
  

 
 
 
 
 

ABSTRACT 
 
 
 

 
Title of Thesis: POLLEN NUTRITION, PESTICIDES, AND 

PATHOGENS: INTERACTIVE EFFECTS ON 
HONEY BEE HEALTH 

  
 Andrew Garavito, Master of Science, 2017 
  
Thesis Directed By: Associate Professor, Dennis vanEngelsdorp, 

Department of Entomology 
 
 
 While a variety of stressors influence honey bee (Apis mellifera) health, it is 

the additive and interactive effects of these factors on bee health that have been 

driving modern research. We devised a set of two experiments to test the effects of 

multiple stressors on honey bee health.  First, we grew sunflowers to test the effects 

of drought stress and seed treatment on sunflower pollen. We fed the pollen collected 

from these sunflowers to cohorts of bees that were either infected or uninfected with 

the microsporidian pathogen Nosema ceranae to find that drought stressed pollen 

leads to increased mortality in infected bees. Next, we fed 37 experimental pollen 

diets of different floral varieties and pesticide loads to honey bees infected with N. 

ceranae, but we were unable to find a connection between diet variety and pesticide 

exposure on bee health. 
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Chapter 1: Assessing the Impact of Seed Treatment and Drought 

Stress on Sunflower Pollen, and the Resulting Effects on Honey 

Bee Health. 

Abstract 

 Honey bee colonies are often placed in sunflower fields for pollination and 

honey production. In the summer of 2012, beekeepers in North Dakota reported 

dramatic losses of honey bee colonies in sunflower fields. Commercially grown 

sunflowers are often seed treated with a variety of systemic pesticides. Beekeepers 

believed that the drought that year caused more pesticides from these seed treatments 

to accumulate in the nectar and pollen that bees were collecting. We grew untreated 

and CruiserMaxx® treated sunflower seeds of the same hybrid under three different 

watering regimens to simulate well-watered, moderate drought, and severe drought 

conditions. The thiamethoxam applied to treated seeds was detected in 10.7, 25.3, and 

33.9 ppb concentrations in the pollen collected from well-watered, moderately, and 

severely drought stressed plants respectively. This shows that drought leads to 

increasing levels of seed treatment pesticides in pollen. Upon feeding the pollen 

collected from severely drought stressed sunflowers grown from untreated or treated 

seeds to adult honey bees, we found that bees infected with Nosema ceranae died 

faster than uninfected bees. This indicates that the effect of drought stress on pollen 

serves as a stressor that can negatively affect honey bees.  
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Introduction 

Pesticides are one of top three most frequently self-reported causes of honey 

bee colony death in the United States (Lee et al., 2015; Steinhauer et al., 2014). There 

is growing concern among beekeepers about one particular class of insecticides, the 

neonicotinoids, which target the nervous system of insects. While all neonicotinoids 

are highly toxic to honey bees, some – like imidacloprid (LD50 = 0.0179 μg/bee), 

clothianidin (LD50 = 0.0218), and thiamethoxam (LD50 = 0.0299) –are more toxic than 

others (e.g. acetamiprid (LD50 = 7.07) and thiacloprid (LD50 = 14.6)) (Iwasa et al., 

2004). Neonicotinoids are neurotoxins that mimic acetylcholine and bind to the 

nicotinic acetylcholine receptors in honey bee brains, leading to tremors, erratic 

movements, and hyperactivity in exposed honey bees (Blacquiere et al., 2012; 

Johnson, 2015). Individual worker bees exposed to sub-lethal doses of neonicotinoids 

suffer from impaired learning, memory loss, decreased responsiveness to sucrose, and 

are less likely to forage (Aliouane et al., 2009; Bortolotti et al., 2003; Eiri and Nieh, 

2012). Further, sub-lethal doses of neonicotinoids negatively impact the functions of 

honey bee immune systems (Brandt et al., 2016), which helps explain why worker 

bees that had sub-lethal exposures to neonicotinoids also had increased susceptibility 

to pathogens such as Nosema sp. and Deformed Wing Virus (Di Prisco et al., 2013; 

Pettis et al., 2012). Queens heading colonies that are exposed to sub-lethal levels of 

neonicotinoids laid fewer eggs, had decreased motor activity, and had lower 

proportions of viable sperm stored in their spermathecas when compared to control 

queens (Williams et al., 2015; Wu-Smart and Spivak, 2016). 
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Neonicotinoids are commonly applied as seed treatments directly onto the 

seed coats of a variety of crops (Elbert et al., 2008). As the seed germinates and the 

plant grows, the neonicotinoids are systemically taken up by the plant and expressed 

in a variety of tissues, including the pollen and nectar collected by honey bees 

(Krupke et al., 2012; Pilling et al., 2013; Sanchez-Hernandez et al., 2016). While bees 

foraging on crops that were grown from treated seed do collect pollen and nectar that 

have detectable levels of seed treatment neonicotinoids,  these residues have no 

discernable effect on colony health (Cutler and Scott-Dupree, 2007; Cutler et al., 

2014; Pilling et al., 2013; Pohorecka et al., 2012). However, commercial beekeepers 

operating colonies in North Dakota during 2012 were particularly adamant that 

proximity to fields of seed treated sunflowers caused the high rates of colony losses 

they experienced that summer and fall. The summer of 2012 was particularly dry and 

beekeepers theorized that the drought was causing seed treatment products to amass 

in toxic levels in the pollen and nectar of the blooming sunflowers. Sunflowers grown 

under drought conditions have significantly decreased biomass, height, diameter of 

head and stem, seed weight and quantity, number of filled seeds, oil yield, and uptake 

of CO2  (Alza and FernandezMartinez, 1997; Ghani et al., 2000; Human et al., 1990; 

Soleimanzadeh et al., 2010). The smaller biomass of drought stressed sunflowers may 

potentially result in higher concentrations of systemic seed treatments expressed in 

the pollen and nectar of sunflowers grown from treated seeds.  

Beekeepers in other countries have also expressed concern over the use of 

imidiacloprid, thiamethoxam, and clothianidin as sunflower seed treatments. These 

products (and their metabolites) are repeatedly detected in samples of pollen and 
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honey collected from colonies foraging on sunflower crops grown from treated seed 

(Laurent and Rathahao, 2003; Sanchez-Hernandez et al., 2016). Since the early 

1990s, French beekeepers keeping colonies near fields of blooming sunflowers that 

were grown using treated seeds have reported seeing symptoms suggestive of 

neonicotinoid poisoning; bees foraging on sunflower blooms behaving oddly, large 

numbers of lost foragers, and peculiarly low honey yields (Chauzat et al., 2009; 

Laurent and Rathahao, 2003). However, nucleus colonies caged over sunflowers 

grown from either imidacloprid treated or untreated seeds did equally well, and no 

aberrant symptoms were observed (Schmuck et al., 2001). Work conducted to assess 

the effects of sunflowers themselves on bees failed to demonstrate differences in 

colony health matrices when comparing full colonies placed adjacent to untreated 

sunflower fields and colonies placed between 1.5 and 3 km away from any sunflower 

fields (Charriere et al., 2010; Chauzat et al., 2009). Sunflower pollen is low in 

protein, a protein diet of solely sunflower pollen leads to poorer ovary and 

hypopharyngeal gland development in workers when compared to workers fed other 

monofloral pollen diets (Pernal and Currie, 2000). It is conceivable that the 

deleterious effects beekeepers report when bees forage on sunflowers is independent 

of the seed treatment, and rather a result of the poor nutritional quality of the pollen 

itself.  

Here we set out to explore the effects, if any, drought conditions have on the 

concentration of seed treatment products in sunflower pollen. Specifically we wished 

to determine if drought leads to higher levels of neonicotinoids in sunflower pollen. 

Additionally we wanted to assess whether or not the pollen collected from plants 
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grown using treated or untreated seeds grown under various watering regimens had 

any adverse effects on health when fed to honey bees. To investigate these questions, 

a set of two experiments was devised to test the interactive effects of pollen quality 

due to drought stress, pesticide exposure, and pathogen exposure on honey bee health. 

First, we grew seed treated and untreated sunflowers under three drought treatments 

to determine if drought had an effect on the amount of seed treatment products that 

could be detected in pollen. Then we fed the pollen from the sunflowers grown under 

drought stress to newly emerged honey bees to see if it had any effects on bee health.  

Materials and Methods 

Growing Sunflowers 

Sunflower seeds were planted and grown in the Research Greenhouse 

Complex of the University of Maryland, College Park. Plants were provided with a 

16 hour photoperiod and an ambient temperature of 70oF, to ensure optimum growth. 

OSF5633-CLDM hybrid sunflower seeds were used for all experimental plantings. 

Seeds were either untreated (untreated seeds) or treated with CruiserMaxx® (treated 

seeds); a seed treatment made up of the neonicotinoid thiamethoxam and the 

fungicides azoxystrobin, fludioxonil, and mefenoxam. Syngenta (Greensboro, NC) 

provided both the untreated and treated seeds needed for this project, as untreated 

seed is not commercially available. 

 Guided by two preliminary growing trials conducted in 2013, a final 

sunflower growth trial was conducted in the summer of 2014 using 360 plants grown 

from 180 treated seeds and 180 untreated seeds. Seeds were planted in 6.8 gallon pots 
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to give the sunflowers sufficient room to grow. Pots were filled with Turface, an 

artificial substrate, chosen to ensure a homogeneous growth medium with regards to 

nutrient content. Natural substrates, such as soil and peat, can have varying levels of 

nitrogen, phosphorus, and potassium. Due to its absorptive nature, Turface was 

soaked in a 1:100 Hoagland’s fertilizer solution for 24-48 hours prior to potting. Pots 

were placed on three 3” tall PVC rings and kept in saucers to permit the detection of 

any leachate and to prevent leachate from being reabsorbed by the substrate. Treated 

and untreated plants were divided evenly amongst three different drought treatments: 

well-watered, moderate drought, and severe drought (Table 1). Each drought 

treatment was regulated by an individual hose, split into five feeder lines which were 

arranged in an alternating fashion across the greenhouse to control for any gradient of 

abiotic factors that was present (Figure 1). Feeder lines were equipped with one water 

emitter per pot and watering nodes were positioned a few inches from the seed. Pots 

were organized in an alternating fashion, by seed type, down each side of a feeder 

line (Figure 1).  

For the first week after planting, seeds received a 10 second pulse of water 

(ca. 61 mL) two to three times per day. By the second week after planting, seeds had 

germinated and watering was reduced to a five second pulse between two and three 

times per day. Plants were fertilized once a week with 100 mL of 1:100 Hoagland’s 

solution between the third and seventh week post planting. Foliar applications of the 

insecticidal soap M-Pede (2% rate), were conducted on the 29th (week 4) and 48th 

days (week 6) after planting, in order to control for plant stressing levels of thrips, 

whiteflies, and spider mites. Experimental drought treatments were enacted 30 days 
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after planting (week 4), when plants were robust and established. The irrigation of 

each drought treatment was controlled using an nR5 node (Decagon Devices: 2365 

NE Hopkins Court Pullman, WA 99163) that monitored 10HS soil moisture sensors 

(Decagon Devices) that were placed in between three and five individual pots of 

plants in each drought treatment.  Drought treatments were regulated by using the 

10HS soil moisture sensors (Decagon Devices) to maintain the average volumetric 

water content at 31%, 29%, and 27% for the well-watered, moderate drought, and 

severe drought treatment substrates respectively. Plants began blooming 54 days 

(week 7) after planting.  

 Sunflower heads that appeared close to bloom (Figure 2) were bagged using 

brown paper bags and binder clips (Figure 3), in order maximize pollen collection. 

Pollen was collected by carefully removing the paper bag while holding a piece of 

clean 8”x11” printer paper under the bloom and catching any pollen grains that had 

accumulated in the bag. Once the bag was removed, the sunflower head was 

positioned face down over the paper and was tapped to dislodge any mature pollen 

(Figure 4). Because sunflower florets bloom over time, this process was repeated 

every 2-4 days between days 54 and 69 (weeks 7 to 10) for each plant, in order to 

collect as much pollen as possible. Pollen collected from all flowers within a 

treatment was aggregated and stored in 50 ml Falcon tubes (Corning, Inc.: One 

Riverfront Plaza, Corning, NY, 14831) that were wrapped in tin foil and kept frozen 

at ca. -20oC. The individual height and head diameter for each plant was measured on 

the last day of pollen collection, 69 days after planting (week 10). One gram 

subsamples of pollen from each treatment group were sent to the USDA-AMS NSL 
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in Gastonia, NC for pesticide analysis using methods described by (Mullin et al., 

2010). 

Cage Studies 

Frames of sealed brood were collected from four different honey bee colonies 

located at the Central Maryland Research and Education Center (CMREC)- Beltsville 

Facility. Brood frames were selected by opening a few capped cells to inspect for 

pupae with dark eyes, an indicator that emergence will occur in 1-3 days (Williams et 

al., 2013). Frames were placed in wire mesh cages, and stored overnight in an 

incubator at 34.5oC, 70% relative humidity; the optimum conditions for brood 

development (Williams et al., 2013). Newly emerged adults were collected off of 

brood frames after approximately 24 hours and placed into colony specific hoarding 

cages. Bees from each hoarding cage were removed, fed, and placed into one of 

sixteen 16 oz. Solo cup cages (after Evans et al., 2009) until each cage had 20 bees, 

five from each of the four source colonies. Cages were randomly assigned to one of 

two inoculum feeding treatment groups – control or Nosema – those bees assigned to 

control cages were fed 10 uL of 50% (w/v) sucrose solution, while those bees 

assigned to Nosema cages were fed 10 uL of 50% (w/v) sucrose solution containing 

ca. 10,000 spores of Nosema ceranae. 

Nosema inoculums were developed following the procedures by Fries et al., 

2013. Presence of N. ceranae was confirmed for all honey bees used to produce 

Nosema inoculums using qPCR methods (Forsgren and Fries, 2010). Nosema 

solutions were prepared by homogenizing 10-20 infected bees from several source 

colonies. The Nosema load in millions of spores per mL for each raw solution was 
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then quantified using haemocytometer counts (Human et al., 2013). Raw Nosema 

solutions were diluted with 50% (w/v) sucrose solution into experimental Nosema 

inoculums with a concentration of one million spores per mL (10,000 spores per 10 

uL). Lines of infected bees were propagated and maintained in the lab by providing 

excess Nosema solution to newly emerged bees. 

 Each Control and Nosema treatment cage was randomly assigned to one of 

eight experimental diets: one of six experimental sunflower pollen diets, a protein 

control diet (Megabee), or a protein-free control diet (Table 2). Sunflower pollen diets 

were created by preparing a paste in a 1008 Falcon petri-dish (Corning, Inc: One 

Riverfront Plaza, Corning, NY, 14831) made of 0.38 mL of 50% (w/v) sucrose 

solution and 0.25g of pollen from collected from one of the six sunflower treatment 

groups. Approximately 0.63 g of Megabee, prepared according to label instructions, 

was placed in a 1008 Falcon petri-dish to serve as the protein control diet; while an 

empty petri dish served as the protein-free diet. Diets were placed in the bottom of 

each cage, and were replaced with an identical formulation on the fourth day of the 

experiment. Each cage was provided with access to clean 50% (w/v) sucrose solution 

ad libitum.   

 Cages were maintained in an incubator at 30oC and 70% relative humidity 

(Williams et al., 2013) for 12 days, dead bees were removed daily (Pettis et al., 2013). 

After 12 days, all surviving bees were killed and stored in 90% ethanol for Nosema 

spore quantification using haemocytometer counts (Human et al., 2013). This cage 

study experiment was replicated three times. 
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Statistical Analysis 

Sunflower plant growth measures (height and diameter of bloom head) were 

compared between treatment groups using the Proc Mixed procedure in SAS 9.4 to 

conduct ANOVAs followed by Tukey multiple mean comparisons after data 

normality was confirmed. Seed treatment and drought treatment were treated as fixed 

effects, while feeder line (rep) was treated as a random effect. Nosema load in 

millions of spores per bee (msb), was analyzed using the SAS 9.4 Proc Mixed 

procedure to conduct an ANOVA.  Nosema load data was log transformed to ensure 

normality. However, we report treatment means that are back transformed to ease 

interpretation. Diet treatment was treated as a fixed effect, and cage rep was treated as 

a random effect.  

A full parametric survival model was analyzed using JMP Pro 10 statistical 

software to test the effect that the 3-way factorial treatment structure of the 12 cage 

treatments using experimental sunflower pollen (three drought treatment levels x two 

seed treatment levels x two inoculation treatment levels) had on bee survival. 

Survival curves for bees in each of the 16 cage treatments (eight diets x two 

inoculation treatments) were plotted and analyzed using the SAS 9.4 Proc Lifetest 

procedure. Log rank comparisons were used to compare survival curves.  

Results 

Growth Metrics 

Drought treatment had an effect on height (F2, 23 = 78.38; p < 0.0001). Well-

watered plants were significantly taller than moderately (T23 = 11.80; p < 0.0001) and 
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severely drought stressed plants (T23 = 9.52; p < 0.0001; Figure 5). Seed treatment 

had no effect on height (F1, 22 = 0.03; p = 0.8601). Drought treatment had a similar 

effect on head diameter (F2, 23 = 20.75; p < 0.0001). Well-watered sunflowers had 

significantly larger heads than those that were moderately (T23 = 5.50; p < 0.0001) 

and severely drought stressed (T23 = 5.65; p < 0.0001; Figure 6). Seed treatment had 

no effect on sunflower head diameter (F1,22 = 0.15; p = 0.7043). On average we 

collected 10.39 ± 0.62 g of pollen from each sunflower treatment group, providing 

enough pollen for pesticide analysis and cage feeding trials (Table 1). Well-watered 

plants also appeared fuller and heartier when visually compared to moderate and 

severely drought stressed plants. 

Pesticide Analysis 

Thiamethoxam loads were 10.7, 25.3, 33.9 ppb for the treated seed groups in 

the well-watered, moderate drought, and severe drought treatments respectively 

(Figure 7). Neither azoxystrobin, fludioxonil, nor mefenoxam were detected in any 

treated samples. There were no pesticides detected in any of untreated sunflower 

pollen samples.  

Nosema Infection 

Of the 236 surviving honey bees collected from Nosema cages for Nosema 

quantification, only two were uninfected. These two uninfected bees were removed 

from analysis. Nosema loads (msb) were not different between individual sunflower 

pollen treatment groups, nor did loads differ in bees from the protein control 

(Megabee) and the protein-free control (Syrup) treatments (F7, 14 = 2.03; p = 0.1234; 
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Figure 8). When comparing only the bees fed experimental sunflower pollen diets, we 

found that the interaction between drought and seed treatment had no effect on 

Nosema load, nor did drought itself. However, bees fed on pollen coming from seed 

treated plants had Nosema loads that tended to be higher than those of bees fed on 

pollen from plants grown using untreated seeds (F1, 14 = 4.35; p = 0.0557). 

Survivorship 

A full parametric survival model analysis on the survival of bees in the 12 sets of 

cages fed sunflower pollen treatments showed that our three way factorial cage 

treatments (three drought treatments x two seed treatments x two inoculation 

treatments) had an effect on overall survival (χ2
11 = 117.0243; p < 0.0001). There was 

a three way interaction between drought, seed treatment, and inoculation (χ2
2 = 

24.4990; p < 0.0001).  

 Survival curves were plotted for each of the 16 cage treatments (two 

inoculums x two different diets x three different water regimes, one positive control, 

and one negative control) (Figure 9). Treatment had an effect on bee survivorship 

(χ2
15

 = 151.8622; p < 0.0001). We then conducted log-rank comparisons between 

survival curves of Nosema infected bees to those of uninfected bees fed each 

experimental sunflower pollen diet treatment. Nosema inoculated bees that were fed 

pollen originating from plants grown from treated seeds under moderate or severe 

drought stress died faster than uninfected bees that were fed similar diets (χ2
1
 = 

24.7735; p < 0.0001; Figure 10; and χ2
1

 = 18.8978; p < 0.0001; Figure 11 

respectively). Nosema infected bees fed pollen from severely drought stressed plants 
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grown from untreated seed also had a reduced lifespan when compared to their 

similarly fed but uninfected counterparts (χ2
1

 = 23.7363; p < 0.0001; Figure 12).  

 When comparing the survival curves of Nosema infected bees fed sunflower 

pollen to our protein control, we found that bees fed Megabee survived longer than 

bees fed pollen from well-watered plants grown from untreated seeds, as well as both 

moderately and severely drought stressed plants, regardless of seed treatment  (χ2
7

 = 

43.9416; p < 0.0001; Figure 13). Bees fed our protein-free control diet of solely sugar 

syrup survived longer than bees fed pollen from both moderately drought stressed 

untreated and treated plants, and pollen from severely drought stressed plants grown 

using treated seeds (χ2
7

 =43.9416; p < 0.0001; Figure 13).  

Discussion 

 As expected, sunflowers grown under drought stress were shorter (Figure 5) 

and had smaller heads (Figure 6) than well-watered plants. This finding is consistent 

with past work on drought stress (Human et al., 1990) and helps assure us that the 

pollen derived from the moderately and severely drought stressed treatment groups 

was indeed representative of pollen that would be produced by plants grown under 

drought conditions. Thiamethoxam, the neonicotinoid in the seed treatment applied to 

sunflower seeds, was found at higher concentrations in pollen as drought stress on the 

plants increased (Figure 7). While clearly suggestive, this result should be interpreted 

with caution as it represents the results from one growth trial. Regrettably, attempts to 

repeat this experiment and thus collect pollen from additional sunflower growth trials 

failed because of constraints on the flowers and technical issues with the automatic 

watering system. Limited resource prevented further attempts.  
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 Our pre-trials in the summer and fall of 2013 did not yield enough pollen for 

both cage studies and pesticide analysis. In the summer of 2013 an average of 0.42 ± 

0.05 grams of pollen was collected for each experimental sunflower treatment 

preventing us from sending out any pollen for pesticide analysis, as the minimum 

requirement for analysis is one gram per sample. The fall of 2013 trial yielded an 

average of 5.20 ± 0.73 grams of pollen, providing us only with enough pollen to 

conduct pesticide analysis. Thiamethoxam loads were 18.5, 8.2, and 9.5 ppb for the 

pollen collected from treated sunflowers grown under well-watered, moderate 

drought stress, and severe drought stress respectively. We attributed the low pesticide 

load for the moderately drought stressed pollen to a faulty watering node in that 

treatment. The node malfunctioned one evening and was left on, resulting in 

continuous watering for 24 hours. This flooded all of the pots in the moderate drought 

treatment which likely washed seed treatments off of treated seeds. The low level of 

thiamethoxam detected in the severely drought stressed pollen was either the result of 

the very small amount of pollen that was collected from the plants, the poor condition 

the plants were in, or a combination of both. The sunflowers in the severe drought 

treatment were very stressed and wilted due to lack of water, so watering was 

increased towards the end of the experiment in order to keep the plants from dying.  

Our original intent was to calculate risk ratios by comparing the prevalence 

rates in Nosema inoculated bees (e.g. (Pettis et al., 2013) that were fed different diets. 

However since nearly all (99.15%) bees inoculated with Nosema became infected, 

this analytical approach was not possible. Instead we compared Nosema load (msb) 

across treatment groups. Our high infection rate was possibly the result of 
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individually dosing bees, rather than group feeding them a Nosema inoculum (Pettis 

et al., 2013) which does not ensure equal exposure for all bees. The effects of 

neonicotinoid exposure on Nosema loads are inconsistent. Some studies link exposure 

to higher Nosema loads, while others show that exposure leads to lower Nosema loads 

(Pettis et al., 2012; Retschnig et al., 2014; Vidau et al., 2011). We found no evidence 

of differing parasite loads in bees feeding on pollen containing thiamethoxam 

residues when compared to those feeding on clean pollen. In fact, the presence of 

pollen in our provisioned diets may have influenced Nosema replication as pollen is 

of great importance to Nosema replication in bees (Fleming et al., 2015; Jack et al., 

2016).  

 There is growing consensus that the drivers of elevated colony losses are 

multiple and interactive (Goulson et al., 2015). In this study we uncovered evidence 

that tri-factor interactions (climate (drought), pesticide exposure (seed treatment), and 

pathogen (Nosema) exposure) can influenced individual bee survivorship. We have 

documented evidence that the consumption of pollen produced by stressed plants (e.g. 

drought) has a negative effect on worker longevity when combined with exposure to a 

pathogen. Notably, bees inoculated with Nosema and fed a diet of pollen collected 

from severely drought stressed plants died faster than their uninfected counterparts.  

Elevated mortality rates were the same, regardless of pesticide residues in the pollen 

they fed on (e.g. treated (Figure 11) and untreated seeds (Figure 12)). Additionally, 

bees fed pollen from moderately drought stressed plants grown from treated seeds 

died faster when infected with Nosema (Figure 10), indicating that moderate stress is 
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not enough to induce harm unless it is coupled with another stressor (e.g. 

neonicotinoid exposure).  

These findings indicate that bees exposed to one stressor have an increased 

susceptibility to other stressors, resulting in a shorter lifespan. The additive effect 

between pathogen infection and neonicotinoid exposure that we observed has been 

shown to cause decreased survival in honey bees (Alaux et al., 2010a; Aufauvre et al., 

2012; Doublet et al., 2015; Vidau et al., 2011). In this study, and for the first time, we 

document evidence pollen produced by stressed plants (e.g. drought) and feed to bees 

has a negative effect on worker longevity when combined with exposure to a 

pathogen. Our work confirms that the synergistic effects of multiple stressors on 

honey bee health warrant more investigation as bees today are faced with a plethora 

of pathogens, pesticides, and poor nutrition in the environment.  
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Tables and Figures 

Table 1. Factorial treatment design for sunflower growth trial. 

Drought Treatment 
Seed 
Type 

Treatment 
Code 

# 
Plants 

Pollen Yield 
(g) 

Well-watered (A) Untreated AU 60 12.6 
Well-watered (A) Treated AT 60 11.33 
Moderate drought stress (B) Untreated BU 60 8.59 
Moderate drought stress (B) Treated BT 60 10.4 
Severe drought stress (C) Untreated CU 60 10.6 
Severe drought stress (C) Treated CT 60 8.8 

 

 

Table 2. Factorial treatment design for the cage feeding study of experimental 
sunflower pollen. 

Cage 
Treatment 

Code 

Drought Treatment of 
Sunflower Pollen 

Seed 
Type 

Nosema spores 
per bee 

AU.no Well-watered Untreated 0 
AU.yes Well-watered Untreated 10000 
AT.no Well-watered Treated 0 
AT.yes Well-watered Treated 10000 
BU.no Moderate drought stress Untreated 0 
BU.yes Moderate drought stress Untreated 10000 
BT.no Moderate drought stress Treated 0 
BT.yes Moderate drought stress Treated 10000 
CU.no Severe drought stress Untreated 0 
CU.yes Severe drought stress Untreated 10000 
CT.no Severe drought stress Treated 0 
CT.yes Severe drought stress Treated 10000 
Megabee.no - - 0 
Megabee.yes - - 10000 
Syrup.no - - 0 
Syrup.yes - - 10000 
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Figure 1. A diagram of the experimental design for the sunflower growth trial. 

 

 
 
 
 

Figure 2. A sunflower head that appears close enough to bloom to be bagged. 
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Figure 3. A bagged sunflower head. Heads were bagged with a small paper bag, and 
secured with a small binder clip. 
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Figure 4. Collecting pollen from a sunflower head. After the brown paper bag was 
removed, the heads were tapped over a sheet of paper to gather pollen.  
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Figure 5. Mean (± SE) height (cm) of greenhouse reared sunflowers. There was a 
significant effect of Drought Treatment on Height (F2, 23 = 78.38; p < 0.0001). Means 
that differ significantly are indicted by different letters. Well-watered plants were 
significantly taller than moderately (T23 = 11.80; p < 0.0001) and severely drought 
stressed plants (T23 = 9.52; p < 0.0001). 
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Figure 6. Mean (± SE) head diameter (cm) of greenhouse reared sunflowers. Drought 
treatment had a significant effect on height (F2, 23 = 20.75; p < 0.0001). Means that 
differ significantly are indicted by different letters. Well-watered sunflowers had 
significantly larger heads than those that were moderately (T23 = 5.50; p < 0.0001) 
and severely drought stressed (T23 = 5.65; p < 0.0001). 
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Figure 7. Pesticide load in pollen collected from experimental sunflowers grown 
using treated seeds. Thiamethoxam was detected in 10.7, 25.3, and 33.9 ppb 
concentrations in pollen collected from plants grown under well-watered, moderate 
drought, and severe drought conditions respectively. Thiamethoxam was not detected 
in untreated seeds grown under any of the three drought treatments.  
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Figure 8. Mean (± SE) Nosema load (millions of spores per bee) for bees fed each 
diet. Diet treatment did not have a significant effect on Nosema load (F7, 14 = 2.03; p = 
0.1234). 
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Figure 9. Survival curves for bees fed each of the 16 experimental cage study 
treatments. There was a significant effect of treatment on survival (χ2

15 = 151.8622; p 
< 0.0001). Survival curves that differ significantly are indicated by different letters. 

 
 

* AT.no: Uninfected bees fed pollen from well-watered seed treated plants 

 AT.yes: Nosema infected bees fed pollen from well-watered seed treated plants 

 AU.no: Uninfected bees fed pollen from well-watered untreated plants 

 AU.yes: Nosema infected bees fed pollen from well-watered untreated plants 

 BT.no: Uninfected bees fed pollen from moderately drought stressed seed treated plants 

 BT.yes: Nosema infected bees fed pollen from moderately drought stressed seed treated plants 

 BU.no: Uninfected bees fed pollen from moderately drought stressed untreated plants 

 BU.yes: Nosema infected bees fed pollen from moderately drought stressed untreated plants 

 CT.no: Uninfected bees fed pollen from severely drought stressed seed treated plants 

 CT.yes: Nosema infected bees fed pollen from severely drought stressed seed treated plants 

 CU.no: Uninfected bees fed pollen from severely drought stressed untreated plants 

 CU.yes: Nosema infected bees fed pollen from severely drought stressed untreated plants 

 Megabee.no: Uninfected bees fed Megabee 

 Megabee.yes: Nosema infected bees fed Megabee 

 Syrup.no: Uninfected bees fed sugar syrup 

 Syrup.yes: Nosema infected bees fed sugar syrup 
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Figure 10. Survival curves for bees fed pollen collected from moderately drought 
stressed sunflowers grown using treated seeds. Survival curves that differ 
significantly are indicated by different letters. Bees infected with Nosema died faster 
than those who were uninfected (χ2

1 = 24.7735; p < 0.0001).  
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Figure 11. Survival curves for bees fed pollen collected from severely drought 
stressed plants grown using treated seeds. Survival curves that differ significantly are 
indicated by different letters. Bees infected with Nosema died faster than those who 
were uninfected (χ2

1 = 18.8978; p < 0.0001). 
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Figure 12. Survival curves for bees fed pollen collected from severely drought 
stressed plants grown using untreated seeds. Survival curves that differ significantly 
are indicated by different letters. Bees infected with Nosema died faster than those 
who were uninfected (χ2

1 = 23.7363; p < 0.0001). 
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Figure 13. Survival curves for bees inoculated with Nosema and fed each different 
diet treatment. Diet treatment had a significant effect on survival (χ2

7
 =43.9416; p < 

0.0001). Survival curves that differ significantly are indicated by different letters. 
Bees fed Megabee lived the longest, outliving bees fed bees fed pollen from well-
watered plants grown from untreated seed (χ2 = 11.0691; p = 0.0061), moderately 
drought stressed plants (untreated seed: χ2 = 18.3569; p = 0.0001, and treated seed: χ2 
= 14.8275; p = 0.0008), and severely drought stressed plants (untreated seed: χ2 = 
10.0625; p = 0.0105, and treated seed: χ2 = 23.347; p < 0.0001) Bees fed our protein-
free control diet of solely sugar syrup survived longer than bees fed pollen from both 
moderately drought stressed untreated (χ2 = 12.5554; p = 0.0028) and treated plants 
(χ2 = 10.0777; p = 0.0105), and pollen from severely drought stressed plants grown 
from treated seeds (χ2 = 17.3356; p = 0.0002). Bees fed pollen from well-watered 
plants grown from treated seed survived longer than bees fed pollen from severely 
drought stressed treated plants (χ2 = 12.2612; p = 0.0129). 

 

* AT.yes: Bees fed pollen from well-watered seed treated plants 

 AU.yes: Bees fed pollen from well-watered untreated plants 

 BT.yes: Bees fed pollen from moderately drought stressed seed treated plants 

 BU.yes: Bees fed pollen from moderately drought stressed untreated plants 

 CT.yes: Bees fed pollen from severely drought stressed seed treated plants 

 CU.yes: Bees fed pollen from severely drought stressed untreated plants 

 Megabee.yes: Bees fed Megabee 

 Syrup.yes: Bees fed sugar syrup 
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Chapter 2: Elucidating the Effects of Real World Pesticide Load 
and Diet Variety on Honey Bee Health. 
 

Abstract 

 Polyfloral pollen diets provide more nutritional variety than monofloral pollen 

diets, leading one to believe that a polyfloral diet would help honey bees mitigate the 

effects of environmental stressors more effectively than a monofloral diet. However, 

pollen collected by honey bees is often found to be contaminated with agricultural 

pesticides. Here we set out to determine if pesticide exposure via consumed pollen 

varies based on floral source. We tested pollen collected from honey bee colonies in 

four different crop systems: Black Cap Raspberry, Meadowfoam, Crimson Clover, 

and Almond. Experimental pollen diets were prepared by using portions of the 

polyfloral pollen mix collected by bees in each field, while monofloral diets were 

prepared by sorting pollen mixes by floral source. We found that polyfloral pollen 

diets and monofloral diets consisting of pollen from a target crop had higher amounts 

of pesticides than monofloral diets prepared from non-target pollens. When our 

experimental pollen diets were consumed by adult bees infected with Nosema 

ceranae we found no differences in pesticide or pathogen susceptibility between bees 

fed polyfloral diets and those fed monofloral pollen diets.  

 

Introduction 

Honey bees that feed on pollen early in their adult lives survive longer than 

honey bees  feeding solely on carbohydrates (de Groot, 1953). Pollen consumption is 
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an important facet of honey bee colony health, as pollen is the colony’s primary 

source of proteins, amino acids, minerals, lipids, and vitamins (Brodschneider and 

Crailsheim, 2010). Adult honey bees that consume adequate amounts of pollen live 

longer and have large and well developed hypopharyngeal glands, fatbodies, and 

ovaries (Brodschneider and Crailsheim, 2010; Haydak, 1970; Pernal and Currie, 

2000). The beneficial effect of pollen consumption on  hypopharyngeal gland 

development is of particular note because it facilitates the production of brood food 

secretions which are the primary source of protein that nurse bees use to feed young 

larvae  (Brodschneider and Crailsheim, 2010). Well fed larva result in healthier adult 

bees, which leads to healthier colonies. 

 The consumption, and thus preferences, of monofloral pollens by young adults 

is directly correlated with total protein content (Schmidt and Johnson, 1984). Young 

adult honey bees also prefer polyfloral pollen blends over monofloral pollen diets 

(Schmidt, 1984; Schmidt and Johnson, 1984). A mixed diet of several pollens 

increases the likelihood bees will receive adequate amounts of all 10 essential amino 

acids required for proper honey bee development (de Groot, 1953), as pollen from 

different plants contain varying quantities and types of amino acids. The drivers of 

the preference for polyfloral diets are unknown, but several theories have been 

postulated. Combining pollens can dilute adverse textures, deterrents, and toxins 

while spreading benefits from more desirable pollens, such as phagostimulants and 

better nutrition, across less desirable pollens (Schmidt, 1984). The benefits of a varied 

diet are intuitive, but very little work has been done to assess them. Adult honey bees 

parasitized with Nosema ceranae tend to survive longer when fed a diet of polyfloral 
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pollen compared to those fed monofloral diets, while uninfected bees survive at the 

same rate regardless of diet variety (Di Pasquale et al., 2013). This is evidence that 

polyfloral pollen diets are better suited to help bees fight off other stressors, but are 

not essential for the survival of healthy adult bees.  

 Honey bees foraging for pollen in modern agricultural ecosystems are not 

only collecting an important food source, they are also indirectly collecting the 

agricultural products used on or around their food sources. Pollen contaminated with 

pesticides can have negative, sub-lethal effects on individual and colony health. For 

instance, when pollen mixes with real world levels of fungicide contaminants were 

fed to bees, they became more susceptible to N. ceranae infection (Pettis et al., 2013). 

Pollen is a vast repository of agricultural chemicals, with an average of 7.1 pesticides 

detected in pollen samples collected from honey bee colonies in the United States 

(Mullin et al., 2010). Pettis et al., 2013 found an average of 9.1 pesticides in pollen 

samples collected from colonies being used to pollinate seven different fruit and nut 

crops. When colonies are rented out for pollination or otherwise placed in a high 

intensity agricultural area, pollen foragers tend to bring in more pollen from non-

cultivated plants than that of the crops being grown in the area (Long and Krupke, 

2016; Pettis et al., 2013). This indicates that non-target species are significant drivers 

of the pesticide exposure from foraged pollen in agricultural areas.  

 While there is a large body of work indicating that pesticides are present in the 

polyfloral mixes of non-cultivated pollen and crop pollen collected in high intensity 

agricultural areas (Long and Krupke, 2016; Pettis et al., 2013), very little work shows 

the differences in pesticide exposure caused by these different sources of pollen 
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(Krupke et al., 2012). For this reason, we decided to survey polyfloral pollen mixes 

collected from honey bee colonies rented by growers to pollinate fields of four food 

and seed crops: Black Cap Raspberry Meadowfoam, Almond, and Crimson Clover. 

The polyfloral mixes collected in three fields of each crop were analyzed for pesticide 

residues, providing a snapshot of real world pesticide loads encountered by foraging 

honey bees. From the 12 polyfloral mixes we isolated 37 monofloral pollens that were 

also analyzed for pesticide residues and were identified as coming from the target 

crop, or a non-target plant.  

 These polyfloral pollen mixes and monofloral pollens were then fed to bees 

infected with N. ceranae in order to examine the effects of diet variety on honey bee 

health, while also allowing us to take into account the effects of pesticides present in 

the pollen consumed. Our goals were three fold. First, we wanted to see if 

contamination levels and their relative risks (HQ) were similar between pollen 

collected from the target crop and non-target plants. Next, we wanted to see if 

polyfloral pollen diets mediated the negative effects of pesticide or pathogen 

exposure more effectively than monofloral pollen diets. Finally, we wanted to see if 

pollen contaminated with real world pesticide loads would negatively affect bee 

health.  

Materials and Methods 

Pollen Diet Preparation 

The pollen used in this experiment was collected by the Bee Informed 

Partnership’s (BIP) Pacific Northwest tech-transfer team as part of a study designed 
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to observe pesticide exposure events in colonies used for the commercial pollination 

of various seed, fruit, and nut crops. In order to track these exposure events, 

corbicular pollen was sampled and analyzed for pesticide residues. Pollen trap 

samples were collected from 12 honey bee colonies, evenly distributed across three 

different fields, for 17 different crops. These pollen samples were sent to the BIP 

Diagnostic lab at the University of Maryland for preparation to be sent to the EPA for 

pesticide residue analysis. Residue analysis was conducted at the field level by 

combining a subsample of pollen collected from all four colonies in a field.  

We chose the pollen trap samples collected from the Black Cap Raspberry, 

Meadowfoam, Crimson Clover, and Almond fields to assess the impact of pollen 

variety on honey bee’s susceptibility to N. ceranae because of the abundance and 

variety of pollen collected in those fields. For each field of Black Cap Raspberry, 

Meadowfoam, Crimson Clover, and Almond, we prepared a field level composite 

pollen mix by aggregating pollen collected from the four colonies in each field. This 

process provided us with 12 field level pollen mixes, three fields per crop.  A 2 g 

subsample of each field mix was sorted by color (using color as an indicator of floral 

source) to determine the floral diversity in each sample. Each color was weighed, to 

determine the proportion per sample, and was identified as being the target crop or a 

non-target plant. Twelve experimental polyfloral pollen diets were created by 

isolating 10 g of pollen from each field mix. 

Next, we attempted to isolate 10 g of the three most predominant colors (floral 

sources) from each field mix to create monofloral diets for our cage feeding trials. 

However we were only able to isolate three monofloral diets from seven of the 12 



 

 

35 
 

field mixes. The remaining field mixes lacked enough pollen to sort, or the vast 

majority of the pollen in the sample came from less than three sources. In total, 25 

experimental monofloral pollen diets were created by sorting out 10g of the most 

predominant pollen colors from each of the field level samples.  Subsamples (1.5-3g) 

of each of the 37 experimental pollen diets were individually packaged in 15 mL 

Falcon tubes (Corning, Inc.: One Riverfront Plaza, Corning, NY, 14831) and shipped 

on dry ice to the USDA-AMS National Science Laboratories in Gastonia, NC where 

pesticide analysis was conducted using modified  methods similar to those described 

by Mullin et al., 2010. When we received the results, we summed the total number of 

pesticides in each sample and the number of products detected in each class of 

pesticides (Fungicides, Herbicides, Insecticides, and Varroacides) (Tables 3-4). The 

overall Hazard Quotient (HQ) was calculated for each sample (Tables 3-4). Hazard 

Quotient was calculated as the sum of each chemical detection in parts per billion 

(ppb) divided by the LD50 for that chemical (Stoner and Eitzer, 2013; Traynor et al., 

2016). 

Cage Studies 

Newly emerged bees were collected by retrieving frames of sealed brood from 

four different colonies at the Central Maryland Research and Education Center 

(CMREC) - Beltsville Facility. Frames were caged and stored overnight in an 

incubator at 34.5oC, 70% relative humidity (Williams et al., 2013). After 24 hours, 

bees were removed from the frames and placed into colony specific hoarding cages. 

Five bees from each hoarding cage were placed into one of 41 disposable 16 oz. Solo 

cup cages modeled after Evans et al., 2009. 37 cups of bees were provided a 1008 
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Falcon petri dish (Corning, Inc., One Riverfront Plaza, Corning, NY 14831)  with a 

paste made up of 0.5 g of one of the 37 pollen diets mixed with 0.25 mL of 50% 

(w/v) sucrose syrup (Pettis et al., 2013). Each of the 37 cages was fitted with a pipette 

bulb feeder containing 2 mL of 50% (w/v) sucrose syrup inoculated with ca. 1 million 

spores of Nosema ceranae. The Nosema inoculum was created using methods 

described by Fries et al., 2013. The remaining four cups of bees served as controls. 

Two cups were provided with a 1008 Falcon petri dish containing 0.75 grams of 

MegaBee pollen substitute, prepared as a patty using label instructions, to serve as 

protein controls. The other two cups were fitted with an empty 1008 Falcon petri dish 

to serve as protein free controls. One of each set of control cups was provided with a 

pipette bulb feeder containing ca. 1 million spores of Nosema in 2 mL of 50% syrup, 

while the remaining two cups were provided a pipette bulb containing 2 mL of 50% 

syrup.  

All 41 cages were maintained in an incubator set at 30oC and 70% relative 

humidity (Williams et al., 2013). Dead bees were removed daily and 50% syrup was 

added to any empty feeders. On the twelfth day, all surviving bees were killed (Pettis 

et al., 2013). Bees were stored in 90% ethanol until they could be processed. Nosema 

load in millions of spores per bee (msb) was individually quantified for each 

surviving bee using haemocytometer counts (Human et al., 2013). This cage study 

experiment was replicated three times.  

Statistical Analysis 

 ANOVAs were used to assess any differences in the mean number of products 

detected and the mean HQ scores detected in pollen mixes from each of the four crop 
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systems studied. Before comparisons, HQ scores were log transformed to meet 

normality assumptions, means were back transformed for graphical presentations. 

ANOVAs were also used to assess any differences in the proportion of honey bees 

fed each experimental diet that survived until the end of the experiment.  Finally, 

ANOVAs were used to analyze Nosema load (msb) for bees fed different pollen diets. 

Analysis was conducted on the average spore load of all surviving bees per cage, and 

cage rep was treated as a random variable. The Proc Mixed procedure in SAS 9.4 

(SAS Institute, Inc., Cary, NC) was used to conduct ANOVAs followed by Tukey 

multiple mean comparisons. 

 Eighty-six variables pertaining to pesticide exposure were compared to the 

average Nosema load (msb) for each of the 37 experimental pollen diet cage 

treatment (3 reps per cage) to assess for correlations. Correlations were analyzed 

using the Proc Corr procedure in SAS 9.4. First we screened the total number of 

products detected, the number of fungicides, herbicides, varroacides, and insecticides. 

Next, we screened the total Hazard Quotient (HQ), the number of products that 

yielded an HQ over 50, and the HQ pertaining to fungicides, herbicides, varroacides, 

and insecticides. Then we screened the number of detections and the HQ for products 

grouped into 14 groups based on unique Mode of Action (MOA) (Ache, IGR 0, EcRs, 

ORA, NaCh, MBC, SDHI, QoI, AP, MAP, DMI, Multisite, PPG, and Tubulin) and 

the total number of different MOAs detected in a sample. Finally, we screened the 

number of detections and the load (in ppb) for each of the 23 pesticides detected in a 

sample (2,4 dimethylphenyl formamide (DMPF), azoxystrobin, bifenthrin, boscalid, 

captan, carbaryl, carbendazim (MBC), chlorothalonil, chlorpyrifos, coumaphos, 
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cyprodinil, diflubenzuron, fluvalinate, iprodione, methoxyfenozide, oxyfluorfen, 

pendimethalin, pronamide, pyraclostrobin, tebuconazole, thiabendazole, THPI, 

trifloxystrobin). 

Results 

Composition of Field Level Pollen Samples 

 Pollen from the target crop was detected in each field sample at varying 

concentrations. Most of the pollen brought back by honey bees placed in 

Meadowfoam, Crimson Clover, and Almond fields was from the target crop, while 

Black Cap Raspberry pollen was only collected by bees in small amounts (Table 3). 

Each of the 25 monofloral pollen diets prepared for cage studies was identified, using 

light microscopy, as being the target crop or a non-target plant (non-targets were 

identified as being in the Fabaceae or Rosaceae family but not from the crop plant) 

(Table 3). 

Pesticide Detections 

There were 95 detections of 23 different pesticides in the 37 experimental 

pollen diets. The 23 chemicals detected had 14 different Modes of Action (MOA). 

Neonicotinoids were not detected in any samples. Up to 8 products were detected in a 

sample, with an average of 2.57 ± 0.34 pesticide detections per sample. No pesticides 

were detected in the sample of our Megabee protein control that was sent for analysis.  

 All polyfloral pollen diets (n = 12) had at least one product detected, with an 

average of 3.33 ± 0.66 products detected per sample (Table 4). Polyfloral diets made 

from Almond field mixes had more products than those made from the pollen mixes 
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collected in Meadowfoam and Crimson Clover fields; more products were also found 

in Black Cap Raspberry polyfloral diets than in Meadowfoam (Figure 19; F3, 8 = 

16.22; p = 0.0009). The average HQ score over all polyfloral samples was 59.94 ± 

37.91.There was no difference in HQ between pollen mixes from different crops 

(Figure 20; F3, 8 = 3.4; p = 0.074). 

 With regards to monofloral diets, pesticides were detected in 21 of the 25 

diets. No products were detected in two diets made of pollen from target crops 

(Meadowfoam), and two diets made of non-target pollen (one from a Black Cap 

Raspberry field, and one from a Crimson Clover field). Collectively, all monofloral 

diets with product detections (n = 21) had an average of 2.62 ± 0.38 products and an 

HQ of 126.03 ± 42.56. Contaminated monofloral diets made up of the target crop 

(n=11) had an average of 3.27 ± 0.63 products and an HQ of 189.12 ± 73.60, whereas 

contaminated monofloral diets made up of non-target plant species (n = 12) had an 

average of 1.58 ± 0.31 products and an HQ of 56.63 ± 28.44. Of the 12 fields 

investigated, only four fields yielded monofloral diets of pollen from the target crop 

and a non-target plant. Different pesticides were detected in the three types of pollen 

diets (polyfloral, monofloral target, and monofloral non-target) created from the 

pollen collected within each of these four fields (Figures 14-17). The total number of 

products detected in the polyfloral, monofloral target, and monofloral non-target diets 

made from these four fields did not differ (F2, 23 = 1.21; p = 0.3304). However, when 

comparing the total number of products detected based on diet variety across all 37 

experimental pollen diets, we found that monofloral non-target diets were less 
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contaminated than polyfloral diets and the monofloral diets made from target crops 

(F2, 24 = 8.44; p = 0.0011; Figure 18).  

Survival Rates 

 There was no significant difference in overall survival between bees fed 

different diet treatments (F38, 76 = 0.94; p = 0.5723). On Average 89.13 ± 1.31 % of 

bees fed each experimental diet survived until harvest on day 12. 

Nosema Infection 

Nosema was detected in 98.7% of the 2,075 bees that survived until the twelfth day of 

the cage studies. There was no difference in Nosema load between bees fed 

experimental polyfloral diets from the four different crop systems, however bees fed 

the polyfloral diets had higher Nosema loads then those fed either Megabee or syrup 

(Figure 21; F5, 34 = 9.18; p < 0.0001). Bees fed monofloral pollen diets made up of 

one of the four target crops tended to have higher Nosema loads than controls (Figure 

22; F5, 37 = 11.04; p < 0.0001). Of particular note, bees fed Meadowfoam pollen had 

lower Nosema loads than those fed Crimson Clover pollen (T37 = 3.17; p = 0.0031). 

For each crop system, Nosema loads did not differ between bees fed the polyfloral 

mixes, monofloral diets of the target crop, or monofloral diets made of non-target 

plants, however bees fed an experimental pollen diet tended to have higher Nosema 

loads than bees fed either control  (Black Cap Raspberry: Figure 23; F4, 35 = 6.57; p = 

0.0005; Crimson Clover: Figure 24; F4, 35 = 18.5; p < 0.0001; Meadowfoam: Figure 

25; F4, 17 = 5.89; p = 0.0037; Almond: Figure 26; F3, 21 = 10.98; p = 0.0002). Lastly, 

there was no difference in Nosema load between bees fed polyfloral diets or 
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monofloral diets but, regardless of floral variety, Nosema loads were higher than 

those of bees fed either control (Figure 27; F3, 111 = 12.44; p < 0.0001).  

Correlations between Nosema and Pesticides 

 We found a significant, negative correlation between Nosema load (msb) and 

presence of thiabendazole (r = -0.22132, p = 0.0196) and load of thiabendazole (r = -

0.22132, p = 0.0196). All other correlations were insignificant. 

Discussion 

 Pollen from the target crop was detected in pollen trap samples collected from 

all three fields for each of the four crops we investigated. Only 16 (± 9.17) % of the 

pollen that honey bees collected in Black Cap Raspberry fields came from Black Cap 

Raspberry plants. While over 50% of the pollen collected by bees in Meadowfoam, 

Crimson Clover, and Almond fields came from the target crop (Table 3). Prior work 

showed that bees used to pollinate crops originating from the New World (Blueberry, 

Cranberry, Watermelon, and Pumpkin) do not bring back much – if any – pollen from 

the target crops, while the pollen collected by bees used to pollinate old world crops 

(Almond and Apple) was predominately from the target crop (Pettis et al., 2013). Our 

findings confirm this work, showing that honey bees are not efficient at collecting 

pollen from crops originating from the New World (Black Cap Raspberry), but are 

excellent pollinators of the Old World crops (Almond and Crimson Clover) with 

which they likely coevolved (Pettis et al., 2013).  

 Our survey of real world pesticide residues found in pollen collected from 

honey bees in agricultural settings was done to answer several questions.  First, we 
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wanted to determine if there was a consistent pesticide exposure across different 

fields of the same crop. At over $300 a sample, pesticide analysis is cost prohibitive. 

For this reason, we were only able to analyze one subsample from each field level 

mix which prevented us from assessing any statistical difference between the 

pesticide detections across the three field mixes of pollen analyzed from each 

different crop. Regardless, there were noticeable differences in the number of 

products, and the amount of each product (HQ), across the different fields sampled 

within each crop. Next, we wanted to determine if there is a difference in pesticide 

exposure across polyfloral pollen mixes from different crops. With this survey we do 

show a difference in the number of products detected in polyfloral pollen mixes 

collected from honey bee colonies across different crops (Figure 19).  

 While pesticides are consistently found in samples of aggregated pollen taken 

from the honey bee colonies used to pollinate commercial crops (David et al., 2016; 

Krupke et al., 2012; Long and Krupke, 2016; Mullin et al., 2010; Pettis et al., 2013; 

Traynor et al., 2016), little work has been done to show from what floral source these 

pesticides originate (Botias et al., 2015; David et al., 2016; Krupke et al., 2012). We 

compared the number of pesticides detected in all 37 experimental pollen diets 

created for cage feeding trials to determine if pesticides are more commonly found in 

pollen collected from the target crop, non-target crop, or the overall pollen mix 

brought into a colony. We found that non-target crop monofloral pollen diets had 

fewer products than target crop monofloral pollen diets and polyfloral pollen diets 

containing both target and non-target pollens (F2, 24 = 8.44; p = 0.0011; Figure 18). 

This confirms prior work showing that more pesticides are found in target crop pollen 
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collected directly from cultivated crops than in the wild-flowers growing adjacent to 

fields (Botias et al., 2015; David et al., 2016). The types and quantity of pesticides 

detected in the polyfloral and monofloral diet mixes coming from the same field were 

not consistent. This is surprising as we would not expect that monofloral diets derived 

from a polyfloral mix would have unique products not detected in the polyfloral mix; 

yet we saw this in several instances (Figures 14-17). This hints at the inherent flaw of 

subsampling pollen for pesticide analysis, it would seem that several subsamples 

should be analyzed to get an accurate count on the amount and types of pesticides in 

pollen sample.  Finally, we wanted to determine if there were differences between 

product detections and relative risks between the three diet types (polyfloral, target, 

and non-target pollen) at the crop level. Regrettably, we were unable to conduct this 

comparison due to the low sample size of monofloral diets that some pollen mixes 

yielded (Table 3). 

 We found no evidence that polyfloral pollen diets mitigate the effects of 

pesticide or pathogen exposures on adult honey bees when compared to monofloral 

pollen diets. Adult honey bees infected with Nosema survive at equal rates regardless 

of pollen diet variety for at least the first 20 days of life, but after 50 days it is evident 

that bees fed polyfloral diets live longer than those fed monofloral diets (Di Pasquale 

et al., 2013). We found no difference in overall survival between bees fed each of the 

37 different experimental pollen diets (F38, 76 = 0.94; p = 0.5723). However, our 

analysis of adult bee survival across bees fed different diets was truncated as all bees 

surviving on day 12 were sacrificed for Nosema quantification. Studies similar to 

ours, have shown that bees exposed to pesticides, specifically neonicotinoids, die 
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faster if they have also been infected with Nosema (Aufauvre et al., 2012; Doublet et 

al., 2015; Retschnig et al., 2014; Vidau et al., 2011). While there were 23 different 

pesticides detected across all 37 experimental diets we tested, none of them were 

neonicotinoids. Differences in adult bee longevity based on diet variety or pesticide 

exposure may have been detected had we tested survival over a greater period of 

time. 

 We found no differences in Nosema load (msb) when comparing bees fed 

polyfloral diets prepared from the pollen mixes of each crop (Figure 21). Had 

pesticides played a role in increasing susceptibility to Nosema, we would have 

expected to see higher Nosema loads in bees fed the pollen diets with higher pesticide 

loads.  While others have found such a relationship (Pettis et al., 2013), we failed to. 

Nosema loads also did not differ between bees fed monofloral diets of different target 

crop pollens suggesting all crops studied had equal or no effect on bee health (Figure 

22).  

 Finally, there was no difference in Nosema load between bees fed polyfloral, 

monofloral target, and monofloral non-target pollen diets prepared from pollen 

trapped in each of the four different crop systems we investigated (Figures 23-26) 

While a diverse pollen diet can increase the imunocompetence and longevity of 

healthy honey bees (Alaux et al., 2010b; Schmidt et al., 1987), we found that diet 

variety did not increase inoculated bees susceptibility to Nosema infection. In fact, the 

consistent infection across bees fed any sort of pollen is likely the result of the pollen 

consumption itself, as a pollen diet increases Nosema replication in bees (Fleming et 

al., 2015; Jack et al., 2016). While we did not detect a relationship between pesticide 
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exposure and Nosema load, this should not be interpreted as pesticides having no 

effect. Different pesticides have different effects on Nosema load, some products 

cause an increase in Nosema loads while others cause a decrease (Vidau et al., 2011). 

For these reasons, future investigations into the impacts of nutritional variety and real 

world pesticide loads on Nosema susceptibility and longevity of adult honey bees 

would do well to focus on survival rates, rather than Nosema load, as longevity has 

already been documented to alter depending on diet variety, pathogen infection, and 

pesticide exposure (Alaux et al., 2010b; Aufauvre et al., 2012; Di Pasquale et al., 

2013; Doublet et al., 2015; Retschnig et al., 2014; Schmidt et al., 1987; Vidau et al., 

2011).  
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Tables and Figures 

Table 3. Floral composition and quantity of monofloral pollen diets prepared for cage studies, as well as the mean (± SE) number of 
product detections and mean (± SE) relative risk (HQ) for each type of monofloral diet. 

Crop Pollen Type n 
% of pollen 

in mix 
Fungicides 
Detected 

Herbicides 
Detected 

Varrroacides 
Detected 

Insecticides 
Detected 

Total 
Products 
Detected  Total HQ 

Black Cap Raspberry Crop 1 16 ± 9.17 5 0 0 0 5 21.05 
Black Cap Raspberry Non-target 8 84 ± 9.17 1.25 ± 0.31 0.13 ± 0.13 0 0.5 ± 0.27 1.88 ± 0.4 70.61 ± 34.07 
Meadowfoam Crop 2 74 ± 6.66 0 0 0 0 0 0 
Meadowfoam Non-target 1 26 ± 6.66 2 0 0 0 2 1.24 
Crimson Clover Crop 6 54.67 ± 15.34 1.5 ± 0.22 0.67 ± 0.21 0.17 ± 0.17 0.5 ± 0.22 2.83 ± 0.6 221.99 ± 99.43 
Crimson Clover Non-target 3 45.33 ± 15.34 0.67 ± 0.33 0 0 0 0.67 ± 0.33 0.07 ± 0.04 
Almond Crop 4 92.67 ± 1.76 2.5 ± 0.87 0.25 ± 0.25 0 0.75 ± 0.48 3.5 ± 1.55 181.83 ± 148.42 
Almond Non-target 0 7.33 ± 1.76 - - - - - - 

 

Table 4. Mean (± SE) number of product detections and mean (± SE) relative risk (HQ) for polyfloral pollen diets. 

Crop Pollen Type n 
Fungicides 
Detected 

Herbicides 
Detected 

Varrroacides 
Detected 

Insecticides 
Detected 

Total Products 
Detected  Total HQ 

Black Cap Raspberry Mix 3 2.67 ± 1.2 0.67 ± 0.33 0.67 ± 0.67 0 4 ± 0.58 4.42 ± 2.16 
Meadowfoam Mix 3 0.67 ± 0.67 0 0.67 ± 0.33 0 1.33 ± 0.33 1.89 ± 0.92 
Crimson Clover Mix 3 1 ± 0.58 0 0.33 ± 0.33 0.33 ± 0.33 1.67 ± 0.33 12.37 ± 11.48 
Almond Mix 3 3.33 ± 0.33 1.67 ± 0.33 0 1.33 ± 0.88 6.33 ± 0.88 221.09 ± 118.89 
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Figure 14. Venn diagram comparing the products detected in the three different types 
of pollen diets prepared from pollen trap samples collected in Field 3 of Black Cap 
Raspberry. Azoxystrobin and THPI were detected in the polyfloral pollen mix (n = 1), 
as well as both types of monofloral diets (Black Cap Raspberry pollen (n = 1) and 
non-target pollen (n = 2)) prepared from the field 3 polyfloral mix. Boscalid, captan, 
and cyprondil were detected in the polyfloral mix and the monofloral diet made from 
Black Cap Raspberry pollen. Tebuconazole was only detected in the monofloral diets 
made from non-target pollen.  

 

 

 

 

 

 

 

 

 



 

 

48 
 

Figure 15. Venn diagram comparing the products detected in the three different types 
of pollen diets prepared from pollen trap samples collected in Field 1 of 
Meadowfoam. Boscalid and chlorothalonil were only detected in the polyfloral mix 
diet (n  = 1) collected in Field 1 of Meadowfoam. Captan and cyprodinil were only 
detected in the monofloral diet made from non-target pollen (n = 1). There were no 
products detected in the monofloral diets made from Meadowfoam pollen (n = 2). 
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Figure 16. Venn diagram comparing the products detected in the three different types 
of pollen diets prepared from pollen trap samples collected in Field 1 of Crimson 
Clover. Carbaryl and fluvalinate were only detected in the polyfloral mix (n = 1), 
Azoxystrobin was only detected in the monofloral diets made of Crimson Clover 
pollen (n = 2), and trifloxystrobin was only detected in the monofloral diets made 
from non-target pollen (n = 1). 
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Figure 17. Venn diagram comparing the products detected in the three different types 
of pollen diets prepared from pollen trap samples collected in Field 2 of Crimson 
Clover. Azoxystrobin was detected in the polyfloral mix (n = 1), the monofloral diets 
made from non-target pollen (n = 2), and the monofloral diets made from Crimson 
Clover pollen (n = 1). THPI was only detected in the polyfloral pollen diet. 
Bifenthrin, coumaphos, and pronamide were only detected in the monofloral diet 
made from Crimson Clover pollen.  
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Figure 18. Mean (± SE) number of products detected based on diet variety (F2, 24 = 
8.44; p = 0.0011). Significantly different means are indicated by letters. Polyfloral 
pollen diets and monofloral diets made of target crop pollen had more product 
detections than monofloral diets made up of pollen from non-target plants. 
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Figure 19. Mean (± SE) total number of products detected in polyfloral pollen mixes 
from each of the four crops (F3, 8 = 16.22; p = 0.0009). Significantly different means 
are indicated by letters. Polyfloral diets prepared from pollen trap samples taken in 
almond fields were more contaminated than those prepared from Meadowfoam fields 
or Crimson Clover fields. Polyfloral diets prepared from pollen trap samples taken in 
Black Cap Raspberry fields were more contaminated than those made from 
Meadowfoam fields. 
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Figure 20. Mean (± SE) total Hazard Quotient for the polyfloral pollen mixes 
collected from each crop. There was no significant treatment effect (F3, 8 = 3.4; p = 
0.074). 
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Figure 21. Mean (± SE) Nosema load (millions of spores per bee) for honey bees fed 
polyfloral diets from each of the four different crops (F5, 34 = 9.18; p < 0.0001). 
Means that differ significantly are indicted by different letters. There was no 
difference across experimental pollen treatments, however bees fed any of the pollen 
diet treatments had significantly higher levels of Nosema infection that bees fed either 
control. 
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Figure 22. Mean (± SE) Nosema load (millions of spores per bee) for honey bees fed 
monofloral pollen diets made up of the target crop (F5, 37 = 11.04; p < 0.0001). Means 
that differ significantly are indicted by different letters. Bees fed monofloral diets of 
Meadowfoam pollen had significantly lower Nosema infection levels than those fed 
Crimson Clover pollen (T37 = 3.17; p = 0.0031). 
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Figure 23. Mean (± SE) Nosema load (millions of spores per bee) for honey bees fed 
pollen diets prepared from pollen collected in Black Cap Raspberry fields (F4, 35 = 
6.57; p = 0.0005). Means that differ significantly are indicated by different letters.  
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Figure 24. Mean (± SE) Nosema load (millions of spores per bee) for honey bees fed 
pollen diets prepared from pollen collected in Crimson Clover fields (F4, 35 = 18.5; p < 
0.0001). Means that differ significantly are indicated by different letters.  
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Figure 25. Mean (± SE) Nosema load (millions of spores per bee) for honey bees fed 
pollen diets prepared from pollen collected in Meadowfoam fields (F4, 17 = 5.89; p = 
0.0037). Means that differ significantly are indicated by different letters.  
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Figure 26. Mean (± SE) Nosema load (millions of spores per bee) for honey bees fed 
pollen diets prepared from pollen collected in Almond fields (F3, 21 = 10.98; p = 
0.0002). Means that differ significantly are indicated by different letters.  
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Figure 27. Mean (± SE) Nosema load (millions of spores per bee) for honey bees 
based on diet variety (F3, 111 = 12.44; p < 0.0001). Means that differ significantly are 
indicated by different letters.  
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