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Ensemble Kalman Filters perform data assimilation by forming a background co-

variance matrix from an ensemble forecast. The spread of theensemble is intended to

represent the algorithm’s uncertainty about the state of the physical system that produces

the data. Usually the ensemble members are evolved with the same model.

The first part of my dissertation presents and tests a modifiedLocal Ensemble Trans-

form Kalman Filter (LETKF) that takes its background covariance from a combination of

a high resolution ensemble and a low resolution ensemble. The computational time and

the accuracy of this mixed-resolution LETKF are explored and compared to the standard

LETKF on a high resolution ensemble, using simulated observation experiments with the

Lorenz Models II and III (more complex versions of the Lorenz96 model). The results



show that, for the same computation time, mixed resolution ensemble analysis achieves

higher accuracy than standard ensemble analysis.

The second part of my dissertation demonstrates that it can be fruitful to rescale

the ensemble spread prior to the forecast and then reverse this rescaling after the fore-

cast. This technique, denoted “forecast spread adjustment” provides a tunable parameter

that is complementary to covariance inflation, which cumulatively increases the ensemble

spread to compensate for underestimation of uncertainty. As the adjustable parameter ap-

proaches zero, the filter approaches the Extended Kalman Filter when the ensemble size

is sufficiently large. The improvement provided by forecastspread adjustment depends

on ensemble size, observation error, and model error. The results indicate that it is most

effective for smaller ensembles, smaller observation errors, and larger model error, though

the effectiveness depends significantly on the type of modelerror.
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Chapter 1

Introduction

1.1 Background: Weather Forecasting and Data Assimilation

To predict the weather, we require both a numerical model forthe partial differential

equations governing the evolution of weather and initial conditions for the current atmo-

spheric state. Since weather is chaotic, the forecast must periodically be corrected to more

closely match the observations. This corrected model stateis called the analysis. The pro-

cess of forecasting a model state and modifying it accordingto observations is called data

assimilation.

Neither the forecast nor the observations exactly coincidewith the true state of the

weather. Data assimilation balances the uncertainties in the forecast (also called the “back-

ground” state) and the observations, and produces an “analysis” state deemed to be the

most likely state given the available information.
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1.1.1 The Kalman Filter

A common paradigm for data assimilation is the Kalman filter.The Kalman filter

analysis can be described byxa = xb +K
(

yo −Hxb
)

, wherexa andxb are vectors rep-

resenting the analysis and background states,yo represents the observations,H is a linear

operator (e.g., an interpolation operator) which transforms model vectors into expected

observations,K = P bH⊤ (

HP bH⊤ +Ro
)−1

is called the Kalman gain matrix, andP b

andRo represent the background and observation error covariancematrices.

The Kalman filter is optimal provided the dynamics are linear, the observed quan-

tities are linear functions of the model state, and the errors are Gaussian. Even when not

optimal, the Kalman filter often works well for nonlinear models and nonlinear observa-

tion operators by using a linear approximation.

Advanced data assimilation techniques require an estimateof the uncertainty in the

background state. The background uncertainty at a particular time is related to, but dif-

fers from the uncertainty at previous times. Nonlinear Kalman filters (e.g. XKF, ETKF,

LETKF) approximately evolve the background error covariance but tend to underestimate

it. In ensemble Kalman filters, this is typically compensated for by multiplicative inflation

of the background error covariance prior to analysis.

In the Extended Kalman Filter (XKF) (Jazwinski 1970; Evensen 1992), the esti-

mated background error covariance is evolved by linearizing the model around the back-
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ground state, which is also being evolved by the model. With the complex weather predic-

tion models however, the computation cost of the XKF makes itimpractical.

Another way to estimate the background error covariance is through the use of a

collection of forecasts, called an ensemble. According to sample statistics, the background

error covariance is approximated byP b ≈ 1
k−1

XbXb⊤, wherek is the size of the ensemble,

andXb is a matrix whose columns are the ensemble perturbations, i.e., the difference

between the model state and the mean. Most ensemble techniques use the mean of the

background ensemble to provide the background state. Rather than output a single, optimal

analysis state, the ensemble is regenerated ask suboptimal states centered around the

optimal analysis.

The Ensemble Transform Kalman Filter (ETKF) (Bishop et al. 2001; Wang et

al. 2004) is one algorithm that regenerates the ensemble after performing the analysis.

However, forecasting a large ensemble can be costly. Furthermore, artificial correlations

between model values at distant grid points are induced by computingP b from sample

statistics. These difficulties are circumvented by performing an analysis for each grid

point, considering only nearby observations when computing the update. This method is

called localization and several localization methods havebeen proposed (Houtekamer and

Mitchell 1998; Ott et al. 2004; Hamill et al. 2001; Whitaker and Hamill 2002). The Local

Ensemble Transform Kalman Filter (LETKF) is described in Hunt et al. (2007). Though
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my research can be applied to other ensemble methods, most ofmy research is performed

with ETKF the or the LETKF.

1.1.2 Experimental Methods and Models

I used Observing System Simulation Experiments (OSSEs) to test the accuracy of

the methods I developed. In OSSEs, one forecasts a model state designated the “truth”

and generates observations by adding error. Then, pretending not to know the truth, data

assimilation is performed, and the analysis is compared to the truth to measure the accu-

racy in terms of the time averaged, spatial root mean square error. Improvements to data

assimilation are generally tested on simple models before being implemented and tested

in more realistic weather models because with a simple model, OSSEs can be run quickly

and at low computation cost.

The simple models I used for testing are the Lorenz (2005) Models II, and III . These

are generalizations of the well known Lorenz 96 model (Lorenz 1996). The domain for

the Lorenz 96 model is a set of grid points (typically40) describing a circle. The model

consists of three terms

dxn

dt
= (xn+1 − xn−2) xn−1 − xn + F (1.1)

simulating the chaotic effects of advection, diffusion, and forcing respectively. Model II

4



smooths the Lorenz 96 model over a domain ofK times as many grid points (i.e. increas-

ing the resolution by a factor ofK):

dxn

dt
=

(

xn+Kx
avg

n−K

)avg − xavg

n−2Kx
avg

n−K − xn + F , (1.2)

whereqavg

j refers to the average value ofq over the regionK grid points in length centered

at grid pointj. Model III simulates even greater resolution, sufficient todescribe coupled

small scale activity. Model III evolves the variableszn = xn + yn according to

dzn
dt

=
(

xn+Kx
avg

n−K

)avg − xavg

n−2Kx
avg

n−K − xn + F

+b2 (yn+1 − yn−2) yn−1 − byn + c (xn+1yn−1 − yn−2xn−1) ,

wherexn andyn represent the large scale and small scale components ofzn respectively

(defined precisely in Section 2.3.2, equation (2.25)),b controls the amplitude and speed of

the small scale activity andc controls the coupling.

1.2 Objectives

Ensemble Kalman filters are limited by the computational cost of evolving a large,

high-resolution ensemble. Larger ensembles correspond toa greater sample size, which

allows better statistical analysis. On the other hand, highmodel resolution is desirable

5



because it improves the individual forecasts at all scales and better resolves the small scale

activity. So traditional ensemble Kalman filters compromise between the resolution of the

model and the size of the ensemble. Much of the literature on ensemble Kalman filters uses

the ensemble mean as the best estimate for the truth, but Gao and Xue (2008) proposed

updating a high resolution forecast with the background error covariance estimated from

a low resolution ensemble.

The goal of the first part of my doctoral research (Chapter 2) is to develop and test

a technique for mixed-resolution ensemble data assimilation that incorporates information

from both a high resolution ensemble and a low resolution ensemble. This alleviates the

trade-off between model resolution and ensemble size, allowing a large low-resolution

ensemble to bolster a small high-resolution ensemble. My results demonstrate that mixed-

resolution ensemble data assimilation outperforms single-resolution data assimilationfor

the same computational cost.

The algorithm I developed for mixed-resolution ensemble data assimilation effec-

tively estimates the covariance as a weighted average of thebackground error covariances

estimated from high and low resolution ensembles. I discovered that the results are not

very sensitive to exact tuning of the weight parameter. Exploration of the reasons for this

lead to the second part of my dissertation research.

The goal of the second part of my doctoral research (Chapter 3) is to improve en-
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semble data assimilation for nonlinear models by developing and testing an algorithm in

which the spread of the ensemble during the forecast does notcorrespond to the amount of

uncertainty. With forecast spread adjustment I also aim to connect many aspects of data as-

similation, specifically the ensemble Kalman filters and theextended Kalman filter, back-

ground and analysis error covariance inflation, and forecast spread and observation error

covariance inflation. In the ensemble Kalman filters, the background mean can be thought

of as a random variable estimating the true model state, withthe background ensemble

representing random sampling according to the distribution of this random variable. In

other words, we assume that the spread of the ensemble corresponds to the uncertainty in

the mean. However, I have found advantages to ensemble data assimilation when forecast-

ing an ensemble with a scaled spread, provided that the ensemble spread is rescaled prior

to analysis. I call this technique forecast spread adjustment.

For the idealized case of data assimilation with a linear model, forecast spread ad-

justment has no effect, i.e. the algorithm with forecast spread adjustment simplifies to the

standard algorithm without forecast spread adjustment. Thus a discussion of the effects of

forecast spread adjustment is only relevant and meaningfulfor a nonlinear model such as

numerical weather models.

If the ensemble is clustered too closely about the mean, the true model state could lie

outside of the spread of the ensemble, especially when modelerror is substantial. Model

7



nonlinearity can further accentuate the discrepancy between the ensemble and the truth.

For a large ensemble with infinitesimal spread, the rescaledperturbations describe a linear

approximation for the error similar to that of the XKF. Compared to the XKF, ensemble

Kalman filters can better track nonlinear effects as the ensemble is spread over a larger

region of the attractor. I show that further expanding the ensemble spread can provide

additional advantage, especially in the presence of model error.

An alternate way of describing forecast spread adjustment is in terms of inflating

the observation error covariance; though, as Sections 3.3.2 and 3.4.3 demonstrate, in the

cases I examined, only the forecast spread adjustment interpretation correctly ascribes the

observation, background, and analysis error estimates while the error estimates ascribed

by the observation error covariance inflation interpretation exaggerate or underestimate

the true error.

Though the algorithms given in the literature on ensemble data assimilation with

multiplicative inflation typically inflate the background error covariance, inflating the anal-

ysis error covariance instead is often mentioned as being equally viable. Forecast spread

adjustment can be used to transform an algorithm that inflates the background error co-

variance into an algorithm that inflates the analysis error covariance or into an algorithm

that inflates both by different amounts. Furthermore, multiplicative inflation (including

possibly deflation) of both the background error covarianceand the analysis error covari-
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ance separately is yet another way of describing ensemble data assimilation with forecast

spread adjustment and background error covariance inflation.

1.3 Organization

My dissertation consists of two research projects, both of which I am submitting for

publication. They are written as separate articles, so Chapter 2 and Chapter 3 are complete

and discrete in and of themselves. This introduces some redundancy in my dissertation,

especially between the introductions to Chapters 2 and 3. Chapter 2 describes mixed-

resolution ensemble data assimilation. Chapter 3 describes ensemble data assimilation

with an adjusted forecast spread.

In Chapter 2, I start by introducing ensemble data assimilation and motivate mixed-

resolution ensemble data assimilation. I describe the ETKF(Ensemble Transform Kalman

Filter) algorithm (Bishop et al. 2001; Wang et al. 2004) and Idescribe how I adapted the

ETKF algorithm to accommodate ensembles of two resolutions(mETKF). In the limit as

two ensembles with the same number of members approach the same resolution I describe

how the mETKF (on two ensembles with the same resolution) compares to the ETKF on

the entire ensemble. I also describe the cost function that is minimized by my mETKF

algorithm and how this could be extended to hybrid systems. Iactually implemented a

mixed resolution LETKF (Local ETKF, (Hunt et al. 2007)), in which I perform a mETKF
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analysis at each grid point, only allowing nearby observations to influence the analysis. I

tested the mLETKF with OSSEs using Lorenz (2005) Models II and III as the low and high

resolution models respectively. I compared the root mean square difference between the

analysis mean and the truth for various mixed-resolution ensembles using the mLETKF

and for various single-resolution ensembles using the LETKF respectively. I tested the

mLETKF in perfect model scenarios and in scenarios with model error. My results show

the trade-off between forecast computation time and time averaged root mean square anal-

ysis error for my experiments with the mLETKF and the LETKF, and I discuss how using

mixed resolution ensembles allows more accurate results for the same forecast computa-

tion time.

In Chapter 3, I start by introducing data assimilation, the ensemble Kalman filters

(specifically ETKF and LETKF), and the extended Kalman filter. I describe ensemble data

assimilation with forecast spread adjustment. I demonstrate how this reduces to standard

data assimilation when the model is linear. I show that this is equivalent to observation

error covariance inflation for an appropriately initialized ensemble and discuss why fore-

cast spread adjustment is the more natural interpretation for my experiments. Forecast

spread adjustment with multiplicative covariance inflating can also be described as multi-

plicative inflation of the analysis error covariance followed by multiplicative deflation or

inflation of the background error covariance. Furthermore in the limit of a large ensemble
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with a small forecast spread, ensemble data assimilation with forecast spread adjustment

approaches the extended Kalman filter. I tested the LETKF with forecast spread adjust-

ment via OSSEs on the Lorenz (2005) Model II for different amounts of model error,

different ensemble sizes, and different amounts of observation error. I also tested how

the ETKF with forecast spread adjustment compares to the XKFfor large ensembles and

small spread. I discuss the results of these experiments andthe potential benefits of fore-

cast spread adjustment.

In Chapter 4, I discuss my conclusions and future directionsfor research.
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Chapter 2

Mixed Resolution Ensemble Data Assimilation

2.1 Introduction.

Numerical weather prediction uses a numerical model of atmospheric physics to

predict the future states of the atmosphere given an estimate for the current atmospheric

state. Uncertainty about the current state, along with inaccuracies in the model dynamics,

leads to (greater) uncertainty in the forecast. Quantifying this uncertainty is important for

interpreting the forecast and for data assimilation. In data assimilation, information from

a short term forecast is combined with information from recent observations, resulting in

an estimate of the current atmospheric state used to initialize subsequent forecasts.

One tool for assessing forecast uncertainty is an “ensembleprediction system” (Leith

1974) in which an ensemble of initial conditions are evolvedby the model. Ideally, the

ensemble of forecasts samples the future atmospheric state, thinking of it as a random vari-

able. Weather services generally make a single forecast at ahigh resolution, determined

by their computational and operational constraints, and forecast an ensemble at lower res-

olution (Toth and Kalnay 1993; Molteni et al. 1996; Toth and Kalnay 1997; Buizza et al.
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2005). The resolution may change for different forecast lead times, e.g., forecast7 days

ahead, then forecast another7 days at reduced resolution (Buizza et al. 2007). However,

at a given lead time all of the ensemble members generally have the same resolution.

In this chapter, we will consider potential advantages in describing forecast uncer-

tainty of an ensemble with multiple members at each of two different resolutions. We will

assess the advantage by proposing a mixed-resolution ensemble data assimilation system

and comparing its results to the analogous single-resolution assimilation system.

A common paradigm for data assimilation is the Kalman filter.The Kalman filter

cycles between the analysis phase and the forecast phase. The “analysis” generated by

the Kalman filter is a function of the forecast estimate, called the “background” state, the

forecast uncertainty quantified as a background error covariance, new observations, and

the observation uncertainty quantified as an observation error covariance. The resulting

analysis state is an updated version of the background state, which better fits the observa-

tions. Forecasting the analysis provides the background for the next cycle.

Accurately estimating and evolving the background error covariance is a time con-

suming process. There is growing interest in estimating thebackground error covari-

ance using sample statistics on ensemble forecasts, eitherindependently (as in ensemble

Kalman filters), or in combination with variational methods(e.g., Lorenc 2003). In gen-
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eral, for ak member ensemble of background states

X
b =

[

X
b
1 X

b
2 . . . X

b
k

]

(2.1)

with meanx̄b and perturbations

Xb =

[

X
b
1 − x̄b

X
b
2 − x̄b . . . X

b
k − x̄b

]

, (2.2)

the background error covariance is estimated by

P b =
1

k − 1
XbXb⊤. (2.3)

The number of members composing the ensemble and the resolution of the model states

being evolved both contribute to the accuracy of the forecast uncertainty estimated with

the ensemble and also to the computation time of the forecast.

Most ensemble data assimilation literature, e.g. Houtekamer and Mitchell (1998),

Anderson and Anderson (1999), Bishop et al. (2001), Whitaker and Hamill (2002), Ott et

al. (2004), assumes that all ensemble members have the same resolution. While forecast-

ing the background ensemble at a lower resolution substantially reduces the computational

cost involved, it also decreases the accuracy of the analysis. We argue that an ensemble
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composed of forecasts evolved at two different resolutionsmay better characterize forecast

uncertainty than a single resolution ensemble, within given computation constraints.

Du (2004) proposed combining low resolution ensemble perturbations with a high

resolution forecast as part of an ensemble forecast system.Gao and Xue (2008) propose

data assimilation with a single high resolution forecast and a low resolution ensemble. In

what they call dual resolution data assimilation, the low resolution ensemble is evolved

and independently of the high resolution forecast, and the background error covariance

estimated from the low resolution ensemble is also used to update a single high resolution

forecast. Gao et al. (2010) extend this technique to use the hybrid method of Lorenc

(2003). The ensemble perturbations are updated separately, but the ensemble analysis

mean can be shifted toward or replaced by the high resolutionanalysis, as in Zhang and

Zhang (2012).

One of the disadvantages of pure ensemble methods is rank deficiency of the covari-

ance, especially for small ensembles. Localization allowssmaller ensembles as we discuss

in Section 2.3.1, but the rank deficiency can still be a disadvantage when the ensemble size

is too small. The background error covariance used in the ensemble based hybrid meth-

ods is a weighted average of a full rank static covariance (such as that from a variational

method) and a reduced rank ensemble estimated covariance (Hamill and Snyder 2000).

However, the ensemble perturbations are updated separately with the reduced rank ensem-
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ble estimated error covariance and data assimilation with single resolution ensembles must

still balance the available computational resources between the size and resolution of the

ensemble.

To achieve the accuracy of a high resolution ensemble for a lower computational

cost, we have developed a modification of the Local Ensemble Transform Kalman Fil-

ter (LETKF) (Hunt et al. 2007) for a mixed resolution ensemble composed of a small

high resolution ensemble and a larger low resolution ensemble. Similarly to the hybrid

method, e.g. Hamill and Snyder (2000), we form the background covariance as a linear

combination of the sample covariances of the two ensembles.To limit the effects of inter-

polation between the two model spaces, we use the combined background covariance in

observation space as much as possible.

In contrast to hybrid methods where the static covariance does not influence the

analysis ensemble perturbations, in mixed resolution ensemble data assimilation both the

high and low resolution analysis ensemble perturbations are influence by the combined

background error covariance. Additionally, the mixed resolution combined background

error covariance could be easily incorporated into hybrid methods e.g. Hamill and Sny-

der (2000) including frameworks where the cost function is preconditioned e.g. Lorenc

(2003). These cost functions are described in Section 2.2.4.

We remark that our method allows the high resolution ensemble to have just one
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member, with the background covariance formed entirely from the low resolution ensem-

ble, as proposed e.g. by Du (2004), Zupanski (2005), Gao and Xue (2008). When the

high resolution ensemble has multiple members however, both ensembles contribute to

the background covariance.

We test this hypothesis by comparing analysis errors in a mixed resolution ensemble

Kalman filter scheme. In particular, we test the mixed resolution LETKF (mLETKF) on

two chaotic models designed by Lorenz (2005). The low resolution model (Model II) is

similar to the Lorenz 96 model (Lorenz 1996; Lorenz and Emanuel 1998) but is smoother

in that the values at adjacent grid points have a strong positive correlation. The high

resolution model (Model III) includes short wave coupling in addition to the smoothing.

In Section 2.2 we motivate and describe the algorithm for performing the mLETKF.

For simplicity, we discuss the method mainly in the context of no localization, using the

ETKF (Bishop et al. 2001; Wang et al. 2004) as formulated in Hunt et al. (2007). We give

a side-by-side comparison of the two algorithms (ETKF and mETKF). In Section 2.3 we

describe the full algorithms that we use in our experiments,complete with localization,

interpolation, and reduced impact for distant observations. We describe the low and high

resolution models (Lorenz (2005) Models II and III ) that we use in our experiments, and

we describe our experiments. We test the mLETKF most extensively with a simple sce-

nario of limited observations, testing the LETKF for high resolution ensembles of various
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sizes and testing the mLETKF for mixed resolution ensemblesvarying the size of both the

high and low resolution components of the ensemble, including ensembles with only one

high resolution member. We also investigate the potential advantages or disadvantages of

the mLETKF for more accurate observations with full coverage and more frequent assim-

ilation, sufficient to resolve the small scale variability,and in less ideal conditions where

model error was introduced. We discuss the parameters, which we tuned for best accuracy,

and we discuss balancing limited computation resources forbest accuracy. We give our

results at the end of Section 2.3. In Section 2.4 we conclude that mixed resolution ensem-

ble analysis is beneficial in all of the scenarios tested, in that a greater accuracy can be

attained for the same computation time.

2.2 Methodology.

Below we describe in detail how we perform a single analysis step with a mixed-

resolution ensemble, in comparison with an ETKF analysis step. We also describe the

mETKF in terms of minimizing a cost function and discuss how to incorporate the mETKF

within hybrid systems.

In Sections 2.2.1 and 2.2.2 we present the global Ensemble Transform Kalman Fil-

ter (ETKF) algorithm and the global mixed-resolution ETKF algorithm (mETKF). How-

ever, we used the Local Ensemble Transform Kalman Filter (LETKF) algorithm and the
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mLETKF algorithm in our experiments. In the LETKF (or mLETKF), a separate ETKF

(or mETKF) analysis is done for each model grid point, using only observations from a

region local to that grid point. Once the choice of observations is made, the LETKF analy-

sis is equivalent to (though formulated differently than) the Ensemble Transform Kalman

Filter (Bishop et al. 2001) with a centered spherical simplex ensemble (Wang et al. 2004).

It is also equivalent to the local analysis of LEKF (Ott et al.2004). We discuss localization

and other minor but practical modifications to our algorithmin Section 2.3.1.

2.2.1 ETKF

The Ensemble Transform Kalman Filter (ETKF) algorithm (Bishop et al. 2001;

Wang et al. 2004) is designed to generate an analysis ensemble of suboptimal state esti-

mates commensurate with the analysis error covariance indicated by the Kalman filter and

centered around the Kalman filter optimal analysis state, while shifting the background

ensemble as little as possible to form the analysis ensemble(Ott et al. 2004).

We represent the background ensemble withk members by the matrixXb, with each

column standing for a different ensemble member,X
b
i (see equation (2.1)). The mean of

the ensemble,̄xb, is used as the background state. We constructed the perturbations via

equation (2.2), writing each ensemble member asX
b
i = x̄b + Xb

i . We denote byXb the

matrix of perturbations from the mean (see equation (2.2)).The observations and the ob-
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servation error covariance areyo andRo respectively. Instead of using the background

error covarianceP b explicitly in the computations, we represent the implicit background

error covariance by a square root matrixU b = (k − 1)−
1
2 Xb, whereP b = U bU b⊤ (equa-

tion (2.3)).

The number of elements (rows) inyo is equal to the number of observations,No, and

the number of rows inXb is equal toNm, the number of grid points in the model space.

For an ensemble ofk members,Xb will havek columns.

Leth(x) be the forward operator that maps from model space into observation space.

The matrixYb represents the background ensemble in observation space, i.e.,Yb
i = h

(

X
b
i

)

.

The vectorȳb and the matrixY b represent the mean and perturbations of the background

ensemble in observation space so thatY
b
i = ȳb + Y b

i . If h(x) is linear then it can be

represented by a[No × Nm] matrix H, h(x) = Hx. Three intermediary matrices,V b,

C, andMa, are created by the algorithm for efficiency during computation; V b has size

[No × k], C has size[k × No], andMa has size[k × k]. Similar toU b, the matrixUa is

a square root of the analysis error covarianceP a = UaUa⊤ . The background ensemble

X
b, the analysis ensembleXa, and their respective implicit error covariancesU b andUa

all have size[Nm × k].

We have split the ETKF algorithm into 3 major steps. In Step (1) we construct

the inputs needed for the ETKF. In Step (2) we create intermediate matrices used in the
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analysis. In Step (3) we compute the analysis ensemble.

1. (a) U b =
1√
k − 1

Xb

(b) V b =
1√
k − 1

Y b

2. (a) C = V b⊤ (Ro)−1

(b) Ma =

(

1

ρ
I + CV b

)−1

3. (a) x̄a = x̄b + U bMaC
(

yo − h
(

x̄b
))

(b) Ua = U b (Ma)
1
2

(c) Xa =
√
k − 1Ua

(d) X
a
i = x̄a+Xa

i

In Step (3c) the square root ofMa is defined as the unique symmetric positive definite

matrix whose square isMa. Using this square root ofMa gives an analysis ensemble with

members that are the nearest to their background ensemble counterparts when compared

to the analysis ensembles computed using any other square root (Ott et al. 2004).

With ρ = 1, the analysis mean̄xa and covarianceP a = UaUa⊤ are consistent with

the Kalman filter applied tōxb andP b. For a variety of reasons including model non-

linearity and limited ensemble size, the background error covariance estimated from an

ensemble forecast tends to underestimate the size of the error in the background mean

(Houtekamer and Mitchell 1998; Anderson and Anderson 1999;Whitaker and Hamill
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2002). The inflation factorρ in Step (2b) effectively multiplies the background error co-

variance matrix byρ. The value ofρ is often determined by tuning to optimize performance

in a given scenario (Anderson and Anderson 1999; Whitaker and Hamill 2002). One can

also adjustρ adaptively (Anderson 2007; Li et al. 2009; Miyoshi 2011). Adaptive inflation

allowsρ to depend on location, which can be important when the model and observations

are spatially heterogeneous.

2.2.2 mETKF

High resolution models are more accurate than low resolution models yet take more

time to run. Among ensembles of the same resolution, ensembles with more members

provide a better estimate for the background mean and covariance. However, increasing

either the size or the resolution of the ensemble also increases the computational cost.

Thus, within given computational constraints, a single-resolution ensemble compromises

between the size of the ensemble and the resolution of the model. Combining the infor-

mation in a large, low resolution ensemble with a small, highresolution ensemble could

produce a better analysis than either resolution produces by itself. Described below is a

method for mixed resolution ensemble analysis as it appliesto the Ensemble Transform

Kalman Filter (we abbreviate mixed ETKF by mETKF).

The high resolution background ensembleX
b
h has sizeNh×kh (grid size× ensemble
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size). In the same fashion the low resolution background ensembleXb
ℓ has sizeNℓ × kℓ.

The high and low resolution background means arex̄b
h andx̄b

ℓ respectively. In the mixed

algorithm,Xb
h (Xb

ℓ ) stands for the high (low) resolution background perturbations from

the high (low) resolution ensemble mean:

[

X
b
h

]

i
= x̄b

h +
[

Xb
h

]

i
(2.4)

[

X
b
ℓ

]

i
= x̄b

ℓ +
[

Xb
ℓ

]

i
. (2.5)

In observation space, members of the high and low backgroundensembles are denoted

by
[

Y
b
(h/ℓ)

]

i
= hh/ℓ

([

Xb
h/ℓ

]

i

)

= ȳb(h/ℓ) +
[

Y b
(h/ℓ)

]

i
. The operatorshh andhℓ transform

high and low resolution model states to observation space. We use parentheses around the

subscriptsh andℓ to indicate objects that are related to one of the ensembles but do not lie

in the corresponding model state space.

In various equations below, two matrices combine to form a larger augmented ma-

trix. For matricesA andB with the same number of rows, the augmented matrix

[

A B

]

=

[

A1 A2 . . . AkA B1 B2 . . . BkB

]

. (2.6)

is the matrix with leftmost columns encompassingA and rightmost columns encompassing

B.
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When doing analysis on a mixed ensemble, we occasionally need to compare vectors

and matrices of different resolutions. To create a joint (augmented) ensemble of the back-

ground perturbations, we interpolate the low resolution background perturbations onto the

high resolution grid by means of the cubic spline with circular boundary conditions. The

function spline() denotes an operator interpolating a low resolution field onto the high

resolution grid. Similarly, high resolution fields are projected onto the low resolution grid

via the operator proj(). We remark that if the high resolution grid points are a subset of the

low resolution grid points, then proj() is truly a projection operator; otherwise it involves

some interpolation as well.

In the mETKF, as in the ETKF, the background error covarianceis never explic-

itly computed. Instead we estimateU b, the implicit background error covariance (P b =

U bU b⊤), andV b, the implicit background error covariance as expressed in observation

space (Rb = V bV b⊤), from a weighted combination of the high and low resolutionpertur-

bations:

U b =

[

√

α
kℓ−1

spline
(

Xb
ℓ

)

√

1−α
kh−1

Xb
h

]

, (2.7)

V b =

[

√

α
kℓ−1

Y b
(ℓ)

√

1−α
kh−1

Y b
(h)

]

. (2.8)

Equivalently,Rb, can be written as a weighted average of the high and low resolution
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background error covariances

Rb
(h/ℓ) =

1

kh/ℓ − 1
Y b
(h/ℓ)Y

b
(h/ℓ)

⊤
(2.9)

Rb = αRb
(ℓ) + (1− α)Rb

(h) = V bV b⊤ . (2.10)

The scalarα determines the relative weight of each ensemble. Whenα = 1, only the

low resolution perturbations are used to determine the analysis update, i.e.Rb = Rb
(ℓ).

Settingα = 1 is necessary when the high resolution ensemble contains only a single

member. Even though the high resolution perturbations are ignored, the high resolution

single member ensemble will still be updated in the analysis. Similarly whenα = 0, the

low resolution perturbations are ignored andRb = Rb
(h).

The mETKF algorithm is shown below with steps numbered in a corresponding

manner to the steps of the ETKF algorithm in Section 2.2.1. The input parameters for the

mETKF analysis step are: the background ensembles (X
b
h andXb

ℓ), the weight parameterα,

the inflation factorρ, and the observationsyo with their error covarianceRo. We construct

the augmented implicit background error covariance matricesU b andV b in Step (1). Step

(2) is useful for efficient computation. In Step (3) we perform the analysis. We remark that

the analysis mean for the low (high) resolution ensemble is updated from the background

mean for the low (high) resolution ensemble.
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1. (a) U b =

[

√

α
kℓ−1

spline
(

Xb
ℓ

)

√

1−α
kh−1

Xb
h

]

(b) V b =

[

√

α
kℓ−1

Y b
(ℓ)

√

1−α
kh−1

Y b
(h)

]

2. (a) C = V b⊤ (Ro)−1

(b) Ma =

(

1

ρ
I + CV b

)−1

3. (a) i. x̄a
h = x̄b

h + U bMaC
(

yo−hh

(

x̄b
h

))

ii. x̄a
ℓ = x̄b

ℓ + proj
(

U b
)

MaC
(

yo−hℓ

(

x̄b
ℓ

))

(b) Ua = U b (Ma)
1
2

(c) splitUa into components corresponding to the low and high resolution ensem-

bles:Ua =

[

Ua
(ℓ) Ua

(h)

]

i. Xa
h =

√

kh−1
1−α

Ua
(h)

ii. Xa
ℓ =

√

kℓ−1
α

proj
(

Ua
(ℓ)

)

(d) i. [Xa
h]i = x̄a

h + [Xa
h ]i

ii. [Xa
ℓ ]i = x̄a

ℓ + [Xa
ℓ ]i

Step (3d) is done for each ensemble member, i.e.1 ≤ i ≤ kh/ℓ.

We remark that because proj() inverts spline(), theXa
ℓ computed by (3c) is the

same as if we had formedU b in low-resolution model space (projectingXb
h), performed

Step (3b) on the low-resolution ensemble, and selected the columns of the low-resolution

Ua that correspond to the low-resolution ensemble.
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When the high resolution ensemble only has one member, the perturbations from the

mean are zero. Since the background error covariance of the high resolution part cannot be

computed, no weight should be given to the high resolution component of the covariance.

This can be done by settingα = 1, using0 instead of
√

1−α
kh−1

in Step (1), and setting

Xa
h =

−→
0 in Step (3c). Both the low resolution ensemble and the high resolution member

will be updated from the information in the low resolution perturbations.

As the low resolution analysis mean ignores the high resolution background mean,

whenα = 1 the low resolution analysis ensemble from the mETKF is identical to that pro-

duced from the ETKF on the low resolution ensemble. Thus a code for mixed resolution

ensemble data assimilation can also accommodate single resolution ensembles by setting

α = 1 andXb
h =

−→
0 (or Xb

h = ∅) for a low resolution ETKF or by settingα = 0 and

X
b
ℓ =

−→
0 for a high resolution ETKF.

With some models it might be desirable to compute a single analysis mean for both

the high and low resolution ensembles, replacing Step 3(a)ii with x̄a
ℓ = proj(x̄a

h) and re-

placingx̄a
h in Step 3(a)i withx̄a representing a state estimate better thanx̄a

h if such exists.

However, our results were marginally worse when we replacedx̄a
ℓ with proj(x̄a

h). Du

(2004) explores the forecasting advantages this provides when the high resolution ensem-

ble has only one member.
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2.2.3 A side by side comparison

As a thought experiment, consider splitting a2k-member ensemble into two equal

parts, yielding twok-member ensembles of the same resolution. In this section wewill

compare the ETKF on the2k-member ensemble to the mETKF on the twok-member en-

sembles. Since bothk-member ensembles have the same size and resolution, we weigh

them equally, usingα = 1
2
. For each step, the ETKF step is given on the left and the

comparable mETKF step is given on the right. We label onek-member ensemble with

subscriptℓ and the other with subscripth, even though in the present scenario both ensem-

bles are in the same model space, and there is no need for interpolation or projection.

1. (a) U b = 1√
2k−1

Xb

[

1√
2k−2

Xb
ℓ

1√
2k−2

Xb
h

]

= U b

(b) V b = 1√
2k−1

Y b

[

1√
2k−2

Y b
(ℓ)

1√
2k−2

Y b
(h)

]

= V b

2. (a) C = V b⊤Ro−1

V b⊤Ro−1
= C

(b) Ma =

(

1

ρ
I + CV b

)−1

(

1

ρ
I + CV b

)−1

= Ma

3. (a) x̄a = x̄b + U bMaC
(

yo − h
(

x̄b
))

28



x̄b
h/ℓ + U bMaC

(

yo − h
(

x̄b
h/ℓ

))

= x̄a
h/ℓ

(b) Ua = U b (Ma)
1
2

U b (Ma)
1
2 = Ua =

[

Ua
(ℓ) Ua

(h)

]

(c) Xa =
√
2k − 1Ua

√
2k − 2Ua

(h/ℓ) = Xa
h/ℓ

(d) X
a
i = x̄a +Xa

i

x̄a
h/ℓ +

[

Xa
h/ℓ

]

i
=

[

X
a
h/ℓ

]

i

The differences are as follows. First, in the mETKF separatemeans̄xh andx̄ℓ are com-

puted for the two ensembles; these means are used explicitlyin Steps (3a) and (3d), and

also in forming the ensemble perturbations in Step (1). Second, the rank of the mETKF

combined background error covariance is2k − 2, while the rank of the corresponding

ETKF background error covariance is slightly larger (2k − 1). Thus, for largek the

mETKF and the ETKF should produce similar results, but for small k, the mETKF will

be more influenced by sampling error. We note that the ensemble Kalman filter proposed

by Houtekamer and Mitchell (1998) also uses two equal-size ensembles and updates their

means separately, but compensates for sampling error by updating the mean from one en-

semble using only the background covariance computed by theother ensemble. While

the combined background covariance of mETKF is probably detrimental in this thought-

experiment scenario, it is an essential feature of mETKF in the mixed-resolution scenario.
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2.2.4 Cost Function

The ETKF and the mETKF can also be considered in terms of minimizing a cost

function. We also show the cost function for a mixed ensemblebased hybrid scheme.

2.2.4.1 The ETKF Cost Function

For the ETKF this cost function is

J∗(w) = ρ−1w⊤w +
(

yo − ȳb − V bw
)⊤

Ro−1 (
yo − ȳb − V bw

)

, (2.11)

whereȳb = h
(

x̄b
)

andρ is the background error covariance inflation. Ifh is linear then

h
(

x̄b + U bw
)

= ȳb + V bw, and it follows that ifwa ∈ R
k minimizesJ∗ then x̄a =

x̄b + U bwa minimizes the alternative cost function

J(x) =
(

x− x̄b
)⊤ (

ρP b
)−1 (

x− x̄b
)

+ (yo − h(x))⊤ Ro−1
(yo − h(x)) (2.12)

in the space spanned by the ensemble (Hunt et al. 2007).
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2.2.4.2 The mETKF Cost Function

A similar cost function applies to each resolution in the mETKF:

J∗
h/ℓ(w) = ρ−1w⊤w +

(

yo − ȳb(h/ℓ) − V bw
)⊤

Ro−1 (
yo − ȳb(h/ℓ) − V bw

)

, (2.13)

whereȳb(h/ℓ) = hh/ℓ

(

x̄b
h/ℓ

)

. Similarly, whenhh/ℓ is linear, thenx̄a
h = x̄b

h + U bwa and

x̄a
ℓ = x̄b

ℓ + proj
(

U b
)

wa minimize the alternative cost function

Jh/ℓ(x) =
(

x− x̄b
h/ℓ

)⊤ (

ρP b
)−1 (

x− x̄b
h/ℓ

)

+
(

yo − hh/ℓ(x)
)⊤

Ro−1 (
yo − hh/ℓ(x)

)

(2.14)

in the space spanned by the ensemble, providedwa ∈ R
kh+ℓ minimizesJ∗

h/ℓ.

The minimizerwa for J∗
h is

wa =
(

1
ρ
I + V b⊤Ro−1

V b
)−1

V b⊤Ro−1(
yo − hh

(

x̄b
h

))

, (2.15)

and the equation for the high resolution analysis mean from Step 3(a)i of Section 2.2.2

gives

x̄a
h = x̄b

h + U bwa, (2.16)

For linearhh, x̄a
h (equation (2.16) and Step 3(a)i) minimizes the cost function Jh (equa-
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tion 2.14) in the space spanned by the ensemble. A similar derivation applies to the low

resolution analysis̄xa
ℓ .

In summary, the mETKF analysis minimizes separate cost functions for the high

and low resolution ensembles. The two ensembles are coupledby the combined pertur-

bation matrixV b in both cost functions (equation 2.13), or equivalently by the combined

background covariance matrixP b (equation 2.14).

2.2.4.3 The Hybrid mETKF Cost Function

As we have not explored mixed resolution ensemble based hybrid methods, this

section describes a generalized theoretical cost function. We consider a hybrid method

where a control forecastxb
h is performed at high resolution and ensembles are forecast at

mid resolutionXb
m and low resolutionXb

ℓ. We assume that the control forecast is the most

accurate and hence the best prior estimate.

The hybrid mETKF cost function similar to that given in Lorenc (2003) and Gao et

al. (2010) is given by

J∗
hybrid(v, w) = v⊤v + ρ−1w⊤w

+
(

yo−ȳb−β1h
(

(

P b
static

)
1
2 v
)

−β2V
bw

)⊤
Ro−1

(

yo−ȳb−β1h
(

(

P b
static

)
1
2 v
)

−β2V
bw

)

,

(2.17)

whereybh = h
(

xb
h

)

andβ2
1 + β2

2 = 1.
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As in the previous sections (2.2.4.1 and 2.2.4.2), whenh is linear, thenxa
h = xb

h +

β1

(

P b
static

)
1
2 va + β2U

bwa minimizes the alternative cost function similar to that given in

Hamill and Snyder (2000):

J(x) =
(

x− x̄b
)⊤
(

β2
1P

b
static+ β2

2ρU
bU b⊤

)−1
(

x− x̄b
)

+ (yo − h(x))⊤Ro−1
(yo − h(x)) .

(2.18)

Further details on the equivalence between Hamill and Snyder (2000) and Lorenc (2003)

are provided in Wang et al. (2007).

2.3 Numerical Experiments and Results.

To test the mixed resolution LETKF, we used two chaotic models designed by

Lorenz (2005) to generate the high and low resolution ensembles. Both models are ex-

tensions of the Lorenz 96 model (Lorenz 1996; Lorenz and Emanuel 1998). The latter

model is called Model I in Lorenz (2005), and is smoothed to produce Model II, which

we use as our low resolution model. The high resolution ModelIII introduces short wave

coupling in addition to the smoothing.

We tested the mixed resolution LETKF and the standard LETKF in several cases

with Observing System Simulation Experiments (OSSEs). In these types of experiments,

a computer is not only used to generate the forecasts, it is also used to generate simulated
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observations. It creates a trajectory that we call the “truth” and from this it generates obser-

vations by adding random error to the truth at selected points. In most of our experiments,

we use a “limited observation” network consisting of one simulated observation every24

Model III grid points. We also consider a “small-scale resolving” scenario in which we

have observations at every grid point.

2.3.1 Modifications to the Algorithms.

In the LETKF, the ETKF analysis is performed for each grid point, using only the

observations in a neighborhood surrounding the grid point.This eliminates long-range

background correlations that may be spurious due to limitedensemble size. In addition,

global errors may grow in many directions in model space, butfewer directions are needed

to describe local errors. The result of local analysis is that one member of the ensem-

ble may be heavily weighted near one grid point, yet lightly weighted near another, so a

smaller ensemble can be used to cover all of the directions oferror growth. See Greybush

et al. (2011) for further discussion of localization. For a mixed ensemble, the mLETKF

localization is done in the same fashion as the LETKF, i.e. the mETKF is done on each

grid point, using only the observations in a neighborhood surrounding the grid point. In

all cases we use a localization radius of32 Model III grid points, i.e.2 or 3 observations

per local region in our limited observation network.
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When observations are sparse, edge effects can cause adjacent grid points to have

significantly different analyses. For instance, consider the extreme case of a grid point

whose local region contains no observations, which is adjacent to a grid point with one

observation on the very edge of its local region. The analysis at the first grid point would

be the background at that grid point, since no observations means no update. However,

the second grid point would be updated to more closely align with the observation quite

a distance from it. To reduce this unrealistic choppiness, in our limited observation sce-

narios we tapered the influence of distant observations by increasing the observation error

covariance associated with observations near the edge of a local region (Greybush et al.

2011). Hunt et al. (2007) suggest multiplying the elements of the inverse observation error

covariance matrix(Ro
local)

−1 by a weight function, which is1 for observations in the center

of the local region and dwindles to0 for observations beyond the edge of the local region.

Our tapering weight function tapered the elements of(Ro
local)

−1 in a trapezoid-like fash-

ion. For observations on the very edge of a local region, we increased the observation error

covariance by4 times. For observations in the exact center of the tapered region, we dou-

bled the observation error covariance. For observations located elsewhere in the tapered

region, we multiplied the observation error covariance by an interpolated power of2. For

observations in the central half of the local region, we did not change the observation error

covariance.
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With the LETKF, the analyses at different grid points can be done in parallel. If

grid points are closely spaced, it can be advantageous to calculate the “weights”wa =

MaC
(

yo − h
(

x̄b
))

(see equation (2.15)) andW a = (Ma)
1
2 only on a subset of the grid

points and interpolate these onto rest of the grid points (Yang et al. 2009). These weights

multiply the background ensemble perturbation matrixU b in Steps (3a) and (3b) of our

ETKF formulation given in Section 2.2.1. The analysis ensemble at a particular grid point

j is computed from the interpolatedwa
(j) andW a

(j) by finding the analysis mean and co-

variance

x̄a
[j] = x̄b

[j] + U b
[j]w

a
(j) (2.19)

Ua
[j] = U b

[j]W
a
(j), (2.20)

and computingXa
[j] from Steps (3c) and (3d). Here the subscript[j] denotes the rows

corresponding to grid pointj. We performed the analysis at every fourth Model III grid

point (i.e. the Model II grid) and used weight interpolationto determine the analysis at the

other Model III grid points.

2.3.2 Models.

Following Lorenz (2005), we use a circular grid of240 points for Model II, and

for Model III we use 960 points that refine the Model II grid by afactor of 4. To avoid
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confusion, we introduce theunit distance defined as the distance between one Model III

grid point and the next. Thus the circle is960 units in circumference and Model II grid

points are4 units apart. A snapshot of both models, overlaid for comparison, is given in

Figure 2.1.
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Figure 2.1: Sample Model II and Model III states shown simultaneously. Model III has
short wave coupling at high resolution, while Model II, witha lower resolution, is smooth.

Both models use an averaging function on nearby grid points,where the smoothing

parameterK determines the distance over which the average is taken. WhenK is odd, the

averaging function〈〉K;n refers to the arithmetic mean over theK grid points nearest (and

including) the grid point indexed by the numbern, i.e. grid pointsn − K−1
2

to n + K−1
2

.

WhenK is even,〈〉
K;n

is the average over the region of lengthK grid points, centered at

grid point numbern, with boundary points weighted half as much as interior points, i.e.

considering the nearestK + 1 grid points, theK − 1 interior grid points are weighted by
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1
K

and the two most distant grid points (n− K
2

andn+ K
2

) are weighted by1
2K

.

The averaging function for an even valued smoothing parameter is related to the
∑′

notation of Lorenz (2005) according to the the equation

〈x〉K,n =
1

K

K/2
∑

j=−K/2

′
xn+j , (2.21)

where
J

∑

j=−J

′
xn+j =

(xn−J + xn+J)

2
+

J−1
∑

j=−J+1

xn+j. (2.22)

We use the
∑′

notation when describing Model II and Model III and also whendefining

the long wave component of Model III.

Model II is given by

dxn

dt
= 1

K

K/2
∑

j=−K/2

′
xn+K+j · 〈x〉K;n−K+j

−〈x〉
K;n−2K

〈x〉
K;n−K

− xn + F (2.23)

whenK is even; whenK is odd,
∑

(K−1)/2

j=−(K−1)/2
replaces

∑′
j=K/2

j=−K/2. F represents the forcing

constant in this differential equation. WhenK = 1, no averaging takes place and Model

II reduces to the Lorenz 96 model (Lorenz 1996; Lorenz and Emanuel 1998). Following

suggestions in Lorenz (2005), all of our experiments use a smoothing parameter ofK = 8
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(corresponding to a smoothing over32 Model III units) and most use a forcing constant of

F = 15. Some experiments use different values ofF to simulate model error.

For our small-scale resolving scenario, we performed data assimilation every0.005

time units and in all other cases we performed data assimilation every0.05 time units. We

integrated Model II via the fourth order Runge-Kutta schemewith a time step size of0.005

or 0.05/2 respectively.

In our experiments the truth and the high resolution ensemble were both simulated

with the high resolution model, Model III, given by the equation

dzn
dt

= 1
K

K/2
∑

j=−K/2

′
xn+K+j · 〈x〉K;n−K+j

−〈x〉
K;n−2K

〈x〉
K;n−K

− xn + F

+b2 (yn+1 − yn−2) yn−1 − byn

+c (xn+1yn−1 − yn−2xn−1) (2.24)

where
∑

(K−1)/2

j=−(K−1)/2
replaces

∑′
j=K/2

j=−K/2 whenK is odd andx andy are defined as follows

in terms ofz.

xn =

I
∑

i=−I

′
(

3I2 + 3

2I3 + 4I
− 2I2 + 1

I4 + 2I2
|i|
)

zn+i (2.25)

yn = zn − xn

39



The coefficientsb2 andc are parameters of the model that drive the coupling. The number

I is chosen so thatx will not include short waves; the coefficients in the equation defining

xn filter out non-quadratic fluctuations betweenn−I andn+I (Lorenz 2005). The vectors

x andy in equation (2.24) then correspond to the long and short wavecomponents ofz

respectively.

For Model III, we use a smoothing parameter ofK = 32 (smoothing over the same

length scale as Model II) and a forcing constant ofF = 15. Our other parameters were

I = 12, b = 10, andc = 2.5. This gives short waves that vary about10 times faster than

the long waves with about1/10 the amplitude (Lorenz 2005). Integration was done via

the fourth order Runge-Kutta scheme with a time step size of0.05/24 or 0.005/3. While

the Model III can run without analysis with a larger time stepsize of0.05/12 as in Lorenz

(2005), we found that data assimilation with Model III requires a smaller time step due to

the instability of evolving with short waves of artificiallylarge amplitude. All of our other

parameters are consistent with those recommended by Lorenz(2005).

2.3.3 Experiments.

As mentioned above, our experiments took place on a gridded circle of size960

units, where adjacent Model III grid points are1 unit apart and adjacent Model II grid

points are4 units apart. We tested the mLETKF with a limited observationnetwork of40
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simulated observations spaced evenly every24 units around the entire circle, and with a

dense observation network of960 simulated observations, one at each Model III grid point.

We simulated observations by adding uncorrelated Gaussiannoise to a model run that we

regard as the “truth”. In all scenarios below we used the sametruth run generated from

Model III with forcing constantF = 15. In our small-scale resolving scenario we used

the dense observation network, with observations and analyses every0.005 time units,

and observation errors with standard deviation0.3, which is about the size of the small

scale variability (Yoon and Ott 2010). In all other cases, weused the limited observation

network, with observations and analyses every0.05 time units, and observation errors

with standard deviation2. We remark that observing and performing data assimilation

every0.05 time units was not sufficient to resolve the small-scale variablesyn, which vary

10 times faster than the large-scale variablesxn; this is consistent with the findings of

Ballabrera-Poy et al. (2009) for a similar model.

Our basic limited observations scenario and our small-scale resolving scenario have

a “perfect” high resolution model (F = 15 for both truth and data assimilation). To

consider scenarios where both models are imperfect, we useda different forcing constant

for the ensemble forecasts than for the truth run. We tested two model error scenarios. In

one scenario we used a forcing constant ofF = 14 for both the high and low resolution

forecasts. In the other scenario we used a forcing constant of F = 12.5. Introducing model
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error detracts from the high resolution model’s capabilityto resolve the small scales, so

we only tested our small-scale resolving scenario within the perfect model framework.

We tested our three limited observation scenarios (basic, imperfect modelF = 14,

and imperfect modelF = 12.5) with the mLETKF on three different sizes of mixed resolu-

tion ensembles and with the LETKF on three different sizes ofhigh resolution ensembles.

In the majority of our mixed resolution experiments, the lowresolution component of the

ensemble containedkℓ = 30 members and only the size of the high resolution component

was varied withkh = 1, 2, and3 members. The high resolution ensembles tested con-

tainedk = 3, 4, and5 members. In addition, we tested our basic scenario on numerous

other ensemble size combinations. Similarly, we tested oursmall-scale resolving scenario

with the mLETKF on three different sizes of mixed resolutionensembles and with the

LETKF on four different sizes of high resolution ensembles (15, 16, 17 or 18 members).

In each of the mixed cases, the low resolution component of the ensemble contained30

members and the high resolution component contained9, 12, or 15 members. We present

these results in Section 2.3.6.

We measure the accuracy of each experiment as the root mean square difference

between the analysis and the truth at the Model III grid points, averaged over4500 as-

similation steps. We ran each experiment for a total of5000 assimilation steps, but we

ignored the first500 assimilation steps, giving the ensembles time to spin-up. Specifically,
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the accuracy of each experiment is given by

RMSE= 1
4500

5000
∑

i=501

rms
(

xa(ti)− xt(ti)
)

, (2.26)

where rms is the root-mean-square function over the960 grid points,xt(ti) refers to the

true model state at theith assimilation step, andxa(ti) refers to the analysis state (best

estimate) at theith assimilation step in Model III space, i.e.xa(ti) = x̄a
h(ti) for mixed

resolution experiments,xa(ti) = x̄a(ti) for high resolution experiments, andxa(ti) =

spline(x̄a(ti)) for low resolution experiments.

2.3.4 Parameters Tuned.

For each result below we tuned the covariance inflation,ρ, in order to minimize

the analysis RMSE. While tuningρ substantially improves the accuracy, we found that

the results were generally less sensitive to changes inα. Recall thatα determines the

weight given to the high resolution ensemble versus the low resolution ensemble when

determining the implicit background error covariance.
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Figure 2.2: Dependence of the analysis RMSE onα for the 2 & 30 (circle) and3 & 30
(diamond) mixed cases in our basic scenario. The results areaveraged over4500 assimi-
lation steps after a spin up of500 assimilation steps. Whenα = 1 only the low resolution
perturbations are used to determine the analysis update. The flatness of the graph indicates
thatα does not need extensive tuning. Notice thatα = .2 is close to optimal in both cases
shown, and is well separated from the large errors we observefor α < 0.05.

The representative example shown in Figure 2.2 indicates that the RMSE does not

change substantially for any value ofα betweenα = 0.1 andα = 0.9. Whenα = 1, only

the low resolution perturbations are used to determine the analysis update. Similarly when

α = 0, only the high resolution perturbations contribute to the analysis update. Therefore,

in the mixed case with only one high resolution member, we necessarily useα = 1. We

tunedα for the four mixed cases of2 or 3 high resolution and30 low resolution ensemble

members both with our basic scenario and with model errorF = 12.5. Sinceα = 0.2 was

close to ideal for each of these cases, in all of our basic and model error results below, we

useα = 0.2. In our small-scale resolving experimentsα tuned to0.8.
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Though we discuss the joint covariance as a weighted averageof the high and low

resolution covariances, the flatness of Figure 2.2 for intermediate values ofα and the larger

tuned value ofα for our small-scale experiments indicates that this interpretation may be

too simplistic. Changing the value ofα also changes, after many assimilation cycles, the

relative variances of the high and low resolution ensembles. Larger values ofα result in

smaller low resolution perturbations and larger high resolution perturbations. For example,

in our basic scenario with3 high resolution members and30 low resolution members,

increasingα from 1
3

to 2
3

roughly halves the variance of the low resolution ensemble and

increases the variance of the high resolution ensemble by30%:

P b
ℓ (α = 2

3
) ≈ 1

2
P b
ℓ (α = 1

3
) (2.27)

P b
h(α = 2

3
) ≈ 1.3 · P b

h(α = 1
3
). (2.28)

As a result, the low resolution part of the joint covarianceP b = αP b
ℓ + (1 − α)P b

h stays

about the same asα changes from1
3

to 2
3
, while the high resolution part decreases (but by a

smaller factor than1− α decreases). We have not fully explored the relationship between

α and ensemble spread.

In each limited observation experiment, we tried values ofρ differing in the hun-

dredths place and our results below use the value ofρ that gave the most accurate RMSE.

45



Values ofρ were between1.04 and1.13 where the higher values were optimal when the

forecast model was less accurate or when the ensemble size was small. In mixed reso-

lution ensembles,ρ tuned to slightly lower values than in single resolution ensembles of

comparative computational cost. In our small-scale resolving experiments,ρ tuned to a

much larger values, even as large as1.45, so we tunedρ along a coarser mesh of size0.05.

2.3.5 Balancing Limited Computational Resources.

Computation speed limits the accuracy obtainable in practice. The time taken by the

forecast is directly proportional to the size of the ensemble, provided that the same model

is being used to forecast the entire ensemble. More generally, the time taken to evolve the

ensemble forecast equals the sum of the times taken to evolveeach member. Though the

forecast can be done much more quickly in parallel, computational resources still limit the

maximum ensemble size.

The forecast computation times shown follow a linear proportionality with the en-

semble size. In our experiments, forecasting each high resolution member took about100

times longer than forecasting each low resolution member. Therefore, when forecasting

a mixed ensemble, a relatively large low resolution ensemble can be used without much

impact on the total forecast computation time.

However, the analysis time hinges more upon the size of the total ensemble, which in
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our experiments is approximately the size of the large, low resolution ensemble. Generally

speaking, the forecast time limits the size of the high resolution ensemble we can use,

and the analysis time inhibits how large of a low resolution ensemble we can use. The

relationship between analysis time and forecast time is situation dependent however, so we

only give results in terms of forecast time, which is relevant to both ensemble forecasting

to assess forecast uncertainty as well data assimilation.

In Table 2.1 we compare results for our basic scenario from mixed resolution ensem-

bles with high resolution components of1, 2, and3 members coupled with low resolution

components of5, 10, 20, 30, and60 members. We found that accuracy does not diminish

extensively even for as few as10 low resolution members. In later results, we chose to use

30 low resolution members as it seemed a good balance between accuracy and time for

our limited observation scenarios. In our small-scale resolving scenario, we also chose to

use30 low resolution members.

kh = 1 kh = 2 kh = 3
kℓ = 5 0.98 0.85 0.80
kℓ = 10 0.92 0.83 0.78
kℓ = 20 0.91 0.80 0.76
kℓ = 30 0.90 0.79 0.76
kℓ = 60 0.87 0.79 0.76

Table 2.1: Varying the size of the low & high resolution ensembles. This table gives the
analysis RMSEs for our basic scenario with various mixed ensembles. A low resolution
component with20 or 30 members does nearly as well as with60.

47



2.3.6 Results.

In order to estimate the ideal accuracy obtainable using theLETKF with the high

resolution model, we tested our basic scenario and our small-scale resolving scenario on

increasingly greater ensemble sizes. We summarize our scenarios in Table 2.2. Similarly

Table 2.2: Summary of scenarios. The limited observation network consists of40 obser-
vations and the dense observation network has full coverage(960 observations). The true
forcing constant isF t = 15; forcing constants different fromF = 15 simulate model
error. The observation error refers to the standard deviation of the error in the simulated
observations.

Scenario observation network Forcing constant observation error
basic limited F = 15 σ = 2

F = 14 limited F = 14 σ = 2
F = 12.5 limited F = 12.5 σ = 2

small-scale dense F = 15 σ = 0.3

for the low resolution model, we tested our basic scenario for various ensemble sizes.

These results are graphed in Figure 2.3. The lowest obtainable RMSE in our small-scale

resolving scenario for assimilation with a low resolution is0.17 and only when results are

smaller than that do we say that they resolve the small scale variability.
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Figure 2.3:Top: the RMSE of the analysis generated in our basic scenario with a low-
resolution model, averaged over4500 assimilation steps after a500 time step spin-up
period. Middle: the RMSE of the analysis generated in our basic scenario with a high-
resolution model, averaged over4500 assimilation steps after a500 assimilation step spin-
up period.Bottom: the RMSE of the analysis generated in our small-scale resolving sce-
nario with a high-resolution model, averaged over4500 assimilation steps after a500 as-
similation step spin-up period. The dashed line indicates the small scale variability, i.e.
the minimum RMSE with a low resolution model for our small-scale resolving scenario.

Our remaining numerical results represent the accuracy of the mLETKF in each of

our scenarios in terms of the RMSE (equation (2.26)). We compared these mixed res-

olution results to the accuracy of the LETKF with various ensembles sizes at both low
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and high resolution. At each assimilation time, we comparedour high resolution fore-

cast mean with the truth and found the root mean square error over the grid (see equation

(2.26)). Starting from a random ensemble of model states, weran each experiment for

5000 assimilation steps. Figure 2.4 shows a plot of the root mean square error for the first

1000 assimilation steps, using the2 high resolution and30 low resolution mixed ensemble

in our basic scenario. The RMSE behaves similarly continuing out to105 assimilation

steps (the maximum we tested), and in other cases and scenarios. Though spin-up appears

to occur quickly, we chose to be cautious, using a longer spin-up of500 assimilation steps.
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Figure 2.4: The root mean square error at each assimilation step for the initial1000 assim-
ilation steps. This data is taken from the run of the2 high resolution and30 low resolution
basic scenario.

Excluding this spin-up period, we took the mean and standarddeviation of the root

mean square error over the4500 remaining assimilation steps. The time averaged errors

are shown in Tables 2.3 and 2.5 and the standard deviation of the fluctuations about that
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mean over time are shown in Tables 2.4 and 2.5. These fluctuations, as depicted in Figure

2.4 are correlated in time and do not allow a simple calculation of the sampling error in

the RMSEs given in Tables 2.3 and 2.5. To roughly assess the sampling error, we took

the standard deviation of a500 assimilation step moving average, with results summarized

in the caption of Table 2.3. The standard deviation of the moving average in most cases

was between0.01 and 0.03. However, the3 member high resolution cases and the4

member large model error case (F = 12.5) were not as precise, with a standard deviation

of the moving average between0.04 and0.07. This suggests that the sampling error in the

average RMSEs is at most1 or 2 in the second decimal place.

The short term fluctuations in root mean square error for the mixed resolution cases

are consistently small in all cases (Tables 2.4 and 2.5). Forour high resolution cases with

limited observations, these fluctuations are significantlylarger, even for similar sizes of

average RMSE. Greater error in the model induces larger fluctuations, whereas increasing

the size of the ensemble decreases the size of the fluctuations.

51



2.4 Summary and Discussion

In Section 2.2, we discussed standard ensemble Kalman filteralgorithms that esti-

mate the background error covariance with the matrix expression:

(

1√
k − 1

Xb

)(

1√
k − 1

Xb

)⊤

(2.29)

wherek is the ensemble size andXb are perturbations from the background mean (equa-

tion (2.3)). With an ensemble of mixed resolution, we estimated the background error

covariance (equation (2.7)) in a similar manner asU bU b⊤ , where

U b =

[

√

α
kℓ−1

spline
(

Xb
ℓ

)

√

1−α
kh−1

Xb
h

]

. (2.30)

Herekℓ andkh are the low and high resolution ensemble sizes respectively,Xb
ℓ andXb

h are

the low and high resolution perturbations from the means of their respective ensembles,

“spline” represents interpolation from the low resolutionto the high resolution grid, and

α is a weight based upon the accuracies of the two ensembles anddictating the influence

of each ensemble in the analysis. We gave the mixed resolution algorithm associated with

the Local Ensemble Transform Kalman Filter and a comparisonto the parent algorithm.

We tested this mixed resolution ensemble analysis with the Lorenz Models II & III

described in Section 2.3.2. The low resolution model, ModelII, smoothly transitions from
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one grid point to the next. The high resolution model, Model III, also contains a short

wave coupling component.

We performed experiments with three different limited observation scenarios: basic,

model errorF = 14, and model errorF = 12.5. The latter two cases simulate situations

where the true system dynamics are not perfectly known. We also performed experiments

with dense, frequent, and more accurate observations to simulate a situation where it is

possible to resolve the small scale variability.

We tested ensembles of various sizes. In the high resolution, limited observation

experiments, we tested ensembles of size3, 4, 5, and6. In the mixed resolution experi-

ments, we reported results with30 low resolution ensemble members and1, 2, or 3 high

resolution members. In our small-scale resolving experiments, we tested high resolution

ensembles of size15, 16, 17, and18 and we tested mixed resolution ensembles with30

low resolution members and9, 12, and15 high resolution members. We also conducted

experiments with different numbers of low resolution ensemble members. We summa-

rize the forecast computation time and the analysis RMSEs for our basic and small-scale

resolving scenarios using different numbers of ensemble members in Figure 2.5.

In our mixed resolution and high resolution OSSEs (observing system simulation

experiments), forecasting the high resolution ensemble took up the bulk of the overall

forecast computation time. However, introducing an additional high resolution member
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Figure 2.5: The average forecast computation time taken foreach assimilation time step
versus the average root mean square error over4500 assimilation steps forleft: our basic
scenario andright: our small-scale resolving scenario. Better computation times and better
RMSE (lower error) are both closer to the origin.Left: Data is shown for high resolution
analysis with3, 4, 5, and6 members, low resolution analysis with10, 20, 30, and60
members, mixed resolution analysis on1 high resolution member with a low resolution
ensemble of5, 10, 15, 30, and60, and mixed resolution analysis on a mixed ensemble of
30 low resolution members and1, 2, and3 high resolution members.Right: Data is shown
for high resolution analysis with15, 16, 17, and18 members, low resolution analysis with
10, 15, and20members, mixed resolution analysis on1 high resolution member with a low
resolution ensemble of10, 15, and20, and mixed resolution analysis on a mixed ensemble
of 30 low resolution members and9, 12, and15 high resolution members. The dashed
black line represents the variation in the small scales and the dashed grey line corresponds
to twice as much variation in the small scales.

can be more cost effective than increasing the size of the lowresolution ensemble, as in-

dicated by the star and square data points respectively in Figure 2.5. Comparison between

the circle and star data points shows in Figure 2.5 shows thatmixed resolution analysis
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provides an improvement over analysis at high resolution, in the sense that mixed reso-

lution analysis provides greater accuracy for the same overall forecast computation time.

Mixed resolution analysis with multiple high resolution members also improves upon re-

sults with only one high resolution member. In our small-scale resolving experiments, the

mixed ensemble with only one high resolution member is unable to resolve the small scale

variability in the truth and the uncorrelated small scale variability of the high resolution

member increases the error.

In our experiments with model error, we found a greater advantage of mixed res-

olution analysis over single resolution analysis than in the corresponding perfect model

experiment (Table 2.3). We also found that mixed resolutionanalysis reduces the tempo-

ral volatility of analysis errors (Table 2.4).

We remark that our technique could be easily extended to ensembles of3 or more

different resolution, albeit with the introduction of moreparameters to tune. While we

haven’t fully explored the effects of tuningα or varying the size of the low resolution

ensemble, the results given here give an indication of what one can expect in applying this

method.

In conclusion, we found that this mixing technique is beneficial and cost-efficient in

a simple model.
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Time Averaged
Mixed Resolution Cases High Resolution Cases

RMSE
1 high 2 high 3 high

3 high 4 high 5 high
+30 low +30 low +30 low

basic 0.90 0.79 0.76 0.97 0.84 0.78
F = 14 0.95 0.84 0.82 1.10 0.93 0.89
F = 12.5 1.06 1.00 0.98 1.53 1.28 1.18

Table 2.3: The time averaged RMSE over4500 assimilation steps for various mixed and
high resolution ensembles in various scenarios. The standard deviation of a500 assimila-
tion step moving average in most cases was between0.01 and0.03. The4 member large
model error case (F = 12.5) and all of the3 member high resolution cases were not as
precise, with a standard deviation of the moving average between0.04 and0.07.

Standard Deviation
Mixed Resolution Cases High Resolution Cases

of Fluctuations
1 high 2 high 3 high

3 high 4 high 5 high
+30 low +30 low +30 low

basic 0.13 0.11 0.11 0.19 0.15 0.13
F = 14 0.14 0.12 0.11 0.24 0.15 0.13
F = 12.5 0.13 0.11 0.11 0.27 0.19 0.16

Table 2.4: Standard deviation of fluctuations in the RMSE with time, over the same4500
assimilation steps used in Table 2.3.

Small-Scale
Mixed Resolution Cases High Resolution Cases

Scenario
9 high 12 high 15 high

15 high 16 high 17 high 18 high
+30 low +30 low +30 low

RMSE 0.19 0.15 0.12 0.19 0.17 0.14 0.12
Fluctuations 0.04 0.03 0.02 0.05 0.05 0.05 0.05

Table 2.5: Time averaged RMSE and standard deviation of fluctuations for our small-scale
resolving scenario. Mixed resolution RMSEs are accurate to±0.01 and high resolution
RMSEs are accurate to±0.02 as measured by the standard deviation of a500 assimilation
step moving average.
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Chapter 3

Ensemble Data Assimilation with an Adjusted Forecast Spread

3.1 Introduction.

Data assimilation determines initial conditions for weather forecasts from the in-

formation provided by atmospheric observations. Comparing a prior weather forecast to

observations and taking into account the uncertainties of each, data assimilation attempts

to provides an optimal estimate for the current state of the atmosphere. Modifying the fore-

cast for an optimal fit to the observations is called the analysis phase of data assimilation.

The analysis (optimal estimate) is then evolved during the forecast phase.

In weather prediction via data assimilation, the observation uncertainty is typically

characterized as additive errors distributed according toa known Gaussian distribution

whose covariance is constant in time. Forecast errors are often treated as Gaussian too, but

the forecast error covariance changes in time and can be difficult to estimate. Ensemble

data assimilation forecasts an ensemble to provide a statistical sampling of the forecast,

estimating the forecast error covariance through sample statistics. Ensemble Kalman fil-

ters fit the ensemble mean to the observations and provide an ensemble of sub-optimal
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estimates to represent the remaining uncertainty (Burgerset al. 1998; Anderson and An-

derson 1999; Bishop et al. 2001; Ott et al. 2004; Wang et al. 2004; Evensen 1994;

Houtekamer and Mitchell 1998). Forecasting this analysis ensemble provides the sample

forecast uncertainty for the next assimilation cycle.

The Kalman filter (Kalman 1960) is optimal for linear models with Gaussian er-

rors. Extensions to nonlinear models, including ensemble Kalman filters, are suboptimal

and can diverge even if there is no model error (Jazwinski 1970; Anderson and Anderson

1999). One reason is that model nonlinearity causes ensemble Kalman filters to under-

estimate the forecast error covariance relative to the uncertainty in the initial conditions

(Whitaker and Hamill 2002). Insufficient ensemble covariance can also be caused by un-

quantified errors in the forecast and observation models. One common way to compensate

for covariance underestimation is to inflate the forecast error covariance by a multiplicative

factor larger than one during each analysis step (Anderson and Anderson 1999; Whitaker

and Hamill 2002; Miyoshi 2011).

Typically the ensemble is evolved with spread representative of the approximate co-

variance as described above. However, the estimated covariance is only utilized during

the analysis phase of data assimilation. In this chapter we investigate the potential advan-

tages of evolving an ensemble whose spread isnot commensurate with the approximate

covariance by rescaling the ensemble perturbations by a factor η before the forecast step
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and rescaling them by1/η after the forecast step. We call this technique forecast spread

adjustment and we remark that this has no net effect with a linear model.

One reason we expect improvement by varyingη is related to the advantage some-

times observed in ensemble prediction of the mean of an ensemble forecast versus the

forecast of the ensemble mean. If the mean of the forecast from an unscaled ensemble

(η = 1) is more accurate (on average) than the forecast of the mean (corresponding to

η → 0), then the mean of the forecast from an ensemble scaled byη 6= 1 may be better

still.

This method of forecast spread adjustment allows us to relate many aspects of data

assimilation which were previously considered independently.

• As we will later show, for a linear observation operator forecast spread adjustment

has the same long-term effect on the analysis means as rescaling the observation

error covariance (e.g., Stroud and Bengtsson 2007) byη2, but it results in a different

(and in our experiments, more appropriate) analysis covariance.

• Multiplicative covariance inflation, described above, is applied sometimes by rescal-

ing the forecast ensemble perturbations and sometimes by rescaling the analysis en-

semble perturbations (e.g., Bonavita et al. 2008, Kleist 2012); when using forecast

spread adjustment in addition, both ensembles are rescaledby amounts that can be

varied independently.
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• The limit η → 0 discussed above also corresponds to evolving the ensemble co-

variance according to the linear approximation about the mean, as in the Extended

Kalman Filter (e.g., Jazwinski 1970, Evensen 1992).

In Section 3.2 we describe various data assimilation algorithms based on the Kalman

filter, specifically the Extended Kalman Filter (which we abbreviate XKF) and the ensem-

ble Kalman filters ETKF (Bishop et al. 2001; Wang et al. 2004) and LETKF (Hunt et

al. 2007). In Section 3.3.1 we describe forecast spread adjustment. We compare forecast

spread adjustment to alternative formulations that can produce the same analysis means,

specifically: inflating the observation error covariance with the forecast error covariance

estimated from the evolved (un-adjusted) forecast ensemble (Section 3.3.2) and inflating

the analysis error covariance in addition to or instead of the background (forecast) error

covariance (Section 3.3.3). The main difference between these approaches is that inflating

the observation error covariance results in a larger background and analysis error covari-

ance than forecast spread adjustment. We find (Section 3.4.3) that the analysis error co-

variance specified by forecast spread adjustment better reflects the actual analysis errors

for our numerical experiments, in which the correct observation error covariance is known.

Section 3.3.4 compares the Ensemble Transform Kalman Filter (ETKF) and the Extended

Kalman Filter (XKF) and discusses how forecast spread adjustment can transition from

the XKF to the ETKF and beyond. In Section 3.4.1 we describe the Lorenz (2005) Model
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II used for our experiments, and in Section 3.4.2 we describeour experiments. In Section

3.4.3 we describe how we tuned the forecast spread adjustment parameterη, along with

the multiplicative covariance inflation factor, in order tominimize analysis errors. We also

discuss the possibility of adaptively inflating both parameters with techniques similar to

Li et al. (2009). Section 3.4.4 depicts and discusses the results of our experiments. We

discuss our conclusions and summarize our findings in Section 3.5.

3.2 Kalman Filters.

The Kalman filter is an optimal algorithm for data assimilation with a linear model

with Gaussian errors. As with data assimilation in general,the Kalman filter can be

described by the cycle of forecasting the previous analysis(optimal estimate) to get the

background (forecast) and generating a new analysis by updating the background to more

closely match the observations. Thus we describe the Kalmanfilter in terms of two phases:

the forecast phase and the analysis phase. Most data assimilation algorithms for weather

prediction (ensemble Kalman filters and variational methods) are approximations to the

Kalman filter.

The analysis state according to the Kalman filter with no model error assumed is

given by

xa = xb +K
(

yo −Hxb
)

(3.1)
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K = P bH⊤ (

HP bH⊤ +Ro
)−1

(3.2)

whereK is the Kalman gain matrix,xa is the analysis state,xb is the forecast or back-

ground state,P b is the background error covariance,Ro is the observation error covari-

ance,yo is the vector of observations, andH is matrix that transforms model space into

observation space. The error covariance of the analysis statexa is given by

P a = (I −KH)P b. (3.3)

Having determinedxa andP a at a certain timet, the forecast phase evolves these to

the background statexb+ and its error covarianceP b+ at timet+ > t. Specifically, in the

forecast phase from timet to timet+, the modelM evolves the analysis state at timet to

the background state at timet+. The forecast phase is given by

xb+ = M(xa) (3.4)

P b+ = MP aM⊤. (3.5)

These Kalman filter equations (3.1)-(3.5) are only optimal for perfect model scenar-

ios with linear models. Model error reduces the accuracy of the background mean beyond

that accounted for by the evolved background error covariance. Moreover, even without
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model error, a nonlinear model tends to cause the ensemble tounderestimate the back-

ground error covariance (Whitaker and Hamill 2002). One wayto partially compensate

for this underestimation of the background error covariance is to inflateP b. Ensemble

Kalman filters typically inflateP b with a multiplicative covariance inflation factorρ, re-

placingP b in (3.1)-(3.3) withP b
inflated = ρP b

initial (Anderson and Anderson 1999; Whitaker

and Hamill 2002). Whenρ = 1 no inflation is performed.

3.2.1 Ensemble Kalman Filters.

In this section we discuss the class of data assimilation techniques known as the

ensemble Kalman filters (EnKFs). In the ensemble techniques, rather than evolving the

covariance directly as done in the Kalman filter and the Extended Kalman Filter (XKF),

an ensemble
{

X
b
i — 1 ≤ i ≤ k

}

is chosen to represent a statistical sampling of a Gaussian

background distribution, with the sample meanx̄b of the background ensemble approxi-

mating the background statexb in equation (3.1). The subscripti here refers to the index

of the ensemble member, and all members of the ensemble estimate the background at the

same time.

Each ensemble memberXb
i can be expressed as a sumXb

i = x̄b + Xb
i of the mean

and a perturbationXb
i . LettingX

b andXb be the matrices with columnsXb
i andXb

i re-
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spectively, we write

X
b = x̄b +Xb, (3.6)

where by adding a vector and a matrix we mean adding the vectorto each column of the

matrix. The columns ofXb represent the ensemble of background perturbations.

The background error covariance is computed from the background ensemble ac-

cording to sample statistics, namely

P b =
ρ

k − 1
XbXb⊤, (3.7)

wherek is the size of the ensemble andρ is the multiplicative covariance inflation factor.

We use similar notation for the analysis ensembleX
a with meanx̄a and perturbations

Xa. Ensemble Kalman filters are designed to satisfy the Kalman filter equations (3.1)-(3.5)

with xb andxa replaced bȳxb and x̄a. Thus, the analysis ensemble perturbations must

correspond a square root of the reduced rank analysis error covariance matrix in equation

(3.3), i.e.,

1

k − 1
XaXa⊤ = P a. (3.8)

Different ensemble Kalman filters select different solutionsXa to this equation. In all

ensemble Kalman filters, the ensemble members are forecast independently. For a deter-

ministic modelM representing a forecast from timet to timet+, the background ensemble
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members at timet+ are given by

X
b+

i = M (Xa
i ) . (3.9)

3.2.1.1 ETKF

We tested ensemble data assimilation with forecast spread adjustment on the Ensem-

ble Transform Kalman Filter (ETKF) (Bishop et al. 2001; Wanget al. 2004) and the Local

Ensemble Transform Kalman Filter (LETKF) (Ott et al. 2004; Hunt et al. 2007). We

implemented both methods according to the formulation in Hunt et al. (2007). For speedy

computation, in these algorithms the analysis phase of the Kalman filter is performed in

the space of the observations, with the background ensembletransformed into that space

for comparison.

In the ETKF, the analysis mean is given by

x̄a = x̄b + 1
k−1

XbUY b⊤Ro−1 (
yo − h(xb)

)

(3.10)

U =
(

1
ρ
I + 1

k−1
Y b⊤Ro−1

Y b
)−1

, 1 (3.11)

whereh is the (possibly nonlinear) observation operator, andY b are the background per-

1TheU in equation (3.11) is different from the notation in Chapter2;UCh3 = Ma

Ch2.

65



turbations in observation space derived by transferring the ensembleXb to observation

space and subtracting the meanȳb = h (Xb), Y b = h
(

X
b
)

− ȳb. For a linear observation

operator, the ETKF analysis meanx̄a computed in equation (3.10) equals the Kalman filter

analysis estimatexa of equation (3.1) assumingxb = x̄b andP b = ρ
k−1

XbXb⊤ (equation

(3.7)).

The ETKF analysis perturbations are given by

Xa = XbU
1
2 , (3.12)

where the exponent1
2

represents taking the symmetric square root. These perturbations

differ from the background perturbations as little as possible while still remaining a square

root of P a (Ott et al. 2004). For a full discussion of the equivalence and relationship

between (3.10)-(3.12) and (3.1)-(3.3) see Hunt et al. (2007).

3.2.1.2 LETKF

Essentially, the Local Ensemble Transform Kalman Filter (LETKF) performs an

ETKF analysis at every model grid point, excluding distant observations from the analysis.

At each grid point, it computesyolocal andRo
local, truncatingyo andRo to include only the

observations within a certain distance from the grid point.The LETKF computes the local

analysis for each grid point from the ETKF analysis equations (3.10)-(3.12) and restrict
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the resulting analysis to that grid point alone. Observation localization is motivated and

explored in (Houtekamer and Mitchell 1998; Ott et al. 2004; Hunt et al. 2007; Greybush

et al. 2011). We provide a limited motivation here.

One problem with estimatingP b (equation (3.7)) from an ensemble is that sam-

pling error can introduce artificial correlations between the background error at distant

grid points. As the analysis incrementx̄a − x̄b in equation (3.10) is computed in obser-

vation space, it is possible to eliminate these spurious correlations (along with any real

correlations) for the analysis at a particular model grid point by truncating the observation

space beyond a specified distance from the grid point.

Other methods of localization (e.g., Whitaker and Hamill 2002, Bishop and Hodyss

2009) modify the background error covariance directly. Forall these approaches, local-

ization is found to greatly reduce the number of ensemble members needed to produce

reasonable analyses for models with large spatial domains.

3.2.2 Extended Kalman Filter

In the Extended Kalman Filter (XKF) (see e.g., Jazwinski 1970), the model evolves

the analysisxa as in equation 3.4 to determine the subsequent backgroundxb+ , and the

background error covarianceP b+ is determined fromP a by linearizing the model atxa.

For more information on the XKF and how it compares to ensemble Kalman filters, see
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Evensen (2003) and Kalnay (2003).

Like the Kalman filter, the XKF is usually formulated with an additive model error

term that increases the background covariance. However, for ease of comparison to the

ETKF, our implementation of the XKF uses multiplicative inflation instead of additive

inflation.

One major difficulty with the Extended Kalman Filter is the computational cost of

evolving the covariance matrix (Evensen 1994; Burgers et al. 1998; Kalnay 2003). This

makes the model unfeasible for high-dimensional models in arealistic setting. However,

when using simple test models such as the Lorenz (2005) ModelII, other data assimilation

techniques can be compared to the XKF.

Another potential drawback of the XKF is its linear approximation when evolving

the covariance (Evensen 2003). As we find in our experiments,this can be disadvanta-

geous compared to the nonlinear evolution of both mean and covariance provided by an

ensemble.

3.3 Methodology and Theory.

In this section we formally describe the method of forecast spread adjustment for

ensemble Kalman filters. One way of implementing the forecast spread adjustment is to

multiply the analysis perturbations byη prior to forecasting and, after the forecast, mul-
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tiply the forecast perturbations by1
η

(Section 3.3.1). This is only beneficial when the

model is nonlinear. Other authors (e.g., Stroud and Bengtsson 2007) have found bene-

fits from multiplicative observation error covariance inflation, motivated by observation

errors other than measurement error. While forecast spreadadjustment is equivalent to

multiplicative observation error covariance inflation byη2 for an appropriately initialized

ensemble (Section 3.3.2), our experiments are performed with observations lying on the

model grid points and perfect knowledge of the exact observation error covariance, so in-

flating the observation error covariance would be mathematically unmotivated. However

as adjusting the forecast spread byη andη2Ro inflation have similar accuracies after spin-

up, perhaps some of the benefits of inflatingRo stem from the forecast spread adjustment

effect.

3.3.1 Ensemble data assimilation with forecast spread adjustment.

This section describes the technique of shrinking (or expanding if η > 1) the en-

semble perturbations for the forecast and expanding (or shrinking) the ensemble for the

analysis. After1finding the analysis through any ensemble data assimilationtechniques,

the background perturbations are obtained by:2multiplying the analysis perturbations by

η, 3evolving the adjusted analysis, and4multiplying the forecast perturbations by1
η
.

Mathematically, this can be expressed with a matrix transformationS corresponding
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to an expansion factor ofη:

X
b+ = M(XaS)S−1 (3.13)

where

S = ηIk×k + (1− η)
(

1
k
1k×k

)

(3.14)

1k×k =

















1 · · · 1

...
. . .

...

1 · · · 1

















. (3.15)

The model integration of the matrixXaS in equation (3.13) refers to forecasting each

ensemble member (column ofXaS) separately, i.e.

M (XaS) :=

[

M({XaS}1) , · · · , M({XaS}k)
]

. (3.16)

For an ensemble of sizek, each column of the[k × k] matrix1k×k right transforms

an ensemble into its row sum so that1
k
X1k×k =

[

x̄ · · · x̄

]

. Thus right multiplication

by S transforms each ensemble memberX
a
i into a weighted average of itself (prior to

adjustment) and the mean of the ensemble

{XaS}i = ηx̄a + (1− η)Xa
i . (3.17)
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Viewed another way, right multiplication byS scales the ensemble perturbations by

η, producing a new ensemble with the same mean

{XaS}i = x̄a + ηXa
i . (3.18)

Notice that

S−1 =
1

η
Ik×k +

(

1− 1

η

)

(

1
k
1k×k

)

, (3.19)

soS−1 effectively rescales ensemble perturbations byη−1. We call a forecast contraction

and analysis re-expansionforecast spread adjustment.

The full Kalman filter cycle fromXb to X
b+ with the forecast phase described by

equation (3.13) is given in the following algorithm.

1. Perform analysis onXb to findX
a.

2. Left multiplyXa byS to scale the perturbationsXa by a factor ofη,
(

i.e.Xa,f = ηXa
)

X
a,f = X

aS. (3.20)

3. Evolve each member of the resulting ensemble:

X
b+,f
i = M

(

X
a,f
i

)

. (3.21)
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4. Left multiplyXb+,f by S−1 to rescale the perturbations of the evolved ensemble by

1
η
:

X
b+ = X

b+,fS−1. (3.22)

Here and elsewhereXb,f andXa,f refer to the ensemble during the forecast phase. We

abbreviate the ETKF with forecast spread adjustment and theLETKF with forecast spread

adjustment (via a scaling factor ofη) as theηETKF and theηLETKF respectively.

We remark that whenη = 1, ensemble data assimilation with forecast spread adjust-

ment reduces to standard ensemble data assimilation. Furthermore, if the model is linear,

forecast spread adjustment has no net effect. When the modelis nonlinear, forecast spread

adjustment could affect the background mean, the background perturbations, and (mini-

mally) the analysis phase background spread. We expect thatthe effect on the mean will

be the most significant.

3.3.2 Relation to inflation of the observation error covariance.

Some authors have recommended scaling the reported observation error covariance,

assuming that it is misrepresented (e.g., Stroud and Bengtsson 2007, Li et al. 2009). As

we will show below, inflating the observation error covariance is closely related to forecast

spread adjustment, and thus in many cases both approaches can improve the analyses.

Indeed, if the observation operatorh is linear then we will show that both approaches, if

72



initialized with the same forecast ensemble, will produce the same analysis means. Having

the same forecast ensembles implies that during the analysis phase, the two approaches

will use different ensemble perturbations (related by a factor of η) and hence different

covariances.

3.3.2.1 ηETKF withoutRo inflation.

Let Xb be the initial background ensemble. In this case, we performensemble data

assimilation with forecast spread adjustment to findX
b+ . TheηETKF analysis ensemble

X
a = x̄a +Xa is given by equations (3.10)-(3.12) repeated here for convenience

x̄a = x̄b + 1
k−1

XbUY bRo−1 (
yo − ȳb

)

(3.23)

U =
(

1
ρ
I + 1

k−1
Y b⊤Ro−1

Y b
)−1

(3.24)

Xa = XbU
1
2 . (3.25)

The next background ensembleXb+ is given by equation (3.13)

X
b+ = M( XaS )S−1. (3.26)
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3.3.2.2 ETKF withRo inflated toη2Ro.

Let the initial background ensemble beXb2 and assume thatXb2 = X
bS. Along

with X
b,f := X

bS defined based on equations (3.20) and (3.22), this implies the additional

equivalences̄xb2 = x̄b andXb2 = Xb,f = ηXb. We perform standard ensemble data

assimilation to findXb+2 assuming an observation error covariance ofη2 times its value in

Case 3.3.2.1. We compareXb+2 with X
b+andXb+,f = X

b+S.

In this case (3.3.2.2), the analysis ensemble is given by equations (3.10)-(3.12), with

Ro2 = η2Ro replacingRo. After algebraic manipulation, these equations are

U2 =
(

1
ρ
I + 1

k−1
ηY b⊤2 Ro−1

ηY b2
)−1

(3.27)

x̄a2 = x̄b2 + 1
k−1

ηXb2U2ηY
b2Ro−1 (

yo − ȳb2
)

(3.28)

Xa2 = Xb2U
1
2
2 . (3.29)

SubstitutingXb2 = ηXb and assuming a linear observation operator so thatY b2 = ηY b,

we find that

U2 = U (3.30)

x̄a2 = x̄a (3.31)

Xa2 = ηXa. (3.32)
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ThusXa2 = X
aS. As we defineXa,f := X

aS, the ensembles are identical during evolution.

The next background ensemble is given by

X
b+2 = M(Xa2)

= M(XaS) . (3.33)

Comparing this to equation (3.26), we see thatX
b+2 = X

b+S =: Xb+,f ; thereforēxb+2 = x̄b+ .

In other words, the means remain the same and the perturbations maintain the same ratio.

We remark that although both cases evolve the same ensemble,the error covariances

in the two cases differs by the factorη2.This is demonstrated in Figure 3.1.

Xb2 = ηXb P b2 = η2P b

Ro2 = η2Ro

analysis

P a2 = η2P aXa2 = ηXa

forecast

Xb,f
= ηXb

P b

Ro

analysis

P aXa,f
= ηXa

forecast

Figure 3.1:Left: data assimilation with a forecast spread adjustment ofη. Right: standard
data assimilation withRo inflated byη2. The two data assimilation cycles depicted above
are initialized during the forecast phase, i.e.Xb2 = Xb,f .
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3.3.3 Which to inflate,P a or P b?

As discussed in the beginning of Section 3.2, due to nonlinearity and model error

ensemble data assimilation tends to underestimate the evolved error covariance. This is

typically corrected by inflating the background error covariance prior to analysis, e.g. An-

derson and Anderson (1999), Whitaker and Hamill (2002). However it would be just as

theoretically valid to inflate the (posterior) analysis error covariance, e.g. Bonavita et al.

(2008). With forecast spread adjustment, it no longer becomes a question of inflating

one or the other; instead forecast spread adjustment provides a continuum connectingP b

multiplicative inflation andP a multiplicative inflation.

Consider the standard data assimilation cycle as it appliesto P a andP b with mul-

tiplicative analysis and background covariance inflation of ρa andρb respectively (Figure

3.2 Left). Following the algorithms given in Hunt et al. (2007), in our implementation

of theηETKF, theηLETKF, we only inflate the background error covariance (Figure 3.2

Right). By settingη =
√
ρ, we transform a data assimilation algorithm that inflates the

P b,f 1
η2 ρP

b,f
= P b

analysis

P aP a,f
= η2P a

forecast

P b,f ρbP
b,f

= P b

analysis

P aP a,f
= ρaP

a

forecast

Figure 3.2: Left: the data assimilation cycle onP b andP a including a forecast spread
adjustment ofη and inflation ofP b with ρ. Right: the data assimilation cycle onP b and
P a including inflation ofP b with ρb and inflation ofP a with ρa.
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background error covarianceP b into a data assimilation algorithm that inflates the anal-

ysis error covarianceP a. Furthermore, this comparison demonstrates that ensembledata

assimilation with an adjusted forecast spread and with multiplicative background error co-

variance inflation can be alternatively interpreted as standard data assimilation, inflating

both the background and analysis error covariances. In particular, adjusting the forecast

spread byη and inflating the background error covariance byρ is equivalent to inflating

the background error covariance byρb = ρ/η2 and inflating the analysis error covariance

by ρa = η2.

Those who have found more accurate results when inflatingP a in preference to

P b likely will benefit from forecast spread adjustment withη > 1. Similarly, if one has

previously obtained more accurate results withP b inflation in preference toP a inflation,

forecast spread adjustment withη < 1 might prove beneficial.

3.3.4 Comparison to the XKF.

The Ensemble Transform Kalman Filter (ETKF) (Bishop et al. 2001; Wang et al.

2004) and the Extended Kalman Filter (XKF) (Jazwinski 1970;Evensen 1992) are similar

in that they both evolve the covariance matrix in time. The XKF evolves the best estimate

along with its error covariance. The ETKF evolve a surrounding ensemble which approx-

imates the error covariance and does not explicitly evolve the best estimate, which is the
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mean of the ensemble.

Previous articles, e.g. Burgers et al. (1998), demonstratethe equivalence between

the analysis phases of the Extended Kalman Filter and the ensemble Kalman filter (EnKF),

provided the ensemble is sufficiently large. However, this equivalence does not continue

into the forecast phase. Starting from the same analysis state xa
XKF = x̄a and the same

analysis error covarianceP a
XKF =

1
k−1

XaXa⊤, the XKF and the EnKF will evolve different

statesxb+

XKF 6= x̄b+ with different error covariancesP b+

XKF 6= 1
k−1

Xb+Xb+⊤.

Varying the ensemble spread changes the evolved ensemble ina nonlinear fashion,

affecting the mean and perturbations (in both magnitude anddirection). In the limit as

η → 0, the ensemble perturbations become infinitesimal and the forecast evolves the

ensemble mean and the perturbations evolve according to thetangent linear model. If the

ensemble is large enough that the perturbations span the model space, then a full-rank

covariance is evolved according to the tangent linear model, just as in the XKF. Therefore

for a sufficiently large ensemble, theηETKF should approach the XKF asη tends to zero;

otherwise, it approaches a reduced-rank XKF. Furthermore,whenη = 1, theηETKF is the

standard ensemble transform Kalman filter. Thus for intermediate values ofη, theηETKF

can be considered a hybrid of the XKF and the ETKF.

In the scenarios we explored where tuningη was especially effective,η tuned to

values greater than one, enhancing the advantages of the ensemble Kalman filter over the
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Extended Kalman Filter.

3.4 Experiments and Results

Our experiments are observed system simulation experiments (OSSEs). In OSSEs,

we evolve a truth with the model, adding error at a limited number of points to simu-

late observations. Treating the truth as unknown, we use data assimilation to estimate

it. Comparing the analysis to the truth, we estimate the accuracy of the data assimilation

techniques being tested. Thus we can evaluate and compare the accuracy of data assimila-

tion techniques. We assessed accuracy via the root mean square error (RMSE) difference

between the analysis mean and the truth evaluated at every grid point.

3.4.1 Models

We tested forecast spread adjustment on the Lorenz (2005) Model II with a smooth-

ing parameter ofK = 2 (smoothing the Lorenz 96 model (Lorenz 1996; Lorenz and

Emanuel 1998) over twice as many grid points). For a forcing constantF and smoothing

parameterK, the model at grid pointj is evolved according to

dxn

dt
=

(

xn+Kx
avg

n−K

)avg − xavg

n−2Kx
avg

n−K − xn + F , (3.34)
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wherexavg
n refers to averagingxn the model state at grid pointn with the model state at

nearby grid points.

WhenK = 2, the averaging includes only the grid point itself and the immediately

adjacent grid points namely

xavg

n =
1

4
xn−1 +

1

2
xn +

1

4
xn+1. (3.35)

Note that theavg function is applied to(xjx
avg

i ) by

(xnx
avg
m )avg = 1

4
xn−1x

avg

m−1 +
1
2
xnx

avg
m + 1

4
xn+1x

avg

m+1.

Model II is evolved on a circular grid, in our experiments a circular grid with60 grid

points. We evolved the forecasts according to the Runge-Kutta fourth order method over

a time step size ofδt = 0.05, performing an analysis every time step.

To generate the observations, we evolved the truth with a forcing constant ofF t = 12

and added independent Gaussian errors with mean0 and standard deviationσ at every

other grid point. Thus at each time step, we have30 evenly spaced observations with

known error covarianceRo = σ2I30×30. Figure 3.3 gives a snapshot of these observations

for σ = 1 along with the truth.
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Figure 3.3: Sample Model II output with observations for60 grid points, half of which are
observed (*), observation errorσ = 1, smoothing parameterK = 2, and forcing constant
F = 12.

3.4.2 Experimental Design

We explored the effectiveness of tuningη in various scenarios with the LETKF. Our

default parameters for data assimilation are: an observation errorσ = 1, an ensemble

of k = 10 members, and a forcing constant ofF = 14 for the ensemble forecast to

simulate model error. In all cases we use a localization radius of3 grid points, i.e.3 to 4

observations in a local region.

Keeping the other two parameters constant at their default value, we varied the

observation error, the ensemble size, and the forcing constant. For instance, we varied

σ = 1
2
, 1, 2, keepingk = 10 andF = 14. We tested ensemble sizes of5, 10, 20, and40.
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We varied the forcing constant fromF = 9 toF = 15.

In each experiment we tunedρ for η = 1 and plotted the RMSE for different values

of η:

RMSE= 1
4500

5000
∑

i=501

rms
(

x̄a(ti)− xt(ti)
)

, (3.36)

wherext(ti) is the truth at timeti, x̄a(ti) is the analysis ensemble mean at timeti, and

rms is the root mean square function over the60 grid points, i.e. the RMSE is the time

averaged root mean square difference between the analysis mean and the truth. In each

case we compared the minimum RMSE among the various values ofη tested to the RMSE

whenη = 1 and plotted the percent improvement

% Imprv.=
RMSE(η = 1)− min

0<η<∞

RMSE(η)

RMSE(η = 1)
. (3.37)

We also tested how theηETKF compares to the XKF for large ensembles and small

η. Specifically, we tested theηETKF for η = 1, 1
2
, 1
4
, 1
8
, and10−6 and ensembles of size

k = 40, 60, and80. For η = 10−6 andk = 80 we expect the RMSE from theηETKF to

be very similar to the RMSE from the XKF.
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3.4.3 Tuningη andρ

Since the two cases are identical in the linear setting, forecast spread adjustment

could be advantageous in certain nonlinear settings. However, the best value ofη is not

specified mathematically. Hence we tuneη to get the lowest RMSE during data assimi-

lation. Similarly, we also tune the multiplicative covariance inflation factorρ. Figure 3.4

depicts the ensemble spread both before (red) and after (blue) adjustment as a function of

η.
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Figure 3.4: Tuningη (grey) and the effect ofη on ensemble spread during the forecast
phase (red) and analysis phase (blue) for our default parameters:k = 10, F = 14 (F t =
12), σ = 1. Comparison of the ensemble spread during the analysis phase (blue) to the
actual RMSE for various values ofη (grey). The solid grey curve shows thatη tunes to
2.5. We tunedη using the tuned value ofρ for η = 1.
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We define the ensemble spread by

√

1

N
trace

(

1

k − 1
XX⊤

)

, (3.38)

whereN = 60 is the length of the circular grid and1
k−1

XX⊤ is anNxN matrix ap-

proximating the error covariance as described in equations(3.7) and (3.8). Whenη = 1,

the ensemble spread (equation (3.38)) is intended to estimate the actual RMSE (equation

(3.36)). As demonstrated in Figure 3.4, whenη 6= 1, the ensemble spread only estimates

the actual RMSE during the analysis phase. In other words, the forecast spread adjustment

parameterη only strongly affects the ensemble spread during the forecast phase (red).

During the analysis phase (blue), the ensemble spread does not vary significantly withη.

The minimum of the solid grey curve corresponds to the tuned value ofη, which for our

default parameters isη = 2.5.
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Figure 3.5: Tuningρ and the effect ofρ on ensemble spread for our default parameters
with η = 1. The dotted lines correspond to the background and the solidlines correspond
to the analysis. The spread is indicated in black and the RMSEin grey.

Recall (Section 3.3.2) that with observation error covariance inflation, the analysis

perturbationsXa2 are the same as the perturbationsXa,f for the forecast spread adjust-

ment. Thus, in this scenario, whenη is tuned to a value different than one, the ensemble

spreadXa for forecast spread adjustment corresponds much better to the actual analysis

errors than the spreadXa2 for observation error covariance inflation.

Figure 3.5 (black) demonstrates that multiplicative background error covariance in-

flation byρ (Anderson and Anderson 1999; Whitaker and Hamill 2002) carries through to

both phases of data assimilation. We remark that in this example ρ tunes to1.20 (grey),

even though the ensemble spread underestimates the RMSE. However, in this case (Figure
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3.4) we find that tuningη as well asρ decreases the error to be commensurate with the

ensemble spread. To tuneρ in our LETKF experiments we letη = 1 and tested values

of ρ differing by0.01, choosing the value ofρ associated with the lowest analysis RMSE.

When comparing theηETKF to the XKF, we tunedρ = 1.29 for our XKF experiment and

used thatρ for ourηETKF experiments as well.

In our experiments we determined the optimal values ofρ andη through tuning.

However, there are methods that adaptively determine the values ofρ (Anderson 2007; Li

et al. 2009; Miyoshi 2011). In particular, Li et al. (2009) simultaneously estimate values

for a background error covariance factor and for an observation error covariance factor.

When determining the analysis mean, these two parameters are equivalent in some sense

to ρ andη (see Section 3.3.2). Thus, the adaptive techniques explored by Li et al. (2009)

could potentially be applied to simultaneous adaptive estimation ofη andρ. On the other

hand, some adjustment may be necessary ifη is mainly compensating for the nonlinearity

and model bias as opposed to a misspecification of the observation error covariance.

3.4.4 Results

Our results are given graphically as bothη versus RMSE; as well ask (ensemble

size),F (forcing constant), andσ (observation error) versus percent improvement in the

RMSE. The RMSEs are generally accurate out to the hundredthsplace (±0.01); the RM-
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SEs from five independent trials with our default parametersandη = 1 are0.86, 0.86,

0.87, 0.88, and0.88. Whenk = 5, the RMSEs withη = 1 and with the tuned value of

η = 3.5 are less precise with accuracy approximately±0.04. In all of our other experi-

ments (LETKF varyingk, F , orσ, andηETKF vs. XKF) the RMSEs are accurate to about

±0.01.
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Figure 3.6: Left: The RMSE as a function ofη for (a) our default parameters: an
ensemble withk = 10 members, model error due to the forcing constantF = 14
where the true forcing isF t = 12, and observation error of1; (b) various ensem-
ble sizes:k = 5, 10, 20, and40 members; (c) different amounts of model error:F =
9, 10, 11, 12, 13, 14, and15 with F t = 12; (d) different amounts of observation error:
σ = 0.5, 1, and2. In each of (b), (c) and (d), one of the parameters from (a) (k = 10,
F = 14, σ = 1) is varied, keeping the other two parameters at their default values; the
curve graphed in (a) appears in (b), (c) and (d) as well. We restrict the range of they-axis
in (a) to better show the structure of the curve.Right: Comparing the RMSE whenη = 1
to the minimum RMSE whenη is allowed to vary. Subplot (e) shows the percent im-
provement in the RMSE when varyingη with our default parameters, i.e. settingη = 2.5
gives results with an RMSE that is14% smaller than whenη = 1. Also shown are the
percent improvements versus (f) various ensemble sizes, (g) different forcing constants,
and (h) different amounts of observation error. Each right hand figure (e), (f), (g), and (h)
is derived from the same data as the figure immediately to its left, i.e. (a), (b), (c), and (d)
respectively.

88



3.4.4.1 Default Parameters

Whenk = 10, F = 14 (F t = 12), andσ = 1, we obtain the most accurate results

whenη = 2.5, providing a14% improvement over the RMSE whenη = 1 (0.74 vs. 0.87).

Although we generally did not retuneρ after tuningη, we remark than doing so further

improves the RMSE; settingη = 2.5 andρ = 1.16 improves the RMSE by19% over

η = 1 andρ = 1.20.

Figure 3.6(a) shows the RMSE for various values ofη assuming the default param-

eters. The curve is minimized whenη = 2.5. Figures 3.6(b), 3.6(c), and 3.6(d) show

the effect of varying one of the default parameters (k, F , σ), while keeping the other two

constant. Thus the curve in 3.6(a) also appears in 3.6(b), 3.6(c), and 3.6(d).

3.4.4.2 Varying the Ensemble Size

Figures 3.6(b) and 3.6(f) shows how varying the ensemble size,k, affects the RMSE

and the tuned value ofη. We find that forecast spread adjustment improves results more

with smaller ensembles than with large ensembles. We expectthat this is because increas-

ing the ensemble size generally improves the accuracy of theresults, so small ensembles

have more room to improve their accuracy. For ensembles withk = 10 or more members,

the RMSE improvement due to tuningη levels out at around15%.
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3.4.4.3 Varying the Model Error

We simulated model error by forecasting the ensemble with a different forcing con-

stant thanF t = 12 used for our truth run. Figures 3.6(c) and 3.6(g) show how varying the

amount of model error (i.e. varyingF ) can change the effectiveness of tuningη. Fore-

cast spread adjustment is most helpful in the presence of model errors that result in to

larger amplitude oscillations than the truth, such as whenF = 13, 14, or 15 andF t = 12.

Averaging the forecast ensemble to produce the background mean tends to reduce the am-

plitude of these oscillations, and by increasingη we intensify this reduction. We believe

this is compensating for some of the model error. We did not find benefits to tuningη in

the perfect model scenario or when the forcing constant for the ensemble was smaller than

the true forcing constant.

3.4.4.4 Varying the Observation Error

Figures 3.6(d) and 3.6(e) show that effectiveness of forecast spread adjustment and

the tuned value ofη depend on the size of the observation errorσ. As with smaller en-

sembles, larger observation errors imply larger analysis errors and hence greater room

for improvement. The tuned values ofη for observation errors ofσ = 0.5, 1, and2 are

η=4, 2.5, and1.75 respectively. Thus more observation error corresponds to asmaller

tuned value ofη. The ensemble spread in each of these three cases is about1.8. The ensem-
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ble spread roughly determines the size of the difference between the mean of the ensemble

forecast and the forecast of the ensemble mean; thus, our finding of an ideal forecast

ensemble spread independent of observation error size is consistent with the hypothesis

above that ensemble averaging is compensating for some of the model error present.

3.4.4.5 Approximating the XKF with theηETKF

Table 3.1 lists the RMSE from theηETKF with forecast spread adjustment parameter

η = 1, 1
2
, 1
4
, 1
8
, and10−6 and ensembles of sizek = 40, 60, and80.

k=40 k=60 k=80 XKF
η = 1 0.88 0.77 0.76
η = 1/2 0.95 0.82 0.81
η = 1/4 0.97 0.83 0.82
η = 1/8 0.97 0.83 0.83
η = 10−6 0.96 0.83 0.83

XKF 0.83

Table 3.1: Comparison between the XKF RMSE and theηETKF RMSEs for η =
1, 1

2
, 1
4
, 1
8
, and10−6 andk = 40, 60, and80 with our default parameters.

We remark that the RMSE associated with theηETKF approaches the XKF-RMSE

from below (increasing the error) asη tends to zero and from above (decreasing the error)

ask becomes large.
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3.5 Summary and Conclusions

Forecast spread adjustment is an add-on to ensemble data assimilation. After the

analysis phase we expand the ensemble perturbations about their mean via multiplication

by the factorη, forecasting the adjusted ensemble. Prior to the next analysis, we read-

just the perturbations around the background mean in order to form the background error

covariance matrix.

For linear models, ensemble data assimilation with forecast spread adjustment by

any amount reduces to standard ensemble data assimilation (η = 1). For nonlinear mod-

els however, forecast spread adjustment can be beneficial. Furthermore, a ensemble data

assimilation with an adjusted forecast spread ofη = 1 is equivalent to standard ensemble

data assimilation. Thus ensemble data assimilation with tuned forecast spread adjustment

will always perform at least as well as standard ensemble data assimilation even if the

parameterη is only roughly tuned.

Forecast spread adjustment affects the ensemble spread during the forecast phase, so

for nonlinear models, an ensemble with a different spread will evolve to a different mean

with different perturbation amounts and directions.

Some authors (e.g., Stroud and Bengtsson 2007) have found benefits to inflating the

observation error covariance, assuming errors in additionto measurement error. In addi-

tion to correcting the underestimation of the observation error covariance, they might also
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be benefiting from the effects of forecast spread adjustment. For an ensemble initialized

immediately after the model evolution, forecast spread adjustment and observation error

covariance inflation will produce the same analysis mean andwill evolve the same en-

semble. This is because both maintain the same the ratio between the background and

observation error covariances. The difference is that wheninflating the observation error

covariance, the size of the assumed errors (P b, Ro, andP a) is η2 times bigger than those

assumed with forecast spread adjustment.

Due to nonlinear effects and model error, an ensemble which appropriately describes

the uncertainty at the analysis time will underestimate theuncertainty after it is evolved in

time. To compensate for this, many algorithms implement multiplicative covariance infla-

tion on either the background (e.g., Anderson and Anderson 1999, Whitaker and Hamill

2002, Hunt et al. 2007) or the analysis (e.g., Bonavita et al.2008). Either technique

is valid and forecast spread adjustment can transition between them. Furthermore, fore-

cast spread adjustment can be described as doing both, i.e. inflating the analysis error

covariance byη2, evolving the ensemble, then deflating the background errorcovariance

by ρ/η2.

We demonstrated that theηETKF provides a continuum from a reduced-rank Ex-

tended Kalman Filter (η = 0) to the ordinary ETKF (η = 1) and beyond. If the ensemble

is sufficiently large, we recover the full-rank Extended Kalman Filter. On the other hand,
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we generally found the lowest analysis errors whenη was close to or larger than1.

With our standard parameters, the LETKF with forecast spread adjustment improves

by 14% upon the standard LETKF. In comparison, a10 member ensemble with forecast

spread adjustment performs better than a40 member ensemble without forecast spread

adjustment. The parameterη tunes to larger than1 in all scenarios where we saw improve-

ments. This corresponds to evolving an ensemble with a larger spread than whenη = 1.

Our standard parameters include model error induced by changing the forcing constant

used when evolving the ensemble to a larger value than the true forcing constant. Fore-

cast spread adjustment proved even more effective in our tests with an even larger forcing

constant. However, in perfect model scenarios and when the ensemble forcing constant

was smaller than the true forcing, tuningη did not significantly improve the RMSE. In

comparison to the RMSE whenη = 1, tuningη was just as effective in improving the

RMSE with ensembles of40 members as it was with ensembles of10 members, and was

even more effective with ensembles of5 members. Lower observation errors increased the

tuned value ofη in such a way as to suggest that there is an ideal ensemble spread during

the forecast phase which is relatively independent of the true error covariance but depends

upon the accuracy of the model.

In conclusion, forecast spread adjustment withη > 1 provided significant improve-

ment compared toη = 1 (no adjustment) in some of our experiments with a simple model.
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Forecast spread adjustment was particularly effective forsmaller ensembles, smaller ob-

servation errors, and (in some cases) larger model errors. Our interpretation of whyη > 1

improves results whenF > 12 but not whenF ≤ 12 is that larger values ofF are as-

sociated with higher amplitude oscillations and larger values ofη tend to reduce these

oscillations in the background mean by averaging over a larger ensemble spread.
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Chapter 4

Summary and Future Work

I developed and tested two techniques for improving ensemble data assimilation.

The first, which I call mixed resolution ensemble data assimilation, incorporates ensem-

bles of two different resolutions,combining the accuracy of a high-resolution model with

the larger ensemble size feasible for a low-resolution model. The second, which I call

forecast spread adjustment, allows the ensemble spread during the model evolution to be

different from the forecast uncertainty, increasing or decreasing the nonlinear effects. This

can improve upon previous techniques that restrict the ensemble spread to be commen-

surate with the forecast uncertainty during both the forecast and analysis phases of data

assimilation.

Chapter 1 introduced data assimilation, in particular ensemble Kalman filters. With

an ensemble of forecasts, as opposed to a single forecast, wecan estimate the uncertainty

in the forecast. Data assimilation balances the uncertainties in the “background” (forecast)

and in the observations and produces a better “analysis” estimate of the true model state.

The uncertainties in the background, observations, and analysis are quantified as error

covariances.
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Current ensemble methods assume the ensemble is evolved at the same resolution,

with possibly one higher resolution control forecast. In Chapter 2, I developed and tested

an ensemble data assimilation technique which incorporates ensembles of two resolutions.

Higher resolution is desirable for more accurate forecasts; a larger ensemble is desirable

for improved sample statistics when estimating the error covariance. However, due to

limited computational resources, single resolution ensembles compromise between the

ensemble size and resolution. My research shows that combining a small high-resolution

ensemble with a large low-resolution ensemble improves thetrade-off and improves the

accuracy of the analysisfor the same computation cost when compared to single resolu-

tion ensembles or even ensembles which include one high resolution control forecast. I

compared the forecast computation time to the RMSE for different ensemble sizes of both

mixed and single resolution, assimilating with the mLETKF (mixed-resolution LETKF)

and the LETKF (Local Ensemble Transform Kalman Filter) respectively. I tested perfect

model scenarios and scenarios with model error. I also designed and tested a scenario

where it was possible to resolve the small scale variabilityof the high resolution model.

In all cases I showed improvement for mixed resolution ensembles over both single reso-

lution ensembles and ensemble with only one high resolutionmember. Future possibili-

ties for expanding upon this research include: applying it to operational weather models;

allowing the weight parameterα that controls the relative influence between the two sub-
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ensembles to vary with scale, e.g., allowing the large scalecomponent of the covariance

to come equally from the high and low resolution ensembles while the small scale compo-

nent comes only from the high resolution ensemble (C. Bishop, personal communication);

and more fully exploring the relationship betweenα and the ensemble spread.

In current ensemble methods, the ensemble not only providesbackground error co-

variance used to determine the analysis, but the ensemble spread also continues to corre-

spond to the uncertainty as it is evolved. However, the ensemble only needs to be com-

mensurate with the background uncertainty during the analysis phase of data assimilation.

In Chapter 3 I explored the possibility of evolving an ensemble whose spread is not com-

mensurate with the uncertainty during its evolution, readjusting the spread to be commen-

surate with the uncertainty during the analysis phase. I call this technique forecast spread

adjustment. In addition to testing this technique, I also discussed relationships between

forecast spread adjustment and other techniques. When the forecast adjustment parameter

η is small and the ensemble size is large, the ensemble Kalman filter (EnKF) will evolve

the same covariance as the Extended Kalman Filter (XKF). Previous authors have demon-

strated the equivalence between the analysis phases of EnKFand the XKF (e.g. Burgers et

al. 1998); my research connects them during their forecast phases as well. I also show how

forecast spread adjustment can be used to transform background error covariance inflation

into analysis error covariance inflation or to combine the two approaches. Some authors
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have discussed inflating the observation error covariance as well, assuming that it is un-

derestimated (Stroud and Bengtsson 2007) or misrepresented (Li et al. 2009). Forecast

spread adjustment produces the same background and analysis means as observation error

covariance inflation for ensembles that are initialized during the forecast phase. When the

observation error is correctly specified however, the background and analysis errors will

be more commensurate with the covariances specified by forecast spread adjustment rather

than by observation error covariance inflation.

My results also show that forecast spread adjustment can lead to significant im-

provements in the accuracy of ensemble data assimilation when model error is present,

though the improvement depends on the nature of the model error. In my experiments,

improvement occurred in cases where ensemble averaging compensates for model biases.

Future research may include further investigation of the reasons behind improvements due

to forecast spread adjustment, extensions of the method to help in cases where forecast

spread adjustment shows little improvement, development of adaptive methods for tuning

η, investigation of forecast spread adjustment in conjunction with ensemble forecasting.
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