
[1] J. L. Bentley, Communicated by David Johnson.

[2] D. Bienstock, M. X. Goemans, D. Simchi-Levi and D. P. Williamson. A note on the prize

collecting traveling salesman problem. Math. programming, 59 (3): 413{420, 1993.

[3] N. Christo�des. Worst-case analysis of a new heuristic for the traveling salesman problem. Report

388, Graduate School of Industrial Administration, Carnegie Mellon University, 1975.

[4] G. Das and P. J. He�ernan. Constructing degree-3 spanners with other sparseness properties.

Proc. 4th Annual Intl. Symp. on Algorithms and Computation, LNCS 762, pp. 11-20, Decem-

ber 1993.

[5] D-Z. Du and F. K. Hwang. A proof of the Gilbert-Pollak conjecture on the Steiner ratio. Algo-

rithmica, 7(2): 121{136, 1992.

[6] D-Z. Du, Y. Zhang and Q. Feng. On better heuristic for Euclidean Steiner minimum trees. Proc.

32nd Annual Symp. on Foundations of Comp. Sci., pp. 431{439, October 1991.

[7] T. Fischer. Optimizing the degree of minimum weight spanning trees. TR 93-1338, Dept. of

Computer Science, Cornell University, April 1993.

[8] G. N. Frederickson and J. J�aJ�a. On the relationship between the biconnectivity augmentation

and traveling salesman problems. Theoret. Comp. Sci., 19 (2): 189{201, 1982.

[9] M. F�urer and B. Raghavachari. Approximating the minimum-degree Steiner tree to within one

of optimal. To appear in J. Algorithms. A preliminary version of this paper appeared as

\Approximating the minimum degree spanning tree to within one from the optimal degree,"

in Proc. 3rd Annual ACM-SIAM Symp. on Discrete Algorithms, pp. 317{324, January 1992.

[10] M. R. Garey and D. S. Johnson. Computers and intractability: a guide to the theory of NP-

completeness. Freeman, San Francisco, 1979.

[11] M. Goemans and D. Williamson. A general approximation technique for constrained forest

problems. Proc. 3rd Annual ACM-SIAM Symp. on Discrete Algorithms, pp. 307{316, January

1992.

[12] A. Itai, C. H. Papadimitriou and J. L. Szwarc�ter. Hamilton paths in grid graphs. SIAM J.

Comput., 11(4): 676{686, 1982.

[13] J. N. Lillington. Some extremal properties of convex sets. Math. Proc. Cambridge Philosophical

Society, 77: 515{524, 1975.

[14] C. Monma and S. Suri, Transitions in geometric minimum spanning trees. Discrete & Computa-

tional Geometry, 8(3): 265{293, 1992.

[15] C. H. Papadimitriou and U. V. Vazirani. On two geometric problems related to the traveling

salesman problem. J. Algorithms, 5: 231{246, 1984.

[16] R. Ravi, M. V. Marathe, S. S. Ravi, D. J. Rosenkrantz and H. B. Hunt III. Many birds with

one stone: multi-objective approximation algorithms. Proc. 25th Annual ACM Symp. on the

Theory of Computing, pp. 438{447, May 1993.

[17] G. Robins and J. S. Salowe. On the maximum degree of minimum spanning trees. To appear in

10th Annual ACM Symp. on Computational Geometry, June 1994.

[18] J. S. Salowe. Euclidean spanner graphs with degree four. Proc. of the 8th Annual ACM Symp.

on Computational Geometry, pp. 186{191, June 1992.

15



v

k

(again, not necessarily in that order). This path together with P

0

will form a path

that starts at v and visits all vertices adjacent to v. We now show that

w(P

00

) �

5

3

(
vv

k�2

+
vv

k�1

+
vv

k

):(8)

This su�ces to prove the lemma. Let P

1

; : : : ; P

6

be the six possibilities for P

00

. Clearly,

w(P

00

) �

1

6

6

X

i=1

w(P

i

):

We will prove that

1

6

6

X

i=1

w(P

i

) �

5

3

(
vv

k�2

+
vv

k�1

+
vv

k

):

This simpli�es to

2
v

k�2

v

k�1

v

k

+

k

X

i=k�2

v

j

v

i

� 5(
vv

k�2

+
vv

k�1

+
vv

k

):(9)

Notice that if the above equation is not true, we can \shrink" all the v

i

(i =

k � 2; k � 1; k) until
vv

j

=
vv

k�2

=
vv

k�1

=
vv

k

. Assume that � = (
vv

k�2

�
vv

j

) +

(
vv

k�1

�
vv

j

) + (
vv

k

�
vv

j

). This can be done because the r.h.s decreases by 5�, and

the l.h.s decreases by at most 5�. If the above equation is not true then it is also not

true when the distance from v to all the points is the same. By scaling, we can assume

that the distance of the points from v is 1. We call this a canonical con�guration. The

following proposition is implied by Lillington's work [13] and helps in completing the

proof.

Proposition 4.2. Let A;B;C and D be points on a unit sphere. The function

F =
AB

+
AC

+
AD

+
BC

+
CD

+
BD

reaches a maximum value of 4

p

6
when the

points A;B;C and D form a regular tetrahedron.

We will now show that (9) is satis�ed by the canonical con�guration. The left

side of (9) can be written as the sum of sides of the tetrahedron formed by points

fv

k

; v

k�1

; v

k�2

; v

j

g and the sum of sides of the triangle formed by points fv

k

; v

k�1

; v

k�2

g.

These points lie on a sphere whose center is v. By Lemma 4.2, the �rst sum is bounded

by 4

p

6
. The second sum is bounded by 3

p

3
. Hence the left side of (9) is bounded by

4

p

6
+ 3

p

3
, which is about 14.994. The right side of (9) is 15. Hence (9) is satis�ed by

the canonical con�guration and therefore all con�gurations. This concludes the proof

of Lemma 4.1.

Acknowledgments. We thank Andras Bezdek for telling us about [13]. We thank

Karoly Bezdek and Bob Connelly for useful discussions and the committee members of

STOC '94 for simplifying the proof of Lemma 3.3 and for pointing out [14].
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As a function of �, function F is a sum of convex functions minus a linear function,

and thus is convex. Therefore, F is maximized either when
vv

1

= 1 or when v

1

is the

midpoint of edge
v

2

v

4

(since v

1

is on the convex hull, v

1

can not cross the edge, hence

this interval contains all possible values for �).

In the �rst case, all four points lie on a unit circle with center at v. For any four

such points, it is easily proven using calculus that
v

1

v

2

v

3

v

4

is maximized when the four

points are the vertices of a square at 4

p

2
� 5:66. Thus, F (1) < 0.

In the second case,
v

1

v

2

v

3

v

4

=
v

2

v

3

v

4

. As noted previously, this is at most 3

p

3
�

5:2. Thus, F (�) < 0.

We now deal with the case when v

3

is the furthest point. In this case we take

the paths P

1

= [v

4

; v

1

; v; v

2

; v

3

] and P

2

= [v

3

; v

4

; v; v

1

; v

2

]. The path P added by the

algorithm is at most as heavy as the lighter of the paths P

1

and P

2

. Hence,

w(P ) � min(P

1

; P

2

) �

w(P

1

) + w(P

2

)

2

:

Simplifying, we get

v

1

v

2

v

3

v

4

�

1

2

vv

1

+

5

2

vv

3

+

3

2

(
vv

2

+
vv

4

):

The proof of this is identical to the proof of the previous case.

4. Points in higher dimensions. We show how to compute a degree-3 tree (T

3

)

when the points are in arbitrary dimension d � 3. The algorithm for computing the

tree is similar to the algorithm for computing degree three trees in the plane | the tree

T

3

is formed by rooting the MST and taking the union of the paths fP

v

g, where each P

v

is the shortest path starting at v and visiting all of the children of v in the rooted MST.

It is known that any Euclidean MST has constant degree [17], so that the algorithm

still requires only linear time. The bound on the weight of T

3

is similar, except that

v may have more children. We prove that regardless of the number of children that v

has, the weight of P

v

is at most 5=3 the weight of the edges that it replaces:

Lemma 4.1. Let fv; v

1

; v

2

; : : : ; v

k

g be a set of arbitrary points in <

d

. There is a

path P , starting at v, that visits all the points v

1

; v

2

; : : : ; v

k

such that

w(P ) �

5

3

k

X

i=1

vv

i

:

Proof. We prove this by induction on the degree of v. Sort the points in increasing

distance from v as v

1

; : : : ; v

k

. Let v = v

0

. The lemma is trivially true when k = 0; 1; 2.

Let us assume that the lemma is true for all values of k up to some ` � 2. Consider

k = ` + 1. By the induction hypothesis, the claim is true when v has k � 3 children;

hence we can �nd a path P

0

that starts at v and visits all vertices v

i

(i = 1; : : : ; k � 3)

(not necessarily in that order) such that w(P

0

) �

5

3

P

k�3

i=1

vv

i

. Let v

j

be the last vertex

on the path P

0

. We add the cheapest path P

00

that starts at v

j

and visits v

k�2

; v

k�1

and

13



Further simplifying, we get:

v

1

v

2

v

3

v

4

�

1

2

vv

1

+

5

2

vv

4

+

3

2

(
vv

2

+
vv

3

):

Note that if it happens that v

3

was the farthest point from v, among its children,

we get a similar equation with v

3

and v

4

being exchanged in r.h.s of the equation. By

symmetry, the case when v

2

is furthest is similar to v

4

being farthest.

Without loss of generality,
vv

3

�
vv

2

. The proof now proceeds in a manner similar

to the proof of Lemma 3.3. If there is a con�guration of points for which this equation

is not true (the l.h.s exceeds the r.h.s) then we can move v

4

; v

3

closer to v until
vv

2

=

vv

3

=
vv

4

. In doing this, we decrease the l.h.s by at most 2(
vv

4

�
vv

2

) + 2(
vv

3

�
vv

2

).

Clearly, the r.h.s decreases by exactly 4(
vv

4

�
vv

2

) + 4(
vv

3

�
vv

2

). This ensures that

the l.h.s is still greater than the r.h.s. Hence without loss of generality, if there is a

con�guration for which our equation is not true then there is a con�guration with the

property that
vv

4

=
vv

3

=
vv

2

. We now show that when this property is true there is

no counter-example.

By scaling, we may assume that
vv

4

=
vv

3

=
vv

2

= 1, and
vv

1

= �, where � � 1.

Note that (by Corollary 3.2) v was originally within the convex hull of its four

children. Also (by Corollary 3.2), every child is on the convex hull. These properties

are both maintained by the above shrinking steps.

We now wish to prove that

v

1

v

2

v

3

v

4

�

11

2

+

1

2

�:

It is easily shown using elementary calculus that for any � such that v

1

is on the convex

hull of the points fv

1

; : : : ; v

4

g, rotating v

1

and v

3

around v until

6

v

1

vv

2

=

6

v

1

vv

4

(see Fig. 9) and

6

v

2

vv

3

=

6

v

4

vv

3

does not decrease the perimeter. Also, it maintains

that v

1

is on the convex hull. Assume the two pairs of angles are equal, and de�ne

F (�) =
v

1

v

2

v

3

v

4

��=2�11=2. We will show F is non-positive over the range of possible �.

v

4

v

1

�

�

v

v

3

�

v

2

Fig. 9. Figure to illustrate degree four case.
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and hence

v

1

v

2

v

3

� (

p

3� 1)
vv

1

+ (2

p

3 � 3)
vv

1

+ 2(
vv

2

+
vv

3

)

� (

p

3� 1)
vv

1

+ (

p

3 +

1

2

)(
vv

2

+
vv

3

):

This proves (7).

Case 2: v has 4 children, v

1

; v

2

; v

3

; v

4

. Assume that v

1

is the point that is closest to v,

among its children. Let the order of the points be v

1

; v

2

; v

3

; v

4

, when we scan the plane

clockwise from v, starting from an arbitrary direction.

There are two cases, depending on whether v

4

or v

3

is the point that is furthest

from v among its children. We �rst address the case when v

4

is the furthest point. (The

proof for the case when v

2

is the point furthest from v is symmetric to the case when

v

4

is the furthest point.)

Consider the following paths (see Fig. 8): P

1

= [v

4

; v

1

; v; v

2

; v

3

] and P

2

= [v

4

; v

3

; v; v

1

; v

2

].

P

1

v

3

v

4

v

v

1

v

2

v

4

v

1

v

2

v

3

P

2

v

Fig. 8. T

4

, four children

The path P

v

added by the algorithm is at most as heavy as the lighter of the paths

P

1

and P

2

. Hence

w(P

v

) � min(P

1

; P

2

) �

w(P

1

) + w(P

2

)

2

:

We will show that

w(P

1

) + w(P

2

)

2

� 1:25(
vv

1

+
vv

2

+
vv

3

+
vv

4

):

Simplifying, we need to show that

1

2

(
v

4

v

1

+
v

1

v
+
vv

2

+
v

2

v

3

+
v

4

v

3

+
v

3

v
+
vv

1

+
v

1

v

2

) �

5

4

(
vv

1

+
vv

2

+
vv

3

+
vv

4

):
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Theorem 3.9. Let T be a minimum spanning tree of a set of points in <

2

. Let T

4

be the spanning tree output by the algorithm in Fig. 6.

w(T

4

) � 1:25� w(T ):

Proof of Lemma 3.8. The proof is similar to the proof of Lemma 3.5. As before, we

consider cases depending on the number of children of v. The cases when v has no

children, one child, or two children are trivial.

Case 1: v has 3 children, v

1

; v

2

; v

3

. Let v

1

be the point that is closest to v, among

its children. Consider the following four paths (see Fig. 7): P

1

= [v

2

; v

1

; v; v

3

]; P

2

=

[v

2

; v; v

1

; v

3

]; P

3

= [v

1

; v; v

2

; v

3

] and P

4

= [v

1

; v; v

3

; v

2

].

v

3

v

v

1

P

1

v

2

v

1

P

2

v

v

3

v

2

v

1

P

3

v

v

2

v

1

P

4

v

2

v

3

v

3

v

Fig. 7. T

4

, three children

Clearly,

w(P

v

) �

w(P

1

)

3

+

w(P

2

)

3

+

w(P

3

)

6

+

w(P

4

)

6

:

We will show that

w(P

1

)

3

+

w(P

2

)

3

+

w(P

3

)

6

+

w(P

4

)

6

�

2 +

p

3

3

(
vv

1

+
vv

2

+
vv

3

):

This proves the three-child case because

2+

p

3

3

approximately equals 1.244 and is less

than 1.25. This simpli�es to

v

1

v

2

+
v

1

v

3

+
v

2

v

3

3

+
vv

1

+

vv

2

+
vv

3

2

�

2 +

p

3

3

(
vv

1

+
vv

2

+
vv

3

);

which further simpli�es to

v

1

v

2

v

3

� (

p

3� 1)
vv

1

+ (

p

3 +

1

2

)(
vv

2

+
vv

3

):(7)

Since v

1

is the closest point to v, applying Lemma 3.3, we get

v

1

v

2

v

3

� (3

p

3� 4)
vv

1

+ 2(
vv

2

+
vv

3

):
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MST T

3

Root Root

Fig. 5. Bad example for algorithm in Fig. 2.

High Level Description: The basic idea is the same as in the previous algorithm.

The di�erence is that we don't insist that each path P

v

start at v. The tree is

rooted at an arbitrary leaf. For each vertex v, the minimum weight path P

v

visiting

v and all of v's children (not necessarily starting at v) is computed. The �nal tree T

4

consists of the union of the paths fP

v

g. Again, for the analysis we think of each path

P

v

replacing the edges between v and its children in T .

Tree-4(V; T ) | Find a degree 4 tree of V .

1 Root the MST T at a leaf vertex r.

2 For each vertex v 2 V do

3 Compute the shortest path P

v

visiting v and all its children.

4 Return T

4

, the tree formed by the union

of the paths fP

v

g.

Fig. 6. Algorithm to �nd a degree 4 tree.

Lemma 3.7. The algorithm in Fig. 6 returns a degree-4 spanning tree of the given

set of points V .

Proof. A proof by induction shows that T

4

is a tree. Each vertex v occurs in at

most two paths and thus has degree at most four.

Lemma 3.8. Let v be a vertex in an MST T for a set of points in <

2

. Let P

v

be

the shortest path visiting fvg [ child

T

(v).

w(P

v

) � 1:25�

X

v

i

2child

T

(v)

vv

i

:

From the above lemma, each path P

v

weighs at most 1:25 times the net weight of

the edges it replaces. Thus,

9



We want to show that the function F (�) =
v

1

v

2

v

3

v

4

+ (
v

1

v

2

+
v

1

v

4

)� 7� 3� is

non-positive in the range 0 � � � 1. Simplifying, we get

F (�) = 2
v

1

v

2

+
v

2

v

3

+
v

3

v

4

+ 2
v

1

v

4

� 7� 3�:

Each of
v

i

v

j

in the de�nition of F is a convex function of � due to the following

reason. Let p be the point closest to v

j

on the line connecting v

i

and v

0

.

Observe that as v

i

moves towards v

0

,
v

i

v

j

decreases if v

i

is moving towards p

and increases otherwise. Since F is a sum of convex functions minus a linear

function, it is a convex function of �. Therefore it is maximized at either � = 0

or � = 1.

When � = 1, all four points are at the same distance from v

0

. If angle

6

v

4

v

0

v

1

=

� then F can be written as a function of a single variable � and it can be veri�ed

that F reaches a maximum value of 10

p

0:8
� 10, which is non-positive.

When � = 0,
v

1

v

2

=
v

1

v

4

= 1. Simplifying we get F =
v

2

v

3

+
v

3

v

4

� 3, and it

reaches a maximum value of 2

p

2
� 3, which is non-positive (when � = 0, note

that v

1

is the midpoint of the line segment v

2

v

4

).

Case 3b. v

0

v

2

= �. We wish to prove that

v

1

v

2

v

3

v

4

+ (
v

1

v

2

+
v

1

v

4

) � 8 + 2�:

We want to show that the function F

0

(�) =
v

1

v

2

v

3

v

4

+ (
v

1

v

2

+
v

1

v

4

)� 8� 2� is

non-positive in the range 0 � � � 1.

As a function of �, function F

0

is a sum of convex functions minus a linear

function, and thus is convex. Therefore it is maximized at either � = 0 or

� = 1.

The case � = 1 leads to the same con�guration as in Case 3a.

When � = 0,
v

1

v

2

=
v

2

v

3

= 1. Here F

0

= 2
v

1

v

4

+
v

3

v

4

�5. If angle

6

v

4

v

0

v

1

= �,

then F

0

can be written as a function of a single variable � and it can be veri�ed

that F

0

reaches a maximum value of 5

p

0:8
� 5, which is non-positive.

This concludes the proof of Lemma 3.5.

The example in Fig. 5 shows that the 1.5 factor is tight for the algorithm in Fig. 2,

modi�ed according to the note following its description. The same example also shows

that the 1.5 factor is tight for the unmodi�ed algorithm since the unmodi�ed algorithm

never outputs a lighter tree than the modi�ed algorithm. Each curved arc shown in

Fig. 5 is actually a straight line, and has been drawn curved for convenience. The vertex

that is the child of the root has three children, and is forced to drop one child. In doing

so, the degree of its child goes to four, and it in turn drops one of its children. The

algorithm could make choices in such a way that the changes propagate through the

tree and the tree T

3

output by the algorithm may be as shown in the �gure. The ratio

of the cost of the �nal solution to the cost of the MST can be made arbitrarily close to

1.5.

3.3. Spanning trees of degree four. We now assume that we are given a Eu-

clidean minimum spanning tree in which every vertex has degree at most 5. We show

how to convert this tree to a tree in which every vertex has degree at most 4.

8



P

1

v

3

v

1

v

1

v

3

P

2

v

2

v

2

v v

v

4

v

4

Fig. 4. T

3

, four children

We will show that

1

2

(w(P

1

) + w(P

2

)) � 1:5(
vv

1

+
vv

2

+
vv

3

+
vv

4

):

This simpli�es to

v

1

v

2

v

3

v

4

+ (
v

1

v

2

+
v

1

v

4

) � 3(
vv

1

+
vv

3

) + 2(
vv

2

+
vv

4

):(5)

We will �rst prove that

v

1

v

2

v

3

v

4

+ (
v

1

v

2

+
v

1

v

4

) � 3(
v

0

v

1

+
v

0

v

3

) + 2(
v

0

v

2

+
v

0

v

4

):(6)

Once we prove (6), by triangle inequality we can conclude that (5) is true. (Since

vv

1

+
vv

3

�
v

1

v

3

=
v

0

v

1

+
v

0

v

3

and
vv

2

+
vv

4

�
v

2

v

4

=
v

0

v

2

+
v

0

v

4

.)

We prove (6) by contradiction. Suppose there exists a set of points which does

not satisfy (6). Suppose we shrink v

0

v

3

by �. The left side of the above inequality

decreases by at most 2�, whereas the right side of the inequality decreases by exactly

3�. Therefore as we shrink v

0

v

3

, the inequality stays violated. Suppose v

0

v

3

shrinks and

becomes equal to another edge v

0

v

i

for some i 2 f1; 2; 4g. We now shrink both v

0

v

3

and v

0

v

i

simultaneously at the same rate. Again it is easy to show that the inequality

continues to be violated as v

0

v

3

and v

0

v

i

shrink. Hence we reach a con�guration where

three of the edges are equal.

Without loss of generality, the length of the three edges is 1 and the length of the

fourth edge is some � � 1.

There are two cases to consider. The �rst is when v

0

v

1

= � and the second is when

v

0

v

2

= �. (The case when v

0

v

4

= � is the same as the second case.)

Case 3a. v

0

v

1

= �. We wish to prove that

v

1

v

2

v

3

v

4

+ (
v

1

v

2

+
v

1

v

4

) � 7 + 3�:

7



Case 1: v has 2 children, v

1

; v

2

. There are two possible paths for P

v

, namely P

1

=

[v; v

1

; v

2

] and P

2

= [v; v

2

; v

1

]. Clearly,

w(P

v

) = min(w(P

1

); w(P

2

)) �

w(P

1

) + w(P

2

)

2

=

vv

1

2

+

vv

2

2

+
v

1

v

2

� 1:5 (
vv

1

+
vv

2

):

Case 2: v has 3 children, v

1

; v

2

; v

3

. Let v

1

be the child that is nearest to v. Consider the

following four paths (see Fig. 3): P

1

= [v; v

1

; v

2

; v

3

]; P

2

= [v; v

1

; v

3

; v

2

]; P

3

= [v; v

2

; v

1

; v

3

]

and P

4

= [v; v

3

; v

1

; v

2

].

v

1

P

1

v

v

3

v

1

v

2

P

2

v

v

3

v

2

v

1

P

3

v

3

v

v

2

v

1

P

4

v

2

v

3

v

Fig. 3. T

3

, three children

The path P

v

is at most as heavy as the lightest of fP

1

; P

2

; P

3

; P

4

g. The weight

of the lightest of these paths is at most any convex combination of the weights of the

paths. Speci�cally,

w(P

v

) � min(w(P

1

); w(P

2

); w(P

3

); w(P

4

)) �

w(P

1

)

3

+

w(P

2

)

3

+

w(P

3

)

6

+

w(P

4

)

6

:

We will now prove that

w(P

1

)

3

+

w(P

2

)

3

+

w(P

3

)

6

+

w(P

4

)

6

� 1:5 (
vv

1

+
vv

2

+
vv

3

):

This simpli�es to

v

1

v

2

+
v

2

v

3

+
v

3

v

1

� 1:25
vv

1

+ 2(
vv

2

+
vv

3

);

which follows from Lemma 3.3.

Case 3: v has 4 children, v

1

; v

2

; v

3

; v

4

. Let v

0

be the point of intersection of the

diagonals
v

1

v

3

and
v

2

v

4

. Note that the diagonals do intersect because the polygon

v

1

v

2

v

3

v

4

is convex (follows from Corollary 3.2).

Let v

3

be the point that is furthest from v

0

, among fv

1

; v

2

; v

3

; v

4

g. Consider the

following two paths (see Fig. 4): P

1

= [v; v

4

; v

1

; v

2

; v

3

]; P

2

= [v; v

2

; v

1

; v

4

; v

3

].

Clearly,

w(P

v

) � min(w(P

1

); w(P

2

)) �

w(P

1

)

2

+

w(P

2

)

2

:

6



3.2. Spanning trees of degree three. We now assume that we are given a

Euclidean minimum spanning tree T of degree at most �ve. We show how to convert

T into a tree of degree at most three. The weight of the resulting tree is at most 1.5

times the weight of T .

High Level Description: The tree T is rooted at an arbitrary leaf vertex. Since T

is a degree-5 tree, once it is rooted at a leaf, each vertex has at most four children.

For each vertex v, the shortest path P

v

starting at v and visiting every child of v is

computed. The �nal tree T

3

consists of the union of the paths fP

v

g. Fig. 2 gives the

above algorithm. In analyzing the algorithm, we think of each vertex v as replacing its

edges from its children with the path P

v

.

Tree-3(V; T ) | Find a degree 3 tree of V .

1 Root the MST T at a leaf vertex r.

2 For each vertex v 2 V do

3 Compute P

v

, the shortest path starting at v and visiting all the children of v.

4 Return T

3

, the tree formed by the union

of the paths fP

v

g.

Fig. 2. Algorithm to �nd a degree 3 tree.

Note: Typically, the initial MST has very few nodes with degree greater than three [1].

In practice, it is worth modifying the algorithm to scan the vertices in preorder, main-

taining the partial tree T

3

of edges added so far, and to add paths to T

3

as follows.

When considering a vertex v, if the degree of v in the partial T

3

is two, add the path P

v

as described in the algorithm. Otherwise its degree is one and, in this case, relax the

requirement that the added path must start at v. That is, add the shortest path that

visits v and all of v's children to T

3

(see x3.3). This modi�cation will never increase the

cost of the resulting tree, but may o�er substantially lighter trees in practice.

Lemma 3.4. The algorithm in Fig. 2 outputs a spanning tree of degree three.

Proof. An easy proof by induction shows that the union of the paths forms a tree.

Each vertex v is on at most two paths and is an interior vertex of at most one path.

Lemma 3.5. Let v be a vertex in an MST T of a set of points in <

2

. Let P

v

be a

shortest path visiting fvg [ child

T

(v) with v as one of its endpoints.

w(P

v

) � 1:5�

X

v

i

2child

T

(v)

vv

i

:

By the above lemma, each path P

v

has weight at most 1:5 times the weight of the

edges it replaces. Thus,

Theorem 3.6. Let T be a minimum spanning tree of a set of points in <

2

. Let T

3

be the spanning tree output by the algorithm in Fig. 2.

w(T

3

) � 1:5� w(T ):

Proof of Lemma 3.5. We consider the various cases that arise depending on the number

of children of v. The cases when v has no children or exactly one child are trivial.

5



The lemma is also interesting in its own right and we believe that it and the associated

techniques will be useful in other geometrical problems.

Lemma 3.3. Let X, A, B, and C be points in <

d

with
XA

�
XB

;
XC

. Then

ABC
� (3

p

3 � 4)
XA

+ 2(
XB

+
XC

):(4)

Note that 3

p

3
� 4 � 1:2. Recall that

ABC
is the perimeter of the triangle and

XY
is

the distance from X to Y .

B

C

B

0

X

A

C

0

Fig. 1. Shrinking to obtain canonical form

Proof. Let B

0

and C

0

be points on XB and XC respectively such that
XA

=

XB

0

=
XC

0

(see Fig. 1). First we observe that the lemma is true if it is true for the

points X;A;B

0

and C

0

. This follows because by triangle inequality,

ABC
�
AB

0

C

0

+ 2
BB

0

+ 2
CC

0

:

By our assumption,

AB

0

C

0

� (3

p

3 � 4)
XA

+ 2(
XB

0

+
XC

0

):

Combining the two inequalities yields the desired result. Therefore in the rest of the

proof, we show that the lemma is true when the \arms"
XA

,
XB

0

and
XC

0

are equal.

It is not very di�cult to see that to maximize the perimeter of the triangle, X will

be in the plane de�ned by A;B

0

and C

0

, and thus X is at the center of a circle passing

through A;B

0

and C

0

.

By scaling, it su�ces to consider the case when the circle has unit radius. In

this case, the right-hand side of (4) is exactly 3

p

3
. Thus, it su�ces to show that the

maximum perimeter achieved by any triangle whose vertices lie on a unit circle is 3

p

3
.

This is easily proved [13].

Note that in an arbitrary metric space it is possible to have an (equilateral) triangle

of perimeter six and a point X at distance one from each vertex.

4



or a Steiner tree of a given subset of vertices in a graph, with degree at most one

more than minimum was given by F�urer and Raghavachari [9]. This was extended

to weighted graphs by Fischer [7]. He shows how to �nd minimum spanning trees

whose degree is within a constant multiplicative factor plus an additive O(log n) of the

optimal degree. The degree bound is improved further in the case when the number of

di�erent edge weights is bounded by a constant. Ravi, Marathe, Ravi, Rosenkrantz and

Hunt [16] consider the problem of computing bounded-degree subgraphs satisfying given

connectivity properties in a graph whose edge weights satisfy the triangle inequality.

They give e�cient algorithms for computing subgraphs which have low weight and

small bottleneck cost. Salowe [18], and Das and He�ernan [4] consider the problem of

computing bounded-degree graph spanners and provide algorithms for computing them.

Robins and Salowe [17] study the maximum degrees of minimum spanning trees under

various metrics.

2. Preliminaries. Let V = fv

1

; : : : ; v

n

g be a set of n points in the plane. Let

G be the complete graph induced by V , where the weight of an edge is the Euclidean

distance between its endpoints. We use the terms points and vertices interchangeably.

Let
uv

be the Euclidean distance between vertices u and v. Let T

min

be a minimum

spanning tree (MST) of the points in V . Let w(T ) denote the total weight of a spanning

tree T . Let T

k

denote a spanning tree in which every vertex has degree at most k. Let

deg

T

(v) be the degree of a vertex v in the tree T . Let �ABC denote the triangle formed

by points A;B and C. Let

6

ABC denote the angle formed at B between line segments

AB and BC. Let
ABC

denote the perimeter of �ABC.

In this paper we prove the following: for an arbitrary set of points in <

2

,

9T

3

: w(T

3

) � 1:5� w(T

min

)(1)

9T

4

: w(T

4

) � 1:25 �w(T

min

)(2)

For an arbitrary set of points in <

d

(d > 2),

9T

3

: w(T

3

) �

5

3

� w(T

min

)(3)

3. Points in the plane. We �rst consider the case of <

2

{ points in the plane.

We �rst note some useful properties of minimum spanning trees in <

d

.

Proposition 3.1 ([15]). Let AB and BC be two edges incident to a point B in

a minimum spanning tree of a set of points in <

d

. Then

6

ABC is a largest angle in

�ABC.

Corollary 3.2. Let AB and BC be two edges incident to a point B in a minimum

spanning tree of a set of points in <

d

. Then

�

6

ABC � 60

�

�

6

BAC;

6

BCA � 90

�

.

3.1. An upper bound on the perimeter of a triangle. We now prove an upper

bound on the perimeter of an arbitrary triangle in terms of distances to its vertices from

an arbitrary point. This lemma is useful in proving the performances of our algorithms.

3



tree problem. It should be noted that in the special case of K = 2, Christo�des [3] gave

a simple and elegant polynomial time approximation algorithm with an approximation

ratio of 1.5 for computing a traveling salesperson tour for points satisfying the triangle

inequality (points in a metric space).

1.1. Our Contributions. In this paper, we show that for an arbitrary collection

of n points in the plane, there exists a degree-3 spanning tree whose weight is at most

1.5 times the weight of a minimum spanning tree. We also show that there exists a

degree-4 spanning tree whose weight is at most 1.25 times the weight of a minimum

spanning tree. This solves a ten year old open problem posed by Papadimitriou and

Vazirani [15].

Moreover, if a minimum spanning tree is given as part of the input, the trees can

be computed in O(n) time. Note that our bound of 1.5 for the degree-3 spanning tree

problem is an \absolute" guarantee (based on the weight of an MST) as opposed to a

\relative" guarantee for the degree-2 spanning tree obtained by Christo�des [3] (based

on the weight of an optimal solution).

We also generalize our results to points in higher dimensions. We show that for any

d � 2, an arbitrary collection of points in <

d

contains a degree-3 spanning tree whose

weight is at most 5/3 times the weight of a minimum spanning tree. This is the �rst

paper that achieves factors better than two for these problems.

1.2. Signi�cance of Our Results. Many approximation algorithms make use of

the triangle inequality to obtain approximate solutions to NP-hard problems. These

algorithms typically involve a \short-cutting" step where the triangle inequality is used

to bound the cost of the obtained solution. Examples include Christo�des' heuristic

for the traveling salesperson problem [3], biconnectivity augmentation [8], approximate

weighted matching [11], prize-collecting traveling salesperson [2], and bounded-degree

subgraphs which have low weight and small bottleneck cost [16].

A question of general interest is how to obtain improved approximation algorithms

for such problems when the points come from a Euclidean, as opposed to arbitrary,

metric space. This requires making use of more than just the triangle inequality. Sur-

prisingly, for most problems, improved algorithms are not known. (A notable exception

is the famous Euclidean Steiner tree problem [5, 6].) We use rudimentary geometric

techniques to obtain an improved algorithm for the Euclidean degree-K spanning tree

problem.

The key to our method is to give short-cutting steps that are provably better than

implied by the triangle inequality alone. Lemma 3.3, which bounds the perimeter of an

arbitrary triangle in terms of distances to its vertices from any point, is typical of the

techniques that we use to get better bounds.

1.3. Related Work. Papadimitriou and Vazirani showed that any MST whose

vertices have integer co-ordinates has maximum degree at most �ve [15]. Monma and

Suri [14] showed that for every set of points in the plane, there exists a degree-5 MST.

Many recent works have given algorithms to �nd subgraphs of bounded degree that

simultaneously satisfy other given constraints. An algorithm to �nd a spanning tree

2



LOW DEGREE SPANNING TREES OF SMALL WEIGHT

SAMIR KHULLER

�

, BALAJI RAGHAVACHARI

y

AND NEAL YOUNG

z

Abstract. Given n points in the plane, the degree-K spanning tree problem asks for a spanning

tree of minimum weight in which the degree of each vertex is at most K. This paper addresses the

problem of computing low-weight degree-K spanning trees for K > 2. It is shown that for an arbitrary

collection of n points in the plane, there exists a spanning tree of degree three whose weight is at most

1.5 times the weight of a minimum spanning tree. It is shown that there exists a spanning tree of

degree four whose weight is at most 1.25 times the weight of a minimum spanning tree. These results

solve open problems posed by Papadimitriou and Vazirani. Moreover, if a minimum spanning tree is

given as part of the input, the trees can be computed in O(n) time.

The results are generalized to points in higher dimensions. It is shown that for any d � 3, an

arbitrary collection of points in <

d

contains a spanning tree of degree three, whose weight is at most

5/3 times the weight of a minimum spanning tree. This is the �rst paper that achieves factors better

than two for these problems.

AMS(MOS) subject classi�cation. 05C05, 05C10, 05C85, 65Y25, 68Q20,

68R10, 68U05, 90C27, 90C35.

Key words. algorithms, graphs, spanning trees, approximation algorithms, geom-

etry.

1. Introduction. Given n points in the plane, how do we �nd a spanning tree

of minimum weight among those in which each vertex has degree at most K? Here

the weight of an edge between two points is de�ned to be the Euclidean distance be-

tween them. This problem is referred to as the Euclidean degree-K spanning tree

problem and is a generalization of the Hamilton Path problem which is known to be

NP-hard [10, 12]. When K = 3, it was shown to be NP-hard by Papadimitriou and

Vazirani [15], who conjectured that it is NP-hard for K = 4 as well. When K = 5, the

problem can be solved in polynomial time [14].

This paper addresses the problem of computing low weight degree-K spanning trees

for K > 2. In any metric space, it is known that there always exists a spanning tree of

degree 2 whose cost is at most twice the cost of a minimum spanning tree (MST). This

is shown by taking an Euler tour of an MST (in which each edge is taken twice) and

producing a Hamilton tour by short-cutting the Euler tour. In the case of general metric

spaces, it is easy to generate examples in which the ratio of a shortest Hamilton path to

the weight of a minimum spanning tree is arbitrarily close to two. But such examples

do not translate to points in <

d

. In view of this, Papadimitriou and Vazirani [15] posed

the problem of obtaining factors better than two for the Euclidean degree-K spanning

�
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