, which decays asymptotically as 1/ℓ2, the same

behavior as the entropic repulsion. The elastic repulsion is approximated by the

“instantaneous” form2 𝐴
∑
𝑗>0 ∣x𝑖+𝑗(y𝑛) − x𝑖(y𝑛)∣−2. This expression is well defined

for non-touching steps (x𝑖+1(y𝑛) > x𝑖(y𝑛)). Combining the contribution from kinks

with energetic interactions, the Hamiltonian of a surface with fluctuating steps can

be written as3

𝐻 =
𝐿𝑦∑

y𝑛=1

⎛
⎜⎜⎝

𝑁∑
𝑖,𝑗=1

𝑖>𝑗

𝐴

∣x𝑖(y𝑛)− x𝑗(y𝑛)∣2 +
𝑁∑
𝑖=1

𝜖𝑘∣x𝑖(y𝑛+1)− x𝑖(y𝑛)∣

⎞
⎟⎟⎠ . (4.1)

With only 1/ℓ2 repulsions, there is just one characteristic length, the mean step

separation ⟨ℓ⟩, in the 𝑥 direction, and so the TWD essentially depends only on the

dimensionless length 𝑠 = ℓ/⟨ℓ⟩:

𝑃 (𝑠 = ℓ/⟨ℓ⟩) = ⟨ℓ⟩𝑃 (ℓ). (4.2)

2The repulsion acts only between step edge atoms with the same y𝑛 values. Hence, the inter-
action is termed instantaneous due to the time-like nature of 𝑦.

3To include screw periodic boundary condition, the first term is changed to 𝐴∣x𝑗(y𝑛) +𝑁⟨ℓ⟩−
x𝑗(y𝑛)∣−2 for 𝑖 > 𝑗 + (𝑁/2).
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Along with the no-crossing condition, it is normally assumed that steps do not touch

each other except at corners (e.g., x𝑖+1(y𝑛) = x𝑖(y𝑛+1)), i.e., all the steps are taken

to be of monatomic height. This is a reasonable assumption because formation of

double-, and hence multi-layer high step costs energy.

For analytic modeling it is more convenient to use the step-continuum approx-

imation [2], which allows 𝑥𝑖(𝑦) to vary continuously with 𝑦. Since 𝑥𝑖(𝑦) is single

valued, the configuration of steps in two spatial dimensions (2D) can be viewed as

the worldlines of particles evolving in 1D: 𝑦 becomes time-like. The non-touching

condition underlies their characterization as spinless fermions (or hard bosons) in

1D, and the stiffness 𝛽, which can be related to 𝜖𝑘, is their “mass”. In this frame-

work, the instantaneous interstep repulsion strength 𝐴 enters only as a dimensionless

combination

𝐴 = 𝐴𝛽𝛽2 (4.3)

where 𝛽 is 1/(𝑘𝐵𝑇 ). Since 𝐴 determines the morphology of and communication

between steps, gauging it is crucial to understanding step behavior. One of the

straightforward ways of measuring 𝐴 is through the measurement of TWDs. An

excellent review of the various approximation schemes used to extract 𝐴 from TWDs

can be found in Ref. [9]. The non-touching condition together with screw-periodic

boundary conditions along 𝑥 direction make the step edges analogous to the spinless

fermions along a chain [or on a 1D ring] of the Calogero-Sutherland models [21]. The

key parameter in these models 𝜚 is related to 𝐴 through4

4We use 𝜚 rather than the conventional 𝛽 to avoid confusion with stiffness or inverse temper-
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𝜚 = 1 +
√
1 + 4𝐴; 𝐴 =

𝜚

2

(
𝜚

2
− 1

)
. (4.4)

For 𝜚 =1,2,4, the ground-state probability density, which corresponds to 𝑃 (𝑠), re-

duces to the distribution of eigenvalues for random matrices with orthogonal, uni-

tary and symplectic symmetry, respectively [91]. Accordingly, they are excellently

approximated by the Wigner surmise [92]:

𝑃𝜚(𝑠)=𝑎𝜚𝑠
𝜚e−𝑏𝜚𝑠

2

(4.5)

where the constants 𝑏𝜚 and 𝑎𝜚 are fixed by the conditions of unit-mean and normal-

ization

𝑏𝜚=

[
Γ(𝜚+2

2
)

Γ(𝜚+1
2
)

]2
, 𝑎𝜚=

2𝑏(𝜚+1)/2
𝜚

Γ(𝜚+1
2
)
. (4.6)

For stepped surfaces there is no reason for 𝐴 to have the special values 0 or 2

(𝜚 = 2 or 4), and -1/4 (𝜚 = 1) is unphysical. Thus, we have taken Eq. (4.5) to apply

for arbitrary 𝜚 ≥ 2 or 𝐴 ≥ 0 and call it the generalized Wigner distribution (GWD).

The GWD gives a better description of TWDs measured from both experiments

and numerical simulations than any of the preexisting models [9, 100]. Though

there is no formal justification based on random matrix theory for generalizing the

Wigner surmise for arbitrary values of 𝜚, Eq. (4.5) was shown to be the steady-state

solution of the Fokker-Planck equation derived for the case of 1D Coulomb gas [101].

In addition to putting the GWD on a firm theoretical footing, the Fokker-Planck

ature.
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formalism also gives valuable information about the relaxation of TWDs from an

initially strained configuration towards equilibrium. Recently, the time constant of

relaxation (𝜏) was found to be related to the atomistic processes that underlie step

fluctuations [102]. All of these findings emphasize the importance of the GWD in

studying properties of step fluctuations.

Adding the more restrictive non-touching condition to the veridical non-crossing

condition makes the fermion analogy possible, enabling the analytic treatment of

TWDs. The fermion analogy would also preclude steps from coinciding, to form

multilayer steps. However, double- or multi-layer high steps could occur physically

during step fluctuations. This issue has largely been ignored or glossed over. In this

chapter, we show how the loosening of this non-touching condition alters the form

of the terrace-width distribution (TWD) and, thence, the apparent strength of the

step-step repulsion (𝐴) deduced from it. Such touching steps are more likely to be

found on surfaces with one or more of the following properties - (i) low step stiffness,

(ii) closely spaced steps (small separation ℓ) and (iii) steps with little or no energetic

interaction between them. In the case of ABAB stacking, steps separated by half

lattice spacing (𝑎/2), the smallest possible separation between adjacent steps, also

constitute instances of step touching [103].

If we allow touching steps, two or more step edges can be at the same position

(xi(yn) ≤ xi+1(yn)), the analogy with 1D fermions is not strictly valid. This issue is

much more significant for discrete models. Since touching is a contact interaction,

its effect on TWDs should be insignificant for larger step separations (higher values

of 𝑠), and TWDs of touching steps should converge to the GWD for large 𝑠. In
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the opposite small-𝑠 limit, where 𝜚 (and hence 𝐴) is sensitive to the TWD, touch-

ing effects should be significant, impacting measurements of step-step interaction

strength. Such a situation gives rise to the following questions: How do touching

steps alter the TWD? How should one measure the step-step interaction on a surface

with touching steps? Using Monte Carlo simulations, we have studied the TWDs

of touching steps. The specifics of our simulation are given in section 4.2 and our

results are presented in section 4.3. In section 4.4, we show how to incorporate the

effects of touching in step-step interaction strength (𝐴) measurements. In section

4.5, we discuss the mapping of touching steps to non-touching steps under specific

conditions. Section 4.6 deals with the possibility of multi-step bunching and faceting

transitions in the case of AT steps.

4.2 Monte Carlo simulations of touching steps

Since we are interested in equilibrium TWDs (rather than step dynamics) of

touching steps, we used the Metropolis method in our Monte Carlo simulations.

We modeled the vicinal surface using the TSK model with steps along the ⟨1 0

0⟩ direction (straight steps). The underlying lattice was taken to be simple cubic.

Steps were allowed to fluctuate via the attachment-detachment process. Step edge

diffusion was suppressed in our simulations. To focus clearly on the problem of

concern, we considered only the case of “free-fermions”: 𝐴 = 𝐴 = 0⇒ 𝜚 = 2. This

eliminated divergences of the elastic repulsion term when the steps touched and

also avoided the issue of whether all steps or just neighboring steps experienced this
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repulsion. There are two energy parameters in this model - (i) the kink formation

energy (𝜖𝑘) and (ii) the energy (𝜖𝑡) of two adjacent steps touching to form a double-

height unit segment. For the sake of simplicity, we assumed a linear relationship

between the height of the step and the formation energy of a double-height step, i.e.,

the energy required to form a 𝑝-layer high step is (𝑝−1)𝜖𝑡. We set the temperature of

the simulations such that 𝛽𝜖𝑘 = 2, as in our group’s previous simulation studies [100,

101]. We simulated the TWDs for values of 𝜖𝑡 ranging from 𝛽𝜖𝑡 =∞ (non-touching

case) down to 𝛽𝜖𝑡 < 0.5 In the rest of this chapter, we refer to steps with an energy

cost for doubling (𝛽𝜖𝑡 ≥ 0) as RT (repulsively touching) steps, and steps for which

doubling is energetically favored (𝛽𝜖𝑡 < 0) as AT (attractively touching) steps. The

rationale behind such a categorization is discussed later in this section.

We simulated the TWDs of touching steps on surfaces with ⟨ℓ⟩ = 6, 8, 10, 12

and 16. We fixed the length of the steps (𝐿𝑦) to be 𝐿𝑦 = 500 for terraces with ⟨ℓ⟩

= 6, 8, 10 and 𝐿𝑦 = 600 for terraces with ⟨ℓ⟩ = 12 and 16. These 𝐿𝑦 values were

found to be sufficient to eliminate the finite-size effect due to short step lengths in

the resulting TWDs. On surfaces with touching steps, once a 𝑁 -layer high step

(𝑁 = total number of steps on the surface) forms at a certain lattice point, the

no-crossing condition forbids further step fluctuations at that lattice point. As a

result, all the steps get pinned at that point, leading to a zippering transition in

which all steps on the surface eventually form a 𝑁 -atom high bunch. To avoid this

unpleasant scenario, we used 𝑁 = 40 for terraces with ⟨ℓ⟩ = 6, 8, 10, 12 and 𝑁 =

28 for the ⟨ℓ⟩ = 16 terrace. Even though using higher value of 𝑁 does not preclude

5Alternately, we could fix the value of 𝛽𝜖𝑡 and simulate the TWDs for different values of 𝜖𝑡/𝜖𝑘.
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the bunching transition, it drastically reduces the probability of the occurrence of

such a transition.

To investigate the effect of step stiffness 𝛽 on TWDs of touching steps, we

also simulated the TWDs of surfaces with steps along the ⟨1 1 0⟩ direction (fully

kinked steps). Further motivation comes from the fact that the applicability of

the generalized Wigner formalism for this case has not been reported. Since fully

kinked steps have smaller 𝛽 than straight steps [4], we consider the simplest case in

which ⟨1 1 0⟩ steps fluctuate freely (without energy cost). However, attachment and

detachment processes were allowed to take place only at kink sites to maintain an

equal number of kinks and anti-kinks. We restricted ourselves to the freely touching

(𝜖𝑡 = 0) case. To measure step separations between fully kinked steps, we followed

the mapping method proposed by Abraham et al. [104]. In all of our simulations, we

started with an initial surface configuration of equally spaced steps. We let the steps

fluctuate until the variance of the TWD reached a steady value before measuring

the TWDs. The results of our simulations are presented in the following section.

4.3 The modified generalized Wigner distribution and effective at-

traction

From our Monte Carlo simulations, we find that allowing step touching alters

the resulting TWDs (𝑃 (𝑠)) from that of non-touching steps (𝑃2(𝑠)) in two major

ways: (i) 𝑃 (0) > 0 and (ii) 𝑃 (𝑠) is broader than 𝑃2(𝑠) [8]. For terraces with the

same step touching energy (𝜖𝑡), the deviation is greater for surfaces with smaller ⟨ℓ⟩
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values (cf. Fig. 4.1(a)) and for surfaces with the same ⟨ℓ⟩, the deviation is greater

for surfaces with smaller 𝜖𝑡 values (cf. Fig. 4.1(b)) [8]. The deviation from 𝑃2(𝑠) can

also be quantified as follows: 𝑃2(𝑠) divides the TWDs of touching steps into three

regions as marked in Fig. 4.1(a). In regions I (0 ≤ 𝑠 <∼ 0.5) and III (𝑠 >∼ 1.5), TWDs

of touching steps have higher values compared to 𝑃2(𝑠), while in region II, they have

lower values. Despite the deviation, the TWDs of both touching and non-touching

steps rise as power-laws for small 𝑠 and decay as Gaussian for large 𝑠. For the TWD

of touching steps, we make the ansatz

𝑃𝛾,𝜚 = 𝑃 𝑡(𝑠) + 𝑎𝛾,𝜚𝑠
𝜚𝑒−𝑏𝛾,𝜚𝑠

2

; 𝑃 𝑡(𝑠) ≡ 𝑃 (0)𝑒−𝛾𝑠 (4.7)

where 𝑃 𝑡(𝑠) describes the distribution for small values of 𝑠, capturing the effect

of touching. The second term is the generalized Wigner distribution modified to

accommodate the first term; 𝛾 and 𝜚 are the fit-parameters and 𝑃 (0) is the value

of the distribution at 𝑠 = 0 measured experimentally or through simulations. The

quantity ⟨ℓ⟩−1𝑃 (0) (cf. Eq. (4.2)) gives the ratio of double- or multiple-atomic

height step edge lengths to the total length of step edges on the surface. From the

normalization and unit-mean constraints of 𝑃𝛾,𝜚(𝑠), we get

𝑏𝛾,𝜚
𝑏𝜚

=
1

𝜆2
, 𝜆 ≡ 1− 𝑃 (0)

𝛾2

1− 𝑃 (0)
𝛾

(4.8a)

and

𝑎𝛾,𝜚
𝑎𝜚

=
Θ

𝜆𝜚
, Θ ≡ 1− 𝑃 (0)

𝛾

𝜆
. (4.8b)

Substituting the values of 𝑎𝛾,𝜚 and 𝑏𝛾,𝜚 in Eq. (4.7) and rearranging the terms, the
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Figure 4.1: TWDs of touching steps computed (a) for different ⟨ℓ⟩ values with 𝛽𝜖𝑡 =
−0.1. The solid curve is 𝑃2(𝑠), the GWD for non-touching steps with no energetic
interactions. (b) for different 𝛽𝜖𝑡 values with ⟨ℓ⟩ =12.

TWDs of touching steps can be written conveniently in terms of 𝑃𝜚(𝑠) (cf. Eq. (4.5))

as

𝑃𝛾,𝜚(𝑠) = 𝑃 (0)𝑒−𝛾𝑠 +Θ𝑃𝜚(𝑠/𝜆). (4.9)

The argument 𝑠/𝜆 of 𝑃𝜚 can be reduced to 𝑠 if we work in terms of an effective

mean step spacing ⟨ℓ⟩eff = 𝜆⟨ℓ⟩. The distribution, 𝑃𝛾,𝜚(𝑠), gives an excellent fit to

the TWDs of touching steps from our simulations (see Fig. 4.2). We refer to 𝑃𝛾,𝜚(𝑠)

as the modified generalized Wigner distribution (MGWD). Broadly speaking, the

values of 𝑃 (0) and 𝛾 determine 𝑃𝛾,𝜚(𝑠) in region I, Θ determines its peak height in

region II, and 𝜆 determines the decay rate of 𝑃𝛾,𝜚(𝑠) in region III. For fixed values of

𝜚 and 𝛾, higher (lower) values of 𝑃 (0) and 𝜆 combined with a lower (higher) value

of Θ implies a broader (narrower) distribution.

The values of 𝑃 (0) for straight steps obtained from our simulations are listed

in Table 4.1. The proportion of double- or multiple-atomic height step segments,
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Figure 4.2: MGWD fits (solid curves) to the TWDs (symbols) of both straight and
fully kinked touching steps. The 𝛽𝜖𝑡 values for ⟨ℓ⟩ = 6 is -0.1, ⟨ℓ⟩ = 10 (fully kinked
steps) is 0 and ⟨ℓ⟩ = 16 is 0.5.

𝑃 (0), is higher for surfaces with smaller ⟨ℓ⟩ and lower 𝜖𝑡 (cf. Figs. 4.1(a) and

4.1(b)), as expected: with smaller ⟨ℓ⟩, step segments are more likely to meet during

fluctuations, and the lower 𝜖𝑡, the more likely such steps stay touched. To determine

the values of 𝛾 and 𝜚, we used the non-linear fitting function in MATHEMATICA
R⃝
.

All data points were weighed equally in obtaining the fits. The values of 𝛾 and 𝜚

obtained from our fits are listed in Table 4.1. For straight steps, the parameter 𝛾 is

invariably 2 regardless of ⟨ℓ⟩ and 𝜖𝑡, until negative 𝜖𝑡 heralds the instability of the

steps to collapse. Especially for RT steps, the very small values of 𝑃 (0) values lead

to insensitivity to 𝛾 in the quality of the fit. Due to its weak dependence on ⟨ℓ⟩ and

𝜖𝑡, no physically relevant information can be extracted from the value of 𝛾.

However, an interesting trend emerges from 𝜚 values. From Table 4.1, we see

that 𝜚 < 2 whenever touching is allowed (𝛽𝜖𝑡 < ∞) [8].6 This implies an effective at-
6𝜚 <∼ 2 even for 𝛽𝜖𝑡 = ∞ (non-touching) and ⟨ℓ⟩=6,8,10,12, mainly due to finite-size effect due

to small ⟨ℓ⟩ and 𝜚 does become 2 for ⟨ℓ⟩=16.
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Table 4.1: Values of 𝑃 (0)/𝛾/𝜚 obtained from our simulations for different values of
⟨ℓ⟩ and 𝛽𝜖𝑡 in the case of straight ⟨1 0 0⟩ steps.

⟨ℓ⟩ 𝛽𝜖𝑡 =∞ 0.5 0 −0.05 −0.1 −0.2
6 0.000/n.a./1.80 0.012/2/1.62 0.076/2/1.3 0.102/2/1.2 0.142/2/1.1 0.321/4/0.8

8 0.000/n.a./1.87 0.008/2/1.70 0.049/2/1.41 0.068/2/1.4 0.098/2/1.3 0.253/3/0.9

10 0.000/n.a./1.90 0.005/2/1.75 0.035/2/1.48 0.041/2/1.42 0.070/2/1.34 0.213/3/1.0

12 0.000/n.a./1.96 0.003/2/1.82 0.026/2/1.55 0.040/2/1.39 0.055/2/1.44 0.173/2/1.1

16 0.000/n.a./2.00 0.002/2/1.89 0.015/2/1.67 0.023/2/1.57 0.038/2/1.46 0.129/2/1.13

traction between steps (𝐴eff < 0, cf. Eq. (4.4)). We term this an effective interaction

because no such attraction actually exists between steps; 𝐴 = 0 in our simulations.

This attraction is greater for surfaces with smaller ⟨ℓ⟩ and smaller 𝜖𝑡. The fact that

touching leads to an attraction between steps has also been observed in a recent

analytic study [103]. These two studies show that touching could impact step-step

interaction strength measurements significantly.

The TWDs of fully kinked steps are very similar to those for straight steps

with 𝜖𝑡 = 0. Hence, the MGWD gives a very good fit even in the case of fully kinked

steps (see Fig. 4.2). The fitted values of 𝑃 (0), 𝛾 and 𝜚 are listed in Table 4.2. The

values of 𝑃 (0) in the case of fully kinked steps are very close but slightly lower than

the corresponding values for straight steps. Unlike straight steps, the parameter 𝛾

varies with ⟨ℓ⟩ for fully kinked steps. However, the variation is neither uniform nor

huge to detect any dependence on ⟨ℓ⟩. All values of 𝜚 are less than 2 signalling the

presence of effective attraction between steps even in the case of kinked steps. The

𝜚 values for fully kinked steps are only slightly higher than those for straight steps,

while the values of 𝑃 (0) and 𝛾 are slightly lower. Hence, step stiffness has at most
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Table 4.2: Values of 𝑃 (0)/𝛾/𝜚 obtained from our simulations for different values of
⟨ℓ⟩ in the case of fully kinked ⟨1 1 0⟩ (zigzag) steps with 𝛽𝜖𝑡 = 0.

⟨ℓ⟩ 𝛽𝜖𝑡 = 0

6 0.058/2/1.41

8 0.036/1.5/1.50

10 0.029/1.19/1.56

12 0.017/1.7/1.641

16 0.011/1.2/1.645

a weak effect on the TWDs of touching steps [8].

The following relations are consistent with the 𝑃 (0) and 𝛾 values listed in

Tables 4.1 and 4.2:

𝛾 > 1 & 𝑃 (0) < 1 ⇒ 𝜆 > 1 & Θ < 1. (4.10)

Since 𝜆 > 1, ⟨ℓ⟩eff = 𝜆⟨ℓ⟩ > ⟨ℓ⟩: steps now see an effective mean spacing greater

than the actual value. This is because the formation of multi-layer steps reduce the

step density on the remaining vicinal surface. Since Θ < 1, the peak of the TWDs of

touching steps is smaller than that of 𝑃2(𝑠). For a fixed value of 𝛾, using Eqs. (4.8a)

and (4.8b), we can show the following:

∂𝜆

∂𝑃 (0)
> 0 &

∂Θ

∂𝑃 (0)
< 0. (4.11)

From Eq. (4.11), we see that 𝜆 increases and Θ decreases with 𝑃 (0). Hence, a

higher value of 𝑃 (0) implies a broader distribution. Results from our Monte Carlo

simulations show that allowing step touching broadens the TWD. The MGWD

gives an excellent fit to the TWDs of both straight and fully kinked touching steps,
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showing that the fermion picture is still relevant for touching steps. However, in the

fermion picture, step touching leads to an effective attraction between steps. In the

following section, we show how this effective attraction can be incorporated into the

fermion picture.

4.4 Finite-size scaling in step-step interaction strength (𝐴) measure-

ments

Our Monte Carlo simulations have shown that allowing step touching broadens

the TWD and gives rise to an effective attraction between steps. As discussed earlier,

steps that are far apart (⟨ℓ⟩ ≫ 1) hardly come into contact with neighboring steps

and steps that have higher step doubling energy (𝛽𝜖𝑡 ≫ 0) are less likely to form

double-layer high steps even when they meet neighboring steps, both cases resulting

in fewer instances of step touching. Thus, the strength of effective attraction should

decrease (i.e. 𝜚 → 2) with increasing ⟨ℓ⟩ or 𝛽𝜖𝑡. This trend is also reflected in the

𝜚 values listed in Tables 4.1 and 4.2. Since the strength of this effective attraction

vanishes for high 𝛽𝜖𝑡 and high ⟨ℓ⟩ ≫ 1 values, this effective attraction can be modeled

as a finite-size effect. We can relate the measured 𝜚 value and the corresponding

value when step touching is absent, 𝜚∞, through a finite-size scaling function:

𝜚∞ = 𝜚+ 𝑓(⟨ℓ⟩, 𝛽𝜖𝑡). (4.12)

To account for our simulation results, the finite-size scaling function, 𝑓(⟨ℓ⟩, 𝛽𝜖𝑡),

should satisfy the condition
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Figure 4.3: Collapse of our simulation data (slope of the line is −𝑚 = −3.3) onto
the finite-size relation given in Eqs. (4.12) and (4.14).

𝑓(⟨ℓ⟩, 𝛽𝜖𝑡) −→
⟨ℓ⟩→∞or𝛽𝜖𝑡→∞

0. (4.13)

We tried a combination of power-law and exponential decays of ⟨ℓ⟩ and 𝛽𝜖𝑡 for

𝑓(⟨ℓ⟩, 𝛽𝜖𝑡). Among those functions, we find that the following functional form of

𝑓(⟨ℓ⟩, 𝛽𝜖𝑡)

𝑓(⟨ℓ⟩, 𝛽𝜖𝑡) = 𝐶⟨ℓ⟩−𝑛𝑒−𝑚𝛽𝜖𝑡 (4.14)

accounts well for the simulation data.7,8 The values of the parameters in the finite-

size scaling function, 𝐶, 𝑚, and 𝑛, were determined using the non-linear fitting

function (with all data points weighed equally) in MATHEMATICA
R⃝
. From our

7The functional form with exponential decays of both ⟨ℓ⟩ and 𝛽𝜖𝑡 (𝐶𝑒−𝑛⟨ℓ⟩𝑒−𝑚𝛽𝜖𝑡) gives a
marginally worse fit to our data. Functions that have power-law decay with 𝛽𝜖𝑡 run into problems
for the freely touching case (𝛽𝜖𝑡=0).

8Since 𝛽𝜖𝑘=2, the finite-size scaling function can also be written as 𝐶⟨ℓ⟩−𝑛𝑒−2𝑚𝜖𝑡/𝜖𝑘 .
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fits, we find 𝐶 = 0.9± 0.1, 𝑚 = 3.3± 0.2, and 𝑛 = 0.29± 0.07. The data from our

simulations nicely collapse onto the functional form given in Eq. (4.14) with these

values (see Fig. 4.3) [8].

In addition to touching, there are other effects that become important at

relatively small step separations. Since the step-continuum approximation underlies

the generalized Wigner formalism, differences between between Eq. (4.5) and its

discrete analogue are important on surfaces with small ⟨ℓ⟩. Richards et al. [105]

emphasized that such differences become nonnegligible for ⟨ℓ⟩ <∼ 4. Higher-order

corrections (𝒪(ℓ−3), 𝒪(ℓ−4)) to the repulsive interaction are known to play a role at

small step separations [106]. If present, such repulsive interactions would prohibit

neighboring steps from coming closer than a few lattice spacings. We simulated

the TWDs of steps that cannot come closer than two lattice spacings; we call them

nearest-neighbor excluding (NNE) steps. The TWDs of NNE steps and comparisons

with TWDs of touching and non-touching steps are presented in Appendix B.

Our results clearly show that touching affects 𝐴 measurements. Further, the

effects of step touching can be incorporated into the generalized Wigner formalism

through a finite-size scaling function. Our results show that the finite-size scaling,

𝑓(⟨ℓ⟩, 𝛽𝜖𝑡), decays with ⟨ℓ⟩ with a power-law exponent close to 1/3. Due to the

dependence of 𝑓(⟨ℓ⟩, 𝛽𝜖𝑡) on ⟨ℓ⟩, comparison of 𝐴measurements of the same material

for several ⟨ℓ⟩ values would provide a clue to the presence of touching effects. Thus

to eliminate such touching effects in 𝐴 measurements, experiments should involve

several misorientations, at least some of which should be shallow (⟨ℓ⟩ ≫ 1).
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4.5 Mapping touching steps to non-touching steps

For the special case 𝜖𝑡 = 0, a surface with touching steps can be mapped to a

surface with non-touching steps through addition of a single row of atoms along the

step edge direction to all terraces. This procedure is also used by Kim et al. [103] to

map nearest neighbor overlap steps to 1D ring of “spinless” fermions and is based

on the procedure developed in Ref. [107]. In this mapping, a surface of touching

steps with mean step spacing ⟨ℓ⟩ is equivalent to a surface of non-touching steps

with mean step spacing ⟨ℓ⟩+1, which leads to the following linear relation between

the normalized step spacing of touching (𝑠𝑇 ) and non-touching steps (𝑠𝑁𝑇 )

𝑠𝑁𝑇 =
⟨ℓ⟩

⟨ℓ⟩+ 1
(
𝑠𝑇 +

1

⟨ℓ⟩
)

(4.15)

where ⟨ℓ⟩ is the mean step spacing for touching steps. Since 𝑃2(𝑠) describes the

TWD of non-touching steps, replacing 𝑠𝑁𝑇 with the expression on right side of Eq.

(4.15) gives a fitting function for the TWDs of touching steps. In this mapping, the

TWD of touching steps (𝑃𝑚
𝑇 (𝑠), where m denotes mapping) then becomes

𝑃𝑚
𝑇 (𝑠) =

( ⟨ℓ⟩
⟨ℓ⟩+ 1

)
𝑃2

( ⟨ℓ⟩
⟨ℓ⟩+ 1

(
𝑠+

1

⟨ℓ⟩
))

(4.16)

where the prefactor ⟨ℓ⟩/(⟨ℓ⟩+ 1) comes from Eq. (4.2). Further corrections to the

distribution are required to satisfy the unit-mean and normalization conditions.

The distribution 𝑃𝑚
𝑇 (𝑠) gives an excellent fit to the TWDs of both straight and

fully-kinked (zigzag) steps (cf. Fig. 4.4). The fit is even better for the TWDs of

fully-kinked steps.

103



Figure 4.4: 𝑃𝑚
𝑇 (𝑠) fit (solid blue curve) to the TWDs of straight steps (triangles)

and zigzag steps (discs) with ⟨ℓ⟩ = 6 and 𝛽𝜖𝑡 = 0.

From Eq. (4.16), the quantity 𝑃 (0) in the case of touching steps can then be

computed using

𝑃𝑚
𝑇 (𝑠 = 0) =

( ⟨ℓ⟩
⟨ℓ⟩+ 1

)
𝑃2

(
1

⟨ℓ⟩+ 1
)
. (4.17)

The values of 𝑃 (0) computed using Eq. (4.17) are in very good agreement with the

Table 4.3: Comparison of 𝑃 (0) values obtained through the mapping method
(Mapping) and corresponding values from our simulations when 𝛽𝜖𝑡 = 0 for both
straight (⟨1 0 0⟩ Sim.) and fully kinked (⟨1 1 0⟩ Sim.) steps.

⟨ℓ⟩ Mapping ⟨1 0 0⟩ Sim. ⟨1 1 0⟩ Sim.
6 0.055 0.076 0.058

8 0.035 0.049 0.036

10 0.024 0.035 0.029

12 0.018 0.026 0.017

16 0.011 0.015 0.011
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values obtained from our simulations for both straight ⟨1 0 0⟩ and fully-kinked ⟨1

1 0⟩ steps. The agreement is especially striking in the case of fully-kinked ⟨1 1 0⟩

(zigzag) steps.

The simple mapping between touching and non-touching steps presented in

this section gives a direct method to finding fits for touching steps. However, this

method is applicable only for 𝛽𝜖𝑡 = 0 case and even for 𝛽𝜖𝑡 = 0, measurement of

𝜚 in this procedure is not trivial as shown in Ref. [103]. Hence, our Monte Carlo

simulations combined with the finite-size scaling function provide a straightforward

way to quantify touching effects on TWDs.

4.6 Step bunching transition

Earlier in the chapter, we made a distinction between RT steps (𝛽𝜖𝑡 > 0) and

AT steps (𝛽𝜖𝑡 < 0). Since the formation of multi-layer high steps is energetically fa-

vorable in AT steps, collapse (bunching [108, 109]) should occur once 𝛽𝜖𝑡 goes below

a particular value. Previous theoretical studies [108, 109, 110, 111] have shown

Figure 4.5: Evolution of a surface with 𝛽𝜖𝑡 = −1/20 from an initially bunched
configuration towards equilibrium: (a) initial configuration of 4 step bunches, each
with 10 steps, (b) equilibrium configuration in which the steps have separated from
the bunches.
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that surfaces with negative step touching energies (𝛽𝜖𝑡 < 0) without the presence

of a long-range repulsion are unstable and inevitably collapse. Therefore, RT steps

are considered physically dissimilar to AT steps and hence, such a classification was

introduced in our study. However, in our simulations, we do not find any striking dis-

similarities between TWDs of steps with 𝛽𝜖𝑡 = 0
+ and TWDs of steps with 𝛽𝜖𝑡 = 0

−.

We do not see multistep bunching for 𝜖𝑡 modestly negative (𝛽𝜖𝑡 >∼ −0.25) [8] and

the MGWD gives an excellent fit to the data down to 𝛽𝜖𝑡 = −0.2 (cf. Fig. 4.2).

The threshold 𝛽𝜖𝑡 value depends weakly on ⟨ℓ⟩. This behavior is reminiscent of

the extensively studied problems of step pinning/[de]wetting [110, 112, 113] and

doubling [114].

To check whether the time and length scales in our simulations are too small

to see such bunching, we also simulated the evolution of AT steps with longer step

edges (up to 𝐿𝑦 = 10, 000 - over an order of magnitude larger than the 𝐿𝑦 used for

earlier calculations). Since longer step edges take more time to attain equilibrium,

the number of Monte Carlo steps per site was increased by about a factor of ten.

Instead of our usual procedure of starting with equally spaced steps, we chose an

initial configuration of 4 step bunches, each with 10 steps, and allowed the steps to

evolve. Our results show no indication of such collapse for modestly negative 𝛽𝜖𝑡

values. We see no evidence for further coalescence; rather the steps separate from

the bunches (see Fig. 4.5). Also, the variance of the TWD for the initially bunched

configuration converges to the equilibrium variance of the TWD for equally spaced

steps at equilibrium (cf. Fig. 4.6). This behavior is qualitatively different from the

unstable, sensitive behavior for 𝛽𝜖𝑡 <∼ −0.3 when steps do not separate from their
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Figure 4.6: Evolution of the variance of the TWD (𝜎2) as a function of Monte Carlo
time (𝑡) for a (a) surface with an initial configuration of equally spaced (ESp) steps
(blue/lower curve), (b) surface with an initial configuration of 4 step bunches (IB),
each with 10 steps (red/upper curve).

initial bunches. In our simulations, bunching occurs at 𝛽𝜖𝑡 ∼ −0.3 rather than at

𝛽𝜖𝑡 = 0, presumably due to the finite density of steps in the system. The entropic

energy of the steps stabilizes the surface for moderately negative values of 𝛽𝜖𝑡.

4.7 Summary

The step-step interaction strength (𝐴) is an important parameter in modeling

morphological evolution on vicinal surfaces. The 1D spinless fermion picture pro-

vides an useful framework for connecting 𝐴 and the equilibrium TWDs of steps. The

no-crossing condition is a fundamental and genuine assumption but it is the more

restrictive non-touching condition that connects step fluctuations to the fermion

picture. The fermion picture has been very useful in elucidating both equilirbium

and dynamic properties of step fluctuations on vicinal surfaces. However, there is
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no physical reason that would prohibit steps from coinciding to form double-layer

or even multi-layer high steps. This observation has been neglected in all prior

treatments of the subject. As a result, the applicability of the fermion picture in

the absence of the non-touching condition has not been reported to the best of our

knowledge.

Results from our Monte Carlo simulations show that step touching leads to

a broadening of the TWDs. The MGWD gives an excellent fit to the TWDs of

touching steps, showing that the fermion picture is relevant even for the case of

touching steps. However, a straightforward application of the fermion picture leads

to an effective attraction between steps. Our results listed in Tables 4.1 and 4.2

show that step touching, through this effective attraction, could affect the interaction

strength measurements significantly. This issue is very important for experiments on

surfaces with small mean step separation (fewer than about a dozen lattice spacings),

as is the case with almost all STM experiments. At the same time, this issue is less

relevant for LEEM and REM experiments that normally deal with surfaces with

higher ⟨ℓ⟩ values.

Since the effects of step touching vanish for large ⟨ℓ⟩ ≫ 1 values and high

𝛽𝜖𝑡 values, they can be incorporated into the fermion picture as a finite-size effect.

Our finite-size scaling function given in Eq. (4.14) provides a very good description

of our simulation data. In addition to step touching, there are other effects that

become significant at small step separations. In the light of such results, a careful

consideration of step behavior at small separations is important for an accurate

interpretation of data from both simulations and experiments. Thus, experiments
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seeking to extract 𝐴 of a particular material should employ several vicinals, some

of them with large ⟨ℓ⟩ values. We look forward to experiments that can verify the

form of our finite-size scaling function.
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Chapter 5

Summary and future work

5.1 Summary

Due to their applications in a wide range of fields, the study of vicinal surfaces

is technologically important. A thorough understanding of the surface morphologies

and the factors that affect them is necessary for using vicinal surfaces in manufac-

turing devices and components at the nanometer scale. Due to the vastly different

length scales involved, multi-scale approaches are well suited for studying vicinal

surfaces. One such approach, the continuum step model provides a useful way to

account for both atomistic processes and large scale morphological evolution. In

this model, morphological evolution is described in terms of motion of steps which

is implicitly connected to atomic motion at step edges and terraces. The continuum

step model relies on the assumption that morphological evolution of vicinal surfaces

can be characterized using minimal models with a few key, experimentally measur-

able parameters. With a tremendous increase in the computational power combined

with the development of sophisticated computational packages, these key parame-

ters can now be computed with good accuracy. In this thesis, using a combination

of Monte Carlo methods and DFT-based VASP calculations, we have computed var-

ious physical parameters that are important for modeling steps on vicinal surfaces.

Our results are in excellent agreement with experimental observations. In addition
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to explaining experimental measurements of step properties, we also offer certain

predictions that require validation from experiments.

Lattice-gas models are useful tools for categorizing structural properties, ener-

getics and evolution of adatoms and steps on surfaces, allowing efficient statistical-

mechanical calculations. Even though pair interactions are usually sufficient to

account for a wide range of overlayer phenomena, non-pairwise multi-site interac-

tions are essential to account for experimental observations concerning properties

related to steps. On Pt and Cu, our results show that multi-site interactions with

significant contributions from direct interactions are sensitive to adatom relaxations.

Using DFT-based VASP calculations, we have shown that adatom relaxations affect

the computation of multi-site interaction strengths (trios and quartos) on homoepi-

taxial Pt(1 1 1), Cu(1 0 0) and Cu(1 1 0) systems.

Computing the difference in formation energies of 𝐴- and 𝐵-steps (Δ𝐸𝐴𝐵) on

fcc (1 1 1) surfaces using orientation dependent trios requires the usage of fewer

adatoms and smaller supercells than normally used to compute Δ𝐸𝐴𝐵 values. This

leads to a significant reduction in computational cost associated with such calcu-

lations. The trio-based approach has also had some success in reproducing the

experimentally observed 𝐸𝐴/𝐸𝐵 value on Cu(1 1 1). However, on Pt(1 1 1), our

VASP calculations show that the strengths of the orientation dependent trios, and

hence Δ𝐸𝐴𝐵 values, are extremely sensitive to lateral relaxation of adatoms. For

all adatom configurations, including the Feibelman configuration, the Δ𝐸𝐴𝐵 values

are negative for no- and 𝑧-relaxation schemes in contradiction with experimental

observations. This shows that greater energy reduction due to lateral relaxation of
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adatoms happens at 𝐵-step edges compared to 𝐴-step edges. The range of Δ𝐸𝐴𝐵

values obtained from different adatom configurations show that local positions of

adatoms in turn affect lattice-gas interactions.

Inspired by our results for Pt(1 1 1), we reinvestigated the discrepancy between

theoretical calculations and experimental observations of step stiffness anisotropy on

Cu(1 0 0). To take into account the effect of adatom relaxations on the computed

strengths of right-isosceles trio, we distinguished right-isosceles trios based on their

local position. As expected, the right-isosceles trio in the dense interior of (1 ×

1) overlayer (𝐸 ′
𝑑) has a higher energy than the one at the step edge (𝐸𝑑) due to

the suppression of adatom relaxation in the former case. Our results show that

a careful consideration of relaxation effects through the introduction of position-

dependent right-isosceles trios significantly narrows the discrepancy between theory

and experiments. However, the usage of position-dependent lattice-gas interactions

is inconsistent with the traditional lattice-gas model. In this particular case, this

issue can be reconciled through the introduction of a four-adatom quarto (𝐸𝑄)

interaction.

The Cu(1 1 0) surface is used as a substrate in the molecular self-assembly of

a large number of aromatic compounds. Our first principles calculations of adatom

interactions show that strong multi-site interactions are present on this surface. The

adatom interactions and diffusion barriers computed from our VASP calculations

are in excellent agreement with previous theoretical estimates of these parameters.

Unlike Al(1 1 0), attractive cross-channel interactions are present on this surface.

The results of our calculations do not preclude the prediction of nanohut formation
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on this surface. We look forward to experimental growth studies that would validate

this prediction. Relaxation effects are prominent for multi-site interactions but

are not present in the case of pair interactions. A careful consideration of these

effects through the introduction of higher-order multi-site interactions is sufficient

to achieve an excellent lattice-gas characterization on this surface. Our results also

show that the recently developed connector model is as efficient as the lattice gas

model in characterizing adatom interactions on this surface.

Our results presented in Chapter 2 show that multi-site interactions between

closely-spaced adatoms are sensitive to adatom relaxations. At the same time,

pair interaction strengths remain stable with different relaxation schemes. Since

multi-site interactions are more relevant for computing properties related to steps,

neglecting relaxation effects in the computations of multi-site interaction strengths

could lead to discrepancies between theoretical predictions and experimental obser-

vations, as exemplified by the cases of step formation energies on Pt(1 1 1) and

step stiffness anisotropy on Cu(1 0 0). One of the ways to handle such relaxation

effects is through the introduction of higher-order multi-site interactions. Even this

prescription fails in the case of Pt(1 1 1) for reasons mentioned in Chapter 2. Our

results emphasize the importance of multi-site interactions and the role of adatom

relaxations in lattice-gas modeling of overlayer systems. Right now, only ad hoc ap-

proaches are present to handle this problem. We look forward to the development

of alternate models that can deal with adatom relaxations efficiently.

The meandering and mounding instabilities on Cu vicinals observed by Ernst

and co-workers has eluded theoretical explanation for almost a decade. Further mo-
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tivation to study this problem comes from the fact that the exact mechanism behind

these instabilities could be used for planar nanostructuring surfaces. Kinetic Monte

Carlo simulations of A. B-H. Hamouda showed that a small percentage of impurities

codeposited with Cu atoms during growth could cause the observed instabilities. To

narrow down the impurity atoms responsible for the observed instabilities, we com-

puted the 𝐸𝑁𝑁 and 𝐸𝑑 values for several candidate impurity atoms on Cu(1 0 0).

Based on the conditions derived from kinetic Monte Carlo simulations, our VASP

calculations indicate Mn, Fe and W as the potential impurity candidates. Further

discussions with people involved in the original experiments indicate W as the most

probably impurity.

In addition to identifying the impurity atom responsible for the observed insta-

bilities, our calculations also show certain interesting trends in growth morphologies.

Based on their 𝐸𝑁𝑁 and 𝐸𝑑 values relative to the values for Cu, the impurities can

be classified into four sets. In Chapter 3, we have shown that codeposition of im-

purities from different sets leads to very different surface morphologies. This shows

that the resulting surface morphologies during growth can be manipulated through

codeposition of a suitable impurity atom. Snapshots of early stages of growth show

that the differences in surface morphologies for the cases of impurities from different

sets are already present in the submonolayer growth regime. Our results for Cu can

be easily extended to other metallic surfaces. The results of our study presented in

Chapter 3 can be used for achieving planar nanostructuring of vicinal surfaces.

The step-step interaction strength (𝐴) is an important parameter in model-

ing vicinal surfaces. Analytical treatment of this problem has been made possible
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through the mapping of a system of fluctuating steps to fermions on a 1D ring. The

resulting generalized Wigner distribution has provided a straightforward method to

measure 𝐴 through experimental measurements of TWDs. However, in addition

to the realistic no-crossing condition, the fermion picture imposes a more restric-

tive non-touching condition. Using the Metropolis Monte Carlo method, we have

studied the effects of loosening this non-touching condition on the resulting TWDs.

Our results show that the TWDs of touching steps are broader than the TWDs of

non-touching steps. At the same time, the generalized Wigner distribution with

minor modifications at small ℓ values gives very good fits to the TWDs of touching

steps. We have shown that a direct application of the generalized Wigner formalism,

neglecting the effects of touching, results in an effective attraction between steps.

The strength of this effective attraction can be modeled as a finite-size effect in 𝐴

measurements. In the light of such results, experiments seeking to extract 𝐴 of a

particular material should check for occurrences of touching during step fluctua-

tions. In addition to that, these experiments should employ several vicinals, at least

some of them with large ⟨ℓ⟩ values. We look forward to experiments that can verify

the form of finite-size scaling function.

5.2 Future work

This thesis focusses on modeling of steps on vicinal surfaces using a few key

parameters. There are several directions in which the results presented in this

work could be extended. Foremost among them is the formulation of a model for
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characterizing adatom interactions that handles relaxation effects more efficiently

than the traditional lattice-gas model. This issue is very important for lattice-gas

modeling of steps because of greater relaxations of step edge atoms compared to

atoms in the 2D bulk. The biggest challenge in constructing such a model is to

accommodate relaxation effects with few parameters (preferably around 10). Both

lattice-gas and connector models could handle relaxation effects with a large set

of interaction parameters. Hence, any model that seeks to improve on these two

models should achieve this with fewer number of interaction parameters.

An equally important direction is the further exploration of the role of code-

posited impurities in growth morphologies. Our results for impurities codeposited

during growth on Cu vicinals show that even a small concentration of impurities

could effect significant changes in the resulting surface morphologies. Hence, impu-

rities could be used to create nanostructures with desired morphological features.

Even though our study concerns the role of impurities in the formation of pyramidal

structures, there are other nanostructures, such as nanowires and nanorings, that

could be fabricated through codeposition of appropriate impurity atom(s). Our re-

sults indicate that the resulting surface morphology is determined by the 𝐸𝑁𝑁 and

𝐸𝑑 values of the impurity atom relative to the corresponding values for the substrate.

We invite studies that explore this connection between the surface morphology and

the relative values of 𝐸𝑁𝑁 and 𝐸𝑑 for the impurity atoms. Also, there are certain

common characteristics among the elements of these sets, e.g., all elements of the

AgSnZnAl set contain either completely filled or fully empty d-orbitals and all el-

ements in the CoFeMnW set are mid-transition elements. Studying whether other
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elements with these characteristics fall into the same sets using DFT-based VASP

calculations would serve as a straightforward, but nevertheless fruitful, extension

of this work. All of these studies should be aimed towards attaining the ability to

predict resulting surface morphologies for a particular impurity-substrate system at

the given experimental conditions.

The modified generalized Wigner distribution (MGWD) provides a very good

description of the TWDs of touching steps. However, no strong theoretical expla-

nation for either the MGWD or the form of finite-size scaling function presented in

Chapter 4 exists at present. Our preliminary results for fully kinked (zigzag) steps

show that their equilibrium TWDs are very similar to the case of straight steps.

However, the Metropolis method does not provide any information regarding the

evolution of TWDs toward their equilibrium value for fully kinked steps. For the

case of straight steps, the Fokker-Planck formalism has been very useful in under-

standing the equilibration of TWDs of straight steps. A study based on kinetic

Monte Carlo simulations of fluctuations of fully kinked steps would shed light on

the applicability of the Fokker-Planck picture for fully kinked steps.
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Appendix A

Size-distribution of second-level administrative divisions

The topic of county sizes has been one of long standing interest in the field

of social sciences [115, 116]. Even though numerous models have been proposed to

describe the size of counties, especially in the United States, none of them could

provide a complete description due to the complex nature of the problem [116]. An

analytic treatment of this problem is difficult due to the influence of several po-

litical, ecological, and geographical factors in the county formation process. Here,

we investigate similarities between island nucleation on vicinal surfaces and the for-

mation of second-level administrative divisions (SLAD), such as counties, districts,

and arrondissements, in the United States and some European countries. The prob-

lem of 2D island growth has been studied extensively; hence such similarities, if

present, could lead to a deeper understanding of the process of county formation.

We focus on the SLAD due to the following reason: the first level administrative

divisions (states) in a country are too few to be described by any continuous distri-

bution and the third level administrative divisions, though numerous, are unsuitable

due to the difficulty involved in obtaining the relevant data. In the past, models

based on diffusion-limited aggregation and percolation have been used to explain

the fractal nature of city morphology [117]. Our work is motivated by the fact that

the polygons formed by county boundaries in the size-division model (see Fig. 3.8J
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in [115]) resemble capture-zones (CZ) in island nucleation. Also, the formation

of counties in several states in the United States (especially in the southeast), as

nicely visualized in this website [118], look qualitatively similar to the nucleation

and growth of islands on vicinal surfaces. Hence, we surmise that the GWD (𝑃𝜚(𝑠))

and the single-parameter Gamma distribution (Π𝛼(𝑠) =
𝛼𝛼

Γ(𝛼)
𝑠𝛼−1𝑒−𝛼𝑠), distributions

that are normally used to describe CZ areas, should give a very good description of

county-size distribution.

It is very difficult to translate the effects of political, ecological, and geograph-

ical factors in the problem of nucleation and growth; accordingly, we neglect them

in this study. Our aim is to start out with a simple model of island nucleation that

captures the essence of the county formation process. Since the effects of influenc-

ing factors are neglected, the simple island nucleation picture can be applied to the

county-size distribution only in countries that: (i) have a uniform or near-uniform

geographical profile, (ii) have a large geographical area such that the boundary ef-

fects are kept to a minimum, and (iii) included the notion of distance from the

county center during the formation of counties. There are very few countries that

satisfy the first two conditions. Two countries that meet all three conditions are

the Thirteen Colonies of the United States of America and France. The Thirteen

Colonies later became eighteen states in the present day United States of Amer-

ica but the boundaries of the Thirteen Colonies do not coincide with the present

day boundaries of these eighteen states [119]. There are three types of counties in

these eighteen states: New England, southern and mixed types [115]. Of these three

types, only the southern type counties satisfy the third condition. For people of a
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county to assemble at the “county court” on a particular day, the county boundaries

should not be too far away from the seat of the county [115]. Similarly, the French

departments (D𝑒partements in French) were formed such that one could travel to

the chef-lieu from any part of the department within a day on a horse [120]. We

focus on arrondissements, the sub-division of departments, which are actually the

SLAD in France.

We gathered our data mainly from two sources: (i) the statoids website [121]

and (ii) wikipedia [122]. Due to their small size, we omitted all urban counties (e.g.

Baltimore city county, Paris and the three surrounding inner ring departments,

etc.) from our analysis. Since there are few urban counties, this does not affect our

results in any significant manner. Also, we did not consider the arrondissements in

the overseas departments of France. Hence, our data corresponds to 692 counties

spread across 8 states (Maryland, Virginia, West Virginia, Kentucky, Tennessee,

North Carolina, South Carolina, and Georgia) in the US and 314 arrondisements

in 90 departments1 in France. We used both single-parameter Gamma distribution

(Π𝛼(𝑠)) and the GWD (𝑃𝜚(𝑠)) to fit the size distribution of SLAD. To determine

the values of 𝛾 and 𝜚, we used the non-linear fitting function in MATHEMATICA
R⃝
.

All data points were weighed equally in obtaining the fits. The values of 𝛾 and 𝜚

obtained from our fits are listed in Table A.1.

The distributions of SLAD sizes in the Thirteen Colonies (only southern type

counties) and France are plotted in Figs. A.1. The quantity 𝑠 denotes the normalized

1There are 94 departments in mainland France of which Paris and the three inner ring depart-
ments are omitted.

120



Figure A.1: Size distribution of SLAD in (a) the Thirteen Colonies (circles) and (b)
France (triangles). The solid curves correspond to fits with Π𝛼(𝑠) (blue curve) and
𝑃𝜚(𝑠) (red curve). The values of the fit parameters are listed in Table A.1.

surface area, i.e. the ratio of county area to the mean area of all counties. It is clear

from Fig. A.1(a) that Π5(𝑠) gives a better fit than 𝑃1.9(𝑠) in the case of Thirteen

Colonies. In addition to failing to capture the key features of the distribution, the

peak of the GWD (𝑃1.9(𝑠)) occurs at a 𝑠 value higher than the corresponding value

for the distribution. At the same time, both Π5(𝑠) and 𝑃1.6(𝑠) give equally good

fits for the size distribution of French arrondissements (cf. Fig. A.1(b)). In our

analysis, we find that the size-distribution of SLAD in several countries that do not

explicitly satisfy the aforementioned conditions, are also described well by both the

Gamma distribution and the GWD. Even though the states Alabama, Louisiana and

Florida were not part of the Thirteen Colonies, the formation of counties in these

states (see Ref. [118]) resemble island nucleation and growth on vicinal surfaces. The

county-size distribution when the counties in these three states are taken together

with the counties in the Thirteen Colonies is well described by both the Gamma

distribution and the GWD with 𝛼 = 3.8 and 𝜚 = 1.3 respectively. Also, the size-
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Table A.1: The fit parameters 𝛼 and 𝜚 obtained from our MATHEMATICA
R⃝
fits

to the size-distribution of SLAD in different countries/regions. The symbol 13C
denotes regions in the Thirteen Colonies and N.A. denotes cases where we could
not find a fit using MATHEMATICA

R⃝
.

Country/Region 𝛼 𝜚

France N.A. 1.6 ± 0.2

Germany N.A. 1.4 ± 0.3

Italy 3.3 ± 0.4 1.1 ± 0.3

Mixed type (13C) 3.0 ± 0.2 0.9 ± 0.1

Southern type (13C) 5.0 ± 0.5 1.9 ± 0.3

Southern type + AL, FL and LA (13C) 3.8 ± 0.3 1.3 ± 0.3

Poland 4.9 ± 0.4 1.8 ± 0.3

distribution of counties in New York, New Jersey, Pennsylvania, and Delaware, the

mixed type counties, is fit well by Π3(𝑠) and 𝑃0.9(𝑠).2 Similarly, we find that the

size-distributions of rural districts in Germany (Landkreise), provinces in Italy and

powiaty in Poland are very well described by both distributions. The values of the

fit parameters 𝛼 and 𝜚 for these cases are listed in Table A.1. In most of the cases,

the fit with Π𝛼(𝑠) is slightly better than the fit with 𝑃𝜚(𝑠) mainly due to the peak

of 𝑃𝜚(𝑠) occurring at a higher 𝑠 value compared to the distribution.

Region-specific factors could play an important role in the formation of coun-

ties. For instance, the three different types of county formation processes disrupt a

generic treatment of county-size distribution in the Thirteen Colonies. The southern

and the mixed type counties are fit well by both Π𝛼(𝑠) and 𝑃𝜚(𝑠) but with different

values of the fit parameters (see Table A.1); at the same time, both distributions

2There are only 67 New England type counties. Both Π𝛼(𝑠) and 𝑃𝜚(𝑠) do not give a very good
fit to the size distribution of these counties.

122



fail to give a good description of the size distribution of New England type coun-

ties. Since the county formation process varies across states, an effective way to

incorporate its effects in our analysis is to consider the distribution of county sizes

normalized by the respective statewise averages. When the county areas are nor-

malized by statewise averages, our results show that the county-size distribution in

the Thirteen Colonies (eighteen states in the present day United States of America)

and the Thirteen Colonies with Alabama, Florida and Louisiana are fit very well

by both Π𝛼(𝑠) and 𝑃𝜚(𝑠). The values of 𝛼 and 𝜚 for these two cases are listed in

Table A.2.

The statewise normalization of SLAD areas only serves to increase the number

of data points and is not inconsistent with the rest of our analysis. As mentioned

earlier, one of the main reasons behind focusing on SLAD than on first level admin-

istrative divisions is that the SLADs in many countries are sufficiently numerous to

be fit by a continuous distribution. Hence, there is no compelling reason to focus

on the county-size distribution across a country. In fact, the distributions of county

Table A.2: The fit parameters 𝛼 and 𝜚 for the size-distribution of SLAD after
statewise normalization in different countries/regions.

Country/Region 𝛼 𝜚

Thirteen Colonies 5.7 ± 0.2 2.3 ± 0.3

Thirteen Colonies + AL, FL and LA 6.0 ± 0.3 2.4 ± 0.3

Georgia 5.4 ± 0.3 2.1 ± 0.3

Kentucky 5.4 ± 0.4 2.4 ± 0.3

Virginia 5.7 ± 0.9 2.3 ± 0.7

India 4.0 ± 0.1 1.4 ± 0.2
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sizes in Georgia, Kentucky, and Virginia, the three states with the maximum number

of counties in the Thirteen Colonies, considered separately, are again described very

well by the Gamma distribution and the GWD. The values of the fit parameters

(cf. Table A.2) for all three states are very close. In addition to that, the statewise

normalization of SLAD areas increases the range of applicability of our model. In

India, where the division of states is along linguistic lines [122], there is a vast dif-

ference in the state areas (the ratio of the areas of the largest to the smallest state

is 92.4), which results in a wide variation in the average district (SLAD in India)

size between states. Hence, the size distribution of districts (SLAD in India) is not

fit well by either Π𝛼(𝑠) or 𝑃𝜚(𝑠). However, when the district areas are normalized

by the average district size in the respective state, we find that the distribution is

fit very well by both Π4(𝑠) and 𝑃1.4(𝑠).

Our results show that similar to the nucleation and growth of islands on vicinal

surfaces, both the Gamma distribution (Π𝛼(𝑠)) and the GWD (𝑃𝜚(𝑠)) give very good

fits for the size distribution of SLAD in several countries. It is noteworthy that Π𝛼(𝑠)

has been proposed to describe the size distribution of Poisson Voronoi cells3 in 1, 2,

and 3 spatial dimensions [123], where the fit parameter (𝛼) is related to the spatial

dimenstion (𝑑) through

𝛼 =

(
3𝑑+ 1

2

)
. (A.1)

The fact that the 𝛼 values from our fits are not equal to 3.5, the value for Poisson

Voronoi cells in 2D, indicates that SLAD are not random tesselations of 2D space

3Voronoi polygons constructed using a set of points that are randomly distributed in space.
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but possess certain correlations like CZ in island nucleation. It would be interesting

to investigate the connection between the fit parameters 𝛼 and 𝜚 and various factors

that influence the SLAD formation process. Including the effects of such influencing

factors would widen the range of applicability of this model.
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Appendix B

Appendix B

B.1 Nearest-neighbor excluding steps

As mentioned in Chapter 2, in addition to the long-range inverse-square repul-

sion, higher-order repulsive interactions (𝒪(ℓ−3), 𝒪(ℓ−4)) could play a role at small

step separations [106]. The presence of such repulsive interactions would preclude

neighboring steps from being closer than a few lattice spacings. In the simplest case,

steps cannot get closer than nearest-neighbors (2𝑎, where 𝑎 is the lattice constant)1,

the so-called nearest-neighbor excluding (NNE) steps. Since our Monte Carlo sim-

ulations showed that step touching leads to an effective attraction, we anticipated

nearest-neighbor exclusion to result in an effective repulsion between steps. To check

if nearest-neighbor exclusion affects 𝐴 measurements, we simulated the TWDs of

straight NNE steps using the Metropolis method in Monte Carlo simulations. We

used the same simulation parameters (𝑁 , 𝐿𝑦, and 𝛽𝜖𝑘) mentioned in Chapter 4. We

considered only the case of free-fermions. However, unlike touching steps, introduc-

tion of energetic interactions between NNE steps does not lead to divergence in the

repulsion term.

Our results show that the GWD gives an excellent fit to the TWDs of NNE

steps (see Fig. B.1). Since 𝑃 (0) = 0, no corrections to the GWD are needed to

1Even though the nearest-neighbor distance on a simple cubic lattice is
√
2𝑎, the nearest-

neighbor distance in the direction perpendicular to the step edge (𝑥̂) is 2𝑎.
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Figure B.1: TWDs of NNE steps from our simulations (symbols) and respective
GWD fits (solid curves). The values of the fit parameter (𝜚) are listed in Table B.1.

obtain fits to TWDs of NNE steps. To obtain the values of 𝜚, we used the non-linear

fitting function with equal weight assigned to all data points. The 𝜚 values obtained

from MATHEMATICA
R⃝
are listed in Table B.1. As expected, the 𝜚 values are

higher than 2, indicating an effective repulsion between steps. Similar to touching

steps, the strength of this effective repulsion decreases with ⟨ℓ⟩.

Using the mapping scheme mentioned in Section 4.5, a surface of NNE steps

can be mapped to a surface with non-touching steps by deleting a row of atoms

Table B.1: Values of 𝜚 obtained from fits to our simulations of TWDs of NNE steps
for different ⟨ℓ⟩ values.

⟨ℓ⟩ 𝜚

6 2.86 ± 0.01

8 2.610 ± 0.008

10 2.511 ± 0.004

12 2.470 ± 0.002

16 2.455 ± 0.005
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along the step-edge direction [103, 107]. However, unlike the case of touching steps,

where this mapping provided a way to compute 𝑃 (0) values for the 𝛽𝜖𝑡 = 0 case, it

does not provide any physically relevant information for NNE steps.

B.2 Finite-size scaling

Similar to the case of touching steps, we model the strength of this effective

repulsion as a finite-size effect. Once again, we write

𝜚 = 𝜚∞ + 𝑔(⟨ℓ⟩), 𝑔(⟨ℓ⟩) ⟨ℓ⟩→∞−→ 0+ (B.1)

and the following power-law decay with ⟨ℓ⟩ gives the best fit to our data (cf. Fig.

B.2)

𝑔(⟨ℓ⟩) = 𝐸

⟨ℓ⟩𝑟 with 𝐸 = 3± 1, 𝑟 = 0.8± 0.1. (B.2)

As can be seen from Fig. B.2, the finite-size scaling function, 𝑔(⟨ℓ⟩), also gives a

very good fit to the scaling of the effective attraction with ⟨ℓ⟩ in the case of touching

steps. At the same time, the finite-size scaling function derived for touching steps,

𝑓(⟨ℓ⟩, 𝛽𝜖𝑡 = 0), gives only a moderate fit for the scaling of both NNE and touching

steps.
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Figure B.2: Finite-size scaling of effective interaction strengths in the cases of NNE
(triangles) and touching (discs) steps. The solid blue curve is the plot of Eq. (B.2)
and the solid red curve is plot of finite-size scaling function derived for touching
steps Eq. (4.14).
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