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Chapter 1
Introduction

1.1 Background: Weather Forecasting and Data Assimilation

To predict the weather, we require both a numerical modehipartial differential
equations governing the evolution of weather and initiaddibons for the current atmo-
spheric state. Since weather is chaotic, the forecast nevisidically be corrected to more
closely match the observations. This corrected model sai@led the analysis. The pro-
cess of forecasting a model state and modifying it accorttirapservations is called data
assimilation.

Neither the forecast nor the observations exactly coinwille the true state of the
weather. Data assimilation balances the uncertaintid®iforecast (also called the “back-
ground” state) and the observations, and produces an “sinalstate deemed to be the

most likely state given the available information.



1.1.1 The Kalman Filter

A common paradigm for data assimilation is the Kalman filfEihe Kalman filter
analysis can be described by = z* + K (y° — Ha") , wherez® andz” are vectors rep-
resenting the analysis and background statesgpresents the observatioris,is a linear
operator (e.g., an interpolation operator) which tramefomodel vectors into expected
observationsK = P'H' (HP'H' + RO)_1 is called the Kalman gain matrix, ane’
and R° represent the background and observation error covariaatgces.

The Kalman filter is optimal provided the dynamics are lin¢lae observed quan-
tities are linear functions of the model state, and the srape Gaussian. Even when not
optimal, the Kalman filter often works well for nonlinear nedsl and nonlinear observa-
tion operators by using a linear approximation.

Advanced data assimilation techniques require an estiafdltee uncertainty in the
background state. The background uncertainty at a paati¢mhe is related to, but dif-
fers from the uncertainty at previous times. Nonlinear Kafnfilters (e.g. XKF, ETKF,
LETKF) approximately evolve the background error covacehut tend to underestimate
it. In ensemble Kalman filters, this is typically compensdta by multiplicative inflation
of the background error covariance prior to analysis.

In the Extended Kalman Filter (XKF) (Jazwinski 1970; Evand®92), the esti-

mated background error covariance is evolved by lineagitite model around the back-



ground state, which is also being evolved by the model. Wighcomplex weather predic-
tion models however, the computation cost of the XKF makansptractical.

Another way to estimate the background error covarianchrsugh the use of a
collection of forecasts, called an ensemble. Accordin@toe statistics, the background
error covariance is approximated By ~ ﬁXbXbT, wherek is the size of the ensemble,
and X’ is a matrix whose columns are the ensemble perturbations,the difference
between the model state and the mean. Most ensemble teeknige the mean of the
background ensemble to provide the background state. Radreoutput a single, optimal
analysis state, the ensemble is regenerated sisboptimal states centered around the
optimal analysis.

The Ensemble Transform Kalman Filter (ETKF) (Bishop et aDOZ2, Wang et
al. 2004) is one algorithm that regenerates the ensemide @dtforming the analysis.
However, forecasting a large ensemble can be costly. Funtire, artificial correlations
between model values at distant grid points are induced bypating P° from sample
statistics. These difficulties are circumvented by perfagran analysis for each grid
point, considering only nearby observations when comgutie update. This method is
called localization and several localization methods tHmeen proposed (Houtekamer and
Mitchell 1998; Ott et al. 2004; Hamill et al. 2001; WhitakerdaHamill 2002). The Local

Ensemble Transform Kalman Filter (LETKF) is described imHet al. (2007). Though



my research can be applied to other ensemble methods, mostresearch is performed

with ETKF the or the LETKF.

1.1.2 Experimental Methods and Models

| used Observing System Simulation Experiments (OSSE®diotlhe accuracy of
the methods | developed. In OSSESs, one forecasts a modeldssignated the “truth”
and generates observations by adding error. Then, pregnoi to know the truth, data
assimilation is performed, and the analysis is comparetddrtth to measure the accu-
racy in terms of the time averaged, spatial root mean squese émprovements to data
assimilation are generally tested on simple models befemegbmplemented and tested
in more realistic weather models because with a simple m@&SEs can be run quickly
and at low computation cost.

The simple models | used for testing are the Lorenz (2005)&40id, and Il . These
are generalizations of the well known Lorenz 96 model (Lar#896). The domain for
the Lorenz 96 model is a set of grid points (typically) describing a circle. The model

consists of three terms

dz,

— = (@ = Tpg) T — Tp + F (1.1)

simulating the chaotic effects of advection, diffusionddarcing respectively. Model II
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smooths the Lorenz 96 model over a domairkofimes as many grid points (i.e. increas-

ing the resolution by a factor df):

dz,

= (@)™ = 2 gt e~ + F (1.2)

whereg;™ refers to the average value pbver the regionk” grid points in length centered
at grid pointj. Model Ill simulates even greater resolution, sufficiendéscribe coupled
small scale activity. Model Ill evolves the variables= x,, + y,, according to

&n
dt

avg avg

avg avg
(xn+Kxn—K) — Ty oyt — Ty + F

+bz (yn—i—l - yn—Q) Yn—1 — byn +c (xn—i—lyn—l - yn—an—l) y

wherez,, andy,, represent the large scale and small scale componentsrespectively
(defined precisely in Section 2.3.2, equation (2.2bgpntrols the amplitude and speed of

the small scale activity andcontrols the coupling.

1.2 Obijectives

Ensemble Kalman filters are limited by the computationat cb®volving a large,
high-resolution ensemble. Larger ensembles correspoadjteater sample size, which

allows better statistical analysis. On the other hand, Inigidlel resolution is desirable
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because it improves the individual forecasts at all scaldatter resolves the small scale
activity. So traditional ensemble Kalman filters comprogrbgtween the resolution of the
model and the size of the ensemble. Much of the literaturenearable Kalman filters uses
the ensemble mean as the best estimate for the truth, but ridawe (2008) proposed
updating a high resolution forecast with the backgroundrezovariance estimated from
a low resolution ensemble.

The goal of the first part of my doctoral research (Chaptes 2) idevelop and test
a technique for mixed-resolution ensemble data assimiildkiat incorporates information
from both a high resolution ensemble and a low resolutioemie. This alleviates the
trade-off between model resolution and ensemble sizewaltpa large low-resolution
ensemble to bolster a small high-resolution ensemble. Byltedemonstrate that mixed-
resolution ensemble data assimilation outperforms sirggelution data assimilatidior
the same computational cost.

The algorithm | developed for mixed-resolution ensembl&a @ssimilation effec-
tively estimates the covariance as a weighted average tfatigground error covariances
estimated from high and low resolution ensembles. | disaal¢hat the results are not
very sensitive to exact tuning of the weight parameter. &vgtlon of the reasons for this
lead to the second part of my dissertation research.

The goal of the second part of my doctoral research (Chaptertd improve en-



semble data assimilation for nonlinear models by develppimd testing an algorithm in
which the spread of the ensemble during the forecast doeomaispond to the amount of
uncertainty. With forecast spread adjustment | also ainotmect many aspects of data as-
similation, specifically the ensemble Kalman filters andektnded Kalman filter, back-
ground and analysis error covariance inflation, and fotesia®ad and observation error
covariance inflation. In the ensemble Kalman filters, the&kgemund mean can be thought
of as a random variable estimating the true model state, théhbackground ensemble
representing random sampling according to the distributibthis random variable. In
other words, we assume that the spread of the ensemblemanadssto the uncertainty in
the mean. However, | have found advantages to ensemblesitailation when forecast-
ing an ensemble with a scaled spread, provided that the dhsepread is rescaled prior
to analysis. | call this technique forecast spread adjustme

For the idealized case of data assimilation with a linear ehddrecast spread ad-
justment has no effect, i.e. the algorithm with forecaseagradjustment simplifies to the
standard algorithm without forecast spread adjustmenis Bdiscussion of the effects of
forecast spread adjustment is only relevant and meanifgfal nonlinear model such as
numerical weather models.

If the ensembile is clustered too closely about the meantulkerodel state could lie

outside of the spread of the ensemble, especially when neoral is substantial. Model



nonlinearity can further accentuate the discrepancy letviee ensemble and the truth.
For a large ensemble with infinitesimal spread, the resqadetirbations describe a linear
approximation for the error similar to that of the XKF. Comga to the XKF, ensemble

Kalman filters can better track nonlinear effects as therabteis spread over a larger
region of the attractor. | show that further expanding theeemble spread can provide
additional advantage, especially in the presence of modal e

An alternate way of describing forecast spread adjustngeimt terms of inflating
the observation error covariance; though, as Sectiong argl 3.4.3 demonstrate, in the
cases | examined, only the forecast spread adjustmenpiatation correctly ascribes the
observation, background, and analysis error estimatele e error estimates ascribed
by the observation error covariance inflation interpretattxaggerate or underestimate
the true error.

Though the algorithms given in the literature on ensembta dasimilation with
multiplicative inflation typically inflate the backgrounder covariance, inflating the anal-
ysis error covariance instead is often mentioned as beingllgoviable. Forecast spread
adjustment can be used to transform an algorithm that isflie background error co-
variance into an algorithm that inflates the analysis eromagance or into an algorithm
that inflates both by different amounts. Furthermore, mlittative inflation (including

possibly deflation) of both the background error covarizaroe the analysis error covari-



ance separately is yet another way of describing ensemtdeadaimilation with forecast

spread adjustment and background error covariance inflatio

1.3 Organization

My dissertation consists of two research projects, bothtotiwvl am submitting for
publication. They are written as separate articles, so teh2mnd Chapter 3 are complete
and discrete in and of themselves. This introduces somendashey in my dissertation,
especially between the introductions to Chapters 2 and 3aptéh 2 describes mixed-
resolution ensemble data assimilation. Chapter 3 descehsemble data assimilation
with an adjusted forecast spread.

In Chapter 2, | start by introducing ensemble data assiimiand motivate mixed-
resolution ensemble data assimilation. | describe the E[H#Semble Transform Kalman
Filter) algorithm (Bishop et al. 2001; Wang et al. 2004) ams$cribe how | adapted the
ETKF algorithm to accommodate ensembles of two resolutjoriSTKF). In the limit as
two ensembles with the same number of members approachrtieereaolution | describe
how the mETKF (on two ensembles with the same resolution)eawes to the ETKF on
the entire ensemble. | also describe the cost function thatinimized by my mETKF
algorithm and how this could be extended to hybrid systemectually implemented a

mixed resolution LETKF (Local ETKF, (Hunt et al. 2007)), irhigh | perform a mETKF



analysis at each grid point, only allowing nearby obseovetito influence the analysis. |
tested the mLETKF with OSSEs using Lorenz (2005) Modelsdil kiras the low and high
resolution models respectively. | compared the root meaarsgdifference between the
analysis mean and the truth for various mixed-resoluticsesrbles using the mLETKF
and for various single-resolution ensembles using the LET&spectively. | tested the
MLETKF in perfect model scenarios and in scenarios with rheder. My results show
the trade-off between forecast computation time and tineeaaged root mean square anal-
ysis error for my experiments with the mLETKF and the LETKikga discuss how using
mixed resolution ensembles allows more accurate resulthésame forecast computa-
tion time.

In Chapter 3, | start by introducing data assimilation, theegnble Kalman filters
(specifically ETKF and LETKF), and the extended Kalman filtelescribe ensemble data
assimilation with forecast spread adjustment. | demotestraw this reduces to standard
data assimilation when the model is linear. | show that thisquivalent to observation
error covariance inflation for an appropriately initiaizensemble and discuss why fore-
cast spread adjustment is the more natural interpretatiomfy experiments. Forecast
spread adjustment with multiplicative covariance inflgtaan also be described as multi-
plicative inflation of the analysis error covariance folkxivby multiplicative deflation or

inflation of the background error covariance. Furthermonhe limit of a large ensemble
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with a small forecast spread, ensemble data assimilatitnfaiiecast spread adjustment
approaches the extended Kalman filter. | tested the LETKR feitecast spread adjust-
ment via OSSEs on the Lorenz (2005) Model Il for different amts of model error,
different ensemble sizes, and different amounts of obsiervarror. | also tested how
the ETKF with forecast spread adjustment compares to the dKRrge ensembles and
small spread. | discuss the results of these experimentthamabtential benefits of fore-
cast spread adjustment.

In Chapter 4, | discuss my conclusions and future directionsesearch.
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Chapter 2

Mixed Resolution Ensemble Data Assimilation

2.1 Introduction.

Numerical weather prediction uses a numerical model of apfheric physics to
predict the future states of the atmosphere given an estifoathe current atmospheric
state. Uncertainty about the current state, along withdagcies in the model dynamics,
leads to (greater) uncertainty in the forecast. Quantfyims uncertainty is important for
interpreting the forecast and for data assimilation. Iradesimilation, information from
a short term forecast is combined with information from reécgbservations, resulting in
an estimate of the current atmospheric state used to ingialibsequent forecasts.

One tool for assessing forecast uncertainty is an “ensepnbtiction system” (Leith
1974) in which an ensemble of initial conditions are evollbgdthe model. Ideally, the
ensemble of forecasts samples the future atmosphericttizieng of it as a random vari-
able. Weather services generally make a single forecashigharesolution, determined
by their computational and operational constraints, anelcast an ensemble at lower res-

olution (Toth and Kalnay 1993; Molteni et al. 1996; Toth analikay 1997; Buizza et al.
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2005). The resolution may change for different forecad kaes, e.g., forecastdays
ahead, then forecast anotlfedays at reduced resolution (Buizza et al. 2007). However,
at a given lead time all of the ensemble members generally tie/same resolution.

In this chapter, we will consider potential advantages iscdbing forecast uncer-
tainty of an ensemble with multiple members at each of twierbht resolutions. We will
assess the advantage by proposing a mixed-resolution blesdata assimilation system
and comparing its results to the analogous single-resoiatssimilation system.

A common paradigm for data assimilation is the Kalman filfEine Kalman filter
cycles between the analysis phase and the forecast phase'afdlysis” generated by
the Kalman filter is a function of the forecast estimate,ezhthe “background” state, the
forecast uncertainty quantified as a background error @ves, new observations, and
the observation uncertainty quantified as an observatiar eovariance. The resulting
analysis state is an updated version of the background stateh better fits the observa-
tions. Forecasting the analysis provides the backgrounithéonext cycle.

Accurately estimating and evolving the background erraac@ance is a time con-
suming process. There is growing interest in estimatingbthekground error covari-
ance using sample statistics on ensemble forecasts, aitteggendently (as in ensemble

Kalman filters), or in combination with variational methd@sg., Lorenc 2003). In gen-
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eral, for ak member ensemble of background states

Xb:[xf; X8 ... Xg} (2.1)

with meanz® and perturbations

Xb:[xlf—:fb Xb—z ... XZ—EI’]’ (2.2)
the background error covariance is estimated by

1
Pb - mXbXbT. (23)

The number of members composing the ensemble and the riesodditthe model states
being evolved both contribute to the accuracy of the fortegasertainty estimated with
the ensemble and also to the computation time of the forecast

Most ensemble data assimilation literature, e.g. Houtekamnd Mitchell (1998),
Anderson and Anderson (1999), Bishop et al. (2001), Whitake Hamill (2002), Ott et
al. (2004), assumes that all ensemble members have the saatetion. While forecast-
ing the background ensemble at a lower resolution subathmeduces the computational

cost involved, it also decreases the accuracy of the asalyge argue that an ensemble
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composed of forecasts evolved at two different resolutinag better characterize forecast
uncertainty than a single resolution ensemble, withingiv@mputation constraints.

Du (2004) proposed combining low resolution ensemble pleations with a high
resolution forecast as part of an ensemble forecast sysgam.and Xue (2008) propose
data assimilation with a single high resolution forecast amow resolution ensemble. In
what they call dual resolution data assimilation, the logoiation ensemble is evolved
and independently of the high resolution forecast, and #ekdpround error covariance
estimated from the low resolution ensemble is also useddatepa single high resolution
forecast. Gao et al. (2010) extend this technique to use yhdachmethod of Lorenc
(2003). The ensemble perturbations are updated separhteglyhe ensemble analysis
mean can be shifted toward or replaced by the high resolatmatysis, as in Zhang and
Zhang (2012).

One of the disadvantages of pure ensemble methods is raciedefi of the covari-
ance, especially for small ensembles. Localization allewaller ensembles as we discuss
in Section 2.3.1, but the rank deficiency can still be a diaathge when the ensemble size
is too small. The background error covariance used in thersbke based hybrid meth-
ods is a weighted average of a full rank static covarianceh(sis that from a variational
method) and a reduced rank ensemble estimated covariaaeeil(tind Snyder 2000).

However, the ensemble perturbations are updated sepanatielthe reduced rank ensem-
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ble estimated error covariance and data assimilation witfiesresolution ensembles must
still balance the available computational resources batviiee size and resolution of the
ensemble.

To achieve the accuracy of a high resolution ensemble fowarn@omputational
cost, we have developed a modification of the Local Ensemidasform Kalman Fil-
ter (LETKF) (Hunt et al. 2007) for a mixed resolution enseenbbmposed of a small
high resolution ensemble and a larger low resolution entanfBimilarly to the hybrid
method, e.g. Hamill and Snyder (2000), we form the backgilorovariance as a linear
combination of the sample covariances of the two ensemibtelmit the effects of inter-
polation between the two model spaces, we use the combirsagjtmaind covariance in
observation space as much as possible.

In contrast to hybrid methods where the static covarianas dwt influence the
analysis ensemble perturbations, in mixed resolutionrabkedata assimilation both the
high and low resolution analysis ensemble perturbatioasrdluence by the combined
background error covariance. Additionally, the mixed heB8on combined background
error covariance could be easily incorporated into hybrethods e.g. Hamill and Sny-
der (2000) including frameworks where the cost functionriscpnditioned e.g. Lorenc
(2003). These cost functions are described in Section.2.2.4

We remark that our method allows the high resolution ensertibhave just one
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member, with the background covariance formed entirelynftbe low resolution ensem-
ble, as proposed e.g. by Du (2004), Zupanski (2005), Gao ared(X008). When the
high resolution ensemble has multiple members howeveh boesembles contribute to
the background covariance.

We test this hypothesis by comparing analysis errors in @digsolution ensemble
Kalman filter scheme. In particular, we test the mixed reswtuLETKF (MLETKF) on
two chaotic models designed by Lorenz (2005). The low resmiumodel (Model Il) is
similar to the Lorenz 96 model (Lorenz 1996; Lorenz and Eneath@98) but is smoother
in that the values at adjacent grid points have a strongipesbrrelation. The high
resolution model (Model I11) includes short wave couplimgaddition to the smoothing.

In Section 2.2 we motivate and describe the algorithm fofgoeting the mLETKF.
For simplicity, we discuss the method mainly in the contéxt@ localization, using the
ETKF (Bishop et al. 2001; Wang et al. 2004) as formulated imt+i al. (2007). We give
a side-by-side comparison of the two algorithms (ETKF andriE). In Section 2.3 we
describe the full algorithms that we use in our experimetasyplete with localization,
interpolation, and reduced impact for distant observatidle describe the low and high
resolution models (Lorenz (2005) Models Il and IIl') that wseun our experiments, and
we describe our experiments. We test the mLETKF most extelysivith a simple sce-

nario of limited observations, testing the LETKF for higlsotution ensembles of various
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sizes and testing the mLETKEF for mixed resolution ensemidegng the size of both the
high and low resolution components of the ensemble, inolydnsembles with only one
high resolution member. We also investigate the potentighatages or disadvantages of
the mLETKEF for more accurate observations with full coveragd more frequent assim-
ilation, sufficient to resolve the small scale variabilayd in less ideal conditions where
model error was introduced. We discuss the parametershwigduned for best accuracy,
and we discuss balancing limited computation resourcebdet accuracy. We give our
results at the end of Section 2.3. In Section 2.4 we conclualenmixed resolution ensem-
ble analysis is beneficial in all of the scenarios testedhat & greater accuracy can be

attained for the same computation time.

2.2 Methodology.

Below we describe in detail how we perform a single analysp svith a mixed-
resolution ensemble, in comparison with an ETKF analysp.stWe also describe the
METKF in terms of minimizing a cost function and discuss howtorporate the mETKF
within hybrid systems.

In Sections 2.2.1 and 2.2.2 we present the global Ensemalesform Kalman Fil-
ter (ETKF) algorithm and the global mixed-resolution ETKga@ithm (mETKF). How-

ever, we used the Local Ensemble Transform Kalman FilteT{IE) algorithm and the
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MLETKF algorithm in our experiments. In the LETKF (or mLETKFR separate ETKF
(or mETKF) analysis is done for each model grid point, usinty @bservations from a
region local to that grid point. Once the choice of obseoratiis made, the LETKF analy-
sis is equivalent to (though formulated differently tham Ensemble Transform Kalman
Filter (Bishop et al. 2001) with a centered spherical simglesemble (Wang et al. 2004).
Itis also equivalent to the local analysis of LEKF (Ott et2004). We discuss localization

and other minor but practical modifications to our algoritimn$ection 2.3.1.

2.21 ETKF

The Ensemble Transform Kalman Filter (ETKF) algorithm ¢&ip et al. 2001,
Wang et al. 2004) is designed to generate an analysis ensahblboptimal state esti-
mates commensurate with the analysis error covarianceateti by the Kalman filter and
centered around the Kalman filter optimal analysis statelevghifting the background
ensemble as little as possible to form the analysis ense{@tiet al. 2004).

We represent the background ensemble Wwithembers by the matriX®, with each
column standing for a different ensemble membB@r(see equation (2.1)). The mean of
the ensemblez?®, is used as the background state. We constructed the patian via
equation (2.2), writing each ensemble membeKas= z° + X’. We denote byX"’ the

matrix of perturbations from the mean (see equation (2)E observations and the ob-
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servation error covariance af€ and R° respectively. Instead of using the background
error covariance”® explicitly in the computations, we represent the implictkground
error covariance by a square root matix = (k — 1)_% X’ whereP® = UPU" (equa-
tion (2.3)).

The number of elements (rows)4f is equal to the number of observationg, and
the number of rows iX® is equal toN,,, the number of grid points in the model space.
For an ensemble df membersX® will have k columns.

Let h(z) be the forward operator that maps from model space into vaten space.
The matrixY’ represents the background ensemble in observation spage} i= £ (X?).
The vectory® and the matrixy’® represent the mean and perturbations of the background
ensemble in observation space so thiat= 3° + Y. If h(x) is linear then it can be
represented by @V, x N,,] matrix H, h(z) = Hz. Three intermediary matrice$]’,
C, andM*, are created by the algorithm for efficiency during compatatl’® has size
[N, x k], C has sizdk x N,], andM* has sizdk x k]. Similar toU®, the matrixU* is
a square root of the analysis error covariafitte= UeUe’. The background ensemble
X?, the analysis ensembl?, and their respective implicit error covariandé$ and U
all have siz¢ N, x kJ.

We have split the ETKF algorithm into 3 major steps. In Stepw#& construct

the inputs needed for the ETKF. In Step (2) we create intermbednatrices used in the
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analysis. In Step (3) we compute the analysis ensemble.

1
k—1

1
k—1

1. (@)U’ = Xt

(b) VP = y?

2. @ C=Vv" (R)"

1

(b) M® = (51 + cvb) i

3. (@z*=2"+U"MC(y°—h(z"))
(b) U = U (M?)?
(©) X®=k—1U®

(d) X¢ = 2°4-X¢

In Step (3c) the square root @f“ is defined as the unique symmetric positive definite
matrix whose square i&/“. Using this square root gf/* gives an analysis ensemble with
members that are the nearest to their background ensemi¢ecparts when compared
to the analysis ensembles computed using any other squar€Xi et al. 2004).

With p = 1, the analysis mean™ and covariancé’® = UsUe' are consistent with
the Kalman filter applied ta® and P°. For a variety of reasons including model non-
linearity and limited ensemble size, the background eromadance estimated from an
ensemble forecast tends to underestimate the size of tbeierthe background mean
(Houtekamer and Mitchell 1998; Anderson and Anderson 138jtaker and Hamill
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2002). The inflation factop in Step (2b) effectively multiplies the background error co
variance matrix by. The value op is often determined by tuning to optimize performance
in a given scenario (Anderson and Anderson 1999; Whitakeérsamill 2002). One can
also adjusp adaptively (Anderson 2007; Li et al. 2009; Miyoshi 2011).afstive inflation
allows p to depend on location, which can be important when the mattebhservations

are spatially heterogeneous.

2.2.2 mETKF

High resolution models are more accurate than low resalutiodels yet take more
time to run. Among ensembles of the same resolution, engsnviith more members
provide a better estimate for the background mean and @naai However, increasing
either the size or the resolution of the ensemble also isesethe computational cost.
Thus, within given computational constraints, a singksfation ensemble compromises
between the size of the ensemble and the resolution of thelm@dmbining the infor-
mation in a large, low resolution ensemble with a small, higgolution ensemble could
produce a better analysis than either resolution produgésélf. Described below is a
method for mixed resolution ensemble analysis as it apph¢be Ensemble Transform
Kalman Filter (we abbreviate mixed ETKF by mETKF).

The high resolution background ensemiifehas sizeV;, x k;, (grid sizex ensemble
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size). In the same fashion the low resolution backgrounerabteX’ has sizeV, x k.
The high and low resolution background means@randz’ respectively. In the mixed
algorithm, X} (X?) stands for the high (low) resolution background perttidvet from

the high (low) resolution ensemble mean:

[X}2], = 25 + [X}] (2.4)

%

[X7], = 72 + [X/] (2.5)

it

In observation space, members of the high and low backgrensdmbles are denoted
by [Ylgh/é)]i = huye ([X}i/e} Z) = Yooy + [Y&/@]i- The operators,, andh, transform
high and low resolution model states to observation spaeeudl parentheses around the
subscripts: and/ to indicate objects that are related to one of the ensembtedomot lie
in the corresponding model state space.

In various equations below, two matrices combine to formrgdaaugmented ma-

trix. For matricesA and B with the same number of rows, the augmented matrix

{A‘B}I[Al Ay ... Ay, B, By, ... By, |- (2.6)

is the matrix with leftmost columns encompassihgnd rightmost columns encompassing
B.
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When doing analysis on a mixed ensemble, we occasionaltytoemmpare vectors
and matrices of different resolutions. To create a joing(aented) ensemble of the back-
ground perturbations, we interpolate the low resolutiorkiggpound perturbations onto the
high resolution grid by means of the cubic spline with cieslboundary conditions. The
function spling) denotes an operator interpolating a low resolution fielddhe high
resolution grid. Similarly, high resolution fields are mrdjed onto the low resolution grid
via the operator prdj). We remark that if the high resolution grid points are a stibsthe
low resolution grid points, then prgj is truly a projection operator; otherwise it involves
some interpolation as well.

In the mETKEF, as in the ETKF, the background error covariasaeever explic-
ity computed. Instead we estimat®, the implicit background error covariancE¥ =
UtUbT), andV?, the implicit background error covariance as expressedosevation
space * = V*V*T), from a weighted combination of the high and low resolupentur-

bations:

U’ = { J/ rpspline(X7) ‘ VEEX) } (2.7)
b a —«
ve= | v | = | 28

Equivalently, R®, can be written as a weighted average of the high and lowutsol
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background error covariances

1
Ry = ——=Y5 oY 2.9
) = o1 Y /Yo (2.9)

R’ = aRly + (1 — a)Rly = V'V (2.10)

The scalar determines the relative weight of each ensemble. Whea 1, only the
low resolution perturbations are used to determine theyaisalipdate, i.e.R* = RI(’Z).
Settinga = 1 is necessary when the high resolution ensemble contairyseoringle
member. Even though the high resolution perturbationsgrered, the high resolution
single member ensemble will still be updated in the analySisiilarly whena = 0, the
low resolution perturbations are ignored alit= 1f,,.

The mETKF algorithm is shown below with steps numbered in mesponding
manner to the steps of the ETKF algorithm in Section 2.2.% ifiput parameters for the
mETKF analysis step are: the background ensemBlpandX?), the weight parameter,
the inflation factorp, and the observationg with their error covarianc&°. We construct
the augmented implicit background error covariance megfi andV* in Step (1). Step
(2) is useful for efficient computation. In Step (3) we penfiche analysis. We remark that
the analysis mean for the low (high) resolution ensembl@dated from the background

mean for the low (high) resolution ensemble.
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b _ — —
1. U= { 1/mspllne(Xg’) ‘ klh_lX,*; }
b _ o —«
by v = [ VEeYo ‘ Bt (hy }

2. (@) C=Vv"(Rr")"

-1
(b) M® = GI + va)

3. (@ i.zp=z)+UMC(y°—hy(z}))

i 79 = 72+ proj(U’) MeC'(y°—hy (1))

N

(b) U = U (M?)
(c) splitU* into components corresponding to the low and high resolgitsem-
Ulhy }

L xp =/t

. X7 = \/?proj (U&)

(@ i [X5] =7 + (X7,

bles:U* = { U,

ii. [X7]; = 77 + [X7];
Step (3d) is done for each ensemble memberli€.i < ky ;.

We remark that because p(gjinverts spling), the X computed by (3c) is the
same as if we had formed® in low-resolution model space (projectifff), performed
Step (3b) on the low-resolution ensemble, and selectedainennis of the low-resolution
U® that correspond to the low-resolution ensemble.
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When the high resolution ensemble only has one member, thepations from the
mean are zero. Since the background error covariance ofghedsolution part cannot be

computed, no weight should be given to the high resolutionmanent of the covariance.

This can be done by setting = 1, using0 instead of\/klh‘i_“‘1 in Step (1), and setting
Xp = 6) in Step (3c). Both the low resolution ensemble and the higblution member
will be updated from the information in the low resolutiorrfoebations.

As the low resolution analysis mean ignores the high reswiutackground mean,
whena = 1 the low resolution analysis ensemble from the mETKF is idahto that pro-
duced from the ETKF on the low resolution ensemble. Thus @& ¢odmixed resolution
ensemble data assimilation can also accommodate singleities ensembles by setting
a=1andX} = I (or Xt = @) for a low resolution ETKF or by setting = 0 and
Xt = 0 for a high resolution ETKF.

With some models it might be desirable to compute a singlé/aisamean for both
the high and low resolution ensembles, replacing Stepi3¢é)i z; = proj(z}) and re-
placingz$ in Step 3(a)i withz® representing a state estimate better thaif such exists.
However, our results were marginally worse when we replagedith proj(zf). Du
(2004) explores the forecasting advantages this provideshe high resolution ensem-

ble has only one member.
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2.2.3 A side by side comparison

As a thought experiment, consider splittin@/amember ensemble into two equal
parts, yielding twok-member ensembles of the same resolution. In this sectiowilve
compare the ETKF on thgk-member ensemble to the mETKF on the tvanember en-
sembles. Since botk-member ensembles have the same size and resolution, wh weig
them equally, usingr = % For each step, the ETKF step is given on the left and the
comparable mETKF step is given on the right. We label bmaember ensemble with

subscrip? and the other with subscript even though in the present scenario both ensem-

bles are in the same model space, and there is no need fgratgtgon or projection.

1. (@) UP = L—X?

2k—1
A | At |-
(b) VP = iy
{ 7Y ‘ Vo= } =V
2. (@C=V"R""
V' RT =C

-1
(b) M® = GI + va)

3. (a)z* ="+ UMC (y° — h(z"))
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Ty + UM C (y" —h (:z;;/z)) = I},
(b) U = U® (M)?

bMa%: a _ a
0oyt =t = | o,

Uth) }
(©) X =3E—1Ue
(d) X¢ = 7° + X°

T+ [Xﬁ/z] = [XZ/Z}

The differences are as follows. First, in the mETKF sepamsansz;, andz, are com-
puted for the two ensembles; these means are used expircBieps (3a) and (3d), and
also in forming the ensemble perturbations in Step (1). Secthe rank of the mETKF
combined background error covariance2is — 2, while the rank of the corresponding
ETKF background error covariance is slightly largek (— 1). Thus, for largek the
METKF and the ETKF should produce similar results, but foakr, the mETKF will
be more influenced by sampling error. We note that the enseKddman filter proposed
by Houtekamer and Mitchell (1998) also uses two equal-sisemmbles and updates their
means separately, but compensates for sampling error atingdhe mean from one en-
semble using only the background covariance computed byttier ensemble. While
the combined background covariance of mMETKEF is probablgirdental in this thought-
experiment scenario, it is an essential feature of METKRémtixed-resolution scenario.
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2.2.4 Cost Function

The ETKF and the mETKF can also be considered in terms of niimign a cost

function. We also show the cost function for a mixed enserbaied hybrid scheme.

2.2.4.1 The ETKF Cost Function

For the ETKF this cost function is

J(w) = p~tw w + (v — T wa)T R (y° — T wa) : (2.12)

wherej® = h(jb) andp is the background error covariance inflation.ilfs linear then
h(zb + Uw) = §* + VPw, and it follows that ifw® € R* minimizesJ* thenz® =
z° + UPw® minimizes the alternative cost function

1

J@)=(z=2)" (pP") " (x—2") + (v = h(x)) B (4° — h(z)) (2.12)

in the space spanned by the ensemble (Hunt et al. 2007).
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2.2.4.2 The mETKF Cost Function

A similar cost function applies to each resolution in the T
* - o — T po~1 o —
Jh/z(w) = p'ww+ (y - y?h/f) - wa) R (y - y?h/é) - wa) , (2.13)

wheregp, ,, = haye (9?2/4). Similarly, whenhy,, is linear, thenzy = z} + Ubw" and

Ty = 4 4 proj (U*) w* minimize the alternative cost function

el = (@ =30) " (pP") " (@ = hse) + (8 = bage(@) T BT (5 = hge())

(2.14)
in the space spanned by the ensemble, provided R*»+ minimizesJ;/Z.
The minimizerw* for J; is
_ -1 _
wt = (14 VRV VTR (7~ ha(a))), (2.15)

and the equation for the high resolution analysis mean fréep S(a)i of Section 2.2.2
gives

T8 = 20 + Ubw*, (2.16)

For linearh,, z} (equation (2.16) and Step 3(a)i) minimizes the cost fumctip (equa-
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tion 2.14) in the space spanned by the ensemble. A similaradiem applies to the low
resolution analysis;.

In summary, the mETKF analysis minimizes separate costtifums for the high
and low resolution ensembles. The two ensembles are cobgldte combined pertur-
bation matrixV/? in both cost functions (equation 2.13), or equivalently iy tombined

background covariance matri® (equation 2.14).

2.2.4.3 The Hybrid mETKF Cost Function

As we have not explored mixed resolution ensemble baseddchyiethods, this
section describes a generalized theoretical cost functe consider a hybrid method
where a control forecast, is performed at high resolution and ensembles are foretast a
mid resolutionX?, and low resolutiorX’. We assume that the control forecast is the most
accurate and hence the best prior estimate.

The hybrid mETKF cost function similar to that given in Looef2003) and Gao et

al. (2010) is given by

* _ T —1,,T
Tnpra Vs W) =V v+ pTrw W

(== ((Po)t o) ~Bavie) B (g B ((PL) o) —BViw),
(2.17)

wherey) = h («%) andgi + 3 = 1.

32



As in the previous sections (2.2.4.1 and 2.2.4.2), whéslinear, thent¢ = 2% +
B (Ph)? v + BUPw™ minimizes the alternative cost function similar to thategivin

Hamill and Snyder (2000):

-1

(Y = h(z)) .

(2.18)

Ja) = (o~ ) (B2Pht 83000 (2 = 3) + (4 — h(a)] B

Further details on the equivalence between Hamill and Sn{ad®0) and Lorenc (2003)

are provided in Wang et al. (2007).

2.3 Numerical Experiments and Results.

To test the mixed resolution LETKF, we used two chaotic medigdsigned by
Lorenz (2005) to generate the high and low resolution entesniBoth models are ex-
tensions of the Lorenz 96 model (Lorenz 1996; Lorenz and Emlat©98). The latter
model is called Model | in Lorenz (2005), and is smoothed twdpce Model 11, which
we use as our low resolution model. The high resolution Mddl@itroduces short wave
coupling in addition to the smoothing.

We tested the mixed resolution LETKF and the standard LETiKBeveral cases
with Observing System Simulation Experiments (OSSEs)hése types of experiments,

a computer is not only used to generate the forecasts, sdsused to generate simulated
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observations. It creates a trajectory that we call theHhtrahd from this it generates obser-
vations by adding random error to the truth at selected polntmost of our experiments,
we use a “limited observation” network consisting of onediaed observation eveB
Model Il grid points. We also consider a “small-scale resa” scenario in which we

have observations at every grid point.

2.3.1 Modifications to the Algorithms.

In the LETKF, the ETKF analysis is performed for each gridnpousing only the
observations in a neighborhood surrounding the grid poiritis eliminates long-range
background correlations that may be spurious due to limeteskmble size. In addition,
global errors may grow in many directions in model spacefdwér directions are needed
to describe local errors. The result of local analysis i¢ tree member of the ensem-
ble may be heavily weighted near one grid point, yet lightigirted near another, so a
smaller ensemble can be used to cover all of the directioesrof growth. See Greybush
et al. (2011) for further discussion of localization. For &&ad ensemble, the mLETKF
localization is done in the same fashion as the LETKF, i.e.tiETKF is done on each
grid point, using only the observations in a neighborhoauagunding the grid point. In
all cases we use a localization radius3@fModel Il grid points, i.e.2 or 3 observations

per local region in our limited observation network.
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When observations are sparse, edge effects can causerddjadepoints to have
significantly different analyses. For instance, consitier éxtreme case of a grid point
whose local region contains no observations, which is adjato a grid point with one
observation on the very edge of its local region. The anslgsthe first grid point would
be the background at that grid point, since no observaticegsns no update. However,
the second grid point would be updated to more closely aligh the observation quite
a distance from it. To reduce this unrealistic choppinassuir limited observation sce-
narios we tapered the influence of distant observationsdrgasing the observation error
covariance associated with observations near the edgeaziaaregion (Greybush et al.
2011). Hunt et al. (2007) suggest multiplying the elemehte@inverse observation error
covariance matrixRy, .,)”' by a weight function, which i for observations in the center
of the local region and dwindles tofor observations beyond the edge of the local region.
Our tapering weight function tapered the element(s}?ﬁ,cal)‘1 in a trapezoid-like fash-
ion. For observations on the very edge of a local region, weeased the observation error
covariance byt times. For observations in the exact center of the tapegdrewe dou-
bled the observation error covariance. For observatiocesdal elsewhere in the tapered
region, we multiplied the observation error covariance hyraerpolated power df. For
observations in the central half of the local region, we ditlahange the observation error

covariance.
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With the LETKF, the analyses at different grid points can beaealin parallel. If
grid points are closely spaced, it can be advantageous tolaté the “weightsw® =
MC (y° — h (z")) (see equation (2.15)) arid® = (M%)2 only on a subset of the grid
points and interpolate these onto rest of the grid pointag¥et al. 2009). These weights
multiply the background ensemble perturbation matfixin Steps (3a) and (3b) of our
ETKF formulation given in Section 2.2.1. The analysis ensienat a particular grid point
j is computed from the interpolat&o%) and we, by finding the analysis mean and co-
variance

T = ) + Uhwi, (2.19)
a __ 717b a
Ui = Ui Wi)s (2.20)

and computinngﬂ from Steps (3c) and (3d). Here the subscfijitdenotes the rows
corresponding to grid point. We performed the analysis at every fourth Model Il grid
point (i.e. the Model Il grid) and used weight interpolattordetermine the analysis at the

other Model Il grid points.

2.3.2 Models.

Following Lorenz (2005), we use a circular grid ®f0 points for Model Il, and

for Model Il we use 960 points that refine the Model Il grid byaator of4. To avoid
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confusion, we introduce thanit distance defined as the distance between one Model Ili
grid point and the next. Thus the circled60 units in circumference and Model Il grid
points ared units apart. A snapshot of both models, overlaid for consgaw;i is given in

Figure 2.1.

A Sample Model Il and Model Il State
20 T T T T T T T T T

Model Il
Model Ill{]

Value Predicted by the Model

0 100 200 300 400 500 600 700 800 900
Units Along a Circle (Model Ill Grid Point Number)

Figure 2.1: Sample Model Il and Model Il states shown simmétously. Model Ill has
short wave coupling at high resolution, while Model II, wétower resolution, is smooth.

Both models use an averaging function on nearby grid poivtisre the smoothing
parameterk determines the distance over which the average is takenn\Whs odd, the
averaging functionj) .., refers to the arithmetic mean over thegrid points nearest (and
including) the grid point indexed by the numberi.e. grid pointsn — % ton + %

WhenK is even,() . is the average over the region of lendthgrid points, centered at

K;

grid point numbenm, with boundary points weighted half as much as interior {sine.

considering the nearesf + 1 grid points, thek' — 1 interior grid points are weighted by
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% and the two most distant grid points { % andn + %) are weighted bg?.
/
The averaging function for an even valued smoothing parnetelated to thi

notation of Lorenz (2005) according to the the equation

K/2

1 /
(@) ken =75 D Tt (2.21)
j=—K/2
where
J , + J—1
an_w_ _ (.Tn—J . «Tn—i-J) + Z T (222)
j=—J j=—J+1

!/
We use thez notation when describing Model Il and Model 11l and also wiefining
the long wave component of Model 1.

Model Il is given by

K/2
dx, 1

!/
a K Z Tnirrs " (T o rss

i=—K/2

- <x>K;n72K <x>K;n,K — T, + F (223)

/.
whenkK is even; wherk is odd,zgj(ljﬁw replacesz 2 ,. F represents the forcing
constant in this differential equation. Whéh = 1, no averaging takes place and Model
Il reduces to the Lorenz 96 model (Lorenz 1996; Lorenz andritr@ial1998). Following

suggestions in Lorenz (2005), all of our experiments use@#mng parameter ok = 8
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(corresponding to a smoothing o Model Il units) and most use a forcing constant of
F = 15. Some experiments use different valueg-ab simulate model error.

For our small-scale resolving scenario, we performed degaralation every).005
time units and in all other cases we performed data assionlatery0.05 time units. We
integrated Model Il via the fourth order Runge-Kutta schevita a time step size af.005
or 0.05/2 respectively.

In our experiments the truth and the high resolution ensemelre both simulated

with the high resolution model, Model lll, given by the eqoat

K/2
dzy, 1

/
a K Z Tovicrs  (C) sty

j=—K/2
- <x>K;n72K <x>K;n7K —Tn + I

+b2 (ynJrl - yn72) ynfl - byn

+C (xn+1ynfl - y'rLfonfl) (224)

I . .
where}" "2 replacesy 1=/, whenK is odd andr andy are defined as follows

j=—(K-1)/2

in terms ofz.

L, /32 43 2241
- R 1)t 2.25
: i=z—z<2f3+4f I4+212‘Z|)z * (2.25)

Yo = Zp — Tp
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The coefficient$? andc are parameters of the model that drive the coupling. The eumb
I is chosen so that will not include short waves; the coefficients in the equatiefining

x,, filter out non-quadratic fluctuations between I andn+ 7 (Lorenz 2005). The vectors
x andy in equation (2.24) then correspond to the long and short wangponents ot
respectively.

For Model Ill, we use a smoothing parameterfof= 32 (smoothing over the same
length scale as Model Il) and a forcing constantFof= 15. Our other parameters were
I =12,b = 10, andc = 2.5. This gives short waves that vary abdottimes faster than
the long waves with about/10 the amplitude (Lorenz 2005). Integration was done via
the fourth order Runge-Kutta scheme with a time step size(3f/24 or 0.005/3. While
the Model Il can run without analysis with a larger time ss&pe 0f0.05/12 as in Lorenz
(2005), we found that data assimilation with Model Il regpsi a smaller time step due to
the instability of evolving with short waves of artificiallgrge amplitude. All of our other

parameters are consistent with those recommended by L{2605).

2.3.3 Experiments.

As mentioned above, our experiments took place on a griddebk of size 960
units, where adjacent Model Il grid points ateunit apart and adjacent Model Il grid

points arel units apart. We tested the mLETKF with a limited observatietwork of40
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simulated observations spaced evenly ex&ryinits around the entire circle, and with a
dense observation network @0 simulated observations, one at each Model Il grid point.
We simulated observations by adding uncorrelated Gaussiae to a model run that we
regard as the “truth”. In all scenarios below we used the santle run generated from
Model 11l with forcing constantt” = 15. In our small-scale resolving scenario we used
the dense observation network, with observations and seslgvery).005 time units,
and observation errors with standard deviatioy which is about the size of the small
scale variability (Yoon and Ott 2010). In all other cases,used the limited observation
network, with observations and analyses evefp time units, and observation errors
with standard deviatioR. We remark that observing and performing data assimilation
every0.05 time units was not sufficient to resolve the small-scalealdesy,,, which vary
10 times faster than the large-scale variabtgs this is consistent with the findings of
Ballabrera-Poy et al. (2009) for a similar model.

Our basic limited observations scenario and our smallesesolving scenario have
a “perfect” high resolution model{ = 15 for both truth and data assimilation). To
consider scenarios where both models are imperfect, weaiddtkrent forcing constant
for the ensemble forecasts than for the truth run. We testedrtodel error scenarios. In
one scenario we used a forcing constanfof= 14 for both the high and low resolution

forecasts. In the other scenario we used a forcing constante 12.5. Introducing model
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error detracts from the high resolution model’s capabilityesolve the small scales, so
we only tested our small-scale resolving scenario withenglrfect model framework.

We tested our three limited observation scenarios (basijgerfect modeF’ = 14,
and imperfect model’ = 12.5) with the mLETKF on three different sizes of mixed resolu-
tion ensembles and with the LETKF on three different sizesigii resolution ensembles.
In the majority of our mixed resolution experiments, the l@solution component of the
ensemble containgd = 30 members and only the size of the high resolution component
was varied withk;, = 1, 2, and3 members. The high resolution ensembles tested con-
tainedk = 3, 4, and5 members. In addition, we tested our basic scenario on nursero
other ensemble size combinations. Similarly, we testedsmail-scale resolving scenario
with the mLETKF on three different sizes of mixed resolutemsembles and with the
LETKF on four different sizes of high resolution ensembl&s (6, 17 or 18 members).
In each of the mixed cases, the low resolution componentettisemble containesi
members and the high resolution component containeéd, or 15 members. We present
these results in Section 2.3.6.

We measure the accuracy of each experiment as the root mearesdjfference
between the analysis and the truth at the Model Il grid miavveraged ovet500 as-
similation steps. We ran each experiment for a totab@f0) assimilation steps, but we

ignored the firs600 assimilation steps, giving the ensembles time to spin-ppcfically,
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the accuracy of each experiment is given by

5000
RMSE= L5 > ms(a“(t;) — ' (t,)) , (2.26)

=501

where rms is the root-mean-square function overdtegrid points,z!(¢;) refers to the
true model state at th&" assimilation step, and®(t;) refers to the analysis state (best
estimate) at thé'" assimilation step in Model Ill space, i.e:(t;) = z%(t;) for mixed
resolution experiments;®(t;) = z°(¢;) for high resolution experiments, and(t;) =

spline(z*(t;)) for low resolution experiments.

2.3.4 Parameters Tuned.

For each result below we tuned the covariance inflatigrin order to minimize
the analysis RMSE. While tuning substantially improves the accuracy, we found that
the results were generally less sensitive to changes ifRecall thato: determines the
weight given to the high resolution ensemble versus the Esolution ensemble when

determining the implicit background error covariance.
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Figure 2.2: Dependence of the analysis RMSEnofor the 2 & 30 (circle) and3 & 30
(diamond) mixed cases in our basic scenario. The resultavemaged ovet500 assimi-
lation steps after a spin up 800 assimilation steps. Whem = 1 only the low resolution
perturbations are used to determine the analysis updaégflathess of the graph indicates

thata does not need extensive tuning. Notice that .2 is close to optimal in both cases
shown, and is well separated from the large errors we observe < 0.05.

The representative example shown in Figure 2.2 indicatgsttte RMSE does not
change substantially for any value@betweem = 0.1 anda = 0.9. Whena = 1, only
the low resolution perturbations are used to determineritagyais update. Similarly when
a = 0, only the high resolution perturbations contribute to thelgsis update. Therefore,
in the mixed case with only one high resolution member, weessarily user = 1. We
tuneda for the four mixed cases @for 3 high resolution angd0 low resolution ensemble
members both with our basic scenario and with model drrer 12.5. Sincea = 0.2 was

close to ideal for each of these cases, in all of our basic avdkeherror results below, we

usea = 0.2. In our small-scale resolving experimentsuned to0.8.
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Though we discuss the joint covariance as a weighted averfate high and low
resolution covariances, the flatness of Figure 2.2 for megliate values af and the larger
tuned value oty for our small-scale experiments indicates that this imeggiion may be
too simplistic. Changing the value afalso changes, after many assimilation cycles, the
relative variances of the high and low resolution ensemblesger values ofv result in
smaller low resolution perturbations and larger high resoh perturbations. For example,
in our basic scenario witB high resolution members argd low resolution members,
increasingx from % to % roughly halves the variance of the low resolution ensembte a

increases the variance of the high resolution ensemb#® %y

Pa=1) (2.27)

Plla=2)~13 Pa=3). (2.28)

As a result, the low resolution part of the joint covariadte= a P} + (1 — a) PP stays
about the same aschanges fron% to § while the high resolution part decreases (but by a
smaller factor than — o decreases). We have not fully explored the relationshiyyéent
« and ensemble spread.

In each limited observation experiment, we tried valuegp differing in the hun-

dredths place and our results below use the valyetbat gave the most accurate RMSE.
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Values ofp were betweeni.04 and1.13 where the higher values were optimal when the
forecast model was less accurate or when the ensemble s&zemall. In mixed reso-
lution ensemblesy tuned to slightly lower values than in single resolutioneanbles of
comparative computational cost. In our small-scale resglexperimentsyp tuned to a

much larger values, even as largelak), so we tuneg along a coarser mesh of sigg)5.

2.3.5 Balancing Limited Computational Resources.

Computation speed limits the accuracy obtainable in pracfi he time taken by the
forecast is directly proportional to the size of the ensempfovided that the same model
is being used to forecast the entire ensemble. More gepdiadl time taken to evolve the
ensemble forecast equals the sum of the times taken to esablemember. Though the
forecast can be done much more quickly in parallel, comprtat resources still limit the
maximum ensemble size.

The forecast computation times shown follow a linear prapoality with the en-
semble size. In our experiments, forecasting each highutso member took about)0
times longer than forecasting each low resolution membhkeréfore, when forecasting
a mixed ensemble, a relatively large low resolution enserohh be used without much
impact on the total forecast computation time.

However, the analysis time hinges more upon the size of thbdnsemble, which in
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our experiments is approximately the size of the large, Eswlution ensemble. Generally
speaking, the forecast time limits the size of the high resmh ensemble we can use,
and the analysis time inhibits how large of a low resolutioseamble we can use. The
relationship between analysis time and forecast timeus8dn dependent however, so we
only give results in terms of forecast time, which is relavarboth ensemble forecasting
to assess forecast uncertainty as well data assimilation.

In Table 2.1 we compare results for our basic scenario frorediiesolution ensem-
bles with high resolution components hf2, and3 members coupled with low resolution
components o5, 10, 20, 30, and60 members. We found that accuracy does not diminish
extensively even for as few a8 low resolution members. In later results, we chose to use
30 low resolution members as it seemed a good balance betwearaag and time for
our limited observation scenarios. In our small-scalelv@sg scenario, we also chose to

use30 low resolution members.

kn=1|kp,=2|k,=3
ke =5 0.98 0.85 0.80
ky=101| 0.92 0.83 0.78
ky=20] 0.91 0.80 0.76
ke =30 | 0.90 0.79 0.76
ke =60 | 0.87 0.79 0.76

Table 2.1: Varying the size of the low & high resolution endées. This table gives the
analysis RMSEs for our basic scenario with various mixecendes. A low resolution
component witt20 or 30 members does nearly as well as with
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2.3.6 Results.

In order to estimate the ideal accuracy obtainable usind FNEKF with the high
resolution model, we tested our basic scenario and our soalé resolving scenario on

increasingly greater ensemble sizes. We summarize ouasostin Table 2.2. Similarly

Table 2.2: Summary of scenarios. The limited observatidwoek consists oft0 obser-
vations and the dense observation network has full covdfdieobservations). The true
forcing constant is”* = 15; forcing constants different frondi’ = 15 simulate model
error. The observation error refers to the standard dewiaif the error in the simulated
observations.

Scenario || observation network Forcing constant observation error
basic limited F=15 o=2
F=14 limited F=14 oc=2
F=125 limited F =125 o=2
small-scale dense F=15 c=20.3

for the low resolution model, we tested our basic scenanovémious ensemble sizes.
These results are graphed in Figure 2.3. The lowest obiaiff¥dSE in our small-scale
resolving scenario for assimilation with a low resolutisil7 and only when results are

smaller than that do we say that they resolve the small seaiability.
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Figure 2.3:Top: the RMSE of the analysis generated in our basic scenario avibw-
resolution model, averaged ové500 assimilation steps after 800 time step spin-up
period. Middle: the RMSE of the analysis generated in our basic scenario aviigh-
resolution model, averaged ovE100 assimilation steps afteri®0 assimilation step spin-
up period.Bottom: the RMSE of the analysis generated in our small-scale vegpbkce-
nario with a high-resolution model, averaged o¥&00 assimilation steps after&0 as-
similation step spin-up period. The dashed line indicatessimall scale variability, i.e.
the minimum RMSE with a low resolution model for our smalikcresolving scenario.

Our remaining numerical results represent the accuradyeotLETKF in each of
our scenarios in terms of the RMSE (equation (2.26)). We @B these mixed res-

olution results to the accuracy of the LETKF with variousemsles sizes at both low
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and high resolution. At each assimilation time, we comparedhigh resolution fore-
cast mean with the truth and found the root mean square ereoitioe grid (see equation
(2.26)). Starting from a random ensemble of model states;aweeach experiment for
5000 assimilation steps. Figure 2.4 shows a plot of the root mgaarg error for the first
1000 assimilation steps, using tRehigh resolution ang0 low resolution mixed ensemble
in our basic scenario. The RMSE behaves similarly contigint to 10° assimilation
steps (the maximum we tested), and in other cases and seenBhniough spin-up appears

to occur quickly, we chose to be cautious, using a longergpiof 500 assimilation steps.

25 T T T T T T T T T
= = = mean RMSE
RMSE

0
0 100 200 300 400 500 600 700 800 900 1000
Time

Figure 2.4: The root mean square error at each assimilaeprfar the initiall000 assim-
ilation steps. This data is taken from the run of 2Hagh resolution and0 low resolution
basic scenario.

Excluding this spin-up period, we took the mean and standavihtion of the root

mean square error over tH600 remaining assimilation steps. The time averaged errors

are shown in Tables 2.3 and 2.5 and the standard deviatidredfuctuations about that
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mean over time are shown in Tables 2.4 and 2.5. These fluohsats depicted in Figure
2.4 are correlated in time and do not allow a simple calocohatf the sampling error in
the RMSEs given in Tables 2.3 and 2.5. To roughly assess thplsa error, we took
the standard deviation of 0 assimilation step moving average, with results summarized
in the caption of Table 2.3. The standard deviation of the ingpaverage in most cases
was betweer).01 and 0.03. However, the3 member high resolution cases and the
member large model error caskE & 12.5) were not as precise, with a standard deviation
of the moving average betweérd4 and0.07. This suggests that the sampling error in the
average RMSEs is at mosbr 2 in the second decimal place.

The short term fluctuations in root mean square error for tixedresolution cases
are consistently small in all cases (Tables 2.4 and 2.5)o&phigh resolution cases with
limited observations, these fluctuations are significalatiger, even for similar sizes of
average RMSE. Greater error in the model induces largeugticins, whereas increasing

the size of the ensemble decreases the size of the fluctaation
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2.4 Summary and Discussion

In Section 2.2, we discussed standard ensemble Kalmandigerithms that esti-

mate the background error covariance with the matrix exgooas

.
( kl_ 1Xb) ( kl_ 1Xb) (2.29)

wherek is the ensemble size and’ are perturbations from the background mean (equa-

tion (2.3)). With an ensemble of mixed resolution, we estadahe background error

covariance (equation (2.7)) in a similar mannet/&&"' , where

Ut = [ \/%spline(Xg’) ‘ 1/klh‘_o‘lX;; } (2.30)

Herek, andk;, are the low and high resolution ensemble sizes respectivélgnd X are
the low and high resolution perturbations from the meanseif respective ensembles,
“spline” represents interpolation from the low resoluttorthe high resolution grid, and
« is a weight based upon the accuracies of the two ensembledi@ating the influence
of each ensemble in the analysis. We gave the mixed resolakijmrithm associated with
the Local Ensemble Transform Kalman Filter and a comparttigahe parent algorithm.
We tested this mixed resolution ensemble analysis with treriz Models Il & 111

described in Section 2.3.2. The low resolution model, Mdidsimoothly transitions from
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one grid point to the next. The high resolution model, Modkldlso contains a short
wave coupling component.

We performed experiments with three different limited aliagon scenarios: basic,
model errorf’ = 14, and model errof” = 12.5. The latter two cases simulate situations
where the true system dynamics are not perfectly known. Be@drformed experiments
with dense, frequent, and more accurate observations tolatiena situation where it is
possible to resolve the small scale variability.

We tested ensembles of various sizes. In the high reso|uiiited observation
experiments, we tested ensembles of Siz¢, 5, and6. In the mixed resolution experi-
ments, we reported results wis low resolution ensemble members an@, or 3 high
resolution members. In our small-scale resolving exparisiave tested high resolution
ensembles of sizé5, 16, 17, and18 and we tested mixed resolution ensembles With
low resolution members ar@ 12, and15 high resolution members. We also conducted
experiments with different numbers of low resolution ensEmmembers. We summa-
rize the forecast computation time and the analysis RMSEeubbasic and small-scale
resolving scenarios using different numbers of ensemblalmees in Figure 2.5.

In our mixed resolution and high resolution OSSEs (obsergystem simulation
experiments), forecasting the high resolution ensemlo& tgp the bulk of the overall

forecast computation time. However, introducing an adddl high resolution member
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Figure 2.5: The average forecast computation time takeedoh assimilation time step
versus the average root mean square error ¢M&@r assimilation steps fdeft: our basic
scenario andight: our small-scale resolving scenario. Better computatioe$ and better
RMSE (lower error) are both closer to the origlreft: Data is shown for high resolution
analysis with3, 4, 5, and6 members, low resolution analysis witld, 20, 30, and 60
members, mixed resolution analysis bmigh resolution member with a low resolution
ensemble of, 10, 15, 30, and60, and mixed resolution analysis on a mixed ensemble of
30 low resolution members and 2, and3 high resolution member&ight: Data is shown

for high resolution analysis with5, 16, 17, and18 members, low resolution analysis with
10, 15, and20 members, mixed resolution analysisiohigh resolution member with a low
resolution ensemble db), 15, and20, and mixed resolution analysis on a mixed ensemble
of 30 low resolution members an@l 12, and 15 high resolution members. The dashed
black line represents the variation in the small scales la@dashed grey line corresponds
to twice as much variation in the small scales.

can be more cost effective than increasing the size of thedawiution ensemble, as in-
dicated by the star and square data points respectivelgur&R.5. Comparison between

the circle and star data points shows in Figure 2.5 showsntinetd resolution analysis
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provides an improvement over analysis at high resolutionthé sense that mixed reso-
lution analysis provides greater accuracy for the sameatiferecast computation time.
Mixed resolution analysis with multiple high resolution migers also improves upon re-
sults with only one high resolution member. In our smalllscasolving experiments, the
mixed ensemble with only one high resolution member is untebtesolve the small scale
variability in the truth and the uncorrelated small scaldgalility of the high resolution
member increases the error.

In our experiments with model error, we found a greater athgeof mixed res-
olution analysis over single resolution analysis than m ¢brresponding perfect model
experiment (Table 2.3). We also found that mixed resolusipalysis reduces the tempo-
ral volatility of analysis errors (Table 2.4).

We remark that our technique could be easily extended tondnles of3 or more
different resolution, albeit with the introduction of moparameters to tune. While we
haven't fully explored the effects of tuning or varying the size of the low resolution
ensemble, the results given here give an indication of whatoan expect in applying this
method.

In conclusion, we found that this mixing technique is benaifend cost-efficient in

a simple model.
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. Mixed Resolution Cases High Resolution Cases
Time Averaged— i r = righ | 3 high || .. . .
RMSE +30 low | +30 low | +30 low 3 high | 4 high | 5 high
basic 0.90 0.79 0.76 097 | 0.84 | 0.78
F=14 0.95 0.84 0.82 1.10 0.93 0.89
F=125 1.06 1.00 0.98 1.53 1.28 1.18

Table 2.3: The time averaged RMSE ové00 assimilation steps for various mixed and

high resolution ensembles in various scenarios. The stdmiviation of &00 assimila-
tion step moving average in most cases was betwdédnand0.03. The4 member large

model error caseH{ = 12.5) and all of the3 member high resolution cases were not as

precise, with a standard deviation of the moving averageds(0.04 and0.07.

L Mixed Resolution Cases High Resolution Cases
Standard Deylatlor: Thigh 5 high 3 high . . .
of Fluctuations ||y ow | 130 low | +30 low | 3 Mg | 4 high | 5 high
basic 0.13 0.11 0.11 0.19 0.15 0.13
F=14 0.14 0.12 0.11 0.24 0.15 0.13
F =125 0.13 0.11 0.11 0.27 0.19 0.16

Table 2.4: Standard deviation of fluctuations in the RMSEhwiinhe, over the sam¢500
assimilation steps used in Table 2.3.

Mixed Resolution Cases High Resolution Cases
Small-Scale -5 re ™5 Righ [ 15 high
Scenario 430 1ow | +30 low | 430 low 15 high| 16 high| 17 high| 18 high
RMSE 0.19 0.15 0.12 0.19 0.17 0.14 0.12
Fluctuations 0.04 0.03 0.02 0.05 0.05 0.05 0.05

Table 2.5: Time averaged RMSE and standard deviation oLfticins for our small-scale

resolving scenario. Mixed resolution RMSEs are accurate@®1 and high resolution
RMSEs are accurate t60.02 as measured by the standard deviation &f@assimilation
step moving average.
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Chapter 3
Ensemble Data Assimilation with an Adjusted Forecast Sprea

3.1 Introduction.

Data assimilation determines initial conditions for weatforecasts from the in-
formation provided by atmospheric observations. Comgaaiprior weather forecast to
observations and taking into account the uncertaintiesict edata assimilation attempts
to provides an optimal estimate for the current state of timaphere. Modifying the fore-
cast for an optimal fit to the observations is called the asialghase of data assimilation.
The analysis (optimal estimate) is then evolved during tinedast phase.

In weather prediction via data assimilation, the obseovatincertainty is typically
characterized as additive errors distributed according kmown Gaussian distribution
whose covariance is constant in time. Forecast errors ter tkated as Gaussian too, but
the forecast error covariance changes in time and can beutliffo estimate. Ensemble
data assimilation forecasts an ensemble to provide atstatisampling of the forecast,
estimating the forecast error covariance through samptessts. Ensemble Kalman fil-

ters fit the ensemble mean to the observations and providesemble of sub-optimal
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estimates to represent the remaining uncertainty (Bumgfest 1998; Anderson and An-
derson 1999; Bishop et al. 2001; Ott et al. 2004; Wang et aD42&vensen 1994;

Houtekamer and Mitchell 1998). Forecasting this analyssemble provides the sample
forecast uncertainty for the next assimilation cycle.

The Kalman filter (Kalman 1960) is optimal for linear modelghnGaussian er-
rors. Extensions to nonlinear models, including ensemialienién filters, are suboptimal
and can diverge even if there is no model error (Jazwinskd187nderson and Anderson
1999). One reason is that model nonlinearity causes ensegabinan filters to under-
estimate the forecast error covariance relative to thertaiogy in the initial conditions
(Whitaker and Hamill 2002). Insufficient ensemble covacmnan also be caused by un-
quantified errors in the forecast and observation models.d@mmon way to compensate
for covariance underestimation is to inflate the forecasir@ovariance by a multiplicative
factor larger than one during each analysis step (AndemsdrAaderson 1999; Whitaker
and Hamill 2002; Miyoshi 2011).

Typically the ensemble is evolved with spread represermtati the approximate co-
variance as described above. However, the estimated aacaris only utilized during
the analysis phase of data assimilation. In this chaptenwestigate the potential advan-
tages of evolving an ensemble whose spreatbiscommensurate with the approximate

covariance by rescaling the ensemble perturbations bytarfadefore the forecast step
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and rescaling them by/n after the forecast step. We call this technique forecastagpr
adjustment and we remark that this has no net effect withemtimodel.

One reason we expect improvement by varying related to the advantage some-
times observed in ensemble prediction of the mean of an dyiseiorecast versus the
forecast of the ensemble mean. If the mean of the forecast &no unscaled ensemble
(n = 1) is more accurate (on average) than the forecast of the noesre¢ponding to
n — 0), then the mean of the forecast from an ensemble scaled-byl may be better
still.

This method of forecast spread adjustment allows us toeret@ny aspects of data

assimilation which were previously considered indepetigen

e As we will later show, for a linear observation operator t@mst spread adjustment
has the same long-term effect on the analysis means asingstta observation
error covariance (e.g., Stroud and Bengtsson 2007 plyut it results in a different

(and in our experiments, more appropriate) analysis canae.

e Multiplicative covariance inflation, described above,ppked sometimes by rescal-
ing the forecast ensemble perturbations and sometimesbalieg the analysis en-
semble perturbations (e.g., Bonavita et al. 2008, Klei¢2X0when using forecast
spread adjustment in addition, both ensembles are resbglathounts that can be

varied independently.
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e The limitn — 0 discussed above also corresponds to evolving the ensemble ¢
variance according to the linear approximation about thamas in the Extended

Kalman Filter (e.g., Jazwinski 1970, Evensen 1992).

In Section 3.2 we describe various data assimilation algms based on the Kalman
filter, specifically the Extended Kalman Filter (which we ebbate XKF) and the ensem-
ble Kalman filters ETKF (Bishop et al. 2001; Wang et al. 20040 AETKF (Hunt et
al. 2007). In Section 3.3.1 we describe forecast spreacdsad@gnt. We compare forecast
spread adjustment to alternative formulations that cadyre the same analysis means,
specifically: inflating the observation error covariancéwihe forecast error covariance
estimated from the evolved (un-adjusted) forecast enseaction 3.3.2) and inflating
the analysis error covariance in addition to or instead eflthckground (forecast) error
covariance (Section 3.3.3). The main difference betweesetlapproaches is that inflating
the observation error covariance results in a larger backgt and analysis error covari-
ance than forecast spread adjustment. We find (Section) 3tvaBthe analysis error co-
variance specified by forecast spread adjustment bettectefihe actual analysis errors
for our numerical experiments, in which the correct obswoweerror covariance is known.
Section 3.3.4 compares the Ensemble Transform Kalman Fd#KF) and the Extended
Kalman Filter (XKF) and discusses how forecast spread adgist can transition from

the XKF to the ETKF and beyond. In Section 3.4.1 we describd._tirenz (2005) Model
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[l used for our experiments, and in Section 3.4.2 we desailvexperiments. In Section
3.4.3 we describe how we tuned the forecast spread adjuspasameter,;, along with

the multiplicative covariance inflation factor, in ordembinimize analysis errors. We also
discuss the possibility of adaptively inflating both parsene with techniques similar to
Li et al. (2009). Section 3.4.4 depicts and discusses thétsesf our experiments. We

discuss our conclusions and summarize our findings in Se8tm

3.2 Kalman Filters.

The Kalman filter is an optimal algorithm for data assimdativith a linear model
with Gaussian errors. As with data assimilation in genettad, Kalman filter can be
described by the cycle of forecasting the previous analggitimal estimate) to get the
background (forecast) and generating a new analysis bytingdhae background to more
closely match the observations. Thus we describe the Kaliftenn terms of two phases:
the forecast phase and the analysis phase. Most data atgmalgorithms for weather
prediction (ensemble Kalman filters and variational metiade approximations to the
Kalman filter.

The analysis state according to the Kalman filter with no rhed®r assumed is
given by

1 =2"+ K (y° — Hz") (3.1)
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K =P'HT (HP'HT + R°)™ (3.2)

where K is the Kalman gain matrixg® is the analysis state;’ is the forecast or back-
ground stateP? is the background error covariandg? is the observation error covari-
ance,y’ is the vector of observations, arfl is matrix that transforms model space into

observation space. The error covariance of the analydes:stas given by

P*= (I - KH)P" (3.3)

Having determined® and P® at a certain time, the forecast phase evolves these to
the background state’” and its error covarianc®” at timet* > t. Specifically, in the
forecast phase from timeto timet*, the modellM evolves the analysis state at timo

the background state at time. The forecast phase is given by

¥ = M(z%) (3.4)

P = MP*M". (3.5)

These Kalman filter equations (3.1)-(3.5) are only optimaldferfect model scenar-
ios with linear models. Model error reduces the accurachettackground mean beyond

that accounted for by the evolved background error coveeiamtoreover, even without
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model error, a nonlinear model tends to cause the ensemblederestimate the back-
ground error covariance (Whitaker and Hamill 2002). One weapartially compensate
for this underestimation of the background error covamaiscto inflateP’. Ensemble
Kalman filters typically inflateP® with a multiplicative covariance inflation facter re-
placing P® in (3.1)-(3.3) with P, = pP?., (Anderson and Anderson 1999; Whitaker

and Hamill 2002). Whep = 1 no inflation is performed.

3.2.1 Ensemble Kalman Filters.

In this section we discuss the class of data assimilationnigaes known as the
ensemble Kalman filters (EnKFs). In the ensemble technjgadiser than evolving the
covariance directly as done in the Kalman filter and the Edg@enKalman Filter (XKF),
an ensembléXﬁ? —1<i< k} is chosen to represent a statistical sampling of a Gaussian
background distribution, with the sample me#nof the background ensemble approxi-
mating the background staté in equation (3.1). The subscriphere refers to the index
of the ensemble member, and all members of the ensembleadstine background at the
same time.

Each ensemble memb&f can be expressed as a sith= z° + X! of the mean

and a perturbatiok’”. Letting X* and X* be the matrices with columns? and X! re-
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spectively, we write

Xb = zb + X?, (3.6)

where by adding a vector and a matrix we mean adding the vecgach column of the
matrix. The columns o’ represent the ensemble of background perturbations.

The background error covariance is computed from the backgl ensemble ac-
cording to sample statistics, namely

pb—_P XbXbT, 3.7
1 (3.7)

wherek is the size of the ensemble apdks the multiplicative covariance inflation factor.
We use similar notation for the analysis ensen¥levith meanz® and perturbations
X“*. Ensemble Kalman filters are designed to satisfy the Kalnften &équations (3.1)-(3.5)
with z* and z® replaced byz® andz®. Thus, the analysis ensemble perturbations must
correspond a square root of the reduced rank analysis evariance matrix in equation
(3.3), i.e.,
1

mXaXaT - Pa. (38)

Different ensemble Kalman filters select different soln&id(“ to this equation. In all
ensemble Kalman filters, the ensemble members are forexhegiendently. For a deter-

ministic modelM representing a forecast from timo timet ™, the background ensemble

64



members at timé" are given by

XV = M (X9). (3.9)

3.2.1.1 ETKF

We tested ensemble data assimilation with forecast spdjadtenent on the Ensem-
ble Transform Kalman Filter (ETKF) (Bishop et al. 2001; Waat@l. 2004) and the Local
Ensemble Transform Kalman Filter (LETKF) (Ott et al. 2004 et al. 2007). We
implemented both methods according to the formulation inttéti al. (2007). For speedy
computation, in these algorithms the analysis phase of tim#&n filter is performed in
the space of the observations, with the background ensemnaisformed into that space
for comparison.

In the ETKF, the analysis mean is given by
=2+ XUV R (y° — h(a?)) (3.10)

T o1 -1
U= (%H Lyt R Yb> 1 (3.11)

whereh is the (possibly nonlinear) observation operator, &fidire the background per-

1TheU in equation (3.11) is different from the notation in Chag®et/.,, = M2,
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turbations in observation space derived by transferrimgethsembles® to observation
space and subtracting the megin= £ (X?), Y’ = h (X*) — g*. For a linear observation
operator, the ETKF analysis meahcomputed in equation (3.10) equals the Kalman filter
analysis estimate® of equation (3.1) assuming = z° and P* = ﬁXbXbT (equation

(3.7)).

The ETKF analysis perturbations are given by

X = XUz, (3.12)

where the exponerg represents taking the symmetric square root. These pations
differ from the background perturbations as little as palesivhile still remaining a square
root of P* (Ott et al. 2004). For a full discussion of the equivalencd eglationship

between (3.10)-(3.12) and (3.1)-(3.3) see Hunt et al. (2007

3.2.1.2 LETKF

Essentially, the Local Ensemble Transform Kalman FilteéETKF) performs an
ETKF analysis at every model grid point, excluding distdrgervations from the analysis.

At each grid point, it computeg’ .., and R truncatingy® and i° to include only the

loocal’
observations within a certain distance from the grid poiite LETKF computes the local
analysis for each grid point from the ETKF analysis equati($10)-(3.12) and restrict
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the resulting analysis to that grid point alone. Observakizalization is motivated and
explored in (Houtekamer and Mitchell 1998; Ott et al. 2004nHet al. 2007; Greybush
et al. 2011). We provide a limited motivation here.

One problem with estimating?® (equation (3.7)) from an ensemble is that sam-
pling error can introduce artificial correlations betwebe background error at distant
grid points. As the analysis incremett — z° in equation (3.10) is computed in obser-
vation space, it is possible to eliminate these spuriousetadions (along with any real
correlations) for the analysis at a particular model grioshpby truncating the observation
space beyond a specified distance from the grid point.

Other methods of localization (e.g., Whitaker and HamilD20Bishop and Hodyss
2009) modify the background error covariance directly. &bthese approaches, local-
ization is found to greatly reduce the number of ensemble beesnneeded to produce

reasonable analyses for models with large spatial domains.

3.2.2 Extended Kalman Filter

In the Extended Kalman Filter (XKF) (see e.g., Jazwinskit)9the model evolves
the analysisc® as in equation 3.4 to determine the subsequent backgretindind the
background error covariand®’” is determined fromP* by linearizing the model at*.

For more information on the XKF and how it compares to enserilalman filters, see
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Evensen (2003) and Kalnay (2003).

Like the Kalman filter, the XKF is usually formulated with addative model error
term that increases the background covariance. Howeueea®e of comparison to the
ETKF, our implementation of the XKF uses multiplicative atfbn instead of additive
inflation.

One major difficulty with the Extended Kalman Filter is theqoutational cost of
evolving the covariance matrix (Evensen 1994; Burgers.e1898; Kalnay 2003). This
makes the model unfeasible for high-dimensional modelsraaéstic setting. However,
when using simple test models such as the Lorenz (2005) Mhad¢her data assimilation
techniques can be compared to the XKF.

Another potential drawback of the XKF is its linear appro&iion when evolving
the covariance (Evensen 2003). As we find in our experiménis,can be disadvanta-
geous compared to the nonlinear evolution of both mean avariemce provided by an

ensemble.

3.3 Methodology and Theory.

In this section we formally describe the method of forecaseéad adjustment for
ensemble Kalman filters. One way of implementing the forespsead adjustment is to

multiply the analysis perturbations hyprior to forecasting and, after the forecast, mul-
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tiply the forecast perturbations bgl (Section 3.3.1). This is only beneficial when the
model is nonlinear. Other authors (e.g., Stroud and Beogt2007) have found bene-
fits from multiplicative observation error covariance itifsa, motivated by observation
errors other than measurement error. While forecast smdpgtment is equivalent to
multiplicative observation error covariance inflation4pyfor an appropriately initialized
ensemble (Section 3.3.2), our experiments are perform#édokiservations lying on the
model grid points and perfect knowledge of the exact obsenvarror covariance, so in-
flating the observation error covariance would be matherallyiunmotivated. However
as adjusting the forecast spreadrbgndz?R° inflation have similar accuracies after spin-
up, perhaps some of the benefits of inflatikgstem from the forecast spread adjustment

effect.

3.3.1 Ensemble data assimilation with forecast spreadsadgnt.

This section describes the technique of shrinking (or edpanif » > 1) the en-
semble perturbations for the forecast and expanding (anlshg) the ensemble for the
analysis. After'finding the analysis through any ensemble data assimiléicimiques,
the background perturbations are obtainedimyultiplying the analysis perturbations by
n, 3evolving the adjusted analysis, atdultiplying the forecast perturbations t%y

Mathematically, this can be expressed with a matrix tramsédionS corresponding
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to an expansion factor of:

XU = M(X°5) S (3.13)
where
S = Nxr + (1= 1) (3 1kxk) (3.14)
_ 1 1 -
Lixp =1+ . |, (3.15)
1 - 1

The model integration of the matriX*S in equation (3.13) refers to forecasting each

ensemble member (column ¥fS) separately, i.e.

M (X%8) = {M({XGS}l), o, M({X"S},) } : (3.16)

For an ensemble of sizg each column of thé x k] matrix 1, right transforms
an ensemble into its row sum so thﬁéﬂmk = [ T -ee T } Thus right multiplication
by S transforms each ensemble memB&rinto a weighted average of itself (prior to

adjustment) and the mean of the ensemble

{X*S}, =nz" + (1 —n) XL (3.17)
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Viewed another way, right multiplication by scales the ensemble perturbations by

n, producing a new ensemble with the same mean

{X*S}, =2 + nX]. (3.18)
Notice that
a1 1 1
ST = EI,M +(1- ; (3 1rxk) s (3.19)

soS~! effectively rescales ensemble perturbationg)by. We call a forecast contraction
and analysis re-expansiforecast spread adjustment.
The full Kalman filter cycle fromX? to X*" with the forecast phase described by

equation (3.13) is given in the following algorithm.
1. Perform analysis oK’ to find X¢.

2. Left multiplyX“ by S to scale the perturbatio$® by a factor ofy, (i.e. X*/ = nX*)

X/ =Xe8. (3.20)
3. Evolve each member of the resulting ensemble:

(2

X — (Xf’f ) . (3.21)
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4. Left multiply X*"/ by S~ to rescale the perturbations of the evolved ensemble by

1.
.-

Xt =Xt 5 (3.22)

Here and elsewherE®/ and X%/ refer to the ensemble during the forecast phase. We
abbreviate the ETKF with forecast spread adjustment andEA&F with forecast spread
adjustment (via a scaling factor 9f as thenETKF and they)LETKF respectively.

We remark that when = 1, ensemble data assimilation with forecast spread adjust-
ment reduces to standard ensemble data assimilation.efomtine, if the model is linear,
forecast spread adjustment has no net effect. When the nsaumtlinear, forecast spread
adjustment could affect the background mean, the backdrperturbations, and (mini-
mally) the analysis phase background spread. We expedtinatfect on the mean will

be the most significant.

3.3.2 Relation to inflation of the observation error covacm

Some authors have recommended scaling the reported obeemaor covariance,
assuming that it is misrepresented (e.g., Stroud and Bemg®007, Li et al. 2009). As
we will show below, inflating the observation error covadaris closely related to forecast
spread adjustment, and thus in many cases both approaahésmave the analyses.

Indeed, if the observation operatiis linear then we will show that both approaches, if
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initialized with the same forecast ensemble, will prodisegame analysis means. Having
the same forecast ensembles implies that during the asaiysise, the two approaches
will use different ensemble perturbations (related by adiaof ) and hence different

covariances.

3.3.2.1 nETKF without R° inflation.

Let X° be the initial background ensemble. In this case, we perfarsemble data
assimilation with forecast spread adjustment to fifd. TheETKF analysis ensemble

X* =z + X*is given by equations (3.10)-(3.12) repeated here for acuenee

=2+ LXUYPRT (y° — i) (3.23)
_ -1

U= (%I + Lyt Re lyb) (3.24)

X% = X'Us, (3.25)

The next background ensembi&’is given by equation (3.13)

+

Xt = M(XS) S (3.26)
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3.3.2.2 ETKF withR? inflated ton®R°.

Let the initial background ensemble B&2 and assume that®? = X’S. Along
with X»/ := X°S defined based on equations (3.20) and (3.22), this impleaduitional
equivalenceg” = z* and X2 = X%/ = nX° We perform standard ensemble data
assimilation to findx®: assuming an observation error covariance-fimes its value in
Case 3.3.2.1. We compaké: with X*"andX?"/ = X" 5.

In this case (3.3.2.2), the analysis ensemble is given bateans (3.10)-(3.12), with

R = n?R° replacingR°. After algebraic manipulation, these equations are

_ -1
Uy = (%1 + Lyt e 1an2> (3.27)
72 = 32 + LpXRUmY=R R (y° — ) (3.28)
1
X% = XR2U2, (3.29)

SubstitutingX® = nX° and assuming a linear observation operator sotfat= nY?,

we find that
U,=U (3.30)
"% =1 (3.31)
X2 =nX. (3.32)
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ThusX? = X*S. As we definéX*/ := X9, the ensembles are identical during evolution.

The next background ensemble is given by

X = M(X*®)

—  M(X9S). (3.33)

Comparing this to equation (3.26), we see it = Xt* S =: Xb"/; thereforer®s = z¢",

In other words, the means remain the same and the pertunbatiaintain the same ratio.
We remark that although both cases evolve the same enseh#bsyor covariances

in the two cases differs by the factgt.This is demonstrated in Figure 3.1.

Xb’f — 7’]Xb
o e W

Figure 3.1:Left: data assimilation with a forecast spread adjustment &ght: standard
data assimilation wittiz° inflated byn?. The two data assimilation cycles depicted above
are initialized during the forecast phase, i¢? = X/,
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3.3.3 Which to inflate P* or Pb?

As discussed in the beginning of Section 3.2, due to nonifityeand model error
ensemble data assimilation tends to underestimate theesl/ekror covariance. This is
typically corrected by inflating the background error céaace prior to analysis, e.g. An-
derson and Anderson (1999), Whitaker and Hamill (2002). el@w it would be just as
theoretically valid to inflate the (posterior) analysisoercovariance, e.g. Bonavita et al.
(2008). With forecast spread adjustment, it no longer bexsom question of inflating
one or the other; instead forecast spread adjustment @®@dontinuum connecting’
multiplicative inflation andP® multiplicative inflation.

Consider the standard data assimilation cycle as it apié¥ and P® with mul-
tiplicative analysis and background covariance inflatibp oand p, respectively (Figure
3.2 Left). Following the algorithms given in Hunt et al. (2007), inrdamplementation
of thenETKF, thenLETKF, we only inflate the background error covariance (Fég8.2

Right). By settingn = ,/p, we transform a data assimilation algorithm that inflates th

E[Pw]—{#ppb’f = pb i be pbpbf _
Pa’f:T]QPa ! Paf_pPa !

Figure 3.2:Left: the data assimilation cycle aR® and P¢ including a forecast spread
adjustment of; and inflation of P* with p. Right: the data assimilation cycle aR® and
P2 including inflation of P* with p, and inflation ofP? with p,.
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background error covariand@® into a data assimilation algorithm that inflates the anal-
ysis error covarianc®“. Furthermore, this comparison demonstrates that ensetalbde
assimilation with an adjusted forecast spread and withipiigative background error co-
variance inflation can be alternatively interpreted asddesh data assimilation, inflating
both the background and analysis error covariances. Iicpkat, adjusting the forecast
spread byy and inflating the background error covariancecbig equivalent to inflating
the background error covariance py= p/n? and inflating the analysis error covariance
by po = 1.

Those who have found more accurate results when inflaifign preference to
PP likely will benefit from forecast spread adjustment with> 1. Similarly, if one has
previously obtained more accurate results withinflation in preference td* inflation,

forecast spread adjustment with< 1 might prove beneficial.

3.3.4 Comparison to the XKF.

The Ensemble Transform Kalman Filter (ETKF) (Bishop et 8002, Wang et al.
2004) and the Extended Kalman Filter (XKF) (Jazwinski 19@ensen 1992) are similar
in that they both evolve the covariance matrix in time. TheP@{olves the best estimate
along with its error covariance. The ETKF evolve a surrongadinsemble which approx-

imates the error covariance and does not explicitly evdieehtest estimate, which is the
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mean of the ensemble.

Previous articles, e.g. Burgers et al. (1998), demonstha&equivalence between
the analysis phases of the Extended Kalman Filter and therdrie Kalman filter (EnKF),
provided the ensemble is sufficiently large. However, thjgiealence does not continue
into the forecast phase. Starting from the same analysis sfa = z and the same
analysis error covariande}, = ﬁX“X“T, the XKF and the EnKF will evolve different
statest’y,  z*" with different error covarianceBl: # X" X",

Varying the ensemble spread changes the evolved ensendleanlinear fashion,
affecting the mean and perturbations (in both magnitudedargttion). In the limit as
n — 0, the ensemble perturbations become infinitesimal and trecdst evolves the
ensemble mean and the perturbations evolve according tarnigent linear model. If the
ensemble is large enough that the perturbations span thelmpdce, then a full-rank
covariance is evolved according to the tangent linear mguigias in the XKF. Therefore
for a sufficiently large ensemble, th& TKF should approach the XKF agends to zero;
otherwise, it approaches a reduced-rank XKF. Furthermdnenn = 1, thenETKF is the
standard ensemble transform Kalman filter. Thus for inteliate values of), thenETKF
can be considered a hybrid of the XKF and the ETKF.

In the scenarios we explored where tunipgvas especially effective; tuned to

values greater than one, enhancing the advantages of tamblesKalman filter over the
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Extended Kalman Filter.

3.4 Experiments and Results

Our experiments are observed system simulation expersf@8SEs). In OSSEs,
we evolve a truth with the model, adding error at a limited bemof points to simu-
late observations. Treating the truth as unknown, we usa asgimilation to estimate
it. Comparing the analysis to the truth, we estimate the raogyuof the data assimilation
techniques being tested. Thus we can evaluate and compgasechracy of data assimila-
tion techniques. We assessed accuracy via the root mearesguar (RMSE) difference

between the analysis mean and the truth evaluated at evdrgant.

3.4.1 Models

We tested forecast spread adjustment on the Lorenz (2008¢Nlowvith a smooth-
ing parameter ofk = 2 (smoothing the Lorenz 96 model (Lorenz 1996; Lorenz and
Emanuel 1998) over twice as many grid points). For a forcimgstantF” and smoothing

parameter(, the model at grid point is evolved according to

dz,

= (Enray )™ = et — an + F (3.34)
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wherez¢ refers to averaging,, the model state at grid poimt with the model state at
nearby grid points.
When K = 2, the averaging includes only the grid point itself and theniediately

adjacent grid points namely

1 11
T = S+ 5T+ JTn. (3.35)

Note that theaxvg function is applied tdz;z;"*) by
(T @)™ = 1T, 1T + ST TDE + T T Ty

Model Il is evolved on a circular grid, in our experiments ecalar grid with60 grid
points. We evolved the forecasts according to the RungéaKatirth order method over
a time step size oft = 0.05, performing an analysis every time step.

To generate the observations, we evolved the truth withcrfgiconstant of ™ = 12
and added independent Gaussian errors with nleand standard deviatiom at every
other grid point. Thus at each time step, we hauesvenly spaced observations with

known error covarianc®&® = o02133. Figure 3.3 gives a snapshot of these observations

for o = 1 along with the truth.
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Figure 3.3: Sample Model Il output with observationsddmgrid points, half of which are
observed (*), observation errer= 1, smoothing parametet = 2, and forcing constant
F=12.

3.4.2 Experimental Design

We explored the effectiveness of tuningn various scenarios with the LETKF. Our
default parameters for data assimilation are: an observatirorc = 1, an ensemble
of £ = 10 members, and a forcing constant Bf = 14 for the ensemble forecast to
simulate model error. In all cases we use a localizatiorusadf3 grid points, i.e.3 to 4
observations in a local region.

Keeping the other two parameters constant at their defalltey we varied the
observation error, the ensemble size, and the forcing anhstor instance, we varied

o =1,1,2, keepingk = 10 and F' = 14. We tested ensemble sizesifl0, 20, and40.
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We varied the forcing constant from = 9 to F' = 15.

In each experiment we tunedor n = 1 and plotted the RMSE for different values
of n:
5000
RMSE= ;L5 > ms(z(t;) — 2'(t,)) , (3.36)
=501
wherez!(t;) is the truth at time;, 7°(¢;) is the analysis ensemble mean at titneand
rms is the root mean square function over @oegrid points, i.e. the RMSE is the time
averaged root mean square difference between the analgsis and the truth. In each

case we compared the minimum RMSE among the various valugteefed to the RMSE

whenn = 1 and plotted the percent improvement

RMSE(n = 1) — min RMSE(n)

0<n<oco

0 pu—
%o Imprv. RMSE( = 1)

(3.37)

We also tested how thgE TKF compares to the XKF for large ensembles and small
n. Specifically, we tested theETKF forn = 1, 1, 1, 1, and107 and ensembles of size
k = 40, 60, and80. Forn = 10~% andk = 80 we expect the RMSE from theETKF to

be very similar to the RMSE from the XKF.
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3.4.3 Tuningy andp

Since the two cases are identical in the linear setting,cimespread adjustment
could be advantageous in certain nonlinear settings. Hekvélve best value of is not
specified mathematically. Hence we tunéo get the lowest RMSE during data assimi-
lation. Similarly, we also tune the multiplicative covaree inflation factop. Figure 3.4

depicts the ensemble spread both before (red) and aftex)(@tjustment as a function of

n.

4 T T T T T T T T
RMSE: a
—>— spread: X?

sl spread; X2
RMSE: b

25k - spread: X° | |

spread: X0

RMSE

0 0.5 1 15 2 25 3 35 4 4.5

Figure 3.4: Tuning; (grey) and the effect off on ensemble spread during the forecast
phase (red) and analysis phase (blue) for our default paeasngé = 10, F' = 14 (F! =

12), 0 = 1. Comparison of the ensemble spread during the analysiepbasg) to the
actual RMSE for various values gf(grey). The solid grey curve shows thatunes to
2.5. We tunedy using the tuned value gffor n = 1.
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We define the ensemble spread by

1 1
. - T
\/Ntrace(k — 1XX ) (3.38)

where N = 60 is the length of the circular grid ang_LlXXT iIs an NXN matrix ap-
proximating the error covariance as described in equati®$ and (3.8). When = 1,

the ensemble spread (equation (3.38)) is intended to dstitna actual RMSE (equation
(3.36)). As demonstrated in Figure 3.4, wheg 1, the ensemble spread only estimates
the actual RMSE during the analysis phase. In other worddptiecast spread adjustment
parametem only strongly affects the ensemble spread during the feteghase (red).
During the analysis phase (blue), the ensemble spread adbeany significantly withy).
The minimum of the solid grey curve corresponds to the turadevofr, which for our

default parameters ig= 2.5.
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—— spread: Xa & Xa,f
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x - spread: Xb & Xb,f

0
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p

Figure 3.5: Tuning and the effect o) on ensemble spread for our default parameters
with » = 1. The dotted lines correspond to the background and the lsodisl correspond
to the analysis. The spread is indicated in black and the RM$jEey.

Recall (Section 3.3.2) that with observation error covar@inflation, the analysis
perturbationsY are the same as the perturbations’ for the forecast spread adjust-
ment. Thus, in this scenario, wheris tuned to a value different than one, the ensemble
spreadX“ for forecast spread adjustment corresponds much bettbetadtual analysis
errors than the spreaki*2 for observation error covariance inflation.

Figure 3.5 (black) demonstrates that multiplicative baiokgd error covariance in-
flation by p (Anderson and Anderson 1999; Whitaker and Hamill 2002)iesithrough to

both phases of data assimilation. We remark that in this gi@mtunes to1.20 (grey),

even though the ensemble spread underestimates the RM&Eveinin this case (Figure
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3.4) we find that tuning; as well asp decreases the error to be commensurate with the
ensemble spread. To tupen our LETKF experiments we lef = 1 and tested values
of p differing by 0.01, choosing the value gf associated with the lowest analysis RMSE.
When comparing theETKF to the XKF, we tuneg = 1.29 for our XKF experiment and
used thap for our nETKF experiments as well.

In our experiments we determined the optimal valueg @hdn through tuning.
However, there are methods that adaptively determine tuesafp (Anderson 2007; Li
et al. 2009; Miyoshi 2011). In particular, Li et al. (2009)miltaneously estimate values
for a background error covariance factor and for an observagrror covariance factor.
When determining the analysis mean, these two parametegaivalent in some sense
to p andn (see Section 3.3.2). Thus, the adaptive techniques exphyréi et al. (2009)
could potentially be applied to simultaneous adaptivenetion ofy andp. On the other
hand, some adjustment may be necessayydfmainly compensating for the nonlinearity

and model bias as opposed to a misspecification of the olissmearor covariance.

3.4.4 Results

Our results are given graphically as battversus RMSE; as well als (ensemble
size), F’ (forcing constant), and (observation error) versus percent improvement in the

RMSE. The RMSEs are generally accurate out to the hundretihe (¢-0.01); the RM-

86



SEs from five independent trials with our default paramededn = 1 are0.86, 0.86,
0.87, 0.88, and0.88. Whenk = 5, the RMSEs withy = 1 and with the tuned value of
n = 3.5 are less precise with accuracy approximately,04. In all of our other experi-
ments (LETKF varyingk, F', or o, andnETKF vs. XKF) the RMSESs are accurate to about

£0.01.
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Figure 3.6: Left: The RMSE as a function ofy for (a) our default parameters: an
ensemble witht = 10 members, model error due to the forcing constant= 14
where the true forcing ig"* = 12, and observation error of; (b) various ensem-
ble sizes:k = 5, 10, 20, and40 members; (c) different amounts of model errdr: =
9,10, 11, 12, 13, 14, and15 with F'* = 12; (d) different amounts of observation error:
o = 0.5,1,and2. In each of (b), (c) and (d), one of the parameters from fa}-(10,
F = 14, 0 = 1) is varied, keeping the other two parameters at their defallies; the
curve graphed in (a) appears in (b), (c) and (d) as well. Weicethe range of thg-axis
in (a) to better show the structure of the curiRight: Comparing the RMSE when = 1
to the minimum RMSE whem is allowed to vary. Subplot (e) shows the percent im-
provement in the RMSE when varyingwith our default parameters, i.e. setting= 2.5
gives results with an RMSE that isl% smaller than whem = 1. Also shown are the
percent improvements versus (f) various ensemble sizgsliffgrent forcing constants,
and (h) different amounts of observation error. Each rigimchfigure (e), (f), (g), and (h)
is derived from the same data as the figure immediately teftsile. (a), (b), (c), and (d)
respectively.
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3.4.4.1 Default Parameters

Whenk = 10, F = 14 (F* = 12), ando = 1, we obtain the most accurate results
whenn = 2.5, providing al4% improvement over the RMSE when= 1 (0.74 vs. 0.87).
Although we generally did not retuneafter tuningn, we remark than doing so further
improves the RMSE; setting = 2.5 andp = 1.16 improves the RMSE by 9% over
n = 1andp = 1.20.

Figure 3.6(a) shows the RMSE for various valueg alssuming the default param-
eters. The curve is minimized when= 2.5. Figures 3.6(b), 3.6(c), and 3.6(d) show
the effect of varying one of the default parametérsH, o), while keeping the other two

constant. Thus the curve in 3.6(a) also appears in 3.6@(;)3and 3.6(d).

3.4.4.2 Varying the Ensemble Size

Figures 3.6(b) and 3.6(f) shows how varying the ensembée kjaffects the RMSE
and the tuned value of. We find that forecast spread adjustment improves resulte mo
with smaller ensembles than with large ensembles. We efipaicthis is because increas-
ing the ensemble size generally improves the accuracy akthéts, so small ensembles
have more room to improve their accuracy. For ensemblesiwithl0 or more members,

the RMSE improvement due to tunimdevels out at around5%.
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3.4.4.3 Varying the Model Error

We simulated model error by forecasting the ensemble witffereint forcing con-
stant thant"* = 12 used for our truth run. Figures 3.6(c) and 3.6(g) show howiuarthe
amount of model error (i.e. varying) can change the effectiveness of tunipgFore-
cast spread adjustment is most helpful in the presence othwsotbrs that result in to
larger amplitude oscillations than the truth, such as when 13, 14, or 15 and F"* = 12.
Averaging the forecast ensemble to produce the backgrowash nends to reduce the am-
plitude of these oscillations, and by increasinge intensify this reduction. We believe
this is compensating for some of the model error. We did nat fienefits to tuning in
the perfect model scenario or when the forcing constanti®enhsemble was smaller than

the true forcing constant.

3.4.4.4 Varying the Observation Error

Figures 3.6(d) and 3.6(e) show that effectiveness of fatesfaread adjustment and
the tuned value ofy depend on the size of the observation erorAs with smaller en-
sembles, larger observation errors imply larger analysisr® and hence greater room
for improvement. The tuned values offor observation errors of = 0.5, 1, and2 are
n=4, 2.5, and1.75 respectively. Thus more observation error corresponds smaller

tuned value of).. The ensemble spread in each of these three cases islaholite ensem-
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ble spread roughly determines the size of the differenosdmt the mean of the ensemble
forecast and the forecast of the ensemble mean; thus, oundimd an ideal forecast
ensemble spread independent of observation error sizengstent with the hypothesis

above that ensemble averaging is compensating for some afitldlel error present.

3.4.4.5 Approximating the XKF with theETKF

Table 3.1 lists the RMSE from thg=TKF with forecast spread adjustment parameter

n=1,3 1 5 andl0~® and ensembles of size= 40, 60, ands0.

k=40 k=60 k=80 | XKF

n=1 088 0.77  0.76
n=172 | 095 082 081
n=14 | 097 083  0.82
n=1s | 097 083 0.83
n=10"°| 096 083 0.83

XKF 0.83

Table 3.1: Comparison between the XKF RMSE and #i&FKF RMSEs forn =

1,1, %, & and10~¢ andk = 40, 60, and80 with our default parameters.

We remark that the RMSE associated with ##€l KF approaches the XKF-RMSE
from below (increasing the error) gdends to zero and from above (decreasing the error)

ask becomes large.
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3.5 Summary and Conclusions

Forecast spread adjustment is an add-on to ensemble datalassn. After the
analysis phase we expand the ensemble perturbations &ledutiean via multiplication
by the factory, forecasting the adjusted ensemble. Prior to the next aisalwe read-
just the perturbations around the background mean in oodfertn the background error
covariance matrix.

For linear models, ensemble data assimilation with fotespiead adjustment by
any amount reduces to standard ensemble data assimilatieri}. For nonlinear mod-
els however, forecast spread adjustment can be beneficighdfmore, a ensemble data
assimilation with an adjusted forecast spreag ef 1 is equivalent to standard ensemble
data assimilation. Thus ensemble data assimilation witbddorecast spread adjustment
will always perform at least as well as standard ensembla dssimilation even if the
parameter is only roughly tuned.

Forecast spread adjustment affects the ensemble spread the forecast phase, so
for nonlinear models, an ensemble with a different spredidewblve to a different mean
with different perturbation amounts and directions.

Some authors (e.g., Stroud and Bengtsson 2007) have fowmeditseo inflating the
observation error covariance, assuming errors in addibaneasurement error. In addi-

tion to correcting the underestimation of the observativareovariance, they might also
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be benefiting from the effects of forecast spread adjustnfémt an ensemble initialized

immediately after the model evolution, forecast spreadstdjent and observation error
covariance inflation will produce the same analysis meanvaticevolve the same en-

semble. This is because both maintain the same the raticebatihe background and
observation error covariances. The difference is that whiating the observation error
covariance, the size of the assumed erréts R°, and P?) is n? times bigger than those
assumed with forecast spread adjustment.

Due to nonlinear effects and model error, an ensemble wigipropriately describes
the uncertainty at the analysis time will underestimateutmeertainty after it is evolved in
time. To compensate for this, many algorithms implementiplidative covariance infla-
tion on either the background (e.g., Anderson and Ander8®9,1Whitaker and Hamill
2002, Hunt et al. 2007) or the analysis (e.g., Bonavita et28l08). Either technique
is valid and forecast spread adjustment can transitiondmwhem. Furthermore, fore-
cast spread adjustment can be described as doing bothnflating the analysis error
covariance by)?, evolving the ensemble, then deflating the background eoeariance
by p/n?.

We demonstrated that thieTKF provides a continuum from a reduced-rank Ex-
tended Kalman Filterr{ = 0) to the ordinary ETKF# = 1) and beyond. If the ensemble

is sufficiently large, we recover the full-rank Extended idah Filter. On the other hand,
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we generally found the lowest analysis errors whewvas close to or larger than

With our standard parameters, the LETKF with forecast spaefustment improves
by 14% upon the standard LETKF. In comparison]@member ensemble with forecast
spread adjustment performs better thatDanember ensemble without forecast spread
adjustment. The parametetunes to larger thahin all scenarios where we saw improve-
ments. This corresponds to evolving an ensemble with arn@gead than when = 1.
Our standard parameters include model error induced bygahgrihe forcing constant
used when evolving the ensemble to a larger value than teefdaraing constant. Fore-
cast spread adjustment proved even more effective in oisrweth an even larger forcing
constant. However, in perfect model scenarios and whenrtkeneble forcing constant
was smaller than the true forcing, tuningdid not significantly improve the RMSE. In
comparison to the RMSE whep = 1, tuningn was just as effective in improving the
RMSE with ensembles af0 members as it was with ensembleslofmembers, and was
even more effective with ensemblesxahembers. Lower observation errors increased the
tuned value of; in such a way as to suggest that there is an ideal ensembkdspueing
the forecast phase which is relatively independent of e érror covariance but depends
upon the accuracy of the model.

In conclusion, forecast spread adjustment wjtl 1 provided significant improve-

ment compared tg = 1 (no adjustment) in some of our experiments with a simple rhode
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Forecast spread adjustment was particularly effectivesfioaller ensembles, smaller ob-
servation errors, and (in some cases) larger model erransin@rpretation of why) > 1
improves results whe” > 12 but not whenF' < 12 is that larger values of" are as-
sociated with higher amplitude oscillations and largewugal ofy; tend to reduce these

oscillations in the background mean by averaging over a&taggsemble spread.
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Chapter 4

Summary and Future Work

| developed and tested two techniques for improving enserdata assimilation.
The first, which | call mixed resolution ensemble data adation, incorporates ensem-
bles of two different resolutions,combining the accuratg digh-resolution model with
the larger ensemble size feasible for a low-resolution rmodlee second, which I call
forecast spread adjustment, allows the ensemble spreadydhe model evolution to be
different from the forecast uncertainty, increasing ordasing the nonlinear effects. This
can improve upon previous techniques that restrict therebleespread to be commen-
surate with the forecast uncertainty during both the faseead analysis phases of data
assimilation.

Chapter 1 introduced data assimilation, in particular eride Kalman filters. With
an ensemble of forecasts, as opposed to a single forecasgnestimate the uncertainty
in the forecast. Data assimilation balances the unceieaiirt the “background” (forecast)
and in the observations and produces a better “analysishatg of the true model state.
The uncertainties in the background, observations, antysinare quantified as error

covariances.
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Current ensemble methods assume the ensemble is evolvesl sdrhe resolution,
with possibly one higher resolution control forecast. Ire@ter 2, | developed and tested
an ensemble data assimilation technique which incorppeatesembles of two resolutions.
Higher resolution is desirable for more accurate forecastarger ensemble is desirable
for improved sample statistics when estimating the errasadance. However, due to
limited computational resources, single resolution efdesmcompromise between the
ensemble size and resolution. My research shows that camytarsmall high-resolution
ensemble with a large low-resolution ensemble improvesrtae-off and improves the
accuracy of the analysisr the same computation cost when compared to single resolu-
tion ensembles or even ensembles which include one higlutesocontrol forecast. |
compared the forecast computation time to the RMSE for diffeensemble sizes of both
mixed and single resolution, assimilating with the mLETHKRiXed-resolution LETKF)
and the LETKF (Local Ensemble Transform Kalman Filter) extjwely. | tested perfect
model scenarios and scenarios with model error. | also dedignd tested a scenario
where it was possible to resolve the small scale variabilitthe high resolution model.
In all cases | showed improvement for mixed resolution erdesover both single reso-
lution ensembles and ensemble with only one high resolutiember. Future possibili-
ties for expanding upon this research include: applying tperational weather models;

allowing the weight parameter that controls the relative influence between the two sub-
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ensembles to vary with scale, e.g., allowing the large soateponent of the covariance
to come equally from the high and low resolution ensembletihe small scale compo-
nent comes only from the high resolution ensemble (C. Bispegsonal communication);
and more fully exploring the relationship betweeland the ensemble spread.

In current ensemble methods, the ensemble not only prob@aesyround error co-
variance used to determine the analysis, but the ensemigladsplso continues to corre-
spond to the uncertainty as it is evolved. However, the ebse=only needs to be com-
mensurate with the background uncertainty during the amaphase of data assimilation.
In Chapter 3 | explored the possibility of evolving an ensawihose spread is not com-
mensurate with the uncertainty during its evolution, raatipng the spread to be commen-
surate with the uncertainty during the analysis phase.l tlualtechnique forecast spread
adjustment. In addition to testing this technique, | alsscdssed relationships between
forecast spread adjustment and other techniques. Wheaoréeakt adjustment parameter
n is small and the ensemble size is large, the ensemble Kalttem(EnKF) will evolve
the same covariance as the Extended Kalman Filter (XKFyi®&us authors have demon-
strated the equivalence between the analysis phases of &mkthe XKF (e.g. Burgers et
al. 1998); my research connects them during their foredeestgs as well. | also show how
forecast spread adjustment can be used to transform baoidyesror covariance inflation

into analysis error covariance inflation or to combine the approaches. Some authors
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have discussed inflating the observation error covarianagedl, assuming that it is un-
derestimated (Stroud and Bengtsson 2007) or misreprek@éntet al. 2009). Forecast
spread adjustment produces the same background and amaBeins as observation error
covariance inflation for ensembles that are initializedmyithe forecast phase. When the
observation error is correctly specified however, the bemkgd and analysis errors will
be more commensurate with the covariances specified bydsirepread adjustment rather
than by observation error covariance inflation.

My results also show that forecast spread adjustment cahtéeaignificant im-
provements in the accuracy of ensemble data assimilati@nwinodel error is present,
though the improvement depends on the nature of the mod®l dimr my experiments,
improvement occurred in cases where ensemble averagingeswates for model biases.
Future research may include further investigation of tlesoas behind improvements due
to forecast spread adjustment, extensions of the methodlpoim cases where forecast
spread adjustment shows little improvement, developmies@ptive methods for tuning

7, investigation of forecast spread adjustment in conjomctvith ensemble forecasting.
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