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Abstract

Recently Qiu et al. obtained a computionally attractive formula for the computation of
the real stability radius. This formula involves a global maximization over frequency. Here
we show that the frequency range can be limited to a certain finite interval. Numerical
experimentation suggests that this interval is often reasonably small.

1 Introduction and Notation

Fork =1,2,...,let oi(:) denote the kth largest singular value of its matrix argument. The real
(structured) stability radius of a real matrix triple (4, B,C) € R™" x R™™ x RPX" with A
Hurwitz stable, is defined by (see [1])

rr(4, B,C) = Aenfltigxp{al(A) : A4+ BAC is not Hurwitz stable}.

Recently Qiu et al. [2] obtained a formula allowing efficient computation of rgr (4, B, C). Specif-
ically they showed that

rR(A, B,C)™" = max g (C(iwl ~ 4)7'B) (1)

where Rt = {w € R :w > 0} and where, for any M € C™*?,

s ReM —ySmM .
Hr(M) = qél(l()f,l] 72 ([ YISmM  ReM ]) ' (2)

The computation of ug (M) for given M can be carried out at low computational cost as the
univariate function to be minimized is unimodal.

In this note, we obtain an upper bound on the magnitude of the global maximizers in
(1), computable at a cost negligible compared to that of performing the global maximization.
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Numerical experimentation suggests that this bound is often reasonably small, and in many
cases is significantly smaller than a previously obtained bound. Knowledge of such an upper
bound simplifies the task of carrying out the numerical maximization.

Given M € C™*P  we denote its transpose by MT and its conjugate transpose by M.
When M = M we denote by A\y(M) its kth largest eigenvalue. For 7 € R, |r| is the largest
integer which is smaller than or equal to r.

2 A Finite Frequency Range

Let ag,...,a, € R (@, = 1) be the coefficients of the characteristic polynomial of A, i.e.,
det(s] — A) = a,s" + Q18" Lt ags+ ag,

and let Ro,...,R,_1 € R"*" (R,-1 = I) be the matrix coefficients of det(sl — A)(s] — A)~!,
i.e.,
n—1 n—2 e
(SI _ A)—l — Rn—13 + RTL—Qf + + R18 + RO'
§" 4 p_18" - a1s+ G

(3)

Also define

i V2 01(CRyp_1B)
Pn-1'= —Gp—1 t+ o1 (CA™ rllB y

V2 01(CRn_2B)

Pn-2 = Gn-2 + T ETiEy
. V2 1 (CRy—3B)
Pn—3 1= Gn-3 + a;'lCA 133) y
k2 2 CRy.1B
( 1)[ Jan E+ \/——UTEC4 1Bh) )a

Prn—k =
po i= (1) ag + AL,

Qur first result provides an outer approximation to a certain level set of o1(C(jwl ~ A)~!B).

Proposition 1: The polynomial

P(w)i=w" = ppgw™ = —po

has at least one zero in R*. Furthermore, any & > 0 such that
o1 (C(oI — A)7'B) > 0y(CATIB), (4)
satisfies
& < pp = max{w € RT : P(w) = 0}.
O
Thus the level set {w > 0: o1(C(jwl — A)"1B) > o1(CA~1B)} (which is nonempty since it

contains the origin) is contained in the interval [0, pp]. An immediate consequence of this is that
the complex (structured) stability radius r¢o(A, B, C) (see [1]), whose inverse is given by

rc(A,B,C)" ! = max o1(C(jwl — A)™'B), (5)



can be obtained based instead on the formula

rc(4,B,C)" = max o)(C(jwl — A)7'B).
w€[0,pp]
This however is of little value as efficient schemes exist for solving (5) [3-5]. Of more interest is

the following result concerning the computation of rg(A, B, C). Here dependence of pp ou the
triple (A, B, C) is made explicit.

Theorem 1:

e wl — A)™1B).
rr(A, B,C) wE[Oyg?ZSBYC)]MR(C(JWI A)""B) (6)

Moreover, for fixed (A, B, (), with A Hurwitz stable, the mapping

e a1
(A,B,C)Hwe[oygg(ajfoc)]uR(C(JwI A)7'B)

is continuous at (A4, B,C) = (A, B, (). O
While pp may not be continuous as a function of (A, B, (') (largest real zero of a polynomial),
the second statement in Theroem 1 validates computation of rg by means of (6) whenever rg
is continuous (if rg is discontinuous, there is no reliable way to compute it in the presence of
numerical errors). Also, note that the computational cost of evaluting pp is negligible compared
to that of carring out the maximization (1). In particular, the a;’s and R;’s can be computed
efficiently using the Souriau-Frame-Fadeev Algorithm (see, e.g., [6, Theorem 5.3.10]).

Finally, another upper bound for the frequency range to which the maximization in (1) may
be restricted can be obtained from a simple extension of a result of J.M. Martin [7]. Specifically
(4) also holds whenever w € [0, pps], where

0'1(C)0'1(B)

pm = 01(A) + 1 (CA-1B)’

and an argument identical to that used in the proof of the first claim of Theorem 1 shows that
the maximization in (1) can be limited to [0, pas] (and pps is continuous in (A4, B, C')). It follows
that
rr(4,B,C)" = max pp(C(jwl A)7'B)
w N

where p* := min{pp, par}-

3 Examples
In the first 3 examples, borrowed from [8], mn = p=nand C = B = I.
Example 1:
0 0 0 1 0 0
0 0 0 0 1 0
A= 0 0 0 0 0 1
-1 0 0 -0.01 0 0
0 -2 0 0 -0.01 0
0 0 -10 0 0 —-0.01
The global maximizer in (1) is 1.4142; pp = 6.2301, pps = 10.995. a



Example 2:

-1 1 1 0
-1 -1 0 1
A= 0 0o -1 1
0 0o -1 -1
The global maximizer in (1) is 1; pp = 3.2075, par = 3.0000. a
Example 3:
-1 1000 0.001
A= -1 -1 0
1 1 -100

The global maximizer in (1) is 31.391 (it is erroneously printed in [8] as 3.1624); pp = 49.7810,
pm = 1001.0000. a

Our last example is taken from [2].

Example 4:
79 20 -30 =20
A= —-41 -12 17 13
- 167 40 -60 -38 |’
335 9 145 -11
0.2190 0.9347
B= 0.047 0.3835 O = 0.0346 0.5297 0.0077 0.0668
| 0.6789 0.5194 |’ “\ 0.0533 0.6711 0.3834 0.4175 |~
0.6793 0.8310
The global maximizer in (1) is 1.3; pp = 13.9073, par = 216.8366. O
4 Proofs

Our proof of Proposition 1 makes use of the following result.

Lemma 1: For any w € R,

V2

| det(jwl — A)| > Y (w" + W (—1)L§Jan__kw”"k 4t (—l)ngao) .

Proof:

| det(Gwl — A)|? = (Re(det(jwl — A)))* + (Sm(det(jwI — A)))?
‘ = (ao—a2w2+...+(-1)L$Ja2t_zﬂjw2l.élj>2+
n— n— 2
+ (alw —azwd 4+ (_1)L“§‘1Ja2tﬂz__lJ+lw2LTlJ+1) .

Since for any two real numbers ¢ and b, a? + b? >

O =t

(la| + |b])?, it follows that

| det(Geod — A)|

> V2 (|a0 oo+ (DB ag g B w4 4 (—1)_L13—2_—J“2L"—;1J+1“)2L12;Jj|) -

= 3? ([(—1)L51(a0 oot (_1)L5Ja2L%Jw2L5J)| H =D qw + (_1)LTJ“2L1§£J+1W2LT'|H)|)



and the claim follows from the triangle inequality in C. ad

Proof of Proposition 1: Let & be such that (4) holds. It follows from (3) and the triangle
inequality (o1(-) is a norm) that

O'l(CRn_lB)L:)n_l 4 - +0’1(CR1B)W+O’1(CR0B)

01(CA™1B) < [ deioT — A)) (7)
or equivalently
| det(6] - A)] < 01(CRp—1 B)o"™ ! +01(C-|-A011(§')R1B)w + 0 (CRoB) 8)
In view of Lemma 1 and the definition of the p;’s, this implies that
P(&) <0. (9)
Since P(w) goes to infinity as w tends to infinity, the claims follow. O

Proof of the Theorem 1: First note that, for any X,Y € R**",

01(X+jY)=02([§ "Y}, D (10)

Indeed X 4 jY and X — jY have the same singular values, so that

X —-jY 0 _ X -3y 0 o
([55 eby e[ s

x -v]_ _[x-jv 0 i
{Y X]_U[ 0 X+jY]V

and

where U and V are unitary matrices given by

/3
U:V:_Q_[JI I}

From (10) and from the definition (2) of ug it follows that
ur(CA™'B) = 01(CA™'B)

and, for any w > 0,

U (C(wI - A)7'B)

IN

Re(C(jl = A)1B) ~Sm(Cll - A7 B) | ()
2\ | Sm(C(wl - A)1B)  Re(Cliwl — A)"1B) (1]

= oy(C(jwl — A)"'B). (12)
In view of Proposition 1, this implies that any @ > 0 such that

pr(C(@I — A)™'B) > ug(CA™'B)



must satisfy
w < pp.

Thus the level set {w > 0 : pur(C(jwl — A)"1B) > ur(CA~!B)} (which is nonempty since it
contains the origin) is contained in the interval [0, pp]. The first claim is a direct consequence
of this fact. Now let j := pp(A, B, ). Uniform continuity of oy(C(jwI — A)~1B) over compact
sets preserving Hurwitz stability of A implies that, given any € > 0, there exists § > 0 such that

|01 (C(jwI — A)'B) — 0y(C(jwl — A)™'B)| < ¢/2 Yw €0, f] (13)

whenever ||(A4, B,C) — (A, B,()|| < é, where || || denotes an arbitrary norm. Now let (A4, B, ()
be such that ||(A4, B,C) — (A, B,C)|| < 6, and let p:= pp(A, B,C). We show that

rgﬁx]un(é(jwf —A)'B) > rr(4,B,0) — (14)
wel0,p

thus proving the second claim. If p > p, the claim follows trivally. Thus suppose p < p. From
(13) and Proposition 1 (at (A4, B, C)), it follows that

al(C'(ij - fi)_ll;’) < al(C’A_lB) + ¢ Yw € (p, 9]
which, in view of (12) implies that
pr(CGwl — A)'B) < 01 (CA™'B) + € Yw € (p, .
It follows that
rr(4,8,0)7" < max{ max up(C(jwl = A)7' B),0((CA™'B) + o).

Since

m[zcm)x]uR(C'(ij— AIB > pp(CA™'B) = 0y(CATIB),
w€|0,p

(14) follows. O
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